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We present the concept which approaches the string theory to the field of time series forecast
and data analysis through a transformation of currency rate data to the topology of physical
strings and branes. We introduce new type of prediction models for financial time series based
on string invariants. The performance of the first versions of prediction models is compared
to support vector machines and artificial neural networks on an artificial and financial time
series. We propose a string angular momentum as an another tool to analyze the stability of
currency rates except the historical volatility. Next we investigate the fundamental properties
of the space of time series data. We provide the proof that the space of time series data is a
Kolmogorov space with T0-separation axiom using the loop space of time series data.
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1 Introduction

The idea of exploring the relationship between more intuitive geometric methods and financial
data is not new. The discipline called the geometric data analysis [1] includes many diverse
examples of the conceptual schemes and theories grounded on the geometric representation and
properties of data. In this work we propose the concept that is based on projection data into
higher dimensional vectors in the sense of the string theory, the theory which achieved a high
degree of popularity and respect among the physicists [2, 3]. The reason lies in its inherent
ability to unify theories that come from diverse physical spheres. The prime instrument of the
unification represents the concept of extra dimension. The side-product of theoretical efforts can
be seen in the elimination of the ultraviolet divergences of Feynman diagrams. However, despite
the considerable achievements, there is a lack of the experimental verification of the original
string theory. In contrast, in the present work we exploit financial time series which can build the
family of the string motivated models of boundary respecting maps.

Classifying future direction of nonlinear [4] and nonstationary [5, 6] time series data, espe-
cially financial time series data, has become one of the intriguing topic and is extensively studied
by researchers from different fields due to its commercial applications and attractive benefits that
it has to offer. Algorithmic trading with large amount of processed data, the ticks in millisecond
scale, requires new physical methods to describe the statistics of the return intervals on the short
and large scales [7] and new geometric representation of data , e. g., new view on data statistics
in higher dimensions [8]. Moreover, the global markets consist of a large number of interact-
ing units and their time-averaged dynamics resemble the systems with many-body effects. The
classical statistical instruments which treats the market as a whole, like the returns and volatility
distributions [9, 10] and traditional autoregressive moving average models, must be enhanced by
new phenomena from informational and social sciences. Theoretical interest is also oriented to
the distribution of the occurrence of rare extreme events in historical time series data [11, 12].
Their clustering in data records indicates the existence of a long-term memory dependencies in
financial time series, which is intensively studied [13], i. e., by multiplicative random cascade
models. The future stock prices movements are modeling by multiresolution analysis techniques
including wavelet analysis [14], empirical and variational mode decomposition [15], adaptive
methods for regression [16], frequently in the context of training and predicting on artificial neu-
ral networks [17, 18]. New algorithms [19] and new proposed approaches covering the findings
of the long memory effects of forex data [20] and its stochastic features in the presence of nonsta-
tionarity [21], the renormalization group approach [22], exploitation of genetic algorithms [23],
open novel perspectives.

We want to introduce the concept which approaches the string theory to the field of time
series forecast and financial data analysis through a transformation of currency rate data to the
topology of physical strings and D2-branes [24, 25, 26]. The ideas have been practically demon-
strated by a novel prediction method based on string invariants [27, 28] with genetic algorithm
for optimization of method’s parameters. The method has been tested on competition and real
world data, its performance compared to artificial neural networks and support vector machines
algorithms. Another interesting application has been the construction of trading algorithm based
on 1-endpoint strings and the demonstration of model properties on real online trade system [29].
Stability of the algorithm on transaction costs for long trade periods has been confirmed and
compared to benchmark prediction models and trading strategies.
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The prediction models in trading on financial markets can be enhanced in the framework of
a string theory. We propose to proceed from simple 1-endpoint and 2-endpoints strings to more
complex objects, D2-branes. The D2-branes have the ability to smooth the movement of prices
on the market and to process the preserved market memory with better efficiency than in the
case of the strings, the study of a statistics of momenta of string objects reveal the perspectives
of D2-branes. However, the simulations with prediction models based on string approach show
that one can profit only on the regions with high stability. In real data, the fluctuations of forex
market prices brake the statistics of the predictions [30] and one must build into the models
various trading brakes, to deal with the rapid changes. The evaluation of a volatility [31, 32]
serves as one of the sources of analyzing tools in pricing strategies. We introduce new methodics
based on the analogy with the angular momentum in the string theory [33]. Its application into
trading models can serve as complementary financial instrument in addition to a volatility. The
changes of Regge slope parameter or the string tension can identify trends on the market, their
understanding allows us to dynamically change an intra-string characterization (reduction a string
length for a short period) and better predict the movement of prices. Especially in large market
fluctuations, their exploitation needs further experimental verification.

Many theorists are trying to understand a dynamics of financial systems with modeling of
stock market using empirical analysis of stock price [34]. The financial market can be realized
as a topological space of underlying financial time series data in which typical econometric tool
of linear regression models such as ARIMA [35], GARCH [36] and state space model cannot
visualize all multiple processes of complex system such as the financial market [37]. On the
other side, the scientists borrowed from the signal processing the data-mining tool such as neu-
ral network combined with wavelet transformation or they supported vector machines (SVM)
with some extra datamining tools to predict financial time series with the overfitting and prior
problems [38]. They believe that they can overcome prediction problem by finding a good risk
factors to let a Bayesian system to learn [39] or by regression of those risk factors, but they do
not realize the main problem connected with the defect of algebraic topological construction of
the data-mining tools. The main defect of data-mining tools is based on a fitting problem with
one parameter of learning from single stochastic process instead of infinite factors in which the
influence of infinite stochastic processes governs on future expectation price. In other words one
financial time series are composed of infinitely many random variables in which the average of
all random variables not always converge to single Kolmogorov space over Euclidean space of
time series data. When we add one point of future price and make a fitting curve using the data-
mining tool for regression and state space model of Markov switching regime the coefficient of
equation which we used for description of the historical data will update and change the historical
path, so it leads to a nonrealistic situation.

All those problems of the prior effect and endeffect of time series data have intrinsic behav-
ior of algebraic defect of topological space underyling time series data in separable T0-axiom
of Kolmogorov space between price and time. The problem of forecasting arose from a defect
in algebraic and geometric construction of space of time series and it has a deep relationship
to an empirical analysis problem of nonstationarity of time series data and volatility clustering
phenomena in financial time series data so called stylized fact [40] and separation of hidden
Markov transition probability state in quantum entanglement state with Hopf fibration. In nature
of macroeconomic time series model, we assume equilibrium properties of dynamic stochastic
model over stochastic process of deterministic dynamical system with many assumptions. The
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precise definition of Kolmogorov topological space underlying the financial time series model
in spinor field can hopefully introduce the better understanding of the macroeconomic models.
The suitable algebraic reconstruction of space of time series, possible under a Kolmogorov space
concept with consistent separation axiom, could help with analysis of the prior effect and endef-
fect of time series models. There are some indications that such a concept could be realized as a
quotient topological space with a few hidden states in extradimensions of loop space of time se-
ries data. It is possible to connect hidden eight states in a Kolmogorov space with the empirically
observed characteristic correlation structure patterns [41].

In the future we want to concentrate on further expansion of proposed ideas. We plan to
build algorithms based on support vector machines and support spinor machine (SSM) [42] and
to implement them not only for the analysis of time series data but also to find their application
in interdisciplinary areas as machine learning, econophysics or biological sciences.

The paper is organized as follows. In Section 2 we study the projections of the real ex-
change rate dynamics onto the string-like topology. We introduce the general models of multi
dimensional string models, their properties and comparison with previous models are discussed.
Section 3 presents the string prediction models based on string invariants. The models are supple-
mented with their utilization on artificial and real world data and their performance compared to
statistical and artificial intelligence methods. We also introduce the Regge alpha slope parameter
for the investigation of the stability of currency rates. In Section 4 we specify the basic definition
of Kolmogorov space and how the concept of algebraic topology is related to financial time series.
We define a loop space in time series data by using of extradimensions of underlying topological
space and prove that there exists a time series data in spinor field with underlying structure of
Kolmogorov space in time series data. In the last Section 5 the conclusions are summarized and
in Appendices we provide details of our data analyses.
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2 String maps of time series

A time series is a series of discrete data points indexed by some index set in time order. Very
often it is a sequence of spaced points taken in the equal time intervals. An example of a set of
time series is

X =
{
x1, x2, x3, x4, . . . xn

}
, i = 1, 2, . . . , n. (2.1)

which induces a sequence of measured values

x1 → x2 → x3 → · · · → xn (2.2)

and a sequence of discrete time intervals between measurements

t1 → t2 → t3 → · · · → tn−1. (2.3)

Real examples of time series are long-time physical events as lunar eclipses, occurrences of
sunspots, earthquakes, El Niño events or short-time biological events in living bodies, as blood
glucose concentration etc. In econophysics the stock market indices (e. g., NASDAQ, S&P
500), option derivatives or currency exchange rates are monitored. The center of our attention
is focused on the exchange rates p(τ) of main trading currencies, as EUR/USD, GBP/USD,
USD/JPY, where τ represents the time index. The mean p(τ) = (pask + pbid)/2 is determined
from a bid-ask spread of the ask price pask and the bid price pbid of an asset in the market.

By applying standard methodologies of detrending one may suggest to convert original time
series of the mean currency exchange rate onto a series of returns defined as

p(τ + h)− p(τ)
p(τ + h)

, (2.4)

where h denotes a tick lag between exchange rates p(τ) and p(τ + h).
At this point we introduce the string maps originated from string theory framework. The

concept of string maps is based on the connection of the currency quotes and the string objects.
For the defined time series of currency exchange rates for the ask pask(τ) and bid pbid(τ) values
in time τ one can construct the string maps with the typical length ls. These non-local objects
serve as the basic objects for further operations. In contrast to classical time series forecasting
methods, e. g., autoregressive and moving average models, which forecast the variable of interest
using a linear combination of past values or errors of the variable, the string maps carry the larger
price history, thereafter the trends of irregular or untypical price changes can be caught with better
accuracy.

2.1 One dimensional maps

Using the string theory let us first define the 1-endpoint open string map

P (1)(τ, h) =
p(τ + h)− p(τ)

p(τ + h)
, h ∈ 〈 0, ls 〉 (2.5)
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where superscript (1) refers to the number of endpoints and ls to the length of th string (string
size), it is a positive integer. The tick lag h may be interpreted as a variable which extends along
the extra dimension limited by the string size ls.

A natural consequence of the transformation Eq. (2.5) is the fulfillment of the boundary
condition

P (1)(τ, 0) = 0 , (2.6)

which holds for any tick coordinate τ . To enhance the influence of rare events, a power-law
q-deformed model is introduced

P (1)
q (τ, h) = fq

(
p(τ + h)− p(τ)

p(τ + h)

)
, h ∈ 〈 0, ls 〉 (2.7)

by means of the signum function

fq(x) = sign(x) |x|q , q > 0 . (2.8)

1-endpoint string has defined the origin and it reflects the linear trend in p(.) at the scale ls.
Therefore, 1-endpoint string map P (1)

q (.) may be understood as a q-deformed generalization of
the currency returns.

Very interesting issue is the generalization of the 1-endpoint string map to the object which
includes the effect of many length scales

P
(Nls )
q (τ, h; {l}) =

Nls∏
i=1

fq

(
p(τ + li)− p(τ + h)

p(τ + h)

)
, (2.9)

which relies on the sequence {l} ≡ { li, i = 1, . . . , Nls}, including the end points

min
i=1,...,Nls

li, max
i=1,...,Nls

li, (2.10)

as well as the Nls − 2 interior node points that divide the string map into the sequence of unfixed
segments of the non-uniform length.

2.2 Two dimensional maps

The presence of a long-term trend is partially corrected by fixing the string at h = ls. The
open string with 2-endpoints P (2)

q (τ, h) is introduced via the nonlinear map which combines the
information about trends of p(.) at two sequential segments

P (2)
q (τ, h) = fq

((
p(τ + h)− p(τ)

p(τ + h)

)(
p(τ + ls)− p(τ + h)

p(τ + ls)

))
, h ∈ 〈 0, ls 〉 . (2.11)

The map is suggested to include boundary conditions of Dirichlet type

P (2)
q (τ, 0) = Pq(τ, ls) = 0 , at all ticks τ . (2.12)
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One can see from Eq. (2.11) that the sign of P (2)
q (τ, h) composes the information about the

behavior differences of p(.) at three particular times (τ, τ + h, τ + ls). The case P (2)
q (τ, h) < 0

occurs for trends of the different sign, whereas P (2)
q (τ, h) > 0 indicates the match of the signs.

In addition to the variable P (2)
q (τ, h) mapping the open string with 2-endpoints one can

introduce the conjugate variable X(2)
q (τ, h) with the help of the recurrent summation

X(2)
q (τ, h+ 1) = X(2)

q (τ, h) + P (2)
q (τ, h− 1) [ t(τ + h)− t(τ + h− 1) ] (2.13)

where t(.) stands for a time-stamp corresponding to the quotation index τ in the argument. The
above discrete form is suggested on the basis of the time-continuous Newton second law of
motion

Ẋ(2)
q (t, h) = P (2)

q (t, h)

(written here for an unit mass). The form is equivalent to the imposing of the quadratic kinetic
energy term 1

2 (P (2)
q )2. Thus, the Hamiltonian picture [43] can be reconstructed in the following

way

H =
1
2

ls∑
h=0

[
(P (2)

q (τ, h) )2 − [φext(τ, h+ 1)− φext(τ, h)] X(2)
q (τ, h)

]
, (2.14)

where φext(τ, h) is the external field term which depends on the transformation of currency rate,
see, e. g., Eq. (2.11)]. We pass from the continuum to discrete theory by means of the functional
form

Ṗ (2)
q = − δH

δX
(2)
q (h)

= φext(τ, h+ 1)− φext(τ, h) = P (2)
q (τ, h+ 1)− P (2)

q (τ, h) , (2.15)

where P (2)
q (τ, h) can be calibrated to equal φext(τ, h). The discrete conjugate variable meets the

Neumann type boundary conditions

X(2)
q (τ, 0) = X(2)

q (τ, 1) , X(2)
q (τ, ls − 1) = X(2)

q (τ, ls) , (2.16)

which is illustrated in Fig. (2.1).
A more systematic way to obtain the 2-endpoint string map represents the method of unde-

termined coefficients. The numerator of q = 1 can be chosen in the functional polynomial form
of degree 2 with the coefficients β0, . . . , β5 as

P
(2)
q=1,Num(τ, h) = β0p

2(τ + h) + β1p
2(τ) + β2p

2(τ + ls)

+ β3p(τ)p(τ + h) + β4p(τ)p(τ + ls) + β5p(τ + h)p(τ + ls) . (2.17)

As in the previous case, the Dirichlet conditions P (2)
q=1,Num(τ, 0) = Pq=1,Num(τ, ls) = 0 yield

P
(2)
q=1,Num = β0(p(τ) − p(τ + h))(p(τ + ls) − p(τ + h)) with arbitrary β0. The overlooked

denominator part of fraction P (2)
q=1 then servers as a normalization factor.
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(a) (b)

Fig. 2.1: The examples of the currency data map for EUR/USD OANDA data represented by the
2-end-point string map P (2)

1 (τ, h) (a) and the conjugate variable X(2)
1 (τ, h) (b). The calculation

carried out for ls = 1000, q = 1 at some time instant.

2.3 Symmetry with respect to direct and indirect quotes

The currency pairs can be separated into direct and indirect types. In a direct quote the domestic
currency is the base currency, while the foreign currency is the quote currency. An indirect quote
is just the opposite case. Therefore, it would be interesting to take this symmetry into account.
Hence, one can say that this two-fold division of the market network admits duality symmetry.
Duality symmetries are some of the most interesting symmetries in physics. The term duality is
used to refer to the relationship between two systems that have different descriptions but identical
physics (identical trading operations).

Let us analyze the 1-endpoint elementary string map when the currency changes from direct
to indirect. The change can be formalized by means of the transformation

T̂id : P{p(.)} → P{p(.)} ≡ P{1/p(.)} , (2.18)

where we use the notation P{p} which emphasizes the functional dependence upon the currency
exchange rate {p}. It should also be noted that the use of P highlights the canonical formal
correspondence between the rate of return and the internal string momentum.

For the 1-endpoint map model of the string, see Eq. (2.7), we obtain

T̂idP
(1)
q (τ, h) = P

(1)

q (τ, h) = fq

(
p(τ)− p(τ + h)

p(τ)

)
. (2.19)

Let us consider two-member space of maps V (1)
P = {P (1)

q , P
(1)

q }. What is important, we
see that T̂id preserves the Dirichlet boundary conditions and the identity operator T̂ 2

id leaves the
elements of V (1)

P unchanged. The space V (1)
P is closed under the left action of T̂id. These ideas

are straightforward transferable to the 2-endpoint string points.
Now we omit the notation details and proceed according to Eq. (2.18). The map P (.) is
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decomposable into a sum of symmetric and antisymmetric parts

P S =
1
2
(P + P ) , PA =

1
2
(P − P ), (2.20)

respectively. Due to of normalization by 1/2, we get the projection properties

T̂idP
S = P S , T̂idP

A = −PA . (2.21)

To be more concrete, we choose q = 1 and obtain

P
(1),S
q=1 = 1− 1

2

[
p(τ)

p(τ + h)
+
p(τ + h)
p(τ)

]
, P

(1),A
q=1 =

1
2

[
p(τ)

p(τ + h)
− p(τ + h)

p(τ)

]
. (2.22)

and

P
(2),A
1 =

1
2

[
p(τ)

p(τ + ls)
− p(τ + ls)

p(τ)
+
p(τ + h)
p(τ)

− p(τ)
p(τ + h)

+
p(τ + ls)
p(τ + h)

− p(τ + h)
p(τ + ls)

]
, (2.23)

P
(2),S
1 =1 +

1
2

[
p(τ + ls)
p(τ)

+
p(τ)

p(τ + ls)
− p(τ)
p(τ + h)

− p(τ + h)
p(τ)

− p(τ + h)
p(τ + ls)

− p(τ + ls)
p(τ + h)

]
.

We see that the P (1),S
q=1 and P (2),S

q=1 maps acquire formal signs of the systems with T -dual
symmetry [3]. When the world described by the closed string of the radiusR is indistinguishable
from the world of the radius ∝ 1/R for any R, the symmetry manifests itself by (R± const./R)
terms of the mass squared operator. The correspondence with our model becomes apparent one
assumes thatR corresponds to the ratio p(τ)/p(τ+h) in Eq. (2.22). However, we must also refer
that in our model we do not consider for the moment the compact dimension. One can also find
in the option price dynamics some real examples of duality symmetry [44]. Concretely put–call
duality which means “A call to buy foreign with domestic is equal to a put to sell domestic for
foreign.” Also most questions will not spell out what is domestic or foreign but let you decide
what is the underlying asset and which is the strike asset.

Tid transform under the conditions of bid-ask spreads

The generalization can also be made with the currency variables which appear as a consequence
of the transaction costs [45]. The occurrence of ask-bid spread complicates the analysis in several
ways. Instead of one price for each currency, the task requires the availability of two prices. The
impact of ask-bid spread on the time-series properties has been studied within the elementary
model [46].

Thus, for the purpose of a thorough and more realistic analysis of the market information, it
seems straightforward to introduce generalized transform

T̂ ab
id P{ pask(.), pbid(.) } = P{ 1/pbid(.), 1/pask(.) } , (2.24)

which converts to Eq.(2.19) in the limit of vanishing spread.
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2.4 D2-branes map

More interesting way how to go beyond a string model is to extent the string lines towards
the more complex maps including alternative spread-adjusted currency returns, the membranes
called D2-branes. Practically, the generalized mapping onto the D2-brane with the (h1, h2) ∈
〈 0, ls 〉 × 〈 0, ls 〉 coordinates which vary along two extra dimensions could be proposed in the
form

PD2,q(τ, h1, h2) = fq

(
pask(τ + h1)− pask(τ)

pask(τ + h1)
pask(τ + ls)− pask(τ + h1)

pask(τ + ls)

× pbid(τ)− pbid(τ + h2)
pbid(τ)

pbid(τ + h2)− pbid(τ + ls)
pbid(τ + h2)

)
. (2.25)

The map constituted by the combination of “bid” and “ask” quotes is constructed to satisfy the
Dirichlet boundary conditions

PD2,q(τ, h1, 0) = PD2,q(τ, h1, ls) = PD2,q(τ, 0, h2) = PD2,q(τ, ls, h2) . (2.26)

The above construction, Eq. (2.25), has been chosen as an explicit example, where the action of
T̂ ab

id becomes equivalent to the permutation of coordinates

T̂ ab
id PD2,q(τ, h1, h2) = PD2,q(τ, h2, h1) . (2.27)

Thus the symmetry with respect to interchange of extra dimensions h1, h2 can be achieved
through PD2,q+ T̂ ab

id PD2,q . In a straightforward analogous manner one can get an antisymmetric
combination PD2,q − T̂ ab

id PD2,q .
At the end of this subsection, we consider the next even simple example, where mixed bound-

ary conditions take place. Now let the 2-endpoint string to pass to the 1-endpoint string by means
of the homotopy P (1,2)

q1,q2 (τ, h, η) = (1 − η)P (1)
q1 (τ, h) + ηP

(2)
q2 (τ, h) driven by the parameter η

which varies from 0 to 1. In fact, this model can be seen as a variant of the D2 brane with extra
dimensions h and η.

2.5 Partial compactification

The numerical analysis of the string statistics have been performed qualitatively by the models
of the maps of the exponential and periodic data inputs. Most of the numerical investigations
have been obtained for the open topology; however, we describ briefly the ways to partial com-
pactification (pc). The data structures can also be mapped by means of the curled dimension
which arises as a sum of periodic data contributions. The idea of the compactified strings can be
realized as well by the application of the inverse Fourier transform of the original signal.

In the framework of string theory, the compactification attempts to ensure compatibility of
the universe based on the four observable dimensions with twenty-six dimensions found in the
theoretical model systems. From the standpoint of the problems considered here, the compacti-
fication may be viewed as an act of the information reduction of the original signal data, which
makes the transformed signal periodic. Of course, it is not very favorable to close strings by the
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complete periodization of real input signals. Partial closure would be more interesting. This uses
pre-mapping

p̃(τ) =
1
Nm

Nm−1∑
m=0

p(τ + lsm) , (2.28)

where the input of any open string (e. g., Eq. (2.5), (2.11)) is made up partially compact.
Thus, data from the interval 〈 τ, τ + ls(Nm − 1) 〉 are being pressed to occupy “little space”

h ∈ 〈 0, ls 〉. We see that as Nm increases, the deviations of p̃ from the periodic signal become
less pronounced.

For example, one might consider the construction of the (D̃ + 1)-brane

fq

(
p(τ + h0)− p(τ)

p(τ + h0)

) D̃∏
j=1

fq

(
p̃
(±)
j (τ + hj)− p̃

(±)
j (τ)

p̃
(±)
j (τ + hj)

)
(2.29)

maintained by combining (D̃ + 1) 1-endpoint strings, where partial compactification in D̃ extra
dimensions is supposed. Of course, the construction introduces auxiliary variables p̃(±)

j (τ) =∑Nm,j−1
m=0 p(τ ±mls,j).

2.6 Intra-string statistical picture

The idea of the string related maps proposed here is the transformation of the original point
object such as selected single price into a system of a prices from its admissible neighborhood.
This changeover from a local to a non-local description directly extends econometrics belief that
future prices are deducible from the price history of a given period.

Time invariant strings and elementary statistics

To understand better the idea, let us suppose to deal with short-time evolution of the currency
ln p(τ) = ln p0 + bτ characterized by the linear-logarithmic parameter b. After the substitution
into the string, Eq. (2.11), the expressions collapse to the invariant (independent of τ ) form

P
(1)
1 (τ, h) = 1− exp(−hb) , (2.30)

P
(2)
1 (τ, h) = 1− exp[(h− ls)b]− exp(−hb) + exp(−lsb) .

It is quite interesting to look at the lowest order terms of Taylor series of this result around
b = 0. Ignoring the terms of order b4 or higher gives P (1)

1 = bh − 1
2b

2h2 + O(b3), P (2)
1 =

b2h(ls− h) +O(b3). It demonstrates that the model of the 1-endpoint string is more sensitive to
the sign of b variations.

The elementary qualitative statistical model of the string can be obtained by taking the unex-
amined assumption that b fluctuates with the Gaussian probability density (2πσ2

b)−1 exp(− b2

2σ2
b
).
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The averaging of Eq. (2.30) with this weight yields

〈P (1)
1 〉Gauss (h) =1− exp

(
−h

2σ2
b

2

)
, (2.31)

〈P (2)
1 〉Gauss (h) =1− exp

(
−h

2σ2
b

2

)
− exp

(
− (h− ls)2σ2

b

2

)
+ exp

(
− l

2
sσ

2
b

2

)
.

Eq. (2.31) predicts an increase in the h dependence as a consequence of the symmetric fluctua-
tions in b.

Mapping of the periodic input signal

Simultaneously with statistical averaging of data, it is instructive to briefly examine the string
map of the signal of periodic form described by some elementary function. The input signal
p(τ) = a1 + a2 cos(ωτ) can be suitable for this purpose. Subsequently, the analytic calculation
for the 2-endpoint map can be carried out perturbatively under the requirement a2 � a1. The
common form of average unifying formulas obtained for different integer q values can be written
as

〈P (2),(S)
q (h) 〉cos =

[
cos(hω)+cos((h− ls)ω)−cos(lsω)−1

]q∑
j=0

cq,j

(
a2

a1

)2(q+j)

, (2.32)

where cq,j are the numerical coefficients which are not critical for further reasoning. The intu-
itive idea that P (2),(A)

q (τ, h) discriminates fluctuations, which stems from the comparison of the
symmetric and antisymmetric averages, is partially justified by the result 〈P (2),(A)

q (h) 〉cos = 0.
Interestingly, the calculation highlights the idea of the presence of the resonant lengths

ls(n) = 2πn/ω as n = 1, 2, . . .. This basic result motivated us to introduce the 2-endpoint
string model, that has potential to identify characteristic dynamic scales represented here by 1/ω.
It is important that anomalous aspect is absent in the statistical characteristics of the 1-endpoint
strings.

String map in the representation of internal Fourier modes

Following the analysis of ultra-high-frequency financial data using advanced Fourier transforma-
tion as in [47] one can assume that each tick τ of the string may be represented by the sequence
P

(2)
q (τ, h), h = 0, 1, . . . , ls − 1 which can be transformed by means of the discrete Fourier

transform

PDFT,q(k, τ) =
ls∑
h=0

P (2)
q (τ, h) exp

(
−2πikh
ls + 1

)
, k = 0, 1, . . . , ls . (2.33)

Having done this, one can introduce the inverse transform

PIDFT,q(h, τ) =
ls∑
k=0

PDFT,q(τ, k) exp
(

2πikh
ls + 1

)
, (2.34)
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which can be understood as a periodic extension of the input P (2)
q (τ, h) with a period of the

(ls + 1) ticks. Then PIDFT,q(h, τ) can be viewed as a portion of the original signal which curls
up along the compact dimension of the closed string. Thus, the integer h/(ls+1) has the meaning
of a winding number of PIDFT,q(h, τ). The Fourier transform of the inherent string structure may
serve to identify distinguishing features of currencies at selected time scale.

2.7 String polarized by the external field

In this section, we modify the 2-endpoint string model, Eq. (2.11), in order to account for the
transaction costs. This is some kind of analogy with a charged string which can be polarized by
an external electric field [48]. A natural way is to consider the relation for the spread-adjusted
return (pbid(τ + h)− pask(τ))/p(τ + h) (written here for a long position). If we now routinely
extend the 2-endpoint, Eq. (2.11), we obtain

P ab
q (τ, h) = fq

(
pbid(τ + h)− pask(τ)

p(τ + h)
pbid(τ + ls)− pask(τ + h)

p(τ + ls)

)
. (2.35)

However this clearly violates, the Dirichlet boundary conditions, see Eq. (2.12). The spread itself
yields a negligible correction to the mean values.

The boundary conditions can be easily renewed by the subtraction P̃ ab
q (τ, h) = P ab

q (τ, h)−
P ab
q (τ, 0). However, we show there exists a more fundamental alternative way which reflects

a bid-ask difference and preserves the Dirichlet boundary conditions. The string states are po-
larized by the instant possibility to place a successful/unsuccessful buy order. For each h and
Y = A,S we construct the inequality constrained sequence

P
(2),Y
(q,+) (τ + 1, h) =

{
P

(2),Y
q (τ, h) , pbid(τ + ls) ≥ pask(τ) ,
P

(2),Y
(q,+) (τ, h) , otherwise,

(2.36)

and non-buy contributions, respectively,

P
(2),Y
(q,−) (τ + 1, h) =

{
P

(2),Y
q (τ, h) , pbid(τ + ls) < pask(τ) ,
P

(2),Y
(q,−) (τ, h) , otherwise.

(2.37)

In both cases it is supposed that P (2),Y
q (τ, h) is calculated according an unconditioned model de-

fined by Eq. (2.11). Now, to characterize the arbitrage opportunities, we introduced the statistical
polarization measure in the form

gq,Y =

〈 ls∑
h=0

|P (2),Y
(q,+) (τ, h)− P

(2),Y
(q,−) (τ, h) |

ls∑
h=0

|P (2),Y
(q,+) (τ, h) + P

(2),Y
(q,−) (τ, h) |

〉
, Y = A,S. (2.38)

These ideas could be extended to the case of market polarizations which are due to interactions
amongst the agents in the market [49]. The agents could be characterized by the strings.
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We continue the characterization of arbitrage opportunities by defining the (momentum) dis-
tance function between the strings as

d(Y )
q (τ) =

1
ls + 1

ls∑
h=0

∣∣∣P (Y )
(q,+)(τ, h)− P

(Y )
(q,−)(τ, h)

∣∣∣ . (2.39)

In this case the statistics of string distances can be characterized by the customized variant of
the well-known model of the correlation sum [50, 51, 52] or by the correlation structure patterns
for identifying states of a financial market [41]. However, the motivation here differs from that
given in these papers, where the intent was to analyze nonlinear relationships. The correlation
sum shows the probability that the states of two strings or branes are localized within a certain
distance. In our view we adjust the original formula to the string and brane models which, in
addition, reflect the transactions involving profits. We define the measure

C(Y )
q (ε) =

〈Θ(ε− d
(Y )
q (τ))〉∫

dε′ 〈Θ(ε′ − d
(Y )
q (τ))〉

, (2.40)

where ε is the threshold distance, Θ(.) is the Heaviside step function; here ls plays the role of
so called embedding dimension. The key concept surrounding this measure is the concept of the
fractal dimension. Further, one can extend the concept of distance for D2-branes as defined in
Eq.(2.25). In this case we suggest generalization

dD2,q(τ) =
1

(ls + 1)2

ls∑
h1=0

ls∑
h2=0

∣∣PD2,(q,+)(τ, h1, h2)− PD2,(q,−)(τ, h1, h2)
∣∣ . (2.41)

2.8 Inter-currency study: map onto rotating strings

The incorporating of the mutual relations between the pairs into the mapping procedure repre-
sents a very challenging task. Let us study trading activity in the (I, J) plane, where I , J stands
for indices of the currency pair described by two 2-end-point strings. The real time data are used
instead of tick by tick (Eq. (2.3)) in order to maintain the consistency of prices quoted.

By continuing examples of the generalized distance concept (Eq. (2.39) and Eq. (2.41)), we
can introduce the inter-currency momentum distance function

dq,I,J(t) =
1

ls + 1

ls∑
h=0

∣∣∣P (2)
q,I (t, h)− P

(2)
q,J (t, h)

∣∣∣ . (2.42)

At higher dimension, it is tempting to deal with angular momentum

Mq,I,J(t) =
ls∑
h=0

[
P

(2)
q,I (t, h)X(2)

q,J(t, h)− P
(2)
q,J (t, h)X(2)

q,I (t, h)
]
. (2.43)

The momentum calculation can be interpreted as a measure of the rotational information flows be-
tween the currency pairs. Simultaneously, the concept of distance and moment has been extended
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to analyze the impact of spread. Analogously, as in the previous cases, the distance between the
ask and bid strings may be defined

dab
q,I(t) =

1
ls + 1

l∑
h=0

∣∣∣P (2)
q,ask(t, h)− P

(2)
q,bid(t, h)

∣∣∣ , (2.44)

Mab
q,I(t) =

ls∑
h=0

[
P

(2)
q,ask(t, h)X

(2)
q,bid(t, h)− P

(2)
q,bid(t, h)X(2)

q,ask(t, h)
]
. (2.45)

Here

P
(2)
q,ask ≡ P (2)

q |p→pask , P
(2)
q,bid ≡ P (2)

q |p→pbid (2.46)

are obtained by substituting expressions above in Eq. (2.11). With the help of Eq.(2.13) and
P

(2)
q,ask, P (2)

q,bid we construct iteratively X(2)
q,ask and X(2)

q,bid. The differences measured in terms of
Mq,I,J(t) are very subtle. The fundamental role in the string theory is played by the Regge slope
parameter α′ (or inverse string tension). This has a proper analogy with our approach where we
introduced a slope in terms of the angular momentum

α′q,I,J =
〈 |Mq,I,J | 〉

2π l2s
. (2.47)

It is worth to note that relation (2.47) should be understood as an estimate since there is no sta-
tistical mean of the type 〈 |M...| 〉 in the original specification. The problem of estimation of the
slope parameter arises from the fact that in the original model nonaveraged angular momentum
is divided by the square of the mass instead of l2s .

2.9 Differentials of string map

Gâteaux derivative is a generalization of the concept of a directional derivative in the differential
calculus. In our study the concept can be viewed as a systematic way in the generation of more
structured maps expressing more information about the structure of data we deal with. Given the
string map P (.), the m-th Gâteaux derivative of P (.) in the “direction” of ψ(.) (unspecified yet
series) is defined as follows

dmP ({p}; {ψ})(τ, h) =
dm

dεm
P ({p(τ, h) + εψ(τ, h)})

∣∣∣
ε→0

. (2.48)

For q = 1 the calculation gives

dP (1)
1 ({p}; {ψ})(τ, h) =

1
p(τ + h)

[
p(τ)ψ(τ + h)
p(τ + h)

− ψ(t)
]

(2.49)

and

dP (2)
1 ({p}; {ψ})(τ, h) = ψ(τ)

(
1

p(τ + ls)
− 1
p(τ + h)

)
+ ψ(τ + h)

(
p(τ)

p2(τ + h)
− 1
p(τ + ls)

)
(2.50)

+
ψ(τ + ls)
p2(τ + ls)

(p(τ + h)− p(τ)) .
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By going to the second order we obtained

d2P
(2)
1 ({p}; {ψ})(τ, h) =

2ψ(τ + h)
p2(τ + h)

[
ψ(τ)− p(τ)ψ(τ + h)

p(τ + h)

]
(2.51)

and

d2P
(2)
1 ({p}; {ψ})(τ, h) =

2ψ(τ + ls)
p2(τ + ls)

[ψ(τ + h)− ψ(τ)]

+
2ψ(τ + h)
p2(τ + h)

[
ψ(τ)− p(τ)ψ(τ + h)

p(τ + h)

]
(2.52)

+
2ψ2(τ + ls)
p3(τ + ls)

[p(τ)− p(τ + h)] .

The generalized differentiation generates maps which satisfy the Dirichlet boundary conditions

dmP (1)
1 ({p}; {ψ})(τ, 0) = 0 , m = 1, 2; (2.53)

dmP (2)
1 ({p}; {ψ})(τ, 0) = dmP (2)

1 ({p}; {ψ})(τ, ls) = 0 . (2.54)

Many alternative ways exist to exploit the models with the auxiliary field ψ(.). The field can be
related to, e. g.,

(i) models which place emphasis on the currency margins determined by some adaption pro-
cess,

(ii) on the spread in a style of Subsec. 2.7 with ψ(τ) = pbid(τ)− pask(τ − ls),

(iii) the periodic function ψ(τ) can model the action of the compact,

(iv) the benchmark setting represents ψ = 1.

In the last case, one can see that the generalized derivative modifies the original map as follows

dP (1)
1 ({p}; {ψ})(τ, h)|ψ=1 = −P

(1)
1 (τ, h)
p(τ + h)

, (2.55)

dP (2)
1 ({p}; {ψ})(τ, h)|ψ=1 =

(
1

p(τ + h)
+

1
p(τ + ls)

)
P

(2)
1 (τ, h) . (2.56)
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3 String prediction models and their utilization

3.1 Prediction model based on string invariants

The meaning of invariant is that something does not change under transformation, e. g., such as
some equations from one reference frame to another. We want to extend this idea also on the
time-series forecast, to find some invariants in the finance data and utilize them to predict the
future values. Let us introduce a positive integer lpr denoting the prediction scale of how many
steps ahead of τ0 lies the predicted value. Let us introduce an auxiliary positive integer Λ and a
condition

Λ = ls − lpr, ls > lpr. (3.1)

The power of the nonlinear string maps of time series data is to be utilized to establish a
prediction model similarly as in [53,54,55]. The approach to define the string invariants is based
on the correlation function (see Appendix A).

The first tests of prediction behavior of the prediction model based on string invariants
(PMBSI) with and without transaction costs on the EUR/USD currency rate of the forex mar-
ket were obtained by using the values of parameters ls = 900, lpr = 1, η1 = 0, η2 = 0, q = 6.
Their graphical description is plotted in Figs. 3.1 and 3.2.

The main weakness of this model is its prediction length (the parameter lpr), in this case it
is one tick ahead. The price was predicted correctly in 48.57% of all cases (16201 in one year)
and from these 48.57% or numerally 7869 cases only 0.13% or numerally 10 were suitable for
trading. This small percentage is caused by the fact that the price does not change too often one
tick ahead. One could try to raise the prediction length to find more suitable cases for trading.
This is only partly successful because the rising parameter lpr induces a loss of the prediction
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Fig. 3.1: The profit of PMBSI model on the EUR/USD currency rate without transaction costs
included dependence on trades for one year period.
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Fig. 3.2: The profit of PMBSI model on the EUR/USD currency rate without transaction costs
included dependence on days for one year period.

strength of the model. For example when lpr = 2 (two ticks ahead) prediction strength decreases
from around 50% to 15%.

The problem is that the invariant Eq. (A.1) is fulfilled only on the very short period of the
time series due to the very chaotic nature of financial data behaviour. Therefore the PMBSI
is effective only on the one step prediction where there is very low probability that time series
change significantly. The situation, however, is different for more steps prediction where there
is, on the contrary, very high probability of big changes in time series to occur, and the following
predictions have rather small efficiency in such cases. The only way how to establish better
prediction also for more steps prediction is to choose the right weights Eqs. (A.8), (A.9). The
right and optimized weights should considerably extend the interval where Eq. (A.1) is fulfilled.

3.2 Experimental analysis of PMBSI

The experiments were performed on two time series. The first series represented artificial data,
namely a single period of a sinusoid sampled by 51 regularly spaced samples. The second time
series represented proprietary financial data sampled daily over the period of 1295 days. The
performance of PMBSI was compared to SVM and to naïve forecast. There were two error mea-
sures used, mean absolute error (MAE) and symmetric mean absolute percentage error (SMAPE)
defined as

MAE =
1
n

n∑
t=1

|At − Ft| , (3.2)

SMAPE =
100
n

n∑
t=1

|At − Ft|
0.5(|At|+ |Ft|)

, (3.3)
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where n is the number of samples, At is the actual value and Ft is the forecast value.
Each time-series was divided into three subsets: training, evaluation and validation data.

The time ordering of the data was maintained; the least recent data were used for training, the
more recent data were used to evaluate the performance of the particular model with the given
parameters’ setting. The best performing model on the evaluation set (in terms of MAE) was
chosen and made forecast for the validation data (the most recent) that were never used in the
model optimization process.

The parameters of the models were optimized by trying all combinations of parameters sam-
pled from given ranges with a sufficient sampling rate. Naturally, this process is slow but it
enabled to get an image of the shape of the error surface corresponding to the given settings of
parameters and ensured that local minima are explored. The above approach was used for both,
PMBSI and SVM models.

The SVM models were constructed so that the present value and a certain number of the
consecutive past values comprised the input to the model. The input vector corresponds to what
will be referred to here as the time window with the length ltw (representing the equivalent of the
length of the string map ls by PMBSI).

Experimental results on the artificial time series

A single period of a sinusoid sampled by 51 regularly spaced samples was used. They were
divided into subsets so that the positive half of the period was used for training and evaluation
and the negative half for validation. This was done to assess the ability of PMBSI to extrapolate
and generalize. For PMBSI the time series was shifted above zero by adding a positive constant.
The constant was then subtracted from the forecast. SVM with linear kernel was used as a
benchmark. The positive half of the period was divided 7/3 for training/validation. Predictions of
1, 2 and 3 steps ahead were made. It became obvious that PMBSI performs well in one step ahead
prediction but for multiple steps ahead predictions its performance drops rapidly. Therefore,
iterated prediction using the one step prediction model was made, improving the PMBSI results
significantly. For the illustration, Fig. 3.3 shows the comparison of iterated versus the direct
prediction using PMBSI. Experimental results on the evaluation and validation data are presented
in Table 3.1, the results of the best performing models are highlighted.

The optimal ltw for SVM was 3 for all predictions. Table 3.2 shows the optimal settings
found for PMBSI. For lpr = 1 when PMBSI outperformed linear SVM the optimal length of the
string map was shorter than the optimal time window for SVM, in the remaining cases it was
significantly longer.

Experimental results on the financial time series

The financial time series was divided into subsets so that the most recent 40% of the data was
used for validation and the remaining data were used for training/validation divided in the ratio
of 6/4. While extrapolation of sigmoid was a relatively simple task, the financial time series was
highly non-linear and chaotic. SVM with Gaussian RBF kernel was used as the benchmark and
the predictions from 1 to 10 steps ahead were made. Table 3.3 shows a selection of the experi-
mental results, the results of the best performing models are highlighted. Table 3.4 summarizes
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Fig. 3.3: Iterated and direct prediction using PMBSI on artificial data.

Method lpr MAE eval MAE valid SMAPE valid

PMBSI
1 0.000973 0.002968 8.838798
2 0.006947 0.034032 14.745538
3 0.015995 0.161837 54.303315

Iterated PMBSI
1 — — —
2 0.003436 0.011583 10.879313
3 0.008015 0.028096 14.047025

SVM
1 0.011831 0.007723 10.060302
2 0.012350 0.007703 10.711573
3 0.012412 0.007322 11.551324

Naïve forecast
1 — 0.077947 25.345352
2 — 0.147725 34.918149
3 — 0.207250 41.972591

Tab. 3.1: Experimental results on the evaluation and validation of artificial time series data.

lpr ls q η1 η2

1 2 0.30 0.80 −0.20
2 5 0.10 0.80 −0.60
3 8 0.10 0.80 −0.60

Tab. 3.2: Optimal values of PMBSI parameters for artificial time series data.
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the optimal parameters found and states the percentual count of NaNs forecast by PMBSI. Inter-
estingly, SVM preferred long time windows reaching the upper limit on the lenght while PMBSI
utilized much less of the past data to make a forecast.

Method lpr MAE eval MAE valid SMAPE valid

PMBSI

1 0.023227 0.023595 7.380742
2 0.037483 0.036335 11.378275
4 0.048140 0.046381 14.876330
6 0.054556 0.049755 16.094349
8 0.057658 0.056097 18.546008
10 0.060192 0.058216 18.752986

Iterated PMBSI

1 — — —
2 0.032706 0.031940 9.953547
4 0.043134 0.042414 13.250729
6 0.049916 0.047784 15.102693
8 0.055326 0.051355 16.306971
10 0.057802 0.052353 16.552731

SVM

1 0.021383 0.025546 8.046289
2 0.027721 0.031878 10.046793
4 0.036721 0.039702 12.578553
6 0.041984 0.044450 14.157343
8 0.044525 0.047175 15.036534
10 0.046166 0.050236 15.898355

Naïve forecast

1 — 0.023273 7.287591
2 — 0.031486 9.822408
4 — 0.041811 13.078883
6 — 0.047238 14.958371
8 — 0.050788 16.148619
10 — 0.051923 16.428804

Tab. 3.3: Experimental results on the financial time-series for PMBSI.

SVM PMBSI
lpr ltw ls q η1 η2 NaN(%)

1 51 2 20.3 0.0 0.0 20.43
2 51 5 15.5 0.0 -0.05 14.6
4 51 8 11.9 0.0 0.0 19.25
6 51 10 14.3 0.1 -0.05 21.42
8 51 18 16.4 0.4 0.10 25.69

10 51 14 11.9 0.3 0.05 21.32

Tab. 3.4: Optimal parameters on the financial time-series and percent of NaNs forecast by
PMBSI.
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Fig. 3.4: The financial time-series and the forecast 10 steps ahead for PMBSI (a), iterated PMBSI
(b), SVM (c) methods.

Again, the prediction accuracy of PMBSI was deteriorating significantly for longer forecasts
and the results have improved significantly with iterated prediction. The longest prediction of
10 steps ahead was chosen to depict the experimental results on the financial data graphically
(Fig. 3.4).

The goal of performed experimental analysis of the PMBSI method was to evaluate the pre-
diction accuracy, the generalization performance, the convenience of the method in terms of the
operators effort needed to prepare a working model, computational time and other aspects of the
PMBSI method that may have became obvious during the practical deployment.

The prediction capability of PMBSI was proven and it was shown that it can match and even
outperform SVM in some cases (see the results on the artificial data). On the financial data both
methods, SVM and PMBSI struggled to match the naïve forecast. The reason for this is probably
the complexity, intrinsic variability and chaotic nature of the system the time series is describing.
Although the tests of PMBSI method on a larger set of time series are on the way, the presented
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Fig. 3.5: MAE corresponding to various settings of ls and q on the financial data. The red dot is
the global minimum of MAE.

results have proven that PMBSI can be successfully used for single step forecast. The problem
is that the more chaotic is the time series the shorter is the period when the invariant Eq. (A.17)
is fulfilled. Therefore PMBSI is effective for the single step prediction because the probability
of a significant change in the time series is lower. The situation is different for multiple steps
prediction leading to small efficiency in such cases.

The way to improve the performance in multiple steps predictions is to chose more appro-
priate weighting coefficients (Eqs. (A.8), (A.9)). The optimized weights should considerably
extend the interval where Eq. (A.17) is fulfilled. PMBSI predictor does not undergo a training
process that is typical for ANN and SVM where a number of free parameters must be set (synap-
tic weights by ANN, α coefficients by SVM). PMBSI features a similar set of weights (W ) but
often very small and calculated analytically. The parameters to be optimized are only four: ls,
Q, η1, η2. This, clearly, is an advantage. On the other hand the optimal setting of the parameters
is not easy to be found as there are many local minims on the error surface. In this analysis
the optimal setting was found by testing of all combinations of parameters sampled from given
ranges. Fig. 3.5 shows the Mean Absolute Error of the 5-steps ahead forecast of the financial
time series corresponding to various settings of ls and Q (η1 = η2 = 0). But the figure makes
also obvious that PMBSI’s performance is approximately the same for a wide range of settings,
making it unnecessary to explore the whole error surface. These are the reasons why PMBSI
model can be fast to construct and to deploy.

3.3 Prediction model based on the deviations from the closed string/pattern form

For the next trading strategy we want to define some real values of the string sequences. There-
fore we define the momentumM which acquired values from the interval (0, 1). The momentum
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is not strictly invariant as in the previous model of the time series in its basic definition. It is a
trading strategy to find such place in time series where M is exactly invariant or almost invariant
and we can predict increasing or decreasing of prices with higher efficiency. For example our
predictor somewhere in time-series has 55% of efficiency to predict movement of price but in the
invariant place of our trading strategy where Eq. (3.4) is almost invariant the efficiency of our
predictor increased to 80%. Therefore the idea to find invariant in time series plays a crucial role
in our trading strategy but one still needs to find an appropriate expression for such prediction.

The momentum M of the string (the predictor) is proposed for the study of deviations of
string maps from benchmark string sequence in the form

M(ls,m, q, ϕ) =

(
1

ls + 1

ls∑
h=0

∣∣∣PN (τ, h)− FCS(h, ϕ)
∣∣∣q)1/q

, (3.4)

for m, q > 0 , ls is the string length. PN (τ, h) represents the generalized N -points string
map, e. g. PN (τ, h) → P

(1)
q (τ, h) (see (2.5) and [24] where the q-deformed prediction model

based on the deviations from benchmark string sequence of 1-endpoint string map P (1)
q (τ, h)

was thoroughly studied)

P (1)
q (τ, h) =

p(τ + h)− pmin(τ)
pmax(τ)− pmin(τ)

, P (1)
q ∈ (0, 1), (3.5)

pmax(τ) = max
h∈{0,1,2,...,ls}

p(τ + h) , pmin(τ) = min
h∈{0,1,2,...,ls}

p(τ + h). (3.6)

Such model yields to the momenta values depicted in Fig. 3.6(a). The regular function
FCS(h, ϕ) could be substituted by various periodic functions, for more see Eqs. (3.14—3.20),
we have used the form

FCS(h, ϕ) =
1
2
(
1 + cos(ϕ̃)

)
, ϕ̃ =

2πmh
ls + 1

+ ϕ. (3.7)

We have shown in [25] and confirmed practically, by the hundreds of thousands of simula-
tions that we have executed on high precision simulation computing platform (more details in
Appendix B), that regular function does play an influential role in predictors’ decision making.

We have found out, that there is a relation between the time series data, that are streamed to
algorithm, regular function and the mid/long term trends discovery process predictor is executing.
We have been able to find right parameters for predictor to follow these trends on training data
during a certain time period, but the problem was that real time series contains a lot of irregu-
larities, which made the mid/long term trend following very difficult to use. We have used this
predictor for live trading and while entering into new positions (opening a position, which is an
operation of buy/sell an investment instrument like EUR/USD) was statistically sufficient, mar-
ket irregularities in the form of sudden upredictable events, which causes sudden price changes,
made it very difficult to exit the position (close the position) in right time.

It depends on money and risk management strategies we have used at the exit rule. While
statistically, a percentage of predictions have looked sufficient enough from entry rule point of
view, it have been almost impossible to fine tune exit rule in a way, that it overcomes the market
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(a) 1-endpoint open string

(b) 2-endpoints open string

Fig. 3.6: Not regularized and regularized values of the momentum of the string for the sample
of time series ticks in the case of 1-endpoint open string (a) and 2-endpoints open string (b) for
typical values of q parameter.

irregularities. At the end, wrong set up of exit trade rule could cost more loss, than the entry rule
based on predictors’ decisions could cover.

Despite the simple approach, the results of the simulations with the prediction model in
the OANDA market [29] have demonstrated the stability of the proposed trading algorithm on
the transaction costs for the long trade periods. However, to avoid the situation with market
irregularities lead us to find further possible string mappings.

Open (polarized) string with 2-endpoints

In the next we study the influence of more complex string objects on the momentum behavior.
At first we propose to incorporate a long-term trend by the nonlinear map corresponding to an
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open string with 2-endpoints (see (2.11)) with the

PN (τ, h) → P (2)
q (τ, h) =

(
p(τ + h)− p(τ)
pmax(τ)− pmin(τ)

)(
p(τ + ls)− p(τ + h)
pmax(τ)− pmin(τ)

)
, (3.8)

with pmax(τ) and pmin(τ) from Eq. (3.6) or with the possible modifications of the string map
to include spread-adjusted currency return (pbid(τ)− pask(τ))/p(τ, h), i. e., the analogy with a
charged string polarized by an external field, see Eq. (2.35)

PN (τ, h) → P ab
q (τ, h) =

(
pbid(τ + h)− pask(τ)
pmax(τ)− pmin(τ)

)(
pbid(τ + ls)− pask(τ + h)

pmax(τ)− pmin(τ)

)
(3.9)

or

PN (τ, h) → P ab
q =

(
pbid(τ + h)− pask(τ)
pbid
max(τ)− pask

min(τ)

)(
pbid(τ + ls)− pask(τ + h)

pbid
max(τ)− pask

min(τ)

)
. (3.10)

Fig. 3.6(b) shows that the effect of the regularization is notable in comparison with previous
case of 1-endpoint open string, even for low values of q parameter. It allow us to focus on the
predictor values which determine the stability of the algorithm or in other words they reflect the
price changes on the scale of string length.

For the polarized string mapping, i. e., the replacement PN (τ, h) → P ab
q (τ, h), the regular-

ized and nonregularized values of the momenta M looks identically to the previous case of open
string (see Fig. 3.6(b)) and the simulations yield to the similar results.

To quantify the received predictor statistics one can construct the histograms for a spectrum
of M momenta as shown in Fig. 3.7. Broader peaks of the distributions for regularized values of
M for 1-endpoint and 2-endpoints strings suggests that the values are more smoothed than in the
unregularized case and the aims to forecast the market trends are based on the sharper values of
M , i. e., only the highest changes of a price on the market are taken into account and in this way
they facilitate the evaluation of buy/sell orders.

D2-brane model

More interesting way how to go beyond a string model is to extent the string lines towards
the more complex maps, the membranes called D2-branes. Practically it can be realized with
the mapping PD2,q(τ, h1, h2) (see Eq. (2.25)) and the momentum of D2-brane model can be
modified to

M(ls,m, q, ϕ, ε) =

=

(
1

(ls + 1)2

ls∑
h1=0

ls∑
h2=0

∣∣∣PD2,q(τ, h1, h2)− FD2(h1, h2, ϕ, ε)
∣∣∣q)1/q

, (3.11)

the regular function depends also on more variables, e. g., it can has the form (3.20)

FD2(h1, h2, ϕ, ε) =
1
2
(
sin(ϕ̃2) cos(ε̃2)

)
, ϕ̃ =

2πmh1

ls + 1
+ ϕ, ε̃ =

2πmh2

ls + 1
+ ε. (3.12)
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(a) q = 1 (b) q = 1

(c) q = 16 (d) q = 16

Fig. 3.7: Values of momenta for 1-endpoint open string without (left column) and with (right
column) regularization function. Histograms show the difference of values from the mean of
normal distribution function (µ, σ).

The effect of higher dimension D2-branes onto the M values in Eq. (3.11) is visible in
Fig. 3.8. In comparison with 1-endpoint and 2-endpoints open strings the unregularized val-
ues are more smoothed. The regularization does not improve the spectrum so significantly as in
the previous case of string models as it is visible from the histograms shown in Fig. 3.9. One
can conclude that even the D2-branes model with basic configuration is suitable to capture the
dynamic changes of prices on the financial market.

As another tool for evaluating of the different approaches represented by the string and D2-
branes models can server the return volatility σls/2. In contrast to a historical volatility (the
standard deviation of currency returns), the return volatility acts at the time scale ls/2 as string
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Fig. 3.8: Not regularized (blue) and regularized (red) values of the momenta for D2-brane. The
sample of 10 thousand time series ticks, q = 1 and q = 8.

statistical characteristic. It is defined as

σr(ls/2) =
√
r2(ls/2)− r21(ls/2), (3.13)

rm(ls/2) =
ls/2∑
h=1

[
(p(τ + h)− p(τ + h− 1))/(p(τ + h))

]m
,

for m = 1, 2. The scatterplot in Fig. 3.10 shows the relationship of return volatility at the scale
of ls/2 to the changes in the price trends represented by the string amplitudes for 2-endpoints
string P (2)

i (τ, ls/2) and D2-brane PD2,i(τ, ls/2, ls/2), i = 1, 8.
The impact of high q to identify the rare events of volatility is visible in both cases, never-

theless, if one decides or does not decide to use the q-deformed model in favor of D2-branes it
depends also on the technical conditions of real time calculations, because to receive the statistics
and to make predictions with D2-branes requires more computing power.

Regular functions

The formula for the basic regular function used thoroughly the work is defined as

FCS0(h) =
1
2
(
1 + cos(ϕ̃)

)
, ϕ̃ =

2πmh
ls + 1

+ ϕ, (3.14)

ϕ is a phase of a periodic function cos(ϕ̃).
The periodic function in the definition of the regular function could be substituted by different
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(a) q = 8 (b) q = 8

(c) q = 8 (d) q = 86

Fig. 3.9: Values of momenta for 2-endpoints open string ((a)–(b)) and D2-branes ((c)–(d)) with-
out (left column) and with (right column) regularization function. Histograms show the differ-
ence of values from the mean of normal distribution function (µ, σ).

types of mathematical functions

FCS1(h) =
1
2
(
1 + sin(ϕ̃)

)
, (3.15)

FCS2(h) =
1
2
(
1− cos(ϕ̃)

)
, (3.16)

FCS3(h) =
1
2
(
1 + tanh(ϕ̃)

)
, (3.17)

FCS4(h) =
1
2
(
sin(q ∗ ϕ̃) + cos(ϕ̃)

)
. (3.18)

The regular function enters all types of the predictors and modify their values.
More complex regular functions, e. g., used for partially compactified D2-brane can be writ-
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Fig. 3.10: Relationship of return volatility σr(ls/2) and the string amplitudes for 2-endpoints
string (first row) and D2-brane (second row). It shows the separating effect for q = 8. Calculated
for 1min. EUR/USD ticks at time period 01− 12/2015 and ls = 1000.

ten as

FCS5(h) =
1
2
(
sinh(q · ϕ̃) + cosh(ϕ̃)

)
, (3.19)

FCS6(h) =
1
2
(
sin(ϕ̃2). cos(ε̃2)

)
, ε̃ =

2πmh
ls + 1

+ ε. (3.20)

3.4 Experimental analysis of PMBCS

In addition to the theoretical modeling, our purpose was to study the financial forecasting on
the real data. The first simulations have been done with the trading algorithm (Appendix B) on
the OANDA data with the most realistic trade conditions [29]. We have illustrated the impact
of the string parameters and the prediction behavior of our Self-learning model on the net asset
value. As a result, the abilities of the self-learning model were shown to find the optimal string
parameters for the final opening/closing of trade positions.

The string PMBCS Self-learning model was benchmarked against the basic time series fore-
casting models and trading strategies. For this purpose we chosen the scalping strategy of
taking profits on small price changes (SCALPER) [56], a trend-following momentum indica-
tor Moving Average Convergence Divergence (MACD) based on the exponential moving aver-
ages (EMA) [57] and finally the class of the autoregressive integrated moving average models
(ARIMA) [35,58], including ARIMA(0,0,0)+c – the mean constant model, ARIMA(0,1,0) – the
random walk model and ARIMA(0,1,0)+c – the random walk with drift model (for different con-
stants c). All mentioned models were implemented into the trade system as the corresponding
algorithms. The results of the simulations are presented in Tab. 3.5 and Fig. 3.11. As one can see
the predicted NAV values after three months time period are close to zero profit for the most of



32 Study of prediction models

Model Mean µ Sigma σ NAV [%]

String PMBCS 741 1482 4.33
SCALPER −1396 1340 −3.99
MACD −383 1020 1.35
ARIMA(0,0,0) + c1 95 249 0.40
ARIMA(0,1,0) −247 805 −0.67
ARIMA(0,1,0) + c2 −1699 1208 −3.04
ARIMA(0,1,0) + c3 44 679 0.89

Tab. 3.5: The comparison of the results for the net asset values (NAV) of our model and ba-
sic time series forecasting models (ARIMA) and trading strategies (SCALPER, MACD) on the
EUR/USD currency rate for the time period 2010/07/15 – 2010/10/15. Mean µ is the average of
the values (reference point 105), σ is the standard deviation and NAV is the percentage change
of the start and end positions for the selected time period (see also Fig. 3.11).

the cases, especially for ARIMA models. Also the mean µ of NAV values oscillates around the
starting point throughout the whole period. It is not surprising, one expects such behaviour for
the random walk models where predicted values are equal to the last observed values. The relia-
bility of the SCALPER method for examined period is also very small as it tends to the negative
profit very rapidly. However, the scalping strategy is primary intended to take small profits for
short time scales.

The stability of the algorithm on the transaction costs for long trade periods was demonstrated
and the next logical step was to improve the Self-learning algorithm for the data evaluation, as
the received results were encouraging.

It was done with the new version of the trading algorithm. For the purpose to demonstrate
the impact of different types of string maps on the net asset value (NAV) we performed numeri-
cal simulations with open strings with one and two endpoints, D2-branes and ARMA(p,q) type
forecasting models on trade online system with build-in derived algorithms. The plot in Fig. 3.12
presents the results of the simulations for EUR/USD currency pair. In the simulations we have
tried to keep all parameters the same as possible, the impact of string length ls was tested on final
result, OS1ep and OS2ep models have the same regularization function with q = 8, D2-brane
model is not regularized. The study revealed the incapability of ARMA models to keep even zero
profit. On the contrary, the results of the string models revealed improvement of NAV with the
transition from 1-endpoint to to 2-endpoints open string and D2-branes. Moreover, the higher
efficiency for the string models may be achieved by longer string ls lengths.

To see the differences and perspectives of the proposed model from the Section 3.3, we
have performed the real, i. e., not theoretical runs of demo sessions on the Interactive Brokers
(IB) and LMAX Exchange (LMAX) market accounts [59, 60], which were done through the
Librade online trade system [61]. The chosen currency pairs EUR/USD, CHF/JPY, AUD/CAD,
AUD/JPY were simulated with new algorithm version and thereafter compared with the results
from demo sessions (see Tab. B.2 and B.3).

Fig. 3.13 shows NAV plots for this real demo trading results and the simulation results (the
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(a)

(b)

Fig. 3.11: The net asset value of the model on the EUR/USD currency rate for a selected time
period compared with the values of basic time series forecasting models (ARIMA) and trading
strategies (SCALPER, MACD) (see also Tab. 3.5).

NAV scales differ as they were initialized with different trade volumes). One can observe that
all demo results for currency pairs follow the main trend of simulations for chosen time period,
i. e., nearly two months. The best coincidence is clearly visible for currency pair EUR/USD
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Fig. 3.12: Net asset value plots for model simulations on the EUR/USD currency rate for a time
period 01 – 06/2016 as the dependence on string mapping (OS1ep – one string with one endpoint,
OS2ep – open string with two endpoints, D2-branes model) compared to time series forecasting
models of ARMA type. Number in string model denotes the value of string length ls.

(IB-test-12 and LMAX-test-16 accounts), which was in the center of our interest. Also we found
nice candidate for currency pair AUD-CAD as one can see in the case of LMAX-test-14 account.

3.5 Regge slope parameter

In this section we closely look at another quantity which has origin in the string theory, so called
Regge slope parameter α′. The connection of the slope parameter and the angular momentum
makes it suitable for the investigation of the stability of currency rates as shown below.

For rotating open string, the parameter α′ or inverse of the string tension, is the constant that
relates the angular momentum of the string J to the square of its energy E

α′ =
J

~E2
. (3.21)

In our analogy we introduce the slope parameter in terms of the angular momentum Mab
q (τ).

For the time series of open-high-low-close (OHLC) values of currency rates p(τ) one can
construct separated ask and bid strings, in our case we use the open string with 2-endpoints
and string length ls, introduced via the nonlinear map in Eq. (2.11). Then the momentum dis-
tance function dab

q (τ) between the ask string P (2)
q,ask(τ, h) ≡ P

(2)
q (τ, h)

∣∣
p→pask

and the bid string

P
(2)
q,bid(τ, h) ≡ P

(2)
q (τ, h)

∣∣
p→pbid

has the form as in Eq. (2.44). In case of rotating open string,
the nonvanishing component of angular momentum is M12, and its magnitude is denoted by
J = |M12| (more in [3])

M12 =
∫ σ1

0

(X1P
τ
2 −X2P

τ
1 )dσ (3.22)
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Fig. 3.13: Net asset value plots for opened demo sessions and the results of simulations per-
formed with StringAlgo v.16 on real demo trading IB and LMAX accounts as presented in
Tab. B.3.
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String Volatility window [in min.]
length 5 10 40 60

10 0.5175 0.6072 0.3759 0.3531
20 0.3949 0.4574 0.4307 0.3865
30 0.4726 0.5022 0.5398 0.4935
40 0.4460 0.5098 0.6579 0.5843
50 0.4384 0.4184 0.5230 0.5240

Tab. 3.6: The Pearson product-moment correlation coefficients between the angular momentum
(dependent on a string length ls) and the historical volatility (dependent on a time window) cal-
culated for close ask 1 min. ticks of EUR/USD exchange rate on December 4th, 2015.

Currency pair 〈 P
(2)
1 (ls/2) 〉 α′

1 T0

[×10−7] [×10−13(2π)−1] [×1012]

AUD/CAD 3.6841 8.9764 1.1140
EUR/USD 0.3539 2.1890 4.5684
GBP/USD −5.0099 5.4474 1.8357
USD/CAD 8.6794 12.0247 0.8316
USD/CHF 10.6082 10.6185 0.9418
USD/JPY 28.2180 6.9397 1.4410

Tab. 3.7: Average values of string amplitude of 2-endpoints string P (2)
1 (ls/2), slope parameter

α′1 and tension T0 for main currency pairs. One month (02/2016) tick data with 1 min. resolution,
string length ls = 1000.

for space and conjugate components Pi, Xi, i = 1, 2 and σ1 = E/T0. It leads to the relation
connecting the slope parameter α′ and T0 as the string tension T0

T0 =
1

2π α′ ~c
. (3.23)

In our notation, the angular momentum can be written as (2.45). The slope parameter has final
form

α′q =
〈 |Mab

q (τ) | 〉
2πl2s

. (3.24)

Table 3.7 presents the typical values of slope parameter α′q together with the mean of string

amplitude P (2)
1 (ls/2) for 2-endpoints string mapping, the string tension T0 is estimated with

the help of Eq. (3.23) (~c = 1). It is obvious that each currency pair operates with the own
characteristic inter-string values. From the theory of D-branes is known generalized formula for
the tension of Dp-brane [62]

TDp
=

1
gs(2π)p lp+1

s

, (3.25)
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Fig. 3.14: Plot shows the close ask value of EUR/USD exchange rate (red) for 1 min. ticks on
December 4th, 2015. The historical volatility in 5, 10, 40, 60 min. windows (green) is compared
with the angular momentum Mab

q (τ) (blue) for q = 1 and ls = 10 min.

ls is the familiar string length and gs is the string coupling, which can be used for higher dimen-
sions not considered in this work.

In such a way the angular momentum Mab
q (τ) can be applied as complementary tool to

analyze the stability of currency rates except the historical volatility, as they are both compared
in Fig. 3.14. For short string lengths the angular momentum indicates the same sharp changes in
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exchange rate. The correlation between measures is highest for equal values of a string length and
time window parameters, see Table 3.6. Although there exists a certain relation between those
measures, for instance, the similar sensitivity in time, the memory effect of angular momentum
seems to be lower. Therefore, it may provide a helpful indication of market changes or to serve
as a trade brake in algorithms.

In connection with a slope parameter α′ and a string tension T0 we have compared their
values for a set of currency pairs in Table 3.7 (we have chosen the main six trading pairs). One
can deduce that an increase of slope parameter values (or decrease of tension) indicates the
changes on a market and a volatility is increasing. Although the fall in prices can last for a short
time, the trading algorithms must immediately respond on the situation to avoid large losses.
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4 Kolmogorov space and the concept of algebraic topology and their relation to time
series data

In the previous paper [29] we had mentioned the idea of the proper algebraic and geometric con-
struction of the space of time series, possible under a Kolmogorov space concept with consistent
separation axiom, which could help with the analyses of nonstationary time series models, the
volatility clustering phenomena in financial time series data or the separation of hidden Markov
transition probability state in quantum entaglement state. A space of time series data was repre-
sented by the topological space with fixed point property. In this section we present a concept
which could be realized as a topological space with a few hidden states in extradimensions of
loop space of time series data.

As we know, no precise mathematical definition exists for time series and financial time
series. We only know that time series are the observations ordered in a time (or space). For time
series data, we can not use a set to define time series data directly. Since the data can have the
same value in a set notation, the same value cannot be separated using the T0-separation under
discrete topology. Therefore, a pointed space of time series data is not a Kolmogorov space, one
needs to define extradimensions [24] in time series data as loop space [63] of path lifting for the
separation of data under T0-separation axiom.

Definition 1 (Kolmogorov space). A Kolmogorov space X is a topological space fullfilling the
T0-separation axiom such that for any two points x, y ∈ X , there exists an open set U such that
x ∈ U and y /∈ U or y ∈ U and x /∈ U .

A Kolmogorov space [64] is a topological space fulfilling the T0-separation axiom, in other
words, it is a topological space [65] in which every pair of distinct points is topologically distin-
guishable. A fixed point space [66] need not be Hausdorff space necessarily, but it has to satisfy
weaker T0-separation axiom, it means that all fixed point spaces are Kolmogorov ones [67]. For
that reason one must to verify a T0-separation axiom property for a space of time series data, in
order to declare it to be Kolmogorov space.

The most recent work in financial data analysis [68] is based on a definition of space of
time series X = {xt ∈ R, t ∈ N}, without separation axiom in the contribution. Let X be
a set of ordered points of time series values. We can consider a set of time series data as an
object in categories of SET with objects sets and morphisms – the injection functions between
sets. A functor is a transformation of object of time series from categories of SET into another
categories of TOP and GROUP. If we consider a sequence of data just a set, we can define a
discrete topology on a set of data (see Eq. (2.1–2.3) ). For a time series data, we cannot use a
set to define a time series data directly, since the data can have the same value in a set’s notation.
E. g., if we have a time series data with following six numbers of sample data

A =
{
1, 2, 3, 3, 3, 4

}
, (4.1)

the same values can not be separated. If we use set theory to induce a pointed set topology, we
will fail to define an open set of data because,

A =
{
1, 2, 3, 3, 3, 4

}
=
{
1, 2, 3, 4

}
. (4.2)

Definition 2. Let A 6= φ be a set. Let τ = P (A) be the power set of A. Then τ is called the
discrete topology on A and (A, τ) = (A,P (A)) the discrete space on A, or just a discrete space.
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Fig. 4.1: On the left the discrete topology of a time series data with the open set visualized in the
projective plane at y-axis. We can see that the projection of all three points with the value 3 is
just one point at the same position, we cannot use an open set to separate these three points. The
plot on the right shows that the point of time series data need to be embedded in the intersection
point of perpendicular line.

Definition 3 (Finite discrete topology). If A is finite, τ = P (A) is a finite discrete topology, and
(A, τ) = (A,P (A)) is a finite discrete space.

Let a sequence of data be

x1 → x2 → x3 → x4 → x5 → x6 (4.3)

with the values

x1 = 1, x2 = 2, x3 = 3, x4 = 3, x5 = 3, x6 = 4. (4.4)

When we use discrete topology, we will get an open set with 2n(A) = 24 = 16 open subsets.
A sequence of similar values for x3 = 3, x4 = 3, x5 = 3 will not be separated (Fig. 4.1),
an open set can not be used to separate all time series data. Therefore with discrete topology
a space (A, τ) = (A,P (A)) is a finite discrete space, it is not a Kolmogorov space with T0-
separation axiom. Let us assume that a time series data is embedded in non-Euclidean plane with
extradimension (Fig. 4.2). It allows us to embed a loop structure between all data of time series
connected to each other as path components. By this redefinition of a financial time series data,
one is allowed to use an equivalent class of loop space (fundamental group of time series) to
separate the sequence of similar values for x3, x4, x5 in Eq. (4.4) by open set in path component.

For time series model a time is discrete. We use algebraic topology tool to change topology
of discrete space N ⊂ Z to R by using quotient topology of covering space R/Z with some fibre
space. We glue a pointed space of each fibre to form a pointed space of time series data by using
coproduct in topology. If we treat time as point in real axis, we will induce an open set. For every
i = 1, . . . n, ti ∈ R we will have an open set

(−∞, t1), (t1, t2), (t2, t3), . . . , (tn−1, tn), (tn,∞) (4.5)
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Fig. 4.2: On the left the visualisation of the extradimension for time series. There exists an
induced field of cross product between price and time in covariant and contraviant tensor field
in hidden plane in extradimension of Euclidean plane of time series data. The right figure shows
CW complex of torus. The cell complex is in orientation state, if it is in nonorientation state the
glue process will produce Möbius strip of time series data.

We call this open set a topology for time series data of time path. Let t ∈ A ⊂ R be an index set
of time series data. Let a pointed space of time series data be Xt = {xt}. We define a family of
pointed space of time series data by {Xt|t ∈ A}. The family of space underlying measurement
data will induce a topological sum of space of time series data

∐
t∈A

Xt where ∪{Xt×{t}|t ∈ A}.

We let a closed embedded map

iβ : Xβ →
∐
t∈A

Xt, x 7→ (x, β) (4.6)

for every β ∈ A we have iβ(Xβ) ∩ iα(Xα) = φ, if α 6= β. One of the major problems in
financial time series of stock price is how can we incorporate a behavior of trader into financial
time series data directly. We solve this problem by using CW decomposition [65] of financial
time series. We can attach buying and selling operation using a coproduct of topology for each
cell decomposition of Euclidean space of time series data (see Fig. 4.3). This process induces a
hidden dimension in Kolmogorov space of time series data.

All data which cannot be separated in Euclidean plane (Fig. 4.4) now can be separated by
using path lifting to open set in covering space of physiology of time series. A ground space of
time series data A can be realized as topological space by using disjoint union from

A =
{
1
}
∪
{
2
}
∪
{
3
}
∪
{
3
}
∪
{
3
}
∪
{
4
}

(4.7)

to a space of time series X ,

X =
{
1
}∐{

2
}∐{

3
}∐{

3
}∐{

3
}∐{

4
}
. (4.8)

Let t ∈ I = [0, 1] be a time interval. We define a equivalent class of path α : I → X by

[I,X] = [I,
{
1
}
]
∐

[I,
{
2
}
]
∐

[I,
{
3
}
]
∐

[I,
{
3
}
]
∐

[I,
{
3
}
]
∐

[I,
{
4
}
]. (4.9)
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Fig. 4.3: Non-euclidean plane of time series. The demonstration of a mirror symmetry of dual
price and dual time scale axis between price and time for covariant and contraviant tensor field
in hidden plane in extradimensions of Euclidean plane of time series data.

Since S1 is homotopy equivalent to I/∂I , we induce a fundamental group of space of time series
data,

[S1, X] = [S1,
{
1
}
]
∐

[S1,
{
2
}
]
∐

[S1,
{
3
}
]
∐

[S1,
{
3
}
]
∐

[S1,
{
3
}
]
∐

[S1,
{
4
}
]. (4.10)

In next section we introduce a precise definition of time series data in loop space Ω(X,x0).
We use equivalent class of loop space in covering space of predefined 4 basis si, i = 1, 2, 3, 4 in
S1 = {x ∈ C, |x| = 1} and another perpendicular S1∗ for location of time series data (Fig. 4.5).
These equivalent classes induce a group structure with a symmetry of time series equivalent to
a orbital in quantum state. This is a spinor field of time series data in which one can classify a
financial time series data. This new construction used to explain a precise definition of financial
time series allows one to search for a new concept of a spinor field of time series data and a
mirror symmetry in space of financial time series. In the prove that a space of time series data
is a Kolmogorov space we use projective geometry of quaternionic field instead of a discrete
topology.

4.1 Loop space of time series

Morphology of financial time series

For a given time series xt ∈ X , we induce two spaces of times series with the empirical mode de-
composition method (EMD) [69], a complex time scale in 4-dimensional space and a physiology
of time series in 4-dimensional vector space sj ∈ V ' H.

An end point of time series data End(xt) is defined as

End(xt) =
4∑
i=1

λigijsj , (4.11)
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Fig. 4.4: The loop space of time series in which one can separate three same values “3” with a
loop. One has x1 = 1, x2 = 2, x3 = 3, x4 = 3, x5 = 3, x6 = 4 in 3-dimensional blend complex
surface model of spinor field of time series data in Kolomogorov space. The thick dark line
connecting x3 to x4 to x5 is in a perspective view of 3-dimensional with extradimension add
to Euclidean plane by induced equipotential spinor fields of times data of 3, 3, 3. This fields
are propulsion to each other in model of loop space modelling and induce a straight line with
equal slope blend to the direction of extradimension (projective of this line is still straight line
in Euclidean plane). Therefore values 3, 3, 3 are completely separated by using T0-separation
axiom of Kolmogorov space of time series data.

with gij – a Jacobian of transformation of the coordinate system and λi ∈ {0, 1}. We have

End
(
xt(x ∗ ⊗t∗)

)
= λ1g11


s1
0
0
0

+ λ2g22


0
s2
0
0

+ · · ·λ4g44


0
0
0
s4

 . (4.12)

The hidden direction is coming from a state of the end point for a skeleton of time series data
so called (ITD − IMF)chain1. Let four hidden directions of a local state of physiology of end
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Fig. 4.5: A schematic view of the loop space of time series data with the covering space.

point of time series be

s1(xt) = monoup(xt),
s2(xt) = maxxt,
s3(xt) = monodown(xt), (4.13)
s4(xt) = minxt.

where monoup(xt) is a monotonic function up of time series data of the end point of time series
data. It is the point between minimum point of time series data and maximum point of time
series data. Sometimes this point does not exist. monodown(xt) is defined by a monotonic
function down of time series data of the end point of time series data. It is the point between
maximum point of time series data to a minimum point of time series data, sometimes this point
also does not exist.

Definition 4 (Cyclic coordinate of time scale). Let T1 be a location of monotone function up,
measured from a distance between s4 and s1 of time series data of (ITD − IMF)chain1. T2

be a location of maximum point, measured from distance between s4 to s2 of time series data
of (ITD − IMF)chain1. T3 is a location of monotone function down, measured from distance
between s4 to s3 of time series data of (ITD− IMF)chain1. T4 is a location of minimum point,
measured from distance between s4 to next cycle of s4 of time series data of (ITD−IMF)chain1.
If a restart of every cycle starts from zeros every cyclic time coordinate of t = (T1, T2, T3, T4)
will be a circle of time scale in loop space.

The details of EMD algorithm, the definition of (ITD − IMF)chain1, the skeleton of time
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Fig. 4.6: The example of the shape of end point for (ITD− IMF)chain1 for s1, s2, s3, s4 states
of SET index within 100 days.

series data and the empirical work on financial time series data of cyclic time coordinate are
shown in Fig. 4.6 and Appendix D.
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Covering space of time series data

Let

x1 → x2 → x3 → · · · → xn (4.14)

be a time series data with underlying trivial topological based space X where

X =
{
x1

}∐{
x2

}∐{
x3

}∐
· · ·
∐{

xn
}
. (4.15)

We define a tangent space of time series data by lifting path of covering space. We use a notation

n∐
i=1

TxiX = Tx1X
∐

Tx2X
∐

Tx3X
∐

· · ·
∐

TxnX. (4.16)

for a tangent space of time series data or covering space of time series data. The element of
tangent space of time series data is defined by 4 states of morphology of time series data denoted
by si, i = 1, 2, 3, 4. We have dxi ∈ Txi

X if xi ∈ X ,

dxi =
4∑
j=1

pi
∂xi
∂sj

dsj . (4.17)

where pi is a probability to find a hidden state si. Giving a tangent space we also induce a dual
tangent space of time series data T ∗xX and also differential form of time series data using wedge
product ∧T ∗xX .

Tensor field of time series data

In definition of time series data we assume two independent spaces of two measurement systems,
a vector space of price X and a space of time t ∈ S1, respectively a complex unit sphere S1.
The space of time series data obtained by merging X and S1 is represented by the tensor product
X ⊗ S1 as a state space of time series data in tensor field. The states that can be broken into
the tensor product of states from the constituent subsystems are called separable states, whereas
states that are unbreakable are called entangled states of time series data. Let x ∈ X , t ∈ S1 we
have a dual price x∗ = ~t ∧ ~x, x∗ = ~x ∧ ~t. We can define dual time scale [70] of time series data
by

t∗ = x∗ ⊗ x∗. (4.18)

Homotopy path of time series data

Let

x1 → x2 → x3 → · · · → xn, (4.19)

be a sequence of points of financial time series in categories of SET with preorder relation of
time ordering as morphism.
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Let π1 : TOP → GROUP be a functor of fundamental group of chosen based point x0 of
object in categories of SET with (X,x0) a topological space X of underlying space of financial
time series as object in TOP

π1(X,x1) → π1(X,x2) → π1(X,x3) → · · · → π1(X,xn), (4.20)

there is a sequence of equivalent class of loop in loop space of time series data

Ω(X,x1) → Ω(X,x2) → Ω(X,x3) → · · · → Ω(X,xn). (4.21)

There exists a one-to-one sequence of discrete time intervals between measurements

t1 → t2 → t3 → · · · → tn−1 (4.22)

with a loop space of location (complex time scale coordinate of time series)

Ω(X, t1) → Ω(X, t2) → Ω(X, t3) → · · · → Ω(X, tn−1). (4.23)

Let 4-dimensional space H be a space of cyclic time coordinate. Let

t(x) = T1(x) + T2(x)i+ T3(x)j + T4(x)k ∈ H. (4.24)

where T1 is a time from the origin to the state of monotone up s1 of time series data of (ITD −
IMF)chain1. T2 is a time period from the origin to the state of maximum s2 of time series data
of (ITD − IMF)chain1. T3 is a time from the origin to the state of monotone down s3 of time
series data of (ITD− IMF)chain1. T4 is a time period from the origin to the state of minimum
s4 of time series data of (ITD − IMF)chain1. H is a quaternion field with 3 complex numbers
implying hidden states of time scale with i2 = j2 = k2 = −1, ijk = −1.

For a given time series data set X = {x1, x2, . . . , xn} we induce a set of location in time
series data tX = {t1, t2, . . . , tn}, |X| = |tX |. Let a functor [S1 ·] : SET → h − TOP,
X 7→ [S1X] = π1(X) where S1 = {z ∈ C, |z| = 1}. An object of homotopy category
h− TOP is a set of equivalent class of classifying space S1 over a pointed space of time series
data. Let a homotopy path be

[α] ∈ [S1X] (4.25)

to partition X into 4 equivalent classes of equivalent location in physiology of time series [T1],
[T2], [T3] and [T4].

Let us consider a correlation problem of inert frame of reference. Most economists use
a formula below to calculate a correlation on price not on time scale but on fix time scale
corr(x1, x2) = Corr(x1(t), x1(t)) with

Corr(x1, x2) =
∑ (x1 − µ1)2

σ1

(x2 − µ2)2

σ2
(4.26)

Now we use a transformation to interchange coordinates between price and time (transition path)
by inversion (projection on time line and price line) t′ = x(t) which induces a bijective map

i : t′(x1, x2) → x(t1, t2). (4.27)



48 Study of prediction models

The Jacobian on this coordinate transformation between space and time is so called Minkowski
metric. It is opposite to Euclidean space concept by means the space and time are completely
separated. We consider the correlation in waiting time t1, t2 of the join return of rotational
invariant and translation invariant of 2 returns x1, x2

Corr
(
t1(x), t2(x)

)
=
∑ (

t1(x)− µ1

)2
σ1

(
t2(x)− µ2

)2
σ2

(4.28)

which induce a Jacobian matrix for the transformation between these two ways to calculate a
correlation by using price and time coordinate

J =

∣∣∣∣∣ ∂t1∂x1

∂t1
∂x2

∂t2
∂x1

∂t2
∂x2

∣∣∣∣∣ (4.29)

where x = x(x1, x2), dr = J(dt). In Euclidean space-time continuum concept it is impossible
to use this kind of transformation. What we can do is to transform both space (price) and time
all together because price and time of two stocks in which they are correlated to each other are
evolved together and cannot be separated (isometry) so we have Jacobian of transformation as a
part of isometry group

G〈x, t〉 = 〈x, t〉, G = J2 (4.30)

so we have

d(x′, t′) = J(d(x, t)) (4.31)

with J = −1 to interchange a projection between price and time as inversion point of symmetry
breaking. We define this induced Jacobian transformation in hidden coordinate of complex plane
by introducing additional hidden coordinate of a projection to imaginary axis of complex plane
by

J =
∣∣∣∣ x t
x∗ t∗

∣∣∣∣ = x ∧ t ∗ −x ∗ ∧t. (4.32)

The determinant commutes by using wedge product with hidden coordinate defined by induce
cross product of vector of space and time and hidden space and time as double complex plane.
The empirical work of correlation between price and time is given by correlation matrix between
cyclic time coordinate t = (T1, T2, T3, T4) and cyclic state x = (s1, s2, s3, s4)

Corr(x, t) =


T1 T2 T3 T4

s1 Corr(s1, T1) Corr(s1, T2) Corr(s1, T3) Corr(s1, T4)
s2 Corr(s2, T1) Corr(s2, T2) Corr(s2, T3) Corr(s2, T4)
s3 Corr(s3, T1) Corr(s3, T2) Corr(s3, T3) Corr(s3, T4)
s4 Corr(s4, T1) Corr(s4, T2) Corr(s4, T3) Corr(s4, T4)

 (4.33)

and is shown in Appendix D. We define each point of Ti, i = 1, 2, 3, 4 as disjoint pointed
space embedded in complex projective space as cell decomposition of pointed space e0 of CW
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Fig. 4.7: CW complex of boundary of space of time series data. For every value xt of time series
data in Euclidean plane there exist an upper bound x′ ∈ R such that for every xt ∈ Xt, xt < x′.
For index set of time tn there exists t′ > tn for every n ∈ N. Therefore we can define a closed
boundary of Euclidean subspace of time series data by rectangle in this figure. After that we
define cell decompostion for each corner of boundary in non-orientation state. Then we glue
them into Möbius strip to induce spinor field of time series data.

complex decomposition. We can define a point of complex time scale as choosen basepoint for
base space of fundamental group. When we collapse a Riemann sphere to base point of time
scale of time series we get a cone space of time series as quotient topology. We have e0 = {Ti},
Ti ∈ S0 ⊂ S1 ⊂ S2 ⊂ S3 ⊂ · · · . CW-complex (Fig. 4.7) is required only 2 cells, one a point
e0 and the other en = sn − {e0} which is homeomorph of ball Bn. We define our translated
Riemann sphere with relative coordinate of time series by attaching cell e0 = {Ti} to a center of
Riemann sphere as relative frame of time scale of Riemann sphere S2.

If we take into account only equivalent class of loop in π1(X,xt), a loop structure of time
series data in empirically measured by Hilbert transform of (ITD − IMF)chain1. The result
of Hilbert transform of time series data is a cycle in complex plane in which it is homotopy
equivalent to S1. We can explicitly define a physiology of time series data in loop space by using
equivalent class of path in S1. We separate S1 into 4 states of physiology of time series data in
following way.

Let s1 ∈ [s1(xt)] be an equivalent class of loop of time series from x0 to s1(x0) = e0i ∈ S1

and s1(x1) = ei
π
2 ∈ S1, a covering space of time series with homotopy path (see Fig. 4.8)

h : S1 × [0, T1] → S1, h(t, 0) = e0i, h(t, T1) = ei
π
2 . (4.34)
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Fig. 4.8: A homotopy path of hyperbolic space of time series. One can see that hyperbolic
space of time series data is inside Riemann sphere of time series data. One side of sphere is
predictor state of time series data, the perpendicular side is predictant state of time series data.
The hyperbolic line connects the predictor and predictant states.

Let s2 ∈ [s2(xt)] be an equivalent class of loop of time series from x0 to s2(x0) = ei
π
2 ∈ S1

and s2(x1) = eiπ ∈ S1, a covering space of time series with homotopy path

h : S1 × [T1, T2] → S1, h(t, T1) = ei
π
2 , h(t, T2) = eiπ. (4.35)

Let s3 ∈ [s3(xt)] be an equivalent class of loop of time series from x0 to s3(x0) = eiπ ∈ S1

and s3(x1) = ei
3π
2 ∈ S1, a covering space of time series with homotopy path

h : S1 × [T2, T3] → S1, h(t, T2) = eiπ, h(t, T3) = ei
3π
2 . (4.36)

Let s4 ∈ [s4(xt)] be an equivalent class of loop of time series from x0 to s4(x0) = ei
3π
2 ∈ S1

and s4(x1) = ei2π ∈ S1, a covering space of time series with homotopy path

h : S1 × [T3, T4] → S1, h(t, T3) = ei
3π
2 , h(t, T4) = ei2π. (4.37)

An example of empirical analysis of Hilbert transform of s4 state of (ITD− IMF)chain1 of
financial data is shown in Fig. 4.9.
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Fig. 4.9: The upper figure shows the graph of Hilbert transformation of (ITD− IMF)chain1 of
SET index of 100 daily closed price with the end point of time series in s4(xt) state. The bottom
figure on the left represents Hilbert transformation of (ITD− IMF)chain1 of SET index of 1000.
The bottom right figure represents the same plot in 3-dimensional view.
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An identification of equivalent class coming from an opposite direction of monotone function
up and down and also maximum state and minimum state

[s1] = −[s3],

thus the inverse of s1 is s3. Since

[s2] = −[s4]

we have an inverse of s2 to be s4. We have

[s1] + [s3] = [0]
[s2] + [s4] = [0]

therefore

[s1] + [s3] + [s2] + [s4] = [0] (4.38)

with [0] be a loop from the origin of time series in ground state to itself.
Therefore, in these constructions we allow all mixed states between si and expected path in

hyperbolic space to s∗i in complex structure of spinor field of 2 perpendicular cycles inducing a
hidden field between each other as shown in Fig. 4.8. The suitable mathematical model can use
a torus of time series data instead of Riemann sphere. The equipotential line of induced field
between evolutional feedback path between predictor state [s∗i ] and predictant state (a real state)
is shown in Fig. 4.10.

Quaternionic projective space

When we consider time series data in Euclidean plane we have a upper bound of value of mea-
surement in real line x′ > xt for all t. In time coordinate we have a partial ordering of time scale
so we have also an upper bound in time variable t′ > ti for all i. We will induce −t′, then we
can connect t′ with −t′ and define cell decomposition as shown in Fig. 4.7. We glue e1 ∼ e3
and e2 ∼ e4. Then we get a spinor field of time series data as Möbius trip of space of time series
data.

Let D = {1, i, j, k} be the canonical basis for set of location {T1, T2, T3, T4} in R4. A real
quaternion for time series is

x(t) = s1(t) + s2(t)i+ s3(t)j + s4(t)k ∈ Hx(t), (4.39)

this coordinate is a cyclic coordinate of value for time series.
Let {s1, s2, s3, s4} be a set of value in R4. A real quaternion for time series is

t(x) = T1(x) + T2(x)i+ T3(x)j + T4(x)k ∈ Ht(x). (4.40)

Let a mathematical definition of time series be a map between two quaternionic fields to
quaternionic projective space Hxt × Ht(x) → HP 1 ' S7/Spin(3), where Spin(3) is a fibre
state of time series with spinor field invariant property. It is an equivalent class of time series of
glueing a state T4 with T1 state for a next cycle of cyclic coordinate.

For a given sequence x(t) ∈ R it is known that HP 1/Spin(3) = S7. Let S7 = {ϕ =
(x1, x2, · · ·x8) ∈ R8, |ϕ| = 1} be a hidden dimension of financial time series. In the next
section we are going to prove that a space of time series in canonical form as defined above is a
Kolmogorov space.
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Fig. 4.10: A spin orbit coupling state between predictor and predictant states of spinor field of
time series data induces an equipotential line as hyperbolic state for time series data. A path of
expectation of physiology of time series is defined by this equipotential line of evolution feedback
path between predictor and predictant. Uncoupling spinor fields of time series data can induce
two types of fix pointed fields in Kolmogorov space for time series data. There exist 8 states
of induced spinor field of time series data represented by red and green hyperbolic equipotential
lines.

4.2 Proof of the main theorem

We knew that the generalization of Euclidean space of time series in Rn is n-dimensional man-
ifold. A local coordinate is defined as section of tangent of manifold together with Jacobian of
coordinate transformation appeared as cocycle of group action over fibre bundle of tangent of
manifold in which it is diffeomorphic to Rn, when we assume that n data of time series data is
embedded in n-dimensional manifold X , as underlying hidden topological space with value in
tangent of manifold x0 ∈ Tx0X = p−1(X). In this case we will induce a sequence of tangent
bundle of manifold of time series data in pointed space (X,x0), with disjoint union of covering
space of time series data of choosen based points satisfying with sequence of time series data of
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Fig. 4.11: A time series model of Kolmogorov space. The cyclic coordinate of time is perpendic-
ular to physiology coordinate s1, s2, s3, s4 of time series data. All points are separated and we
prove that the complex projective plane of time series data in R8 ∪ {∞} = S7 is disjoint open
set of separated point in CP 3. In this space a time series data can induce an equipotential line
along hidden dimensions.

{x0, x1, · · · , xn}

E =
n⊔
i=0

Txi
X −−−−→ {xi} ∈ U × Rnyp y

xi ∈ U ⊂ X −−−−→ U ⊂ X

, (4.41)

where E is a covering space of time series, X is a n-dimensional manifold of time series data
with open set Ui, F is a fibre space Rn of time series data. Most people assume that a sequence
of measurements is independent of period and substitute a discrete fibre from Z with Rn. We
knew that a tangent space of Rn is TRn = Rn so we use covering space of X = Rn for time
series data in this case.

Let us assume that a time series data is embedded in non-Euclidean plane, a high dimensional
sphere Sn with 2-extradimensions of S1 for fibre and hidden fibre induces hidden state t∗ ∈ S1

and x∗ ∈ S1 (see Fig. 4.11). In this case we model a time series in Riemann sphere S2 = CP 1
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as based space with fibre in S1 and covering space in 4-dimensional space S3. This is a principle
bundle with discrete fibre S1. This construction of principle Spin(3) bundle (spinor field of time
series data) also allows us to define a loop structure between all data of time series connected to
each other as path components and our time series model can be defined by a covering space of
HP 1.

Theorem 1. A space of financial time series data is a covering space S7 with based space in
X ' HP 1. It is a Kolmogorov space with T0-separation axiom.

Proof. HP 1 is CW complex with one cell for each dimension k ≤ 1. A cell complex is a
Housdorff space satisfying the separation axiom T2 which imply Kolmogorov space with lower
T0-separation axiom. We triangulate HP 1 into the union of disjoint subsapce {eα, α ∈ Λ} called
cells with en = Sn − {(1, 0, 0, . . . )} ⊂ Rn+1 with n-skeleton space of X

Xn =
⋃
k≤n

ekα. (4.42)

Let eα be an n-cell, then there exist a characteristic map of pairs

χα : (Bn, Sn−1) → (X,Xn−1) (4.43)

which restricts to Bn − Sn−1 as homeomorphism onto eα.
Let q : S7 → HP 1 be the quotient map of principle Spin(3) bundle, and let u, v ∈ HP 1

with u 6= v, there are x, y ∈ S7 such that q−1[{u}] = {x,−x} and q−1[{v}] = {y,−y}. Let
ε = 1

3 min{‖x− y‖, ‖x+ y‖} and set U = B(x, ε)∩S7 and V = B(y, ε)∩S7 , where the open
balls are taken in R8. Then U , V , −U and −V are pairwise disjoint open neighborhoods of x, y,
−x and −y, respectively, in S7. Moreover, q−1

[
q[U ]

]
= −U ∪ U and q−1

[
q[V ]

]
= −V ∪ V .

Therefore q[U ] and q[V ] are disjoint open neighborhoods of u and v in HP 1.

The real application of a Kolmogorov space of time series data is a directional prediction.
We investigate a loop space of time series data of entanglement state of mixed direction between
future direction and past direction in time series data. These states are suitable to open a short
position or to open a long position in Stock Index Futures market. The ultimate goal of time
series prediction is directional prediction. The typical output of a directional prediction is the
prediction to up or down (or down with no direction change) with respect to the present value.
We have tested the performance of our mathematical modeling using the forecasting methodol-
ogy over nonlinear and nonstationary time series data of stock market price. There exist new
tools for data analysis of nonlinear and nonstationary time series data so called Hilbert Huang
transformation [69] and intrinsic time scale decompostion (ITD) [71]. These tools can be simple
used together with the artificial neural network to predict the direction of stock price [72]. More
about practical use of our concept and the preliminary results of the empirical data analysis with
cyclic coordinate in financial time series data can be found in the Appendix D.
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5 Conclusions

In the study we present new ideas from the contemporary field of econophysics, mainly we
concentrate on the building of prediction models for time series in the framework of string theory.

We show, in the Section 2, how the string theory may motivate the adoption of the nonlinear
techniques of the data analysis and how the numerical study recovers interesting fundamental
statistical properties of the maps from the data onto string-like objects. The string maps give a
geometric interpretation of the information value of the data. The model of the string allows one
to manipulate the information stored along several extra dimensions. We start from the theory of
the 1-endpoint and 2-endpoint strings, and we continue with more complex D2-branes. Most of
the numerical investigations are obtained for the open topology, however, we describe briefly the
ways to partial compactification and string polarized by the external fields.

The latter approach allow us to build the stable prediction models in trading in the financial
market. The presented string models could be useful for portfolio creation and financial risk man-
agement in the banking sector as well as for a nonlinear statistical approach to data optimization.
The real application of the multi-string structures is provided to demonstrate our ideas. A brief
overview of the results and analysis is given in Section 3. The first model PMBSI is based on
the correlation function as invariant and the second one is an application based on the deviations
from the closed string/pattern form PMBCS. We show the experimental results for the models
on artificial and real world data with the most realistic trade conditions. For this purpose we
have constructed trading algorithms, which were benchmarked against the most used class of
the time series forecasting models and trading strategie. The stability of the algorithm on the
transaction costs for long trade periods have been also demonstrated. The algorithms have been
progressively enhanced by self-learning modules for the parametric optimization and a module
for parallel evaluation of string moment values in the form of the genetics component which
handles an autooptimization of algorithm in realtime.

In the Section 4, we provide the proof that the space of time series data over cyclic coordinate
of location to local maximum and local minimum state of time series is a Kolmogorov space
with T0-separation axiom using the loop space of time series data. In our approach we define a
cyclic coordinate of intrinsic time scale of time series data after empirical mode decomposition.
A spinor field of time series data comes from the rotation of data around price and time axis
by defining a new extradimension to time series data. We show that there exist hidden eight
dimensions in Kolmogorov space for time series data. Our concept is realized as the algorithm
of empirical mode decomposition and intrinsic time scale decomposition and it is subsequently
used for preliminary analysis on the real time series data.

The received results led us to believe that our ideas and methodology can contribute to the so-
lution of the open problems in the econophysics and we believe that our methods afford potential
to be used in the practical applications.
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A PMBSI model construction

In our case we have the correlation between the strings in time series. As example we use 1-
endpoint strings Eq. (2.7) with parameter q = 1. Usually the correlation function is defined as
C(τ, l0) = 〈P 1(τ, l0)P 1(τ + 1, l0)〉. We suppose the invariant in the form of the correlation
function

C(τ, l0) =
l∑

h=l0

W (h)
(

1− p(τ − h)
p(τ − 1− h)

)(
1− p(τ − 1− h)

p(τ − 2− h)

)
, (A.1)

with weight W (h) (defined later). We assume the condition of the invariance between close
strings in τ and at the next step τ+1 in time series (it is exact meaning of the one step prediction)
in the form

C(τ, l0) = C(τ + 1, l0). (A.2)

Now we want to find exact expression for the one step prediction p(τ+1). Therefore we evaluate
one step correlation invariant Eq. (A.2) with initial condition l0 = 0

W (0)
(

1− p(τ)
p(τ − 1)

)(
1− p(τ − 1)

p(τ − 2)

)
=

W (0)
(

1− p(τ + 1)
p(τ)

)(
1− p(τ)

p(τ − 1)

)
+W (1)

(
1− p(τ)

p(τ − 1)

)(
1− p(τ − 1)

p(τ − 2)

)
, (A.3)

which can be rewritten in the more compact form

C(τ, 0) = W (0)
(

1− p(τ + 1)
p(τ)

)(
1− p(τ)

p(τ − 1)

)
+ C(τ + 1, 1) (A.4)

and (
1− p(τ + 1)

p(τ)

)
=
C(τ, 0)− C(τ + 1, 1)

W (0)
(
1− p(τ)

p(τ−1)

) · (A.5)

We finally obtain the prediction

p(τ + 1) = p(τ)

1 +
C(t+ 1, 1)− C(t, 0)

W (0)
(
1− p(τ)

p(τ−1)

)
 , (A.6)

valid for p(τ) 6= p(τ − 1). These are general definitions for the one step prediction correlation
invariants.

Next in the construction of our PMBSI model, we suggest 2-endpoints mixed string model
where one string is continuously deformed into the other with q > 0. The family of invariants is
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written by use of the parametrization

C(τ,Λ) = (1− η1)(1− η2)
Λ∑
h=0

W (h)×
(

1−
[

p(τ)
p(τ + h)

]q) (
1−

[
p(τ + h)
p(τ + ls)

]q)

+ η1(1− η2)
Λ∑
h=0

W (h)
(

1−
[

p(τ)
p(τ + h)

]q)

+ η2

Λ∑
h=0

W (h)
(

1−
[
p(τ + h)
p(τ + ls)

]q)
, (A.7)

where η1 ∈ (−1, 1), η2 ∈ (−1, 1) are variables that may be called homotopy parameters, q is a
real valued parameter, and the weight W (h) is chosen in the bimodal single parameter form

W (h) =

{
1−W0 , h ≤ ls/2 ,
W0 , h > ls/2 .

(A.8)

and

W0 =
1

ls∑
h′=0

e−h′/λ

· (A.9)

The above formulas do not represent the only setting of the weight parameters, the other settings
can be tested. Then the term p(τ0 + lpr) is expressed in terms of the auxiliary variables

A1(Λ, τ) = (1− η1)(1− η2)
Λ∑
h=0

W (h)
(

1−
[

p(τ)
p(τ + h)

]q)
, (A.10)

A2(Λ, τ) = − (1− η1)(1− η2)
Λ∑
h=0

W (h)
(

1−
[

p(τ)
p(τ + h)

]q)
pq(τ + h) , (A.11)

A3(Λ, τ) = η1(1− η2)
Λ∑
h=0

W (h)
(

1−
[

p(τ)
p(τ + h)

]q)
, (A.12)

A4(Λ, τ) = η2

Λ∑
h=0

W (h) , (A.13)

A5(Λ, τ) = − η2

Λ∑
h=0

W (h) pq(τ + h) . (A.14)

and the expected prediction form reads

p̂(τ0 + lpr) =
[

A2(Λ, τ ′) +A5(Λ, τ ′)
C(τ0 − ls,Λ)−A1(Λ, τ ′)−A3(Λ, τ ′)−A4(Λ, τ ′)

]1/q
, (A.15)
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where we use the notation τ ′ = τ0 + lpr − ls, (τ ′ = τ0 − Λ). The derivation is based on the
invariance

C(τ, ls − lpr) = C(τ − lpr, ls − lpr) , (A.16)

and the model will be efficient if

C(τ0,Λ) ' C(τ0 + lpr,Λ) . (A.17)

Thus the model’s free parameters are ls, lpr, η1, η2, q which must be set during the optimiza-
tion phase.

PMBSI requires the time-series being processed to be non-negative. Otherwise the forecasts
will not be defined (NaN). Even so PMBSI sometimes returns NaN values. This problem was
fixed here by substitution of the NaN forecast by the most recent input for lpr (naive prediction)
and by the last valid forecast recorded for lpr > 1.
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B The realisation of the PMBCS model

To demonstrate the behavior of physical ideas under the real trading conditions, we have con-
structed the trading algorithm based on the PMBCS model (Section 3.3). It has been intensively
developed and tested on the trade online system [61] on different real financial data (OANDA,
FOREX) and it provides highly professional algorithmization of the trading strategies with tick-
data level accuracy of simulations.

For the PMBCS prediction model the trade system has worked with defined trading strategy,
its trading algorithm is schematically reviewed in Fig. B.1.

Various sources serve as input data for the algorithm, e. g., real time data or historical data
of currency rates, we have chosen the second one. Data are handled by the current prediction
model (PMBCS Prediction Model). In the heart of the algorithm there lies a momentum calcula-
tor module (Moment Predictors). The module calculates the values of the momentum predictors,

Fig. B.1: The scheme of the trading strategy for the prediction model based on the deviations
from the closed string/pattern form.
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Fig. B.2: The typical distributions evaluated by the Predictors Evaluator module. The distribu-
tions of the incoming (h1) and outgoing (h2) momenta values M , normalized to the interval
(0, 1).

which determine the values for the string parameters of the algorithm (Optimal String Parame-
ters). These values directly affect the trade positions (Open/Close Trade positions). This is the
most direct way. But the algorithm works also in the parallel way. The values of the momentum
predictors are statistically evaluated with the results of the open/close trade positions and com-
pared with predicted values (Predictors Evaluator). Then the “optimal” values of the momenta
are sent ahead to provide the “optimal” values of the string parameters (see Fig. B.2). The left
side of the scheme outlines future Strategy Evaluator. Its purpose is to evaluate the trade strategy
parameters and this way to control the risk in a more sophisticated way.

The first set of parameters, including length of moment string (number of ticks or time pe-
riod), quotient or exponent of moment, frequency of momentum function, phase shift of mo-
mentum function. describes the momentum (simple scalar function of several variables from the
interval (0, 1)).

Beside the first set of parameters, there exists also the second set of parameters, which con-
trols the risk of the algorithm. The risk can vary from zero (low risk but also low or zero number
of trades) to the boundary values. These parameters are called the trade strategy parameters
and in our case they are represented by a maximum number of simultaneously opened trades,
skewness of momenta distribution and Sharpe ratio (C.1) of closed trades. Together, the trade
strategy parameters and “optimal” string parameters determine the final opening and closing of
trade positions.

An arbitrage opportunity taking advantage of the occurrence of difference in distribution.
The opportunity is measured by Kullback-Liebler divergence

DKL =
∑
j(bins)

pdf(M+(j)) log
(

pdf(M+(j))
pdf(M−(j))

)
(B.1)

where largerDKL means better opportunities (DKL > Dthreshold), e. g., whenDKL > Dthreshold
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it means the buying Euro against USD could be more profitably. Statistical significance means
the smaller the statistics accumulated into bins pdf(M+(j)), pdf(M−(j)), the higher is the risk
(M from the selected range should be widespread). The meaning of pdf in the definition above
is the probability density function.

More generally we can construct the series of (ls+1) price tics [p(τ), p(τ+1), . . . , p(τ+ls)]
which are transformed into a single representative real value M(τ + ls). Nearly stationary se-
ries of M(τ + ls) yields statistics which can be split into: a branch where M is linked with
future uptrend/downtrend and a branch where M is linked with future profit/loss taking into ac-
count transaction costs. The accumulation of pdf(M+−

long) means (profit+/loss−) or pdf(M+−
short)

(profit+/loss−), M+ in Eq. (B.1) brings profit and M− loss.
From the trading point of view, we have tried various methods of predictor integration with

components of trading algorithm, that is build in modular architecture and thus consists from var-
ious components, which follows the separation of concerns principle (every component provides
a service and its state and logic is encapsulated from the rest of the components).

String predictor is now used as the foundation for entry rule component, that handles the
points when the algorithm will enter into position (when the position will be opened). The entry
rule has a process to evaluate and also make a decision of “how to open the position” based on
predictors BUY/SELL signal. It also takes into consideration the size of already opened position,
and it calculates size of new opening position based on money and risk management restrictions.
Besides entry rules, there are components like exit rules, trade book, quantity calculator, trading
brake, custom event component, genetics component, statistics.

The exit rules take care about when and how to exit from the position (close the position).
There are various approaches which utilizes combinations of common trading techniques, like
take profit, stop loss, trailing stop, etc. The algorithm internal trade book component keeps
track of all open positions, creation of new orders, selection of trading technique (like usage of
MARKET, LIMIT, STOP, STOPLIMIT orders to open/close position). The quantity calculator
counts the size of the new opened position based on not solely money management restrictions
like account and investment instrument used margin, but also internal logic of algorithm. The
trading brake is a simple component which allows algorithm to keep track of market irregularities
by continuous monitoring volatility and spread (e. g., spread tends to widen before big event hits
the market), another possibility is the incorporation of the angular momentum values instead of
the historical volatility (Fig. 3.14).

PMBCS Self-learning model

The algorithm version StringAlgo v.15 has demonstrated the financial forecasting on the OANDA
real data for the PMBCS Self-learning model.

The simulations were carried out on the OANDA data for EUR/USD currency rate for the
time period of three months, from 2010/07/15 to 2010/10/15. The typical background of the
simulations is presented in Figs. B.2–B.4. Figure B.3 shows the dependence in the three month
simulation on the ask-bid data spread, i. e., on the transaction costs (Fig. B.4(a)). Also for
long trade periods our algorithm behaves very stably, the values of NAV do not show the high
dependence of the transaction costs. The distribution of trades is nearly uniform throughout all
time period, it varied in the range from 0 to 14 per day (Fig. B.4(b)). There are no rapid increases
and decreases of the amounts of the trades.
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Fig. B.3: The net asset value of the simulation (ls = 1000, Q = 1, m = 1) on the EUR/USD
currency rate for a selected time period as the dependence on the ask-bid data spread.
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Fig. B.4: (a) The ask–bid spread in the evaluated OANDA data, (b) the typical distribution of the
execution orders per day. Both histograms are for the time period from 2010/07/15 to 2010/10/15.

In Figs. B.5–B.7 we described some interesting results relating to the string parameters.
The net asset value of the model dependence on the string length parameter ls is presented in
Fig. B.5(a). As one can see, the value of ls = 900 seems to be most promising, this value was
fixed for the next predictions. The dependence of the model on the parameter Q – the quotient
of the moment is described on the next figures. Figure B.5(b) represents the dependence on
low values, i. e., Q = 1, 2, 4, 8, Fig. B.6(a) represents the dependence on higher values, i. e.,
Q = 1, 16, 24, 32. The comparison of the value Q = 24, which seems to be most suitable for the
next forecasts, with the simultaneous use of three values is shown in Fig. B.6(b).

The interesting case is the choice of the regular function FCS. The previous forecasts [25,27]
were made for a trigonometric function cos(x). Here we are presented the results of the tests with
other functions, as one can see in Fig. B.7. The comparisons of the forecast with the function
cos(x) were made for forecasts with functions sin(x), sinh(x) and cosh(x) in Fig. B.7(a). The
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Fig. B.5: The net asset value of the model on the EUR/USD currency rate for a selected time
period as the dependence on the string length parameter and the power constant
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Fig. B.6: The net asset value of the model on the EUR/USD currency rate for a selected time
period as the dependence on the power constant.

subfigure Fig. B.7(b) represents the comparison of forecasts for the function sin(x) with the
different arguments, i. e., x and x+ φ, where φ = 0, π.

The values of string parameters, which were used in previous simulations, are summarized
in Table B.1 in a Simple model column. For each forecast we used one value for each type of
parameters: ls, Q, FCS, m and φ, respectively. In other words, only one set of string parameters
is used, we have denoted it by ns = 1. However, the algorithm can work with various sets of free
parameters simultaneously (ns ≥ 1). This is possible due to the fact that the model was enhanced
to so called Self-learning model. In terms of the string parameters from Table B.1, all possible
combinations of the values from the third column are taken into account and the corresponding
momentum predictors are calculated.

The best combinations of string parameters is evaluated in Predictor Evaluator module by
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Fig. B.7: The net asset value of the model on the EUR/USD currency rate for a selected time
period as the dependence on the periodic function FCS, (a) the comparison of the forecasts for the
functions cos(x), sin(x), sinh(x), cosh(x), (b) the comparison of the forecasts for the functions
sin(x+ φ), where φ = 0, π.

means of Sharpe ratio. For this purpose, the Sharpe ratio needs a sufficient amount of predicted
momenta to provide reliable optimization. The number of sets of string parameters ns must
be fixed at a sufficient number. The lower value of ns means less statistics available for the
finding of optimal parameters. On the other hand, very high values of ns need the corresponding
computing power. In Fig. B.8, we compared the effect of the higher value of ns for the Self-
learning model with ns = 2 (left column) and ns = 16 (right column). The histograms show the
average values of the execution reports sent by the model. In the subfigures B.8(a)–B.8(b) (three
months data), the effect is not seen, however, in the subfigures B.8(c)–B.8(d) (one year data) the
number of the execution reports is approximately 100 times higher. It means that the algorithm
is more flexible in trading for a longer period.

String PMBCS PMBCS
parameters Simple model Self-learning model

ls 800, 900, 1000, 1100 [900]
Q 1, 2, 4, 8, 16, 24, 32 [8, 16, 24, 32]

FCS
cos(x), sin(x), sin(x+ φ),

sinh(x), cosh(x) [cos(x+ φ)]

m 0, 1, 2, 3 [0, 1, 2, 3]
φ 0, 3.14 [0, 3.14]

Tab. B.1: The values of string parameters used for the PMBCS Simple and Self-learning models.
The square brackets emphasize the fact that the Simple model works with exactly one value of the
analyzed string parameter values, while the Self-learning model can work with sets of parameters
simultaneously.
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Fig. B.8: The histograms of the average values of the execution reports for the Self-learning
model with ns = 2 (left column) and ns = 16 (right column). The time period of the simulation
is three months for (a), (b) and one year for (c), (d).

The opening and closing of trade positions is determined by statistical evaluation of string
momenta. In Fig. B.9, such a statistical procedure is demonstrated graphically for ns = 16. Each
new price tick leads to the evaluation of string momenta, in our case to sixteen values equal to
−1, 0, 1. One can see the distribution of evaluated values in Fig. B.9(b) for a very short time
period. A few positive values and one negative are clearly visible, the others are equal to zero.
Then in Fig. B.9(b) the red dot represents the summarized value of the evaluated string momenta
normalized to±1. The blue dots are the EUR/USD currency rate ticks from 2010/07/15 10:00:00
up to the first 5× 105 ones. On the left of the subfigure one can see the instant of the “learning”,
when the statistics is gained and the momenta do not predict any values.

PMBCS live version model

The encouraging results with evolutionary algorithm for the parametric optimization [28] lead
us to enhance the algorithm with a module for parallel evaluation of string moment values in
the form of the genetics component which handles an autooptimization of algorithm in realtime.
The genetics component is constantly executing and evaluating multiple inner simulations trying
to evolve its internal parameters. The trends in price change, identified either with volatility,
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Fig. B.9: The EUR/USD currency rate ticks from 2010/07/15 10:00:00 (blue dots) with the eval-
uated values of summarized prediction (red dots), normalize to ±1 (a). The detail of subfigure
(a) for a very short time period (b), the evaluated string momenta values (red) with the currency
rate ticks on the background (blue).

Simulation Trade altitude ls Bin FCS Moment type

SIM16-P009 900 1400 0 4 0
SIM16-P010 700 1400 0 1 0
SIM16-P019 700 1400 2 4 0
SIM16-P026 850 1600 2 4 0
SIM16-P046 85000 1500 2 4 0
SIM16-P047 85000 1500 2 4 0
SIM16-P052 90000 1400 0 4 0
SIM16-P058 700 1900 0 0 1
SIM16-P066 70000 720 0 2 0
SIM16-P069 70000 1500 2 4 1

Tab. B.2: Summary of the string parameters for the simulations with StringAlgo v1.16.

yield to dynamic change of the parameters as a string length and a trade altitude. They are
not keep constant, e. g., the trade altitude is lowered, so the algorithm can profit even under
new conditions. The genetics component has predefined limits within which it selects the most
suitable combination of parameters leading ultimately to BUY/SELL orders.

In contrast to previous case when only EUR/USD currency rate was used, new currency rates
CHF/JPY, AUD/CAD, AUD/JPY were simulated with upgraded algorithm (version StringAlgo
v.16) and thereafter compared with the results from demo sessions Tabs. B.2, B.3. The algorithm
StringAlgo v.16 has builtin new proposed string maps Eq. (3.8), (3.9), (2.25), as well the modified
Sharpe ratio (C.3) which serves as new statistical quantity to evaluate the value at risk.
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Demo Currency Session Session Simulation
session pair start end code

IB-test-12 EUR/USD 2015-09-28 2015-11-23 SIM16-P009
LMAX-test-16 EUR/USD 2015-10-13 2015-12-03 SIM16-P010

SIM16-P019
SIM16-P026

LMAX-test-13 CHF/JPY 2015-10-09 2015-12-01 SIM16-P046
SIM16-P047
SIM16-P052

LMAX-test-14 AUD/CAD 2015-10-12 2015-12-05 SIM16-P058

LMAX-test-15 AUD/JPY 2015-10-12 2015-12-03 SIM16-P066
SIM16-P069

Tab. B.3: Summary of opened sessions for real demo trading on the Interactive Brokers and
LMAX Exchange market accounts.

C Sharpe ratio and volatility

The Sharpe ratio for calculating risk-adjusted return

S =
E[ra − rf ]

σ
=
µ− rf
σ

, (C.1)

where ra is asset return, rf is risk free rate of return, E[ra] is mean asset return, E[ra − rf ] =
µ − rf is the expected value of the excess of the asset return over the benchmark return with
standard notation

{
xi

}N
i=1

, µ =
1
N

N∑
i=1

xi, σ =

√√√√ 1
N

n∑
i=1

(xi − µ)2 (C.2)

µ is the mean, σ is the standard deviation.
The Sharpe ratio formula for the modified value at risk

SMVaR =
µ− rf
MVaR

, (C.3)

with

MVaR =− (µ+ σzcf ),

zcf =zc +
1
6

[
(z2
c − 1)S

]
+

1
24

[
(z3
c − 3zc)K

]
− 1

36

[
(2z3

c − 5zc)S2
]
,

zc is the c-quantile of the standard normal distribution, S is the skewness of asset return and K
is the excess kurtosis of asset return.
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The volatility σ denotes the degree of variation of a trading price of a financial instrument for
a specified time period as measured by the standard deviation of logarithmic returns (C.2). The
generalized formulae for the calculation of volatility σT for time horizon T in years is

σT = σ
√
T . (C.4)

The most common is annualized volatility σannualy = σ
√

252, where σ is 1-day historical volatil-
ity and 252 is the number of trading days in year. The monthly volatility is then σmonthly =
σ
√

21.
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D Empirical data analysis of time series data by decomposition methods

Empirical mode decompostion and intrinsic time scale decompostion

The technique of Hilbert-Huang empirical mode decompostion (EMD) method [69] is a new tool
for the analysis of complex time series data into elementary, almost orthogonal components that
do not overlap in frequency. EMD algorithm is a novel application of Hilbert-Huang transforma-
tion technique for nonlinear and nonstationary time series. For a given signal xt we define the
EMD to be a transformation from spatial space to zero band space of zero crossings

xt =
n∑
i=1

ci(t) + r(t) (D.1)

EMDi(x(t)) = ci(t), i = 1, . . . , n (D.2)

where ci(t) is an i-th intrinsic mode function (IMF) creating an adaptive orthogonal basis of time
series data and r(t) is an intrinsic trend.

The IMF satisfies two conditions: (1) in the whole data set, the number of extrema and the
number of zero crossings must either equal or differ at most by one; (2) at any point, the mean
value of the envelopes defined by the local minima and the local maxima is zero. The problem
of IMF is the local maximum and minimum point of original time series and IMF is not in the
same location. These problem we called intermittency problem of EMD algorithm. For a given
time series xt, the stepwise procedure of EMD can be summarized as follows

Step 1. Identify all the local maxima and minima of time series xt.

Step 2. Generate the upper and lower evelopes of xt. Once the extrema are identified, all the
local maxima are connected by a cubic spline line as the upper envelope. Repeat the
similar procedure for the local minima to produce the lower envelope. The upper and
lower envelopes should cover all the data between them.

Step 3. Calculate the point-by-point mean m1 from the upper and lower envelops.

Step 4. Define the difference between the data and m1 as the first component of h1

xt −m1 = h1. (D.3)

Step 5. The sifting process has to be repeated more times, h1 is treated as the data

ht −m1 = h11. (D.4)

We can repeat this sifting procedure k times until h1k is an IMF, that is

h1(k−1) −m1k = h1k. (D.5)

Then the first IMF component from the data can be designated as

c1 = h1k, (D.6)

where c1 is separated from the rest of the data by

xt − c1 = r1. (D.7)
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Step 6. The residue r1 is treated as the new data and subjected to the same sifting process as
described in Steps 1.—5. This procedure can be repeated on all the subsequence rj and
the result is

r1 − c2 = r2, . . . , rn−1 − cn = rn. (D.8)

The sifting process can be stoped by any of the following predetermined criteria: either
when the component cn or the residue rn become so small that it is less than the prede-
termined value of substantial consequence, or when the residue rn become a monotonic
function from which no more IMF can be extracted. By summing up all of the IMFs, we
can finally obtain

xt =
n∑
i=1

ci + rn. (D.9)

Thus, the original time series xt has been decomposed into n empirical modes and a
residua rn.

Ensemble empirical mode decomposition

In ensemble EMD (EEMD) procedure a white Gaussian noise (WGN) is added directly to the
input signal of interest, xt can be input time series, before applying EMD [73]. The perturbed
signal is given by

xv(t) = xt + vt, (D.10)

vt is the standard deviation of noise. The stepwise procedure of EEMD algorithm can be sum-
marized as follows

Step 1. Perturb the input signal xt as described by Eq. (D.10).

Step 2. Apply the EMD algorithm to xv(t) to obtain IMF set
{
ci(t)

}M
i=1

.

Step 3. Repeat Step 1. and 2. for the signal realizations of WGN and estimate average IMF set{
ci(t)

}M
i=1

=
1
S

({
ci(t)

}M
i=1

+ · · ·+
{
ci(t)

}M
i=1

)
.

Intrinsic time scale decomposition

Intrinsic time scale decomposition (ITD) [71] decomposed the original signal into ITDi(t) and
monotonic trend r1(t) by using a baseline function

xt =
n∑
i=1

ITDi(t) + r1(t), (D.11)

with ITDi(t) defined by using residua Ht after the recursive substraction with baseline function
Lt, similarly to EMD process,

xt = Lt +Ht = Lxt + (1− L)xt.
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The baseline function Lt of ITDi(t) is defined assuming

Lt = Lk +
Lk+1 − Lk
xk+1 − xk

(xt − xk), (D.12)

where Lt is an extremum location for t ∈ (τk, τk+1]. The recursive process of a decomposition
of time series is coming from the calculation of forward looking baseline function with three
input parameters

• the values of extrema (xk, xk+1, xk+2),

• the locations of extrema (τk, τk+1, τk+2),

• and the adjusting parameter α

with

Lk+1 = α
[
xk +

τk+1 − τk
τk+2 − τk

(xk+2 − xk)
]

+ (1− α)xk+1. (D.13)

Running (ITD − IMF)chain1

The EEMD transformation has a problem of the location of local extrema point of original signal
if the location of input time series data and the height of IMF is not the same as the height of the
original time series data. We solved this problem by performing the ITD, then sending the result
of ITD1 to EEMD transformation and to get IMF without the mentioned problem above. The
result is called running (ITD− IMF)chain1 with

xt =
n∑
i=1

ITDi(t) + r1(t). (D.14)

We select only ITD1(t) to perform a further EEMD process with

ITD1(t) =
n∑
i=1

ci(t) + r2(t), (D.15)

where we call

(ITD− IMF)chain1(t) = c1(t). (D.16)

The important point of this result is a minimum structure of local maximum and local mini-
mum state of time series data in which we can identify the minimum local structures of physiol-
ogy of financial time series. The local maximum and minimum point of (ITD− IMF)chain1(t)
lay at the same location of original signal xt without intermittency problem. If we can predict
the local maximum and minimum state of (ITD − IMF)chain1(t) it means we can overcome
the prediction of local maximum and local minimum state of original time series data. In this
research we use (ITD− IMF)chain1(t) as skeleton of time series.

Definition 5. We call (ITD− IMF)chain1(t) of time series xt a skeleton of time series data xt.
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Fig. D.1: Intrinsic time scale decomposition ITD1 − ITD5 of time series data of SET index
daliy closed price. A data showned here is a daily closed price of SET index between 2/5/1975
to 12/09/2011 with 9000 time series data and ITD1 − ITD5 at the same periods between raw
data 9000 data of SET index.

In this research, we have used financial time series data of daily closed price of SET, a Thai
stock market index. We have mainly considered the daily closing prices of SET during the
periods from the begining of market on 2/5/1975 to 12/9/2011, totally of 9000 data points of
time series for our data analysis. At first we have computed ITD1 − ITD5 of SET index and
result is shown in Fig. (D.1). At second we have used the result of ITD1 for the computation of
EEMD in order to get (ITD − IMF)chain1. The EEMD computation was performed with the
standard deviation of noise 0.05 with 1000 rounds of running an it has taken about 2 hrs. per
sample point.

Empirical analysis of cyclic time scale

We have used data of 9000 daily closed prices of SET. We have got only 2792 cycles in (ITD−
IMF)chain1 with zeros crossing of cyclic coordinate for time series data. That means we have
2792 maximum points which equal to minimum points of time series data. We have computed
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Fig. D.2: The correlation between s2 and T2 of (ITD − IMF)chain1 of SET in the first 900
cycles.
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Fig. D.3: The cyclic time coordinate of (ITD− IMF)chain1 of SET daily closed price data from
2/5/1975 to 12/09/2011 with 9000 data point. The higher dot on the verticle line is T4 cyclic
time scale coordinate. It is a time from minimum to a next minimum point (labeled in green
color). The lower dot on vertical line is T1, a cyclic time scale from local minimum point to
monotone function up (labeled in yellow color). The T2 is labeled with blue color, it is a cyclic
time coordinate from minimum to maximum point. The T3 is labeled with red color, it is a cyclic
time coordinate from minimum to monotone function down. For each cycle there are four points
in the verticle line. The horizontal line represents time circle. The higher ITD will contain lower
circle of time scale. We plotted only 2792 cycles in (ITD − IMF)chain1with zeros crossing of
cyclic coordinate for time series data on the leftside of panel. The highest peak label represent
about 12 days of cycle (labeled in blue color).

the correlation between state s2 of (ITD − IMF)chain1 and cyclic time scale T2 (see Fig. D.2.
The highest period in one smallest cycle T4 is 11 days. We can notice from the highest point of
graph Fig. D.3 in cyclic time coordinate.

The graphs of Hilbert transformation of (ITD− IMF)chain1 and ITD1 – ITD5 of SET are
shown in Figs. D.4, D.5, D.6.
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Fig. D.4: The graph of Hilbert transformation of (ITD − IMF )chain(1) on the left, ITD1 in
the middle and ITD2 on the right.
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Fig. D.5: The graph of Hilbert transformation of ITD3 on the left, ITD4 in the middle and ITD5

on the right.
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Fig. D.6: The graph of Hilbert transformation of ITD1 plus ITD5 on the left, ITD2 plus ITD3,
ITD4, ITD5 in the middle and ITD1 plus ITD2, ITD3, ITD4, ITD5 on the right.

Grey model

Grey system theory is an interdisciplinary scientific area that was introduced in early 80’s by
Deng [74]. Grey models require only a limited amount of data to estimate the behavior of un-
known systems with its ability to deal with the systems that have partially unknown parameters.
Grey models predict the future values of time series based only on a set of the most recent data
depending on window size of the predictor. GM(1, 1) type of Grey model is the most widely
used in the literature. The differential equations

dx(1)

dt
+ ax(1) = b (D.17)

have time varying coefficient (a(t), b(t)). Let us consider a time series sequence x(0) = {x(0)(1),
x(0)(2), · · · , x(0)(n)}, n ∈ N, that denotes the close price of set whose accumulating operator
(AGO) series is x(1) = {x(1)(1), x(1)(2), · · · , x(1)(n)}, n ∈ N, where

x(1)(t) =
t∑
i=1

x(0)(i). (D.18)



76 Study of prediction models

In the above differential equation, [a b]T is a sequence of parameters that can be found as

[a b]T = (BTB)−1BTY (D.19)

where

Y = {x(0)(2), x(0)(3), · · · , x(0)(n)} (D.20)

and

B =



−x(1)(1)+x(1)(2)
2 1

−x(1)(2)+x(1)(3)
2 1

−x(1)(3)+x(1)(4)
2 1

...
...

−x(1)(n−1)+x(1)(n)
2 1


· (D.21)

The solution of

x̂(0)(t+ 1) = x̂(1)(t+ 1)− x̂(1)(t) (D.22)

and

x̂(1)(t+ 1) =
[
x(1)(0)− b

a

]
e−at +

b

a
(D.23)

since by definition of AGO x(1)(0) = x(0)(1). Therefore

x̂(0)(t+ 1) =
[
x(0)(1)− b

a

]
e−at(1− ea) (D.24)

and the predicted value of the primitive data at time (t+H) is

x̂(0)(t+H) =
[
x(0)(1)− b

a

]
e−a(t+H−1)(1− ea). (D.25)

According the paper [75], the improved GM(1, 1) model was proposed, which has the archi-
tecture of GM-HHT. The equation

dx(1)

dt
+ ax(1) = b (D.26)

can be obtained from theorem below.

Theorem 2. Let the original signal x(0) = {x(0), · · · , x(n)}. The discretize of the first order
derivative of GM(1, 1) can be obtained from

M′ =


m1

m1

...
mm

 =

 b− ax(1)(1)
A−1G

b− ax(1)(n)

 (D.27)
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where mi = dxi

dt |t=i and

A =



2 0.5 0 · · · · · · 0

0.5 2 0.5 · · · 0
...

... · · · · · · · · · · · ·
...

... · · · · · · 0.5 2 0.5

... · · · · · · 0 0.5 2


(D.28)

G =



g2 − 0.5(b− ax(1)(1))
g3
g4
...

gn−2

gn−1 − 0.5(b− ax(1)(n))


(D.29)

where

gj = 1.5(x(0)(j) + x(0)(j + 1)), j = 2, 3, · · · , n. (D.30)

We can write the equation as

M′ + ax(1) = b. (D.31)

Proof: see [75].
The algorithm of a shifting process with endeffect solving with improving GM(1, 1) and ITD

before sending to empirical mode decompostion (EMD) is shown in Fig. D.7.

Performance test of directional prediction of SET index

The five days ahead forecast by using of improved GM(1, 1)-ITD-HHT-ANN is performed with
92 data set of out of sample test. The test data start from 2/3/2014 with data number 9528 to
24/6/2014 with data number 9622. 9622 means SET index of daily closed price of date number
9622 since market started. The result of calculation was used for the performance test of profit
of short and long positions of IndexFutures Market. The result of the performance test of our
prediction model is test over 60 sample data. The trading day start with data number 9528 to
data number 9588. The graph of performance test is shown in Figs. D.8. For one day ahead
forecast we can notice only which state is maximum state s2 in our time series data. Then we
can open a short position from that state. We obtain average accuracy of this method by average
all 5 days prediction in 92 days of out of sample test. We get average accuracy at 51.96% with
standard deviation (SD) at 0.501430242.

In this work we also detected entanglement state of time series data after using (ITD −
IMF)chain1 transformation. We found that mostly the entanglement state occurred, when time
series data is in the maximum state s2.
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Fig. D.7: The flowchart of EMD algorithm with endeffect solving whith improving GM(1, 1) and
ITD. The algorithm predicts entanglement state of loopback between maximum and minimum
statse in time series.

The picture of down direction of stock index can be notice one dayahead in out of sameple
test within modeling of entanglement state in time series data of our empirical analysis is analogy
with en deffect of our (ITD− IMF)chain1, shown in Fig. D.9.
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[30] K. Kanjamapornkul, R. Pinčák, and E. Bartoš. The study of Thai stock market across the 2008
financial crisis. Physica, A462:117–133, 2016.

[31] Fengzhong Wang, Kazuko Yamasaki, Shlomo Havlin, and H. Eugene Stanley. Scaling and memory
of intraday volatility return intervals in stock markets. Phys. Rev. E, 73:026117, 2006.

[32] Giampiero M. Gallo and Edoardo Otranto. Forecasting realized volatility with changing average levels.
International Journal of Forecasting, 31(3):620 – 634, 2015.
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Richard Pinčák works at the Institute of Experimental Physics, Slovak
Academy of Sciences; he was several years senior researcher in Bogoli-
ubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Re-
search, Dubna, Russia. He is an active theoretical physicist with a lot of
branches of research as condensed matter physics, biophysics and also cos-
mology. The last time he is also trying to find the fundamental revolution
principles of the behavior prediction of financial forex market and options
pricing. He studies the projections of the real exchange rate dynamics onto
the string-like topology. His approach in this field is inspired by the con-
temporary movements in the string theory.


	Introduction
	String maps of time series
	One dimensional maps
	Two dimensional maps
	Symmetry with respect to direct and indirect quotes
	D2-branes map
	Partial compactification
	Intra-string statistical picture
	String polarized by the external field
	Inter-currency study: map onto rotating strings
	Differentials of string map

	String prediction models and their utilization
	Prediction model based on string invariants
	Experimental analysis of PMBSI
	Prediction model based on the deviations from the closed string/pattern form
	Experimental analysis of PMBCS
	Regge slope parameter

	Kolmogorov space and the concept of algebraic topology and their relation to time series data
	Loop space of time series
	Proof of the main theorem

	Conclusions
	Acknowledgments
	Appendices
	PMBSI model construction
	The realisation of the PMBCS model
	Sharpe ratio and volatility
	Empirical data analysis of time series data by decomposition methods
	References

