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In this manuscript we present a calculation from covariant Loop Quantum Gravity,
of a physical observable in a non-perturbative quantum gravitational physical pro-
cess. The process regards the transition of a trapped region to an anti–trapped region,
treated as a quantum geometry transition akin to gravitational tunneling. The phys-
ical observable is the characteristic timescale in which the process takes place.
Focus is given to the physically relevant four–dimensional Lorentzian case. We start
with a top–to–bottom formal derivation of the ansatz defining the amplitudes for co-
variant Loop Quantum Gravity, starting from the Hilbert-Einstein action. We then
take the bottom–to–top path, starting from the Engle-Perreira-Rovelli-Livine ansatz,
to the sum–over–geometries path integral emerging in the semi-classical limit, and
discuss its close relation to the naive path integral over the Regge action. We proceed
to the construction of wave–packets describing quantum spacelike three-geometries
that include a notion of embedding, starting from a continuous hypersurface embed-
ded in a Lorentzian spacetime.
We derive a simple estimation for physical transition amplitudes describing geome-
try transition and show that a probabilistic description for such phenomena emerges,
with the probability of the phenomena to take place being in general non-vanishing.
The Haggard-Rovelli (HR) spacetime, modelling the spacetime surrounding the ge-
ometry transition region for a black to white hole process, is presented and discussed.
We give the HR-metric in a form that emphasizes the role of the bounce time as a
spacetime parameter and we give an alternative path for its construction. We de-
fine the classical and quantum observables relevant to the process, propose an inter-
pretation for the transition amplitudes and formulate the problem such that a path-
integral over quantum geometries procedure can be naturally applied.
We proceed to derive an explicit, analytically well-defined and finite expression for a
transition amplitude describing this process. We then use the semi–classical approx-
imation to estimate the amplitudes describing the process for an arbitrary choice of
boundary conditions. We conclude that the process is predicted to be allowed by
LQG, with a crossing time that is linear in the mass. The probability for the pro-
cess to take place is suppressed but non-zero. We close by discussing the physical
interpretation of our results and further directions.
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“I have one good characteristic: I’m a pessimist, so I always imagine the worst — always.
To me, the future is a black hole white!”

Krzysztof Kieslowski
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1 Introduction

In this manuscript, we present an application of the formalism of covariant Loop Quan-
tum Gravity in a non-perturbative quantum gravitational process understood as geom-
etry transition.

We will show that gravitational tunnelling emerges naturally in covariant LQG. We
will use these results to study the transition of a black to a white hole geometry and de-
fine and estimate a physical observable: the characteristic physical time–scale in which
the process takes place.

Quantum Gravity refers to an open problem: the quest for a physical theory that
describes the phenomenon of gravity and incorporates the notions of time and space,
in a way compatible with the 20th century and contemporary understanding, that all
natural phenomena obey the principles of Quantum Mechanics.

We expect a theory of Quantum Gravity to be compatible with previously estab-
lished physical theories, and to be able to provide definite predictions for phenomena
that do not admit a description by its predecessors.

The theory and the mathematical objects defining it must be accompanied by an in-
terpretation, a correspondence to measurements, so that it may be used unambiguously.

Research in the past century has overwhelmingly focused on laying the foundations
for Quantum Gravity. This was partly due to the lack of experimental guidance and
partly due to the formidable nature of the technical and conceptual issues that had to
be overcome in order to achieve meaningful progress.

M, g

W ∼
∫
q,K

D[g]e
i
h̄SHE [g]

q,K

Fig. 1.1: Geometry transition viewed as a path-integral over geometries. The boundary surface
(dark green) separates the parts of the system treated as classical and quantum. The exterior
spacetime is classical with a metric g solving Einstein’s field equations. A path-integral W is per-
formed in the interior with the metric fixed to the intrinsic metric q and extrinsic curvature K of
the boundary surface. We emphasize that the interpretation of the amplitude as a path-integral
over geometries is emergent in covariant LQG, in the semiclassical limit of large quantum num-
bers. The theory is defined in the absence of any notion of classical metric, or indeed, spacetime.
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Loop Quantum Gravity refers to the body of results, and the corresponding commu-
nity of researchers, from the research program for the canonical quantization of General
Relativity, based on the parametrization of the phase space of General Relativity by the
Ashtekar [1] and subsequently the Ashtekar-Barbero [2] variables.

General Relativity formulated in terms of these variables resembles, at the kinemati-
cal level, an S U(2) Yang-Mils theory with an S U(2) gauge field as configuration variable,
and a densitzied triad field playing the role of the conjugate momentum, the “electric
field”.

The Hamiltonian constraint, encoding the dynamics, was much simplified in this
reformulation, circumventing technical difficulties of Wheeler’s geometrodynamics [3].
This led to the loop representation of quantum general relativity [4,5], introduced by C.
Rovelli and L. Smolin, and subsequently to Loop Quantum Gravity.

The research program of Loop Quantum Gravity attempts and has set as its ultimate
goal to complete Dirac’s program for the canonical quantization of General Relativity.
The recipe, or algorithm, to be defined and completed, was laid out in Dirac’s influential
lectures on constrained Hamiltonian systems [6].

Dirac believed it is of utmost importance to found an approach to Quantum Gravity
on the Hamiltonian or canonical formulation, which, if completed successfully, guaran-
tees that we have at least a first approximation of the correct theory. In his words, on
approaches that are not based on a canonical quantization program

I feel that there will always be something missing from them which we can only
get by working from a Hamiltonian, or maybe some generalization of the concept
of a Hamiltonian. So, I take the point of view that the Hamiltonian is really very
important for quantum theory.

In this manuscript, we will not be dealing directly with the Hamiltonian for General
Relativity [7–9]. We will present and use the covariant approach to Loop Quantum
Gravity.

The covariant approach to Loop Quantum Gravity, or, spinfoam quantization pro-
gram, is interlinked, inspired and based on the results of its parent theory, Loop Quan-
tum Gravity. The Hamiltonian will in this sense be implicit.

The program of covariant LQG can be placed historically as an attempt to realize the
Feynman Quantization of General Relativity within the context of LQG. This avenue
for a quantum treatment of gravity was beautifully outlined in Misner’s eponymous
article [10].

Misner emphasized the merits of working directly with an action principle that has
the relevant symmetries. A covariant formulation provides a way to circumvent, at least
temporarily, the difficulties inherent in a rigorous Hamiltonian treatment.

The spirit of Wheeler’s geometrodynamics [3] and Hawking’s subsequent attempts
[11] to define the path–integral for gravity as a Wheeler–Misner–Hawking (WMH) sum–
over–geometries is sketched in Figure 1.1.

The wider LQG community shares a common set of convictions that translate into
basic principles on which the theory is built.
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At the heart of the approach, is the insistence on background independence. This
is also the central departure from a Yang-Mills field theory, since it implies that the
dynamics are coded in a Hamiltonian constraint, a vanishing Hamiltonian, with the
physical states being those in its kernel.

Backround independence can be stated as demanding the following: no physical
entity can be modelled in a theory of quantum gravity by a mathematical object that
is fixed à priori, does not interact with other physical entities and is in this sense non-
dynamical. The quantum theory must be background–free, as is the classical theory,
General Relativity.

This is the ontology of physical reality according to LQG; that is to say, of the tangible
physical entities that may leave a mark in experimental apparatuses. Rovelli’s way
of putting this world–view is to say: “covariant quantum fields on top of covariant
quantum fields” [12].

The “covariant” emphasizes another principle taken as fundamental in LQG: Lorentz
invariance is accepted as a fundamental symmetry of nature, not to be broken even at
the Planck scale. The description of the covariant quantum gravitational field is four–
dimensional.

LQG follows in the footsteps of Einstein’s conceptual revolution that geometry is
key for gravity, in the sense that can be summarized as

Gravity is Geometry; Quantum Gravity is Quantum Geometry.

In turn, as emphasized by Wheeler [3], we do not expect quantum geometry to re-
semble a smooth classical geometry. The latter should be an appropriate semi-classical
limit of the former. The right intuition for the deep quantum gravitational regime may
then be one of quantum fluctuations of the quantum field to which the notions of time
and space are ultimately attributed, a “foamy spacetime”.

Spinfoams are a fusion of ideas from topological quantum field theories and covari-
ant lattice quantization, the quantization of geometrical shapes [13–16] and the canoni-
cal quantization program of LQG.

The transition amplitudes of covariant LQG provide a definition for the regularized
path integral over histories of the quantum spatial geometries predicted by LQG to be
the states of the quantum gravitational field. The Lorentzian spinfoam model consists of
an ansatz for the definition of the regularized partition function, with the regularization
effectuated by a skeletonization on a 2-complex C, a sort of topological 2-dimensional
graph.

The 2-complex C serves as a combinatorial account–keeping device, arranging a
sense of adjacency for a finite subset, a truncation, of the degrees of freedom of the
quantum gravitational field. The amplitudes WC of covariant LQG, are defined by a
state-sum spin model. They are partition functions over spin configurations, colouring
the faces of a 2-complex and its boundary graph. These quantum numbers label irre-
ducible unitary representations of the Lorentz group, and recoupling invariants inter-
twining between them. They are interpreted as the degrees of freedom of the quantum
gravitational field.



10 Geometry Transition in Covariant Loop Quantum Gravity

State-sum spin models have been studied in a variety of simplified settings, topolog-
ical, Euclidean, in three and four (or more dimensions), with compact and q-deformed
groups and in the context of tensor models. These toy–models served as a testing–
ground and a stepping stone until a state-sum spin model relevant for gravity became
available. This pre-history of the spinfoam program can be summarized as a progres-
sion through the Ponzano-Regge-Tuarev-Viro-Ooguri-Boulatov models [17–22].

Efforts over the past two decades within the context of LQG culminated in what
has become known as the EPRL model [23–28]. Several variations of this model have
been proposed and a version treating the physically relevant Lorentzian case is cur-
rently available. A naming attributing credit to the main developments leading to
its present form could have been the Barret–Crane–Freidel–Krasnov–Speziale–Livine–
Perreira–Engle–Rovelli–. . . model.

Although many fundamental issues remain open, the spinfoam quantization pro-
gram has seen significant advances over the past decade.

The EPRL model has had some important successes, possessing a well-studied semi–
classical limit closely related to General Relativity [24,29–41], and reproducing the two-
point function of quantum Regge calculus [42–47] at the level of the vertex–amplitude.

The Lorentzian EPRL model can be understood as a tentative attempt at a spinfoam
quantization of the Holst action for General relativity. The Holst action provides a way
to define the path-integral by means of a modification of the well–understood spinfoam
quantization for topological theories. The central observation is that the Holst action,
and related actions, is equivalent to a topological BF-action when imposing certain con-
straints, called the simplicity constraints.

The Holst action also provides the main bridge with the canonical theory and the
Hamiltonian. The real Ashtekar-Barbero variables arise naturally in its 3+1 split, the
canonical quantization of which results in the kinematical Hilbert space of LQG.

In turn, the path–integral is conditioned on the requirement that states live in the
kinematical Hilbert space of LQG.

Covariant LQG can be related to the body of results of Loop Quantum Gravity by
understanding the spinfoam amplitudes as projectors on the physical states of LQG,
annihilated by the Hamiltonian.

Towards contact with measurements

Loop Quantum Gravity, is maturing to the point where the extraction of experimen-
tal predictions of which the phenomenology can be understood and be testable in the
foreseeable future is no longer seen as a remote possibility [48–55]

Efforts to calculate observable quantities necessarily employ approximations and
simplified models inspired from the full edifice of LQG. A significant part of the com-
munity is currently participating in the development of such approaches.

These efforts are bringing LQG to a new phase of development. They teach us about
the theory itself and lead us to view persistent issues from different angles. The results,
detailed or qualitative, can turn out to be in contradiction with reality or yield incon-
sistencies, pointing to problems in theory and/or in interpretation. They can be used
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to compare different models and approaches within LQG and help to understand their
equivalence or lack thereof. Of course, the hope is that one of these calculations leads to
a prediction that turns out to be correct and measurable in practice.

The most developed and detailed results in this direction come from the canonical
formulation of the theory and the program of Loop Quantum Cosmology [56–58]. Hav-
ing produced strong results on the resolution of the cosmological singularity, LQC is
now starting to produce predictions for its pre-inflationary dynamics that could be put
to the test in the coming years.

We appear to still be far from a falsifiable prediction, but the prospect of any experi-
mentally relevant prediction from LQG, within a well–defined set of assumptions, must
have been hardly imaginable twenty years ago.

Covariant approaches to quantum gravity share a basic intuitive picture: that of a
quantum gravitational process that is spatiotemporally confined, enclosed in a lens-
shaped boundary composed of two spacelike surfaces, see Figure 1.1. The remaining
spacetime is taken to be adequately approximated by Einstein’s theory.

The covariant approach to LQG was partly developed with this intuitive picture
in mind. It is designed to provide the physical transition amplitudes between semi-
classical quantum states describing spatial geometries. The tools developed for the
study of the semi–classical limit of the EPRL model are tailor–made to describe non-
perturbative quantum gravitational phenomena as a quantum geometry transition.

What has been missing until recently was a concrete setting for a physical problem
in the spirit of Figure 1.1.

Cosmological singularities, are different than black hole singularities in one simple
aspect: the former concern all space and the latter are confined in space. Thus, the
picture for a geometry transition resolving the cosmological singularity will not be that
of Figure 1.1, but one of a quantum transition between two disjoint classical spacetimes.
This is the basic reason it is currently unclear how to define a relevant observable in the
nascent field of spinfoam cosmology [59–63]

During the past few years, an idea that has raised much interest is the possibility
of non-perturbative quantum-gravity effects that can cause the mass in the interior of
a black hole to bounce out of the (would–be) horizon, in a time scale shorter than the
Hawking evaporation time [53, 54, 64–68], resulting in what would look from far away
as a highly intense one–off explosion.

The introduction of the spacetime pictured in Figure 1.2 by H. Haggard and C. Rov-
elli proposes a mechanism for this to happen, and a prototype minimalistic setup in the
spirit of a WMH sum–over–geometries as in Figure 1.1.

Depicted, is a simple model of the following phenomenon: the formation of a black
hole (trapped region) by collapsed matter, that transitions to a white hole (anti– trapped
region) and results in an explosion. Similar ideas have been independently and con-
currently been put forward by L. Garay, C. Barcelo and R. Carballo [69–72], with the
important difference that an interpolating (Euclidean) family of metrics is used to carry
out the path–integral.
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Fig. 1.2: The Haggard-Rovelli spacetime as a simple, well–defined setup for geometry transition.
Depicted is a cross–section of the rotated Penrose diagram, for easier comparison with Figure
1.1. For the Penrose diagram see Figure 5.1. The red lines are collapsing and anti–collapsing null
shels. The shaded regions are trapped and anti–trapped regions. The definition and properties of
the spacetime are developed in Chapter 5.

The spacetime features a spacelike compact interior, chosen to a large degree arbi-
trarily, serving as a separation of the parts of the system treated as quantum and as
classical.

A theory for quantum gravity should be able to predict the characteristic time scale,
as measured from far away, at which the quantum fluctuations of the metric make a
geometry transition from a black to a white hole geometry likely.

We will argue in this manuscript that we are presented with an à priori well-defined
setup for studying geometry transition in a Feynman quantization of General Relativity,
in the spirit of a WMH sum-over-geometries [3, 10, 11].

We are looking to estimate the scaling of a characteristic time of the process as mea-
sured from infinity with the mass of the collapsed object. That is, we are looking to get
a rough estimate from the quantum theory of the correlation between two prominent
physical scales involved in this phenomenon.

Singularity resolution in black holes has been studied in the canonical framework
over the past decade, in the context of a canonical quantization of the interior of a
Schwartzschild black hole and the quantization of null shells [73–86]. With much re-
maining to be understood in the quantization procedure, current investigations sug-
gest singularity resolution through a bounce, although the physical picture for the phe-
nomenon from the exterior spacetime is unclear.

The two Paradigms, the canonical and covariant, serve as complementary: in covari-
ant LQG, an effective description of the interior process is strictly speaking irrelevant
for the extraction of the desired observable. In the canonical approach, a proper quan-
tization of the interior geometry is desired and hoped that it can lead to an effective
description. Understanding of the latter would provide crucial insights into the proper
treatment of the phenomenon in the covariant approach, and vice–versa.
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It has been suggested that this hypothesis can account for the GeV excess observed
from the galactic center by the Fermi satellite, and that the phenomenon will exhibit
a characteristic redshift-dependence, a signal, that would distinguish it from other as-
trophysical phenomena that could account for this anomaly [51]. It has also been been
argued to be a plausible source of fast radio bursts, short and highly energetic low fre-
quency signals of a yet to be understood astrophysical origin [53, 87–89].

In this work, we complete a first attempt at calculating the lifetime of the HR-space-
time in the context of the EPRL model of covariant Loop Quantum Gravity. We arrive
at an explicit estimate for a transition amplitude describing this process.

The physical interpretation of these recent results are currently the subject of intense
discussions. This manuscript reflects a snapshot of the evolution of our understanding
of this phenomenon at the time of writing.

Whether the simple setup of the Haggard-Rovelli spacetime is sufficient to capture
the desired physics, and whether covariant LQG at its current stage of development has
the necessary tools to give a robust prediction remains to be seen. An optimist would
hope that this simple model turns out to be the square potential barrier tunneling or the
harmonic oscillator for black hole geometry transition.

The set-up for the calculation presented here was first given in [90]. Unpublished
results in this thesis will appear in [91] and [92], in collaboration with Fabio d’Ambrosio.

Outline of thesis

The results and method presented in this manuscript are restricted to a certain set of
simplifications and assumptions. Some will be justified with varying degrees of rigour
as approximations.

However, we stress that the main motivation of the simplifications taken is that with
current results and techniques available, this was the “best we could do” to arrive at an
explicit estimation; at least, the best the author could do. The reasons are laid out as we
proceed. Many technical developments are currently under way and we may see much
activity in refinements, extensions and alternative strategies of attacking this problem
in the coming years.

In summary, the setting will be the following: we will present results relevant to
spinfoam amplitudes defined on a fixed 2-complex Cwithout interior faces and dual to
a simplicial complex. The boundary of the 2-complex coincides with the fixed graph on
which the boundary state is defined, i.e. ∂C = Γ.

We do not take into account the graph changing nature of the Hamiltonian con-
straint, and do not consider a sum or refinement over spinfoams.

We do not address the relevance of the continuum limit debate and the degree to
which the truncated set of degrees of freedom should be understood as fundamental or
collective, coarse grained degrees of freedom [93–95].

This thesis is organized in three main parts. The first part consists of Chapters 2
and 3.
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In Chapter 2 we present a top–down path from General Relativity to the ansatz
defining the amplitudes of covariant LQG.

We focus on the physically relevant four–dimensional Lorentzian case and present
intuition and motivations leading to the definition of the EPRL model, starting from the
Hilbert-Einstein action.

For lack of space we do not start by introducing the canonical quantization of Gen-
eral Relativity in terms of Ashtekar-Barbero variables. We also do not present Euclidean
3D and 4D spinfoam models. We close the chapter by outlining how the spinfoam pro-
gram is placed in Loop Quantum Gravity in Section 2.4.

In Chapter 3 we take the bottom–up path, starting from the definition of the EPRL
amplitudes and discuss the sense in which General Relativity and the WMH sum-over–
geometries emerges in the semi-classical limit.

We provide an independent derivation of the Krajewski-Han representation [31] in
Section 3.3, which brings the amplitudes in the form suitable for asymptotic analysis
without using the coherent state representation. We proceed to review the fixed–spins
asymptotics of the Lorentzian EPRL model.

The second part consists of Chapter 4 where a boundary is introduced. We explain
how to build a boundary state corresponding to a wavepacket of an embedded quantum
3-geometry. We proceed to combine these states with a spinfoam amplitude to define a
transition amplitude.

We show how the sum over spins (spin–sum) can be performed in Section 4.4 and
see that a gravitational tunnelling picture emerges naturally when considering physical
transition amplitudes describing geometry transition in the spirit of Figure 1.1.

The third part consists of Chapters 5 and 6. In Chapter 5 we introduce the exterior
spacetime. We formulate the Haggard–Rovelli spacetime starting from the Penrose di-
agram and give the exterior metric in a simpler form that emphasizes the role of the
bounce time as a spacetime parameter. We avoid the use of specific hypersurfaces to
implement the junction conditions. The relation to the original construction, based in
part on a one to many (one to two) mapping from the Kruskal manifold, is explained in
Section 5.5.

We introduce the relevant classical and quantum observables, the mass m and the
bounce time T , and the lifetime τ(m) respectively. We propose an interpretation for the
transition amplitudes and formulate the problem such that a path-integral over quan-
tum geometries procedure can be naturally applied.

In Chapter 6 we start by discussing how to construct a transition amplitude by dis-
cretizing a given choice of boundary. We proceed to make an explicit boundary and
2-complex choice and define explicitly a physical transition amplitude for this process.

We will then use the results of Chapter 4 to estimate the lifetime from this ampli-
tude. We also provide a calculation valid for an arbitrary choice of boundary and a class
of spinfoam amplitudes. We close the chapter by discussing the interpretation of our
results and open issues.
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2 From General Relativity to the amplitudes of covariant Loop Quantum Gravity

The amplitudes of the EPRL model of covariant LQG represent the state-of-the-art un-
derstanding and current best guess of this research program, for the definition of the
path integral of Quantum Gravity.

The main results that support the EPRL model as a bona fide candidate for a Feyn-
man Quantization of General Relativity, come from studying its semiclassical limit,
where a Wheeler-Misner-Hawking sum-over-geometries picture emerges. That is, the
definition of the model is physically justified à posteriori, starting from a mathemati-
cally well-defined and well-motivated ansatz. This will be the subject of Chapter 3.

In this chapter, we present a bottom–up path to the EPRL amplitudes of covariant
LQG starting from the Einstein-Hilbert action for General Relativity. Spinfoam models
in the context of the covariant approach to LQG are treated in the introductory and
review articles [96–101]. Two main references for this chapter are the recent text by C.
Rovelli and F. Vidotto [12] and the review by A. Perez [96]. For an introduction to LQG,
see also [102, 103] and for a more complete treatment, the textbooks [104, 105].

We do not follow the historical development leading to the EPRL and related mod-
els. We start directly from the physically relevant 4D Lorentzian case and follow the
steps leading to the ansatz defining the EPRL model. We focus on the covariant ac-
tions pertinent to covariant LQG. For lack of space, we mention relevant results from
the canonical analysis of these actions in passing.

The logic of how covariant LQG is placed into the Loop Quantum Gravity Program
is outlined in Section 2.4. We do not introduce a boundary until Chapter 4. To avoid
confusion, we note that the amplitudes WC in this chapter and the next chapter are to
be understood as partition functions. Their meaning as physical transition amplitudes,
when combined with a semi–classical boundary state, is treated in Chapter 4.

2.1 A dictionary

The aim of this chapter is to sketch a path from the phrase

W ∼
∫
D[g] e

i
~ S EH [g] (2.1)

where S EH is the Einstein-Hilbert action

S EH[g] =
1

16πG

∫
dx4

√
det g(x)R(g(x)) (2.2)

and g(x) is the spacetime metric, to the ansatz defining the EPRL model, and which is
the starting point of the next chapter:

WC =
∑

j f

µ( j f )
∫

S L(2,C)
µ(gve)

∏
f

A f (gve, j f ) (2.3)

A f (gve, j f ) =

∫
S U(2)

µ(hv f ) δ(h f )Tr j f

∏
v∈ f

Y†γge′vgveYγhv f

 (2.4)
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Prima facie, the defining expressions (2.3) and (2.4) for the amplitudes WC of covari-
ant LQG bear no resemblance to General Relativity. That is, other than the use of the
letter g for both the metric and the S L(2,C) group elements gve.

By the end of this chapter, we will have seen a path motivating equations (2.3) and
(2.4) from (2.1) and (2.2). To facilitate the discussion, we give a dictionary in Table 2.1 of
the correspondence we are aiming to establish.

W ∼ WC

D[g] ∼
∑

j f

µ( j f )

e
i
~ S EH [g] ∼

∫
S L(2,C)

µ(gve)
∏

f

A f (gve, j f )

Tab. 2.1: Comparison of a Misner-Hawking-Wheeler sum-over-geometries and the EPRL model
spin state-sum ansatz.

In Chapter 3, we will proceed from this point to see how in the semi-classical limit
of large spins j f , the S L(2,C) integrations can be performed using a stationary phase
approximation. This will result in the behaviour∫

S L(2,C)
µ(gve)

∏
f

A f (gve, j f ) ∼
∏

f

ei j f φ f ( j f ) (2.5)

The spins j f will be interpreted as quanta of areas a f , the functions φ f ( j f ) will be the
deficit angles and the product over faces results in the Regge action, introduced in Sec-
tion 3.4,

e
i
~

∑
f a f φ f (a f ) = e

i
~ S R(a f ) (2.6)

The Regge action S R(l) describes discrete General Relativity, with the degrees of freedom
being edge lengths l of a triangulation, a piecewise-flat manifold. We caution that in (2.6)
the Regge action has instead the areas a f as variables. This is closely related to the fact
that the spins j f will not be the only quantum numbers capturing degrees of freedom
of the quantum gravitational field. The asymptotic form 2.6, with some further details
and features, will be essential in estimating a physical observable in Chapter 6.

Throughout this manuscriptint, based on these results, we will present and use the
EPRL model, putting it to the test in a physical application, as a proposal for the regular-
ized path-integral for Quantum Gravity, in the spirit of a MHW sum-over-geometries.

2.2 A game of actions

In this section we start from the Einstein-Hilbert action and introduce the tetrad and
differential-forms formalism. We will derive the Palatini and BF form of the Einstein-
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Hilbert action and then pass to the tetradic Palatini action, the Holst action and the
formulation of General Relativity as a constrained topological BF-theory. We discuss
the simplicity constraints, reducing BF-theory to General Relativity.

We introduce the holonomy as a parallel transporter and discuss its meaning as a
discretization of the curvature of the connection. We proceed to explain the quantization
strategy leading to the EPRL model as a modification of the well-understood path–
integral quantization of BF-theory for compact groups, regularized by a skeletonization
on a topological lattice. We then discuss the strategy for the imposition of the simplicity
constraints at the quantum level.

We outline how covariant LQG is placed within the body of results of Loop Quantum
Gravity in Section 2.4. A hint for this is already present in equations (2.3) and (2.4),
where we see that both the Lorentz group and the rotation group appear through their
double covers, S L(2,C) and S U(2). The kinematical state-space is that resulting from
the canonical quantization of General Relativity when written in 3+1 form in terms of
the Ashtekar-Barbero variables, in which it resembles an S U(2) Yang-Mills theory.

2.2.1 The dissappearance of coordinates: the tetrad and Einstein-Hilbert action in
Cartan’s formalism

The first step in our journey is to rewrite the Einstein-Hilbert action S EH[g] for General
Relativity using Cartan’s formalism. Thus, for the moment, the connection determining
the covariant derivative is fixed to be the Levi-Civita connection.2 We will “free” the
connection in Section 2.2.3.

The departure from the formulation of differential geometry that Einstein used to
define his theory in this context, is to introduce non-coordinate vector bases for the
tangent space. This is what we call the tetrad.

The tetrad is also known as the moving frame, the English translation of what Cartan
called it, répére mobile, and as vierbein, its German name. The idea is very simple, the
consequences are profound. Let us start from the pre-Cartan story.

At its most elementary level, General Relativity is the theory that describes the mo-
tion of test particles in a curved spacetime. Different possibilities of curved spacetimes,
metrics that solve the field equations, result in different behaviours for the test-particle
trajectories, accounting for the phenomenon we call gravity.

This elementary image carries through intact from Newtonian to Einsteinian Grav-
ity: the history of a particle is modelled as a curve in a four-dimensional spacetime. But
how do we model its instantaneous velocity? For that, we need a vector at each point on
the curve, pointing in the instantaneous direction of movement and with a magnitude
giving the speed.

A differentiable manifold M is a natural arena for realising such a model of nature,
as it comes equipped with a tangent space T M(p) at each point p ∈ M.

2The Levi-Civita connection is unique. It is compatible with the metric, meaning that the covariant deriva-
tive ∇ it defines, satisfies ∇g = 0. An equivalent necessary and sufficient condition is that ∇ be torsion–free:
the difference between the directional derivatives of two vector fields V and U, taken with the Levi-Civita
covariant derivative, is their Lie bracket, ∇V U − ∇U V = LV U = −LU V ≡ [V,U]. This is the content of the
fundamental theorem of Riemannian geometry.
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This is the usual mathematical construction: a vector v(p) at a point p corresponds
to an equivalence class of functions from the reals to the manifold, that is, curves, that
traverse p at the same speed and in the same direction.

To make this explicit, and to have objects we can do calculations with, we introduce
coordinate systems covering the manifold. The basis of tangent vectors for T M(p) is
provided by considering four such equivalence classes, associated to the coordinates at
p.

We usually denote these four basis vector fields ∂α, which denote four vector fields
in the tangent space T M ≡ ∪p∈MT M(p). The notation ∂α is meant to imply that this is
the vector field pointing in the direction where, locally, only the coordinate α changes
(increases), with α being any one of the four coordinates.

Vector fields decompose in this basis as V = Vα∂α or are written simply as their
components Vα, leaving the coordinate–based vector field basis implicit.

This is fine for describing velocities for instance. There is however a second reason
we use differentiable manifolds as a fiducial canvas for spacetime. Locally, a Lorentzian
manifold is Minkowski.

In Minkowski, a convenient choice of basis is to use Cartesian coordinates and take
the orthonormal vector field basis associated to these coordinates. That is, to take as
a basis the set of normalized vectors x̂α pointing in the positive xα-axis direction. We
know that there is a tangent space structure on a differentiable manifold. Why not do
the same in General Relativity?

There is no reason not to. The caveat is, that this orthonormal basis of vector fields
cannot correspond to any global coordinate system for a curved spacetime. If it did,
then the spacetime would be flat, since it would admit a global Cartesian or Minkowski
t − x − y − z coordinate system. We can always choose such coordinate systems locally.

However, there is nothing wrong with choosing arbitrarily four orthonormal vectors
at each point p of M.

In summary, in General Relativity, by tetrad we mean an arbitrary choice of a set
of four (smooth) vector fields, unrelated to any coordinate system, that are furthermore
taken to be orthonormal with respect to the Minkowski metric. This construction cap-
tures directly Einstein’s intuition that General Relativity reduces to Special Relativity
locally.

Any vector field can now be written in this basis as V = V IeI . Capital latin letters,
called Minkowski or internal indices, are used to index the tetrad basis. This is used
to indicate that no coordinate–based bases, usually indexed by lower-case case greek
letters, are involved.

When one sticks to the tetrad, coordinates entirely disappear from the game. The ar-
bitrariness in choosing a coordinate system is replaced by the arbitrariness in choosing
the tetrad field. Changing from one tetrad field to another, amounts to “rotating“ one
orthonormal frame into another at each point, which is achieved by a Lorentz transfor-
mation, the symmetry group sending an orthonormal frame to another in Minkowski.

To be precise, the tangent space in which these vectors live is not T M. There is a
linear map between the tangent space T M, which is constructed for instance as above
using equivalence classes of functions, and the vector bundle which has Minkowski
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space as a fiber at each point p. For a given choice of tetrad eI , this map is the matrix3

eαI , which can be used to translate between a coordinate basis ∂α of vector fields and the
orthonormal basis eI :

eI = eαI ∂α (2.8)

Let us consider eαI ≡ gαβe
β
I , with which we may rewrite the metric as

g = gαβ(x)dxαdxβ = eIα(x)eJβ(x) ηIJdxαdxβ (2.9)

Often, eαI (x) is also called the tetrad field. While mixed–index objects such as eαI (x)
are of their own importance and central objects in the canonical analysis, until we relate
the topological BF-theory to General Relativity, we do not need to consider coordinates.
It will be conceptually more illuminating to skip the intermediate step of introducing
explicitly a coordinate–based basis of vector fields and one-forms, and write directly the
metric g as

g(p) = eI(p)eJ(p)ηIJ (2.10)

No coordinates are involved in this expression, which is purely geometric.

A second important thing to notice: the tetrad field eJ completely replaces the met-
ric g. This is surprising. The metric encodes all the geometry. How can an arbitrary
assignment of four orthonormal vectors eJ(p) at each point p encode the geometry? The
answer is, it doesn’t. The geometry is now purely encoded through the metric in two
objects: the dual basis eJ of one-forms, introduced in the next section, and the paral-
lel transport. The dual basis eJ encodes (infinitesimal) geometrical magnitudes such as
lengths, areas and volumes, while the parallel transport, determined by the connection,
codes the curvature. In particular, parallel transporting the tetrad will be very conve-
nient. This will be the subject of Section 2.3.1.

Finally, the arbitrariness in choosing the tetrad field is manifested by the possibility
to rotate it at each point (so long as it remains smooth), by a Minkowski rotation. That is,
there is a local Lorentz gauge invariance, eI(p)→ eL(p) ΛL

I (p),

g(p) = ΛK
I (p) eK(p) ΛL

J (p) eL(p)ηIJ = eI(p)eJ(p)ηIJ (2.11)

by the definition of Lorentz transformations as preserving the Minkowski metric, ΛK
I ΛL

JηKL =

ηIJ .

Let us move to General Relativity.
The dynamics of General Relativity are encoded in the Einstein-Hilbert action,

S EH[g] =

∫
dx4

√
− det g(x)R[g(x)] (2.12)

3 The inverse matrix eI
α, relating the dual one-form bases eI and dxα, is defined by

eαI eJ
α = δJ

I

eβI eI
α = δ

β
α (2.7)

see next Section.
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The Einstein–Hilbert action in terms of the tetrad, by direct substitution of (2.9), reads

S EH[e] =

∫
dx4 | det e(p)| R[e(p)] (2.13)

and variation with respect to the tetrad leads again to Einstein’s field equations.
There is something odd in (2.13). The coordinates reappear as an integration mea-

sure, but the integrand of the action depends only on the tetrad field, which knows
nothing of coordinates. We get rid of this tension in the following section.

As a final note, keep in mind that we had to take the absolute value of det e(x) to
make the two actions match. We will henceforth ignore the absolute value, which does
not affect the field equations and return to this point in Section 3.5.2 where we will see
that it appears as the “cosine feature” in the asymptotic analysis of the EPRL model.
In a work by Rovelli, Riello and the author, it was shown that when considering the
coupling with fermion fields, the actions with and without the absolute value have in
principle measurable observable differences [106].

2.2.2 The tetradic Einstein-Hilbert action

The measure dx4 in (2.13), denotes an anti–symmetrized product between the coordinate-
based basis of one-forms dxα. That is,

dx4 ≡ dx0 ∧ dx1 ∧ dx2 ∧ dx3 (2.14)

In coordinate language, dx4 times
√
− det g(x) is the integration measure that is invari-

ant under change of coordinates:
√
− det g(x′) is

√
− det g(x) times the Jacobian between

x and x′.
More geometrically, it is the 4-volume form vol4 of the manifold, and the Einstein–

Hilbert action 2.13 reads

S EH[e] =

∫
vol4(e) R(e) (2.15)

The idea now is to write vol4(e) in terms of the co-tetrad and see what are the objects
that arise. Naturally, we define the dual basis eI to the tetrad, providing an orthonormal
basis of 1-form fields and which we call the co-tetrad. It is defined via the metric by

g(eI , ·) = ηJIeJ (2.16)

or in mixed-index notation

gαβe
β
Jdxα = ηJIeJ

αdxα (2.17)
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The 4-volume form in terms of the co-tetrad reads4

vol4 = e0 ∧ e1 ∧ e2 ∧ e3 = det(e) dx4 (2.18)

and the Einstein-Hilbert action becomes

S EH[e] =

∫
e1 ∧ e0 ∧ e2 ∧ e3 R(e) (2.19)

We write the Riemann tensor with Minkowski indices as

RIJ
KL(e) ≡ Rρσ

µν(e) eµK eνL eI
ρ eJ

σ (2.20)

Using the identity 2(δK
I δ

L
J − δ

L
I δ

K
J ) = εIJCDε

CDKL and the antisymmetry of the Riemann
tensor in its first or second pair of indices, we write the Ricci scalar as

R(e) = RIJ
IJ(e) = δK

I δ
L
J RIJ

KL

=
1
2

(
δK

I δ
L
J − δ

L
I δ

K
J

)
RIJ

KL

=
1
4
εIJCDε

CDKLRIJ
KL

(2.21)

where we introduced the Levi-Civita symbol εCDKL (antisymmetric in all its indices).
Next, we replace (2.21) in (2.19), and notice that we may write

εCDKL vol4 = εCDKLe0 ∧ e1 ∧ e2 ∧ e3 = eC ∧ eD ∧ eK ∧ eL (2.22)

Thus, we get

S EH[e] =
1
4

∫
εIJKLeI ∧ eJ ∧ eA ∧ eB RKL

AB(e) (2.23)

Now, we define the curvature or field strength,

F IJ(e) ≡ RIJ
KL(e) eK ∧ eL (2.24)

which brings the Einstein-Hilbert action in its tetradic form

S EH[e] =
1
4

∫
εABIJ eA ∧ eB ∧ F IJ(e) (2.25)

4To show this compute

e1 ∧ . . . ∧ en = (e1)k1 . . . (e
n)kn dxk1 ∧ . . . ∧ dxkn

= (e1)k1 . . . (e
n)kn dx1 ∧ . . . ∧ dxn εk1 ...kn

= (det e) dx1 ∧ . . . ∧ dxn
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In the next section, we will see the close relation of this form of the Einstein-Hilbert
action with the Palatini action.

The curvature, F IJ is usually called the curvature two-form and refers to the fact that
it is a Lie-algebra valued two-form, with the algebra being that of the symmetry group,
the Lorentz group. In this sense, IJ are understood as component indices, a pair of anti-
symmetric Minkowski indices, that can be naturally contracted with a basis of the Lie
algebra of the Lorentz group. This is a necessary abstraction when working for instance
with topological theories, where no notion of geometry is present, and for the quantum
theory.

Until we introduce the topological BF-theory in Section 2.2.5, we adopt a different
point of view, and think of the curvature F IJ as a matrix of 2-forms. In the end of this
section, we will see that thought of this way, the geometrical meaning is transparent
and allows us to make a parallel to the Regge action. We take a moment to emphasize
this alternative way to understand the curvature two–form.

In the previous section, we introduced the tetrad eI as a set of four orthonormal vec-
tor fields. The I index in eI is not a component index, it means eI(p) = (~e0(p), ~e1(p), ~e2(p),
~e3(p)), a set of four orthonormal vectors at each point p. Similarly for the set of one-
forms eI(p). Thus, when we write eI∧eJ , we may understand this as a set of orthonormal
two-form fields.

In particular, there are six of them because they are arranged in an antisymmetric
four by four matrix, which is the dimension of the space of two-forms. Geometrically,
they correspond to the number of planes defined by arranging four linearly indepen-
dent vectors in all possible pairs.

Thus, we think of the curvature F IJ(e) ≡ RIJ
KL(e) eK ∧ eL as a matrix, with entries for

fixed IJ the two form RIJ
KL(e) eK ∧ eL constructed by adding the basis two forms eK ∧ eL

with coefficients the componentes RIJ
KL(e) of the Riemann tensor.

Let us return to the Hilbert-Einsten action. Since all indices are contracted in (2.25),
we may write more compactly

S EH[e] =
1
4

∫
Tr e ∧ e ∧ F(e) (2.26)

This is a notation that will be useful throughout this manuscript: whenever we write
the trace Tr, we mean that the objects inside are contracted in all their indices in an
appropriate way depending on the context. Here, Tr means contraction with the Levi-
Civita symbol. In general, Tr will be a multi-linear form that is invariant under the
pertinent symmetry group, here, the Lorentz group.

We introduce a second notation that will be useful. Using the Hodge dual5 or ?
operation, we write

(?F)AB ≡
1
2
εABIJ F IJ (2.27)

5The definition of the Hodge dual in general is with the Levi-Civita tensor, which includes a square root of
the metric, not the Levi-Civita symbol. However, we are using tetrads and the indices are Minkowski. Thus
the absolute value of the determinant of the metric is unit. εABCD here is understood as a tensor with respect
to the Minkowski metric, indices may be freely raised and lowered with ηIJ .
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and the Einstein-Hilbert action is written as

S EH[e] =
1
2

∫
e ∧ e ∧ ?F(e) (2.28)

Now, let us give a name to the basis of two-forms eI ∧ eJ and call it BIJ(e).

B(e) ≡ e ∧ e (2.29)

This is the BF-form of the Einstein-Hilbert action

S EH[e] =
1
2

∫
B(e) ∧ ?F(e) (2.30)

Let us now go back to the original form of the Hilbert Einstein action. The curvature
F(e) reads

F(e)IJ = RIJ
KL(e)BKL (2.31)

thus

S EH[e] =
1
4

∫
εIJABRIJ

KLBKL ∧ BAB (2.32)

we use the same trick as 2.22 and write

BKL ∧ BAB = εKLABvol4 (2.33)

The two ε contract the Riemann tensor as in (2.20), and we are back to

S EH[e] =

∫
vol4 R(e) (2.34)

We will find again equation (2.33) in Section 2.2.5, where we will see that when treating
BAB as an abstract Lie-algebra valued two-form, the simplicity constraint, reducing the
topological BF-action to GR, ensures that

εKLABBKL ∧ BAB = εKLABε
KLABvol4 = 4! vol4 (2.35)

To close this section, we discuss the geometrical meaning of the tetradic and BF forms
of the Einstein-Hilbert action, in equations (2.28) and (2.30).

Locally and for fixed A and B, eA ∧ eB corresponds to a plane (in the Minkowski fiber
at p). By construction, eA(p) ∧ eB(p) is a 2-form in the plane defined by the span of eA(p)
and eB(p) at p.

Consider dimensions in ~ (geometrical units, G = c = 1). The term eA ∧ eB goes as ~
and when eA(p) and eB(p) are taken spacelike (we may gauge fix the tetrad for it to be
so) it corresponds to an area.
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Let us fix for definitenes e0 to be timelike and e1,e2,e3 to be spacelike and take this
plane to be given by e1(p) and e2(p). Then, e1(p)∧ e2(p) is the invariant area form on this
(local) spacelike plane, that is, the infinitesimal proper area.

Now, the remaining term, ?F IJ , must be related to the curvature since it includes
the Ricci scalar. What are its dimensions? It is dimensionless, the Riemann tensor has
inverse area dimensions, ~−1. What are then the geometrical objects that are dimension-
less: angles. Compare this with the Regge action in Table 2.3, that is of the form “face
area times deficit angle around that face”, with the curvature encoded in the deficit
angle.

As a final remark, ?F IJ is the Ricci scalar times the Hodge dual of the plane corre-
sponding to eI ∧ eJ . It thus determines its co-plane (in a Minkowski fiber). This is also
the construction in the discretization of General Relativity given by the Regge action,
explained in Section 3.4. The deficit angle encodes the curvature and is defined in the
plane normal to a (spacelike) triangular face.

2.2.3 The Palatini action

We saw above that when writing the Einstein-Hilbert action as6

S EH[e] =

∫
e ∧ e ∧ ?F(e) (2.36)

the area element e ∧ e and the curvature ?F(e) are in a sense “decoupled”, with ?F(e)
living in the co-plane of e ∧ e. This can be taken as a hint that there is a second object,
in addition to the tetrad e, that may be treated as an independent variable and that is
directly related to the curvature. We will see in Section 2.3.1, that when working with
tetrads, the curvature is coded in the parallel transport. The parallel transport along a
curve connecting two points is a mapping between the tangent spaces, determined by
the connection. In particular, we will need to define a covariant derivative that works
for mixed-index objects. This is the spin-connection, defined below, which we call ω.
Let us put the dependence on ω explicitly in the curvature

S EH[e] =

∫
e ∧ e ∧ ?F(ω[e]) (2.37)

where ω[e] is the Levi-Civita connection.
The Palatini action is defined as

S P[e, ω] =

∫
e ∧ e ∧ ?F(ω) (2.38)

where ω is an independent variable, that is, we have left the covariant derivative arbi-
trary.

Variation of S P[e, ω] with respect to ω, fixes ω[e] to be the Levi-Civita connection,
thus S P reduces to S EH when evaluated on the equation of motion for ω:

S P[e, ω[e]] = S EH[e] (2.39)
6We are henceforth neglecting the 1

2 factor.
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We may then proceed and take the variation of S P[e, ω[e]] with the tetrad, after7 hav-
ing replaced the solution of the variation with respect to ω. This will yield Einstein’s
field equations since it is the same as varying S EH[e] with the tetrad.

Writing General Relativity this way is called a first order formalism, because the
variables ω and e appear in the action up to their first derivative, see equations (2.40)
and (2.43).

We recall the form of the Riemann tensor written in terms of the Christoffel symbols

Ω
ρ
σµν(Γ) = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γ

ρ
µλΓ

λ
νσ − Γ

ρ
νλΓ

λ
µσ (2.40)

where notice that we have written Ω for the curvature tensor (of the connection) instead
of R for the Riemann tensor. When the connection is the Levi-Civita connection, the
Christoffel symbols are given with respect to first order derivatives of the metric (or
tetrad, by replacing gαβ = eI

αeJ
βηIJ)

Γσµν(g) =
1
2

gσρ
(
∂νgµρ + ∂µgρν − ∂ρgµν

)
(2.41)

and the curvature tensor Ω
ρ
σµν becomes the Riemann tensor

Ω
ρ
σµν(Γ(g)) = Rρ

σµν(g) (2.42)

That is, the familiar definition for curvature in terms of the connection carries through
when leaving the covariant derivative ∇ arbitrary, except that the metric compatibility
and the torsionless condition are not satisfied (∇g , 0). When they are, the connection
is Levi-civita.

To act on objects with also Minkowski indices, we need a covariant derivative that
can also act on them. This is provided by the spin-connection, which we calledω, related
to Γ via the tetrad by

ωIJ
µ = eI

νΓ
ν
σµeσJ − eνI∂µeJ

ν (2.43)

where ωIJ
µ should be understood as components here. We define the curvature 1-form

by

ωIJ = ωIJ
K eK = ωIJ

µ dxµ (2.44)

As with the field strength F IJ , we may understand ωIJ either as a matrix of one forms,
with entries for fixed IJ the forms defined by the sum ωIJ

K eK = ωIJ
0 e0 + ωIJ

1 e1 + · · · , or
as a Lie algebra valued one-form. The connection ω is not a tensorial object, as with
Christoffel symbols.

There are two tensorial invariants of the connection. The curvature F(ω), defined by
Cartan’s second structure equation,

F IJ(ω) = dωIJ + ωI ∧ ωJ (2.45)
7Note that this remarkable property of the relation between the Palatini and Einstein actions is not in

general a valid procedure when deriving equations of motion from an action.
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where d here is the exterior derivative, and the torsion

T I(ω) = deI + ωI
J ∧ eJ (2.46)

defined by Cartan’s first structure equation.
An alternative expression for the field strength F IJ(ω), that allows for easier compar-

ison with the actions presented in this chapter, summarized in Table 2.3, is with respect
to the curvature tensor written with Minkowski indices

F IJ(ω) = ΩIJ
KL(ω) eK ∧ eL (2.47)

where

ΩIJ
KL(ω) = Ω

ρσ
µν(Γ) eµK eνL eI

ρ eJ
σ (2.48)

and Γ is related to ω through (2.43).
As a last note, we could have started from the following form of the Palatini action

S P[ω, e] =

∫
dx4

√
det e(x)Ω(ω) (2.49)

resembling the usual form of the Einstein-Hilbert action as in equation 2.2, and with
identical manipulations as in the previous section, arrive to the BF–form of the Palatini
action

S P[e, ω] =

∫
B(e) ∧ ?F(ω) (2.50)

2.2.4 Holst action and the Immirzi parameter

From equation 2.50, we see that there is a natural term that we may consider to add
to the action: to contract BAB =

(
eA ∧ eB

)
directly with F(ω)AB. F(ω)AB is the field

strength with both indices lowered with the Minkowski metric, instead of its Hodge
dual (?F(ω))AB.

The action of the Hodge dual on objects with two lower indices, such as (?F)AB is
given by

?(?F)KL =
1
2
εABKL(?Ω)AB (2.51)

The well known property that ?? = 1 follows from

? ?ΩKL =
1
2
εKLAB ?ΩAB

=
1
4
εKLABεABIJΩIJ

= ΩKL (2.52)
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We can rewrite things as

B(e)IJ ∧ FIJ = B(e)IJ ∧ ? ? FIJ

=
1
2
εMNKLB(e)IJηIM ηIN ∧ ?FKL

≡ ?B(e) ∧ ?F (2.53)

The Holst action then amounts to adding to the Palatini action, the action

S HI[e, ω] =

∫
?B(e) ∧ ?Ω(ω) (2.54)

where HI stands for Holst-invariant. The (inverse) “coupling constant” for this term, γ,
is called the Immirzi parameter

S H[e, ω] = S P[e, ω] +
1
γ

S HI[e, ω] (2.55)

The Immirzi parameter is a fundamental parameter of Loop Quantum Gravity [107],
proportional to to the quantum of area [108].8 We will see the Immirzi parameter ap-
pearing in the result of the calculation of the lifetime in Chapter 6.

The BF form of the Holst action reads

S H[e, ω] =

∫ (
B(e) +

1
γ
? B(e)

)
∧ ?F (2.56)

The equations of motion for the Holst action describe General Relativity. This hap-
pens as follows. When ω[e] is the Levi-Civita (torsionless spin connection), the Bianchi
identity (dωF(ω) = 0) is satisfied and corresponds to the vanishing of the Holst term

?B(e) ∧ ?F(ω[e]) = 0 (2.57)

Thus, the variation of the Holst action with respect to ω is again solved for ω[e]: we
added to the Palatini action a term that vanishes on-shell and therefore the equations of
motion are not altered.

The spinfoam approach is based on this action, which is a natural generalization of
the Einstein-Hilbert action. There are two main reasons for this: first, it allows us to
modify the quantization of a topological BF-theory so as to achieve a quantization of
general relativity. We see this in Section 2.3.2. The second is that the 3+1 split of this
action in the time gauge provides the bridge to the canonical theory, outlined in Section
2.4. For a review of the canonical analysis of the Holst action in the time gauge and an
investigation of the role of the Immirzi parameter see [110].

8It is understood to determine the coupling constant of a four-fermion interaction and lead to observable
effects [109].
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2.2.5 Simplicity constraints: General relativity as constrained BF-theory

Classical BF-theory deals with a further abstraction, that follows naturally from the ac-
tions we studied above.

We will see that in our context it essentially amounts to figuring out a way to remove
the dependence on e from B(e), and treat B as an independent variable. This step kills
essentially all non-trivial features of General Relativity. This is the usefulness of BF-
theory: it is a much simpler theory, straightforwardly related to the physically pertinent
theory of General Relativity through the simplicity constraints.

As in the previous sections, we restrict study to the four dimensional Lorentzian
case.

Up to this point, B(e) was a short-cut notation for e ∧ e. We saw that B(e)IJ = eI ∧ eJ

admits a straightforward interpretation as a matrix of orthonormal two-forms, provid-
ing the infinitesimal area elements for the six planes defined by the possible pairs of the
tetrad basis vectors.

This is a purely geometrical interpretation of B(e)IJ . We also mentioned that an object
with n antisymmetric Minkowski indices, is naturally interpreted as an n form in the Lie
algebra of the Lorentz group. Equivalently, we may insist on an interpretation of BIJ

as a matrix of bi-vector fields, that is, treat BIJ as objects in the exterior algebra of the
Minkowski vector bundle over the manifold.

The idea is to treat BIJ as an independent variable on its own right and not assume a
decomposition of the form B = e∧ e. The general form of a bi–vector is B = a∧ b + c∧ d,
and cannot always be decomposed as B = a ∧ b. Demanding that there exists an e such
that BIJ = eI ∧ eJ implies that the bi-vector be simple, i.e. of the form B = a ∧ b.

When deriving the BF form of the Einstein-Hilbert action, we noted in equation
(2.33) that when B(e) = e ∧ e we have

BKL(e) ∧ BAB(e) = εKLABvol4(e) (2.58)

We will get rid of the assumption that BKL(e) depends on e, by bringing back coordinates
and mixed-index objects, in order to express the above relation only in terms of a B field.

We start from the right-hand side of equation (2.58). The four–volume reads

vol4 = det(e) dx1 ∧ dx2 ∧ dx3 ∧ dx4 (2.59)

and the determinant of the co-tetrad eβL is

det(e) = eαCeβDeγI eδJεαβγδε
CDIJ 1

4!
(2.60)

which can be written in terms of the B-field,

det(e) = BαβCD(e)BγδIJ (e)εαβγδεCDIJ 1
4!

(2.61)

The left hand side of (2.58) reads

BKL(e) ∧ BAB(e) = BKL
µν (e)BAB(e)ρσdxµ ∧ dxν ∧ dxρ ∧ dxσ

= BKL
µν (e)BAB(e)ρσεµνρσdx0 ∧ dx1 ∧ dx2 ∧ dx3 (2.62)
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Equating the two sides, we have

BKL
µν (e)BAB(e)ρσεµνρσ =

1
4!

BαβCD(e)BγδIJ (e)εαβγδεCDIJεKLAB (2.63)

Now, contracting both sides with εµνρσ and εKLAB, we get

εKLABBKL
µν (e)BAB(e)ρσ =

1
4!

BαβCD(e)BγδIJ (e)εαβγδεCDIJεµνρσ (2.64)

Here we have shown that equation (2.64) is always satisfied when B = e ∧ e. Now,
we may remove the dependence on e, and write the same equation for an arbitrary bi-
vector. We define the difference of the two sides of equation (2.64), to be equal to a set
of constraints CS [B]

CS [B]µνρσ ≡ εKLABBKL
µν ∧ BAB

ρσ −
1
4!

BαβCDBγδIJεαβγδε
CDIJεµνρσ (2.65)

This is called the simplicity constraint(s). We emphasize that e does not appear in this
expression. It turns out [99, 111], that CS [B] = 0 is a necessary and sufficient condition
(almost 9), ensuring that the bi-vector B comes from a tetrad and is of the form BIJ =

eI ∧ eJ . Similar considerations hold when considering the Holst action, by taking the B
bi-vector field to have the split

B = B̃ +
1
γ
? B̃ (2.66)

in terms of a bi-vector B̃10. Remarkably, if we introduce Lagrange multipliers λµνρσ
(scalar densities of weight one), imposing CS [B] = 0, General Relativity may be writ-
ten in the form [114, 115]

S [B, λ, ω] =

∫
B ∧ ?F(ω) + λ C[B] (2.67)

The action for classical BF-theory reads

S BF[B, ω] =

∫
B ∧ ?F(ω) (2.68)

Thus, General Relativity may be written as a constrained BF-theory. As we saw, the
simplicity constraint enforces the geometricity of the bi-vector BIJ , essentially that it be,
for fixed IJ, an infinitesimal proper area element.

The beauty of the BF formalism is that the notion of the connection ω, which geo-
metrically we may understand as the parallel transport of vectors in a Riemannian con-
text, is abstracted to a connection in the (principal) bundle of the Lorentz group over the

9There is another solution, B = ?e ∧ e, which we do not discuss here.
10We are neglecting the existence of different Plebanski sectors, see for instance [99, 112, 113]
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manifold and defines a notion of covariant derivative with respect to the natural deriva-
tives in the group, the right or left actions. Thus, we need not define the connection ω
through the tetrad, as in (2.43).

The interest in doing all this is that classical BF theory turns out to have no local
degrees of freedom at all, it has only global or topological degrees of freedom. All
solutions B and ω to the equations of motions are locally pure gauge: they are all related
by symmetries of the action, and the gauge invariant space of solutions, for a given
manifold, reduces to a single point, for instance B = 0 and ω = 0. No local “physical”
information remains.

BF-theory then resembles more a quantum mechanical system than a quantum field
theory, and as such can be quantized with relative ease. Indeed, BF-theory admits an
exact spinfoam quantization [17] for the case of compact groups, such as S U(2) and
S O(4), pertinent for the 3D and 4D Euclidean gravity toy models. For the Lorentzian
case, since the group is non-compact, divergences appear as infinite volume factors.

2.3 Spin-state sum form of EPRL amplitudes

In this section we start by introducing the holonomy as the parallel transporter and as
the exponential of the connection. We then explain the strategy and main motivations
for the EPRL ansatz, as modifying the naive skeletonized path-integral for a discrete
topological theory with S L(2,C) as a gauge group. We arrive at the EPRL ansatz, defin-
ing the model.

2.3.1 The holonomy

The holonomy as the parallel transporter In the first half of this section, we introduce
holonomies as parallel transporters P ≡ P(ω[e]), when the connection is the Levi-Civita.
The geometrical meaning of the tetrad is straightforward. Holonomies, on the other
hand, can appear at first sight as arcane mathematical objects, often defined as solutions
to the differential equation solved by the path ordered exponential. This definition is
introduced in the second half of this section.

The holonomy PΥ corresponds to a simple geometric picture: the Lorentz transfor-
mation rotating two tetrad frames at two different points of the manifold to one another,
when parallel transporting one of them along a path Υ. The transformation property of
the holonomy under the Lorentz group will then follow.

We refer to Figure 2.1. Consider two arbitrary points on the manifold, connected by
a spacetime curve Υ. Anticipating notation in following chapters, we call the two points
s and t, for source and target.

The holonomy defines a vector field along Υ, for any given vector Vs at s, the vector
field generated by parallel transporting Vs along Υ. Given a vector Vs at s, we can
parallel transport it along Υ to any other point t on Υ, using the covariant derivative.
This will define a vector on t, which we denote PΥVs ≡ PΥ(s→ t)Vs.

PΥ(s→ t) is the parallel transporter, or, the holonomy of the connection. It is a map
from the tangent space at s to the tangent space at t

PΥ(s→ t) : T M(s)→ T M(t) (2.69)
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Υ

e0(s)

e1(s)
PΥe1(s)

PΥe0(s)
e1(t)

e0(t)

PΥ

PΥ

b

b

Fig. 2.1: Holonomy as the parallel transporter. Note the special role of the holonomy PΥ when
acting on the tetrads. PΥ ≡ PΥ(t → s) gives the parallel transport for any vector from a point s
to a point t along a curve Υ. Pictured, in red, are the parallel transports PΥe(s) at the point t,
of the tetrad basis vectors at the point s, eI(s). In blue, the role of the holonomy as the Lorentz
transformation rotating (and boosting) PΥe(s) to the tetrad vector basis eI(t).

Thus, in component notation, it will be a matrix. We hereafter suppress the dependence
of P on s and t, which can be taken to be any two arbitrary points connected by some
curve.

Writing both vectors in the corresponding tetrad basis of vectors at s, Vs = V I
seI(s)

and Vs = V I
t eI(t), we have

V I
t = PI

Υ J V J
s (2.70)

For definiteness, let us choose say e0(s) at s and e0(t) at t. Tetrad bases eI(s) are them-
selves a set of four vectors, that are furthermore normalized. The parallel transport of
e0(s) at t will again be a normalized vector (when the connection is the Levi-Civita).
Then, PΥe0(s) and e0(t) are two normalized vectors of the same Minkowski space. Thus,
by definition since it preserves the Minkowski norm, there exists a Lorentz transforma-
tion Λ which turns one into the other:

Λ(t) e0(t) = PΥe0(s) (2.71)

The components e0(s) on the tetrad basis eI(s) at s may be written as δI
0. Similarly,

the components of e0(t) in the basis eI(t) at t read δI
0. Thus,

ΛK
I δ

I
0 = PK

ΥI δ
I
0 (2.72)

Now let us “free” the 0 index and allow it to run over the entire set of four basis vectors,

ΛK
I δ

I
J = PK

Υ I δ
I
J (2.73)

Thus, we have shown that, seen as elements of the Lorentz group,

Λ = PΥ (2.74)
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Thus, the holonomy of the Levi-Civita connection is a Lorentz transformation.
The parallel transports of all vectors from s to t, are given by PΥ. We have seen that,

furthermore, PΥ is the Lorentz transformation Λ that relates the tetrad frames at two
points, when one frame is parallel transported onto the other via some curve

Λ(t) e(t) = PΥe(s) (2.75)

This is illustrated in Figure 2.1.
The transformation property of the holonomy, when rotating the tetrad at t and s,

follows from equation (2.70). Rotating arbitrarily the vector basis e(t) and e(s) by some
Λ̃(t) and Λ̃(s), gives

V I
t Λ̃(t)J

I = P̃J
Υ I Λ̃(s)I

KVK
s (2.76)

Thus, in matrix notation

Vt = Λ̃−1(t)P̃ΥΛ̃(t) Vs (2.77)

from which we conclude by comparison with (2.70) that

PΥ = Λ̃−1(t)P̃ΥΛ̃(s) (2.78)

giving the transformation of the holonomy under a change of a tetrad gauge

PΥ → Λ̃(t) PΥ Λ̃−1(s) (2.79)

The holonomy as the exponential of the connection As we saw above, the holonomy
is the parallel transporter. That is, PΥVs is the solution of the differential equation giving
the parallel transport

D
dλ

PΥVs = 0 (2.80)

where D
dλ is the directional covariant derivative along Υ and λ an affine parameter along

Υ.
Let us write this explicitly. We call λs the value of the affine parameter at the initial

point s and λ at t. The curve Υ is represented parametrically by xα(λ). The parallel
transported vector field generated by PΥ,

Vµ(λ) = Pµ
ρ(λ, λs)Vρ(λs) (2.81)

solves

d
dλ

Vµ(λ) = −Aµ
ρ(λ)Vρ(λ) (2.82)

where we defined

Aµ
ρ(λ) = Γ

µ
ρσ ẋσ (2.83)
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We supress for clarity the dependence of P on the initial value of the affine parameter
λs.

Inserting (2.81) to (2.82), and since P satisfies this equation for any Vs, we see that

d
dλ

Pµ
ρ(λ) = −Aµ

ν (λ) Pν
ρ(λ) (2.84)

Suppressing the indices and writing

d
dλ

P(λ) = −A(λ) P(λ) (2.85)

we almost have the differential equation which has the exponential of A as a solution,
but A now depends on λ.

The formal solution to this differential equation, which we get by iteration, is called
the path-ordered exponential, familiar from quantum field theory. It is denoted as

P(λ) = Pe
∫ λ

dλ′ A(λ′) (2.86)

In Minkowski indices, using equation (2.43) and after some algebra, we can write a
similar expression in terms of the spin-connection, with

AI
J(λ) = ẋσωI

σJ (2.87)

More abstractly, when we understand the spin connection as a Lie algebra valued form,
we may write

A = AIJI ≡ ε
IJLAJLJI = ẋσωIσJε

IJLJI (2.88)

with JI a basis of the Lie algebra, and

P = Pe
∫

A (2.89)

2.3.2 Spinfoam quantization of BF-theory

The action for classical BF theory, equation 2.2.5, reads (equation (2.68))

S BF[B, ω] =

∫
B ∧ F(ω) (2.90)

We discussed in the end of Section 2.2.5, that thanks to its simplicity and the lack of local
degrees of freedom, BF-theory admits an exact spinfoam quantization (when the group
is compact). For an introduction to this topic see Section 6 of the review by Perez [96]
and the lectures [101] by Baez.

The quantum theory is defined by regularizing (skeletonizing) the path integral for
BF-theory on a lattice. The partition function for the continuous theory is formally writ-
ten as

WBF =

∫
D[B]D[ω]eiB∧?F(ω)

=

∫
D[ω] δ (F[ω]) (2.91)
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where we performed a formal integration (like δ(x) = 1
2π

∫
dp eipx) over the B-field. No-

tice that this implies that the partition function is the volume of the space of flat connec-
tions of ω.

To give a meaning to the formal expression 2.91, the manifold M is replaced by an
arbitrary cellular decomposition C?. We restrict to the case where C? is a (topological) tri-
angulation, a topological simplicial manifold. The notation C? anticipates that the spin-
foam amplitudes will be built on the two-complex C dual to C?. The relation between
a 2-complex C and its dual simplicial triangulation C? in three and four dimensions is
explained in Table 2.2.

Henceforth, starred quantities correspond to the duals to the elements of the 2-
complex and its boundary, which may be geometrical or topological depending on the
context. That is, v? is the dual 4-simplex to the vertex v, e? is the dual tetrahedron to the
edge e and f ? is the triangle dual to the face f . On the boundary, n? is the tetrahedron
dual to the node n and `? is the triangle dual to the link `.

The variables B and ω are discretized as follows. We discussed in Section 2.2 that the
B-field, thought of here as a Lie algebra valued two-form, “wants” to be integrated on a
two-dimensional submanifold.

We introduce the variable B f , a Lie algebra element associated to each dual face f ,
which formally corresponds to a smearing of B, a discretization, on the triangle f ? of
the triangulation C?

B f ∼

∫
f ?

B (2.92)

The connection ω is discretized by a group element, formally corresponding to the
holonomy g of the connection ω, between the two topological four-simplices v? sharing
a tetrahedron e?. Thus, the holonomy is associated to the dual edge e

ge ∼ Pe
∫

e ω, (2.93)

see also Figure 2.2.
The skeletonized partition function for BF-theory, in analogy with the continuous

version (2.91), is defined as

WBF
C =

∫
µ(ge) δ(U f ) (2.94)

where we defined the face holonomy U f

U f ≡
∏
e∈ f

ge (2.95)

The integration measure µ(ge) ≡
∏

e dge is a product of Haar measures dge over S L(2,C) ,
see Appendix A.2 for details. This construction is sketched in Figure 2.2.

Let us pause to make a comment. Recalling the discussion at the end of Section 2.2.2,
in the tetradic and the BF-form of the Hilbert Einstein action, as well as in the tetradic
Palatini action, the curvature F[ω] lives in the co-plane of the B(e)-field.
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Boundary Γ = ∂C
Triangulation Dual

triangle

segment

apex b

bnode

link ℓ

n

Triangulation Dual

tetrahedron

triangle

segment

apex b

b

face

vertex

edge

no dual

v

v
v′

e

Triangulation and 2-complex in three dimensions

Bulk C

b

b

b

no dual

Boundary Γ = ∂C
Triangulation Dual

triangle

segment

apex b

bnode

link ℓ

n

Triangulation Dual

tetrahedron

triangle

segment

apex b

b

face

vertex

edge

no dual

v

v
v′

e

Triangulation and 2-complex in four dimensions

Bulk C

b

b
b

no dual

no dual

no dual

4-simplex tetrahedron

b
b

b
b

b

b
b

b
b

b
v′

v e

e′
b

b
b

b
b

b
v′

v e

e′
b

Tab. 2.2: Triangulation and Dual 2-complex in three and four dimensions. The 2-complex C has
up to two dimensional objects, the faces f , regardless of the dimension of the triangulation. The
boundary of C is a graph Γ.
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f ∈ C

e
e

e

e
e

e

v

v

v

v

v

v

Uf ≡ ∏
e∈f ge

Fig. 2.2: The face holonomy along a dual face f of equation (2.95). Notice the abuse of notation:
each edge should be labelled by a different e, that is, e, e′, e′′, . . ., and similarly for the vertices,
v, v′, v′′ . . ..

We caution that here we are in a pre-geometric setting and there is no notion of co-
plane to a topological triangle f ? yet. The idea is that when we impose the geometricity
of B f through the simplicity constraints, the curvature of the connection will be encoded
in the face holonomies, that can then be interpreted as living in the co-plane associated
to f ?. That is, as the holonomy along a closed loop around f ?, in the co-plane of f ?.

We will see in Section 3.5 that this is exactly what happens at the critical points of
the EPRL partition function that correspond to simplicial geometries. We pointed out
that this construction is very similar to the construction behind the Regge action, which
we introduce in Section 3.4. In turn, this geometrical interpretation of the semiclassical
regime of the EPRL model will allow us to perform a path–integral in the spirit of Figure
1.2 in Chapter 4.

Let us continue. In a simplicial triangulation in d dimensions, each dual edge is
connected to exactly d faces. In two dimensions, an edge is dual to a segment and faces
are dual to triangles. A segment is common to exactly two triangles, so the dual edge
will be common to the two faces dual to these two triangles. This is shown in Figure 2.3.

For four dimensions, we proceed analogously. The edge e is dual to a tetrahedron,
which is bounded by four triangles. Faces are dual to triangles and thus there are four
faces that share the edge e. Thus, for 4D BF-theory with the group being S L(2,C) , the
double cover of the Lorentz group, each S L(2,C) group element ge in (2.94) appears
four times, in four different delta functions, that is, face holonomies.

The integrations over the group elements ge can then be performed by expanding
the delta functions of the holonomies in unitary representations, using the Peter-Weyl
theorem.

The central idea here is that performing the integrations over the group elements,
is like performing the integration over the configuration variable. We will end up with
the “conjugate representation”, where the integration (summation) is now over spin
variables (discrete variables) playing the role of the conjugate momentum. For S L(2,C),
because it is a non-compact group, there will also be some labels that are continuous.

These quantum numbers will label irreducible representations of the Lorentz group
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Fig. 2.3: A triangulation in two dimensions. Each edge of the dual graph, shown in red, is
common to two faces. As an example, the segment in dotted black is dual to the edge in dotted
red, which is common to the two faces in pale red. This generalizes in d dimensions: an edge is
common to exactly d faces.

and intertwiners, equivariant maps under the action of the group, among representa-
tions. The principal series of unitary representations of S L(2,C) is introduced in Section
3.2.1.

However, doing all this would only give us a tentative quantization of BF-theory
with S L(2,C) as a gauge group. Our aim is to impose the simplicity constraints at the
quantum level. For this, we need to manipulate the BF-partition function (2.94) in a
form that brings in also the group S U(2), on which the canonical theory is based. This
is done in the following section.

For lack of space and to avoid technical details not necessary for what follows, we
do not present recoupling techniques relevant to S L(2,C) here. They are presented in
Appendix A.

To get a feeling of how the integration over the group elements gives rise to recou-
pling invariants see Appendix A.1, where we work out a simple example and introduce
the four valent intertwiners of S U(2), intertwining between the four representations of
the four faces living at an edge e. In turn, the invariant integration measure, the Haar
measure over S L(2,C) , can be decomposed in two copies of an S U(2) Haar measure
and an integration over a real parameter that is understood as a boost. This allows us
to write explicitly the recoupling invariants in terms of analytic functions. In Appendix
A.2 we introduce the S L(2,C) Haar measure and its decomposition and in Appendix
A.3 we show the precise relation of the Clebsch-Gordan coefficents of S L(2,C) and the
recoupling invariants with which we can explicitly express EPRL, as was done in [90]
for the transition amplitude summarized in Section 6.2. In Appendix A.2, we also show
the explicit sense in which the simplicity constraints are imposed at the quantum level
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in this decomposition. For further details see the work [116] by Speziale where these
techniques were recently introduced.

2.3.3 The EPRL ansatz

In this section we introduce the spin state-sum form of the EPRL amplitudes, complet-
ing the correspondence sketched in Table 2.1. We will arrive at the form of the EPRL
amplitudes as in equations (2.3) and (2.4) that are the starting point of the next chapter.

We start from equation (2.94), defining the regularized path integral for BF-theory,
repeated here for convenience

WBF
C =

∫
µ(ge) δ(U f ) (2.96)

We remind that the integration measure µ(ge) is a product of S L(2,C) Haar measures,
defined in Appendix A.2, and we are integrating over E copies of S L(2,C) , where E is
the number of edges in C.

We would now like to arrive at a spin state-sum form of the amplitudes, with an
overall sum over spin configurations, as in (2.3).

The prototype inspiration for spin state–sum models is the three-dimensional Eu-
clidean Ponzano–Regge model, whose partition function reads [20, 21]

WPR
C =

∑
{ j f }

µ( j f )
∏

v

{
j1 j2 j3
j4 j5 j6

}
(2.97)

where the symbol in curly brackets is the 6j-symbol, an invariant object in the tensor
product of six representations of S U(2). The summation measure µ( j f ), is a product
of d j = 2 j + 1 factors and sign factors, see [20, 21]. We will not need its explicit form
here. Since we are in three dimensions, the vertices v here are dual to tetrahedra and the
faces f are dual to segments.

The 6j-symbol is then understood as a quantum tetrahedron, in the sense that in an
appropriate semiclassical limit of large spins, we may understand them as the edge–
lengths of a classical tetrahedron.

A classical Euclidean tetrahedron is completely determined by its six edge lengths
(up to inversion). In the limit of large spins, the 6j–symbol becomes the exponential of
the Regge action S R(v; l f ? ) for the four simplex v, and we have the behaviour [20, 21]

WPR
C ∼

∫
dl f ? µ(l f ? )

∏
v

eS R(v;l f? ) =

∫
dl f ? µ(l f ? )eS CR (l f? ) (2.98)

where we have turned the sums into integrations and identified the segment lengths l f ?

with the spins j f on the face f dual to the segment f ?. The sum of the Regge action for
each vertex gives the Regge action for the 2-complex S CR(l f ? ).

This is the sense in which we will recover the path integral over the Hilbert–Einstein
action in Chapter 3. We will be using similar manipulations in Chapter 4 to see how
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a gravitational tunneling picture emerges when considering a semiclassical boundary
state; which serves as a boundary condition for the analogous naive path integral in
four dimensions. We caution that the quantum numbers in the EPRL model are not
only the spins j f , there are also the intertwiner degrees of freedom and the continuous
boost labels, see Appendix A.3.

We are aiming to arrive at a similar expression to equation 2.97, of the form11

WC =
∑

j f

µ( j f )
∏

v

Av( j f ) (2.99)

The idea here is two–fold: the first, is to introduce variables that are local to a vertex
v, in this way we can write the amplitude as a product of terms local to the vertices,
the vertex amplitudes. The second, is to introduce fiducial boundaries, isolating each
vertex from the others, where the S U(2) group elements will live.

This is to allow contact with the boundary space of LQG, which is based on S U(2),
and to provide a way to impose the simplicity constraint.

Some steps in the manipulations that follow work only for the case of compact
groups. We point them out as we go. These manipulations lead to well-defined and
finite expressions when compact groups are involved. The EPRL ansatz can be under-
stood as carrying out formally these manipulations, ignoring infinite volume factors,
and is justified à posteriori by the fact that the amplitudes are finite [117–122].

The first step is to double the number of group variables, by splitting ge in two, called
gev and gev′ , where v and v′ are the vertices joined by the edge e.

For a compact group, we may do this as follows. We write ge = gvegev′ , where gve =

g−1
ev . Using the invariance of the Haar measure, we change the integration from dge to

say dgve. Notice that this is only an integration over half the variables, we left out all the
gev′ . We now have

WC =

∫
µ(gve)

∏
f

δ

∏
v∈ f

gevgve′

 (2.100)

where the integration is over E copies of the group. Now, in a compact group G, we
may write

1 =

∏
e

∫
dgev′

VE
G

(2.101)

whereVG is the volume of G, and absorb the volume factors in a normalization constant
NC

WC = NC

∫
µ(gve, gev′ )

∏
f

δ

∏
v∈ f

gevgve′

 (2.102)

11The summation measure µ( j f ) is not of much importance in what follows. The precise choice can be
important for the finiteness of the amplitudes, see [117].
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where the integration is over 2E copies of G.
Let us focus again on the Lorentzian case and ignore the infinite volume factors. We

write simply µ(gev) to imply an integration over all variables, that is, over 2E copies of
S L(2,C)

µ(gev) =
∏

ev

dgev (2.103)

Some of these integrations, one per vertex, turn out to be superfluous, leading to infinite
volume factors, and have to be dropped. This can be seen by working out an example
for a single vertex. Henceforth, by µ(gve) we mean that one of the integrations over gve

per vertex has been dropped.
We have

WC = NC

∫
S L(2,C)

µ(gve)
∏

f

δ

∏
v∈ f

gevgve′

 (2.104)

The next step is to introduce a fiducial boundary around each vertex. This is done as
follows. We introduce another set of group variables, that are now S U(2), equal to the
number of pairs of vertices and faces V × F, which we denote hv f .

We impose that they be equal to the product of the two S L(2,C) elements that are
attached to the same vertex v in the face f , by inserting a delta δ(gevgve′hv f ). Thus, the
holonomy around the face will now read

h f ≡
∏
v f

hv f (2.105)

Putting things together, we have

WC =

∫
S U(2)

µ(hv f )
∏

f

δ(h f )
∏
v f

∫
µ(gev)δ(gevgve′hv f ) (2.106)

We have almost arrived at equation (2.4) and (2.3). The idea is now to expand the
delta function over S L(2,C) in unitary representations. However, remember that we
have not yet imposed the simplicity constraints at the quantum level.

The EPRL ansatz is based on the following conjecture: the imposition of the sim-
plicity constraints at the quantum level is equivalent to expanding the delta function in
only the so–called simple unitary representations of the principal series of S L(2,C) .

The motivations for this strategy come from the canonical analysis of the Holst action
in the time–gauge and are discussed in Sections 3.2.1 and 3.2.2. See also Appendix A.3.

We thus arrive at equations (2.4) and (2.3)

WC =
∑
{ j f }

µ( j f )
∫

S L(2,C)
µ(gve)

∏
f

A f (gve, j f ) (2.107)

A f (gve, j f ) =

∫
S U(2)

µ(hv f ) δ(h f )Tr j f

∏
v∈ f

Y†γge′vgveYγhv f

 (2.108)
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This definition of the EPRL model is the starting point of the following chapter. The
trace notation Tr j f means that the expansion is only over simple irreducible representa-
tions of the principal series of S L(2,C) , and will be given a precise meaning in Section
3.2.2.

To finish this section, we give the standard EPRL model definition [23–28, 123, 124]
in its product over vertex amplitudes form, which is a rearrangement of the equations
above:

WC =

∫
S U(2)

µ(hv f )
∏

f

δ(h f )
∏

v

Av(hv f , gve, j f ) (2.109)

Av(hv f , gve, j f ) =
∑
{ j f }

∫
S L(2,C)

µ(gve)
∏

f

d j f Tr j f

∏
v∈ f

Y†γge′vgveYγhv f


(2.110)

from which we also read the summation measure

µ( j f ) =
∏

f

d j f (2.111)

2.4 Relation to the canonical theory

In this Section we outline how covariant LQG is placed within the body of results of
Loop Quantum Gravity. The main insight behind the spinfoam quantization program,
is that the physical inner product, at least formally, may be written as an inner product
in the kinematical space, which puts the physical inner product at a similar footing as a
propagator.

The manipulations that follow are formal. For a more detailed discussion see Thie-
mann’s contribution in [125] and the influential work by Reisenberger and Rovelli [126–
130].

The Einstein-Hilbert action, in canonical form as a fully constrained system and in
terms of Ashtekar variables reads

S [E; A,N,Na,Λi] =

∫
dt dx3

∫
Σ

Ea
j Ȧ

j
a −

(
ΛiGi + NaDa + NH

)
(2.112)

The conjugate variables here are the densitized triads Ea
j and the connection Ȧ j

a, see also
Section 4.1.1.

Implied above is that Ȧ j
a(Ea

j , A
j
a), similarly for Gi, Da and H and that Ea

j = Ea
j (t, x),

A j
a(x, t), similarly for Λi,Na and N .

Compare with the Hamiltonian form of the action for a 1D system

S [p; q] =

∫
dt p q̇ −H(q, p) (2.113)
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where it is implied, as in (2.112), that q̇ = q̇(q, p), p = p(t), q = q(t). The semicolon in
these actions separates the momenta from the configuration variables.

The conjugate momenta for the variables Λi, Na and N do not appear in the action
for General Relativity, they vanish identically. The Euler-Lagrange equations for the
configuration variables Λi, Na and N simply impose the condition that Gi, Da and H
vanish. These are the constraints. The Hamiltonian is a sum of constraints multiplied
by Lagrange multipliers. This is the general form of a fully constrained system. That is,
on shell (when the constraints are satisfied) the Hamiltonian vanishes.

The picture is that of a phase space spanned by all configuration variables and their
conjugates. The conjugate of the Lagrange multipliers vanishes, which trivially reduces
the phase space. Then, the constraints further reduce the phase space dimension on
the constraint surface. In addition, we need to gauge–out the orbits generated by these
constraints. The orbits of the constraints are the physical states.

The inability to explicitly describe the physical space resulting from this last step is
what has become known as the problem of observables in general relativity [131–137],
an issue brought up as fundamental by Bergmann in 1961 [131].

This is the underlying reason that although a precise and well–defined proposal for
the Hamiltonian constraint of LQG exists through Thiemann’s master constraint pro-
gram [7], the existence of the full space of solutions is shown by invoking the axiom of
choice [9]. As we discussed in the Introduction, “sidestepping” these profound technical
difficulties of the complete Hamiltonian formulation, are one of the main motivations
for introducing the covariant approach to LQG.

Holst showed [138] that the action (2.112) is the 3+1 split of the action (2.55), which
then took his name.12

This is the main link between the canonical and the covariant formulations of Loop
Quantum Gravity. We now identify the reason for the naming “covariant” approacht
to LQG: the Holst action is manifestly covariant. To be precise, all objects appearing in
the Holst action transform covariantly (or contra-variantly) and the action is invariant
under a simultaneous action of the Lorentz group on all indices. This is in contrast
with the canonical form (2.112), in which we have objects with only space indices and
manifest Lorentz invariance is lost.

The idea behind spinfoams can then be sketched as follows. The kinematical space
of General Relativity, written in terms of Ashtekar’s variables, is known explicitely and
is well understood. It is a separable Hilbert space with a well-defined inner product,
given by the Ashtekar-Lewandowski measure [139]. The states in this Hilbert space
solve the operator form of the Gauss and diffeomorphism constraints.

Let us call the space of states that also solve the Hamiltonian constraint, the physi-
cal Hilbert space H phys. Then, we are interested in general to calculate inner products,
amplitudes, between states in H phys. In principle, the modulus squared of these con-
tains the physically observable information of quantum gravity. In this manuscript, we
attempt to calculate such an amplitude.

Consider a state |ψkin〉 in Hkin. Then, in general, |ψkin〉 is not in Hphys, which is a
subspace ofHkin. However, generically, |ψkin〉will also not be orthogonal toHphys. Thus,

12Second class constraints must be satisfied, in order for (2.55) to reduce to (2.112).
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a component of |ψkin〉, is in Hphys, that is, the projection of |ψkin〉 under the Hamiltonian
constraint Ĥ is a state inHphys.

A kinematical state |ψkin〉 can be mapped to a (generalized) physical state by

|ψkin〉 → δĤ |ψkin〉 ∈ H
∗
phys (2.114)

where H∗phys is the rigged physical Hilbert space and this is achieved via the so-called
rigging map. Loosely speaking and to give an idea, the rigged Hilbert space construc-
tion is meant to generalise the standard notion of Hilbert space in order to allow for
non-square integrable states that are physically interesting and the distributions that
arise when fourier transforming them. For instance, the plane waves eipx of quantum
mechanics are eigenstates of the position and momentum operators but are not square
integrable. The fourier transform in position space of eipx, thought of as an eigenstate
|p〉 of the momentum operator, is δ(x) =

∫
deipx. See [12, 105] for a detailed explanation.

The idea here is that if δ(Ĥ) is projecting |ψkin〉 to the physical Hilbert space, then the
kinematical inner product of another state |ψ′kin〉with |ψ′kin〉, is in effect the inner product
of the component of |ψ′kin〉 that is in Hphys with the component of |ψkin〉 that is in Hphys.
That is, writing

〈ψ′kin| = 〈ψ
K
kin| + 〈ψ

P
kin| (2.115)

with 〈ψP
kin| ∈ H

phys and 〈ψK
kin| ⊥ H

phys, and similarly for |ψkin〉, then

〈ψ′kin|δ(Ĥ)|ψkin〉 = 〈ψ′Pkin|ψ
P
kin〉 (2.116)

This is a central idea to the spinfoam program: if one gives a meaning to δ(Ĥ), it is for-
mally possible to compute physical transition amplitudes, using the kinematical inner
product.

The next step is to write 〈ψ′kin|δ(Ĥ)|ψkin〉 as a path integral over the lapse N

δĤ =

∫
DNeiĤ[N] (2.117)

with the integration taken over two time slices and the boundary conditions being that
the lapse is constant on these slices. We have

〈ψ′Pkin|ψ
P
kin〉 =

∫
DN 〈ψ′kin|e

iĤ[N]|ψkin〉 (2.118)

which now looks like a propagator formula between times ti and t f , with a multi-
fingered time evolution. That is, we integrate over all intermediate choices of time slic-
ings, choices of the lapse function. We may formally turn this into an integral over the
entire classical phase space and write

∫
D[· · · ] 〈ψ′kin|e

iS EH [A,E,N, ~N,Λ]|ψkin〉 (2.119)
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whereD[· · · ] is a path-integral measure over A, E,N, ~N,Λ.
But, we saw earlier in this section that S EH written in Ashtekar variables is the 3+1

split of the Holst action. Thus, we may write

∫
D[ω]D[e] 〈ψ′kin|e

iS H [ω,e]|ψkin〉 (2.120)

From this point, one can write the Holst action as a constrained BF-theory, as we did in
Section 2.2.5, and continue with the BF-theory spinfoam quantization of Section 2.3.2.

2.5 Summary

In this introductory chapter we presented main ideas and motivations behind the EPRL
ansatz. The steps we took can be understood as a formal derivation of the ansatz. In the
next chapter, we will take the partition function 2.107 as a starting point and study its
semiclassical limit.

The continuous and discrete covariant actions at the basis of the covariant approach
to LQG are summarized in Table 2.3, where we included the dimensions of each term
for easier comparison. We have included the Wilson–Lattice Yang-Mills action, to be
compared with the discretized BF-theory action. Note that the canonical form of General
Relativity, equation 2.112, resembles a Yang-Mills theory with gauge group S U(2).

We have emphasized the role of the plane e ∧ e, which has dimensions of an area,
and the co-plane where the curvature term ?F[ω] lives, which is dimensionless and
can be discretized by a deficit angle. In the next chapter, we will see this geometrical
construction emerging in the semiclassical limit of the EPRL model, giving rise to the
Regge action.
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[~] S EH[g] = [~2]
∫

dx4 [~0]
√
− det g(x)δαγ δ

β
δ Rγδ

αβ(g(x)) [~−1]

[~] S EH[e] = [~2]
∫

dx4 [~0] | det e(x)| eα Ie
β

J RIJ
αβ(e(x)) [~−1]

[~] S P[e, ω] = [~2]
∫

dx4 [~0] det e(x) eα Ie
β

J ΩIJ
αβ(ω(x)) [~−1]

[~] S P[e, ω] = [~0]
∫

[~] e ∧ e ∧ ? F(ω) [~0]

[~] S H[e, ω] = [~0]
∫

[~] e ∧ e
(
1 + ?

γ

)
∧ ? F(ω) [~0]

[~] S H[e, ω] = [~0]
∫

Tr[ [~] e ∧ e
(
1 + ?

γ

)
∧F(ω) [~0] ]

[~] S R[l] = [~0]
∑

f [~] A f (l) φ f (l) [~0]

[~] S BF[B, ω] = [~0]
∫

Tr[ [~] B ∧F [~0] ]

[~] S WL[L,U] = [~0]
∑

f Tr[ [~] L f U f [~0] ]

Tab. 2.3: Comparative table of actions and formalisms leading to the definition of EPRL ampli-
tudes. Dimensions in geometrical units (G = c = 1) are indicated in powers of ~ next to each term
for easier comparison.
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3 Emergence of the sum over geometries

In the previous chapter we have seen how the spin state-sum form of the EPRL ampli-
tude is related to General Relativity. In this chapter we take the top–down path, starting
from the EPRL ansatz and see how the sum–over–geometries path–integral picture that
emerges in the semi-classical limit.

We will work in the Han–Krajewski representation [31]. This is a little-known and
more direct way of getting to the form of the EPRL amplitudes suitable for asymptotic
analysis, that does not involve coherent states. We provide an independent and more
concise derivation of this representation.

We discuss the geometrical interpretation of the critical point equations, summarize
the asymptotic analysis of the EPRL model and discuss the sense in which the Wheeler–
Misner–Hawking sum–over–geometries is recovered. Unpublished results in this and
the following chapter will appear in a work [91] by the author in collaboration with
Fabio d’Ambrosio.

3.1 The rough picture

In this section we give the rough picture of how the path–integral over the Regge action
emerges from the EPRL ansatz, to be used as a guide for the presentation of the material
in the following sections.

In Section 2.3, we saw that the amplitudes13 of covariant LQG can be defined by the
EPRL ansatz, written in the product–over–face–amplitudes form of equation (2.107),
repeated here for convenience

WC =
∑

j f

µ( j f )
∫

S L(2,C)
µ(gve)

∏
f

A f (gve, j f ) (3.1)

with the face amplitude given by

A f (gve, j f ) =

∫
S U(2)

µ(hv f ) δ(h f )Tr j f

∏
v∈ f

Y†γge′vgveYγhv f

 (3.2)

In the following section we use spinor technology to bring the face amplitude to the
form

A f (gve, j f ) =

∫
µ(zv f )

∏
f

e j f F f ({g f },{z f }) (3.3)

with the integration being over spinor variables zv f . The notation {g f }, {z f } implies de-
pendence on the gve and zv f with v ∈ f . For conciseness, we will also write F f (g, z)
instead of F f ({g f }, {z f }).

13We have not yet introduced a boundary. This is done in the following chapter. WC here is understood as
a partition function.
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The main point is that the EPRL amplitudes take the form

WC =
∑
{ j f }

µ( j f )I( j f ) (3.4)

with I( j f ) given by

I( j f ) =

∫
µ(g)µ(z) e

∑
f j f F f (g,z) (3.5)

where the product over faces is written as a sum in the exponent. The function I( j f ) is
the so-called “partial amplitude” or fixed-spins amplitude. Keep in mind that despite
the name, I( j f ) does not have a direct interpretation as an amplitude of any sort. Thus,
the results presented here regard the asymptotic analysis at fixed spins. To get a physi-
cally meaningfull amplitude, we must include a boundary and perform the spin–sum.
This is the subject of Chapter 4.

The partial amplitude I( j f ) is then the function of the spins that turns out to behave
as the exponential of the Regge action in the semi-classical limit. The exponent is linear
in the spins, with the function F f (g, z) not depending on the spins.

What roughly happens after the asymptotic analysis is carried through, is that at
a critical point admitting a geometrical interpretation as a simplicial geometry, F f be-
comes the deficit angle φ f , which is now a function of the spins evaluated at the critical
point.

The spins are identified with physical areas a f by a f /~ ≡ j f

F f (g, z)
crit. point
∼ φ f (a f ) (3.6)

Then, the argument of the exponential in (3.82) becomes∑
f

j f F f (g, z) ∼
1
~

∑
f

a f φ f (a f ) (3.7)

where we recognize the Regge action, with the important difference that the variables
here are the areas a f , not the segment lengths.

3.2 Embedding S U(2) in S L(2,C) and a taste of spinors

In this section we introduce the minimal amount of tools needed to bring the EPRL
amplitudes to a form suitable for asymptotic analysis and explain the strategy for the
imposition of the simplicity constraints at the quantum level.

We first introduce some basics for the principal series of unitary irreducible repre-
sentations of S L(2,C) , in order to give meaning and explicitly define the expression

Tr j f

∏
v∈ f

Y†γge′vgveYγhv f

 (3.8)
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appearing in the face amplitude of equation (2.107). For a complete treatment of the
representation theory of S L(2,C) see the textbook [140]. See also [141] for a summary
of basic properties and the relation to S U(2) and S U(1, 1).

We proceed to briefly discuss the postulate for the imposition of the simplicity con-
straints at the quantum level, see also Appendix A.3. We end this section by introduc-
ing the map H from normalized spinors to S U(2), a simple tool central to deriving the
Han-Krajewski path-integral representation for the EPRL amplitudes in the following
section.

3.2.1 Elements of S L(2,C) principal series representations

The group S L(2,C) is non-compact. Intuitively, this is evident from our understand-
ing of the Lorentz group O(3, 1), and the fact that S L(2,C) is its universal cover. Lorentz
transformations are composed of ordinary three-dimensional rotations and boosts, which
are rotations in a Minkowski plane. Hyperbolic angles are also called Lorentzian angles,
boost angles or rapidities. Similarly to the familiar Euclidean angles, they are defined
as inverse hyperbolic cosines of inner products between two normalised timelike vectors,
see section 3.4 where we define the Lorentzian Regge action.

Thus, boost angles take arbitrarily large values and it is to be expected that (the uni-
tary irreps of) S O+

↑
(3, 1) cannot be parametrized by parameters taking values in compact

intervals.
Compare this statement with the Euler angle parametrization of Wigner’s D-matrices

D j(α, β, γ), discussed in Chapter 4. The three Euclidean angles α, β and γ, represent or-
dinary S O(2) two-dimensional rotations by that amount, about an axis, and take values
in (0, π) and (0, 2π). Attempting to do a similar geometric parametrization of a Lorentz
transformation, which is in general a combination of rotations and boosts, would cer-
tainly require the use of hyperbolic angles, that take values in (1,∞).

In representation theory, this translates to the fact that the unitary representation
spaces of S L(2,C) are infinite dimensional. Unitary representations play a central role
in the harmonic analysis of functions over groups, see Appendix a discussion of the A
for S L(2,C) case.

One possible analogy is to think of unitary representations as playing the role of
“plane waves” eipx in Fourier analysis, the latter being Harmonic analysis over the re-
als. When the group is compact, it can be parametrized by parameters taking values
in compact intervals, with a certain periodicity. This is the analogue of doing Fourier
analysis over periodic functions, which results in discrete summation over modes. In
the S U(2) case, the discrete summation is over the spins and magnetic indices. When
we have a non-compact group, it is analogous to having to also do Fourier analysis over
non-periodic functions, and thus we expect that there will be continuous integrations
involved.

The principal series of unitary irreducible representations of S L(2,C) is defined
through its action to the space V of functions f (g) where g ∈ S L(2,C). These repre-
sentation spaces are labelled, as anticipated above, by a continuous parameter p ∈ R+

and a discrete spin label k ∈ N/2.
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The decomposition of V into unitary irreducible representations of the principal se-
ries is given by

V =

∫
R+

dp
∑

k

V (p,k) (3.9)

where the spaces V (p,k) are realised as spaces of homogeneous complex functions of
spinors, see [141]. Furthermore, and very conveniently, each representation space V (p,k)

decomposes into irreducible representations of S U(2)

V (p,k) =

∞⊕
j=k

H j (3.10)

with the equality to be understood in the sense of an isomorphism between vector
spaces. The spaces V (p,k) and V (p,−k) are isomorphic and henceforth we consider only
positive values for k, see [40].

The space H j is the usual spin-j representation space of S U(2), on which unitary
irreducible representations act. These are finite dimensional representations

d j ≡ dimH j = 2 j + 1 (3.11)

An orthogonal basis of H j is the usual | j,m〉 basis of angular momentum j and mag-
netic moment m. The S U(2) unitary irreducible representations can be explicitly realized
through Wigner’s D-matrices, defined as the matrix elements

D j
mm′ (h) ≡ 〈 j,m|h| j,m′〉 (3.12)

with h in S U(2). This explicit expression for D j
mm′ (h) is well known, see equation (3.50)

for an explicit expression of the analytical continuation of Wigner’s D-matrices to h ∈
GL(2,C).

The matrix elements D j
mm′ (h) provide a basis of square integrable functions on S U(2)

f (h) =
∑
jmm′

f j
mm′ 〈 j,m|h| j,m

′〉 (3.13)

for coefficients f j
mm′ .

Similarly, V (p,k) has an orthogonal basis, which we denote as

|p, k, j,m〉

That is, a square integrable function f (g) of S L(2,C) , seen as an element of the vector
space V , decomposes as

f (g) =

∫
R+

dp
∞∑

k=−∞

∑
jm j′m′

f p,k
jm j′m′ 〈p, k, j,m|g|p, k, j′,m′〉 (3.14)
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where k, j,m, j′, n are spins, that is, half-integers.
Notice the analogy with the S U(2) case (3.13). The representation for S L(2,C) is

labelled by the pair (p, k) and a basis vector has a pair of “magnetic indices” ( j,m), that
are summed over independently in (3.14).

The range of summations over the index pairs j,m and j′,m′ is given explicitly by

∑
jm j′m′

≡
∑
j≤k

m=+ j∑
m=− j

∑
j′≤k

m′=+ j′∑
m′=− j′

(3.15)

Similarly to Wigner’s D–matrices, the matrix elements for the representation matri-
ces acting on V p,k are defined by

Dp,k
jm j′m′ (g) ≡ 〈p, k, j,m|g|p, k, j′,m′〉 (3.16)

Multiplication in V p,k is given by

Dp,k
jm j′m′ (g1g2) =

∑
ln

Dp,k
jmln(g1)Dp,k

ln j′m′ (g2) (3.17)

with the summation ranges as in (3.15). The matrix elements Dp,k
jm j′m′ (g) are explicitly

known, see Appendix A.
The delta function over S L(2,C) is given by

δ(g) =

∫
R+

dp
∑

k

(p2 + k2)
∑
j,m

Dp,k
jm jm(g) (3.18)

Compare this with the Peter-Weyl expansion of the S U(2) delta function

δ(h) =
∑

j

d jD
j
mm(h) (3.19)

The realisation of the spaces V p,k as spaces of homogeneous functions of spinors will
allows us to explicitly express the inner products in V p,k in terms of spinor variables in
Section 3.3. That is, in terms of the matrix elements Dp,k

jm jm′ (g), see equation (3.16).

3.2.2 Imposition of simplicity constraints at the quantum level and the Yγ map

We arrive at the technical core of the EPRL model: the conjecture that the imposition
of the simplicity constraints at the quantum level is equivalent to restricting the repre-
sentation space V to V (p=γ j,k= j). We call the representations acting on V (γ j, j), simple. To
simplify notation, we will henceforth write Vγ j, j ≡ V (γ j, j).

That is, for emphasis, we assume that the state space for the quantum gravitational
field is built from the representations in

Vγ j, j (3.20)
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and not that of equation (3.9), which we repeat here

V =

∫
R+

dp
∑

k

V (p,k) (3.21)

Let us remind the discussion in Section 2.3.2. The quantum variables associated to the
discretized spin-connection ω are the group elements ge. When we perform harmonic
analysis and “Fourier expand” in the variable playing the role of the conjugate to the
quantum holonomy, the spins and intertwiners, we only consider the quantum numbers
labelling the simple representations.14

The motivation for this restriction is intimately related to the fact that we are at-
tempting to define a regularized path integral for gravity starting from the Holst action.
We discuss the motivation at the end of this section.

Yγ map We introduce a shorthand notation for the states |γ j, j, j,m〉 ∈ Vγ j, j

| j,m〉γ ≡ |γ j, j, j,m〉

γ〈 j,m| ≡ 〈γ j, j, j,m|

The spaces Vγ j, j and H j are isomorphic, see equation (3.10). The notation we use is to
reflect this natural one-to-one correspondance, of the basis | j,m〉γ of Vγ j, j, with the basis
| j,m〉 of H j. We may then code this in a map between the representation spaces Vγ j, j to
H j.

The map that sends one basis to another is called the Yγ map

Yγ : | j,m〉 → | j,m〉γ (3.22)

That is, Yγ is a map that embeds the spin- j representation space H j of S U(2) into the
representation space Vγ j, j of S L(2,C)

Yγ : H j → Vγ j, j ⊂ V (3.23)

In turn, Vγ j, j is an S U(2) representation subspace in the full representation space V of
S L(2,C) . We emphasize this point because it provides the intuition for the meaning of
the restriction to simple representations.

We have thus defined completely the EPRL model. The expression (3.8) appearing
in the face amplitude of equation (2.107) and (3.47) is defined as

Tr j f

∏
v∈ f

Y†γge′vgveYγhv f

 ≡∑
{m}

∏
v∈ f

γ〈 j f me′ |g−1
ve′ gve| j f m̃e〉γ 〈 j f m̃e|hv f | j f me〉 (3.24)

14A remark: the integration over the continuous parameter p does come into play, because the quantum
equivalents of the discrete holonomies ge from vertex to vertex, were split into two group elements ge = gvegev′ .
The integration over p in (3.17) has to be performed. The splitting ge = gvegev′ is necessary to get the explicit
state-sum form of the amplitude over all representation and intertwiner labels, which is the subject of Section
6.2. The physical meaning of this integration, and the degree to which it is necessary, is not well understood
and is the subject of current investigations. A simplified model has been recently proposed restricting to
simple representations also over these interior summations [116].
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and can be written explicitly in terms of a decomposition of the matrix elements (3.17),
see Appendix A. Each S U(2) group element hv f appears two times, once in the face
amplitude and once in the holonomy δh f . They can be integrated out using the orthog-
onality relation for Wigner’s D–matrices and the properties of the Haar measure, see
Appendices A and B. After eliminating hv f , the face amplitude reads

A f ( j f , {g f }) =
∑
{m}

∏
v∈ f

γ〈 j f me′ |g−1
ve′ gve| j f me〉γ (3.25)

Weak imposition of the linear simplicity constraints

The quadratic simplicity constraints of equation (2.65), reduce in the spinfoam setting to
the linear simplicity constraints [23, 27, 111, 142–146] understood as a discretized version
of the former, imposed on each face f of the two-complex C. This was first shown in [27]
by Freidel and Krasnov.

The linear simplicity constraints read

Li
f −

1
γ

Ki
f ≈ 0 (3.26)

where Li
f are the rotation generators of an arbitrary rotation subgroup of S L(2,C) and Ki

f
the corresponding boost generators. The approximate equality implies that this condi-
tion must be satisfied in an appropriate semiclassical limit.

The linear simplicity constraints arise naturally when we consider the 3+1 split of
the Holst action in the time gauge. The pull-back of the conjugate momentum of the
connection on a hypersurface Σ, can be decomposed in its electric Ki and magnetic Li

parts, which behave as 3D vector fields in a constant time hypersurface, and are related
as

Ki = γLi (3.27)

see [104] for a quick derivation.
We understand then the choice of a rotation subgroup as corresponding to an in-

ternal gauge group of the phase space parametrized in terms of the Ashtekar-Barbero
variables, in the time gauge. We will see this construction appearing more geometrically
in the semi-classical limit.

Different ways to impose the linear simplicity constraints at the quantum level have
been proposed. Slight modifications are possible that could be relevant in the deep
quantum regime, but are equivalent in the semiclassical limit with which we will be
concerned.

The most used criterion for imposing the simplicity constraints comes from studying
the spectrum of Thiemmann’s master constraint. The Casimirs of the Lorentz group,
which can be witten in a simple form in terms of Ki and Li are diagonal in the basis
|p, k, j,m〉. See Appendix A.3 for more details.
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All states in Hγ j, j satisfy the simplicity constraints in the semiclassical limit, that is,
in the sense of an expectation value and taking the limit of large quantum numbers15

〈Li
f −

1
γ

Ki
f 〉

Ψ∈Vγ j, j

sem.lim.
∼ 0 (3.28)

3.2.3 Spinors and the H map

In this section we give some spinor basics and the definition and properties of the map H
from normalized spinors to S U(2). We will only need the final equation of this section,
equation 3.44, to express the EPRL amplitudes in the Han-Krajewski representation,
done in the following section. Spinors are further dicussed and used in Section 4.1
where we introduce S U(2) coherent states and in Appendix C where we introduce the
coherent state representation. See also Appendix D for the relation of spinors and the
Riemann sphere.

Spinors Spinors are elements of C2. We denote one spinor as |z〉 and for explicit calcu-
lations we write

|z〉 =

(
z0
z1

)
(3.29)

with z0 and z1 complex numbers. The bra is defined as

〈z| =
(
z̄0 z̄1

)
(3.30)

and the inner product follows as

〈w|z〉 = w̄0z0 + w̄1z1 (3.31)

Parity map We introduce the parity16 map in spinor space

J |z〉 ≡ |Jz〉 =

(
−z̄1
z̄0

)
(3.32)

Direct computation shows that J2 |z〉 = − |z〉,

J2 = −12×2 (3.33)

In other words, it is useful to keep in mind that

J−1 = −J (3.34)

15The limit is j→ ∞ and ~→ 0 with ~ j kept constant.
16See Appendix D for the reason it is called parity.
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The identity matrix can be written as

12×2 = |z〉 〈z| + |Jz〉 〈Jz| (3.35)

The following identity is useful

Jg = (g−1)†J (3.36)

which follows from writing explicitly g as a matrix and acting on a spinor |z〉 with both
sides of the equation. We note the relations

〈Jw|Jz〉 = 〈w|z〉 (3.37)

and thus

〈Jz|Jz〉 = 〈z|z〉 (3.38)

S U(2) map H The matrix H(z) is defined as

H(z) =

(
z0 −z̄1
z1 z̄0

)
(3.39)

and defines a map from normalized spinors to S U(2). This is easy to see by direct matrix
multiplication

H(z)H†(z) =

(
z0z̄0 + z̄1z1 z0z̄1 − z0z̄1
z1z̄0 − z1z̄0 z̄1z1 + z0z̄0

)
(3.40)

=

(
|z0|

2 + |z1|
2 0

0 |z0|
2 + |z1|

2

)
(3.41)

= 〈z|z〉12×2 (3.42)

Using the shorthand notation

H(z) =

(
|z〉 |Jz〉

)
(3.43)

the product H(z)†H(w) is given by

H(z)†H(w) =

(
〈z|
〈Jz|

) (
|w〉 |Jw〉

)
(3.44)

=

(
〈z|w〉 〈z|Jw〉
〈Jz|w〉 〈Jz|Jw〉

)
(3.45)

With these tools, we are ready to bring the EPRL amplitudes into a form suitable for
asymptotic analysis, in an arbitrarily large 2-complex, dual to a simplicial complex.
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3.3 The Han-Krajewski path-integral representation

We have seen that EPRL amplitudes can be written as a product over face amplitudes

WC =
∑
{ j f }

µ( j f )
∫
µ(gve)

∏
f

A f ( j f ) (3.46)

with

A f ( j f ) =
∑
{m}

∏
v∈ f

γ〈 j f me′ |g−1
ve′ gve| j f me〉γ (3.47)

where the notation {g f }means all gve such that the half-edge ve is in the boundary of tha
face f .

Thus, the main object that needs to be computed is∑
{m}

∏
v∈ f

γ〈 j f mve′ |g−1
ve′ gve| j f mve〉γ

The space Vγ j, j is explicitly realized as a space of homogeneous functions of a spinor
z

〈z| jm〉γ ≡ f j
m(z) =

√
d j

π
〈z|z〉 j(iγ−1)−1 D j

m j(H(z)) (3.48)

with H(z) defined in (3.39). The matrix elements of the Wigner-D matrix D j
m j(A) can be

defined by analytical extension for any A ∈ GL(2,C)

A =

(
a b
c d

)
(3.49)

We have [38]

D j
qk(A) =

√
( j + q)!( j − q)!
( j + k)!( j − k)!

∑
n

(
j + k

n

) (
j − k

j + q − n

)
an b j+q−n c j+k−n dn−q−k (3.50)

with the sum over n being over values such that the binomial coefficients do not vanish.
All indices are half-integers. This (long) formula is key for the result we are aiming to
arrive at. In particular, for the EPRl amplitudes we will only need D j

j j(A), in which case,
(3.50) simplifies to 17

D j
j j(A) = a2 j (3.51)

17Replace q = j and k = j in (3.50). The square root is unit. Inside the sum over n, we have the binomial

coefficient
(

0
2 j − n

)
which equals δ2 j,n. This is because, by definition,

(
0
0

)
is unit and

(
0
n

)
with n , 0 vanishes.
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The action of S L(2,C) on 〈z| jm〉γ = f j
m(z) is given by the transpose matrix action in

the fundamental representation of S L(2,C) (that is, as a transposed 2 × 2 matrix) on the
spinor argument

g . f j
m(z) = f j

m(gT z) (3.52)

where we have introduced the notation ., which will be used whenever we want to
denote the action of a group on objects on which it does not act in a straightforward
manner, i.e. as a multiplication.

Treating g−1
ve′ gve as a single S L(2,C) element acting on the right by the transpose

action, the inner product

γ〈 j f mve′ |g−1
ve′ gve| j f mve〉γ (3.53)

reads [38]

γ〈 j f me′ |g−1
ve′ gve| j f me〉γ =

∫
CP1

dµ(z) f j f
me′

( zv f ) f j f
me ( gT

ve(g−1
ve′ )

T zv f ) (3.54)

where µ(z) is the homogeneous S L(2,C) –invariant measure on C2. That is, the integra-
tion is effectively over CP1. The integration measure µ(z) is given explicitly by

µ(z) =
i
2

(z0dz1 − z1dz0) ∧ (z̄0dz̄1 − z̄1dz̄0) (3.55)

The spinor variable zv f only appears in the term (3.54). Since the measure µ(z) is S L(2,C)
invariant, we then notice that we may make the following handy change of variables

zv f → (g−1
ve′ )

T zv f (3.56)

giving

γ〈 j f me′ |g−1
ve′ gve| j f me〉γ =

∫
CP1

dµ(z) f j f
me′

( gT
ve′zv f ) f j f

me ( gT
ve zv f ) (3.57)

Thus, all variables gve appear as gT
ve in the amplitude. We may then change variables

again using the fact that µ(gve) is a left and right invariant Haar measure

gT
ve → g†ve (3.58)

This choice, to change to g† instead of say to g, is so that we recover the expressions
in [31, 33], the results of which we will be using.

Thus, the variables gve and zv f only appear in the combinations g†ve′zv f and g†ve zv f . We
introduce the notation

Zve f = g†vezv f

Zve′ f = g†vezv f (3.59)
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The face amplitude now reads

A f ( j f , {g f }) =

∫
µ(gve)

∑
{m}

∏
v∈ f

∫
CP1

dµ(z) f j f
me′

( Zve′ f ) f j f
me ( Zve f ) (3.60)

Now, in the face amplitude (3.47), we may pull the summation over the magnetic
index me for the two half-edges ev and e′v, and combine the two instances in which f j f

me

appears.
Thus, we write the face amplitude as

A f ( j f ) =

∫
µ(gve)

∫
CP1

dµ(z)
∏
e∈ f

∑
me

f j f
me ( Zve f ) f j f

me ( Zv′e f ) (3.61)

We need then only calculate one term∑
me

f j f
me ( Zve f ) f j f

me ( Zv′e f ) (3.62)

We may now perform the summation over the magnetic index using equation (3.48).
Let us show the calculation in a lighter notation and give the complete expression after-
wards. We have, for two spinors Z and W∑

m

D j
m j(H(W))D j

m j(H(Z)) = D j
jm(H(Z)†)D j

m j(H(W))

= D j
j j(H(Z)†H(W))

= D j
j j(H(Z)†H(W))

= 〈Z|W〉2 j (3.63)

where in the first line we used that D j
m j(A) = D j

jm(AT ) for any A ∈ GL(2,C), which can be
checked directly from (3.50), and in the last we used equations (3.44) and (3.51).

Thus, setting Z → Zv′e f and W → Zve f we have shown that

∑
me

f j f
me ( Zve f ) f j f

me ( Zv′e f ) =

d j

π
〈Zve f |Zve f 〉

j(iγ−1)−1 〈Zv′e f |Zv′e f 〉
j(−iγ−1)−1 〈Zv′e f |Zve f 〉

2 j (3.64)

The next thing to notice is that appart from a factor 〈Zve f |Zve f 〉
−1 〈Zv′e f |Zev′ f 〉

−1 which
can be absorbed in a redefinition of the measure µ(z), see for instance [38]. All other
terms are raised to the power j. This is the important result that allows us to use the
stationary phase method. Thus, up to constants that can be absorbed in the overall nor-
malization of the amplitude and terms that can be absorbed in the integration measures
(d j goes into µ( j f )), we have shown that

∑
{m}

∏
v∈ f

γ〈 j f me′ |g−1
ve′ gve| j f me〉γ = e j f F f ({g f },{z f }) (3.65)
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where

F f ({g f }, {z f }) =
∑
e∈ f

log
〈Zv′e f |Zve f 〉

2

〈Zve f |Zve f 〉 〈Zv′e f |Zv′e f 〉
+ iγ log

〈Zve f |Zve f 〉

〈Zv′e f |Zv′e f 〉
(3.66)

and thus the face amplitude (3.47) takes the form

A f ( j f ) =

∫
µ(zv f ) e j f F f ({g f },{z f }) (3.67)

where factors of d j have been absorbed in the integration measure µ( j f ) and constants
are absorbed in the overall normalization NC.

This representation was derived in [31] by Han and Krajewski. It has the novel
feature that S U(2) coherent states have not been used to bring the spinfoam amplitudes
to this form.

The derivation we present here is more straightforward and allows for an easy pas-
sage to the coherent state representation.

To get to the coherent state representation, it suffices to insert the resolution of the
identity in equation (3.62), in the sense of equations (3.63), see Appendix C.

When coherent states are used, there are E × F extra spinor variables in the path–
integral representation, where E is the number of edges and F the number of faces of C.
The resulting critical points equations, are identical to those resulting from the coherent
state representation. Thus, the E × F spinor variables are superfluous.

The reconstruction of simplicial geometries at geometrical critical points is possible
without the use of the extra spinor variables. This in turn allows for a more straightfor-
ward interpretation of the critical point equations, discussed in Section 3.5.

Another advantage, and the reason we use this representation, is that the detaild
works [31] by Krajewski and Han, and the earlier analysis in the coherent state represen-
tation [33] by Han and Shang, are currently the only available studies for the semiclas-
sical limit of the Lorentzian partial amplitude for an arbitrary 2-complex. The detailed
analysis by the same authors for the Euclidean case is in [34].

In turn, the ability to go back and forth easily between the two representations, al-
lows to contract a spinfoam amplitude with a boundary with a semiclassical boundary
state, as we do in Chapter 4 and use the results from both works.

The detailed procedure will appear shortly in a work [91] by the author and Fabio
d’Ambrosio.

3.4 Lorentzian Regge action

In this section we review the definition of the Regge action and discuss the analogy
with the tetradic form of the actions for General Relativity, studied in Chapter 2. We are
following [147] for the definition of the Lorentzian Regge action.
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3.4.1 The co-plane in Regge calculus and relation to tetradic General Relativity

The Regge action is defined as

S R(l) =
∑

f

A f (l)φ f (l) (3.68)

where l are the lengths of the segments of a simplicial triangulation C∗. The tetrahedra
of C∗ are all taken to be spacelike (and thus also all triangles and segments).

No coordinates are involved in the definition of the Regge action. This was Regge’s
main motivation, reflected in the title of the work [148] where the Regge action was first
introduced

General relativity without coordinates.

Referring to the comparison Table 2.3 and the discussion in Section 2.2.1, we remind
that the same coordinate disappearance happens for the Einstein–Hilbert action when
written in its tetradic form. The two terms e ∧ e and ?F have the same dimensions as
the areas and the deficit angles here.

The similarity between the tetradic form of the Einstein–Hilbert and Palatini actions
with the Regge action goes further.

In Regge calculus —the definition and study of discrete General Relativity and Eu-
clidean toy models by the corresponding Regge action—, the construction of the deficit
angle in both Euclidean and Lorentzian case is delegated at the level of a plane, perpen-
dicular to the triangle f .

Since all four dimensional normals to the tetrahedra of the triangulation that share
the triangle f , are also normal to f , the plane perpendicular to f is spanned by the nor-
mal to any one tetrahedron sharing the face f (this normal is timelike in the Lorentzian
case) and the normal to the face, which can be taken to point in any of the tetrahedra
that share f .

This the analogue of what we called the co-plane ?eI ∧ eJ , where the curvature two-
form lives, for the Einstein–Hilbert, Palatini and Holst (in this case, on–shell) actions.

Effectively, as we do in the following sections, the definition of deficit angles in
Regge calculus comes down to reasoning locally in a Euclidean plane, for a Euclidean
gravity toy model, or in a Minkowski plane for discrete General Relativity.

Covariant LQG is an attempt to define a path integral for gravity starting from the
Holst action, with the regularization effected by discretizing on a simplicial manifold,
much like in Regge calculus. Given the analogy between the Holst action and the Regge
action, one would hope and expect to recover discrete classical General Relativity from
the Quantum Theory in the form of the Regge action, in an appropriate semiclassical
limit.

3.4.2 Euclidean deficit angles

We start by reviewing the definition of deficit angles φ f (`) in the four dimensional Eu-
clidean case, and compare with the Lorentzian version in the next section.
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The deficit angle is defined as

φ f (l) = 2π −
∑
v∈ f

Θv f (`) (3.69)

where Θv f (`) are the dihedral angles between two tetrahedra that belong to the 4-simplex
v and bound the face f .

Let us call these two tetrahedra e1 and e2 and the four dimensional normals (of unit
norm) to them Ne1 and Ne2

The dihedral angle of a 4-simplex, between two of its tetrahedra e1 and e2, at the face
f shared by them, is defined as

Θv f (`) = arccos
(
Nve1 · Nve2

)
(3.70)

This implies that

Θv f (`) ∈ [0, π] (3.71)

because Nve1 · Nve2 ∈ [−1, 1]; the angle between Nve1 and Nve2 can be at most π.
In particular the Euclidean dihedral angles are non negative.

This is the role of the 2π in the definition (3.69) of the deficit angle. The sum of the
Euclidean dihedral angles is always positive.

When
∑

v∈ f Θv f (`) equals 2π, the deficit angle vanishes and the local curvature van-
ishes (flat). When it is less than 2π, the deficit angle is positive, and the curvature local
to the face is positive (stretched). When it is larger than 2π, the deficit angle is negative
and the curvature local to the face is negative (pinched).

The Lorentzian deficit angle has the same interpretation, with the difference that the
value for the flat case is zero instead of 2π.

3.4.3 Lorentzian Deficit angles: thin-wedges and thick-wedges

The deficit angle for the Lorentzian case is defined as

φ f (`) =
∑
v∈ f

Θv f (`) (3.72)

Notice the missing 2π and the sign difference from this formula with respect to the
Euclidean deficit angle (3.69).

Also, notice the following: the main idea in Regge calculus, is that the discrete local
curvature is encoded in the deficit angles, with a vanishing φ f (`) corresponding, locally
to f , to flat spacetime. Inspection of equation (3.72) then reveals that some dihedral
angles around the hinge must be negative.

This point can often be a source of confusion and we take a moment to explain how
the dihedral angles Θv f (`i) are defined in Lorentzian Regge calculus.

We need an analogous construction to the Euclidean case for the Lorentzian case.
The difficulty, is that there is no natural notion corresponding to the phrase “sum of
dihedral angles around a hinge” f for Minkowski space.
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+
↑

P . +
↑

= −
↑

T . +
↑

= +
↓

PT . +
↑

= −
↓

Tab. 3.1: The four connected components of the Lorentz group O(3, 1). The component connected
to the identity is S O+

↑
(3, 1). We get the other three by applying the parity P and time reversal T .

The requirement that all tetrahedra are spacelike implies that at least one of them
has to be time oriented in the opposite direction. The possibilities for each 4–simplex
are four, 4–1 and 3–2 in either time direction. That is, four tetrahedra past–oriented and
one future–oriented, and vice–versa, and similarly for the 3–2 case. Timelike normals
with opposite time orientation, are not related by hyperbolic rotations, i.e. pure boosts,
that carry a natural notion of hyperbolic angle, see discussion below.

One may try to remedy this by taking intermediate angles, between timelike and null
or timelike and spacelike vectors, trying to “go around” the face f . Such constructions
are possible, but require one to introduce complex angles and appropriately deal with
infinities that can arise.

Thus we are left without an obvious typical value for the “sum of dihedral angles
around a hinge” corresponding to the flat case, like 2π for Euclidean geometry.

The idea then is to take the characteristic value for the flat case to be an angle around
the hinge that sums up to zero. This implies that some dihedral angles must be negative.
There are indeed two kinds of dihedral angles that may arise: those between faces that
are shared between tetrahedra that have the same, or, the opposite time orientation.

To deal with this, we remind the structure of the Lorentz group O(3, 1) in terms of
the parity P and the time reversal T in Table 3.1.

When the normals have the same time orientation, they are in the identical light-
cone and are related by a proper orthochronous Lorentz transformation, an element of
S O+

↑
(3, 1). This case is called a thick-wedge.

In particular, the normals at at a thick–wedge are related by a pure boost. This is
because we are restricting to the co-plane, thus, the normals are related by an element
of S O+

↑
(1, 1), the group of hyberbolic rotations of the Minkowski plane.

When the normals are of opposite time orientation, they are not in the same light-
cone and are not related by a pure boost. This case is called a thin-wedge.

Evidently, the time reversal of one of them, will be related by a pure boost to the
other. This is the main idea for the definition of the angle at a thin wedge. As we see
below, we take both the time reversal and parity of one of the normals to define the angle
at a thin–wedge.
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Let us go back for a moment to the Euclidean case and rephrase things in a way
that can be carried through by analogy to the Lorentzian case. There always exists an
element of S O(4) that takes one normal to the other. Since we are restricted to a plane,
we may way write it as an S O(2) rotation(

cos Θ − sin Θ

sin Θ cos Θ

)
and we identify the parameter Θ as the dihedral angle.

The Lorentzian angle for a thick wedge is then defined analogously, as the rapidity ζ
of the boost that takes one normal to the other. That is, there exists a hyperbolic rotation
in S O(1, 1)+↑, in the co-plane, such that

Ne1 =

(
cosh ζ sinh ζ
sinh ζ cosh ζ

)
. Ne2 (3.73)

where we are understanding Ne1 and Ne2 as two–dimensional vectors in the co-plane of
f .

Then, the inner product Ne1 · Ne2 reads

Ne1 · Ne2 = − cosh ζ (3.74)

The inner product between two timelike normals in the same light–cone is always neg-
ative. In particular,

Ne1 · Ne2 ∈ (−1,−∞) (3.75)

with −1 being the case when they are parallel and negative infinity reached in the limit
where one of them becomes null. Thus, the rapidity ζ at a thick wedge is always positive

ζ ∈ (0,∞) (3.76)

We then define the dihedral angle on a thick-wedge to be negative by

Θthin ≡ −ζ = −Ach
(
−Ne1 · Ne2

)
(3.77)

The choice to reverse the sign appears perverse, since the angles at thick–wedges are
the natural hyperbolic angles. This is done to absorb the sign difference between (3.69)
and (3.72), so that the negative and positive local curvatures are associated to negative
and positive deficit angles, as in the Euclidean case, see previous section.

We now take the case of a thin wedge. We consider the inner product between one
of the normal and the PT transform of the other. The same apply as above, for Ne1 and
PT Ne2 or PT Ne1 and Ne2 . Notice that

PT N = −N (3.78)

We then define the dihedral angle for a thin wedge to be positive, by

Θthin ≡ ζ = Ach
(
−PT Ne1 · Ne2

)
= Ach

(
−Ne1 · PT Ne2

)
= Ach

(
Ne1 · Ne2

)
(3.79)
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3.5 Emergence of General Relativity: overview of fixed–spins asymptotics of the
EPRL model

In this Section we review results from the asymptotic analysis of the EPRL model, that
will be used in Chapter 4 to show how a gravitational tunneling picture emerges when
combined with a boundary state corresponding to a wavepacket of an embedded quan-
tum 3-geometry. These tools are put to work in Section 6.3 to calculate the scaling of the
lifetime of the Haggard-Rovelli spacetime, which is the subject of the following chapter.

The asymptotic analysis of the Lorentzian EPRL model was first carried out in [38–
40] by Barett et al, at the level of a single vertex. The results we present here concern an
arbitrary 2-complex, dual to a simplicial complex, based on the analysis in [31, 33, 34].

3.5.1 The critical point equations

In this section we discuss the critical points equations resulting from a stationary phase
approximation for the partial amplitude, equation (3.82). We skip some details that are
not necessary for what follows, see [31,33,34] for a complete treatment in this formalism.

We are interested in the limit of large quantum numbers, the quantum numbers here
being the spins j f . We introduce a dimensionless large parameter λ � 1 and define

j f = λδ f (3.80)

We will call δ f the spin data. They are taken to be of order unit in λ. That is, we take
all the spins to scale uniformly. We see in Chapter 4 that this regime is sufficient when
considering applications to macroscopic geometries, where a physical area scale char-
acterising the system will play the role of λ.

We finished Section (3.3) with equation 3.67, which we repeat here

A f ( j f ) =

∫
µ(zv f ) e j f F f ({g f },{z f }) (3.81)

We employ the simplified notation of Section 3.1 and define the partial amplitude I( j f )
as the product of the face amplitudes, including also the integrations over S L(2,C)

I( j f ) = I(λ, δ f ) =

∫
µ(g)µ(z) eλ

∑
f δ f F f (g,z)

=

∫
µ(g)µ(z) eλΣ(δ f ,g,z) (3.82)

where we have defined

Σ(g, z; δ f ) ≡
∑

f

δ f F f (g, z) (3.83)

and where the semicolon in Σ(g, z; δ f ) reminds us that we are taking the spin data δ f to
be fixed. That is, the spinfoam amplitude of equation (3.46) reads

WC =
∑
{ j f }

µ( j f )
∏

f

A f ( j f ) =
∑
{ j f }

µ( j f ) I( j f ) (3.84)
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The (generalised, for complex “actions”) stationary phase theorem says that when λ
is large, we may take the following approximation18

I j f (λ, δ f ) ∼

∑
c

eλΣ(gc(δ f ),zc(δ f );δ f )

 (1 + O(1/λ)) (3.85)

where (gc(δ f ), zc(δ f )) is the set of critical points for the given δ f . We emphasize that the
point of view here is that both the spin data δ f and the large parameter λ are taken to
be fixed, we are not considering a limit λ → ∞. The large parameter λ will be iden-
tified later on with a finite macroscopic area scale. By critical point, we mean that
(gc(δ f ), zc(δ f )) solve the set of equations

ReΣ = 0
δgΣ = 0
δzΣ = 0

that extremize the exponent.
The group and spinor variables gve and zv f appear in the face amplitude of equation

(3.81) only in the combination

Zve f = g†vezv f (3.86)

see equations (3.67) and (3.66). Let us define the normalized version of this spinor

Ẑve f ≡
Zve f

|Zve f |
(3.87)

with |Z| ≡
√
〈Z|Z〉.

The critical point equations in these variables read (for a derivation, see for instance
[31] )

|Ẑve f 〉 = eiα f
vv′ |Ẑv′e f 〉 (3.88)

ge′e |Ẑve f 〉 =
|Zve f |

|Zve′ f |
|Ẑve′ f 〉 (3.89)∑

f∈e

j f εe f 〈Ẑve f |~σ|Ẑve f 〉 = 0 (3.90)

where we have denoted ge′e ≡ ge′vgve.
These equations are not too complicated. They can appear obscure at first sight, but,

after a few comments, their meaning becomes transparent.
We introduced spinors in Section 3.3, because it is then possible to calculate the

S L(2,C) inner products explicitly. We now have the critical point equations in terms

18For the precise theorems and conditions that need to be satisfied by the integrand see Section 7.7 of the
reference textbook by Hormander [149]. We have not included the determinant of the Hessian, an overall
scaling in λ, and a sign factor, the power of which depends on the combinatorics of the spinfoam. For the full
expression see [33].
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of spinor variables, from which we can attempt to reconstruct a geometry. In particu-
lar, we want to see whether we can recover a simplicial geometry and we expect the
reappearance of the plane and co-plane.

Let us start from the third critical point equation, equation (3.90). On the right hand
side we have three–dimensional normalized vectors (elements of S 2)

n̂e f ≡ εe f 〈Ẑve f |~σ|Ẑve f 〉 (3.91)

This is a well known mapping from normalized spinors to S 2 (CP1), see Appendix D for
the explicit Riemann sphere construction. The factor εe f is a sign (±1), that ensures that
this vector points in the correct direction (outwards from the tetrahedron e). The reason
we did not include a vertex subscript for n̂e f will become apparent when we examine
the first critical point equation.

The meaning of 3.90 is follows: it is the closure condition, with the spins having the
role of areas

0 =
∑
f∈e

j f n̂e f (3.92)

The normals to and areas of the triangles of a tetrahedron (any flat convex polyhe-
dron), always satisfy this condition. Conversely, any such set of areas and normals deter-
mines uniquely, up to inversion, a tetrahedron.19 This is a point that cannot be stressed
enough: one of the critical point equations clearly states that all critical points for the
path–integral, are collections of tetrahedra, dual to the edges of the two-complex C. We
have then already recovered part of the geometry.

The crucial question will be whether, at least at some of these critical points, the
tetrahedra glue properly together to form simplicial geometries.

Let us examine the other two critical point equations. These are equations at the
level of a fixed face f . To explain the meaning of the remaining critical equations, we
need only consider two vertices v and v′, the edge that joins them, which we call e′, and
a half-edge e.

The first critical point equation, equation 3.88 has a phase factor eiα f
vv′ . This is im-

portant to consider when working in the coherent state representation, but we will not
need to consider it explicitly here. Thus, we may write

Ẑve f = Ẑv′e f (3.93)

From the third critical point equation, we saw that the spinors Ẑve f define three dimen-
sional normals, that live at the edge e, dual, at a critical point, to a geometrical tetrahe-
dron. Then, this equation is telling us that the two vectors constructed from Ẑve f and
Ẑv′e f coincide. That is, there is a notion of a common frame, shared among the vertices v
and v′. This common frame is defined on a face f of a tetrahedron e common to v and v′

19By inversion, we mean the mirroring of the tetrahedron through any of its faces. We have in mind a
tetrahedron as a geometrical shape, thus translational and rotational ambiguities in defining the normals are
irrelevant here.
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Remember the role of the co-plane in Regge calculus and in the tetradic forms of GR.
We expect the reappearance of the plane and co-plane. The co-plane will be spanned by
the timelike normal to a tetrahedron and a spacelike normal to the face.

Let us then attempt to define two tetrad directions corresponding to the co-plane of
the face f . The co-plane is spanned by the timelike normal to the tetrahedron e0e f , to
which the face f belongs, and by a spacelike normal to the face e1e f . This corresponds
to a gauge fixing, adapted to this tentative common frame of v and v′. We may write

e0e f ≡ (1, 0, 0, 0) (3.94)
e1e f ≡ (0, n̂ f ) (3.95)

The co-plane, is then described by a bi-vector proportional to e0
e f ∧ e1

e f . Indeed, we
may recast the critical point equations in terms of bi-vector variables, defined as

Xe f ≡ 2γ j f e0
e f ∧ e1

e f (3.96)

Notice that the plane dual to X will then be spacelike, that is

e0e f · ?Xe f = 0 (3.97)

with the inner product taken with the Minkowski metric. This will be the plane of the
triangle dual to f (at a critical point).

So far, we have tetrahedra dual to edges e, and a notion of plane and co-plane for
the triangles dual to faces f . This settles the candidates for the emergence of the tetrad
and co-tetrad at the semi-classical limit.

So, how about the curvature? It should live in the co-plane, and we expect it to be
manifested through the action of the group elements, the quantum equivalent of the
discretized spin connection, on Xe.

Let us then examine the remaining critical point equation, equation (3.89)

ge′e |Ẑve f 〉 =
|Zve f |

|Zve′ f |
|Ẑve′ f 〉 (3.98)

If we ignore the norms of the spinor variables on the right-hand side, this equation looks
like a parallel transport, effectuated by ge′e, from the middle of the edge e to the middle
of the edge e′. In other words, it is a parallel transport from a common frame between
the vertices sharing e to the common frame between the vertices sharing e′. This is good,
because the parallel transport encodes the curvature.

Let us see how this works. We bring in Minkowski indices, and pretend that we have
indeed a simplicial geometry. Then, the parallel transport by the discrete connection g
is given by first parallel transporting to v from the middle of e, by gev, and then to the
middle of e′, by gve′ . Since gee′ = gevgve′ , we would expect to have

ge′e . Xe f = Xe′ f

g I
e′e K g J

e′e LXKL
e f = XIJ

e′ f (3.99)
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Since we are at a pre-geometric level, we give meaning to the above by understand-
ing the bi-vector variables Xe f as taking values in the Lie algebra, and the group action
to be given by the adjoint action. Using the property of equation (3.36) for the parity
map, it is not hard to see that the third critical point equation equation is precisely this
parallel transport condition.

The idea then is to bring all these variables to a vertex v, by parallel transporting Xe f

along the half edge ev

X f (v) ≡ gve . Xe f (3.100)

Notice that there is no e subscript in X f (v). This is because gve . Xe f = ge′v . Xe′ f .
The critical point equations can be recast as [31]

X f (v) = Xe f (v) = Xe′ f (v)
ηIJ N I

e(v) ? XIJ
f (v) = 0∑

f⊂te

εe f (v)X f (v) = 0 (3.101)

where the normal N I
e(v) is the parallel transport of e0e f , Ne(v) ≡ gve . e0e f , and

X f (v) = 2γ j f

(
Jzv f Jz†v f ∧ gveẐve f Ẑ

†

ve f g
†
ve

)
(3.102)

To show these relations, it suffices to use repeatedly the properties of the parity map J
of Section 3.2.3.

The critical point equations now have a clear meaning. The first is just the expression
of the co-plane, defined between two tetrahedra sharing a face f , by the normal to the
face f and a common timelike normal to the tetrahedra (because it is normal to both f
and the normal to f inside either e or e′). We stress again that this construction is iden-
tical to the Regge action (when the critical point admits an interpretation as a simplicial
geometry).

The second is saying that all faces f (all planes ?X f ) are all normal to the timelike
normal of the tetrahedron e to which they belong. And the third is the closure condition,
expressed in terms of the co-planes.

Notice that to cast the critical point equations to this form, we set the tentative time-
like tetrad vector e0e f to be normal to the face f . Thus, in Minkowski components, the
normal to the face f reads (1, 0, 0, 0). That is, we rotated the tetrad to be in the time gauge,
adapted to the face f .

3.5.2 Emergence of simplicial geometries

In this section we review how simplicial geometries emerge from the critical point equa-
tions (3.101). The complete analysis for the Lorentzian case in an arbitrary simplicial
complex is in [33].

For a given set of the fixed spin data δ f , there exist two distinct possibilities. Either
there exists a set of critical points (gc(δ f ), zc(δ f )), or not. In the latter case, the partial
amplitude is exponentially suppressed in λ.
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When a set of critical points (gc(δ f ), zc(δ f )) does exist, we distinguish again two cases.
The first case, is that we have a geometric critical point, determining a simplicial geome-
try.

In turn, three possibilities exist for geometric critical points: the spin data δ f either
determine uniquely a 4D Lorentzian Regge geometry, or a degenerate 3D Regge geom-
etry (zero four–volume 4D Regge geometry), or a 4D Euclidean Regge geometry. In this
manuscript we will be mainly concerned with these three geometric kinds of critical
points.

When the critical point is geometric, we may reconstruct a frame, a discrete version
of the tetrad, from the critical point equations expressed in terms of bivectors, i.e. using
equations (3.101).

The frame is related to the bi–vectors by

X f = ε ?
(
es1 ∧ es2

)
(3.103)

where es1 and es2 are simply the dual forms to segment vectors which are now interpreted
as two of the three segments of the triangle f ?. The sign ε is to be chosen such that the
bi–vector points out of the tetrahedron on which we are working. Think of the cross-
product in basic 2D geometry and X f as the oriented area.

The second, non-geometrical, case for a critical point, is that of a vector geometry.20

A vector geometry is roughly a collection of tetrahedra that need not glue together to
form a simplicial complex. The precise characterization and parametrization of vector
geometries is a currently undergoing project in the Centre de Physique Théorique in
Marseille, led by S.Speziale.

We will have more to say about these different cases later. Let us now focus on the
case where δ f are chosen such that the set of critical points (gc(δ f ), zc(δ f )) corresponds to
a 4D Lorentzian Regge geometry.

First, notice that we claimed that there is a set (gc(δ f ), zc(δ f )) of critical points that
uniquely determine a Lorentzian Regge geometry. How is this possible?

It turns out that there are exactly 2V critical points (gc(δ f ), zc(δ f )), corresponding to
the 2V choices for the frame orientation, the discrete equivalent of the tetrad.

This was to be expected: remember that at the end of Section 2.2.1 we neglected
the difference between the Einstein–Hilbert action and the Palatini action; the absolute
value in the determinant. The sign of the determinant encodes whether the tetrad’s
orientation is left–handed or right–handed.

We never imposed that absolute value in the spinfoam quantization procedure out-
lined in this manuscript. It is then not surprising that the geometrical co-frame that
emerged in the semiclassical limit has not chosen an orientation for us.

Specifically, what happens is the following: the set of 2V critical points (gc(δ f ), zc(δ f ))
constructs (uniquely, see below) a discrete Regge metric

gss′ = eIseJs′η
IJ (3.104)

20Barett includes the geometrical 3D degenerate case in the vector geometry case, this is a matter of defini-
tion.
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where eIs are Minkowski vectors corresponding to segments s of the geometric simplicial
triangulation dual to the 2-complex C at the geometric critical point.

To define the frame, we need only construct four of these vectors at each vertex v
of C, which we can choose for instance to emanate from the same apex of the geomet-
ric 4-simplex dual to v, and to point away from the apex. In three dimensions, this is
equivalent to giving the three segment vectors emanating from an apex of a tetrahedron.

The same set of vectors is assigned to every point in the interior of the 4-simplex
dual to the vertex v by means of the trivial parallel transport in flat space.

So far, this is convention and does not affect physics. But we have not yet arrived at
the point where we have a discrete analogue of the tetrad field. We need in addition to
chose an arbitrary labelling, say from one to four, for the four dual vectors eI

s (or, of the
vectors eIs) at each vertex. Equivalently, choose a naming for the four segments s. This
defines the discrete (distributional) non-coordinate basis dual vector fields eI

s1
(v), eI

s2
(v),

eI
s3

(v), eI
s4

(v) on the simplicial complex dual to C.
The collection of the four co-vector fields eI

si
(v) is what is called here the co-frame and

is the precise discrete analogue of the co–tetrad field eI that we studied in Chapter 2,
for a piecewise flat simplicial manifold. However, here, the frame is not orthonormal,
because it carries also the information on the edge lengths and angles, that is, we may
reconstruct from it all the geometry.

The orientation appears in the asymptotic analysis via the signed 4-volume V4(v) for
every 4-simplex dual to a vertex v :

V4(v) ≡ eI
s1

(v)eJ
s2

(v)eK
s3

(v)eL
s4

(v)εIJKL (3.105)

Had we chosen a different basis of tangent vectors, by exchanging the labelling in any
two elements of the co-frame at a single vertex v′, say eI

s1
(v′) ↔ eI

s2
(v′), the 4-volume of

the 4-simplex dual to v′ would now have the opposite sign : V4(v′) → −V4(v′). We
recognise that this sign simply encodes the left-handedness or right-handedness of the
frame and co–frame at each vertex, which is what we call its orientation.

In summary, any of the critical points (gc(δ f ), zc(δ f )) for given δ f determines the same
metric geometry of a simplicial manifold dual to the entire 2-complex C and each indi-
vidual critical point uniquely corresponds to the choice of one of the 2V orientation
configurations of the basis eI

s1
(v), eI

s2
(v), eI

s3
(v), eI

s4
(v). The critical points are then distin-

guished by the sign ofV4(v) at each vertex and we use the shorthand notation

s(v) ≡ signV4(v) (3.106)

The function s(v) takes the values plus or minus one at each vertex and is the discrete
analogue of the sign of the determinant of the tetrad. That is, s : {v} → {−1, 1}V , where V
is the number of vertices in the 2-complex C and {v} the set of vertices in the 2-complex
C.

With these comments, we are ready to summarize the results from the fixed-spins
asymptotic analysis of the partial amplitude for the EPRL model.
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3.5.3 Summary of fixed–spins asymptotics

The asymptotic analysis of the EPRL model for the case of geometrical critical points,
can be summarized as

F f (gc(δ f ), zc(δ f )) = iγ
∑
v∈ f

s(v)Θ f (v; δ f ) ≡ iγφ f (v, s(v); δ f ) (3.107)

where Θ f (v; δ f ) is the dihedral angle at the triangle dual to the face f of the 4-simplex
dual to vertex v. See Section 3.4 for its definition in Euclidean and Lorentzian signature.

When the geometry is 3D (zero four–volume), we may think of it in either signature,
and the dihedral angles are either zero or π.21

The subscript c has been dropped in the right hand side of the above equation, and
will be similarly dropped from now on, since each critical point (gc(δ f ), zc(δ f )) is in one
to one correspondence with an element s(v) in the image {−1, 1}V of s. That is, the critical
points corresponding to the same geometry are labelled by a ± configuration on each
vertex, coding the left– or right– handedness of the frame.

We have introduced a function we will call the Palatini deficit angle

φ f (v, s(v); δ f ) ≡
∑
v⊂ f

s(v)Θ f (v; δ f ) (3.108)

On the critical point (gc′ (δ f ), zc′ (δ f )) which has s(v) = 1 at all vertices v, we recognise that
its Palatini deficit angle is the Regge deficit angle, φ f (v, s(v); δ f ) =

∑
v∈ f Θ f (v; δ f ).

We have the following sequence of equations for the exponent in the partial ampli-
tude, equation (3.82),

λΣ(gc(δ f ), zc(δ f ); δ f ) = λ
∑

f

δ f F f (gc(δ f ), zc(δ f ))

= i
∑

f

(γλδ f )φ f (v, s(v); δ f )

=
i
~

∑
f

A fφ f (v, s(v); δ f ) (3.109)

where we have introduced the dimensionful area variable A f ≡ γ j f ~ (we use geometri-
cal units, i.e. c = G = 1), using the basic result of LQG that the area spectrum of the area
operator is given by [150]

A j = 8πG ~γ
√

j( j + 1) ≈ 8πG ~γ j (3.110)

On the critical point (gc′ (δ f ), zc′ (δ f )) we recognise the Regge action for the entire 2-
complex. That is, since on this critical point φ f (v, s(v); δ f ) is the Regge deficit angle, we
have

λΣ(gc′ (δ f ), zc′ (δ f ); δ f ) =
i
~

S C
?

R (3.111)

21 A three dimensional analogy is to think of a tetrahedron squashed to the plane of one of its triangles. The
angles between the normals to the triangles are either zero or π.
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It will also be useful to write the exponent in terms of the Regge action S R(v; δ f ) for
each 4-simplex dual to a vertex v, defined as

S R(v; δ f ) =
∑
f∈v

A f Θ f (v; δ f ) (3.112)

In summary, on a geometrical critical point, we have

λΣ(gc(δ f ), zc(δ f ); δ f ) = λ
∑

f

δ f F f (gc(δ f ), zc(δ f ))

= iγλ
∑

f

δ f

∑
v∈ f

s(v)Θ f (v; δ f )

= i
∑

v

s(v)
∑
f3v

(γλδ f )Θ f (v; δ f )

=
i
~

∑
v

s(v)
∑
f3v

A f Θ f (v; δ f )

=
i
~

∑
v

s(v)S R(v; δ f , λ) (3.113)

For emphasis, note that we again recognise that for the critical points for which s(v) = ±1
everywhere, we have recovered the Regge action

λΣ(gc′ (δ f ), zc′ (δ f ); δ f ) = ±
i
~

∑
v

S R(v; δ f ) = ±
i
~

S C
?

R (3.114)

In all, to the zeroth order in λ,

I(λ, δ f ) ∼
∑
{s(v)}

e
i
~

∑
v s(v)S R(v) (3.115)

3.6 Summary: the sum–over–geometries

Let us summarize.
We have seen that the fixed–spins asymptotics of the partial amplitude in the semi-

classical limit of uniformly large spins j f , yield the exponential of the discretized Palatini-
Holst action.

This special limit is generally sufficient for applications to geometry transition be-
tween macroscopic geometries, when a physical area scale will be available and will
play the role of λ. See Chapters 4 and 6 for further discussion.

We appear to have a quantum theory corresponding in this semi-classical limit to a
classical theory that is described by the Palatini action.

Furthermore the co-frame orientation is summed-over in the path-integral. The sum in
equation (3.115) has 2V terms, one for each co-frame orientation configuration s(v). The
sign function s(v) is the discrete analogue of the sign of the determinant of the tetrad
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in the Palatini action. We have not at any point imposed an orientation for the tetrad,
and it would have been indeed surprising if at the limit of large quantum numbers we
somehow ended up with a preferred local frame orientation.

This intriguing feature is common to state–sum spin models, since the Ponzano-
Reggge model. It has been dubbed the “cosine problem” [151–155], although, as we
also see in Chapter 4 when we consider physical transition amplitudes, there does not
appear to be anything problematic about it. In an early work with the participation of
the author [154], it has been linked to infrared divergences [152], arising because the
spins are allowed to take arbitrarily large values. These divergences are expected to be
regularized from the inclusion of a cosmological constant [156, 157].

We note that the F(g, z) function at a geometrical critical point, which becomes the
Palatini deficit angle, depends only on the spin data δ f , it does not depend the overall
scale λ, see equation (3.107). This point is useful to keep in mind for the following
chapter and is to be expected: angles do not depend on the overall scale, changing
λ→ λ′ is a dilatation of the geometry (a global conformal transformation).

To get a physical transition amplitude, describing geometry transition between macro-
scopic semi–classical geometries, we need to consider a boundary and an appropriate
semi–classical state, and perform the spin-sum. This is done in the following chapter.

When considering a semi–classical state, the critical points giving rise to vector ge-
ometries are excluded. There will still be the possibilities of having a geometrical critical
point, or no critical point at all.

Finally, the Regge action we have recovered has the areas as variables instead of the
edge lengths. The study of the dynamics from this form of the Regge action is known
as area Regge calculus [158, 159]. The degree to which it is related to General Relativity
is unclear at the moment.22

With the above caveats, we have seen in which sense the Wheeler–Misner–Hawking
sum–over–geometries emerges from the amplitudes of covariant LQG. Specifically, re-
call equation (3.84)

WC =
∑
{ j f }

µ( j f ) I( j f ) (3.116)

From equation (3.115), neglecting the cosine feature (setting s(v) = 1 on all vertices)
and the special semi–classical limit, we have, at the level of the partition function, the
correspondence of Table 2.1

22As mentioned previously, when writing the spinfoam amplitude as a sum over only spin configurations,
we are neglecting the intertwiner degrees of freedom. There are then some semi–classical degrees of freedom
missing from the emergent sum–over–geometries path–integral. These intuitively correspond to 3D dihedral
angles of the tetrahedra, that are encoded in the 3D normals corresponding to the spinors zv f that were in-
tegrated out when taking the stationary phase approximation. It would be desirable to recover instead the
Regge action in area–angle variables, see [160, 161].
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WWMH ∼

∫
D[g] e

i
~ S HE [g]

WNR ∼

∫
µ(`s) e

i
~ S C

?

R [`s]

WEPRL
C ∼

∫
µ(a f ) e

i
~ S C

?

R [a f ] (3.117)

where we have turned the summations over the spins to integrals over areas. We have
included for comparison the naive path integral over the Regge action (the abbreviation
NR is for Naive Regge). The Regge action is a discretization of the Einstein–Hilbert
action, yielding the latter in an appropriate limit of refinements. In turn, the amplitudes
WC of covariant LQG are understood as a truncation of the degrees of freedom of the
quantum gravitational field.
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4 Gravitational Tunneling

In this chapter we enter the main part of this manuscript, and explain how gravitational
tunneling emerges from covariant Loop Quantum Gravity. We first introduce coherent
spin-network states. These are the semiclassical boundary states used in the second part
of this chapter and can be thought of as wavepackets for an embedded three-geometry.
We proceed to combine the boundary states with a spinfoam amplitude to define a tran-
sition amplitude. We will use the results from the asymptotic analysis of the EPRL
model presented in the previous chapter and explain how the spin-sum may be per-
formed for a class of spinfoam amplitudes.

4.1 Boundary state: a wavepacket of geometry

In this section we introduce coherent spin-network boundary states, describing wave-
packets of a spacelike 3-geometry embedded in a Lorentzian spacetime. We start with
an introductory section, discussing the relation of the spin network basis with the gauge-
variant semiclassical boundary states that will be used in the rest of this manuscript.

4.1.1 Superposing Spin–Networks

In this preliminary section we briefly review the kinematical Hilbert space of LQG at
the level of a fixed graph. For lack of space, we do not give a full presentation of the
kinematics of LQG and refer the reader to introductory texts in the literature [97, 100,
104, 162]. A good place to start and one that contains material relevant to spinfoams,
is the treatment of the three–dimensional case by A.Perez and K.Noui [163]. For the
definition of the full kinematical Hilbert space see the influential work by A.Ashtekar
and J.Lewandowski [139].

Loop Quantum Gravity, and spinfoam quantization, are based on the Ashtekar-
Barbero variables. We mentioned in Section 2.4 that they arise naturally in the canonical
analysis of the Holst action for General Relativity, written as a fully constrained system.

The Ashtekar-Barbero variables are the Ashtekar-Barbero connection Ai
a and the den-

sitized triads Ea
i , defined as

Ai
a ≡ ωi

a + γKi
a = ω jakε

jki + Kcbei
bqac

Ei
a ≡

√
det q ea

i

where ω is a 3D spin connection.
The AB–variables parametrize the phase space of general relativity and are canonical

field variables

{Ei
a(x), A j

b(y)} = γ δa
b δ

i
jδ(x, y)

{Ei
a(x), E j

b(y)} = {Ai
a(x), A j

b(y)} = 0 (4.1)

An important point to keep here, is that the “good” connection variable for General
Relativity, the AB-connection, turns out to be a simple combination of the two objects
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fully characterising the spacetime curvature in a neighbourhood of a hypersurface: the
3D spin connection, from which we may reconstruct the intrinsic curvature, and the
extrinsic curvature.

We will see how semiclassical boundary states in LQG are built only out of S U(2),
which is naturally associated to the symmetries of a three-dimensional Euclidean space.
The reason we may encode the spacetime curvature is the interpretation of the S U(2)
group variables as holonomies of the AB–connection. The Levi-Civita 3D spin connec-
tion would only know about the intrinsic curvature, because the AB–connection knows
of the extrinsic curvature, which codes the embedding of a time slice in spacetime, we
will be able to include a notion of “quantum embedding” (in a discrete setting) in the
boundary state.

The geometric interpretation of the Ashtekar-Barbero variables is along the lines of
the discussion in Chapter 2. The choice of connection corresponds to a choice of a notion
of parallel transport. The Ashtekar-Barbero connection Ai

a provides a notion of parallel
transport for S U(2) spinors along curves in a hypersurface Σ, belonging to a foliation of
a 3+1 spacetime split, with its holonomy an S U(2) element.

The triad has the same meaning as the tetrad. The tetrad is a four–dimensional
Minkowski orthonormal frame and the triad a three–dimensional Euclidean orthonor-
mal frame.

Doubly superposing spin networks The quantization of General Relativity in terms
of Ashtekar-Barbero variables is carried out by first discretizing. The spirit is similar to
the skeletonization of BF-theory of Section 2.3.2.

The discretized triads become a set of variables we call the fluxes, encoding the
area and the normal direction to a face, and the connection is discretized as a set of
holonomies. The resulting canonical algebra is the holonomy–flux algebra.

When promoted to operators, the holonomy–flux algebra is realised on the kinemat-
ical space at the level of a fixed graph,HΓ, see below. The continuum kinematical space
of LQG is built by taking an appropriate refinement limit (a projective limit, see [139]).
In this manuscript, we will only be concerned with states at the level of a fixed graph Γ.

Since we are working at the level of the boundary and the boundary graph Γ, we
employ the notation for the boundary of Table 2.2.

Links are labelled as `, nodes as n, and a half link attached to n as `n. The graph Γ

is oriented and we also employ the notation `t and `s for the half link attached to the
target and source of ` respectively.

An orthonormal basis of HΓ is given by the spin–network states. These states pro-
vide an orthonormal basis and diagonalize simultaneously the two basic operators of
the kinematics of LQG: the area and volume operator.

To build the spin-network states, we introduce an oriented (here, four valent) graph
Γ, and assign an S U(2) element h` at each link. We consider square integrable func-
tions φΓ(h`) of the group elements h`, elements of L(S U(2)L), where L is the number of
links in Γ. This is the group representation. The group elements h` are interpreted as
(the quantized version of) the holonomies of the AB-connection and correspond to the
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configuration variables

h` = Pe
∫
`

AAB (4.2)

To go to the conjugate representation, we expand in unitary irreducible representa-
tions of S U(2) using the Peter-Weyl theorem, see also Appendix A.

The wavefunctions become functions of the spins, and we write them as

φΓ( j`) =
⊗
`

D j` (h`)

=
∑
{m}

⊗
`

D j`
m`s(`) m`t(`) (h`)

=
∑
{m}

⊗
`

〈 j`,m`s(`)|D j` (h`)| j`,m`t(`)〉 (4.3)

These rewritings are to aid comparison with equation (4.67).
The transformation property of the holonomy under a gauge transformation is equa-

tion (2.79), where now the group is S U(2)

h` → h`t h` h−1
`s

(4.4)

To get to spin–networks, we gauge average at the nodes. That is, we insert S U(2) group
elements h`n on each half link and we integrate over S U(2).

The integrations over S U(2) will give rise to four–valent S U(2) intertwiners, invari-
ants recoupling between the four representations on the four half links `n meeting at a
node n, see also Appendix A.

Spin networks provide an orthonormal basis of HΓ, realised as L(S U(2)L/S U(2)N),
where the division by S U(2)N implies the gauge averaging at the nodes.

When the graph Γ is understood as an abstract combinatorial object23, HΓ corre-
sponds to the kinematical space of LQG at the level of a fixed graph (the states are
in the kernel of the gauss and diffeomorphism constraints of Section 2.4).

The boundary states we will present and use correspond to a double superposition
of spin–network states.

Before explaining this point, we recall the discussion in Section 2.4: spinfoams are
understood as projectors on the physical Hilbert space, thus they impose the Gauss
constraint. We do not need to consider a state in the gauge–invariant space HΓ, since the
gauge–invariance is automatically imposed by the S L(2,C) integrations in the spinfoam
amplitude.24

Spin–network states defined on a four–valent graph behave like plane waves for the
intrinsic geometry of a spacelike tetrahedral triangulation, in the following sense: they

23We are taking the point of view of [104]. See also [105].
24This can be checked easily from the invariance of the Haar measure, from the contracted form of the

amplitude, equation (4.99)
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are sharply peaked in five of the six classical variables describing the geometry of each
tetrahedron and are completely spread in the remaining classical variable. This follows
from the fact that spin–networks form a complete orthonormal basis of the Hilbert space
at the level of a fixed graph, that is, they diagonalize a complete set of commuting
observables, the area and volume operators.

They are thus labelled by an area eigenvalue at each link (a spin j`), which labels a
unitary irreducible S U(2) represendation and corresponds to the classical areas of the
corresponding triangle, and one volume eigenvalue at each node (a spin vn), which
labels a basis element of the intertwiner space and corresponds to the volume of the
tetrahedron.

Thus, at each node, we have five eigenvalues, four areas corresponding to the four
areas of the triangles of a tetrahedron, and the volume eigenvalue corresponding to the
volume of the tetrahedron. Attempting to calculate any other observable corresponding
to an independent geometrical quantity, for instance a dihedral angle, we find that it is
completely spread (infinite uncertainty).

The first step will then be to superpose the states φΓ( j`) of equation (4.3), and define
states that are peaked, with some quantum uncertainty, on all six classical variables.
Imposing gauge-invariance at each node results in the Livine–Speziale states, an over-
complete basis of intrinsic geometry coherent states in HΓ.

The second step will be to superpose these states, in order to create states that are
peaked also on the extrinsic curvature, encoded in the Ashtekar–Barbero connection.
The (gauge–invariant version of the) resulting states will be the semi–classical limit of
another overcomplete basis of HΓ, Thiemann’s heat kernel states.

4.2 Intrinsic coherent states

In this section we introduce intrinsic coherent states. We start by giving some relevant
tools, fixing conventions and explain the interplay between S O(3), S U(2), S 3 and S 2

when building coherent states.

4.2.1 Preparation: rotations, the three-sphere and the two–sphere

A useful parametrization for S U(2), is the Euler angle parametrization. This parametriza-
tion has a clear geometric interpretation and allows one to translate easily between
the rotation group S O(3) and its double cover S U(2). We will be defining semiclassi-
cal “wave–packets of quantum directions”, S U(2) coherent states, that are the building
blocks of the full boundary states describing wave–packets of embedded 3-geometries.
These semiclassical directions correspond to points in S 2, and we will be understanding
S U(2) as the three-sphere S 3, which is locally isomorphic to S 2 × S 1. Let us start from
S O(3).

Rotations, S O(3) and Wigner’s matrices The Euler angle parametrization exploits the
fact that any rotation in three dimensions can be decomposed as an initial and final ro-
tation about an axis by some angles α and γ, with one intermediate rotation about any
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other axis, by some angle β. This gives a simple geometrical meaning to the parametriza-
tion. Throughout the manuscript, we use the active interpretation, that is to say, the
coordinate system is taken fixed (imagine x − y − z Cartesian axes) and the rotations act
on vectors.

S O(3) unitary representations act on the spin representation spaces H j. We saw in
Section 3.2 that the states of the gravitational field in covariant LQG are built from states
in the Vγ j, j representation space of S L(2,C) , which is isomorphic to H j. This is the fact
that will allow us to build a semi–classical state peaked on a simplicial geometry, that
is then naturally combined with a spinfoam amplitude defined on a 2–complex with a
boundary.

The eigenstates of the angular momentum operator in the z direction Jz, provide an
orthonormal basis for H j

H j = span{| jm〉 ,m = − j,− j + 1, . . . , j}

Jz | jm〉 = m | jm〉 (4.5)

J2 | jm〉 = J2
x + J2

y + J2
z | jm〉 = j( j + 1) | jm〉 (4.6)

〈 jm| jn〉 = δmn (4.7)

The dimension of H j can be read off from the first equation above

d j ≡ dim H j = 2 j + 1 (4.8)

The standard Euler angle parametrization considers two rotations along the z axis
with an intermediate rotation along the y or x axis. 25

A rotation around the z–axis, for instance, by an angle γ, is given by adding up many
infinitesimal rotations, each given by the generator Jz. Formally,

lim
N→∞

(1 − iγJz/N)N = e−iγJz (4.9)

Thus, an arbitrary group element h ∈ S O(3) may be written as

h = h(α, β, γ) = e−iαJz e−iβJy e−iγJz (4.10)

The matrix elements of Wigner’s D-matrices (representation matrices for S O(3) and
S U(2)), in this parametrization, read

D j
mn(h(α, β, γ) ≡ 〈 jm| h(α, βγ) | jn〉

= 〈 jm| e−iαJz e−iβJy e−iγJz | jn〉

= e−iαm 〈 jm| e−iβJy | jn〉 e−iγn (4.11)

25We use the z − y − z convention, where the small Wigner-d matrices d j
mn(β) are real. However, the manip-

ulations presented here apply also to the z − x − z convention, when d j
mn(β) have complex entries. This is the

reason we do not write d j
mn(β)† = d j

mn(β)T .
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where we used that Jz | jm〉 = m | jm〉. The matrix 〈 jm| e−iβJy | jn〉 is Wigner’s small-d ma-
trix, and we use the standard notation

d j
mn(β) ≡ 〈 jm| e−iβJy | jn〉 (4.12)

We will not need the explicit expression for d j
mn(β).26

Most of the properties needed in practice can be derived from the geometrical inter-
pretation of the Euler parametrization and the properties of the two groups.

For instance, h(0, β, 0) acting on a 3D vector, implements a rotation by β in the plane
perpendicular to the y-axis. Thus,

h(0, β, 0)h(0,−β, 0) = 1S O(3) (4.13)

from which it follows that

j∑
k=− j

d j
mk(β)d j

kn(−β) = δmn = 1 j (4.14)

where 1 j is the identity on H j. Similarly, since h(0, β, 0) ∈ S U(2), we have that

h(0, β, 0)h(0, β, 0)† = 1S U(2) (4.15)

and thus

d j
km(−β) = d j

km(β)† (4.16)

Integrating over S O(3), amounts to integrating h(α, β, γ) over all values of the Euler
angles α,β,γ, that are in the ranges

α ∈ [0, 2π) β ∈ [0, π] γ ∈ [0, 2π) (4.17)

The (left and right invariant) Haar measure µ(h) of S O(3) in the Euler parametrization
reads

µS O(3)(h) =
1

8π2 dα dβ sin β dγ (4.18)

with the normalization 1
8π2 so that the volume of S O(3) is unit (the Haar measure is

unique up to scaling).

S U(2) and the three-sphere S 3 The group S U(2) is the three-sphere S 3. The two spaces
are diffeomorphic as smooth manifolds and their Lie algebras are isomorphic. One can
anticipate this by writing an S U(2) element h as

h =

(
a −b̄
b ā

)
(4.19)

26The explicit expression for D j
mn(h), analytically extended to GL(2,C), is equation (3.51)
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the condition that det(h) = 1 reads

1 = (Rea)2 + (Ima)2 + (Reb)2 + (Imb)2 (4.20)

which gives a map from S U(2) to a point on the unit three-sphere, realised as the hyper-
surface

x2 + y2 + z2 + w2 = 1 (4.21)

in a 4D Euclidean space with a Cartesian coordinate system.
In what follows, we will construct “semiclassical 3D directions”, corresponding to

points on the two-sphere S 2, by acting with S U(2) group elements on states in H j. The
procedure is explained below. Keep in mind that we have to somehow project S U(2) ∼
S 3 to S 2.

The group S U(2) is parametrized similarly with Euler angles as in the S O(3) case,
with the difference being that the range of γ is doubled

γ ∈ [0, 4π) (4.22)

This is because S U(2) covers S O(3) twice. That is, as S O(3) elements,

h(α, β, γ) = h(α, β, γ + 2π) (4.23)

see (4.11). Thus, seen as S U(2) group elements, in which case they are distinct, they are
both mapped to the same S O(3) element. That is, S O(3) ∼ S U(2)/Z2.

Since there are twice as many group elements, the volume has doubled, and the
normalized Haar measure for S U(2) is half that of S O(3),

µS U(2)(h) =
1
2
µS O(3)(h) (4.24)

The two-sphere S 2 The two-sphere S 2 as a differentiable manifold is described by the
line element

ds2 = dΩ2 = dα2 + sin2 βdβ2 (4.25)

where the polar angles α and β are understood as the azimuth and zenith. The in-
duced Haar measure on the S U(2) proper subgroup spanned by α and β in the Euler
parametrization, which is isomorphic to S 2, coincides with the induced proper area of
this line element

µS 2 (h) =
1

4π
dα dβ sin β (4.26)

where we normalized by the sphere area 4π. The angles α and β take values as in S O(3)
and S U(2).

In order to fix conventions and to aid the geometrical understanding of the construc-
tion of S U(2) coherent states, we take a moment to explicit our conventions, which are
summarized in Figure 4.1.
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b

bb

b

bb bβ

α

~n(α, β)

h(α, β, γ) ⊲ ẑ = ~n(α, β)

Fig. 4.1: Convention for elements of S 2 and relation to Wigner’s matrices. ~n(α, β) is
defined by the action of an element of S O(3) on the z-axis. The first rotation by γ is
around the z-axis, thus, for given α and β, any γ maps to the same ~n(α, β). For this
reason, we may also understand h(α, β, γ) as an S U(2) element.

We embed S 2 as the unit sphere in a flat Euclidean 3D space with Cartesian x, y, z
coordinates. Given a point α, β on the sphere, we map it to a normalized 3D vector

~n(α, β) (4.27)

such that β is the angle of ~n(α, β) with the positive z-axis and α is the angle of the projec-
tion of ~n(α, β) in the xy-plane with the positive x-axis. That is, we define the vector ~n(α, β),
as the one resulting from an S O(3) rotation of the vector ẑ, pointing in the positive z-axis
direction.

Notice that in the Euler angle parametrization, the first rotation is around the z-axis.
Thus, ~n(α, β) is defined by the action of an S O(3) rotation h(α, β, γ), as

h(α, β, γ) . ẑ = ~n(α, β) (4.28)

for any γ. Any fixed choice for γ defines a projection from S 3 to S 2. We make a choice
for γ in the next section. We may then freely understand h(α, β, γ) as an S U(2) element,
with the same geometrical meaning.

4.2.2 Semiclassical directions: S U(2) coherent states

With conventions as above, given a vector ~n(α, β) ∈ S 2, we define an embedding to S U(2)

S 2 3 ~n(α, β)→ n(α, β,−α) ∈ S U(2) (4.29)
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Notice that in n(α, β,−α) we have fixed the angle γ to −α. This choice is the standard
convention introduced by Peremolov [164]. Understanding S U(2) as S 3, the Hopf fibra-
tion tells us that S 3 can in turn be understood as S 2 with a circle S 1 as a fiber on each
point. We take each fiber to be parametrized by γ, and the choice γ = −α amounts to
choosing a single point from each circle (in other words, a choice of section of the Hopf
fibration). This projects S U(2) ∼ S 2 × S 1 → S 2.

S U(2) coherent states (Peremolov coherent states [164]) are defined as

| j~n(α, β)〉 ≡ ~n(α, β) . | jm〉
≡ n(α, β,−α) | jm〉

≡
∑

m

D j
m j(α, β,−α) | j,m〉 (4.30)

The bra is defined by27

〈 j~n(α, β)| ≡
∑

m

D j
m j(α, β,−α) 〈 jm|

=
∑

m

D j †
jm(α, β,−α) 〈 jm| (4.31)

The states | j~n(α, β)〉 are normalized so that

〈 j~n(α, β)| j~n(α, β)〉 =
∑
mm′

D j
m j(α, β,−α)D j

m′ j(α, β,−α) 〈 jm| jm′〉

= h†(α, β,−α) h(α, β,−α) = 1 (4.32)

where we used equation (4.7), 〈 jm| jm′〉 = δm′m, and the fact that h(α, β, γ) is in S U(2). As
a display of the use of the notation in calculations, we may also show this as

1 = 〈 j j| j j〉 = 〈 j j|n† n| j j〉 = 〈 j~n| j~n〉 (4.33)

Intuitively, | j, j〉 is a “semiclassical normalized quantum vector” pointing in the z-direction.

Let us see this explicitly. The uncertainty of an operator on some state ψ is defined
by

∆ψO ≡

√
〈O2〉ψ − 〈O〉

2
ψ (4.34)

A standard result from operator theory reads that for any two Hermitian operators O1
and O2, we have

∆ψO1 ∆ψO2 ≥
1
2
〈[O1,O2]〉 (4.35)

27In calculations this is often a source of confusion and is good to keep in mind : in (4.30), the D j
m j(α, β, γ)

are coefficients in a sum over states , not a matrix, and conjugation simply gives their complex conjugate in

(4.31). That is, we get D j
m j(α, β, γ) and not D j†

m j(α, β, γ).
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and which we understand in quantum mechanics as the uncertainty principle.
It is straightforward to check for instance that

∆| jm〉Jz ≡

√
〈J2

z 〉| jm〉 − 〈Jz〉
2
| jm〉

=

√
〈 jm|J2

z | jm〉 − 〈 jm|Jz| jm〉2

=
√

m2 − m2 = 0 (4.36)

that is, all states | jm〉 have zero uncertainty in the z-direction.
This is the sense in which | jm〉 are peaked on a point in S 2. In our conventions, | jm〉 is

peaked on ~n(0, 0) ≡ ẑ.
The uncertainty principle for Jx and Jy gives

∆| jm〉Jx ∆| jm〉Jy ≥
1
2
〈[Jx, Jy]〉

| jm〉

=
1
2
〈Jz〉| jm〉 =

m
2

(4.37)

By symmetry, since | jm〉 is an eigenvector of Jz, the uncertainties ∆| jm〉Jx and ∆| jm〉Jx can-
not depend on m and must be equal. Thus, since the left hand side does not depend on
m, equality in (4.37) may only be achieved when m takes its largest value, that is, when
m = j. From this we guess that

∆| jm〉Jx = ∆| jm〉Jy =

√
j
2

(4.38)

the veracity of which can be easily checked using equation (4.6).
This is the sense in which | j j〉 is the “most classical” quantum state peaked on ~n(0, 0); the

uncertainty principle is saturated on | j j〉.
Then, we see that

∆| jm〉Jx

〈J2〉| jm〉
=

√
j/2√

jd j/2
=

1
d j

(4.39)

where we used (4.6). Thus, as we move to larger quantum numbers, the uncertainty
vanishes and the state becomes completely classical i.e. it behaves as the classical vector
n(0, 0).

In conclusion, | j j〉 behaves as a geometrical wavepacket carrying the information of a “semi-
classical direction”, corresponding to n(0, 0).

These states are the building blocks from which we can construct wave–packets of
geometry. Specifically, we will construct semiclassical states describing a wavepacket of
geometry, peaked on a discrete 3D Euclidean spacelike geometry, which is embedded in
a Lorentzian spacetime.

The way the embedding will be achieved, although we have S U(2) and not S L(2,C)
states, is through the interpretation of the S U(2) group elements as the holonomies of
the Ashtekar-Barbero connection, which knows the extrinsic curvature K

hAB ∼ e
∫
Υ

Γ+γK (4.40)
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where Γ is the spin connection, Υ a curve and γ here is the Immirzi parameter, not to be
confused with the Euler angle. See Section 2.3.1 for the definition and intuition of the
holonomy.

The construction of a state peaked on an arbitrary element of S 2 follows easily. The
state, | j~n(α, β)〉 is peaked in the direction n(α, β). The angular momentum operator J~n
in the ~n direction corresponds to a rotation of Jz by n ∈ S O(3). At the level of the Lie
algebra, this operation corresponds to the conjugate action on Jz by n

J~n | j~n〉 = nJzn† | j~n〉 = nJzn†n | j j〉 = nJz | j j〉 = n j | j j〉 = j | j~n〉 (4.41)

thus, | j~n〉 is an eigenstate of J~n.
The semiclassical properties for | j j〉 carry through to | j~n〉, which we understand as a

wavepacket corresponding to a classical direction ~n in 3D space.
When doing calculations, properties of these states can be derived from their ge-

ometrical meaning. For instance, since | j j〉 corresponds to the z-axis, which is the
vector n(0, 0), it must be that n(0, π) | j j〉 corresponds to the negative z-axis and thus to
− | j j〉. In turn, we may deduce from this the property of the small-d Wigner matrix that
d j

m j(π) = −δm j et cetera.
Lastly, the coherent states | j~n(α, β)〉, provide a resolution of the identity in H j. This

is easy to show by exploiting the relation of S 2 with S U(2) and S O(3).
We notice that we may replace −α with an arbitrary γ in

D j
m j(α, β,−α)D j

m′ j(α, β,−α) = D j
jm(α,−β,−α)D j

m′ j(α, β,−α)

= D j
jm(α,−β,−γ)D j

m′ j(γ, β,−α)
(4.42)

see (4.11). We may promote the integration over S 2 to an integration over S O(3) (or
S U(2)) and use the orthogonality relation for Wigner’s-D matrices∫

S O(3)
µ(h) D j

kl(h
†)D j′

mn(h) =
δkn δlm δ j j′

d j
(4.43)

Then, it is straightforward to see that∫
S 2

µ(~n) | j~n〉 〈 j~n| =
1

2π

∫ 2π

0
dγ

∫
S 2

µS 2 (~n) | j~n〉 〈 j~n|

=
1 j

2π d j
(4.44)

Thus, the states | j~n(α, β)〉 resolve the identity, for an integration measure 2π d j µ(~n).
That is, they provide an over–complete basis of semiclassical states for H j.
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S U(2) coherent states with the H map and relation to CP1 Here we prove a technical
result, providing the Euler angle parametrization for the S U(2) coherent states defined
through spinors, via the H-map of Section 3.2.3. This parametrization provides provides
a strict equality between the two definitions and allows to combine results in the litera-
ture. These technicalities are important to nail down when constructing wave–packets
of geometry starting from a triangulated hypersurface, for a concrete application of ge-
ometry transition.

We will see in Section 6.1.2 that in a physical application we are first given a trian-
gulated surface. Then, we construct the normals to the faces explicitly as vectors ~n(α, β),
by fixing a gauge (triad) in a tetrahedron of the triangulation. From this information,
we will want to construct a wavepacket peaked on the distributional geometry of the
triangulation, using coherent states. Thus, we need to know how to go unambiguously
from a classical vector ~n(α, β) to both definitions of the coherent states.

The reader may skip this section since the intuition developed previously suffices
for what follows.

The coherent states | j~n〉 may be defined also with respect to the H-map, equation
(3.39)

~n . | j j〉 = | j~n〉 ≡
∑

m

D j
m j

(
H(ñ)

)
| j j〉 (4.45)

where now ñ in H(ñ) is a normalized spinor.
The coherent states | j~n〉 defined this way, satisfy all the properties of the previous

section. The calculations are essentially identical, using the properties for the H–map of
Section 3.2.3 to perform matrix multiplication. The coherent state | j~n〉 is peaked on the
3D Euclidean vector

~n = 〈ñ|~σ|ñ〉 (4.46)

where ~σ are the Pauli matrices. This map from normalized spinors to the Riemann
sphere is explained in Appendix D, where conventions are also set. Notice that this
map is not invertible, there is a U(1) phase ambiguity in defining n for a given ~n

We would like to know how to unambiguously define a normalized spinor

n(α, β) (4.47)

starting from an element of S 2, ~n(α, β), so that the geometrical interpretation of the coher-
ent state | j~n(α, β)〉 of equation (4.45), agrees with the conventions for the azimuth and
zenith as in Figure 4.1. Second, we would like to have a strict equality between the two
definitions of the coherent states, which requires to fix the face ambiguity in equation
(4.46).

Let us start by assuming we are given a vector

~n(α, β) (4.48)

We define a family of spinors n(α, β, γ) by

|n(α, β, γ)〉 = e
i
2 γ K(−1/ζ̄) |+〉 (4.49)
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where the S U(2) matrix K(ζ) reads

K(ζ) =
1√

1 + |ζ |2

(
1 ζ
−ζ̄ 1

)
(4.50)

and

ζ = cot
β

2
eiα (4.51)

The phase e
i
2 γ in 4.49, parametrizes the U(1) ambiguity for some γ ∈ (0, 4π) and |+〉 =

(1 0)T .
We will see that defined this way γ will be the equivalent of the corresponding Euler

angle. We show in Appendix D, that

〈n(α, β, γ)|~σ|n(α, β, γ)〉 =

cosα sin β
sinα sin β

cos β

 = ~n(α, β) (4.52)

That is, the geometrical interpretation is exactly as in Figure 4.1. The reason we need
the complex conjugate is because the y-axis is inverted in the mapping to the Riemann
sphere as defined by (4.46), see Appendix D.

We now want to fix the face ambiguity and show that the two definitions are equiv-
alent. We notice that

H(z) |+〉 = |z〉 (4.53)

for any spinor z (the notation is confusing but common, both z and |z〉 denote a spinor).
Thus,

|n(α, β, γ)〉 = H
(
n(α, β, γ)

)
|+〉

= H
(
e
−i
2 γ n(α, β, 0)

)
|+〉 (4.54)

We notice that

D j
jm(h(α, β, γ)) ≡ D j

jm(α, β, γ)

= D j
jm(α, β, 0)eiγ j (4.55)

Similarly, using the definition for the analytic continuation of D j
jm to GL(2,C), equation

(3.51), it is easy to check that

D j
jm

(
H(n(α, β, 0)e

i
2 γ

)
= D j

jm

(
H(n(α, β, 0))

)
eiγ j (4.56)

Since n(0, 0, γ) ≡ ẑ, we have that H(n(α, β, 0)) . ẑ = ~n(α, β). The same applies for h(α, β, 0).
From the definition (4.11) of the Euler parametrization and the fact that D j

jm

(
H(n(α, β, 0))

)
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is defined through an analytic continuation, we conclude that as abstract elements of
S U(2), we have

H(n(α, β, 0)) = h(α, β, 0) = eiαJz eiβJy eiγJz (4.57)

Thus,

D j
jm
(
α, β, γ

)
= D j

jm

(
H( n(α, β, γ) )

)
(4.58)

This provides an Euler angle parametrization for the space of normalized spinors. For
any choice of section (fixing γ) we get a correspondance between S 2 and the Riemann
sphere CP1, such that their x − y − z components in the vector representation are strictly
equal and given by the usual spherical coordinates α and β.

Fixing γ = −α gives us an equivalence with the coherent states as defined in the
previous section.

To summarize, as can be verified from the above, given a point ~n(α, β) in S 2 the
correspondance between the Euler angle parametrization of Wigner’s D-matrices and
the H map, is given by the normalized spinor

n(α, β, γ) =

(
cos β

2 − sin β
2 eiα

sin β
2 e−iα cos β

2

)
e

i
2 γ (4.59)

and

~n . | j j〉 = | j~n〉 ≡
∑

m

D j
m j

(
H( n(α, β,−α) )

)
| j j〉 =

∑
m

D j
m j(α, β, α)) | j j〉 (4.60)

4.2.3 Semiclassical tetrahedra

In the previous section we have introduced coherent states describing a “semiclassical
direction”, i.e. the quantum equivalent of a normalized three–dimensional vector.

By itself, such a state has no geometrical meaning per se, because a single normalized
vector ~n only holds information that is purely gauge. To give any meaning to ~n, we need
to fix a convention as in Figure 4.1, which is the equivalent of fixing the tetrad.

However, we may combine such states, and construct geometrical shapes, polyhe-
dra, see [16] for a generic treatment.

To construct the semiclassical equivalent of a tetrahedron n?, we associate a state
| j`~n`〉 to each of the four triangles `? of n?, such that the closure condition, equation
(3.92), is satisfied

0 =
∑
`∈n

j` ~n` (4.61)

That is, we associate to each tetrahedron n? the tensor product⊗
`∈n

| j`, k`〉 (4.62)
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which is a state in the tensor product of the corresponding S U(2) spin representation
spaces, H j1 ⊗ H j2 ⊗ H j3 ⊗ H j4 .

To take into account the orientation of the graph Γ, we introduce the notation `→• n
and `←•n, signifying that the half-link ` has the node n as target and source respectively.

We define for each node the state

vn( j`;~k`n) ≡
⊗
`←•n

〈 j`, k`n|
⊗
`→•n

| j`, k`n〉 (4.63)

vn( j`;~k`n) ∈
⊗
`←•n

H j` ?
⊗
`→•n

H j` (4.64)

Similarly to the definition of spin network states, we define functions ψ(h`, j`; k`n), de-
pending on group elements living in L copies of S U(2) ,

ψ(h`, j`; k`n) =
⊗
`

D j` (h`) B
⊗
n

vn( j`; k`n) (4.65)

We can rearrange this expression as a product over links

ψΓ(h`, j`; k`n) =
⊗
`

D j` (h`) B
⊗
n

⊗
`←•n

〈 j`,~k`n|
⊗
`→•n

| j`,~k`n〉


=

⊗
`

D j` (h`) B | j`, k`t(`)〉 ⊗ 〈 j`, k`s(`)| (4.66)

Or more simply,

ψΓ(h`, j`; k`n) =
⊗
`

〈 j`, k`s(`)|D j` (h`)| j`, k`t(`)〉 (4.67)

These states are closely related to the Livine-Speziale states [165] or intrinsic coherent
states [104].

The states (4.67) provide an overcomplete basis28 of the gauge–variant Hilbert space
L(S U(2)L) of square integrable functions on L copies of S U(2).

To get to the Livine-Speziale states we need to gauge average at each node by inte-
grating over S U(2). Since we will be considering them in contraction with a spinfoam
amplitude it is redundant to gauge–average, due to the use of the Haar measure over
S L(2,C) in the definition of the vertex amplitude. The gauge invariance over its sub-
group S U(2) is imposed automatically.

We may write an explicit expression for these states in terms of the definition of
equation (4.30) or (4.45) for the Peremolov coherent states

ψΓ(h`, j`; k`n) =
∑
msmt

D j`
ms j`

(k†
`s(`)) D j`

mt j`
(k`t(`)) D j`

msmt (h`) (4.68)

28It suffices to use the resolution of the identity for the Peremolov states to show this.
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4.3 Wavepackets of an embedded 3-geometry

We now have at our disposal geometrical wave–packets peaked on 3D tetrahedral tri-
angulations.

We want to think of them as plane–waves describing a quantum geometry with a
sense of embedding in a Lorentzian spacetime. Since they are peaked on the intrinsic
geometry, we turn them into plane waves, completely spread on the extrinsic geometry,
by multiplying with∏

`

eiζ` j`

ψ(h`, j`; k`n) (4.69)

where ζ` is a boost angle, to be understood as the discrete equivalent of the extrinsic
curvature.

The defining expression we use for the boundary states is in the group representation
and we employ the following notation

Ψt
Γ(h`; η`, ζ`, k`n) ≡ 〈h` |Ψt(η`, ζ`, k`n)〉 (4.70)

with one S U(2) group element h` per link. We have

Ψt
Γ(h`; η`, ζ`, k`n) =

∑
{ j`}

∏
`

d j`e
−( j`−ω (̀η` ,t) )2t+iζ` j` ψ(h`, j`; k`n) (4.71)

The Gaussian weight in the spins is peaked on

ω`(η`, t) =
η` − t

2t
(4.72)

This quantity will be identified with the areas resulting from the discretization scheme.
These states were first introduced heuristically in [166] and have been used exten-

sively in the literature to study the graviton propagator [42–47, 166]. They have since
been understood to be the semi–classical limit of Thiemann’s heat–kernel states.

4.3.1 Coherent spin–network states

The boundary states we consider in this manuscript are Thiemann’s heat kernel states
[167–171], in the twisted-geometry parametrization introduced in [172, 173] by Freidel
and Speziale. These states, also known as extrinsic coherent states or coherent spin-
networks, were systematically introduced as “wavepackets of an embedded spacelike
3–geometry” in [174].

They are labelled by points in gauge invariant classical phase space S U(2)L/S U(2)N ,
corresponding to the Hilbert space HΓ associated to the boundary graph Γ. We briefly
review the main construction.

The states are defined by

Ψt
Γ(h`,H`) =

∫
S U(2)

dh`n
∏
`

Kt
`(h`, h`s(`) H` h−1

`t(`)), (4.73)
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where Kt(h,H) is the S U(2) heat kernel with a complexified S U(2) element as second
argument. Complexifying S U(2) yields S L(2,C) .

S L(2,C) is isomorphic to S U(2)×su(2) ' T ∗S U(2) which corresponds to the (linkwise,
non gauge invariant) classical phase 29 space associated to the Hilbert space on a graph.

Since S U(2)C ' S L(2,C), H ∈ S L(2,C). The Wigner D-matrices of the S U(2) heat
kernel are the analytical extension to GL(2,C) of equation (3.51).

The boundary states Ψt
Γ
(h`; H`) = |Ψt

Γ
(H`)〉 depend on group elements h` living on

the links ` of the boundary graph, that serve as “handles” for a contraction with a spin-
foam amplitude defined on a two-complex with boundary WC(h`) = 〈WC|. Contracting a
spinfoam amplitude with a boundary states means integrating out the h`, resulting in a
transition amplitude 〈WC|Ψt

Γ
(H`)〉, see next section.

The boundary states |Ψt
Γ
(H`)〉 also depend on data H`. As mentioned above, these

label points in the classical phase space, and are the analogue of position and momen-
tum data x0 and p0 of coherent states for a free particle, peaked on a position x0 and a
momentum p0. The situation here is analogous, with the spins playing the role of the
momentum p.

Finally, |Ψt
Γ
(H`)〉 are labelled by a real number t, the semiclassicality parameter. We

have one family of coherent states for each value of t. The semiclassicality parameter
controls the peakedness properties of the coherent states. It is a small number, and in
physical applications, it is to be taken proportional to a positive power of ~, divided by
a characteristic physical scale of the problem, such that t is dimensionless.

Keep in mind that no dimensionful quantities appear in the boundary state (nor the
spinfoam amplitude).

Concretely, Kt(h,H) is given in the spin-representation by

Kt(h,H) =
∑

j

d je− j( j+1)t TrD j(hH−1). (4.74)

The states Ψt
Γ
(H`) provide a resolution of the identity on the kinematical Hilbert

space HΓ. Suppressing the link subscript momentarily, we write the resolution of the
identity as

δ(hh′†)Γ =

∫
S L(2,C)

dH α(H)Kt(h,H)Kt(h′,H), (4.75)

where δ(h, h′) is the delta distribution on S U(2)L/S U(2)N , see for instance [174].
The states we consider are the gauge–variant version

Ψt
Γ(h`,H`) =

∏
`

Kt
`(h`,H`

−1), (4.76)

The measure function α for which the resolution of identity holds is explicitly known
[167–170, 174].

29We recall that the configuration variables for Loop Quantum gravity are the holonomies of the Ashtekar-
Barbero connection, living in S U(2). The fluxes are the conjugate variables, co-triads smeared along a two-
surface, and which we can think of as smeared “area–elements” for S U(2) spinors, naturally living in the
co-tangent bundle.
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As was first done in [174], the S L(2,C) element H` can be written in the twisted geometry
parametrization (η`, ζ`, k`n) of the classical phase space corresponding to HΓ, introduced
in [172, 173]. In this parametrization, H` takes the form

H` = k`s(`) eiγξ`
σ3
2 eη`

σ3
2 k−1

`t(`), (4.77)

where η` is a positive real number, ξ` ∈ [0, 4π) and k`s(`), k`t(`) are two unrelated S U(2)
elements corresponding to two unit vectors.

The twisted geometry parametrization is tailor–made to correspond to the geometri-
cal meaning of the phase-space variables. The two unit vectors, correspond to normals
to the triangles of the tetrahedra sharing the face dual to the link `. The area information
is to be encoded in the variable η`. The area and normals are interpreted as the smeared
densitized triads. The angle ξ` corresponds to a discretization of the Ashtekar-Barbero
holonomy, and is split in two parts α and ζ. The former corresponds to the discrete
equivalent of the spin-connection and the latter to the extrinsic curvature. That is, we
have the correspondence

ξ = α + γζ

AAB = ω + γK (4.78)

The phase α is thus pure gauge and is absorbed in the boundary state definition, see [67]
for an example. Henceforth, we neglect the phase α.

Replacing H` by its twisted geometry parametrization in (4.76) allows us to construct
coherent states with a prescribed discretized 3D geometry. The boundary data (η`, ζ`, k`n)
encode the discretized intrinsic and extrinsic 3D geometry.

The semiclassical limit of the states (4.77) (for large η`), reads30

Ψt
Γ(h`; η`, ζ`, k`n) =

∑
{ j`}

∏
`

d j`e
−( j`−ω`(η` ,t))2t + iζ` j` ψΓ( j`, k`n; h`), (4.79)

This was first shown in [174]. The Gaussian weight factor in the spins is peaked on the
value

ω (̀η`, t) =
η` − t

2t
(4.80)

and it will later be identified with the areas resulting from the discretization of the
boundary surface.

The states ψΓ( j`, k`n; h`) are the intrinsic (non gauge-invariant) states of the previous
section.

Before closing this section we note that the resolution of identity does not hold any-
more for the states (4.79), since they were obtained from (4.76) by taking an approxima-
tion. The next section is devoted to finding an approximation of the measure function α
in the semiclassical limit.

30Use the heighest weight approximation D j
nm(eησ3/2) ≈ δ j

nδ
j
meη j +O(e−η) in equation (4.74) to get this expres-

sion.
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4.3.2 The Measure Function α and the Semi-Classicality Condition

We are looking to find an approximate expression for the measure, expressed in terms
of the classical data (η`, ζ`, k`n). That is, an approximation of α̃(η`, ζ`, k`n) in

δ(h` h′†
`

) =

∫
dη` dζ` dk`n α̃(η`, ζ`, k`n) Ψt

Γ(η`, ζ`, k`n; h`) Ψt
Γ
(η`, ζ`, k`n; h′

`
) (4.81)

Making the ansatz α̃ = α̃(η`), to be justified à posteriori, we can readily integrate over
ζ` ∫ 4π

0
dζ` eiζ`( j`− j′`) = 4π δ j` j′

`
. (4.82)

Using (4.82) we are left with a single sum over the spins and the resolution of the
identity reads

δ(h`h
′†

`
) =

∫ ∞

0
dη` α̃(η`)

∑
{ j`}

∏
`

d2
j`e
−2( j`−ω (̀η` ,t))2t ×

×

∫
S 2

dk`n ψΓ( j`, k`n; h`)ψΓ( j`, k`n; h′
`
) (4.83)

The integration over the gauge data k`n is performed using the resolution of the
identity for the Peremolov coherent states,∫

S 2
dk`n ψΓ( j`, k`n; h`)ψΓ( j`, k`n; h′

`
) =

∏
`

1
d2

j`

Tr j(h`h
′†

`
). (4.84)

Employing the Peter-Weyl theorem to expand the S U(2) delta function δ(h` h′†
`

) we
get ∑

{ j`}

∏
`

d j`Tr j(h`h
′†

`
) =

∑
{ j`}

∏
`

(∫ ∞

0
dη` α̃(η`)e−2( j`−ω (̀η` ,t) )2t

)
Tr j(h`h

′†

`
) (4.85)

which translates to a condition for α̃∫ ∞

0
dη` α̃(η`)e−2( j`−ω (̀η` ,t) )2t = d j` . (4.86)

This equation is solved for large spins by

α̃(η`) =
η`

√
2π t3/2

. (4.87)

This is an approximate expression for the measure providing the resolution of the
identity. An exact expression in the twisted geometry parametrization has recently be-
come available and will appear in a common work by the author and Fabio d’Ambrosio
[91].
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There is however an interesting lesson to be drawn from this approximate form.
Thinking of α̃(η`) in equation (4.87) as providing an “approximate” resolution of the
identity, we can read-off a semiclassicality condition for the semi-classicality parameter
t and the area data ω.

To see this, we perform the integration (4.86) with the α̃ as in (4.87). Dropping the `
subscript momentarily, we have∫ ∞

0
dη α̃(η)e−2( j−ω(η,t))2t =

d j

2

1 + erf
√ t

2
d j

 +
e−

d2
j t

2

√
2πt

. (4.88)

In the limit where the product d j
√

t is large (an assumption that is justified due to
the Gaussian weight factors) we can neglect the exponential term and the error function

erf[
√

t
2 d j] ≈ 1, yielding the desired result. Assuming d j

√
t to be large, we get

j
√

t � 1 (4.89)

Since the spins are peaked on the area data ω, we have

ω
√

t � 1 (4.90)

This is the semiclassicality condition. We will understand its meaning in the following
section, when it will reappear in the context of the asymptotic analysis of the transition
amplitudes. We will see that it imposes that the fluctuations of the spins are such that
when interpreted as areas, we always have a simplicial triangulation. That is, the quan-
tum fluctuations are restricted such that the spins along with the normals k`n satisfy the
closure condition, which guarantees the existence of a geometrical tetrahedron with the
spins as areas and the face normals to be k`n.

This is consistent with the intuitive picture of a wavepacket of an embedded 3-geom-
etry, constructed from a superposition of plane-waves describing the intrinsic spacelike
3-geometry: imposing the semiclassicality condition is equivalent to demanding that
each intrinsic coherent state ψΓ in the superposition is peaked on a classical triangula-
tion, a three-dimensional simplicial manifold.

4.4 Gravitational Tunneling from covariant Loop Quantum Gravity

We emphasize that the spinfoam amplitude, defined by the EPRL ansatz of equation
(2.107), takes in as “data” only combinatorics of the 2-complex C. In other words, only
the topological information. In the limit of large-spins, we recover a notion of simpli-
cial geometry, which we understand as the result of having imposed at the quantum
level the simplicity constraint, reducing a quantization of a topological BF-theory to a
quantization of discrete General Relativity.

However, spins are dimensionless. Their interpretation as areas, comes from the fun-
damental result of Loop Quantum Gravity, shown by Rovelli and Smolin in [150], that
the area opearator has the discrete spectrum

A j = 8πG ~γ
√

j( j + 1) (4.91)
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This is a result regarding the kinematics, that is, the boundary states. The results from
the asymptotic analysis of the EPRL model presented in the previous chapter are at the
level of fixed spins and regard the so-called partial amplitude, which has no physical
interpretation.

To attribute an interpretation as areas to the spins, one has to perform the spin-sum.
Integrating out the spins, we will be left with the value on which they were peaked,
the ω data. It is these that will then be identified with physical areas, through equation
(4.91).

This is the procedure followed in the graviton propagator calculations. There is
an important difference in our case: we are not interested in a perturbative calculation.
Thus, we expect the physical transition amplitudes to vanish in the limit ~. In particular,
we expect them to decay exponentially with the large parameter λ, the uniform large
scaling of the spins.

We will show in this section that a class of physical transitions amplitudes (with no
interior faces) decay exponentially in the semi-classical limit ~ → 0, in the mismatch
between the extrinsic geometry of the boundary and that of the geometrical simplicial
complex preferred by the dynamics.

4.4.1 Contraction of boundary state with spinfoam amplitude

We consider a 2-complex C (dual to a topological simplicial manifold) with a boundary
∂C. The boundary ∂C of the 2-complex is a four-valent graph Γ. To get a transition
amplitude we contract a spinfoam amplitude with a coherent spin network boundary state
of equation (4.79), built on the graph Γ ≡ ∂C

W(ω`, ζ`,~k`n, t) ≡ 〈WC|Ψt
Γ(ω`, ζ`,~k`n, t)〉 (4.92)

The contraction is performed as follows. We mentioned at the end of Section 2.3.2
that the S U(2) elements living on the fiducial boundary around each vertex will be used
to contract with a boundary state when a boundary is introduced.

The definition of the EPRL amplitudes when a boundary is present, comes down to
a supplementary definition of the face holonomy in terms of S U(2) elements, equation
(2.105), for a face that includes a link ` in its boundary. That is, for faces that are not
interior, bounded only by edges e. Recall equation (2.105)

h f ≡
∏
v f

hv f (4.93)

When the face f has a boundary link ` (there can only be at most one boundary link in
faces of 2-complexes dual to simplicial triangulations), we define

h f ≡ h`
∏
v f

hv f (4.94)
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where no S U(2) element is assigned at the nodes attached to `.
No integration is performed over the boundary S U(2) elements h`. With the above

definition, the EPRL ansatz of equation (2.107) remains almost the same, with the dif-
ference that the amplitude now depends on h`

WC(h`) =
∑
{ j f }

µ( j f )
∫

S L(2,C)
µ(gve)

∏
f

A f (gve, j f , h`) (4.95)

where a face amplitude A f introduces explicit dependence on an h` if the face f is not
interior.

Similarly, the boundary state Ψt
Γ
(h`; η`, ζ`, k`n) in equation (4.79) also has S U(2) ele-

ments h` living on each boundary link. The contraction consists of integrating out h`

W(ω`, ζ`,~k`n, t) ≡ 〈WC|Ψt
Γ(ω`, ζ`,~k`n, t)〉

≡

∫ (∏
dh`

)
WC(h`) Ψt

Γ(h`;ω`, ζ`,~k`n, t) (4.96)

The S U(2) integrations are straightforward to carry out using the orthogonality re-
lation for the matrix elements of Wigner’s D-matrices∫

S U(2)
dh D j

kl(h
†)D j′

mn(h) =
δkn δlm δ j j′

d j
(4.97)

and the properties of the Haar measure.
In terms of the spinor representation, after the contraction, equation (3.66) for the

F f (g, z) function when the face f is not interior becomes

F f ({g f }, {z f };~k`t ,
~k`s ) = log

〈k`s |Zvses f 〉
2 〈Zvtet f |k`t 〉

2

〈Zve f |Zve f 〉 〈Zve′ f |Zve′ f 〉
+ iγ log

〈Zve′ f |Zve′ f 〉

〈Zve f |Zve f 〉

+
∑
v∈ f

log
〈Zve f |Zve′ f 〉

2

〈Zve f |Zve f 〉 〈Zve′ f |Zve′ f 〉
+ iγ log

〈Zve′ f |Zve′ f 〉

〈Zve f |Zve f 〉

(4.98)

The second line is the same definition as in equation (3.66), where we changed the suma-
tion from edges e in the boundary of f , to a summation over vertices v in the boundary
of f . The first line takes into account that there is a boundary present. In particular, in
each boundary face there is a vertex vs attached to an edge es, that is in turn attached to
the node ns which is the source of the link `. We remind that `s is the half–link attached
to ns. The notation is similar for the target node nt of `. The correspondance beetween
the normalized vector ~k and the normalized spinor k is as in equation (4.59).

In what follows, we will only consider 2-complexes with no interior faces. In this
case, each face f has exactly one link `. The combinatorics of the 2-complex are coded
in the boundary graph, and we may label faces instead with their corresponding link `.
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Putting the above together, the transition amplitude reads

W(ω`, ζ`,~k`n, t) =
∑
{ j`}

µ( j`)

∏
`

e−t`( j`−ω`)2

 ∏
`

ei j`γζ`

×
×

∫
µ(g) µ(z)

∏
`

e j` F`(g,z;~k`n) (4.99)

4.4.2 Heuristic derivation

The idea behind the derivation is simple. Subtleties have to be taken into account and
are discussed in the next section where we give the detailed derivation. These results
will appear in [91].

In this section, we give a heuristic derivation in a simplified setting. We leave the
product over links and link subscripts implicit and use the simplified notation of Section
3.1.

The transition amplitude is of the form

W(ω, ζ,~k, t) =
∑
{ j}

e−t( j−ω)2
ei jζ

∫
µ(g) µ(z) e j F(g,z;~k) (4.100)

where ω, ζ,~k are the classical data from the coherent state, t the semiclassicality param-
eter, and g and z the S L(2,C) and CP1 spinfoam variables.

We saw in Section 3.5.3, that at a critical point corresponding to a simplicial geome-
try, F`(g, z, k`n) becomes the Palatini deficit angle. Ignoring the cosine feature, considered
in the following section, we bring in the Regge deficit angle by

F(g, z,~k)
j→λ j, λ�1
−−−−−−−−→ iγφ( j;~k) (4.101)

see Section 3.5.3. The amplitude now reads

W(ω, ζ,~k, t) ∼
∑
{ j}

e−t( j−ω)2
ei jγ

(
ζ−φ( j;~k)

)
(4.102)

This step is not justified. We have performed asymptotic analysis on g and z, at
fixed spins, and ignored the fact that there is now also the summation over the spins.
Furthermore, we have assumed that for any spin configuration in the spin sum there
corresponds a critical point that has an interpretation as a simplicial geometry, and that
a deficit angle φ( j;~k) can be defined. We will see in the following section that it is not
difficult to handle this properly and indeed it works out.

Remember that we emphasized in Section 2.2.3 a similar thing happening for the
Palatini action. The field equations of General Relativity can be derived from the Pala-
tini action, by first taking the variation over the spin connection ω (the equivalent here
being the group variables g) and recover the Hilbert-Einstein action by replacing the so-
lution of this equation of motion, the Levi-Civita connection ω(e), in the Palatini action.
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The variation over the tetrad e, which is here the equivalent of the spins j, can be
carried out after plugging–in the solution of “half” the equations of motion, which is in
general the wrong procedure, yielding the correct result.

The expression (4.102) is simple. We may be cavalier and neglect the precise depen-
dence of φ( j;~k) on the spins, simply replacing them by their value ω at the peak of the
(highly peaked) gaussian weight. We also treat the spin–sums as integrals:

W(ω, ζ,~k, t) ∼
∫
µ( j) e−t( j−ω)2

ei jγ
(
ζ−φ(ω;~k)

)
(4.103)

This is a just gaussian integral. Performing it yields (up to normalization)

W(ω, ζ,~k, t) ∼ e−(γζ−γφ(ω;~k) )2/4teiωγ(ζ−φ(ω;~k) ) (4.104)

Now, remember that the semiclassicality parameter t is proportional to a positive
power of ~. Thus, we have an exponentially decaying amplitude in the limit ~→ 0.

This is the gist of the result we will be arriving at in the next section. We caution
that there are several details to be added. Before proceeding to the calculation, let us
understand the meaning of this expression. We are neglecting the Immirzi parameter γ
for the rest of this section.

What we have done here is simply to replace the partial amplitude I( j f ) with the
Regge action, with the spins replaced by the area data ω. We are considering spinfoams
with no interior faces, defined on 2-complexes dual to a simplicial triangulation. Then,
each link ` corresponds to a face f , dual to a geometrical triangle at a geometrical critical
point (we are assuming this to be the case here).

That is, bringing back the product over links, the part e−iωφ(ω;~k) , becomes∏
`

e−iω`φ`(ω f ;~k) = exp−i
∑

f

ω fφ f (ω f ;~k) (4.105)

Identifying ω with a dimension–full area by

ω ∼ A/~ (4.106)

gives the exponential of the Regge action

exp−
i
~

∑
f

A fφ f (ω f ) (4.107)

which are the fixed–spin asymptotics of the partial amplitude, the summand for the
spins in the partition function.

The meaning of (4.104) is then transparent. Had we matched the extrinsic data ζ with
φ, the amplitude at the semiclassical limit would be of order unit in ~. This would be the
case in the setting of the gravition propagator, where one would then put insertions of
operators in the path integral, prior to performing the spin-sum, to calculate expectation
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values of components of the quantum gravitational field. For the Lorentzian graviton
propagator of the EPRL model see [42].

However, in a non-perturbative process, there is no reason why ζ would match φ.
If it did, then there would be a notion of an interpolating discrete geometry, naively
solving the equations of discrete General Relativity in the form of the Regge action.

Let us look at the decaying factor

e−(ζ−φ(ω;~k))2/4t (4.108)

The semiclassicality parameter t is to be equal to a characteristic scale of the problem
and be proportional to a positive power of ~.

This scale would in general be the common large scale λ with which we take the
spins to scale. We recall from the previous chapter that asymptotic analysis at fixed-
spins is done by splitting ω f = λδ f with λ � 1. Let us write ω = λδ f = A

~
δ f , where we

have introduced a dimension–full area scale A.
In the Regge action, written in terms of areas, the only characteristic scale would

then be the scale of the areas. In a tunneling phenomenon, we expect the probability to
decay with a quantity that has units of action. The only possibility, is to set

t =
~

A
=

1
ω

(4.109)

and we have a probability amplitude decaying as

e−
A
~ (ζ−φ(δ)2) (4.110)

We see below that the value t = ~
A is in very good agreement with the semiclassicality

condition. The angle φ can only depend on δ, because changing λ corresponds to a
dilatation of the simplicial geometry (it is a global conformal transformation).

Such amplitudes describe gravitational tunneling: A
~

is a large but finite number. Quantum
theory ascribes a non–vanishing probability for a classically forbidden geometry evolution to take
place.

See Figure 4.2.

4.4.3 Performing the spin–sum

In this Section we show how the results from the fixed spins asymptotics can be used
to estimate decaying amplitudes. Our starting point, is the transition amplitude (4.99),
repeated here for convenience

W(ω`, ζ`, k`n, t) =
∑

{ j`}∈Ω({ j`},t,K)

µ( j)

∏
`

e−t`( j`−A`)2

 ∏
`

ei j`γζ`

×
×

∫
Ω(g,z)

µ(g) µ(z)
∏
`

e j` F`(g,z;k`n) (4.111)
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|W |2

Fig. 4.2: The amplitudes of covariant LQG as probabilities for gravitational tunnelling.
Solving an initial value problem for Einstein’s equations with Cauchy data the intrinsic
and extrinsic geometry of the hypersurface formed by the blue hypersurfaces and the
upper boundary surface, and evolving towards the direction in which the foliation time
increases, gives the upper–half of the spacetime. This is connected to the lower–half,
which is the evolution in the past with Cauchy data the intrinsic and extrinsic geometry
of the hypersurface formed by the blue hypersurfaces and the lower boundary surface.

where we have denoted Ω the ranges of integration and summation.
Notice that we have replaced ζ with γζ. This is because ζ here is the discrete equiva-

lent of the holonomy of the Ashtekar-Barbero connection which we wrote as ξ in equa-
tion (4.78). It is written as ξ = α + γζ, with the phase α corresponding to the discrete
version of the levi-civita spin connection. The phase α which we neglected is gauge and
must be appropriately dealt with, by fixing a phase in the boundary states, also to en-
sure the proper gluing of the tetrahedra and avoid having twisted geometries [172,173].
See [67] for an explicit example. We are using the simplified notation of Section 3.1.

We remind that we are considering spinfoam amplitudes defined on a fixed 2-com-
plex C without interior faces and dual to a simplicial complex, with its boundary coin-
ciding with the graph on which the boundary state is defined, i.e.∂C = Γ.

The summation range for each spin is restricted to be at most K times the standard
deviation away from the peak of the gaussian. We leave K unspecified for the moment,
which is taken to be of order unity. The gaussian weights play the role of a regulator
and K can be understood as playing the role of a cut–off. The summation range is then
the direct product space of the truncated ranges of individual spins

Ω({ j`}, t, k) ≡
⊗
`

{A` −
k
√

2t
, A` +

k
√

2t
} (4.112)

This step is a good approximation: the spinfoam amplitudes are oscillating in the spins
and are finite and extensive numerical tests show that the gaussian weights strongly
dominate. Further justification is provided by the procedure performed in [175]. The
calculation is along similar lines, in the context of studying the possibility of phase tran-
sitions in large spinfoams, where the authors argue that an exponential in the spins
∼ e− j is sufficient as a regulator. Here, because we are using coherent spin-network
states, they naturally provide a stronger regulator ∼ e− j2 .
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The integration range over g and z is simply the direct product space of Nve − Nv

copies of S L(2,C) (the number Nve of half edges, where the gve variables live, minus the
redundant integrations that equal the number Nv of vertices) and Nv f copies of CP1 (the
number Nv f of pairs of vertices and faces, where the zv f variables live)

Ω(g, z) ≡
⊗

Nve−Nv

S L(2,C)
⊗
Nv f

CP1 (4.113)

The summand in equation (4.111) will be forced to be zero for some set of spin con-
figurations { j`}, by the integration over g and z. Specifically, the summand will be zero
if the S U(2) intertwiner space from the spins of the four faces attached to each edge is
of zero dimension, see Appendix A.1. The four faces correspond to four links on the
boundary graph Γ.

We define the set ΩΓ of spin configurations for which this is not the case by

ΩΓ ≡ {{ j`} : ∀e, {max(| ji − jk |),min( ji + jk)} , ∅, (i, j) ∈ e} (4.114)

and introduce the characteristic function of ΩΓ

χΩΓ
≡ χ({ j`}) =


1 , { j`} ∈ ΩΓ

0 , { j`} < ΩΓ

(4.115)

We introduce the characteristic function χ({ j`}) explicitly in the amplitude

W((ω`, ζ`, k`n, t) = f (ω`, ζ`)
∑

{ j`}∈Ω( j` ,t,K)

µ( j`)

∏
`

e−t( j`−ω`)2

 ∏
`

ei j`γζ`

×
×

∫
Ω(g,z)

µ(g) µ(z)
∏
`

e j` F`(g,z;~k`n) χ({ j`}) (4.116)

where we defined

f (ω`, ζ`) ≡ eiγ
∑
` ω`ζ` (4.117)

With χ({ j`}) explicit we can safely treat the sums as free and since they are finite sums
they can be exchanged with integrals.

Before doing that, we change variables, from the spin variables j` to the the spin
fluctuations s` about the peak ω`

j` = ω` + s` (4.118)

s` ∈ {−
K
√

2t
,

K
√

2t
} (4.119)

We define the summation range for the fluctuation variables s`, which follows from
equation (4.112)

Ω({s`}, t,K) ≡
⊗
`

{−
K
√

2t
,+

K
√

2t
} (4.120)
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By exchanging summation and integration the amplitude takes the form

W(ω`, ζ`, t) = f (ω`, ζ`)
∫

Ω(g,z)
µ(g) µ(z)

∏
`

eω` F`(g,z;~k`n) ×

×
∑

{s`}∈Ω({s`},t,K)

∏
`

e−s2
` t+is`γζ`+s`F`(g,z;~k`n)

 χ({ω` + s`})

(4.121)

To bring this integral to a form suitable for stationary phase asymptotic analysis, and
use the fixed–spins asymptotics, we split ω` as

ω` = λ δ` (4.122)

λ >> 1 (4.123)

where δ` is of order unity in both the large and the small dimensionless parameter of
the problem; the large spin scale λ and the semi–classicality parameter

√
t. The condi-

tion λ >> 1 implies that the quantum numbers are large with respect to the minimal
non-zero value of the spins, one–half. This translates to the condition that the areas be
macroscopic, much larger than ~. Notice that λ is taken here to be a fixed, large, dimen-
sionless number, related to the area data and is not a scaling of the spins i.e. we are not
taking j→ λ j.

The amplitude takes the form

W(λ, δ`, ζ`, t`) = f (ω`, ζ`)
∫

Ω(g,z)
µ(g) µ(z) eλΣ(g,z;δ` ,~k`n)

×
∑

{s`}∈Ω({s`},t,K)

µ(s`; δ`, λ) U(s`, g, z; t, ζ`)

× χ({λδ` + s`})
(4.124)

where we have defined

Σ(g, z; δ`,~k`n) =
∑
`

δ` F`(g, z;~k`n) (4.125)

and

U(s`, g, z; t, ζ`) =
∏
`

e−s2
` t+is`γζ`+s`F`(g,z,~k`n) (4.126)

The semicolon separates the variables that are summed or integrated from the bound-
ary data. Keep also in mind that we have not made the dependence on the Immirzi
parameter γ explicit.

We have almost arrived to the point where we can apply the stationary phase theo-
rem and use the fixed–spins asymptotics of the EPRL model. The point here is that the
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first line of equation (4.124), is exactly the starting point for the fixed–spins asymptotics,
see Section 3.5.1.

To apply the stationary phase theorem, we need to remove the dependence on λ from
the second and third lines of equation (4.124). It appears in two places, the characteristic
function χ({λδ` + s`}) and the measure µ(s`; δ`, λ).

Let us start from χ({λδ` + s`}). We want to derive a necessary and sufficient condition
such that the fluctuations s` never take values such that the configuration { j`} = {λδ` +

s`} < ΩΓ.
This is the case if the summation range Ω({s`}, t, k) of the fluctuations is a subset of

ΩΓ. The set ΩΓ in terms of the fluctuations s` reads

ΩΓ ≡ {{s`} : ∀e, {max(|λ0(δi − δk) + (si − sk)|),
min(λ0(δi + δk) + (si + sk))} , ∅, (i, j) ∈ e} (4.127)

Let us fix a tetrahedron e. We call the maximum of the difference |δi − δk |, δ̃, and the
minimum of δi + δk, δ̂.

From equation (4.120), we see that the condition

Ω({s`}, t,K) ⊂ ΩΓ (4.128)

is equivalent to

λδ̃ +
2K
√

2t
< λδ̂ −

2K
√

2t
(4.129)

which reads

λ
√

t > K
2
√

2
δ̂ − δ̃

(4.130)

This is the semiclassicality condition of equation (4.90). The difference δ̂− δ̃ is of order unit
and can be negative or positive. The cut-off K is of order unit as well. We conclude that
when

ω
√

t � 1 (4.131)

the condition of equation (4.132) is satisfied, and

χ
(
Ω({s`}, t,K)

)
= 1 (4.132)

We now know the meaning of the semiclassicality condition: it imposes that all the in-
trinsic states ψΓ( j`,~k`n) superposed in the boundary have spins that are well within the
triangle inequalities. We may understand this as a geometricity condition, imposing
that the wavepacket is composed of superpositions of ψΓ( j`,~k`n) that describe triangu-
lations of a spacelike hypersurface. This is a reasonable condition given that we are
working in the semiclassical limit.
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Let us now turn to the measure. The measure µ(s`; δ`, λ) is in general a product of
d j factors, possibly chosen to be to some power [117]. In the standard definition of the
model, we have

µ(s`; δ`, λ) =
∏
`

d j`

=
∏
`

(2 j` + 1) ≈ 2L
∏
`

j`

= 2L
∏
`

(λδ` + s`)

= 2LλL
(∏

`

δ`

)
(1 + O(s`/λ)) (4.133)

Thus, to justify dropping theO(s`/λ), it must be the case that |s` | � λ, or equivalently,
K
√

2 �
√

tλ, which is again the semiclassicality condition.

The summation measure for s` is trivial and we omit the overall factor 2LλL
(∏

` δ`

)
in what follows. Imposing the semiclassicality condition, the amplitude takes the form

W(λ, δ`, ζ`, t`) = f (ω`, ζ`)
∫

Ω(g,z)
µ(g) µ(z) eλΣ(g,z; δ` ,~k`n) Ũ(g, z; t, ζ`) (4.134)

where we have defined

Ũ(g, z; t, ζ`) ≡
∑

{s`}∈Ω({s`},t,K)

U(s`, g, z; t, ζ`) (4.135)

Brought in this form, the function Ũ(g, z; t, ζ`) is a continuous function in g and z only
and the stationary phase theorem may be applied [149,175]. The critical point equations

0 = ReΣ(g, z; δ`) = δgΣ(g, z; δ`) = δzΣ(g, z; δ`) (4.136)

are exactly those of the fixed–spins asymptotics of Section 3.5.1.

Because we have contracted the amplitude with a semiclassical bounary state, we
may neglect the possibility of a critical point that yields a vector geometry. The choices
we have made for the S U(2) coherent states in the previous section guarantee that there
are only two possibilities for a given set of boundary data: either they will be Regge-
like [34,38–40], in which case we will have a geometrical critical point corresponding to
one of the three types of possible simplicial geometries, or there will be no critical point.

We henceforth assume that the data δ` and ~k`n are chosen so that they correspond
to a set of 2N geometrical critical points for the fixed–spin asymptotics, related by the
orientation of the tetrad, see Section 3.5.2

(gc, zc) =
(

gc(δ`, k`n), zc(δ`, k`n)
)
, c = 1, . . . , 2N (4.137)



104 Geometry Transition in Covariant Loop Quantum Gravity

We then have the following estimation for the amplitude

W(λ, δ`, ζ`, t`) = f (ω`, ζ`)
∑

c

λMc
C Fc(δ`,~k`n) eλΣ(gc,zc; δ` ,~k`n) ×

× Ũ(gc, zc; t, ζ`)
(
1 + O(1/λ)

)
(4.138)

where the power Mc
C

depends on the combinatorics of the 2-complex C and Fc(δ`,~k`n)
includes the determinant of the Hessian. We do not need here the exact expressions,
see [33, 91] for the details.

The important point to keep for physical applications is that in the first order ap-
proximation, the scale λ appears only as an overall scaling factor λMc

C and as a linear
term in the exponential. In particular, Fc(δ`,~k`n) does not depend on λ.

We proceed to evaluate Ũ at the critical point. Heuristically, it is evident that we
need only perform a gaussian integral to get a simple expression for Ũ. We have yet
however to remove the regulator K and we take a moment to explain the approximation
carefully.

The function Ũ of g and z , reads

Ũ(g, z; t, ζ`) ≡
∑

{s`}∈Ω({s`},t,K)

∏
`

e−s2
` t+is`γζ`+s`F`(g,z,~k`n) (4.139)

A a critical point c, we have

F`(gc, zc,~k`n)→ −i φ`(sc(v); δ`,~k`n) (4.140)

where φ`(sc(v); δ`,~k`n) is the Palatini deficit angle of equation (3.108). Thus, Ũ evaluated
at c, reads

Ũ(gc, zc; t, ζ`) =
∑

{s`}∈Ω({s`},t,K)

∏
`

e−s2
` t`eis`

(
γζ`−φ`(sc(v);δ` ,~k`n)

)
(4.141)

Let us return to the semiclassicality condition and the semiclassicality parameter t`. In
a physical problem for geometry transition, treated through the techniques presented
here, the only available physical scale will be the area scale that will be identified with
λ. Let us call the dimensionfull area scale A,

A = ~ λ (4.142)

Thus, the semiclassicality parameter will be set to

t =
~n

An =
1
λn (4.143)

to some positive power n. The semiclassicality condition then imposes that

λ1−n/2 � 1 (4.144)
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which implies

n < 2 (4.145)

A further requirement on n comes from demanding that the spin flucuations are larger
than Planckian, so that we have a large number of intrinsic states ψΓ in the superposition
ΨΓ.

That is, that s` are allowed to take values in a discrete set much larger than {− 1
2 , 0,

1
2 }.

We may encode this condition by demanding that the standard deviation 1
√

2t
is larger

than order unit in λ, that is,

n > 0 (4.146)

Thus, we henceforth set

t =
1
λn , n ∈ (0, 2) (4.147)

but leave t explicit in our expressions. From dimensional considerations (see previous
section) , the natural value for t is for n = 1, right in the middle of the allowed range
above, that achieves good semiclassicality properties.

The above justify the following approximation for the sum over the spins:

∑
{s`}∈Ω({s`},t,K)

≈
∏
`

∫ K
√

2t

− K
√

2t

ds` ≈
∏
`

∫ ∞

−∞

ds` (4.148)

We have thus removed the regulator K. Returning to equation (4.141) and performing
the gaussian integrals, we have

Ũ(gc, zc; t, ζ`) =
∏
`

exp −
1
4t

(
γζ` − φ`(sc(v); δ`,~k`n)

)2
(4.149)

At the critical point c, as we saw in the previous chapter,

Σ(gc, zc; δ`,~k`n) = −i
∑
`

δ` φ`(sc(v); δ`,~k`n) (4.150)

4.4.4 Summary

Given the data ζ`, ω`, k`n, and defining λ, we have the following estimate for the ampli-
tude

W ∼

∑
s(v)

(λ)Nµ(δ`)
∏
`

exp
(
−

1
4t

(
γζ` − βφ`(s(v); δ`,~k`n) + Π`

)2
+ i γ ζ` ω`

)
(1 + O(1/λ))

(4.151)
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We take a moment to go through the various quantities appearing in this formula. We
have introduced a few important subtleties regarding the different kinds of geometrical
critical points that we neglected in the derivation above. The Π` contribution accounts
for an extra phase in the Lorentzian intertwiners, see [38, 42].

The power N is in general a half integer that depends on the rank of the hessian at
the critical point and the combinatorics of the 2-complex C. The function µ(δ`) includes
the summation measure over the spins and the Hessian evaluated at the critical point.
Neither the summation measure nor the Hessian scale with λ.

The estimation is valid for all three types of possible geometrical critical points. If ω`
and k`n specify a Lorentzian geometry, then

β = γ (4.152)

and

Π` =

0 thick wedge
π thin wedge

(4.153)

If ω` and k`n specify a degenerate geometry, then the dihedral angles φ`(ω`, k`n) either
vanish or are equal to π, according to whether we are in a thick or thick wedge. By
abuse of notation, we express this simply by setting β = 0 in this case and keeping Π`

defined as above.
If ω` and k`n specify a Euclidean geometry, then we have

β = 1 (4.154)

and

Π` = 0 (4.155)

The function φ`(sc(v); δ`,~k`n) denotes the Palatini deficit angle.
We discuss the interplay between the different geometrical points and the sum over

the multiple semiclassical limits in Chapter 6 where we apply the above to a concrete
geometry transition problem.
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5 Exterior spacetime and definition of a complete observable

In this chapter we introduce the exterior spacetime, which we call the Haggard-Rovelli
(HR) spacetime, modelling the spacetime surrounding the geometry transition region.
We provide a hypersurface–independent formulation of the HR spacetime, introduced
originally in [64]. Similar ideas have been independently and concurrently been put
forward by Garay, Barcelo et al [69–72].

We introduce the relevant classical and quantum observables, the mass m and the
bounce time T , and the lifetime τ(m) respectively. We propose an interpretation for the
transition amplitudes and formulate the problem such that a path-integral over quan-
tum geometries procedure can be naturally applied.

5.1 Black holes age

Black holes are not eternal, mathematical objects. They are astrophysical objects and as
such they are expected to go through phases, evolve and age.

The most widely accepted feature of black hole evolution is Hawking evaporation,
with complete evaporation predicted by Hawking theory (assuming the semiclassical
approximation holds for late times) to be of order ∼ m3. Indications that “something
weird” happens in shorter time scales include the Page time [176–179], and the debate
on the “firewall’ paradox [180].

For lack of space we do not go through the list of proposals for how black holes may
end their life, and refer to the literature. Such proposals typically attempt to provide a
resolution for the information paradox [181], see [182] for a (non–exhaustive) review.

Another clear indication that black holes age comes from studying the properties of
their interior volume. The maximal volume inside the horizon is given at the dominant
order in the mass m by

V(v) ∼ m2v (5.1)

where v is the (advanced) time as measured by a far away observer from the moment
of the formation. This result was shown in a paper by Carlo Rovelli and the author for
the static spherically symmetric case, including the Reissner-Nordstrom charged black
hole [183].

In a follow–up work by the author and Tommasso de Lorenzo, we extended this
result to the Hawking evaporating black hole [184], surprisingly yielding an identical
formula where now the mass is the initial mass m0 at the moment of formation

V(v) ∼ m2
0v (5.2)

Subsequent studies by other authors generalised this result in Anti-de Sitter, Kerr and
other more exotic kind of black holes [185–188] suggesting that this volume monotonic-
ity appears to be a general feature of black hole solutions.

The volume of black holes is a good geometrical measure of their age. Black holes
then build up immense volumes in their lifetime. For instance Saggitarius A? currently
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has interior spacelike hypersurfaces large enough to fit the solar system millions of
times.

What happens to all this volume it the black hole completely evaporates? If a solar
mass black hole almost completely evaporated, say to a few grams, it would contain
volumes equivalent to 105 times our observable universe, behind a minuscule horizon
of the order of 10−50 squared meters.

The process described by Haggard and Rovelli appears natural in this geometrical
aspect: the inverse measure of age applies for a white hole, and the volume will deflate.

In related work, we show that under minimal assumptions, the Von Neumann en-
tropy for volumes from the Hilbert space spanned by 4-valent spin networks is well
behaved and finite [189], based on results from the spectrum of the volume in [190,191].

These ideas can be relevant for future studies of the phenomenon we discuss in the
rest of this chapter.

In the renowned 1974 letter titled “Black hole explosions?” [192], Hawking argues
that quantum physics can be relevant in space-time regions where curvature is low.
The author begins with the observation that when the large time scale involved in near
horizon physics is taken into account, the lifetime of the universe, significant depar-
tures from classical physics may take place. It may take even longer: Hawking’s theory
implies that a solar mass black hole is expected to radiate a Planck mass worth of Hawk-
ing photons in approximately 1015 times the Hubble time. This time is of order ∼ m2 in
Planck units, where m is the mass of the hole.

Hawking closes with the comment that quantum fluctuations of the metric are ne-
glected in calculations of near-horizon physics and taking them into account “might
alter the picture”. Haggard and Rovelli, combining these two ideas, argued in [64] for
the possibility that when enough time, as measured far from the hole, is allowed to
lapse, and quantum fluctuations of the metric near the horizon become significant, a
geometry transition of the trapped region to an anti-trapped region takes place, from
which the matter trapped inside the hole is released.

In [64], the authors give a simple model of the global spacetime picture away from
the region where the transition takes place. The existence of the exterior metric, which
we call in what follows the Haggard–Rovelli metric (HR-metric), lends plausibility to
the process, since general Relativity need only be violated in a compact spacetime re-
gion. The stability of the exterior spacetime after the quantum transition has taken place
has been studied in [66], where the known instabilities of white hole spacetimes were
shown to limit the possible duration of the anti-trapped phase, but do not otherwise
forbid this process taking place.

5.2 Haggard-Rovelli Spacetimes

In this section we construct the Haggard-Rovelli (HR) spacetime [64, 66]. The original
construction is based on a partly one to many (one to two) mapping from the Kruskal
manifold. The relation between the two constructions is explained in Section 5.5. The
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construction presented here avoids using specific hypersurfaces and helps reveal the
insights of the original paper.

5.2.1 Physical picture and the Penrose diagram

The physical phenomenon modelled by an HR-spacetime is the transition, via quantum
gravitational effects that are non-negligible only in a compact region of spacetime, of a trapped
region formed by collapsing matter to an anti-trapped region, from which matter is released.

A compact region is excised from spacetime, by introducing a spacelike compact inte-
rior boundary of the spacetime. Outside of this non-classical region the usual spacetime
picture applies and the metric solves Einstein’s field equations exactly everywhere, in-
cluding on the interior boundary.

The HR-spacetime is constructed by taking the following simplifying assumptions:

• Collapse and expansion of matter are modelled by thin shells of null dust of mass
m.

• Spacetime is spherically symmetric.

These assumptions determine the local form of the metric by virtue of Birkhoff’s
theorem, which can be stated as follows [193] : Any solution to Einstein’s equations in
a region that is spherically symmetric and empty of matter is locally isomorphic to the
Kruskal metric in that region.

It therefore follows that the metric inside the null shells is flat (i.e. Schwartzschild
with m = 0), the metric outside the shells is locally Kruskal with m being the mass of
the shells and the spacetime is asymptotically flat. Moreover, it follows that the trapped
and anti-trapped regions in the spacetime can only be portions of the black and white
hole regions of the Kruskal manifold, respectively. In particular, the marginally trapped
and anti-trapped surfaces bounding these regions can only be portions of the r = 2m
hypersurfaces.

The above are summarized in the Penrose diagram of an HR-spacetime given in Fig-
ure 5.1. Compare this diagram with figure 1.1. The metric, energy-momentum tensor
and expansions of null geodesics are given explicitly in Eddington-Finkelstein coordi-
nates in the next section. The surfaces and regions in Figure 5.1 have the following
properties :

• S− and S+ are null hypersurfaces. The junction condition on the intrinsic met-
ric holds. Their interpretation as thin shells of null dust of mass m follows : the
allowed discontinuity in their extrinsic curvature results in a distributional contri-
bution in Tµν on S− and S+, see next Section. This is standard procedure in Vaidya
null shell collapse models [194], see for instance [195]. Tµν vanishes everywhere
else.

• The surfaces F +, F −, C+, C− depicted in Figure 5.1 are spacelike. Their union
F −∪C−∪C+∪F + constitutes the interior boundary. The intrinsic metric is matched
on the spheres ∆ and ε±. The extrinsic curvature is discontinuous on ε±, see previ-
ous point, and is also discontinuous on ∆ because of the requirement that C± are
spacelike.
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• T is a spacelike surface. The junction conditions for both the intrinsic metric and
extrinsic curvature, hold, including on the sphere ∆. As we see below, T plays
only an auxiliary role and need not be further specified.

• M− and M+ are marginally trapped (anti-trapped) surfaces and the shaded re-
gions are trapped (anti-trapped). That is, the expansion of outgoing (ingoing) null
geodesics vanishes onM− (M+), is negative inside the shaded regions and positive
everywhere else.

Before explicitly giving the metric, let us comment on the necessity of extending the
interior boundary outside the (anti-)trapped regions. The excised region removes from
the spacetime the region where strong quantum gravitational effects are expected to be
non-negligible. It excludes the region where the singularity surface would form and,
crucially, it extends outside the marginally trapped surfaces. The need to do the latter
can also be understood from Birkhoff’s theorem, we refer the reader again to Figure 5.1.
The marginally trapped and anti-trapped surfacesM− andM+ can only be realized as
being portions of the r = 2m surfaces of the Kruskal manifold. If we restrict the interior
boundary to be inside the marginally trapped surfaces,M− andM+ will intersect. Then,
the metric around their intersection point (sphere) must be locally isomorphic to the
Einstein-Rosen bridge and the Penrose diagram would be radically altered: M− and
M+ will extend to null infinity and become past and future event horizons.

5.2.2 The HR-metric

In this section we explicitly construct the HR-metric in Eddington-Finkelstein (EF) coor-
dinates, in which it takes a particularly simple form. We need to introduce two charts.
Referring to Figure 5.1, we define four regions. Regions I and IV are the past and fu-
ture flat regions inside the shells respectively. Regions II and III are the Kruskal regions
outside the shells separated by the fiducial surface T . Region II includes the trapped
region and region III the anti–trapped region.

The first chart provides ingoing EF coordinates (v, r) for the union of regions I and II.
The second chart provides outgoing EF coordinates (u, r) for the union of regions III and
IV. There is only the junction condition on T to be considered, which we give below.
The radial coordinate r will be trivially identified in the two coordinate systems. For
regions I and II the metric reads

ds2 = −

(
1 −

2m
r

Θ(v − v0)
)

dv2 + 2dv dr + r2dΩ2 (5.3)

and for regions III and IV

ds2 = −

(
1 −

2m
r

Θ(u − u0)
)

du2 − 2du dr + r2dΩ2 (5.4)

where Θ is the Heaviside step function.
The ingoing and outgoing EF times v0 and u0 denote the position of the shells S− and

S+, in these coordinates.
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Fig. 5.1: The Haggard-Rovelli spacetime.

The two junction conditions on T are satisfied by the identification of the radial
coordinate along T and the condition

v − u T= 2r∗(r) (5.5)

where r∗(r) = r + 2m log |r/2m − 1|. We emphasize that we need not and will not in what
follows choose the hypersurface T explicitly. The HR-metric is independent of any
such explicit choice. The reason it is necessary to consider it as an auxilliary structure
is explained in [64] : the spacetime doubly covers a portion of one of the asymptotic
regions of the Kruskal manifold and thus we need to use at least two separate charts
describing a Kruskal line element. Where we take the separation of these charts to be,
that is, the explicit choice of T , is irrelevant.

To explicitly define the metric we need to give the range of coordinates. Let us as-
sume a choice of boundary surfaces has been given. Having covered every region of
spacetime by a coordinate chart, we can describe embedded surfaces. Since all surfaces
Σ appearing in Figure 5.1 are spherically symmetric, it suffices to represent the surfaces
as curves in the r − v and r − u planes. Using a slight abuse of notation we write v = Σ(r)
or, in parametric form, (Σ(r), r). The range of coordinates is in the intersection of the
conditions:
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I ∪ II : v ∈ (−∞,+∞) r ∈ (0,+∞) v ≤ F −(r) v ≤ C−(r) v ≤ T (r)
III ∪ IV : u ∈ (−∞,+∞) r ∈ (0,+∞) u ≥ F +(r) u ≥ C+(r) u ≥ T (r)

What remains is to ensure that we kept trapped and anti-trapped regions where we
want them, as depicted in Figure 5.1. This is equivalent to the geometrical requirement
that the spheres ε± have proper area less than 4π(2m)2 while the sphere ∆ has proper
area larger than 4π(2m)2. We may write this in terms of the radial coordinate as

rε± < 2m

r∆ > 2m (5.6)

Since ε± and ∆ are specified once the boundary is explicitly chosen, this is a condition
on the allowed boundary surfaces that can be used as an interior boundary of an HR-
spacetime : C± can be any spacelike surfaces that have their endpoints at a radius less
and greater than 2m, crossing in the latter endpoint. Since C± are spacelike, it follows
that we necessarily have a portion of the r = 2m surfaces in the spacetime along with
trapped and anti-trapped regions in their interior.

This completes the construction of the HR-metric. To complete the definition of the
family HR-spacetimes, identify its coordinate-independent parameters and restrict to
their physical range. The HR-metric is a two-parameter family of metrics. The geome-
try of the spacetime, up to the choice of interior boundary is fully determined once two
dimension-full coordinate independent quantities are specified. Obviously, one param-
eter is the mass m which we take to be positive. The second parameter is the bounce
time T , the meaning of which is discussed in the following section. We can express T in
terms of u0 and v0 simply by

T = u0 − v0 (5.7)

Similarly to m, we take also T to be positive. Let us repeat for emphasis that the
Haggard-Rovelli geometry has two characteristic physical scales : a length scale and
a time scale. The subject of this article is to define and compute a probabilistic correla-
tion between these two scales from quantum theory. The boundary conditions for the
path-integral will be the geometry of the interior boundary.

The role of the bounce time T as the second spacetime parameter is obscured in the
line elements (5.3) and (5.4). In equation (5.7), we expressed the bounce time in terms
of the null coordinates at the collapsing and anti-collapsing shells. The bounce time T ,
is then encoded implicitly in the line element through the ranges v ≥ v0 and u ≤ u0, via
the Heaviside functions that specify the part of the spacetime that is curved.

We may make T appear explicitly as a dimension-full parameter in the metric com-
ponents. This is achieved by time shifting both coordinates u and v by v0+u0

2 = T/2

v→ v −
v0 + u0

2

u→ u −
v0 + u0

2
(5.8)
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The above isometry ((∂v)α and (∂u)α are the timelike Killing fields in each patch) simply
amounts to shifting simultaneously the origin of the two coordinates systems. The line
elements (5.4) and (5.7) now read

ds2 = −

1 − 2m Θ(v + T
2 )

r

 dv2 + 2dv dr + r2dΩ2 (5.9)

and

ds2 = −

1 − 2m Θ(u − T
2 )

r

 du2 − 2dv dr + r2dΩ2 (5.10)

The role of T as a spacetime parameter is manifest in this form of the metric. It is in-
structive to compare with the Vaidya metric for a null shell collapse-model, describing
the formation of an eternal black hole by a null shell collapsing from past null infinity.
Setting the null shell to be at v = v0, the line element would be identical to (5.3), with the
difference that the range of the v coordinate is in (−∞,∞). The choice v = v0 for the posi-
tion of the null shell is immaterial and we can always remove v0 from the line element
by shifting the origin with v → v − v0. In the HR-metric, the two coordinate charts are
related by the junction condition (5.5). It is impossible to make both v0 and u0 disappear
from the line element by shifting the origins of the coordinate charts, the best we can do
is remove one of the two or, as we did above, a combination of them. This observation
emphasizes that the bounce time T is a free parameter of the spacetime. Notice that the
junction condition (5.5) is unaffected by a simultaneous shifting of the form (5.8).

The field equations are solved for the energy momentum tensor [195]

I ∪ II : Tµν = +
δ(v+T/2)

4πr2 δv
µδ

v
ν

III ∪ IV : Tµν = −
δ(u−T/2)

4πr2 δu
µδ

u
ν

The expansion θ− of outgoing null geodesics in the patch I ∪ II and the expansion θ+

of ingoing null geodesics reads in the patch III ∪ IV, read

I ∪ II : θ− ≡ ∇µk−µ = Γ−
(
1 − 2m

r Θ(v + T/2)
)

III ∪ IV : θ+ ≡ ∇µk+µ = Γ+
(
1 − 2m

r Θ(u − T/2)
)

where k−µ and k+µ are affinely parametrized tangent vectors of the null geodesics and Γ−

and Γ+ are positive scalar functions, see [195]. It follows directly from these expressions
that the spacetime possesses a trapped and an anti-trapped surface, where the expan-
sions θ± vanish, and which we identify with M+ and M− in Figure 5.1. Thus, in EF
coordinates,M± are defined by



114 Geometry Transition in Covariant Loop Quantum Gravity

M− : r = 2m v ∈ (−T/2, C−(2m))

M+ : r = 2m u ∈ (C+(2m), T/2)

As explained above, it will always be the case that these surfaces are present in the
spacetime, along with a trapped and anti-trapped regions where θ± are negative, if rε± <
2m and r∆ > 2m. We may describe explicitly the trapped region as the intersection
of r < 2m, v ∈ (−T/2,C−(2m)) and v ≤ C−(r) and for the anti-trapped region r < 2m,
u ∈ (C+(2m),T/2) and u ≥ C+(r). θ± are positive in the remaining spacetime.

5.3 The Bounce Time T

In this section we discuss the meaning of the bounce time T as a time scale that char-
acterises the geometry of the HR-spacetime. Intuitively, T controls the time separation
between the two shells. We will then see that the bounce time can be understood as an
equivalent concept to the Hawking evaporation time for the HR-spacetime.

In equation (5.7), we expressed the bounce time in terms of the null coordinates at the
collapsing and anti-collapsing shells. As explained in [64], the bounce time has a clear
operational meaning in terms of the proper time τR along the wordline of a stationary
observer, that is, an observer at a constant radius R, between the events at which he in-
tersects with the collapsing and anti-collapsing shells S ±. A straightforward calculation
gives τR as

τR =
√

f (R)(u0 − v0 + 2r∗(R)) (5.11)

where f (R) = 1 − 2m/R. To get this expression, we have to add the contributions from
the two line elements (5.9) and (5.10) and use the junction condition (5.5). Inverting this
equation and using (5.7), we have for the bounce time

T =
τR√
f (R)

− 2r∗(R) (5.12)

Thus, the bounce time may be directly measured by an observer equipped with a clock,
provided he has measured the mass m of the black hole and his distance from the black
hole.

Let us rephrase the above equation to emphasize the role of T as a spacetime param-
eter, a coordinate and observer independent quantity, and its relation with the symme-
tries of the spacetime.

The exterior spacetime described by the HR-metric has the three Killing fields of a
static spherically symmetric spacetime, a timelike Killing field generating time transla-
tion and two spacelike Killing fields that together generate spheres. The orbits γ of the
timelike Killing field are labelled by an area Aγ : the area of a sphere generated by the
two spacelike Killing fields on any point on γ. This is of course the geometrical meaning
of the coordinate r.

We can thus avoid mention of any coordinates or observers and define T through
the following geometrical construction. Consider any orbit γ that does not intersect
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with the interior boundary. The proper time τγ is an invariant integral evaluated on the
portion of γ that lies between its intersections with the null hypersurfaces S ±. For any
such γ, we have

T =
τγ√
f (Aγ)

− r∗(Aγ) (5.13)

T is independent of the chosen orbit γ and is expressed only in terms of geometrical
quantities, an area and a proper time. This expression can be taken to be the definition
of T .

5.3.1 The Bounce time as the evaporation time

The HR-spacetime neglects Hawking radiation. This assumption should be justified à
posteriori, by comparing the lifetime, defined in the next section as the expected value
of T from quantum theory for a given mass, with the evaporation time scale ∼ m3. The
degree to which it is justified to compare the bounce time with the Hawking evaporation
time has been a subject of discussion. In these paragraphs, we clear up this question and
show that the bounce time T is an equivalent concept to the Hawking evaporation time
for the HR-spacetime. Thus, it can be directly compared to the evaporation time scale
∼ m3.

Often, an evaporation time is defined as the interval of the affine parameter u at fu-
ture null infinityJ+ between the “first” and “last” Hawking photon, with an ambiguity
typically of order m in these times. The analogous to the “last” Hawking photon in
our setting is the anti-collapsing null shell S +. The first Hawking photon will be emit-
ted when the collapsing shell S − reaches some radius which we call r f hp (first Hawking
photon). Let us call u f hp the retarded time at J+ corresponding to the sphere with in-
going coordinates (r f hp, v0). When we take r f hp = 2m(1 + W(1/e)) ≈ 2.56m, where W is
the Lambert function, then the evaporation time of the HR-spacetime equals the bounce
time

T = u0 − u f hp (5.14)

r f hp ≈ 2.56m (5.15)

The value r f hp ≈ 2.56m is a very reasonable value for the emission of the first Hawk-
ing photon; as mentioned above, typically an ambiguity of order m is involved in such
calculations. Comparing with literature, in [200] the authors studied the production of
entanglement entropy from the emission of Hawking radiation and defined u f hp to be
when the entanglement entropy starts to significantly depart from zero. They estimated
the radius at which it is most likely for the first Hawking photon to be emitted to be
roughly when the collapsing shell reaches a radius ∼ 3m.

We advertise that we will be seeing again the value r f hp = 2m(1 + W(1/e)m in Section
5.5, which has a special meaning, when we discuss the “crossed fingers” representation
of the HR-spacetime on the Kruskal manifold.
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5.4 Lifetime τ(m)

In this manuscript we consider the quantum transition of a trapped region to an anti-
trapped region as described in the framework of covariant LQG. In this section we pro-
pose a probabilistic interpretation to the transition amplitudes ascribed by the EPRL
model to this process and define an observable, the value of which a quantum theory of
gravity should be in a position to predict.

Credit to the ideas presented in this section goes mainly to Robert Oeckl, who ex-
plained in an email conversation how the positive formalism [196–198] may be imple-
mented in a quantum bounce of a black hole to a white hole. We do not go here into
the details of this framework, the precise application of which to this phenomenon is
currently a work in progress, see also [199] for a recent discussion.

The observable defined below first appeared in [67]. We will revisit its physical
interpretation in Section 6.4.1

5.4.1 Transition Amplitudes as Conditional Probability Distributions

The precise definition of the boundary states we will use is given in Chapter 4. In this
section, we neglect unnecessary details in order to keep the notation light.

Consider a family of coherent states Ψ(ω, ζ), providing an over-complete basis of the
Hilbert space of interest, with the resolution of the identity given by a measure α(ω, ζ).
The transition amplitude W(ω, ζ) = 〈W |Ψ(ω, ζ)〉 is then a function of these data. We make
a distinction between the physical transition amplitude and the spinfoam amplitude 〈W |,
that will only know of the combinatorial structure of the 2-complex on which it is de-
fined.

The labels (ω, ζ) have the geometrical meaning of areas and 4D hyperobolic an-
gles respectively and will become functions ω(m,T ), ζ(m,T ) of the spacetime parameters
when identified with the discrete distributional geometry that approximates the geom-
etry of the interior boundary, see [67] and Chapter 6. We may then exchange the labels
ω and ζ with m and T and write Ψ(m,T ) for the state and W(m,T ) ≡ 〈W |Ψ(m,T )〉 for the
transition amplitude.

We define a probability distribution by

P(T |m) =
A(m,T )
AT (m)

(5.16)

where

AT (m) =

∫
dT α(m,T ) |W(m,T )|2 (5.17)

and

A(m,T ) = α(m,T ) |W(m,T )|2 (5.18)

The function α used in the definition of the probability density (5.18), must be de-
rived from the measure providing the resolution of the identity of the class for boundary
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states considered here and satisfies∫
dm dT α(m,T ) |Ψ(m,T )〉 〈Ψ(m,T )| = 1. (5.19)

There are subtleties in defining α, because in general the states Ψ(ω, ζ) are labelled by
more than two parameters ω, ζ. We then have to find the induced measure on a (proper)
two-dimensional subspace of the larger Hilbert space. We ignore this difficulty here
and assume that such a measure can be found. Equivalently, the discussion here may
be understood as being at the level of a state defined on a single link, when α(m,T ) is
simply α(ω, ζ) times the Jacobian of the parameter change ω, ζ → m,T .

The conditional probability P(T |m) is automatically normalized by these definitions.
We attach to it the following interpretation : it is the conditional probability distribution for
measuring T for a given fixed mass m.

Note the similarity of equations (5.16), (5.17) and (5.18) with the usual definition of
conditional probability distributions, in which case A(m,T ) and AT (m) are respectively
the joint (in T and m) and marginal (in m) distributions. The difference here is that
we do not require A(m, p) and Am(p) to be normalized and so they are not themselves
distributions.

P(T |m) is a prediction of the quantum theory.

This definition of P(T |m) overcomes an important technical difficulty in [67], were
we directly interpreted the amplitude |W(m,T )|2 as proportional to the physical joint
probability distribution in m and T . This would imply that the spinfoam amplitude
must be normalized31 , i.e. that 〈W |W〉 = 1.

Spinfoam amplitudes are defined up to an arbitrary normalization. The probability
distribution P(T |m) as defined in (5.16) does not depend on the normalization of the
spinfoam amplitude. Furthermore, a conditional probability seems to be in a relativistic
or relational setting the natural object to work with. We comment further on this point
at the end of the next section.

5.4.2 Lifetime τ(m) of the HR-Spacetime

The probability distribution (5.16) is a physical prediction of the theory. We define the
lifetime of the HR-spacetime to be the expectation value of T on P(T |m)

τ(m) ≡ 〈T 〉P(T |m) =

∫
dT T P(T |m). (5.20)

The point of view taken in [67], is that the mass m and the bounce time T serve the
role of partial observables in the sense of [136]. Quoting from this work,

A partial observable is a physical quantity to which we can associate a (measuring)
procedure leading to a number.

31To see this, formally write |W(m,T )|2 = 〈W |Ψ(m,T )〉 〈Ψ(m,T )|W〉 and keep in mind that |W〉 knows nothing
about m and T , only about the combinatorial structure of the 2-complex on which it is defined.
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The conditional probability distribution P(T |m), or, more precisely, the value of T for
a given m, is then a complete observable of the HR-spacetimes. Quoting again from
[136],

A complete observable is a quantity whose value can be predicted by the theory (in
classical theory); or whose probability distribution can be predicted by the theory
(quantum theory).

In summary, the HR-spacetime provides a prototypical setup for geometry transition in the
covariant framework. The geometry of the spacetime depends on two classical physical scales,
which become encoded in the geometry of the interior boundary – the boundary condition for the
path-integral – and in turn quantum theory correlates the two scales in a probabilistic manner.

Before closing this section, we discuss how in this scheme and for this physical ap-
plication, the set of issues known as the “problem of observables” and the “problem of
time”, are sidestepped.

The problem of observables in gravity, quantum or classical, is a set of central con-
ceptual and technical issues, stemming from general relativity. They have been much
discussed the past century and are still a subject of active debate [131, 133, 134, 136, 201,
202] . The essential issue is that by observables, in the classical sense and strictly speak-
ing, we mean functionals of the metric that are constant on the equivalence classes that
define the same solution of the field equations. That is, on the metrics that are related
by diffeomorhisms. In the phase space sense, this problem comes down to the fact that
it is not known how to explicitly describe the physical phase space, that is, the space
of gauge orbits, which are now assumed to be projected to points. The mechanism for
carrying out the projection for a general solution has not been explicated.

In the case where the spacetime is asymptotically flat, we do have at our disposal a
few of these “true” observables, the ADM charges. In the simple spherically symmetric
case, the only such charge is the mass m. In coordinate language, the components of gµν
or the coordinates themselves, will depend on this same parameter m in any coordinate
system, which serves as a label of the equivalence class.

This provides one natural candidate for a good “partial” observable. The quotes are
because a partial observable need not be a diffeomorphism invariant quantity such as
m. The mass m has this extra good property.

The second partial observable, is provided by construction, the bounce time T which
arises naturally in the HR-spacetime. T is also a diffeomorphism invariant quantity.

Both T and m serve as both “partial” and as “true” observables in our case. This
need not be the case since the fact that they are diffeomorphism invariant quantities
is not required. It is however the reason that the complete observable is a manifestly
cordinate/observer independent quantity.
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J
S

C
T

Fig. 5.2: One Kruskal patch of the Haggard-Rovelli spacetime. S is the outgoing (+) or ingoing (−)
null shell S±. Respectively, C is the boundary surface C± in the curved part of the HR-spacetime,
andJ is the future and past asymptotic null infinityJ±. T is the common spacelike hypersurface
on which the two patches are identified, yielding the two junction conditions : the identification
of the radial coordinate r and the junction condition (5.5). See also Figure 5.3.

A generalization of the interpretation given here, applicable to more general space-
times, could perhaps be achieved by working with partial observables that have an op-
erational meaning, but refer to specific observers. This is a project for the future, when,
for instance, attempting to take into account realistic matter dissipation.

Finally, the set of issues known as “problem of time” arise from the fact that in a
Hamiltonian formulation of General Relativity, the Hamiltonian vanishes and one has
to carefully define the meaning of “dynamical evolution”. Taking a relational point of
view, that true dynamical evolution is evolution of partial observables with respect to
one another, provides a way to at least sidestep these issues, in concrete applications.

5.5 Crossed fingers: mapping the HR-metric on the Kruskal manifold

In this section we briefly explain how the HR-metric can be represented on the Kruskal
manifold and the relation of the original “crossed-fingers” construction.

In Section 5.2, we gave the HR-metric using two different patches from the Kruskal
manifold. This is necessary, there is no one-to-one mapping from the HR-spacetime to
(a region of) the Kruskal manifold. The easiest way to see this is through a figure.

One Kruskal patch of the HR-spacetime is depicted in Figure 5.2. In Figure 5.1, a
patch corresponds to the part of the HR-spacetime above or below the fiducial surface
T , described by the line element in equation (5.9) or (5.10).

Some possible ways to map the two patches of the HR-spacetime in the Kruskal
manifold are depicted in Figure 5.3. It takes a moment of reflection to be convinced that
any such mapping will either have overlapping regions, or be disjoint. Thus, at least
two patches of the Kruskal manifold are necessary to describe the HR-spacetime.

The original construction in [64] corresponds to the top left “crossed fingers” map-
ping. Let us now take the point of view that this mapping is a representation of the
HR-spacetime on the Kruskal manifold.

The Kruskal manifold is a one–parameter family of spacetimes, the parameter being
the mass m. The HR-spacetime is a two-parameter family of spacetimes, in the sense in
which we defined it here, that is, with an unspecified interior boundary satisfying the
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Fig. 5.3: Some of the possible mappings of the two Kruskal patches of the HR-spacetime to the
Kruskal manifold. See Figure 5.2 for a breakdown of a single patch. It is impossible to map the
HR-spacetime to the Kruskal manifold using a single patch : the patches either overlap or are
disjoint. Thus, we need to use two distinct patches. The upper-left case is the “crossed-fingers”
construction that was used in the original presentation (cite Fireworks).

constraints of Section 5.2.
Where is the bounce time T encoded in the “crossed–fingers” representation? It is

encoded in the radius where the two null shells meet. We call this radius rδ and the
point (sphere) of their intersection δ.

The easiest way to see this is to use the definition of the bounce time when the HR-
metric is written as in the line elements in equations (5.3) and (5.4).

The null shells are at u0 and v0. The bounce time is given by equation (5.7), repeated
here for convenience

T = u0 − v0 (5.21)

The point where the two shells intersect in the crossed–fingers representation has some
Schwarzschild coordinates (tδ, rδ). In ingoing Eddington–Finkelstein coordinates (in the
lower patch, line element in equation (5.3)) its coordinates are (tδ, v0). In the upper patch,
in outgoing EF–coordinates, its coordinates are (tδ, u0). The EF–coordinates are related
to the Schwartzschild coordinates by

v0 = tδ + r?(rδ)
u0 = tδ − r?(rδ) (5.22)
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Thus,

T = −2r?(rδ) (5.23)

We conclude that in the crossed–fingers representation, it is equivalent to consider the
radius rδ as the second spacetime parameter for the HR-metric.

By abuse of notation, as we did with the parameter ∆ and the sphere ∆, we introduce
the parameter δ > 0 for the sphere δ at radius rδ by

rδ = 2m(1 + δ) (5.24)

The bounce time T and δ are related by

e−
T

4m = δeδ+1 (5.25)

where we used r?(r) = r + 2m log | 2m
r − 1|. In terms of the Lambert function, the relation

is inverted to

δ = W
e−

T
4m

e

 (5.26)

The bounce time T , as discussed in Section 5.2, is constrained to be positive, as is the
mass m. This translates to the condition

δ > W
(

1
e

)
≈ 0.28 (5.27)

The radius rδ at this value, corresponding to T = 0, is the same value we got in Section
5.3.1 for the first hawking photon radius along the null shell, by interpreting T as an
evaporation time.

Lastly, an infinite bounce time corresponds to a vanishing δ. Thus, in the crossed–
fingers representation of the HR-spacetime, we may use as parameters the mass m, con-
strained to be positive, and the parameter δ, constrained to be in the interval

δ ∈ (0,W
(

1
e

)
) (5.28)

5.6 A few more properties

In this chapter we have presented the HR-spacetime as a well-defined setup for study-
ing geometry transition. Before closing this chapter, we discuss a few further properties
that are of interest for the following chapter.

We discussed the definition of Lorentzian (boost) angles in Section 3.4. They are
defined as inverse hyberbolic cosines of inner products between normalized timelike
vectors at a point. A straightforward calculation that involves a bit of algebra shows
that all boost angles in the HR-spacetime scale monotonically with the bounce time T
and the combination T/m.
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They increase in the exterior of the trapped and anti-trapped regions and they decrease
in their interior, as we increase T or T/m. This intriguing property can be useful for
future attempts at encoding the presence of the trapped surface in the boundary state.

Another relevant feature is that for a large class of interior boundary choices, the
bounce time is only encoded in the area of the sphere ∆. Such boundary choices arise when-
ever the two hypersurfaces are drawn from foliations in the “crossed finger” represen-
tation that are generated by time translation. For instance, in Eddington Finkelstein
coordinates, whenever we use as interior boundary two surfaces from the families

v −C−(r) = c−

u −C+(r) = c+ (5.29)

with C± having no dependence on the spacetime parameters.
It is not hard to see that when attempting to do such a choice, c± cannot be constants,

they have to depend on T because their intersection defines δ.
In turn, because the radius of the spheres ε± is taken fixed, the bounce time is only

encoded in the intrinsic and extrinsic metric via T/m through the parameter ∆ (which is
dimensionless). This effect was noted accidentally in [67] where such a boundary choice
was made.

Finally, we note that at no point did we mention the symmetry or asymmetry of the
space–time. The notions of time–symmetry and time–asymmetry in [64, 203], refer to
properties of the boundary. That is, the hypersurface C− may be chosen such that the
light-tracing of its endpoints ε− and ∆ to J− corresponds to an affine interval δv and
similarly for C+ for an interval δu. In the terminology of [203], choosing a boundary
such that δu , δv corresponds to an asymmetric spacetime. This gives a notion of the
duration of the white and black hole phase at asymptotic infinity.
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6 Calculation of an observable

In this chapter, we estimate the scaling of the lifetime τ(m) with the mass m.
We start by commenting on the discretization procedure. We prove a simple relation

between the extrinsic curvature of a surface and the boost relating the normal to its
parallel transport along a curve in that surface.

We proceed to make an explicit boundary hypersurface choice, carry out a discretiza-
tion and derive an explicit expression for a transition amplitude describing this process.
The resulting formula is cumbersome and its numerical analysis a daunting task. Cur-
rently, much effort is put in the Centre de Physique Théorique in Marseille, by a group
led by S.Speziale for the development of numerical methods suitable for such ampli-
tudes.

We then proceed to use the semiclassical approximation developed in Chapter 4,
and estimate the scaling of the lifetime with the mass of the collapsed object forming
the trapped region. We do this first for the explicit setup of the previous section and
then for a class of amplitudes and for an arbitrary choice of boundary conditions.

We close by discussing the physical interpretation of our results and the difficulties
that arise.

6.1 Discretization

In this section we discuss the discretization of a continuous surface to a piecewise flat
simplicial manifold. We see how the resulting distributional geometry is interpreted in
terms of holonomy-flux data. We start by proving a simple relation between the extrin-
sic curvature and the boost relating the normal of a hypersurface to its parallel transport
along a curve. This result serves as a justification for the discretization procedure and
could be interesting in its own right.

6.1.1 What is the relation between boosts, the extrinsic curvature and parallel
transport?

We will prove the following statement, true for both Euclidean and Lorentzian metrics.
Consider a curve Υ in a spacelike hypersuface Σ and the normal field n to Σ:

Given two points s and t on Υ, the angle between the normal vector nt at t and its parallel trans-
port Pns to t, is the invariant line integral of the extrinsic curvature K along Υ.

By angle for the Lorentzian case, we mean the rapidity of the boost taking Pns to
nt, see below and Section 3.4. The proof works for any dimension and in Lorentzian
signature.

For definiteness, we restrict to the case relevant to us, four dimensions and a space-
like three dimensional hypersurface. We keep both signatures for easier comparison
of Euclidean and Lorentzian angles. This comes down to keeping the normalizeation
ε ≡ nαnα of the normal, which is ε = −1 for the Lorentzian case and ε = 1 for the Eu-
clidean case.
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Consider a manifold M, with a coordinate choice xα and a hypersurface Σ with coor-
dinates ya (lower-case latin letters a take three values).

A basis of tangent vectors on Σ is provided by32

χαa ≡
∂xα

∂ya (6.1)

The curve Υ is given parametrically by a map λ→ xα(λ), with xα(λ) ∈ Σ.
From the line element

ds2 ≡ gαβdxαdxβ = gαβχαaχ
β
bdyadyb (6.2)

we read the induced metric

hab = χαaχ
β
bgαβ (6.3)

with the completeness relation for the inverse metric

gαβ = ε nαnβ + hab χαa χ
β
b (6.4)

easily checked and memorised by the equality of dimensions and co-dimensions:
gαβgαβ = 4, habhab = 3, nαnα = ε2 = 1.

The extrinsic curvature of Σ is given by

Kab = χαaχ
β
b∇αnβ (6.5)

We may choose the coordinate system ya on Σ to be such that, in a neighbourhood of
Υ, λ along Υ is one of the coordinates. The basis vector χαλ then has an intrinsic meaning
on Υ, it is its tangent vector Vα = χαλ ≡

dxα(λ)
dλ . We define the extrinsic curvature K(λ) along

Υ by

K(λ) =
VαVβ∇αnβ

VρVρ
(6.6)

This is a spacetime scalar. For convenience, we henceforth take λ to be an affine parame-
ter. Consider two points s and t on Υ. We saw in Section 2.3.1 that the parallel transport
equation along Υ for any vector at s is solved by the image of the holonomy P. Thus,
the parallel transport (Pns)α(λ) of the normal at s up to the point labelled by λ, satisfies

Vβ∇β(Pns)α = 0 (6.7)

We are interested in the change of the inner product between the parallel transported
(Pns) and the normal n at some point λ, with respect to λ. We have

d
dλ

(Pns)αnα = Vβ(Pns)α∇βnα (6.8)

32The basis of tangent vectors χαa on Σ is often denoted eαa because it can be also understood as a choice of
triad. This is a bad notation which we avoid and stress that χαa is a coordinate based choice of basis of TΣ.
Furthermore, note that χαa are rectangular, non-invertible matrices.
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where we used that (Pns)αnα is a scalar and the parallel transport equation (6.7).
Now, the vector (Pns)α written as a linear combination of nα and Vα reads

(Pns)α = ε(Pns)ρnρ nα +
(Pns)µVµ

VνVν
Vα (6.9)

This can be checked by contracting with nα and Vα. Replacing (Pns)α in equation (6.8),
the first term vanishes because nα is normalized, i.e. nα∇βnα = 1

2∇βn
αnα = 0. In the second

term, we recognise K(λ) from equation (6.6). Thus, we have

d
dλ

(Pns)αnα = (Pns)µVµ K(λ) (6.10)

We are almost done. The inner product with the metric is invariant under parallel trans-
port with the Levi-Civita connection, and thus (Pns)α(Pns)α = ε. Contracting equation
(6.9) with (Pns)α we have

ε = ε
(
(Pns)αnα

)2
+

( (Pns)µVµ

VρVρ

)2
(6.11)

To ease notation, let us call

ε I(λ) ≡ (Pns)αnα (6.12)

The minus sign for the Lorentzian case is because (Pns)α and nα are in the same light-
cone, thus their contraction with the metric is negative and then I(λ) is positive in both
cases.33 We want to then solve the differential equation

d
dλ
ε I(λ) =

(
ε − ε I(λ)2)

)1/2 √
VAVA K(λ) (6.13)

The angles are defined as in Section 3.4. The Lorentzian angle ζ(λ) is the rapidity of the
S O+

↑
(1, 1) boost (proper hyperbolic rotation) taking (Pns)α to nα, in the plane defined by

(Pns)α to nα. The Euclidean angle φ(λ) is similarly the angle of the S O(2) rotation taking
(Pns)α to nα. Remembering that (Pns)α and (Pns)α are normalized, these are given by

I(λ) = cosh ζ(λ) , ε = −1
I(λ) = cos φ(λ) , ε = 1 (6.14)

Let us do the Lorentzian case, the Euclidean will then be evident. Replacing in (6.13),
we have

−
d

dλ
cosh ζ =

(
cosh ζ2 − 1

)1/2 √
VαVα K(λ) (6.15)

33The parallel transport cannot take (Pns)α outside the light cone. This follows from the preservation of the
inner product under parallel transport: by continuity, (Pns)α, would have to turn null and then spacelike, but,
(Pns)α(Pns)α = −1.
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Note that cosh2 ζ is always larger than unit. Thus,

−
d

dλ
ζ(λ) =

√
VαVα K(λ) (6.16)

where we have used that cosh2 ζ − sinh2 ζ = 1 and ∂ cosh ζ
∂ζ

= sinh ζ. We can now integrate
for ζ(λ). The parallel transport of the normal at the starting point s is by definition itself,
we have I(λ) = cosh ζ = 1, thus, ζ(λs) = 0. Then, the Lorenzian angle ζ(λ) at a point λ on
Υ, between ns and its parallel transport Pns(λ) reads

ζ(λt) = −

∫ λ

λs

dλ
√

gαβ ẋα ẋβ K(λ) (6.17)

where we reintroduced the notation Vα = ẋα, to recognise the invariant line integral.
The minus sign is a matter of convention, and we may redefine Kab → −Kab to write,
more compactly

ζ =

∫
Υ

K (6.18)

6.1.2 Discretization scheme, discretization ambiguities and boundary data

Coarse triangulations can only capture a few qualitative degrees of freedom In a
physical problem treated as a geometry transition, the path integral is conditioned to
a quantum boundary geometry. The path to the quantum boundary geometry is to
start from a continuous surface, discretize it on a triangulation, and encode the discrete
distributional geometry in a coherent spin-network state of Section 4.3.

In the following section, we exploit the spherical symmetry of the spacetime and
the specific choice of hypersurfaces, that will be intrinsically flat, to carry out the dis-
cretization in a simple manner. This will result in the path–integral being peaked on
a degenarate configuration (4D simplicial geometry of zero four–volume). This will
allow us to investigate the interplay between the possible geometrical configurations:
by slightly modifying the boundary data, the path-integral will be dominated by a 4D
Lorentzian or Euclidean simplicial geometry instead.

In turn, we will proceed to discuss a general expression independent of the choice
of hypersurface.

In this section we briefly comment on the arbitrariness of carrying out such dis-
cretizations. We have in mind “rough” discretizations, suitable for spinfoam amplitudes
built on coarse 2-complexes, where only a few degrees of freedom of the gravitational
field may be captured. The discussion here concerns the passage from a continuous
surface to a triangulation and is strictly classical.

In precise discrete evolution schemes, such as the Sorkin evolution scheme for Regge
calculus [204], we have to discretize in a consistent way, such that there is a sense in
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which the discrete Einstein’s equations are approximately solved to a better approxima-
tion as the triangulation is refined.

There is little utility in using such schemes for spinfoam amplitudes defined on
coarse 2-complexes. Unless a refinement procedure is to be performed subsequently,
the precise way in which the discretization is carried out will be largely amibiguous in
any scheme.

However, spinfoam amplitudes defined on coarse 2-complexes are expected to be
physically relevant, in particular for treating problems where few-degrees of freedom
are sufficient to capture some of the relevant physics.

This is assumed to be the case in our setting, where we are only looking to get a
scaling, relating two characteristic physical scales, and there is a high degree of (spheri-
cal)symmetry. This is also typically assumed to be the case for treating the cosmological
singularity, in spinfoams, and in general.

We note that the above observations hold regardless of whether the amplitudes de-
fined on the 2-complex are to be understood as describing fundamental degrees of free-
dom or coarse-grained degrees of freedom.

At the level of coarse triangulations of a continuous surface, any discretization scheme
would fail to capture details of the geometry. Thus, the result of the calculation should not
depend on the details of the discretization scheme. We present evidence for this in the in-
terplay between the different kinds of geometric critical points when we estimate the
lifetime in Section 6.3.

To summarize, for say an area data A, it is not the precise numerical value, to be four
or eight meters squared, that is relevant. It will be the dependence of the data as functions
of the relevant physical scales that is of importance, in our case, on the mass m and the
bounce time T . Numerical coefficients reflecting the arbitrariness of the discretization
scheme should not play a role, if the calculation is to be consistent.

A simple discretization scheme

We are initially given a continuous spacelike boundary B, possibly disconnected, com-
posed of a number of spacelike hypersurfaces. The exterior spacetime metric gµν induces
an intrinsic metric hab and an extrinsic curvature tensor Kab on B.

The geometry of the boundary B will be approximated by a discretization. The dis-
cretized geometry will be distributional and defined on a piece-wise flat 3D simplicial
manifold Γ∗. That is, Γ∗ will be a spacelike tetrahedral triangulation of B.

Information on the extrinsic and intrinsic curvature will be concentrated on the in-
terfaces between the flat pieces, the triangles `? shared by two tetrahedra n? and n′?,
the source and target of the link. To avoid confusion, we stress that the 3D simplicial
complex Γ∗ will not in turn be embedded in a simplicial triangulation of spacetime. The
definition of the embedding only requires a local extension, see below.

The dual graph Γ (which will be four-valent) has links ` and nodes n dual to triangles
and tetrahedra in Γ∗. The boundary state is built on this graph. The discrete geometry
of Γ∗ will be fully specified by giving a set of data A` = ~ω`, ζ`, and ~kn`, corresponding
(up to the gauge phase which we ignore here) to the twisted-geometry parametrization
of the coherent spin-network states, see Section 4.3.



128 Geometry Transition in Covariant Loop Quantum Gravity

Below we sketch the steps for carrying out explicitly such a discretization. The first
step is to choose a topological triangulation Γ?. At this point, Γ? is a topological 3D
simplicial-complex and we have yet to ascribe any geometry to it.

We then embed Γ? inside B. We now have triangular 2-surfaces `? and tetrahedral
3-regions n? in the boundary B. Notice that we may not understand the state as be-
ing invariant under spatial diffeomorphisms once this step is taken. Diffeomorphism
invariance, as well as gauge invariance, is understood to be imposed by the spinfoam.

The precise embedding is a matter of choice. In practice a reasonable choice will
be dictated by the symmetries of the problem. In a space-time without symmetries, one
should try different embeddings and see whether the functional dependence of the data
on the physical scales of the problem changes.

The area data are identified with the proper areas of the triangular 2-surfaces `? of
Γ?, embedded in B and dual to the link `, and are interpreted as the norms of the fluxes.
The spins of the boundary state will be peaked on these areas.

The area data, along with the boost angles ζ` encoding the extrinsic geometry, are the
two quantities with which we will be primarily concerned. They are manifestly gauge–
invariant (and covariant) data. They are geometrical quantities, proper areas and boost
angles, that do not depend on a choice of a triad frame in Γ?.

The boost angle ζ` can be calculated in various manners. The reason we present
below different ways of calculating the boost data is to emphasize that the result should
not depend on the choice of discretization scheme, thus, use of any of the following
procedures should yield the same result for the physical observable.

One way is to use the result of the previous section. We choose “representative”
points in the two tetrahedra n? and n′? that share the triangle f ? and a curve Υ that
joins them. We then define

ζ` ∼

∫
Υ

KΥ (6.19)

with KΥ the extrinsic curvature along Υ as defined in the previous section and the sub-
script Υ on the integral means that integration is performed with the invariant line el-
ement (infinitesimal proper length) along Υ. This boost angle will only see one com-
ponent of the extrinsic curvature, the one in the plane defined by the normal to the
hypersurface and the tangent to Υ.

Alternatively, we may instead define the boost angle by smearing along Υ the mean
extrinsic curvature,

K = Kabqab = ∇µnµ (6.20)

which smears the extrinsic curvature in all infinitesimal directions along Υ.
A third way to do things is the following: choose a region R`? of B that includes the

triangular surface `?. We want to capture the average extrinsic curvature in R`? and
distribute it only on `?. This implies the definition

KR`?
A`?

≡
1

A`?

∫
R`?

dvolB K (6.21)
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which again defines a covariant dimensionless quantity that is readily interpreted as an
“averaged” boost angle.

In practice, one should try different curves, regions and the definitions above, to
verify that the functional dependence of ζ` on the physical scales does not depend on
these choices. Note that both K and KΥ are straighforwardly interpreted as measuring
the infinitesimal change in the normal, and their units are inverse length. The integra-
tion with the infinitesimal proper length yields a dimensionless quantity. We showed
in the previous section that KΥ precisely corresponds to the boost relating the parallel
transport between the two regions.

We now impose that Γ? be piecewise-flat. We are missing two reals for each tetrahe-
dron v?: we have specified four variables per tetrahedron and need to fix two more to
get classical geometry. The remaining missing information, in order to fully specify the
geometry of Γ?, is purely directional [205]: the relative local orientation of the face dual
to ` with respect to the adjacent faces. This information will be in the normal data kn`.

Given the areas, the closure condition in each flat tetrahedron must be satisfied

0 =
∑
`?∈v?

A`? k`? n? (6.22)

A simple counting argument can convince the reader that this completes the intrin-
sic geometrical information for Γ?: for each tetrahedron, there are four kn`, thus eight
real numbers. Understood as normalized 3D vectors, they must satisfy closure (minus
three). Arbitrary rotations of the triad (gauge) remove another three degrees of freedom.
Thus we are left with two reals which correspond to having specified two 3D dihedral
angles of the tetrahedron, plus the four areas; in all six numbers for each tetrahedron,
that fully specify the intrinsic geometry of Γ∗. The fact that they do so uniquely up to
inversion is known as Minkowski’s theorem.

The distributional extrinsic geometry is encoded on the interfaces between tetrahe-
dra, the triangles `?. This is equivalent to demanding that the tetrahedra be flatly em-
bedded locally, so that the normal is parallel transported to itself. We stress again that
this does not imply a triangulation of spacetime, we need only assume a local extension
of Γ∗.34

Thus, we need only a single number, the boost angle, and the directions that specify
which is the component of the extrinsic curvature that is non-zero.

There remains to specify the normal data ~kn`. They are understood as points in S 2

or in the Riemann sphere CP1 and are represented as components in an orthonormal
frame (triad) in a tetrahedron v? , which corresponds to fixing the S U(2) local gauge,
see Figure 6.1. We will use the Euler angle parametrization and the boundary states of
Section 4.3.

Ideally, what one would wish for is a sense in which the smearing of the intrinsic
curvature is captured by the 3D deficit angles of the hypersurface. Then, calculate the
4D deficit angles and then compare with the gauss-codazzi equations that relate the
three curvatures.

34This is also the sense in which isolated continuous hypersurfaces can have an extrinsic curvature, that can
serve for instance as Cauchy data in an initial value problem.
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For the explicit choice of hypersurfaces in the following section, we do not perform
such a step. We exploit a convenient choice of hypersurface and the spherical symmetry
of the spacetime, to deduce a sense in which the intrinsic geometry is captured by the 3D
deficit angles. This will result in the dominant contribution to the path integral coming
from a degenerate 3D geometry.

6.2 A well-defined, explicit expression for the amplitude

In this section we outline the choice of hypersurface and discretization and give the
explicit form of the transition amplitude defining the lifetime for an explicit choice of
surface. The derivation is given in Appendix B.

6.2.1 Choice of hypersurface and triangulation

In this section we briefly review the setting of [67]. We refer the reader to this article for
more details. We discuss here the main assumptions and some important features.

We choose the boundary B to be composed by two Lemaître tL = const. surfaces [206].
These are the C± surfaces of Figure 5.1. The pieces in the flat part of spacetime are
ignored and we take C± to extend from ∆ up to r = 0.

This approximation can be understood as the assumption that the timescale of the
physical process is dominated by the tunneling probability of the degrees of freedom
that are in the low curvature region. That is, by the intuitive understanding that it is
“easier” for the geometry to tunnel in the strong curvature regime.

Another justification comes from the fact that we can choose boundary surfaces, such
that the spacetime parameters m and T are encoded only at the tip ∆ of the quantum re-
gion, see the final section of the previous chapter. By the assumption that the amplitude
does not depend on the hypersurface choice, further justified in the following section by
a calculation for an arbitrary surface, refining the triangulation in the strong curvature
region would not have added any information to the amplitude. In conjunction with
the coarse triangulation we will use, the strong curvature inside the hole is essentially
ignored in this setup.

The constant Lemaître time surfaces are intrinsically flat. As spacelike hypersurfaces
in a three–dimensional spherically symmetric spacetime, with the radial coordinate tak-
ing values from r = r∆ to r = 0, they are topologically 3-balls. That is, they are foliated
by 2-spheres with proper area 4πr2 for each value of r ∈ (0, r∆). Geometrically, since
they are intrinsically flat, they are the equivalent of a cone, in three dimensions: they
are intrinsically flat but there is a curvature singularity at r = 0 (a point in C±).

This property and the spherical symmetry suggests a straightforward discretization.
We first triangulate the boundary of C±, where the two hypersurfaces are identified.
This is the 2-sphere ∆. We triangulate the sphere at r∆ with a regular tetrahedron. That
is, the areas of the four triangles are all equal. Let us call this area a. These four triangles
are referred to as angular, since they triangulate a sphere which is at constant radius.

We triangulate the interior of C± with four tetrahedra. Their base triangle, is one of
the triangles triangulating ∆ and is of area a. By spherical symmetry we take each of
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these tetrahedra to be iscosceles and call the area of each of the remaining three trian-
gles b. We refer to these triangles as radial because they extend from r = r∆ to r = 0.
We stress however the discussion in the previous section, one should not imagine this
triangulation as embedded back in the spacetime of Figure 5.1. This is the 3D simplicial
complex Γ?.

To visualize the analogous discretization in 3D, imagine a cone, discretized to a hol-
low triangular pyramid: the circle that is the boundary of the cone becomes a regular
triangle. This is the equivalent of triangulating the sphere ∆ with a tetrahedron. The
surface of the cone is triangulated by three iscosceles triangles, which is the equivalent
of the four tetrahedra triangulating the interior of C±.

Up to the extrinsic data, we have almost completely specified the discretization. We
embed Γ? inside C±. We need not calculate the precise values for the areas here, see [67]
for a calculation.

It is obvious that any reasonable embedding will result in both a and b being pro-
portional to ∼ m2. A further dependence on T/m may be present, which will be weak.
The explicit form resulting from the calculation is given in the following subsection.

Say we have calculated a, which will be approximately equal to ∼ πm2, one fourth of
the area of the sphere at ∆.

How can we impose that the intrinsic curvature be zero? By demanding that the
triangulation of Γ? is a triangulation in a flat 3D Euclidean space. This is equivalent
to demanding that the volumes of the four isosceles tetrahedra be equal to the volume
of a regular tetrahedron with triangle areas a and is a condition on a and b. Since a is
specified, we have fixed b, which will equal a up to a numerical factor of order one.

As a consequence of this choice of discretization (and hypersurface), the volume of
the geometrical 4-simplices dual to the 2-complex on which the spinfoam amplitude is
peaked vanishes and corresponds to a 3D geometry (4D of zero four–volume).35 We will
see in Section 6.3.1 that this is not a bad feature of the discretization.

Having calculated all the area data A`, for a given choice of frame in each tetrahe-
dron, and having imposed that all of them are iscosceles, we have also fixed all the
normals k`n. The gauge choice used in [67] to express k`n in components on a triad basis
is depicted in Figure 6.1.

There remains to calculate the extrinsic data. There are two kinds: one is the boost
angle at the tip ∆, ascribed to the links dual to the four angular triangles of the regular
tetrahedron. These data will be living on a thin–wedge of the simplicial geometry. The
calculation of a boost angle at a thin wedge is explained in Section 3.4.

The second kind are the boost angles associated to the radial triangles of the iscosce-
les tetrahdra. For this we may use any of the procedures of the previous section.

In summary, and recalling the closing comments of the last chapter, the bounce time
is only encoded in the combination T/m, through the area of the sphere ∆. To avoid
confusion, we recall the abuse of notation in Chapter 5: ∆ is denotes both the sphere at
the tip of the quantum region and the dimensionless quantity related to its radius by
r∆ = 2m(1 + ∆).

35This is checked by calculating a Cayley–Menger determinant.
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α

β

Fig. 6.1: The choice of orthonormal frame in each of the four iscosceles tetrahedra composing the
triangulation Γ?. Four such tetrahedra triangulate each surface C± of Figure 5.1. The angles α and
β correspond to the Euler angle parametrization of the S U(2) coherent states of Section 4.2. The
x − −y − −z axis correspond to the choice of orthonormal frame. They imply that the components
of the normal vectors may be read as in Cartesian coordinates but we caution that they are to be
understood as the triad vectors ea = (e1, e2, e3).

The areas are given as

a ∝ 2m(1 + ∆(T/m))
b ∝ 2m(1 + ∆(T/m)) (6.23)

The radial boost angles by

ζ ∝ 1 (6.24)

and the angular boost angle by

ζ ∝ Ach

√
1 +

1
∆(T/m)

(6.25)

6.2.2 Summary of the amplitude

This is a summary in self-contained form of all the formulas defining the transition am-
plitude W(m,T ) for the choice of hypersurface and discretization discussed in the pre-
vious section and the 2-complex of Figure 6.2. All labels refer to the oriented boundary
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Oriented boundary graph Γ Spinfoam Skeleton

Spinfoam 2-complex

Fig. 6.2: The 2-complex with its oriented boundary and skeleton, on which the transition ampli-
tude WC(m,T ) is defined. Notice that Γ = ∂C. The spinfoam is composed of sixteen faces. The four
“middle” include both vertices and are bounded by three edges and one boundary link. These
have one interior edge, the S L(2,C) group elements gve living on this edge are fixed to 1S L(2,C),
exploiting the fact that one integration per vertex is redundant. The twelve other faces (six on
the top vertex and six on the bottom vertex) are of the wedge form (that is, their boundary is
composed by two edges and one link) and are bounded by two edges and one boundary link.

that determines the pattern of contraction. We refer to [67] for the details and nota-
tion. See Appendix B for the derivation and Appendix A for a presentation of the basic
recoupling techniques used here.

For lack of space, we do not explain the details of the objects appearing in this ex-
pression. The amplitude as defined below is finite and expressed in terms of explicitly
known analytic functions.

Much effort has gone into the numerical investigation of the amplitude. Asymptotics



134 Geometry Transition in Covariant Loop Quantum Gravity

of the various bits and pieces are available, but there is no guarantee that putting these
together yields a meaningful approximation. Interpolations between the asymptotic
expressions and other approximations and techniques to deal with such amplitudes are
currently under development at the Center for Theoretical Physics in Marseille.

The numerical study of such objects is resource intensive and unstable. The biggest
difficulty is to perform the spin–sum. Currently, performing the spin–sum even at the
level of spins as low as less than ten is infeasible.

We derived in Section 4.4.3 a simple estimate for such amplitudes. In the following
section we will estimate the lifetime using these results.

The amplitude is given by

W(m,T ) =
∑
{ ja, j±ab}

w(z0, z±, ja, j±ab) × (6.26)

×
∑

{J±a ,K±a ,la,l±ab}

⊗
a,±

N J±a
{ j±a }

(ν`∈a± ) f J±a ,K
±
a

{ j±a }{l±a }

 × (6.27)

×

⊗
a,±

iK±a ,{l
±
a }


Γ

. (6.28)

where the weight function is

w(z0, z±, ja, j±ab) = c(η, η0)

∏
a

d ja e−
1
2η ( ja−

(2η2−1)
2 )2

eiγζ ja

 ×
×

∏
ab,±

d j±ab
e−

1
2η0

( j±ab−
(2η2

0−1)
2 )2

eiγζ0 j±ab

 (6.29)

with

c(η, η0) =

e 1
2η0

(
(2η2

0−1)
2

)2
4 e 1

2η

(
(2η2−1)

2

)212

(6.30)

The normals are in

N J±a
{ j±a }

=

←−−−⊗
`∈a±

D j`
m` j`

(ν`)

 i Ja, { j±a }
{
−→m±a }

(6.31)

The arrowed product indicates that the magnetic indices of the representation matrices
on the half links outgoing from the node come with a minus sign. The boost part is

f K±a ,J
±
a

{ j±a }{l±a }
≡ dJ±a i Ja, { j±a }

{
−→p±a }

∫ dr±a
sinh2 r±a

4π

−−−→⊗
`∈a±

d j`l` p (̀r±a )

 i Ka, {l±a }
{
←−p±a }

dK±a (6.32)
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The arrow in the tensor product of the d jlp(r) indicates that those living on links ingoing
to the node appear as dl jp(−r). The ranges on the l and p indices are l ≤ j and p is
summed over the range |p| ≤ j. The functions d jlp(r) are given by the integral

d jlp(r) =

√
d j

√
dl

∫ 1

0
dt dl

jp

(
te−r − (1 − t)er

te−r + (1 − t)er

)
(6.33)

× d j
jp(2t − 1) (te−r + (1 − t)er)iγ j−1,

where d j
mn(cos β) are Wigner’s S U(2) matrices. The 24–j symbol is given by⊗

a,±

iK±a ,{l
±
a }


Γ

=
∑
{ha,h±ab}

(−1)
∑
`∈Γ h`

∏
a,±

iK±a , {l
±
a }

{
←−
h ±a }

(6.34)

The four-valent intertwiners are defined as

iJ, j1, j2, j3, j4
m1,m2,m3,m4 = (6.35)

= (−1) j1− j2+µ

(
j1 j2 J
m1 m2 µ

) (
j3 j4 J
m3 m4 −µ

)

with µ = −m1 − m2 = m3 + m4 and
(

j1 j2 j3
m1 m2 m3

)
is the Wigner 3–j symbol. Finally

zo = η0 + iγζ0 =
2m(1 + e−T/2m)√

2γ~G
+ i

T
2m

. (6.36)

z± = η0 ± iγζ0 =
2m(1 + e−T/2m)√
√

62γ~G
∓ i arctan 4

√
6. (6.37)

6.3 Estimation of lifetime

6.3.1 Estimation for the explicit setup

To estimate the lifetime from the setup of the previous section, we investigated numeri-
cally the estimation of Section 4.4.4, by plugging in the boundary data. A representative
result is plotted in Figure 6.3

After extensive tests, we conclude that quantity we have called the lifetime scales as

τ(m) ∼
m
γ

(6.38)

The physical interpretation of our results is evolving at the time of writing. In the next
section we explain that in the author’s opinion, this result implies that the physical
meaning of τ(m) is different than the one implied in Chapter 5, which reflects the ideas
in the work [67].
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50 100 150 T

0.2

0.4

0.6

0.8

1.0

W2

W2 for m = 10, 11,..., 15 and

k = 2, γ = 1. Peak height normalized to unit.

Fig. 6.3: The vertical axis is the squared modulus of the transition amplitude and the horizontal
axis is the bounce time T . The different plots correspond to different values for the mass. The
amplitude is periodic in the extrinsic data ζ. The period for each value of the mass is marked with
a black dot.

For lack of space, and because we will understand this result analytically in a more
general setting in the following section, we do not present more details on the numerical
investigations here and refer to [92]. We give a qualitative understanding of why this
turns out to be the case.

The result 6.38 is easily understood as follows. To invert the relation ∆(T/m) we used
the approximation ∆(T/m) � 1, that is, we took the sphere ∆ to be close to the horizon,
see [67] for a discussion.36

The area data in this approximation depend weakly on the bounce time, as α ∝
m2(1 + e−T/2m)2 while the radial boost angles do not depend on T . The only dependence
on T at play is then from the angular boost angles, that sit on a thin wedge, at the sphere
∆, and read ζ ∝ T/m.

The simplicial geometry dominating the spinfoam amplitude according to the esti-
mation of Section 4.4.4, is the degenarate geometry determined by the area data. Thus,
all the dihedral angles vanish on a thick wedge, and the angles at a thin wedge all equal
π. We coded this in Section 4.4.4 by setting β = 0 and Π` = π for the degenarate configu-
rations.

36This approximation has been subsequently lifted and numerical analysis yields identical results.
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The amplitude is then dominated by a product of four exponentials of the form

P(T |m) ∝ |W |2 ∼ e−(γ T
m−π)2/t (6.39)

The expectation value of T in the distribution P(T |m) is then highly peaked on mπ/γ.

The role of Euclidean, degenerate and Lorentzian simplicial configurations

We discuss this result further in what follows. Before continuing, we want to emphasize
the interplay between the different geometrical critical points and give evidence for the
independence of the result on the discretization procedure.

In this specific example, our choices resulted to in a degenerate configuration, where
both 4-simplices dual to the 2-complex of Figure 6.2 have zero four-volume.

We may parametrize the ambiguity in the area data by allowing them to vary such
that the geometry is no longer degenerate. When we allow for small variations, of the
order of unit, we scan a range of Lorentzian and Euclidean simplicial geometries. 37

That is, φ(ω) will not vanish and will be interpreted as either a Lorentzian or Euclidean
dihedral angle.

To see this, imagine a tetrahedron with three of its triangles squashed on its fourth
triangle. The tetrahedron is thus of zero three-volume. Lifting the apex at which the
three triangles meet, the segment lengths increase and we have a Euclidean tetrahedron.
In the Euclidean case, for small variations, the dihedral angle itself is approximately
equal to π. This is because in Euclidean geometry, two normals pointing in the opposite
direction form an angle π amongst them.

Similarly, lifting the apex in a Minkowski time direction (thus the segment lengths
decrease) results in a Lorentzian tetrahedron. The dihedral boost angle for the Lorentzian
case will be small, see section 3.4. However, because of the presence of Π` = π in the
Lorentzian case, the estimate of equation (6.39) given above is not altered.

6.3.2 Estimate for arbitrary choice of hypersurface and 2-complex

In this section, we analyse the lifetime for an arbitrary choice of boundary surface.
We will give an estimate for the lifetime based on general grounds and within the

assumption that the area and normal boundary data ω and k are Regge-like.
We will not make an explicit choice of graph Γ or 2-complex C on which the bound-

ary state and the spin-foam amplitude is defined. The analysis presented below applies
to the transition amplitudes studied in Chapter 4. In summary, we are considering spin-
foam amplitudes, defined on a fixed 2-complex C without interior faces and dual to a
simplicial complex, with its boundary coinciding with the graph on which the boundary
state is defined, i.e.∂C = Γ.

The lifetime, defined in equation (5.20), is given in terms of the measure α(m,T ) and
the transition amplitude W(m,T ) through equations (5.16), (5.18) and (5.17).

37It is possible to fall on a non–geometric configuration but we do not consider this case here.
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At the time of writing this thesis, we do not have an explicit expression for the mea-
sure α(m,T ). We will show that in the above setting, the lifetime will scale linearly with
the mass, unless the measure brings in a non-trivial dependence on the areas.

The amplitude W(m,T ) will be approximated by a stationary phase evaluation, using
the results of Chapter 4. We consider that an explicit choice of interior boundary B has
been made. The continuous intrinsic and extrinsic geometry of B is then approximated
by a piece-wise flat distributional geometry, as explained in Section 6.1. The spacelike
surface B is triangulated (in tetrahedra) and the metric information is encoded on the
faces of the triangulation. To each face corresponds an area A, a boost angle ζ and two
normalized 3D normals k. Once the discretization has been carried out, all of these
boundary data will in general depend on m and T . Only A and ζ appear explicitly in the
approximation for W(m,T ).

Areas of the discretization will in general scale as m2. A dimensionless function of
the two spacetime parameters can only be a function of T/m.38

The areas will then in general have the following functional form in terms of the two
spacetime parameters

A(m,T ) = m2Ã(T/m) (6.40)

and the boost angles will be of the form

ζ̃(T/m) (6.41)

where tilded quantities are dimensionless.
The identification with the labels of the coherent states is immediate for the boost

angles and we simply set ζ(T/m) ≡ ζ̃(T/m). The areas are identified with ω on which
the Gaussian weights of the boundary state are peaked. The area boundary data ω are
given by ω =

η
2t −

1
2 . The semiclassicality condition

√
tω � 1 implies that η/t � 1/

√
t

and since the semiclassicality parameter
√

t is small, then η/t � 1. Thus, it is a good
approximation to take ω ≈ η

2t .
For the labels η, we then have the identification

ω =
η

2t
≡

m2

~
Ã(T/m) (6.42)

The factor m2

~
serves as the large parameter λ with respect to which we take the sta-

tionary phase approximation. The functions Ã(T/m) along with the 3D normal data k
determine the dominant contribution to the spinfoam amplitude.

We recall that we are working in geometrical units (G = c = 1), where lengths, times
and mass all have the dimensions

√
~. The spins j are dimensionless and so are ω, η and

t.

We now turn our attention to the amplitude. Given only the data ω and k, there are
two distinct possibilities: they are either Regge-like or not. We only consider here the

38Dimensionless quantities including ~ (for example T/~) are excluded because the dependence of the
boundary data on T and m is calculated from a classical discretization procedure and there is no isolated
~ that could come into play from classical general relativity.
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case whereω and k are Regge-like, which means that they specify either a 4D Lorentzian,
4D Euclidean or 3D degenerate (Euclidean) geometry for the simplicial complex dual to
the 2-complex C. The possibility for a vector geometry, that does not admit an inter-
pretation as a simplicial complex, is excluded by the choice of semi–classical boundary
state. The picture is then the following. The spinfoam amplitude is dominated by the
configuration which corresponds to the geometrical simplicial complex that is deter-
mined only by ω and k.

On this configuration, once the spin-sum is performed, the data ω and k determine
the dihedral angles Θ(ω, k) between tetrahedra that share a face. In turn, these deter-
mine the (Palatini) deficit angles φ(ω, k). These are all boost angles among tetrahedra
on the boundary because the spinfoams we consider do not have interior faces (on the
boundary, the deficit angles are exterior dihedral angles, i.e. boost angles among tetra-
hedra). The φ(ω, k) are the exact analog of ζ, and thus determine an embedding φ(ω, k)
preferred by the dynamics.

The angles φ(ω, k) would have to match the data ζ in order for the amplitude to not
be suppressed in the semiclassical limit. Choosing the boost data ζ to match φ(ω, k)
is equivalent to the procedure followed in a perturbative setting, i.e. in the graviton
propagator calculations, see for instance Section V.B of [42].

In general, when an interpolating solution to Einstein’s field equations is not to be
expected, this will not be the case and the amplitude will be suppressed exponentially
in the mismatch between ζ and φ.

Given the data ζ, ω, k, and defining λ ≡ m2/~, we have the following estimation for
the amplitude, repeated here from Section 4.4.4 for convenience,

W ∼

[∑
s(v)

(λ)Nµ(ω/λ) ×

×
∏
`

exp
(
−

1
4t

(γζ` − βφ`(ω/λ, k) + Π`)2 + i γ ζ` ω`

)]
(1 + O(1/λ))

(6.43)

where again that β = γ, 0, 1 when a Lorentzian, degenerate or Euclidean simplicial ge-
ometry dominates the path–integral respectively. The function s(v) encodes the co-frame
orientation and takes values +1 or −1 on each vertex. The presence of multiple semiclas-
sical critical points, that is, the sum over s(v) configurations can be neglected, since for a
given choice of ζ, one configuration s(v) will be dominant. Calling Pfull(T |m) the proba-
bility distribution resulting from (6.43) and P(T |m) the probability distribution resulting
from keeping in (6.43) only the contribution from the dominant critical point, their ratio
is of the form

Pfull(T |m)
P(T |m)

= 1 + e−h(T/m) m2
~ (6.44)
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where h(T/m) is a positive function. Thus, we may neglect the sum over the 2N critical
points related by the different co-frame orientations. However, notice that any one of the
2N critical points may be the dominant one, and not necessarily the one corresponding to the two
Regge configurations (s(v) = ±1 everywhere). This implies that the recently proposed EPRL
model and the proper vertex model [30,43,207,208], which modifies the EPRL model so
as to remove the multiple semiclassical limits, will differ in their predictions regarding
this effect in the subdominant contribution to the lifetime.

The exponential
∏

` eiγζ`ω` , is then a pure phase and the estimation of the amplitude
is of the form

|W(m,T/m, t)|2 ∼ mNµ(T/m)
∏
`

e−(γζ`(T/m)−βφ`(T/m)+Π)2/4t (6.45)

Defining

x ≡
T
m

(6.46)

we are then left with the following expression for the lifetime

τ(m) = m

∫
dx x F(x)

∏
` e−(γζ`(x)−βφ`(x)+Π`)2/4t∫

dx F(x)
∏

` e−(γζ`(x)−βφ`(x)2+Π`)2/4t
(6.47)

where we defined F(x) ≡ α(x)µ(x) and the power mN cancels out between nominator
and denominator. From this expression, it is manifest that τ(m) is m times a function
that only depends on γ and t, which we denote as f (γ, t).

Thus, we conclude that

τ(m) = m f (γ, t) (6.48)

Let us discuss this result. The first thing is that other than the explicit linear depen-
dence of τ(m) on m, the mass may enter the scaling only through the semiclassicality
parameter t.

It is not clear whether a dependence of τ(m) on t is reasonable. As we saw above,
taking t = ~/mn, the allowed range for n, for the approximations taken here to be valid,
is 0 < n < 4. This would imply that the scaling of τ(m) on m in general depends on the
chosen n.

However, formula (6.47) suggests that, t will not be present in the leading order in m
in a generic situation. To see this, let us omit the product over links and consider that
there is only one gaussian in (6.47). The behaviour of the integrand will plausibly be
dominated by the gaussian weight over the function F(x), unless something exceptional
happens with the Hessian. We assume here that F(x) can be neglected. The standard
deviation of the gaussian is proportional to the square root of t, which is a very small
number for a macroscopic black hole: taking for instance k = 2,

√
t =
√
~/m (for example,

for a small, lunar mass black hole, this number is ∼ 10−30). The integrand, since it is also
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normalized in the denominator, will behave like a Dirac delta, evaluating the integrand
on the solution of the equation

γζ(x) − γφ(x) + Π = 0 (6.49)

which we call x0(γ). There are two possibilities. The peak is in the range of integration,
that is x0(γ) ≤ 0, or not. In the former case, we expect

τ(m) ∼ m
∫

dx x
e−(γζ`(x)−γφ`(x)+Π`)2/4t∫

dx e−(γζ`(x)−γφ`(x)2+Π`)2/4t

∼ m
∫

dx x δ(x − x0(γ)) (6.50)

∼ m x0(γ) (6.51)

More precisely, we have

τ(m) ∝ m ( x0(γ) + O(t)) (6.52)

In the case when x0(γ) < 0, we will have39

τ(m) ≈ m O(e−x0(γ)2/t) (6.53)

In this case, the scaling of τ(m) on m depends on the choice of t and further suppresses
the scaling with m. When we consider the product over links, τ(m) will be generically a
sum over such terms. Thus, we conclude that

τ(m) ≈ m f (γ) (6.54)

with the leading order coefficient f (γ) only depending on the Immirzi parameter.
The estimate given here neglects the truncation issue, which is discussed in Section

6.4.2. At the time of writing, an exact estimate of the transition amplitudes that takes
this issue into account has become available and results will be reported in [91].

6.4 Discussion of result and intepretation of lifetime

In the previous section we saw that employing the estimation of Section 4.4.4 for the
transition amplitudes, we arrive at a simple expression, equation (6.45), which provides
an estimate for modulus squared of the transition amplitude.

From this expression, we deduced that the lifetime, as defined in Section 5.4, scales
linearly with the mass as in equation (6.54). The estimate for the transition amplitudes of
Section 4.4.4 concerns 2-complexes without interior faces and assumes that the bound-
ary data are Regge-like. Both restrictions are taken because currently we do not have
an estimation for the transition amplitudes when either of these two conditions is not
satisfied. Whether the estimate changes when they are lifted is a subject for future in-
vestigations.

39There is a third possibility that is also suppressed: if it happens to be the case that there is a global
extremum and thus no solution x0(γ).
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Within these limitations, we have an estimate for an otherwise arbitrary 2-complex,
an arbitrary choice of boundary surface and of discretization scheme.

Choosing a one-vertex spinfoam instead of a two-vertex spinfoam like in Figure 6.2
would not yield a different estimation for τ(m). We note that we may create 2-complexes
with an arbitrary number of vertices while not having interior faces.

The precise choice of surface does not play a role in the estimate of τ(m). Further-
more, the discussion at the end of Section 6.3.1 applies to the estimate presented here:
the linear scaling in the mass m does not depend on whether the boundary data are
such that the path–integral is dominated by a Lorentzian, Euclidean or 3D degenerate
simplicial configuration.

Physical interpretation We estimated above that the lifetime scales linearly with the
mass. This result contradicts appears too short to be physically correct.

The lifetime as defined in Section 5.4, is the characteristic duration of the phenomenon
as deduced by a far-away observer. This was understood physically in the sense: “how
long do we have to wait until a black hole transitions to a white hole”.

In this sense, the expectation would be a lifetime that is far larger than m and hope-
fully shorter than τ ∼ m3. The latter would be a consistency check for the exterior
spacetime, in order for the approximation of neglecting Hawking evaporation to be
valid. Furthermore, an intermediate scaling of the order m2 would imply that the phe-
nomenon is possibly astrophysically relevant, on the assumption that small (lunar mass)
promordial black hole were formed in the early universe, see [88, 89, 209].

Reasonably, it should take a long time for such a geometry transition process to take
place. An estimate implying too long a time for the phenomenon to be of astrophysical
relevance would be a dissapointing, but reasonable result.

Instead, we have an estimation that is too short. For a solar mass black hole, a time
of order m is in the microseconds.

The lifetime estimate also suffers from the fact that there is no ~ appearing. The time-
scale we have estimated appears to be a classical quantity, with corrections including ~
that vanish as ~→ 0.

We would expect the process to be switched off when ~→ 0 (the transition probabil-
ity to go to zero) and the lifetime to go to infinity. What has gone wrong?

6.4.1 The lifetime is the crossing–time

We propose below that the issue here is that the time-scale we defined as τ(m) and called
the lifetime, corresponds to a different time–scale relevant to the phenomenon, which is
expected to be of order m, and is best called the crossing–time.

The linear scaling with the mass estimated above corroborates two other studies,
outside the context of LQG, which are relevant and we briefly mention here before
proposing an alternative interpretation of our results.

The first concerns the study initiated by Kiefer and Hajicek in [210] (2001), where the
authors argued that collapse is succeeded by anti–collapse in the context of null–shell
quantization. In a subsequent study [211] (2005) by Hajicek and Ambrus, the authors
calculated a characteristic time scale of the phenomenon, which they called scattering
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time, and concluded that the scaling is linear in the mass. The authors found this result
troubling. It was too short for it to be meaningful, on similar grounds as those discussed
above.

The second set of results concerns the recent and concurrent studies by Garay, Barceló,
Carballo et al [69–72] , where the authors independently used an exterior spacetime
closely resembling the HR-spacetime presented in Chapter 5. The path–integral is per-
formed using a wick–rotation (thus the integrand is non–oscillating) and performing a
functional integration over interpolating Euclidean geometries. This is a feature that
is not present in our setting (we saw in Chapter 3 that at the level of fixed–spins, the
asymptotic behaviour of the EPRL amplitudes is oscillatory for both Euclidean and
Lorentzian critical points).

The above calculation results in a scaling linear in the mass m, for the quantity we
have called here the lifetime τ(m).

In other words, the three calculations that we are aware of, that attempted to cal-
culate a characteristic time–scale for this phenomenon, reach the same conclusion, al-
though the techniques used and physical pictures in mind are different.

It is of interest to briefly mention the physical picture that Garay, Barceló, Carballo
et al have in mind, because it is radically different than the physical picture presented
here, but, at the technical level, the quantity of which a calculation is attempted in both
approaches is the same: the value of the bounce time at which the modulus squared of
the transition amplitude is peaked.40 General relativity is deduced from this result to be
strongly violated in short time–scales, essentially resulting in the non–existence of any-
thing resembling (geometrically) an apparent horizon or trapped–surface at the grav-
itational radius. Instead, as soon as the collapse has taken place, an oscillatory phase
begins alternating between collapse and anti–collapse, with energy gradually dissipated
until a notion of equilibrium is reached. The end result are conjectured to be long–lived
extremely compact objects called “black stars”, with their surface protruding a Planck-
ian distance outside the Schwartzschild radius of the remaining mass.

The point of view taken here, is that the event horizon present in exact solutions of
Einstein’s field equations will be approximately manifested in nature by a long–lived
apparent horizon. In other words, we do not expect General Relativity to be violated
near the Schwartzschild radius of the collapsed object, unless a large time scale with
respect to a time–scale of the phenomenon (the lifetime of the universe with respect to
m ) allows for the fluctuations of the metric near the Schwartzschild radius to become
significant.

In our opinion, although the physical picture in mind may be different, the results
from these three studies are not contradictory nor do they imply a violation of General
Relativity in short time–scales. While the definition in Section 5.4 does define in princi-
ple an observable, we propose here that its physical interpretation is different than the
one initially envisioned.

40The author had the opportunity to exchange views recently on these matters with Garay and Carballo, in
insightful discussions during a visit in Complutense University of Madrid.
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The lifetime calculated here should be understood as the crossing–time: the charac-
teristic time scale of the duration of the transition when it does take place.

The naming “lifetime” alludes to an atomic decay process and is the characteristic
time in which a decay becomes likely. This implies that the probability of decay per time
interval has been estimated (a small number) and of which roughly the inverse gives
the lifetime (a large number).

There is however a second characteristic time–scale for such phenomena: the time
it takes for the decayed particle to cross the nucleus. This time is proportional to the
radius of the nucleus times a characteristic classical speed deduced from the energy
gap. It is given in the dominant order by a “classical” contribution, in the sense that if
the barrier was not present it is roughly the time it would take for the classical particle
to travel from the center of the nucleus to the apparatus where it was detected.

To emphasize this point, we consider a rectangular potential tunneling experiment.
Imagine an electron gun shooting electrons from the left hand side of a potential barrier
at regular time intervals, at some energy. The transition probability gives an estimate
for the time we have to wait on the other side of the barrier until one of the electrons
tunnels.

When it does and is detected, we may also measure its crossing time, the time it took
from its emission from the gun until its detection on the other side of the barrier. This
will be roughly equal to the classical distance between the two apparatuses times the
speed; with some quantum corrections.

In the propagator between two coherent states built with gaussians, peaked on the
position of emission xL left of the barrier and the position of detection xR right of the
barrier (and on the same momentum p0), we expect to see a gaussian peaked on the
crossing–time

〈xL, p0|eiHt/~|xR, p0〉 ∼ e−(t−(xR−xL)p0/m)2/~ (6.55)

In the Penrose diagram of Figure 5.1 we essentially assume the process to take place.
To deduce the probability of the process to take place, we need to compare with the
probability of “anything else” taking place. A first step in this direction is to assume
that either the black to white process takes place, or, that the black hole remains a black
hole. Current investigations are focused on providing an estimation for the lifetime (not
the crossing–time) along these lines.

In summary, we appear to have calculated the crossing–time. We conclude that a
prediction of the EPRL model is that when the transition takes place, the crossing–time is
of order m, with sub–dominant corrections involving ~. Indeed, a crossing–time of order
m is to be expected as it is the time–scale in which timelike geodesics crossing the event
horizon in a Schwartzschild geometry reach the singularity.

The lifetime should be deduced from the probability for the process to take place,
which should not be confused with he value of the bounce time on which the ampli-
tude is peaked and which gives the crossing–time. The lifetime, is of course the desired
quantity in order to conclude whether this phenomenon is predicted to be of astrophys-
ical relevance or not.
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6.4.2 Current developments and open issues

The truncation issue To get the estimate 6.54, we normalised the probability distribu-
tion neglecting the fact that the truncation allows for meaningful boost angles values up
to 4πm/γ. This difficulty arises from the intepretation of the holonomies as discretiza-
tions of the Ashtekar–Barbero connection, which is an S U(2) connection. Neglecting the
phase α in the discretization of the 3D spin connection (it is pure gauge) [172, 173], the
discrete extrinsic curvature is coded in the twisted geometry parametrization as

hAB(ζ) ∼ eiγζ σ3
2 (6.56)

Thus, hAB(ζ) is periodic in γζ with a period 4π. This is the maximal boost angle that
can be meaningfully ascribed at each link. There is thus a maximum boost that can be
described between two adjacent space-time quanta by kinematical states at the level of
a fixed graph.

The amplitude is a function of these boundary data and thus it is also periodic. This
effect and a possible relation between the maximum boost and a bound in the spectrum
of the extrinsic curvature is presented in Appendix E, were we reproduce an unpub-
lished note by C.Rovelli, S.Speziale and the author.

The periodicity of the holonomy and the degree to which we can describe a discrete
geometry at the level of a fixed graph is discussed in detail by E.Livine in [212], where
the Immirzi parameter is claimed to act as an effective cut-off scale for the excitations
of the extrinsic curvature [212], for the reasons also explained above and in Appendix E
(taking γ → 0 allows for arbitrary large boosts ζ).

The semiclassical limit The role of the Immirzi parameter in physical predictions
from the EPRL model is not well understood. The results of this manuscript have been
extensively based on previous results obtained from the semiclassical limit of the EPRL
amplitudes at fixed–spins. The limit γ → 0 has been claimed to be necessary in order
to recover the emergent behaviour of a path–integral over geometries, on which our
analysis is based [32, 37, 213].

Furthermore, the two-point correlation function for the Lorentzian EPRL spinfoam
model for a single vertex, another central success of the model, is known to match with
the one in Regge calculus in the double limit j → ∞ , γ → 0 [42, 214] while keeping the
product jγ fixed.

Another indication comes from LQC, where the critical density ρmax at which the
bounce occurs is given by ρmax = ρmax(18π/l30)ρPl where ρPl is the Planck density and
l0 = 4

√
3πγ is the area gap, the smallest non–zero eigenvalue for the area operator.

The semiclassical limit in LQC is recovered when the area gap is taken to zero, which
is mathematically the same as taking gamma to zero because it depends linearly on
gamma.

Conceptually, gamma is treated as a mathematical parameter of the theory, that may
be of order unit, but to get the semiclassical limit, we need to take the relevant physical
scale, the area gap which happens to be proportional to γ, to zero [215].
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This is not unlike saying that ~ has the value it has and which is fixed by experiment,
but to get classical physics back we need to take a physical scale, such as the quantum
of the oscillator which is proportional to ~, to zero.

Taking the limit γ → 0 in our context allows for arbitrary boosts and overcomes the
truncation issue. This avenue is currently under investigation.

The probability for small T Qualitative information on the lifetime can be extracted
by interpreting the amplitude for small values of the bounce time T with respect to the
mass m ( γζ ∼ T/m << 4π) as a transition probability per unit of time (in Planck units)
when the spacetime is still well-approximated by the classical metric.

The transition probability then goes as

P ∼ e−1/t (6.57)

with the semi–classicality parameter taking values in

1 � t �
~2

m4 (6.58)

This implies a lifetime of the order 1/P, that is

1 � τ � em4
(6.59)

These bounds include and are compatible with observed physics, albeit largely incon-
clusive. Also, on dimensional grounds and within the semiclassical approximation for
gravitational phenomena, we would expect the probability for such a transition to decay
with

P ∼ e−m2/~ (6.60)

so as to have a dimension–full quantity that has units of inverse action. The behaviour of
the transition probability estimate appears reasonable on these grounds. An important
possibility not excluded in this work is whether a more detailed analysis will signifi-
cantly increase the transition probability.

The measure We showed in Section 6.3.2 that the parameter λ may only enter the
lifetime through the measure α(m,T ).

At the time of writing, we do not have an explicit expression for the measure α(m,T ).
We have thus not excluded in this manuscript the possibility that f (γ, t, λ) depends on λ
or t in a way that changes the scaling of the lifetime.

The measure at a level of a state built on a single link can be easily calculated and
does not bring a dependence on λ in τ. Preliminary results indicate that the dependence
on λ in τ from the complete measure will be subdominant and will not alter the re-
sults here. An explicit expression for the measure is expected to be available soon. The
current expectation is that the results will not be altered at the dominant order in m.
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The Hessian We have not calculated the Hessian on the critical points. The Hessian
for the critical points of the EPRL amplitude is unfortunately given by long formulas
that are difficult to manipulate. Work is currently underway in Marseille by S.Speziale
and collaborators as well as by B.Bahr and collaborators [216, 217], to simplify the ex-
pressions for the Hessian. We do not expect the Hessian to play an important role. It
does not depend on λ nor on t.

The classical setup The Rovelli-Haggard spacetime is a minimalistic model of the
phenomenon we wish to describe. Important simplifications are

• Collapsing and anti-collapsing matter modelled by null-shells.

• Hawking radiation neglected

• Spherical symmetry, no rotation and no charge

To the degree that the lifetime turns out to be an intermediate scale between ∼ m and
∼ m3, the first two simplifications are reasonable and appear sufficient to capture the
necessary features of the spacetime.

Spherical symmetry and no rotation is not a reasonable assumption for an astrophys-
ical black hole. I find unlikely that our estimations will be changed if slow rotation is
taken into account, although a dependence on the angular momentum is to be expected
that could significantly alter the picture close to extremality.

Research in this direction is also paramount for the plausibility of the process. That
is, if an HR type spacetime can be shown to be impossible to construct, at least for
a slowly rotating black hole, then the process may be excluded from taking place in
principle. Significant progress in this direction has been made recently by H. Haggard
and collaborators and an HR–spacetime for a Kerr black hole will possibly be available
soon.
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7 Conclusions

In this manuscript, tools and ideas developed over the past decade were combined and
supplemented in order to complete a first attempt at using covariant LQG to treat non-
perturbatve singularity resolving phenomena as quantum transitions between geome-
tries.

We have argued that transition amplitudes of covariant LQG describing geometry
transition for non-perturbative phenomena are expected to behave as a product of terms

|W |2 ∼ e−(γζ−φ(ω))2/t (7.1)

where ζ are the boost data and ω the area data of the boundary state. The dihedral
angles φ(ω) code the extrinsic geometry of the geometrical configuration dominating
the path integral.

The dimensionless semiclassicality parameter t is proportional to a positive power
of ~ and divided by the corresponding dimension–full area scale, so as to keep t dimen-
sionless.

Thus, the transition amplitudes decay exponentially in the limit ~ → 0, unless the
exponents vanish. This will be the case in a perturbative setting. For a non-perturbative
phenomenon, the transition amplitude will decay exponentially in the semiclassical
limit.

In a realistic application, t is a small, finite number.

We then have a picture of gravitational tunneling. The amplitudes do not vanish
identically but give a small propability for the process to happen. Thus, solutions of
general relativity generated by evolving in the future and in the past a cauchy surface
that includes the upper and lower spacelike surface forming the boundary respectively,

|W |2

Fig. 7.1: The amplitudes of covariant LQG as probabilities for gravitational tunnelling. Solving
an initial value problem for Einstein’s equations with Cauchy data the intrinsic and extrinsic
geometry of the hypersurface formed by the blue hypersurfaces and the upper boundary surface,
and evolving towards the direction in which the foliation time increases, gives the upper–half of
the spacetime. This is connected to the lower–half, which is the evolution in the past with Cauchy
data the intrinsic and extrinsic geometry of the hypersurface formed by the blue hypersurfaces
and the lower boundary surface.
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are connected by quantum theory. This is summarized in Figure 7.1, repeated here for
convenience from Chapter 4.

The motivations leading to the current definition for the amplitudes of covariant
LQG and a formal derivation of the EPRL ansatz where presented and discussed in
Chapter 2.

We proceeded to a review of results from the fixed–spins asymptotic analysis of the
EPRL model and gave an independent derivation of the Han–Krajewski representation
in Chapter 3.

We entered the main part of this thesis in Chapter 4. We reviewed and extended
techniques that allow to construct a wave-packet of an embedded 3-geometry, peaked
on both the intrinsic and extrinsic geometry of a given discrete geometry.

The above were put together in the second half of Chapter 4, where we showed how
the fixed–spin asymptotics of spinfoam amplitudes can be used to perform the spin–
sum, and estimate amplitudes decaying exponentially in the limit of large quantum
numbers.

We saw that gravitational tunnelling emerges naturally from covariant LQG.
In Chapter 5 we constructed the Haggard-Rovelli spacetime. We gave an alternative

formulation with a simplified form of the metric that reveals the role of the bounce time
T as a spacetime parameter. We discussed the relation with the original construction
and pointed out some interesting properties of the spacetime.

We adopted and developed the point of view that the HR-spacetime presents an à
priori well-defined setup for the calculation of a good observable from non-perturbative
Quantum Gravity, the lifetime of the HR-spacetime. The lifetime is the characteristic
time scale in which the spacetime metric fluctuates sufficiently for the transition of a
trapped to an anti–trapped region to become likely. The question is well–posed and
quantum theory should be in a position to provide an answer.

In Chapter 6 we completed a first attempt at calculating the lifetime. We started by
discussing the discretization procedure and the construction of a transition amplitude
for a given choice of boundary hypersurfaces.

Subsequently, we made an explicit choice of boundary hypersurfaces and 2-complex,
to set-up a transition amplitude. The amplitude is finite, expressed and defined explic-
itly in terms of analytic functions. This effort has been part of a longer-term project
to analyse numerically such amplitudes, led by S. Speziale in the Centre de Physique
Théorique in Marseille.

The results of Chapter 4 were then used to estimate the lifetime. We gave an explicit
estimate, demonstrating that such a calculation can be successfully completed with the
currently available technology.

We arrived at the conclusion that the lifetime scales linearly with the mass. We pro-
posed that the quantity we have called the lifetime corresponds instead to a different
physical timescale, the crossing–time, which is expected to scale linearly with the mass.

A set of technical difficulties in interpretation were identified, due to an interplay be-
tween the truncation, the normalization, the semiclassical limit of LQG and the physical
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role of the Immirzi parameter. We discussed that our result may have to be understood
in the limit where the Immirzi parameter is taken to be small. This is a subject currently
under investigation.

The physical interpretation of our results is thus inconclusive and is discussed at the
end of Chapter 6. The truncation issue, the existence of a maximum boost at the level
of a link in the kinematical state space of LQG on a fixed graph, is further discussed in
Appendix E.

We demonstrated how a calculation can be carried out while keeping the choice of
boundary surface arbitrary, under the assumption that the boundary data are such that
they determine a geometrical critical point at the level of the partial amplitude. While
much remains to be understood, this provides evidence that the choice of boundary
does not alter the physical conclusions drawn from a transition amplitude.

The choice of surface and discretization may result in the path–integral being dom-
inated by configurations that admit an interpretation as either the 4D Euclidean, 4D
Lorentzian or 3D degenerate geometries. We saw that this surprising feature of the
EPRL amplitudes results in a consistent estimate as one traverses all three kinds of ge-
ometries.

Finally, we gave partial evidence for our results being independent of the choice of
2-complex, within the class of spinfoams that do not have interior faces.

Future directions Many refinements and extensions of the calculation presented here
are possible. Also, many questions have been left open and they deserve to be better
understood.

In closing, we present below a selected list of the directions that could be achievable
in the short-term, in order to have a convincing prediction from covariant LQG for the
scaling of the characteristic time in which quantum fluctuations of the metric make a
transition of a black to a white hole geometry likely.

• Provide a rigorous interpretation of the transition amplitude as a conditional prob-
ability with a measure α(m,T ) providing the resolution of the identity on the sub-
space of physical states under consideration.

• Investigate the role of the Immirzi parameter in macroscopic physics and in con-
juction with the double scaling limit γ → 0, j→ ∞.

• Extend the techniques presented here to spinfoams with interior faces. Doing so
will require better control of the so-called flatness issue. Interior faces will also
allow the investigation of whether the existence of multiple semiclassical critical
points, the cosine feature, alters the picture. The latter is expected to significantly
affect the dynamics [218]. All but one semiclassical critical points are suppressed
by the boundary state at the level of amplitudes without interior faces, but this is
not expected to be the case for larger spinfoams.

• Use a simplified symmetry reduced model. The use of cuboidal triangulations can
be convenient. Currenlty, the group led by B. Bahr has studied extensively such
configurations in the context of homegeneity and isotropy [63, 219]. The asymp-
totics are essentially identical and the same qualitative behaviour is expected. Sym-
metry reduced models would simplify numerics and perhaps make them feasible,
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Fig. 7.2: The singularity surface can be allowed to be present in the HR-spacetime. Geodesics can
be unambiguously connected across the singularity. The non-perturbative phenomenon appears
to concern a region close to the horizon.

considerably simplify the Hessian and allow the study of the behaviour under 2-
complex refinements [220].

• The bounce time is encoded only at the radius of the sphere at the tip of the quan-
tum region for a family of natural boundary choices. In conjuction with the as-
sumption and expectation that physical predictions from transition amplitudes do
not depend on the choice of boundary hypersurface, this is an indication that for a
more precise treatment, focus should be given in a region close to the horizon.
A singularity hypersurface can be allowed to be explicitly present in the HR-space-
time without presenting interpretational difficulties. Synge pointed out as early as
the 1950’s that the Kruskal manifold is not the maximal extension for the spheri-
cally symmetric solution in the sense of geodesic completeness [221]. Geodesics
can be unambiguously continued across the singularity.
This understanding was clarified in [222] where the authors explain that it suffices
to allow for a slight generalization of the notion of a manifold, that can accomodate
geometries exhibiting singularities of the type present at the tip of a geometrical
cone. The Schwartzschild singularity is of this type. The idea for this setup is
sketched in Figure 7.2.

• Encode the presence of a trapped and anti-trapped surface in the boundary state.
The alternate monotonic behaviour of the boost angles with respect to the bounce
time T inside and outside the trapped and anti-trapped regions may provide a
convenient way to do so. This step can be taken independently or in conjuction
with the previous point.
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A Elements of recoupling theory

A.1 Integrating products of deltas and a flavour of recoupling theory

In this sub–appendix we demonstrate with a simple example how to integrate prod-
ucts of deltas over a compact group, using recoupling invariants. The procedure for
S L(2,C) and the EPRL model are explained in the following two sub–appendices. These
tools are used in Appendix B to derive the explicit form of the transition amplitude in
Section 6.2.

In an expression of the form

∫ ∏
e

dge

 ∏
f

δ̃

∏
e∈ f

ge

 (A.1)

we will have integrations of the form∫
dge δ (ge A) δ (ge B) δ (ge C) δ (ge D) (A.2)

where e is now fixed and A, B,C,D will be products of the remaining group variables ge′

that bound each of the four faces. An analogy on the real line would be∫
dx δ (x − A) δ (x − B) δ (x −C) δ (x − D) (A.3)

Such expressions are generally ill-defined over the reals.
To demonstrate the general idea, and to see how (A.2) is well-defined and the differ-

ence between the two cases, we take ge to be an S U(2) element and consider the product
of only two deltas.

We introduce a test function f (x), to attempt to give meaning to the “bad expression”

∫
dx δ (x − A) δ (x − B) f (x) (A.4)

Naively, we can guess the result by setting as a test function δ (x − B) f (x), giving

f (A)δ(A − B) (A.5)

which is clearly an ill-defined expression 41. To see what goes wrong, use the fourier
transform. We go through the steps since we will do the analogous procedure in the
group variables below. For simplicity, we are neglecting constant factors in the defini-
tion of the fourier transform. We have

41In our analogy, there would be other integrations over A and B and one might attempt to remedy this
problem by taking into account those integrations as well. However, there would also be other delta functions
with A and B as arguments and we will run into the same problem.
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∫
dx δ (x − A) δ (x − B) f (x) =

∫
dx

∫
dp1 eip1(x−A)

∫
dp2 eip2(x−B) f (x)

=

∫
dp1dp2 e−ip2B e−ip1A

∫
dx ei(p1+p2)x f (x)

=

∫
dp2 e−ip2B

∫
dp1 e−ip1A f̂ (p1 + p2)

=

∫
dp2 e−ip2(B−A)

∫
dp1 e−ip1A f̂ (p1)

= f (A)
∫

dp2 eip2(A−B) = f (A) δ(A − B)

where in the third equality we introduced the Fourier transform f̂ , in the fourth equality
we shifted p1 → p1 + p2, and in the fifth we took the inverse Fourier transform.

The step that cannot be done when working with the group element as a configura-
tion variable is the second to third equality, when we eliminated x. We do not get back
the inverse fourier transform: we get intertwiners, recoupling the different representa-
tions.

Let us do the analogous manipulation for the case where we are integrating over
S U(2), starting from∫

dg δ (g − A) δ (g − B) f (g) (A.6)

As before, we employ harmonic analysis, which in this case is to use the Peter-Weyl
theorem, which for our purposes can be stated as follows : square integrable functions
of the group decompose as a direct sum of all unitary irreducible representations, the
latter serving as an orthogonal basis for this space of functions. Then, f can be expanded
in Wigner’s D-matrices (that provide the unitary irreducible representations for S U(2))
as

f (g) =
∑

j

∑
mn

f j
mnD j

mn(g) (A.7)

The Peter-Weyl expansion of the delta functions over S U(2) is given by the coefficients
f j
mn set to the dimension d j = 2 j + 1 of the representation spaceH j :

f (g) =
∑

j

∑
mn

d jD
j
mn(g) (A.8)

These expansions are the analogue of Fourier expanding in the momentum representa-
tion, where the momentum variables are the spins j, which are now discrete.

We may now expand the two delta functions and the function f (h) and rewrite (A.6)
as



Elements of recoupling theory 155

∫
dg δ (g − A) δ (g − B) f (g) =

=

∫
dg

∑
{ j}

∑
{mn}

d j1 D j1
m1n1(g)D j1

m1n1(A)d j2 D j2
m2n2(g)D j2

m2n2(B) f j3
m3n3 D j3

m3n3(g)

=
∑
{ j}

d j1d j2

∑
{mn}

f j3
m3n3

(∫
dgD j1

m1n1(g)D j2
m2n2(g)D j3

m3n3(g)
)
D j1

m1n1(A)D j2
m2n2 (B)

(A.9)

We have introduced the notation
∑

k, which means summation over all configurations
of the indices ki appearing in the expression, that is

∑
k =

∑
k1

∑
k2

∑
k3
. . .. T

This is how we end up with a spin state-sum model. The sum over configurations j
is the analogue of the sum suml over length configurations in the naive Regge calculus
path integral.

This is a simple instance of the appearance of a recoupling theory invariant. Be-
cause we are using an invariant measure, the Haar measure, the term in parenthesis is
invariant under the action of S U(2), meaning∫

dg D j1 (gg′) D j2 (gg′) D j3 (gg′) =

∫
dg D j1(g) D j2(g) D j3 (g) (A.10)

where we skipped the magnetic indices for conciseness.
This follows from the properties of the Haar measure (it is the unique measure that

has these properties and is determined by them for compact groups)∫
dg f (g) =

∫
dg f (gg′) =

∫
dg f (g′g) =

∫
dg f (g−1) (A.11)

where g′ is any other group element. The Haar measure is repeatedly used in the cal-
culations of Section 6.2 and is central to recoupling theory and the study of invariants.
These properties can be expressed by slight abuse of notation as

dg = d(gg′) = d(g′g) = dg−1 (A.12)

from where the name invariant measure is perhaps more apparent : the integration
measure is invariant under the actions of the group; inversion, and left and right multi-
plication.

The last equality, although useful to keep in mind in practice, is an instance of ei-
ther of the first two, by setting g′ = g−1g−1. Compare these properties with the usual
Lebesgue integration measure over the reals, which is also a Haar measure when addi-
tion is taken as the group composition

dx = d(x ± y) = d(y ± x) (A.13)

The integral∫
dgD j1

m1n1(g)D j2
m2n2(g)D j3

m3n3(g) (A.14)
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should be an object with nine indices, { j},{m} and {n}, that is invariant by the multipli-
cation with three Wigner-D matrices D ji

mini (g
′) and contraction in either set of magnetic

indices. That is to say, by group multiplication by g′ on either side. The unique object
with this property is called the 3-j symbol∑

{m}

D j1
k1m1

(g)D j2
k2m2

(g)D j3
k3m3

(g)
(

j1 j2 j3
m1 m2 m3

)
=

(
j1 j2 j3
k1 k2 k3

)
(A.15)

and we may take this expression to be its definition.
The integral in equation (A.14), since it has two sets of magnetic indices that can be

simultaneously acted upon, is then just a product of two 3-j symbols∫
dgD j1

m1n1(g)D j2
m2n2(g)D j3

m3n3(g) =

(
j1 j2 j3

m1 m2 m3

) (
j1 j2 j3
n1 n2 n3

)
(A.16)

Anticipating the notation used in Appendix B, we also denote the 3 − j symbol as

i{ j}
{m} =

(
j1 j2 j3

m1 m2 m3

)
(A.17)

The fact that the 3 − j symbol is unique implies that the dimension of the space of
invariants intertwining between three representations is one-dimensional. This is no
longer the case when tensoring four representations.

Recall Figure 2.3 and the discussion in Section secref: in four dimensions there are al-
ways exactly four faces attached to an edge of a 2-complex that is dual to a (topological)
simplicial comlex. Thus, each S L(2,C) elements ge will appear exactly four times in the
amplitude, becaus it is peaked up by four different delta functions that correspond to
the four holonomies around the four faces. Similarly for gve. As we see in the following
two appendices, gve is split into two S U(2) elements and a boost.

The integrations over the two pairs of four S U(2) elements corresponding to a face,
will give rise to two four-valent intertwiners. That is, objects in the space

V4
ji = Inv

(
⊗4

i=1Hji
)
, i = 1, 2, 3, 4 (A.18)

The basis forV4
ji
, an intertwiner basis, is labelled by another spin variable K, taking

values in

max[| j1 − j2|, | j3 − j4|] ≤ K ≤ min[ j1 + j2, j3 + j4] (A.19)

that is, the intertwiner space vanishes if the triangle inequalities between j1, j2,K and
j3, j4,K are not satisfied.

Notice that for this we had to arrange the four spins in two pairs: this is a choice
of recoupling scheme, in the case of particles it would be equivalent to saying that two
particles with spin j1 and j2 interact to give two particles that transform under the j3
and j4 representations. Such choice is arbitrary but must be fixed in order to write the
amplitudes explicitly in terms of intertwiners.
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A basis forV4
ji

is given by

iJ, j1, j2, j3, j4
m1,m2,m3,m4 = (A.20)

= (−1) j1− j2+µ

(
j1 j2 J
m1 m2 µ

) (
j3 j4 J
m3 m4 −µ

)

with µ = −m1 − m2 = m3 + m4 and
(

j1 j2 j3
m1 m2 m3

)
are the Wigner 3j symbols.

Finally, the dimension ofV ji is the range of values for K, that is

dimV4
ji =≤ min[ j1 + j2, j3 + j4] −max[| j1 − j2|, | j3 − j4|] + 1 (A.21)

A.2 Haar measure on S L(2,C)

The integration measure µ(gve) is (left and right invariant) Haar measure over S L(2,C) .
Because S L(2,C) is not compact, this measure is unique up to scaling (multiplication
by a real number). In compact groups, we may include in the definition of the Haar
measure the condition that the volume of the group is unit, or choose some other nor-
malization. This would fix the scaling. In non-compact groups, this is impossible since
the volume of the group is infinite. This ambiguity in the measure is absorbed in the
arbitrary normalization NC of the EPRL amplitudes.

The Haar measure µ(g) for g ∈ S L(2,C) can be written explicitely as (cite mux kraj)

µ(g) =
1
|δ|2

dβ ∧ dβ̄ ∧ dγ ∧ dγ̄ ∧ dδ ∧ dδ̄ (A.22)

where g =

(
α β
γ δ

)
. The wedge product here should be understood in the usual sense of

integrating over the parameter space in a specific parametrization of S L(2,C) . That is,
we have eight real parameters for the four complex entries in g, and two conditions from
detg = 1, thus we are down to six parameters ( S L(2,C) is six dimensional, an arbitrary
Lorentz transformation is made of three rotations and three boosts). More explicitly, if
α = aR + iaI with aR and aI its real and imaginary parts, then

da ∧ dā = d(aR + iaI) ∧ d(aR − iaI) = −2idaR daI (A.23)

In this parametrization, the invariance of µ(g) under g→ g† is manifest.
Another form of the Haar measure, which is the one we use to get the explicit form

of the amplitude in Section 6.2, uses the Cartan decomposition for S L(2,C) : for every
g ∈ S L(2,C), there exist h and h′ in S U(2), such that

g = hAh′ (A.24)

where A is a diagonal matrix with positive entries. Let us take a moment to show this
and point out a subtlety.
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Take any g ∈ S L(2,C). Then gg† is hermitian, and thus is unitarily equivalent to a
diagonal matrix A with real eigenvalues 42. That is, there exists a h ∈ S U(2) such that
gg† = h A h†. Since g and h are of unit determinant, so is A. Thus, A is of the form
A = diag(a, 1/a) with a > 0. We thus may set A(r) = diag(er, e−r) with r ∈ R. It is then
straightforward to show that the group element h′ ≡ (hA(r/2))−1g is in S U(2), using that
A(r)A(r′) = A(r + r′) and A(r)−1 = A(−r). Thus, we have shown that any g ∈ aS L(2,C) can
be written as

g = hA(r/2)h′ (A.25)

with h, h′ ∈ S U(2).
Then, the Haar measure µ(g) is two copies of the Haar measure µ(k) over S U(2) and

an integration measure over r. That is,

µ(g) = µ(h)µ(h′)dr f (r) (A.26)

where f (r) is some real function of r. It turns out that f (r) is given by

f (r) = sinh2 r (A.27)

For the proof, see for instance 43. Since this is an even function, we may integrate only
over positive values of r at the cost of a factor of two which we need not make explicit
since µ(g) is only defined up to scaling. Thus, we may perform integrations over func-
tions of S L(2,C) as

∫
S L(2,C)

µ(g)F(g) =

∫
S U(2)

µ(h)
∫

S U(2)
µ(h′)

∫
R+

dr F(h A(r/2) h′) (A.28)

where A(r/2) = diag(er/2, e−r/2) = eir σ3
2 .

Notice that there is something wrong with the dimensions in this formula. S U(2) is
three dimensional. We have integrations over two copies of S U(2) and one integration
over the reals, thus the parameter space is seven-dimensional. This is easily traced to
the fact that that that the decomposition (A.25) is not uniquely defined. Simultaneously
sending h→ heiα σ3

2 and h′ → he−iα σ3
2 , defines the same g.

This implies that one of the integrations is redundant. We should integrate only over
h and h′ that uniquely determine g.

We may see this explicitly by expanding F(g) in unitary representations of the prin-
cipal series. Then, F(g) will be a sum over representation matrices D(p,k)

jm jm(g). The Cartan

decomposition of D(p,k)
jm j′m′ (g) can be written explicitly in terms of Wigner-D matrices for

S U(2) as

D(p,k)
jm j′m′ (g) =

∑
n

D j
mn(h)d(p,k)

j j′n (r)D j′

nm′ (h
′) (A.29)

42This is the spectral theorem for hermitian operators, think observables in quantum theory.
43 http://www-users.math.umn.edu/ Garrett/m/v/SL2C.pdf
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and where the functions d(ρ,k)
j j′m are defined in Section 6.2, see (cite simone) for further

details.
Thus, the S U(2) integrations may be isolated and we will have terms of the form∫

S U(2)
µ(h)

∫
S U(2)

µ(h′) D j
mn(h)D j

nm′ (h
′) (A.30)

Writing explicitly the Haar measure in the Euler angle parametrization, each D j
mn(h) can

be written as e−imαd j
mn(β)e−inγ, with no summation implied and where d are Wigner’s

small-d matrices. See Section 4.2 for a detailed explanation of this parametrization.
Thus, the redundant integration can be remedied by inserting a delta function δ(γ−γ′+γ̃)
in the above equation when written in the Euler parametrization.

A.3 S L(2,C) Clebsch-Gordan Coefficients for the EPRL model

In the EPRL model, S L(2,C) group elements appear only inside inner products of the
form

γ 〈 jm|gve′gve| jm′〉γ (A.31)

see Section 3.3.
In this appendix we see how the integrations over S L(2,C) can be explicitly per-

formed and explain the relation of the objects appearing in Secion 6.2 with the Clebsch-
Gordan coefficients of S L(2,C) .

Unitary irreducible representations H(k,ρ) of S L(2,C) are labeled by a positive real
number ρ and a half-integer k, see also Section secref. The unitary representations of
S L(2,C) and S U(2) are related through the decomposition:

H(k,ρ) =

∞⊕
j=k

H j

The two Casimirs are C1 = L2 − K2 and C2 = L · K where Li and Ki are rotation and
boost generators respectively. We denote a basis of H(k,ρ) as |kρ jm〉. On this basis, the
Casimirs act as

C1 |kρ jm〉 = (k2 − ρ2 − 1) |kρ jm〉

C2 |kρ jm〉 = 2kρ |kρ jm〉

The simplicity constraints are applied, after the discretization, by the linear condi-
tion

Di
f = Ki

f − γLi
f
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on each face of the simplicial 2-complex. The S U(2) subgroup, analogue of a gauge
in classical theory, is chosen arbitrarily at each edge of the 2-complex. These are called
the linear simplicity constraints.

To impose these constraints we will (following Thiemann) use the master constraint

M f = D f · D f = K2 − 2γK · L + γ2L = (1 + γ2)L2 − 2γC2 −C1

We look for the minimum eigenvalue of the master constraint operator M f , specifi-
cally:

M f |kρ jm〉 =
(
(1 + γ2) j( j + 1) − 2γkρ + ρ2 + 1 − k2

)
|kρ jm〉

The minimum eigenvalue for fixed j is attained when ρ = γ j and k = j. Therefore, in
what follows we will restrict the S L(2,C) representations to ones satisfying

ρ = γ j k = j

for j half-integer.
Now, consider the product space H = H(k1,ρ1) ⊗H(k2,ρ2). In this product space there are

two sets of orthogonal basis vectors. The first one is made up of the outer product of the
basis vectors of the original spaces:

|k1ρ1 j1m1, k2ρ2 j2m2〉 = |k1ρ1 j1m1〉 |k2ρ2 j2m2〉

The second is made up of the basis vectors |kρ jm〉 that span H(k,ρ) contained in the
tensor product space H.

The two bases are related by

|kρ jm〉 =

∞∑
j1=k1

∞∑
j2=k2

∑
m1,m2

〈k1ρ1 j1m1, k2ρ2 j2m2|kρ jm〉 |k1ρ1 j1m1〉 |k2ρ2 j2m2〉

The coefficients appearing in this formula are called the Clebsch-Gordan coefficients
(CG coefficients). They can be defined in terms of an integral as follows:

〈k1ρ1 j1m1, k2ρ2 j2m2|kρ jm〉 〈k1ρ1 j′1m′1, k2ρ2 j′2m′2|kρ j′m′〉∗ =∫
dgDkρ

jm j′m′ (g)Dk1ρ1
j1m1 j′1m′1

(g)Dk2ρ2
j2m2 j′2m′2

(g) (A.32)

To simplify the group integral, we use the decomposition g = ue
r
2σ3 v where u, v are

S U(2) elements and r ≥ 0. This decomposition written in terms of the Wigner matrices
reads:
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Dkρ
jm j′m′ =

∑
p

D j
mp(u)dkρ

j j′p(r)D j′

pm′ (v)

Substituting and performing the S U(2) integration we have

〈k1ρ1 j1m1, k2ρ2 j2m2|kρ jm〉 〈k1ρ1 j′1m′1, k2ρ2 j′2m′2|kρ j′m′〉∗ =

1
(2 j + 1)(2 j′ + 1)

(
j1 j2 j

m1 m2 m

) (
j1 j2 j′

m1 m2 m′

)
∑
n1,n2

(
j1 j2 j
p1 p2 −p1 − p2

) (
j1 j2 j′

p1 p2 −p1 − p2

)
∫

dr sinh2 r
4π

dkρ
j j′p(r)dk1ρ1

j1 j′1 p1
(r)dk2ρ2

j2 j′2 p2
(r)
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B Derivation of explicit form of amplitudes

In this Appendix we show how to derive the final expression for the amplitude as in
Section 3.1. The formula we arrive at applies to the following class of spinfoam

• The 2-complex is dual to a topological simplicial complex.

• There are no integrations over S L(2,C) elements living on internal edges (internal edges
are those that do not end on a node of the boundary but have two vertices of the
bulk as endpoints). In the EPRL model we perform four integrations over S L(2,C)
at each five-valent vertex, with one of the group integrations being redundant and
the group element set to 1. We may choose not to perform the integration on an
internal edge of the spinfoam. This is the case for the spinfoam in FIGREF.

• The boundary graph is four valent and can be oriented such that each node is the source of
two links and the target of the two other links. We assume such an orientation in what
follows, see FIGREF for an example. This is not a crucial restriction for what fol-
lows and the notation is deliberately such that one can easily modify the formulas
for boundary graphs that do not admit this orientation or have nodes of arbitrary
valency on the boundary. All edges are oriented towards the boundary i.e. the
vertex is their source, this is always possible for such spinfoams. These choices fix
the orientation of the spinfoam.

These spinfoams are such that all the combinatorics are delegated at the level of the
boundary graph. This is because each S L(2,C) element ge living on an edge e naturally
corresponds a node n, the target of the edge, and each face f to the boundary link ` ∈
f . We thus label the faces with their corresponding link ` (for a 2-complex dual to
simplicial manifold there can be only one link per face).

Highest weight approximation

We take as starting point the amplitude after the S U(2) integrations have been per-
formed and the arbitrary S U(2) elements living on the boundary have been replaced
with the coherent state data H`:

W(H`) =

∫ ∏
n

dgn

∏
`

∑
j`

w( j`, σ`)Tr j`
(
g−1

t(`) H` gs(`)

)
(B.1)

where w( j`, σ`) = d j`e
− j`( j`+1)/2σ` . The amplitude is a function of the boundary data of the

coherent states H` = Nt(`) ez`σ3/2 N−1
s(`) with z` = η` + iξ`. Note that as advertised all labels

are boundary labels: the g’s and N’s are labelled by nodes and everything else by links.
Our goal is to rewrite the product over the group elements as a product over nodes.

All the group elements we have are already labelled by nodes except the boost part
ez`σ3/2. We use the highest weight approximation (macroscopic areas)

D j`
a`b`

(ez`σ3/2) ≈ δ j`
a`δ

j`
b`

ez` j` /2 (B.2)
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Then, ez`σ3/2 simply contributes a multiplicative factor that can be pulled out (it is easy
to generalize these formulas for non-macroscopic areas by skipping this step) :

Tr j`
(
g−1

t(`) H` gs(`)

)
= D j`

h`l`a`

(
g−1

t(`) Nt(`)

)
D j`

a`b`

(
ez`σ3/2

)
D j`

b`l`h`

(
N−1

s(`) gs(`)

)
(B.3)

= ez` j`/2 D j`
h`l` j`

(
g−1

t(`) Nt(`)

)
D j`

j`l`h`

(
N−1

s(`) gs(`)

)
(B.4)

where the triple-index notation for the representation matrices is explained below. By
pulling all the summations over the j` we rewrite the amplitude as:

W(H`) =
∑
{ j`}

∏
`

w( j`, σ`)ez` j`/2

∫ ∏
n

dgn

∏
`

D j`
l`h` j`

(
g−1

t(`) Nt(`)

)
D j`

j`l`h`

(
N−1

s(`) gs(`)

)
(B.5)

We now have in the integrand a product of objects labelled by nodes. Since the nodes are
four-valent and the links oriented as explained above, there are two D j

lh j

(
g−1 N

)
and two

D j
jlh

(
N−1 g

)
terms corresponding to each node. Thus we have succeeded in rewriting the

part of the amplitude involving group elements as a product of (functionally) identical
integrals:

W(H`) =
∑
{ j`}

w({ j`, σ`, z`})
∏
n

∫
dgn
−−→∏
`∈n

D(`)(gn Nn) (B.6)

where

w({ j`, σ`, z`}) =
∏
`

w( j`, σ`)ez` j`/2 =
∏
`

d j`e
z` j`/2− j`( j`+1)/2σ` (B.7)

and the “oriented product” notation is a shortcut for

−−→∏
`∈n

D(`)(gn Nn) =

2∏
k=1

D
jnsk
lnsk hnsk jnsk

(
g−1
n Nn

)
D

jntk
jntk lntk hntk

(
N−1
n gn

)
(B.8)

where we are labelling each link with its source and target nodes, ` ≡ s(`)t(`) ≡ t(`)s(`)
and the node n is attached to four nodes s1, s2, t1, t2 via links that have these nodes either
as sources or as targets.

Here is a good place to pause and explain how the multiplication of S L(2,C) ele-
ments is performed. In each trace, we have initially two S L(2,C) elements. When we
split them we have

Dγ j, j
jm jn

(
gg′

)
= Dγ j, j

jmlh (g) Dγ j, j
lh jn

(
g′

)
≡ D j

mlh (g) D j
lhn

(
g′

)
(B.9)

with l and h summed (the ranges for the indices are l ≥ j, h ≤ l, m, n ≤ j with integer
steps). The triple-index notation for the multiplication of S U(2) and S L(2,C) elements
means for instance

D j
slh (N g) ≡ D j

sm (N) Dγ j, j
jmlh (g) ≡ D j

sm (N) D j
mlh (g) (B.10)

with summation over m.
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Decomposition of the S L(2,C) integration

The point of (B.6) is that we can now focus on one of these integrals 44:∫
dgn
−−→∏
`∈n

D(`)(gn Nn) (B.11)

What we will do next is to split the S L(2,C integration into two integrations over S U(2)
and one integration over a real parameter r. The S U(2) integrations yield S U(2) inter-
twiners, defined in terms of 3j-symbols, and we will be left with the integration over
r.

Each S L(2,C) element can be written as gn = unernσ3/2v−1
n with un, vn ∈ S U(2) and

rn ∈ (0,∞) and the integration measure is given by dgn = dun dvn drn sinh2 r
4π with dun, dvn

being Haar measures over S U(2). We have in general:

D(ρ,k)
lnl′n′ = Dl

np(u)d(ρ,k)
ll′p Dl′

pn′ (v
−1) (B.12)

where in the EPRL, (ρ, k) = (γ j, j) (see Section secref and cite simone, crsv for the defini-
tion of d(ρ,k)

jlp ). We have for the ingoing links ( labelled as nsk, thus n is the target):

D j
lh j

(
g−1N

)
= D j

lhm

(
g−1

)
D j

m j (N)

= Dl
hp (v) dl jp(−r)D j

pm

(
u−1

)
D j

m j (N)

= (−1)m−pDl
hp (v) dl jp(−r)D j

−m−p (u) D j
m j (N) (B.13)

with p summed and similarly for the outgoing links ( labelled as ntk, thus n is the source)

D j
jlh

(
N−1g

)
= D j

jm

(
N−1

)
D j

mlh (g)

= D j
jm

(
N−1

)
D j

mp (u) d jlp(r)Dl
ph

(
v−1

)
= (−1)m− j(−1)h−pD j

−m− j (N) D j
mp (u) d jlp(r)Dl

−h−p (v) (B.14)

We first do the integrations over u and v:

∫
S U(2)

dun
2∏

k=1

D
jnsk
−mnsk−pnsk

(u)D
jntk
mntk pntk

(u) =

=
∑

Jn

(2Jn + 1)
(
i
Jn, jns1 , jns2 , jnt1 , jnt2
−mns1 , −mns2 , mnt1 , mnt2

) (
i
Jn, jns1 , jns2 , jnt1 , jnt2
−pns1 , −pns2 , pnt1 , pnt2

)
≡

∑
Jn

dJn iJn, jn
−→mn

iJn, jn
−→p n

(B.15)

44However, do not forget that each representation matrix in (B.6) has open indices that are contracted with
those of another matrix that is in the integral over the corresponding node. For example, number the nodes
by n = 1, 2, · · · . If we are on the node n = 1 there is an index ` = ns1. Say s1 = 2, then ` = 12 = 21. Then
there is another matrix in the integral over the node n′ = s1 = 2 with the same index where we would have
for example t′1 = n and `′ = n′t′1 = 21 = 12 = s1n = `.
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where we have introduced the following notation: Lower case indices labelled by a node
as above are multi-indices of multiplicity equal to the node valency. Note that lower
case (single) indices are labelled by a link (by two nodes) while upper case indices
are labelled by a single node. The arrow indicates that there is a sign rule pertain-
ing to whether the node is the source or target to the link. A right arrow means that
indices on links ingoing to n (of the form nsk) get a sign while a left arrow means
that indices on links outgoing from n (of the form ntk) get a minus sign. Explicitly,
jn = { jns1 , jns2 , jnt1 , jnt2 },

−→p n = {−pns1 ,−pns2 , pnt1 , pnt2 } and −→mn = {−mns1 ,−mns2 ,mnt1 ,mnt2 }.

For the v integration we have:

∫
S U(2)

dvn
2∏

k=1

D
lnsk
hnsk pnsk

(v)D
lnsk
−hntk−pntk

(v) = (B.16)

=
∑
Kn

dKn iKn, ln
←−
h n

iKn, ln
←−p n

(B.17)

with←−p n = {pns1 , pns2 ,−pnt1 ,−pnt2 } and
←−
h n = {hns1 , hns2 ,−hnt1 ,−hnt2 }.

Grouping the d(r) functions we have45

∫
drn

sinh2 rn
4π

2∏
k=1

d jntk lntk pntk(rn) dlnsk jnsk pnsk
(−rn) (B.18)

Rearrangement

Sign factors:
In (B.13) and (B.14) there is a (−1)mns1 +mns2−pns1−pns2 factor and a (−1)mnt1 +mnt2−pnt1 +pnt2 .
Because m and p are magnetic indices of an SU(2) Wigner matrix, m − p is an inte-
ger and thus (−1)m−p = (−1)−m+p. We can thus write them as (−1)M(−1)−P with M =

−mns1 − mns2 + mnt1 − mnt2 and P = −pns1 − pns2 + pnt1 + pnt2 . The intertwiners impose
that P = 0 and M = 0, so these factors are unit: we have that iKn, ln

←−p n
= iKn, ln

←−p n
δ(−P) and

iJn, jn
−→mn

= iJn, jn
−→mn
δ(M).

Each node gives four intertwiners (they do not correspond to the four links) two
from the u integration and two from the v integration. One from each has the p indices
that are contracted with the d(r) functions. The other one from v is contracted with the
normals and the one left from u has the h indices that are contracted with intertwiners

45We may exchange dlnsk jnsk pnsk
(−rn) with d jntk lntk pntk

(rn) at the cost of some Γ functions appearing cite ruhl.
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from other nodes. This gives a 3(E − 1) j symbol. We group all the objects, via some
definitions, so that all the lower case (link) indices are hidden (except the j’s):

N Jn jn ≡

2∏
k=1

D
jnsk
mnsk jnsk

(
Nnsk

)
D

jnsk
−mntk− jntk

(
Nntk

)
iJn, jn
−→mn

(B.19)

f Jn Kn
ln jn

≡ dJn iJn, jn
−→p n

∫ drn
sinh2 rn

4π

2∏
k=1

d jntk lntk pntk(rn) dlnsk jnsk pnsk
(−rn)


iKn, ln
←−p n

dKn (B.20)

We can now rewrite (B.6) as

W(H`) =
∑
{ j`}

w({ j`, σ`, z`})
∏
n

(−1)J+H N Jn jn f Jn Kn
ln jn

iJn, ln
←−
h n

(B.21)

with summations implied over all indices at the level of the node, J = jnt1 + jnt2 and
H = hnt1 + hnt2 . Thus we finally have with all summations explicit

W(H`) =
∑
{ j`}

w({ j`, σ`, z`})(−1)
∑
` j`

∑
{l`},{Jn},{Kn}

∏
n

N Jn jn f Jn Kn
jn ln

 ×
× (3(E − 1) j){Kn}, {l`} (B.22)

where we defined

(3(E − 1) j){Jn}, {l`} =
∑
{h`}

(−1)
∑
` h`

∏
n

iJn, ln
←−
h n

(B.23)

The amplitude as in equation (B.22) consists of summations and real integrations
over functions which have known closed analytic forms. There is one infinite summa-
tion involved, the one over the l indices.

The integrations over the S U(2) elements are performed as∫
S U(2)

dU⊗aD ja
mana (U) = (B.24)

=
∑

J

(2J + 1)iJ, j1, j2, j3, j4
m1,m2,m3,m4 iJ, j1, j2, j3, j4

n1,n2,n3,n4

where the basis of four-valent intertwiners is defined as

iJ, j1, j2, j3, j4
m1,m2,m3,m4 = (B.25)

=
∑
µ

(−1) j1− j2+µ

(
j1 j2 J
m1 m2 µ

) (
j3 j4 J
m3 m4 −µ

)

and
(

j1 j2 j3
m1 m2 m3

)
are the Wigner 3j symbols.
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C Coherent state representation

The coherent-state path-integral representation for the EPRL amplitudes is the usual
form in which asymptotic analysis is undertaken.

In the spinor representation, (3.67), the amplitude is composed of a product of terms
of the form

〈z|g| jm〉γ ≡ f j
m(gT z) (C.1)

which we may write simply as

〈Z| jm〉γ ≡ f j
m(Z) (C.2)

where Z = gT z. Making the Yγ map explicit, we have

〈Z|Yγ| jm〉 (C.3)

We need only calculate

〈Z| j~k〉γ (C.4)

where ~k ∈ CP1. We use the definition of coherent states ~k . | j j〉 ≡ |~k j〉 of Section secref.

〈Z| j~k〉γ = 〈Z|Yγ
(
k . | j j〉

)
= 〈Z|Yγ

(∑
m

D j
m j(H(k)) | jm〉

)
=

∑
m

D j
m j(H(k)) 〈Z| jm〉γ

=

√
d j

π
〈Z|Z〉 j(iγ−1)−1

∑
m

D j
m j(H(k))D j

m j(H(Z))

=

√
d j

π
〈Z|Z〉 j(iγ−1)−1

∑
m

D j
jm(H†(k̄))D j

m j(H(Z))

=

√
d j

π
〈Z|Z〉 j(iγ−1)−1 D j

j j(H
†(k̄)H(Z))

=

√
d j

π
〈Z|Z〉 j(iγ−1)−1 〈k̄|Z〉2 j (C.5)

From this, it is straightforward to see that inserting the resolution of the identity for
|~k j〉 in equation (3.63) we get the amplitude in the coherent state representation with

F f ({g f }, {z f }, {k f }) =
∑
v∈ f

log
〈ke f |Zve f 〉

2 〈Zve′ f |ke′ f 〉
2

〈Zve f |Zve f 〉 〈Zve′ f |Zve′ f 〉
+ iγ log

〈Zve′ f |Zve′ f 〉

〈Zve f |Zve f 〉
(C.6)

and the face amplitude will now include E×F integrations over S 2 (over the ke f ), on top
of the V × E integrations over S L(2,C) and the V × F integrations over CP1.
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D Spinors and the Riemann sphere

A spinor z is an element of C2, which we think of as a column vector. We denote them
in four different ways:

z = |z〉 =

(
z0

z1

)
= zA (D.1)

where z0, z1 ∈ C.
The space of spinors carries the fundamental representation of S U(2). There are two

(and only two) independent quadratic forms that are invariant under the action of S U(2)
on both arguments. The sesquilinear scalar product

〈z|w〉 = z̄0w0 + z̄1w1 = z̄AwBδAB (D.2)

and an antisymmetric bilinear form

[z|w〉 = z0w1 − z1w0 = zAwBεAB. (D.3)

The antisymmetric product [z|w〉 can be written by introducing the parity map J

J
(
z0

z1

)
=

(
−z̄1

z̄0

)
= J |z〉 = |Jz〉 ≡ |z] (D.4)

Then,

〈z|~σ|z〉 = − [z|~σ|z] (D.5)

which earns J its name, parity. As we see below, this relation implies that the spinors |z〉
and |Jz〉 are mapped to a Euclidean 3D vector and its parity inverse respectively.

Evidently, 〈z|w] = − 〈w|z]. Further note that 〈z|w] = −[z|w〉, which implies the relations

[z|w〉 〈z|w] = 〈z|w] [z|w〉 = −| [z|w〉 |2 = −| 〈z|w] |2

Also, [w|z] = 〈w|z〉.
A spinor z can be traded for a 3D vector in Euclidean space by the definition

~X(z) =
1
2
〈z|~σ|z〉 =

1
2

z̄A σ
A
i B zB =


Re(z0z̄1)
−Im(z0z̄1)
|z0 |2−|z1 |2

2

 (D.6)

The four independent real parameters in z have been recast in the three components of
~X(z) and there is a phase ambiguity in defining |z〉 from ~X(z). The relation is not invertible

unless we make a choice of section in the Hopf fibration, see Section secref.
We will see how to to understand the last expression as the components of a vector

~X(z) in a Cartesian coordinate system.
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Define the variable ζ ≡ z0

z1 and the S U(2) matrix

n(ζ) =
1√

1 + |ζ |2

(
1 ζ
−ζ̄ 1

)
(D.7)

In terms of the canonical basis of C2, |+〉 =

(
1
0

)
, |−〉 =

(
0
1

)
, we have

|z〉 =
√
〈z|z〉 ei arg z1 n(ζ) |−〉 (D.8)

|z〉 =
√
〈z|z〉 ei arg z0 n(−1/ζ̄) |+〉 (D.9)

and

|z] =
√
〈z|z〉 e−i arg z0 n(−1/ζ̄) |−〉 (D.10)

|z] = −
√
〈z|z〉 e−i arg z1 n(ζ) |+〉 (D.11)

From these relations, it follows that 〈z|~σ|z〉 and its parity tranform [z|~σ|z] are related
by ζ → −1/ζ̄ as:

〈z|~σ|z〉
〈z|z〉

= 〈−|n†(ζ) ~σ n(ζ)|−〉 = 〈+|n†(−1/ζ̄) ~σ n(−1/ζ̄)|+〉

(D.12)

−
〈z|~σ|z〉
〈z|z〉

=
[z|~σ|z]
〈z|z〉

= 〈−|n†(−1/ζ̄) ~σ n(−1/ζ̄)|−〉 = 〈+|n†(ζ) ~σ n(ζ)|+〉

(D.13)

To make contact with the usual Euclidean space in Cartesian coordinates, we define
a normalized vector ~N(ζ). To do the calculation, note the relation |z1|2 =

〈z|z〉
1+|ζ |2

.

~N(ζ) =
〈z|~σ|z〉
〈z|z〉

= 〈−|n†(ζ) ~σ n(ζ)|−〉 =
1

1 + |ζ |2

 2Reζ
−2Imζ
|ζ |2 − 1

 (D.14)

We see that we are in effect describing the Riemann sphere, with an annoying subtlety:
the y-axis is inverted.

Here is the usual Riemann sphere construction: Take a 3D Euclidean space in x, y, z
coordinates and identify z = 0 with the complex plane. A complex number ζ′ lives on
z = 0 with its real and imaginary part being on the positive x- and y-axis respectively.
We place a unit sphere on the origin with its north pole NP on the positive z-axis.

Then, one geometrically defines the projection from the sphere to the complex plane
via the straight line that passes from NP and the point ~x = (x y z)T on the unit sphere
(~x · ~x = 1). The intersection of this line with the plane defines ζ′. The point on the sphere
denoted as (β, α) in spherical coordinates. β is the zenith, the angle with the positive



170 Geometry Transition in Covariant Loop Quantum Gravity

z-axis, and α the azimith, the angle with the projection of the vector to the x − y plane
with the x-axis. See Figure 4.1 for this convention.

Explicitly, the projection π : S 2 − {NP} → C is given by

π(~x) = π(β, α) =
x + iy
1 − z

=
sin β eiα

1 − cos β
= cot

β

2
eiα = ζ′ (D.15)

π−1(ζ′) =
1

1 + |ζ′|2

 2Reζ′

2Imζ′

|ζ′|2 − 1

 =

cosα sin β
sinα sin β

cos β

 (D.16)

The first formula is immediate to see geometrically by using similar triangles. It is then
easily inverted by noticing that 1 + |ζ |2 = 2

1−z
By comparison with (D.14), we now know how to make the correspondance with

Euclidean vectors (directions): given the α, β as above, the same vector, with its compo-
nents understood as (x, y, z) components, is given by N(ζ) with

ζ = ζ̄′ = cot
β

2
e−iα (D.17)

In other words, with ζ as above we have that

~N(ζ) =

cosα sin β
sinα sin β

cos β

 =

 nx(α, β)
−ny(α, β)
nz(α, β)

 (D.18)

Notice the minus in the y component of ~ny(α, β).

Conventions
σA

Bσ
C
D = δA

Bδ
C
D − 2εACεBD

εAB =

(
0 1
−1 0

)
= εAB

δABε
BCδCD = εAD

σA
1 B =

(
0 1
1 0

)
, σA

2 B =

(
0 −i
i 0

)
, σA

3 B =

(
1 0
0 −1

)
The A/

A rule:
zA = εABzB

zA = zBε
BA
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E Maximum boost in LQG and a hint for maximum extrinsic curvature

In this appendix we reproduce an unpublished note by C. Rovelli, S. Speziale and the
author.

Loop quantum gravity predicts the existence of a maximum relative velocity be-
tween two adjacent space quanta. This can be taken as a hint that loop quantum gravity
predicts the existence of a maximum value for the extrinsic curvature.
The Planck scale provides a lower bound for the scale of physical geometry. This is
clearly realised in loop quantum gravity, where, for instance, physical areas smaller than
the Planck scale are forbidden, in the same sense in which angular momenta smaller
than ~/2 are forbidden by conventional quantum theory. It is plausible that quantum
gravity could equally provide an upper bound for physical curvature. In loop quantum
gravity, the cosmological bounce [223] and the possibility of a black-hole bounce appear
to support the hypothesis of an upper bound to curvature in Nature.

Here we analyse the extrinsic curvature in the standard kinematics of loop quantum
gravity, and find evidence that it is predicted to be bound. The mechanism yielding
the bound is the characteristic interplay between the compactness of S U(2) and the non
compactness of S L(2,C) on which the loop theory relies.

More surprisingly, we also found an upper limit to the relative velocity (the boost)
between two adjacent space quanta. This comes as a surprise because (in c = 1 units)
relative velocity is dimensionless and therefore independent of the Planck length, so
that one might worry that this upper limit persists in the classical limit. This is not the
case, however, because in the classical limit there can be an arbitrary number of space
quanta between any two given points, and the upper limit on the boost between any
two of them becomes irrelevant.

We give evidence for these effects studying a simple configuration with extrinsic
curvature. (In the Appendix we generalise the construction to a generic situation.) Con-
sider a region V of an intrinsically flat 3d physical space, in the shape of a square par-
allelepiped with area A and height L. Because of flatness, we can use Euclidean co-
ordinates; adapt these so that the base is in the (x1, x2) plane and the hight in the x3

direction. Again for simplicity, say the extrinsic curvature in this region has only the
k3

3 component, which we denote k, and this is constant. That is: the V embedding of
V in 4d spacetime is uniformly curved. Let us search for a state that approximates this
geometry, in the conventional kinematics of loop quantum gravity.

To this aim, choose a cellular decomposition of V . For simplicity, choose a cubic
cellular decomposition, as in the left panel of Figure E.1. (A triangulation gives the
same results, in a more cumbersome manner.) Decompose V into M2 × N small cubes,
labelled by an index n, and split the extrinsic curvature k uniformly on the faces Σn of
the cubes lying in the (x1, x2) planes. That is, set

kdiscrete(x) =
∑

n

θ

∫
Σ

d2σ δ3(x, x(σ)). (E.1)
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M
M

N

x3

x2

x1

h

Σn

θ

x0
x3

(x1,x2)

Fig. E.1: Left: The cellular decomposition of V . Center: A single cell, with the links of the dual
cellular decomposition; the extrinsic curvature is on the grey face and is read-out by the holonomy
along the link. Right: The region V immersed in 4d space (one dimension suppressed) and the
angle θ between normals across a face Σ.

where x(σ) is a parametric description of the face Σ. The value of θ is fixed by requiring∫
V

d3x k(x) =

∫
V

d3x kdiscrete(x), (E.2)

which gives immediately kLA = NM2(A/M2)θ, namely

θ =
k L
N
. (E.3)

Which simply means that the angle θ is the line integral of the extrinsic curvature in
the vertical direction, divided by the number of discrete steps. Recall that the extrinsic
curvature is in fact nothing else than the derivative of the normal to the surface; the
angle θ is precisely the boost angle between two adjacent discrete flat cubes. See the
right panel of Figure E.1.

Let us now build a quantum state that approximates the geometry described above.
Consider a state defined on the graph dual to the cellular decomposition46. In loop
gravity, states can be written in the holonomy representation, as functions of one S U(2)
group element h` for each link ` of the graph. In our discretization, links are dual to
the square faces of the small cubes. In particular, for each link in the x3 direction (each
square in a (x1, x2) plane) we have a group element h. See the central panel of Figure E.1.
The physical interpretation of the group element is the holonomy

h` = Pe
∫
`

A. (E.4)

of the Ashtekar-Barbero connection A = Γ + γK, which in turn is the sum of two compo-
nents: the 3d spin connection Γ and the extrinsic curvature K, scaled by γ, the Barbero-
Immirzi parameter. In the simple case considered here, the triad can be gauge-fixed to

46More precisely, the graph is (topologically) isomorphic to the 2-skeleton of the 2-complex dual to the
cellular decomposition, as is usual in LQG.
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coincide with the coordinate directions, i.e. the triad is a Kronecker-delta, Γ vanishes
and K = ka

bei
a is the same matrix as ka

b. Then,

h` = Peiγ
∫
`

k. (E.5)

Inserting the value (E.1) for the discretized curvature gives, for all the vertical links,

h` = h = eiγθ σ3
2

∫
l dl

∫
Σn

d2σ δ3(x,x(σ))
= eiγθ σ3

2 (E.6)

where the 3d delta function is properly cancelled by the three integrations. Using (E.3),
we have

h = ei γk L
N

σ3
2 . (E.7)

Now comes the key observation. A coherent state is going to be centered on some
value h. Let us choose the value of h that is as far as possible from four dimensional
flatness, namely from h = 11. The key point is that since S U(2) is compact, this value
exists. It is

hmax = −11 = ei2π σ3
2 . (E.8)

Setting (using (E.7))

hmax = ei γkmax L
N

σ3
2 (E.9)

we have then immediately from (E.8)

kmax =
2πN
γL

. (E.10)

But L/N is the actual size of the triangulation cubes. Because of the discreteness of the
geometry, this is bound from below by the minimal non-vanishing value of the area
which in loop quantum gravity is ao =

√
3/2γ~G, which gives (L/N)2 >

√
3/2γ~G. With

the last equation, we have

k2
max ∼

8π2

√
3γ3~G

. (E.11)

This is the main result. There is a maximal value for the extrinsic curvature.
Let us now come to the maximum boost. For this, consider an explicit geometrical

interpretation to the discretised spacetime (recall that any such interpretation has a large
degree of arbitrariness [205]). The angle θ is the boost parameter between the Lorentz
frames defined by two neighbouring flat discrete cells. See the right panel of Figure E.1.
This follows from the fact that the extrinsic curvature can be written in the form kab =

D(anb) and in locally flat 4d coordinates this can be identified with the derivative of
the 4d normal n. Its integral gives the angle between the normals, namely the boost
parameter. Integrating (E.1) accross the boundary between one couple of cells gives θ,
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so accross each link only a finite boost, with boost parameter θmax = 2π is possible. Since
the relation between the boost parameter and the velocity is

cosh[θ] =
1√

1 − v2

c2

(E.12)

the relative velocity between two adjacent cells cannot exceed the maximal velocity de-
fined by θmax, namely

vmax =

√
1 −

1
(cosh 2π)2 c ∼ 0.999993 c. (E.13)

This is the maximal relative velocity between two space-time quanta.
This does not imply that arbitrary boosts between two arbitrary cells are impossible,

but only that larger boosts imply more quanta, or finer triangulations.
The maximal boost derived here should not be confused with maximal acceleration.

Maximal acceleration has been discussed by many authors, including in the context of
loop quantum gravity (see [224] and references therein). Boost is dimensionless, while
acceleration is dimension-full. The second follows from numerous hand waiving quan-
tum gravity arguments, while the first appear to be characteristic of loop quantum grav-
ity.

Schwarzschild geometry

The result can be used in the context of Schwarzschild geometry a follows. Chose equal-
time surfaces in Lemaître coordinates [206]. These are 3d flat and both the metric and
the extrinsic curvature are diagonal. In flat polar coordinates the extrinsic curvature is

kabdxadxb =

√
2m
r3 dr2 −

√
8mr dΩ2. (E.14)

Fix a cellular decomposition formed by Planck size cells bounded by equal coordinate
surfaces. Consider a radius LP � r � 2m, where LP ∼

√
~G is the Planck scale. At this

scale the curvature is constant at the scale of the single cells and therefore we can repeat
the derivation of the paper, obtaining a bound on the radial component of the extrinsic
curvature:

kmax
rr =

√
2m
r3

min

∼
1

LP
, (E.15)

which indicates that we should expect quantum effects modifying the classical geome-
try at the radius

rmin ∼
3
√

2m L2
P. (E.16)
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This is of course the same radius at which the 4d Riemanninan curvature becomes
Planckian. (Because of the Gauss-Codazzi equations, the 4d Riemannian curvature is
determined by the 3d curvature and the extrinsic curvature). Notice that quantum ef-
fects are expected at a radius much larger than r ∼ LP.
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