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1 Solution of stochastic problems in field theory

In 1928 the relativistic equation of motion for an electron was postulated by P. A. M. Dirac
[1]. This gave rise to tremendous development in theoretical physics, which ultimately led to
a formulation of relativistic quantum mechanics. From the historical point of view the first
example of such a theory is quantum electrodynamics (QED), which describes quantum theory of
electromagnetic interactions between electrons, positrons and photons. New theoretical methods
became available for calculation of differential cross sections for elementary processes in the high
energy physics, which offered a controlled perturbation calculation in the form of asymptotic
series in a small parameter – the fine-structure constant. However, it turned out that integrals,
which terms of these series contain, are divergent both in the infrared (IR) and in the ultraviolet
(UV) regions and mathematical expressions loose their meaning. It was realized that this problem
is a property of any quantum field theory, not only quantum electrodynamics.

A method for the removal of ultraviolet divergences was put forward in the 50s by Stückel-
berg and Petermann [2] giving rise to the creation of a solid theoretical approach in the form of
the renormalization group (RG). Group properties in this approach were found and mathemati-
cally rigorously defined by N. N. Bogolyubov and D. V. Shirkov [3–5].

The methods of perturbative renormalization group, UV renormalization and Feynman di-
agrammatic technique have become a standard part of theoretical physics. One of the most
important observations originated from RG was the discovery of running constants. Roughly
speaking, this means that physical quantities such as charge of the electron, its mass etc. are
not constant, but their values depend on the scale at which they are measured. For instance, the
fine-structure constant, which is approximately equal to 1/137 at energy scales of order 100 eV,
attains value 1/128 at energies of order 100 GeV. This growth leads to a modification of the
Coulomb law. QED is an example of abelian gauge theory. Yang and Mills generalized the prin-
ciple of gauge invariance to non-abelian theories [6], which are the main ingredients of models
of weak interactions and quantum chromodynamics (QCD). Gauge theories have played a cru-
cial role in the explanation of properties of elementary particles and are the basis of the standard
model, which is the most successful attempt of mankind for a reductionist description of the
universe (without gravity).

The growth of the fine-structure constant in QED affects results of calculations, which can
be experimentally observed, e.g., in the Lamb shift of the energy levels 2s1/2 and 2p1.2 for the
hydrogen atom. On the other hand, the coupling constant in QCD exhibits completely different
anomalous behavior, which did not correspond to observed in the beginning of 70’s. To put it
simply, the smaller distances are probed in the experiment, the weaker is the interaction between
particles. Asymptotically the coupling constant goes to zero. For this discovery in 1973 [7, 8],
known as asymptotic freedom, Gross, Wilczek and Politzer, were awarded the Nobel Prize in
2004. QCD is the only known (and confirmed) theory of “string”-like behavior in microworld,
which at the larger scales leads to the confinement of quarks and gluons. A byproduct of all the
subsequent discoveries was further development of quantum field theory and related mathemati-
cal methods.

About the same time, an unrelated branch of physics devoted to the study of continuous
phase transitions in classical systems experienced many new developments. Let us recall that
usually the critical behavior of a system is understood as its behavior near the critical point of
a continuous phase transition, where a scaling with nontrivial exponents appears. For instance,
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the critical exponent β characterizes the dependence on temperature of the magnetization of a
ferromagnet in zero external field near critical temperature Tc (T < Tc)

M ∼ (Tc − T )β .

Calculation of the critical exponents, explanation of their universality and finding relations be-
tween them is the subject of study of the theory of critical behavior. The RG represents a power-
ful tool for solution of these problems. The RG approach was first applied by K. G. Wilson [9]
(Wilson renormalization group) to static critical phenomena and soon after used to study critical
dynamics as well [10,11]. Typical examples are the λ transition from normal to superfluid in 4He
and the transition from paramagnetic to ferromagnetic phase in uniaxial magnets (Ising model).
The distinguishing physical feature is the presence of universal behavior, i.e. independence of
the microscopic parameters of the model and importance of only gross properties such as space
dimension, symmetry and nature of the order parameter. Moreover, in contrast to the typical
problems in physics it was clear that the procedure of decoupling of scales is not possible - a
characteristic scale was lacking in the critical system and all length scales must be treated simul-
taneously. This is the simple reason why the ordinary perturbation theory was not very useful.
The lack of a typical scale manifests itself in the powerlike behavior with universal exponents.

In order to explain critical behavior new theoretical approaches were needed. Kadanoff [12]
proposed a block scheme, in which using a specific contraction procedure it was possible to
derive a macroscopic model from a microscopic one. However, the approach led often to un-
controlled approximations and worked only for special cases. An important contribution was
made by the Soviet school - Landau, Pokrovskii, Patashinkii - who can be regarded as founders
of the fluctuation theory of phase transitions [13, 14]. The crucial idea is the construction of
model Hamiltonians with proper symmetry and physical considerations taken into account. In
the beginning of 70s Wilson formulated a renormalization technique based on the integrating out
of large-momentum degrees of freedom [15, 16]. This approach resulted in a conceptual frame-
work, which is still in use. Wilson was awarded the Nobel Prize in 1983. Practical analytical
tools such as dimensional regularization [17, 18], the famous ε expansion [19] and others were
found [20]. With them in hand theoretical physicists have a set of rules which in principle al-
lows computation of critical exponents (e.g. the Fisher index η) in a controlled fashion. Values
obtained in this way are in a reasonable agreement with the experimentally measured values.
Needless to say, critical exponents very often assume values, which are different from those
predicted by the mean-field theory.

Functional formulation of quantum field theory based on the use of the generating func-
tional [21–23] made it possible to forget about quantum nature of the fields and treat them as
classical objects. In this sense a quantum-field operator corresponds to a fluctuating classical
field. In the current literature field-theoretic methods has become the common term. It has to
be stressed that in this approach the basic ingredients of the theory are classical fields, Lagrange
functions, the corresponding actions and generating functionals. There is also a change in the
underlying geometry - in the case of classical systems coordinates and times are given in eu-
clidean space rather than in the Minkowski spacetime. Since the models analyzed are invariably
non-relativistic, this feature boils down to the substitution of the Schrödinger evolution by the
diffusion evolution, which is some cases (e.g. directed percolation) has the interpretation of
time playing a role of a singled out direction. Another important difference is that, contrary
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to non-relativistic quantum field theory, in classical reaction models the particle number is not
conserved.

The first task in solving a classical statistical problem is to find the corresponding action func-
tional. Its construction requires deep understanding of the physical situation and identification
of relevant physical parameters. The use of methods of quantum field theory has enabled quick
solution of problems in statistical physics on the basis of Ginzburg-Landau fluctuation theory.
In particular, it has become possible to calculate critical indices to high orders in perturbation
theory for diverse universality classes [24, 25].

Later dynamical models were formulated in terms of time-dependent fluctuations of slow
variables near equilibrium. A detailed classification – which soon became standard – was pro-
posed by Hohenber and Halperin [26]. An up-to-date review of dynamic critical phenomena can
be found in Ref. [27]. In this approach dynamics in the vicinity of a critical point are described by
Langevin equations, which historically were first used for description of the Brownian motion.

In 1973 Martin, Siggia and Rose [28] put forward the idea that in dynamic models an im-
portant role is played by a conjugate field and suggested to use it as an additional basic element.
Later, Janssen and De Dominicis [29,30] showed how the dynamic models of the Martin-Siggia-
Rose (MSR) approach can be formulated in the language of path integrals. This has the great
advantage of identifying correctly linear terms to construct in an effective manner the perturba-
tion theory.

In critical dynamics the state of thermodynamic equilibrium must be the stationary solution
of the stochastic problem generated by the Langevin equation. This requirement imposes certain
restrictions on the structure of the Langevin equation and the statistics of the noise (e.g. Onsager
relations and fluctuation-dissipation theorems). However, if these restrictions are lifted, then it is
possible to use the Langevin equation to describe stochastic problems with steady states which
are not states of thermodynamic equilibrium. The problem of fully developed turbulence [31],
stochastic magnetohydrodynamics, transport phenomena in turbulent environment and various
advection-diffusion problems [32] belong to this class of stochastic problems. There are also
situations, in which a physically reasonable stochastic problem cannot be formulated in terms of
the Langevin equation. This is the case, when changes in the relevant variables cannot be treated
as continuous functions of time. This happens, for instance, in models of kinetics of chemi-
cal reactions [33, 34], ecological models, econophysical models for financial markets or social
systems including combat models of operations research. The stochastic problem must then be
formulated with the use of the master equation. The latter allows for a representation very similar
to second quantization in quantum mechanics. Second quantization in quantum mechanics gives
rise to non-relativistic quantum field theory, which may be formulated in terms of generating
functionals. The result of this outflanking is the formulation of the original stochastic problem in
field-theoretic terms starting from the construction of the action functional.

We review generalization of the approach based on the Langevin equation with additive noise
to the case with multiplicative noise. We also discuss in detail the choice of the functional repre-
sentation of the perturbation expansion for the solution of the Langevin equation. We show that
the ambiguity in the Feynman rules is an inherent property of the functional representation which
is present both in case of deterministic and stochastic problems. This ambiguity resembles the
Ito-Stratonovich ambiguity of stochastic differential equations (SDE) with multiplicative noise,
for which we give a detailed account of construction of the field theory as well.

We review the construction of the functional representation for the solution of stochastic
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problems based on the master equation. The popular way of construction of this representation
with the use of the interpolation approach to the functional integral suffers from problems in
taking into account the initial and final conditions which are often solved by hand-waving argu-
ments. We recall an alternative way based on the operator formulation of evolution, which is free
from ambiguities in dealing with the boundary conditions of evolution. Although the evolution
in these systems is given by first order time derivative, they are similar to relativistic quantum
systems in the sense that the number of particles is not conserved. A typical example is the di-
rected bond percolation process [35], where a continuous creation and annihilation of interacting
agents takes place. Using the method of ”second quantization” of Doi the entire set of master
equations can be cast into a ”Schrödinger” equation with a given Liouville operator for a state
vector in a Fock space. The large-scale properties of the solution can be then analyzed with the
further use of Doi formalism and functional methods, which are presented in this article.

The final aim of the theory (either in stochastic dynamics or developed turbulence) is to find
the time-space dependence of statistical correlations - mainly those who can be experimentally
measured. It turns out that use of quantum field theory methods (RG included) allows to derive
a linear differential equation, which contains stable solutions in the asymptotic region of large
macroscopic scales.

The solutions have a form of a product of a power-like term with a nontrivial exponent and
scaling function of dimensionless variables (not determined by the RG). In order to compute crit-
ical exponents in the form of asymptotic series one must resort to a certain scheme (we often em-
ploy variants of dimensional renormalization). Asymptotic properties of the scaling functions are
analyzed by the operator product expansion, which is another theoretical tool developed mainly
by Wilson, Wegner and Kadanoff. In the stochastic theory of fully developed turbulence scaling
functions may be singular functions of their dimensionless arguments and this can drastically
change the critical exponents. All these features of models turbulent transport are discussed here
in a detail on concrete calculations for models describing diffusion and advection of a passive
scalar quantity in a turbulent environment. The results demonstrate intermittent (multifractal)
behavior of statistical correlations of the random fields of concentration of advected particles.

In contrast to critical dynamics, where the expansion parameter in the renormalized theory is
– as a rule – the deviation of the space dimension from the upper critical dimension, in the field
theory of fully developed turbulence the basic expansion parameter is the regulator of analytic
renormalization, i.e. the deviation of the exponent of a powerlike correlation function of a ran-
dom source field from its critical value. There may be several such regulators (as in stochastic
magnetohydrodynamics, for instance) which makes it possible to construct expansions in several
regulators. Moreover, at certain space dimensions additional divergences appear, for which the
regulator of dimensional renormalization is usually introduced giving rise to even more diverse
multi-parameter expansions in the renormalized theory. Combining information from different
expansions allows to improve significantly the numerical accuracy of model calculations, as the
calculation of the Kolmogorov constant with the use of the double expansion in isotropic turbu-
lence demonstrates.

A typical approach to stochastic dynamics starts from the analysis of ideal systems - ho-
mogeneous in spatial and time, isotropic, incompressible (in case of fluids), possessing mirror
symmetry etc. In the present review the corresponding results for fully developed turbulence
are summarized. However, real systems almost always exhibit some form of anisotropy, com-
pressibility or violated mirror symmetry. The effect of such deviations from the ideal system on
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fluctuating random fields has been an object of intensive research activity, whose arguments and
conclusions are described. The results have led to a general conclusion that such effects play a
very important rôle. They can drastically change the large-scale behavior predicted by models of
ideal systems.

In Sec. 1 a detailed account of the two different approaches to the formulation of field-
theoretical models of stochastic problems is presented. The first approach based on a transition
from a generic stochastic differential equation with additive or multiplicative noise to model with
effective actions generated by the SDE. The second approach is based on the use of the master
equation, which – with the use of the Doi approach and functional methods – leads to action
functionals, where the effect of initial conditions can be explicitly taken into account. In Sec. 2
the method of RG is briefly described and the double expansion scheme is presented.

Discussion of stochastic models of developed turbulence and the results of the RG analysis
thereof is presented in Sec. 3. Sec. 4 is devoted to an analysis of the effect of violated symmetries
on the critical behavior. In particular, critical amplitudes, values of critical exponents and the
stability of fixed points of the RG that govern the macroscopic (infrared) asymptotic behavior of
different statistical mean values is of interest. In Sec. 5 results of the analysis of the effects of
turbulent flow on certain reaction-diffusion problems are overviewed.

1.1 Hydrodynamic kinetic equation

In the Landau-Khalatnikov approach to kinetic phenomena in phase transitions [36] relaxation
to equilibrium is described by the kinetic equation for the time evolution of the order parameter
ϕ

dϕ

dt
= − γ ∂F

∂ϕ
, (1.1)

where F is a thermodynamic potential having a minimum at equilibrium. In the microcanonical
ensemble it would be the entropy with the sign minus, in the canonical ensemble the Helmholtz
free energy etc. In an inhomogeneous system the kinetic equation (1.1) is generalized to the form

∂ϕ

∂t
= −γ δF

δϕ
, (1.2)

where F is a functional of the order parameter. In this case the order parameter may be a con-
served quantity itself, in which case the kinetic coefficient γ will be wave-number dependent and
vanishing at k = 0. In the case of the paradigmatic Ginzburg-Landau theory of the ferromagnetic
phase transition the thermodynamic potential is of the form [37]

F (ϕ) = F0 +

∫
d3r

[
g(∇ϕ)2 + a(T − Tc)ϕ2 +Bϕ4

]
. (1.3)

The generic structure of the kinetic equation (1.2) is basically the same as in hydrodynamic
transport equations, in which the right side is not necessarily a (functional) derivative of some
thermodynamic potential or the like, but a more general functional of the slow parameter ϕ,
which may, of course, have several components.



Solution of stochastic problems in field theory 77

The kinetic equation (1.2) provides a deterministic macroscopic description, which does not
take into account microscopic fluctuations. To describe effects of fluctuations without resorting
to microscopic theory, some kind of randomness may be used in the problem brought about by
the kinetic equation. The consistent construction of renormalizable field theories corresponding
to nonlinear kinetic equations with noise was initially proposed in terms of quantum field theory
by Martin, Siggia and Rose [28]. It should be noted that in the original paper the nature of the
randomness was not specified. The operator approach of Martin, Siggia and Rose (MSR) was
soon replaced by the equivalent functional-integral representation for the solution of the Langevin
equation, in which a white-noise term is added to the right side of the kinetic equation [29, 30].
The functional-integral approach avoids any connection to the operator formalism of quantum
field theory. It is ambiguous, however, in a way which makes it difficult to choose the most
convenient scheme for calculations and confusing from the point of view of the mathematical
ambiguity of stochastic differential equations with multiplicative white noise.

In the MSR approach the starting point is a system of nonlinear equations for field opera-
tors. An iterative solution of these equations is the tree-graph solution of a nonlinear differential
equation, iterative construction which we shall shortly describe. This solution explicitly depends
on random initial conditions or random coefficient functions and implicitly on random boundary
conditions through the Green function of the linear problem. Expectation values of products of
these tree-graph solutions over sources of randomness yield the solution of the stochastic prob-
lem.

This iterative solution may be compactly expressed in the functional-differential form of the
quantum-field perturbation theory, in which the ambiguity of the representation is explicit in the
interaction functional. It should be emphasized that the iterative solution is unambiguous, but
the form of the functional representation, either integral or differential, is not. In this section we
shall describe both ways to represent the solution of a nonlinear differential equation and stress
once more, that for the time being the differential equations are completely deterministic. As a
specific example we shall use the time-dependent Ginzburg-Landau model.

The generic kinetic equation for a near-equilibrium system in case of the Ginzburg-Landau
free-energy functional [37] gives rise to a nonlinear partial differential equation in the form

∂tϕ = −γ
[
−2g∇2ϕ+ 2a(T − Tc)ϕ+ 4Bϕ3 − h

]
, (1.4)

where ∂t = ∂/∂t is the time derivative, parameter γ sets the time scale. Description of dynamic
phenomena in the critical region based on the solution of this equation is the time-dependent
Ginzburg-Landau model (TDGL model). It is widely used especially in the theory of supercon-
ductivity, where inhomogeneous solutions are important.

Here, however, the TDGL equation (1.4) is needed for the description of the effect of small-
scale fluctuations on the behavior of the system in the critical region. To this end, the external
field h will eventually be regarded as a random noise thus giving rise to a stochastic differential
equation (SDE). For the construction of perturbative solution of the SDE it is instructive, how-
ever, to introduce first the iterative solution of the deterministic TDGL equation (1.4). With the
use of this approach a perturbative solution of any polynomially nonlinear differential equation
may be constructed, provided a linear differential equation may be singled out as the starting
point of the iteration.

In case of the TDGL equation the starting point of the iteration is the linear equation (for
simplicity, the symmetric phase with vanishing equilibrium value of the field ϕ is considered
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here)

∂tϕ
(0) = −γ

[
−2g∇2ϕ(0) + 2a(T − Tc)ϕ(0) − h

]
. (1.5)

Solution of this problem may be expressed in the form

ϕ(0)(t,x) =

∫
ddx′

∫
dt′∆12(t,x, t′,x′)γh(t′,x′) ≡

∫
dx′∆12(x, x′)γh(x′) , (1.6)

where here and henceforth x = (t,x), dx ≡ ddxdt, d is the dimension of the space and ∆12 is
the Green function of the linear differential operator of equation (1.5), i.e.[

∂t − 2γg∇2 + 2a(T − Tc)
]

∆12(t,x, t′,x′) = δ+(t− t′)δ(x− x′) . (1.7)

Here, δ+ is the asymmetric δ function defined by∫ b

a+0

f(t′)δ+(t− t′) dx′ =

{
0 , t < a ∨ t > b ,

f(t+ 0) a ≤ t < b
(1.8)

Usually, vanishing boundary conditions are assumed. On time axis it is often technically simpler
to consider ”initial condition” ϕ→ 0, t→ −∞, in which case the explicit expression for Green
function in the time-wave-vector representation is

∆12(t− t′,k) = θ(t− t′) exp
{
−2γ

[
gk2 + a(T − Tc)

]
(t− t′)

}
. (1.9)

Should the Cauchy problem at a finite initial time instant t0 be considered, it would be the
simplest technically to introduce an ”external field” concentrated at the initial time instant for the
initial condition ϕ(0,x) = ϕ0(x):

h(t,x)→ h(t,x) + δ+(t− t0)
ϕ0(x)

γ
.

It should be noted that the retardedness property of the Green function (propagator) (1.9) turns
out to be extremely important in the explicit construction of the perturbation expansion of the
solution, especially when the small-scale fluctuations will be taken into account.

To construct the iterative solution, it is convenient to cast the TDGL equation (1.4) in the
form of an integral equation

ϕ(x) =

∫
dx′∆12(x, x′)γh(x′)− 4γB

∫
dx′∆12(x, x′)ϕ3(x′) . (1.10)

The zeroth-order contribution ϕ(0) is obtained by putting the coupling constant equal to zero
B = 0 in (1.10). To obtain the first-order contribution, the zeroth-order solution is substituted in
the right side of (1.10) to yield

ϕ(1)(x) = −4γB

∫
dx′∆12(x, x′)

[
ϕ(0)(x′)

]3
, (1.11)

which then is substituted in the right side of (1.10) to obtain the second-order contribution etc.
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It is convenient to express the iterative solution in a graphical form, the two leading terms of
which may be depicted as

ϕ = ϕ(0) + ϕ(1) + . . . = + + . . . (1.12)

Here, the directed line corresponds to the propagator ∆12, the cross to the external field term
field γh and the full dot to the vertex factor obtained as the third order derivative with respect to
ϕ of the right side of the kinetic equation (TDGL equation) (1.4).

From the iterative solution it is clearly seen that the propagator ∆12 is essentially the dynamic
(linear) response function of the field ϕ:

χ(x, x′) =
δϕ(x)

δh(x′)

∣∣∣∣
h=0

= γ∆12(x, x′) . (1.13)

Little reflection shows that in the graphical representation of the solution of the kinetic equation
there are only connected graphs without closed loops of propagators, i.e. the graphical solution
of the TDGL equation consists of connected tree graphs only.

The tree-graph solution of the kinetic equation may be expressed in a compact functional
form, which is useful to work out the effect of fluctuations. Consider the generic kinetic equation

∂tϕ = V (ϕ) = −Kϕ+ U(ϕ) + f (1.14)

in which the right side is not necessarily proportional to a functional derivative. In the last
expression of (1.14) we have singled out the source term for calculation of response functions
and the first-order term giving rise to the propagator ∆12

(∂tϕ+K) ∆12(t,x, t′,x′) = δ+(t− t′)δ(x− x′). (1.15)

The generating function of solutions ϕ[f ] of the kinetic equation (1.14) is defined as

G(A) =

∞∑
n=0

1

n!

{∫
dxA(x)ϕ[x, f ]

}n
≡ exp {Aϕ[f ]} , (1.16)

where a universal notation is introduced, i.e. integrals and sums over parameters of the solution
ϕ[f ] are implied.

Derivatives of the functional G(A) (1.16) at A = 0 are simply products of the solution
ϕ[f ]. With the use of functional δ function (whose application rules coincide with those of the δ
function in a finite-dimensional Euclidean space) the generating function may be expressed as a
functional integral [38]

G(A) =

∫
Dϕ δ (ϕ− ϕ[f ]) exp (Aϕ) . (1.17)
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A change of variables in the δ function brings about the kinetic equation explicitly:

G(A) =

∫
Dϕ δ [−∂tϕ+ V (ϕ) + f ] |detM | exp (Aϕ) . (1.18)

The functional U(ϕ) contains the nonlinear terms of the functional V (ϕ). We stress that the
right-side functional V (ϕ) in the kinetic equation need not be a functional derivative of some
other functional, although this is often the case in near-equilibrium kinetics.

Representation the functional Jacobi determinant in (1.18) in the loop expansion of the ex-
pression exp (Tr lnM) yields

detM = det

[
(∂t +K) δ(x− x′)− δU(x, ϕ)

δϕ(x′)

]
= det (∂t +K) exp [−∆12(0)U ′(ϕ)] ,

(1.19)

in which the following shorthand notation has been introduced

∆12(0)U ′(ϕ) ≡
∫

dx

∫
dx′∆12(t,x, t,x′)

δU(x, ϕ)

δϕ(x′)
. (1.20)

Recall that the propagator is the retarded Green function of the linear kinetic equation, whose
value at t = t′ is not determined. It is often convenient to use the time-wave-vector representation
for the diagonal value of the propagator, in which case a wave-vector integral appears

∆12(t,x, t′x′)
∣∣∣
t=t′
x=x′

=

∫
ddk

(2π)d
∆12(t− t′,k)

∣∣
t=t′

,

for convergence of which an UV cutoff is usually needed. For instance, in case of the TDGL
model the diagonal value of the propagator may be expressed as

∆12(t,x, t′x′)
∣∣∣
t=t′
x=x′

= θ(t− t′)
∣∣
t=t′

∫
ddk

(2π)d
θ(Λ− k)

2γ [gk2 + a(T − Tc)]
,

where the sharp UV cutoff has been used. Thus, not only are measures of caution to be taken
to make the diagonal value of the propagator finite, but also value of the step function of the
retarded propagator needs to be defined at the origin.

With the use of the Fourier-integral representation of the δ function in (1.18) we arrive at
the functional integral over two fields (in the Fourier integral for the functional δ function the
imaginary unit is usually omitted and the auxiliary field ϕ̃ taken as imaginary-number quantity,
if necessary)

G(A) =

∫
Dϕ

∫
Dϕ̃

∣∣det (∂t +K)
∣∣ exp [−∆12(0)U ′(ϕ)] exp {ϕ̃ [−∂tϕ+ V (ϕ) + f ]}

× exp (Aϕ) . (1.21)

Henceforth, the field-independent determinant of the differential operator det (∂t +K) will be
included in the measure of integration and therefore not expressed explicitly.



Solution of stochastic problems in field theory 81

In contrast with the usual approach [38], there is no Gaussian integral over the random noise
in (1.21), which would render the resulting functional integral convergent as an iterated integral.
In fact, the formal functional integral (1.21) is hardly convergent in any reasonable sense. How-
ever, by the standard transformation rules [39] it generates a functional-differential representation
(S-matrix functional) for the generating function (1.16)

G(A) = exp

(
δ

δϕ
∆12

δ

δϕ̃

)
exp [ϕ̃U(ϕ)−∆12(0)U ′(ϕ) + ϕ̃f +Aϕ]

∣∣
0

(1.22)

where |0 stands for |ϕ̃=ϕ=0 and this notation will be employed in what follows. Further, the
exponential functional differential operator in (1.22) is the reduction operator

P = exp

(
δ

δϕ
∆12

δ

δϕ̃

)
spanning propagator lines between vertex factors

Vn,m(x1, . . . , xn; y1, . . . , ym) =
δn+mV (ϕ, ϕ̃)

δϕ(x1) · · · δϕ(xn)δϕ̃(y1) · · · δϕ̃(yn)
(1.23)

where, in the present case,

V (ϕ, ϕ̃) = ϕ̃U(ϕ)−∆12(0)U ′(ϕ) + ϕ̃f +Aϕ .

In the S-matrix functional (1.22)) all building blocks are mathematically well defined. Problems
may, of course, arise with the convergence of the series. Since this representation is obtained
by a heuristic functional-integral argument, in what follows it will separately demonstrated that
the representation (1.22) yields the iterative solution of the kinetic equation (1.14). It should be
noted that representation (1.22) may be obtained directly – without any functional integrals and
determinants – from the MSR operator equations of motion with the use of standard rules of
construction of perturbation theory for Green functions [40].

It is a generic property of the functional representation (1.22) that lnG(A) consists of the
connected graphs of G(A). The interaction term ϕ̃U(ϕ) in (1.22) is linear in the auxiliary field
ϕ, therefore only one directed propagator line comes out of the corresponding vertex in the
graphical representation, whereas the number of incoming lines is equal to the power of the
field ϕ in each monomial of U(ϕ) (which is three in the TDGL model). Propagator lines form
continuous directed chains, which either form closed loops and vanish due to retardation of the
propagator (except the single-propagator closed loop ∆12(0)), or go through the graph starting
form the external field f and ending at the source field A.

At the vertex corresponding to ϕ̃U(ϕ) directed chains with a start at the external field f merge
to produce a directed chain ending at A, whereas at the vertex corresponding to −∆12(0)U ′(ϕ)
directed incoming chains end without producing any outcoming line. Therefore, connected
graphs of G(A) either contain one source vertex corresponding to Aϕ or do not contain such
a vertex at all. On the contrary, the number of vertices corresponding to external field ϕ̃f in a
connected graph is limited only by the order of perturbation theory. It is not difficult to see by
direct inspection that all connected graphs of G(A) withoutA actually vanish, because the vertex
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factors produced by terms ϕ̃V (ϕ) and −∆12(0)U ′(ϕ) cancel each other in them, therefore we
end up at the result

G(A) = exp [AW1(f)] , (1.24)

which, of course, coincides with (1.16), but is expressed in terms of standard generating func-
tions.

The point of introducing the functional representation (1.22) is that the explicit linear expo-
nential of the external field f is convenient in working out generating functions in case of random
external field (noise). The basic equation of the generating functional G(A) is the Schwinger
equation with respect to the source A. It is most straightforwardly obtained from the Gauss law
for the functional integral (1.21) with respect to the auxiliary field ϕ̃, which yields

0 =

∫
Dϕ
∫
Dϕ̃ δ

δϕ̃
exp{ϕ̃ [−∂tϕ+ V (ϕ) + f ]−∆12(0)U ′(ϕ) +Aϕ}

=

∫
Dϕ
∫
Dϕ̃[−∂tϕ+ V (ϕ) + f ] exp{ϕ̃ [−∂tϕ+ V (ϕ) + f ]−∆12(0)U ′(ϕ) +Aϕ}.

Pulling out the field variables as derivatives with respect to the source we obtain

G(A)−1

[
−∂t

δ

δA
+ V

(
δ

δA

)
+ f

]
G(A) = [−∂tW1 + V (W1) + f ] = 0 , (1.25)

which, of course, coincides with the original kinetic equation for the field ϕ.
The reader already familiar with the functional integral would probably like to ask, how the

Schwinger equation obtained from the Gauss law with respect to the basic field ϕ fits here. The
answer is that it actually reproduces the equation for the ”response function”

χAÃ(t,x; t′x′) =
δW1(t,x)

δÃ(t′,x′)
. (1.26)

Here, Ã = f and quotation marks are used here, because the physical response function is
obtained at vanishing source fields.

From the original kinetic equation with an additional source term

∂tϕ = V (ϕ) = −Kϕ+ U(ϕ) + Ã (1.27)

an equation for χAÃ is obtained by differentiation with respect to Ã with the result

∂tχAÃ = V ′(ϕ)χAÃ + 1 . (1.28)

The Schwinger equation from the Gauss law with respect to the basic field ϕ for the functional
(1.21) yields (with the account of expression (1.24))

−∆12(0)U ′′(W1) +
δV ′(W1)

δÃ
+A∂tχAÃ + V ′(W1)AχAÃ +A = 0 (1.29)

The dependence on the source field A is explicit here (χAÃ does not depend on A), therefore
the independent of A terms and the sum of those proportional to A must vanish independently.
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Careful tracing of the arguments reveals that the condition of vanishing of the coefficient of A in
(1.29) is actually the equation (1.28), thereafter it is seen that the sum of two first terms in (1.29)
vanishes identically on the solution W1 of the kinetic equation (1.25).

It should be noted that so far a functional representation (1.22) has been constructed for
generating functional of solutions of a deterministic nonlinear partial differential equation. There
is no randomness here at all and the tree-graph solution of the equation is unique. It is an intrinsic
property of the functional representation that it contains an ambiguity in the form of the diagonal
value of the propagator ∆12(0), but this has nothing to do with any stochastic problems, as it is
sometimes presented in the literature [41].

It is instructive to analyze in a more formal fashion the independence of the generating func-
tional (1.22) of the diagonal value of the propagator. To this end, use the following trick [39].
Consider a product of N functionals Fn(ϕn, ϕ̃n) of a set of N fields ϕn and ϕ̃n acted upon by a
reduction operator containing all pairs of fields:

exp

 N∑
i,j=1

δ

δϕi
∆12

δ

δϕ̃j

 N∏
n=1

Fn(ϕn, ϕ̃n) . (1.30)

Here, the reduction operator is a ”complete square” of differential operators, i.e.

N∑
i,j=1

δ

δϕi
∆12

δ

δϕ̃j
=

(
N∑
i=1

δ

δϕi

)
∆12

 N∑
j=1

δ

δϕ̃j

 . (1.31)

With the aid of the change of variables to ”center of mass” ϕ defined as

ϕ ≡ ϕ1 + . . .+ ϕN
N

(1.32)

and relative coordinates ϕi − ϕi+1 for {ϕn}Nn=1 (together with a similar change for {ϕ̃n}Nn=1)
we arrive at the conclusion [39]

exp

(
δ

δϕ
∆12

δ

δϕ̃

) N∏
n=1

Fn(ϕ, ϕ̃) = exp

 N∑
i,j=1

δ

δϕi
∆12

δ

δϕ̃j

 N∏
n=1

Fn(ϕn, ϕ̃n)

∣∣∣∣
ϕi=ϕ
ϕ̃i=ϕ̃

. (1.33)

This relation may be used to separate generation of lines attached to the single vertex described by
any individual functional from spanning of lines between different vertices. Extract the diagonal
terms in the reduction operator on the right side of (1.33) to obtain

exp

 N∑
i 6=j=1

δ

δϕi
∆12

δ

δϕ̃j

 N∏
n=1

exp

(
δ

δϕn
∆12

δ

δϕ̃n

)
Fn(ϕn, ϕ̃n) . (1.34)

An effective vertex functional – the normal form of the interaction functional (or reduced vertex
functional) – defined as

F ′(ϕ, ϕ̃) ≡ exp

(
δ

δϕ
∆12

δ

δϕ̃

)
F (ϕ, ϕ̃) (1.35)



84 Advanced field-theoretical methods

appears and we see that

exp

(
δ

δϕ
∆12

δ

δϕ̃

) N∏
n=1

Fn(ϕ, ϕ̃) = exp

(
δ

δϕ
∆′12

δ

δϕ̃

) N∏
n=1

F ′n(ϕ, ϕ̃) , (1.36)

where the reduction operator exp
(
δ
δϕ∆′12

δ
δϕ̃

)
generates lines between different functionals (ver-

tices) F ′n only. An alert reader might notice a correspondence with the normal-product form of
interaction operators in quantum field theory.

It should be emphasized that this procedure is a rearrangement of the perturbation expansion.
However, if the vertex functional is local, i.e. a one-fold integral of a function of fields and their
derivatives at a single space-time point, then the statement (1.36) is tantamount to saying that the
diagonal value of the propagator ∆′12 is equal to zero: ∆′12(x, x) = 0.

It follows from here, in particular, that the generating function (1.22) may be expressed in
the simple form

G(A) = exp

(
δ

δϕ
∆′12

δ

δϕ̃

)
exp [ϕ̃U(ϕ) + ϕ̃f +Aϕ]

∣∣
0

(1.37)

completely independent of the variable ∆12(0).

1.2 Langevin equation

Hydrodynamic kinetic equations are written as mean-field equations for averages of quan-
tities, which intrinsically are random processes to some extent. To take fluctuations around the
averages into account, a straightforward way to proceed is to introduce a source of randomness
directly in the mean-field equation. Then the quantities solved from the mean-field equations
become stochastic processes depending on coordinate variables, i.e. stochastic fields. This ap-
proach has been widely used in the description of dynamic critical phenomena (see, e.g., [27] for
a fairly recent review) as well as in the analysis of fluctuations in reaction kinetics and transport
phenomena [25, 42–44].

1.2.1 Models A and B of critical dynamics.

Although we intend to concentrate on the field theory of reactions and transport phenomena, let
us remind the simplest paradigmatic models of critical dynamics.

In the Landau theory of phase transitions the dynamics of the order parameter ϕ near equilib-
rium are described time-dependent Ginzburg-Landau (TDGL) equation. In the theory of critical
phenomena the effect fluctuations is crucial. It is customary to take fluctuations into account with
the use of the Langevin approach, in which the external field term(s) of the TDGL equations are
random quantities. For instance, in case of wave-number independent kinetic coefficient (i.e in
case of non-conserved order parameter) the corresponding Langevin equation

∂tϕ = − γ δF [ϕ]

δϕ
+ f = −γ

[
−2g∇2ϕ+ 2a(T − Tc)ϕ+ 4Bϕ3

]
+ γh . (1.38)

gives rise to the model A of critical dynamics. Here, the random noise field f = γh is assumed to
have Gaussian distribution law with zero mean and the white-in-time-noise correlation function

〈f(t,x)f(t′,x′)〉 = δ(t− t′)D(x− x′) , (1.39)
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where the spatial correlation function is chosen from the condition that the long-time asymptotic
state is described by the Gibbs ensemble with the functional F [ϕ], i.e. the probability density
function in this limit ρ[ϕ] → exp{−F [ϕ]/T}/Tr exp{−F [ϕ]/T}. This means that in case of
model A the position-dependent part of the correlation function (1.39) is

DA(x− x′) = 2γTδ(x− x′) . (1.40)

In model B the order parameter is a conserved quantity and the kinetic coefficient vanishes at
zero wave number: γ → −γ∇2. Correspondingly the Langevin equation is

∂tϕ = γ∇2
[
−2g∇2ϕ+ 2a(T − Tc)ϕ+ 4Bϕ3

]
+ γh (1.41)

and the correlation function contains the Laplace operator as well:

DB(x− x′) = −2γT∇2δ(x− x′) . (1.42)

1.2.2 Diffusion-limited reactions.

In reaction kinetics and population dynamics the simplest kinetic description of the dynamics
of the average particle numbers is given by the rate equation. The rate equation is a deterministic
differential equation for average particle numbers in a homogeneous system, therefore it does not
take into account boundary conditions, spatial inhomogeneities and randomness in the individual
reaction events. Spatial dependence is often accounted for by a diffusion term, which gives rise
to models of diffusion-limited reactions (DLR).

As a simple example, consider the coagulation reaction A + A → A. The diffusion-limited
rate equation for the concentration ϕ of the compound A is

∂tϕ = D∇2ϕ− kϕ2 , (1.43)

where k is the rate constant .
The most straightforward way to take into account various effects of randomness is to add a

random source and sink term to the rate equation:

∂tϕ = D∇2ϕ− kϕ2 + f . (1.44)

This is a nonlinear Langevin equation for the field ϕ. Physically, in the case of concentration
ϕ ≥ 0.

There is an important difference between the reaction models and the critical dynamics: in
the latter, deviations of the fluctuating order parameter from the (usually zero) mean may physi-
cally be of any sign (or direction). In particular, deviations from the equilibrium value are always
allowed. In the reaction there is often an absorbing steady state, which does not permit fluctua-
tions therefrom: once the system arrives at the absorbing state, it stays there forever. In particular,
if the empty state is an absorbing state of the reaction, the random source should be multiplied
by a factor vanishing in the limit ϕ→ 0 to prevent the system returning from the absorbing state
by the noise. The simplest choice yields

∂tϕ = D∇2ϕ− kϕ2 + fϕ (1.45)
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instead of (1.44). This is an equation with a multiplicative noise.

1.2.3 Multiplicative noise in diffusion-advection models

The issue of multiplicative noise practically does not arise in the field theory of critical phe-
nomena. As seen from the previous example, it appears as consequence of boundary conditions
in reaction problems. In transport equations with advection by random field it is customary to
introduce the coupling of, say, a scalar quantity ϕ to the advecting field v through the substantial
(or covariant) time derivative

∂tϕ+ (v ·∇)ϕ , (1.46)

which, in case of random advection field v, gives rise to a multiplicative noise. A stochastic
differential equation (SDE) with multiplicative noise is not well-defined mathematically. There-
fore, below we shall analyze construction of the field theory on the basis of a Langevin equation
(SDE) in detail to sort out ambiguities appearing within this process.

1.2.4 Functional representation.

In a more generic setup [45], standard models of fluctuations in critical dynamics and stochas-
tic reaction and transport equations are based on nonlinear Langevin equations

∂tϕ = V (ϕ) + f , (1.47)

For the random source (”force”) a Gaussian white-in-time distribution is assumed:

〈f(t,x)f(t′,x′)〉 = δ(t− t′)D(x,x′) , 〈f(t,x)〉 = 0 . (1.48)

The static correlation function D(x,x′) is determined through the connection to the static equi-
librium (fluctuation-dissipation theorem) in case of near-equilibrium fluctuations. In case of
reaction and transport models far from equilibrium physical properties of a steady state are used
to establish properties of the random source.

The Langevin equation with white-in-time noise f is mathematically inconsistent, because
the time integral of the noise

∫
fdt is a Wiener process which is not differentiable anywhere

as a function of time. The Langevin equation (1.47) is written mathematically correctly in the
integral form

dϕ = V (ϕ)dt+ dW , (1.49)

where dW is an increment of the Wiener process (see, e.g. [46]).
To describe solution of the stochastic problem in terms of standard perturbation theory it is

convenient to use a set of correlation functions consisting of a δ sequence in time, i.e.

〈f(t,x)f(t′,x′)〉 = D(t,x; t′,x′)→ δ(t− t′)D(x,x′) (1.50)

and passing to the white-noise limit at a later stage. The point here is that the noise may be
regarded as a smooth function of time and the differential form of the stochastic differential
equation (SDE) (1.47) may be used literally. From the mathematical point of view, this treatment
gives rise to the solution of the stochastic differential equation (1.47) in the Stratonovich sense
[47, 48]. Physically, this is often the most natural way to approach the white-noise case.
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Averaging of the generating functional of solutions of the Langevin equation (1.47) over the
Gaussian noise determined by the correlation function (1.39) is readily carried out with the use
of the functional representation (1.22). The result of calculation of the Gaussian integral is (new
notation for the generating functional of solutions of the stochastic differential equation is not
introduced)

G(A) = exp

(
δ

δϕ
∆12

δ

δϕ̃

)
exp

[
ϕ̃V (ϕ)−∆12(0)U ′(ϕ) +

1

2
ϕ̃Dϕ̃+Aϕ

]∣∣∣∣
0

. (1.51)

The functional integral accompanying relation (1.51) obtained with the use of (1.21)

G(A) =

∫
Dϕ

∫
Dϕ̃ exp

{
−∆12(0)U ′(ϕ) +

1

2
ϕ̃Dϕ̃+ ϕ̃ [−∂tϕ+ V (ϕ)] +Aϕ

}
(1.52)

is formally convergent as an iterated integral, in which the auxiliary field ϕ̃ – which should be
considered having imaginary values – is integrated first [49]. It should be noted that with the
”colored-noise” correlation function D (inter)action functionals in these representations of the
generating function are not time local.

Functional derivatives of the generating functional averaged over noise do not factorize any
more, of course, and give correlation functions of the random fields ϕ:

G(A) =

∞∑
n=0

1

n!

∫
dx1 · · ·

∫
dxnGn(x1, . . . , xn)A(x1) · · ·A(xn) (1.53)

where

Gn(x1, . . . , xn) = 〈ϕ(x1) · · ·ϕ(xn)〉f =
δnG(A)

δA(x1) · · · δA(xn)

∣∣∣∣
A=0

. (1.54)

With the use of the normal form of the interaction functional the absence of ∆12(0) in the per-
turbation expansion is made explicit

G(A) = exp

(
δ

δϕ
∆′12

δ

δϕ̃

)
exp

[
ϕ̃V (ϕ) +

1

2
ϕ̃Dϕ̃+Aϕ

]∣∣∣∣
0

(1.55)

The corresponding functional integral is also simplified

G(A) =

∫
D′ϕ

∫
D′ϕ̃ exp

{
1

2
ϕ̃Dϕ̃+ ϕ̃ [−∂tϕ+ V (ϕ)] +Aϕ

}
. (1.56)

The prime in the measure denotes the additional rule ∆12(0) = 0 (which is tantamount to amend-
ing the definition of the temporal step function as θ(0) = 0). Since appearances of integrands
in (1.52) and (1.56) are different, it is obviously quite essential to bear the differences in the
measure in mind, if the functional integral is calculated by any other means than perturbation
theory.

The δ sequence of correlation functions D appears in all representations (1.51), (1.52) and
(1.55) only in the quadratic form with the auxiliary field: ϕ̃Dϕ̃ and passing to the white-noise
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limit in this expression does not cause any problems either in the S-matrix functional or in the
functional integral. Therefore, functional representations for the solution of the Langevin equa-
tion (1.47), (1.48) are obtained from (1.51), (1.52) and (1.55) simply by the replacement∫

dx

∫
dx′ϕ̃(x)D(x;x′)ϕ̃(x′)→

∫
dt

∫
ddx

∫
ddx′ϕ̃(t,x)D(x,x′)ϕ̃(t,x′) . (1.57)

Explicit time-dependence is written here to emphasize that in the white-noise limit the action
functional is time local.

Let us construct an iterative solution of the simplest multiplicative SDE of the multiplicative
linear white-noise process

∂tϕ = −Kϕ+ fϕ , (1.58)

where K is a time-independent operator acting on the field ϕ (e.g. K = −∇2 + a, a > 0) and f
a Gaussian random field with zero mean and the ”colored” correlation function D (1.50).

The iterative solution of the SDE (1.58) may expressed as the series

ϕ = uχ+ ∆12fuχ+ ∆12f∆12fuχ+ . . . (1.59)

where χ is the initial condition of the solution

uχ =

∫
ddx′u(t,x− x′)χ(x′)

of the homogeneous equation

(∂t +K)uχ = 0 . (1.60)

Here, u(t,x) is the singular solution of the homogeneous equation , i.e. a solution with the initial
condition u(0,x) = δ(x), whereas ∆12 in (1.59) is the (retarded) Green function of the same
equation, i.e.

(∂t +K) ∆12(t,x, t′,x′) = δ+(t− t′)δ(x− x′) .

In (1.59) a shorthand notation has been used in which all time and space convolution integrals in
the nonlinear terms are implied.

The solution (1.59) may be conveniently expressed graphically as a sum of chains of iden-
tically oriented lines corresponding to retarded propagators ∆12. To this end, it is customary to
start from the equation with the additive source field δ(t)χ(x)

∂tϕ(t) = −Kϕ(t) + f(t)ϕ(t) + δ(t)χ , (1.61)

instead of the original SDE (1.58).
The graphical representation of the solution of (1.61) is of the form

ϕ = + + + . . . (1.62)

where the circle stands for the initial condition term δ(t)χ, the wavy line corresponds to the
random field f and the full dot represents the vertex factor (equal to one here) brought about
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by the last term of the Langevin equation (1.58). From the iterative construction it is seen that
to each vertex (crossing of lines and the open circle) of any graph a separate time variable (and
position vector variable in case of fields) is prescribed and integrated over. Solution (1.62) is the
tree-graph representation of the solution of the stochastic differential equation (1.61).

The perturbative solution of the SDE (1.58) is given by Wick’s theorem for the Gaussian
distribution of f , which graphically amounts to replacing any pair of f by the correlation function
D depicted by an unoriented line in all possible ways and – in case of zero mean – discarding
all graphs with an odd number of wavy lines. For instance, the graphical expression (1.62) gives
rise to the representation

〈ϕ〉 = + + . . . (1.63)

Since the free-field differential operator in (1.58) is of first order in time, the physically interest-
ing Green function is the retarded propagator. In the limit of white-in-time correlations this leads
to an enormous truncation of the averaged iterative series (1.59), because it brings about temporal
δ functions contracting the ends of chains of the retarded propagators. Any graph containing at
least one such closed loop of at least two propagators vanishes. Only those terms, in which the
correlation function is multiplied by a single retarded propagator do not vanish automatically.

For instance, the one-loop graph in (1.63) in case of white-in-time noise gives rise to an
ambiguity, which is directly related to that in the interpretation of the stochastic differential
equation (1.58). A straightforward substitution of the white-noise correlation function in this
graph gives rise to the expression

=

∫
dt1

∫
ddx1

∫
ddx2

∫
ddx3 ∆12(t,x, t1,x1)

×∆12(t1,x1, t1x2)D(x1,x2)∆12(t1,x2, 0,x3)χ(x3) , (1.64)

where the value of the propagator at coinciding time arguments ∆12(t1,x1, t1x2) = θ(0)δ(x1−
x2) is ambiguous.

With the use of the δ-sequence of correlation functions (1.50) this ambiguity is readily re-
solved and gives rise to the expression

=
1

2

∫
dt1

∫
dx1

∫
dx3 ∆12(t,x, t1,x1)D(x1,x1)

×∆12(t1,x1, 0,x3)χ(x3) , (1.65)

with the coefficient 1
2 in front of the spatial δ function. As noted before, this procedure corre-

sponds to the interpretation of the SDE (1.58) in the Stratonovich sense. Formally, this result
may be obtained by amending the definition of the propagator according to the rule

∆12(t,x, t,x′) =
1

2
δ(x− x′). (1.66)

Within this choice the graphical expression in (1.65) appears excessive, because it hints to twice
the number of integrations than actually is carried out.

However, the white-noise limit may graphically be depicted as replacement of the one-loop
graph with the noise correlation function by a new vertex factor with the coefficient 1

2D(x,x) ≡
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1
2D(0):

→ . (1.67)

The iterative solution of (1.58) with the eventual δ-function limit in the correlation function of
the noise may be obtained also as the solution of a slightly different SDE, but with the convention
∆12(0) = 0 for the equal-time value of the propagator. In this case, passing to the white-noise
limit is carried out solely with the use of the properties of the propagator and, therefore, the
contribution of the graph (1.64) and the like vanishes. To restore this contribution in the solution,
a term corresponding to the vertex factor of the effective vertex brought about by shrinking to
point of the one-loop graph in (1.67) must be added to the SDE. From inspection of (1.67) we
see that in this approach the SDE generating the solution constructed above is of the form

∂tϕ = −Kϕ+
1

2
D(0)ϕ+ fϕ (1.68)

and coincides with the SDE in the Ito interpretation for the present linear multiplicative noise
problem. It should be emphasized that the rules of construction of the solution are different in
(1.58) and (1.68), but the solution is the same. If the two sets of rules are applied to the same
equation, different solutions are, of course, produced. It is interesting to note that the choice of
interpretation of SDE in the iterative solution seems to boil down to the choice of the value of
the propagator at coinciding times.

For fixed function f the generating function of solutions of (1.58) may be expressed in the
form of an S-matrix functional

G(A) = exp

(
δ

δϕ
∆12

δ

δϕ̃

)
exp

[
ϕ̃fϕ−∆12(0)f + ϕ̃Ã+Aϕ

]∣∣∣
0
. (1.69)

Calculating expected value with respect to random f we obtain (no new notation for G(A) is
introduced, field-independent determinant is included in the functional measure)

G(A) = exp

(
δ

δϕ
∆12

δ

δϕ̃

)
exp

{
1

2
[ϕ̃ϕ−∆12(0)]D [ϕ̃ϕ−∆12(0)] + ϕ̃Ã+Aϕ

}∣∣∣
0
. (1.70)

With the colored-noise correlation function the interaction functional here is not time local. The
graphical analysis has revealed that technical problems arise from graphs in which the propaga-
tor ∆12 is spanned between fields ϕ and ϕ̃ belonging to the same compound vertex functional
1
2 [ϕ̃ϕ−∆12(0)]D [ϕ̃ϕ−∆12(0)]. This situation is conveniently analyzed with the use of the
normal form of the interaction functional, in which the effect of these ”diagonal” terms is ex-
pressed explicitly and once for all in the normal form of the interaction functional. Calculation
yields [45]

exp

(
δ

δϕ
∆12

δ

δϕ̃

)
1

2
[ϕ̃ϕ−∆12(0)]D [ϕ̃ϕ−∆12(0)] =

1

2
ϕ̃ϕDϕ̃ϕ+ϕ̃∆12Dϕ+

1

2
∆21D∆21 .

(1.71)
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Here, the white-noise limit in the first term of right side yields the time-local contribution
1
2 ϕ̃ϕDϕ̃ϕ in the fashion (1.57), whereas the limit of the second term is familiar from the analysis
of graphs∫

dx

∫
dx′ϕ̃(x)∆12(x, x′)D(x, x′)ϕ(x′)→ 1

2

∫
dt

∫
ddx ϕ̃(t,x)D(x,x)ϕ(t,x)

≡ 1

2
D(0)ϕ̃ϕ . (1.72)

The explicit expression for the third term (∆21 = ∆>12) contains a closed loop of two retarded
propagators and therefore vanishes:∫

dt

∫
dt′
∫

ddx

∫
ddx′∆12(t,x; t′,x′)D(t,x; t′,x′)∆12(t′,x′; t,x) = 0 . (1.73)

Therefore, the white-noise limit of the generating functional (1.70) is

G(A) = exp

(
δ

δϕ
∆′12

δ

δϕ̃

)
exp

[
1

2
ϕ̃ϕDϕ̃ϕ+

1

2
D(0)ϕ̃ϕ+ ϕ̃Ã+Aϕ

]∣∣∣∣
0

. (1.74)

In the corresponding functional integral

G(A) =

∫
D′ϕ

∫
D′ϕ̃ exp

{
1

2
ϕ̃ϕDϕ̃ϕ+ ϕ̃

[
−∂tϕ−Kϕ+

1

2
D(0)ϕ

]
+Aϕ

}
(1.75)

the linear in ϕ̃ term of the dynamic action

S ′[ϕ, ϕ̃] =
1

2
ϕ̃ϕDϕ̃ϕ+ ϕ̃

[
−∂tϕ−Kϕ+

1

2
D(0)ϕ

]
(1.76)

apart from the deterministic part of the right side of the Langevin equation (1.58) contains an
additional term corresponding to the Langevin equation in the Ito interpretation (1.68). It should
be borne in mind that the generating function has (1.75) has been constructed to yield the solu-
tion of the SDE in the Stratonovich interpretation. However, this solution is most conveniently
expressed with the use of the normal form of the dynamic action, whose form and rules of calcu-
lation remind of the SDE in Ito interpretation.

Consider the Langevin equation with the multiplicative noise of generic form

∂tϕ = V (ϕ) + fB(ϕ) := −Kϕ+ U(ϕ) + fB(ϕ) . (1.77)

Here, B(ϕ) is a functional of ϕ and U(ϕ) is a nonlinear functional of ϕ. Both functionals are
time-local, i.e. depend only on the current times instant of the SDE. Again the starting point
of the construction of the generating function of solutions is the δ sequence of ”colored-noise”
correlation functions (1.50).

Generating function of solutions may be expressed in the functional-differential form in the
same fashion as preceding cases of additive noise and linear multiplicative noise with the result
problem

G(A) = exp

(
δ

δϕ
∆12

δ

δϕ̃

)∫
Df exp

(
−1

2
fD
−1
f

)
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× exp {ϕ̃ [U(ϕ) + fB(ϕ)]−∆12(0) [U ′(ϕ) + fB′(ϕ)] +Aϕ}
∣∣∣∣
0

= exp

(
δ

δϕ
∆12

δ

δϕ̃

)
exp

{
ϕ̃U(ϕ)−∆12(0)U ′(ϕ)

1

2
[ϕ̃B −∆12(0)B′]D

× [ϕ̃B −∆12(0)B′] +Aϕ

}∣∣∣∣
0

. (1.78)

Here, the term corresponding to closed loop of two propagators ∆12 (cf. (1.73)) has already been
omitted.

With the aid of the normal form the diagonal terms of the reduction operator are singled out
to give rise to representation

G(A) = exp

(
δ

δϕ
∆′12

δ

δϕ̃

)
exp

{
ϕ̃U(ϕ) +

1

2
ϕ̃BDϕ̃B + ∆12(1, 2)B(2, ϕ)

×D(2, 3)
δB(3, ϕ)

δϕ(1)
ϕ̃(3) +Aϕ

}∣∣∣∣
0

. (1.79)

Here, contractions of variables are no more obvious and they have been expressed explicitly with
the use of condensed notation, e.g. ϕ(1) ≡ ϕ(t1,x1).

The white-noise limit is obtained by the same argument as in the case of linear multiplicative
noise and yields the generating function in the relatively simple form [45]

G(A) = exp

(
δ

δϕ
∆′12

δ

δϕ̃

)
exp

[
ϕ̃U +

ϕ̃BDϕ̃B

2
+
B(2, ϕ)D(2, 1)

2

δB(1, ϕ)

δϕ(2)
ϕ̃(1) +Aϕ

]∣∣∣∣∣
0

.

Here, the dynamic action is already time local

S′[ϕ, ϕ̃] =
1

2
ϕ̃BDϕ̃B + ϕ̃

[
−∂tϕ+ V +

1

2
BDB′

]
(1.80)

and the absence of diagonal loops is thus tantamount to definition ∆12(0) = 0. We see that
the linear in ϕ̃ term corresponds to the deterministic part of the SDE in the Ito form also in the
generic case.

Let us remind that the dynamic action (1.80) corresponds to the Stratonovich interpretation
of the SDE (1.77). Henceforth, we shall refer to the additional term – on top of those brought
about by the deterministic part of the SDE – in the dynamic action as the white-noise contraction
term. Due to the straightforward connection between the white-noise and colored-noise cases we
shall stick to the Stratonovich interpretation in the following, if not stated otherwise. However,
for completeness of representation we will describe the dynamic action corresponding to the Ito
interpretation of the stochastic problem posed by the SDE (1.77) in the next section.

1.3 Fokker-Planck equation

Account of fluctuations in kinetic problems with the use of Langevin equations is straightfor-
ward, because the starting point is the hydrodynamic kinetic equation. The solution is given in
terms of a generating functional for correlation and response functions (Green functions). The
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disadvantage of this approach lies in its mathematical ambiguity in the case of multiplicative
noise. Therefore, it is instructive to infer the generating functional from the mathematically
well-defined setup of the stochastic problem with the use of evolution equations for probability
density functions of the relevant random quantities. In case of continuous stochastic processes
the usual starting point is the Fokker-Planck equation and in case of jump processes the master
equation – both consequences of the fundamental Chapman-Kolmogorov equation of Markov
processes, which is the most important class of stochastic processes from the point of view of
fluctuation kinetics.

The basic tool to describe stochastic processes are the joint probability density functions
(PDF) p (ϕ1, t1;ϕ2, t2; . . . ;ϕn, tn), which give the probability to observe the valuesϕ1, ϕ2,. . .ϕn
of the random variable (field) at time instances t1, t2, . . . , tn in a suitable volume element of the
space of values of {ϕi}ni=1. For simplicity, only zero-dimensional fields (i.e. functions of time
only) will be discussed in these notes. Spatial dependence of fields may be taken into account in
most cases simply by replacing partial derivatives by functional derivatives. Some attention has
to be paid to contractions of arguments, though.

The most important stochastic processes in physics are the Markov processes, in which
the joint probability density function is completely expressed in terms of the conditional PDF
p (ϕ, t|ϕ0, t0) and the single-event PDF p (ϕ, t):

p (ϕ1, t1; . . . ;ϕn, tn) = p (ϕ1, t1|ϕ2, t2) p (ϕ2, t2|ϕ3, t3) · · · p (ϕn−1, tn−1|ϕn, tn) p (ϕn, tn)

provided t1 ≥ t2 ≥ t3 ≥ . . . ≥ tn−1 ≥ tn. Both these functions can be found as solutions of the
Fokker-Planck equation.

Consider evolution generated by the generic Fokker-Planck equation

∂

∂t
p (ϕ, t|ϕ0, t0) = − ∂

∂ϕ
{[−Kϕ+ U(ϕ)] p (ϕ, t|ϕ0, t0)}+

1

2

∂2

∂ϕ2
[b(ϕ)Db(ϕ)p (ϕ, t|ϕ0, t0)] .

(1.81)

The conditional probability density is the fundamental solution of this equation, i.e.

p (ϕ, t0|ϕ0, t0) = δ(ϕ− ϕ0)

and is also properly normalized∫
dϕp (ϕ, t|ϕ0, t0) = 1 .

The probability density function p(ϕ, t) is the solution of the FPE (1.81) as well, but with the
initial condition p(ϕ, t0) = p0(ϕ).

The Fokker-Planck equation (1.81) is similar to the Schrödinger equation of quantum me-
chanics. Solution of both equations is a function related to probability density function of dy-
namic variables. This analogy allows to use the the quantum-mechanical operator approach to
construct a (formal) solution of the Fokker-Planck equation [50, 51].

Therefore, let us introduce – in analogy with quantum mechanics – the state vector | pt 〉
according to representation

p(ϕ, t) := 〈ϕ | pt 〉 .



94 Advanced field-theoretical methods

To construct the evolution operator for the state vector, introduce the (nearly) quantum-mechanic-
al momentum and coordinate operators by

π̂f(ϕ) = − ∂

∂ϕ
f(ϕ) , ϕ̂f(ϕ) = ϕf(ϕ) .

The non-trivial commutation relation is

[ϕ̂, π̂] = 1 .

In these terms, the FPE for the PDF gives rise to the evolution equation for the state vector in the
form

∂

∂t
| pt 〉 = L̂| pt 〉 ,

where the Liouville operator, according to (1.81), assumes the form

L̂ = π̂ [−Kϕ̂+ U(ϕ̂)] +
1

2
π̂2b(ϕ̂)Db(ϕ̂) . (1.82)

In this notation, the conditional PDF may be expressed as the matrix element

p (ϕ, t|ϕ0, t0) =
〈
ϕ
∣∣∣ eL̂(t−t0)

∣∣∣ ϕ0

〉
. (1.83)

Introduce time-dependent operators ϕ̂(t) in the Heisenberg picture of imaginary time quantum
mechanics (i.e. Euclidean quantum mechanics):

ϕ̂H(t) = e−L̂t ϕ̂ eL̂t , (1.84)

and define the time-ordered product (chronological product, T product) of time-dependent oper-
ators

T [ϕ̂H(t1) · · · ϕ̂H(tn)] =
∑

P (1,...,n)

P [θ (t1 . . . tn) ϕ̂H(t1) · · · ϕ̂H(tn)] , (1.85)

where

θ (t1 . . . tn) ≡ θ (t1 − t2) θ (t2 − t3) · · · θ (tn−1 − tn) .

In definition (1.85) the sum is taken over all permutations of the labels of the time arguments
{ti}ni=1 and the operators in each term are put in the order of growing time arguments from the
right to the left. Thus, under the T -product sign operators commute. It should be noted that the
definition of the time-ordered product should be amended for coinciding time arguments. We
shall return to this point later and exclude this case for the time being.

Introduce then the n-point Green function of the Heisenberg fields (1.84)

Gn(t1, t2, . . . tn) := Tr {ρ̂ T [ϕ̂H(t1)ϕ̂H(t2) · · · ϕ̂H(tn)]} (1.86)

with the density operator

ρ̂ :=

∫
dϕ| p0 〉〈ϕ | . (1.87)
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Choosing, for definiteness, the time sequence t1 > t2 > t3 > . . . > tn−1 > tn > t0 it
is readily seen by direct substitution of relations (1.83), (1.84) and (1.87) in (1.86) with the
aid of the normalization conditions of the PDF and insertions of the resolution of the identity∫
dϕ |ϕ 〉〈ϕ | = 1 that∫

dϕ1 . . .

∫
dϕn ϕ1 · · ·ϕnp (ϕ1, t1; . . . ;ϕn, tn) = Gn(t1, . . . tn) , (1.88)

i.e. the Green function (1.86) is equal to the moment function (1.88). This relation connects the
operator approach to evaluation of moments of the random process: moments and correlation
functions of the random field ϕ may be calculated as derivatives of the generating function of
Green functions

G(A) =

∞∑
n=0

1

n!

∫
dt1 · · ·

∫
dtnGn(t1, . . . , tn)A(t1) · · ·A(tn)

= Tr

{
ρ̂ T

[
exp

(∫
dtA(t)ϕ̂H(t)

)]}
. (1.89)

To construct perturbation expansion for the generating function it is convenient to introduce
field operators in the interaction (or Dirac) representation, in which the time evolution is gener-
ated by the free Liouville equation

ϕ̂(t) = e−L̂0t ϕ̂ eL̂0t , L̂0 = −π̂Kϕ̂ . (1.90)

There is some freedom in the choice of the free Liouvillean L0. The expression adopted here on
the basis of the expression (1.82) is quite convenient for practical calculations.

In the interaction representation the evolution operator Û is of the form

Û(t, t′) = e−L̂0t eL̂(t−t′) eL̂t
′
. (1.91)

It is a fundamental theorem of quantum field theory that the time-ordered product of Heisenberg
operators (1.84) may be expressed in terms of Dirac operators (1.90) as

T exp

(∫ tf

ti

ϕ̂H(t)A(t)dt

)
= Û(0, tf )T exp

[∫ tf

ti

L̂I(t) dt+

∫ tf

ti

ϕ̂(t)A(t) dt

]
Û(ti, 0) .

(1.92)

In quantum field theory calculation of various expectation values of operators in the interac-
tion representation is most conveniently carried out, when the operators are expressed in the form
of a normal product. In case of quantum-mechanical momentum and position operators in the
normal product of an operator monomial all momentum operators stand to the left of all position
operators. When an arbitrary operator is cast in the form of a normal product, the result is a linear
combination of normal products of operator monomials, whose coefficients are determined by
the commutation rules of operators, e.g.

ϕ̂π̂2 = π̂2ϕ̂+ 2π̂ .



96 Advanced field-theoretical methods

Wick’s theorems state results of representation of operator products in normal form. For the
time-ordered exponential of generating function (1.92) it follows from Wick’s theorems [39] that

T exp

{∫ tf

ti

[L̂I(t) + ϕ̂(t)A(t)] dt

}
= N

{
exp

(
δ

δϕ
∆12

δ

δπ

)
exp

[∫ tf

ti

LI(ϕ(t), π(t)) dt

+

∫ tf

ti

ϕ(t)A(t) dt

]}∣∣∣∣
ϕ=ϕ̂
π=π̂

. (1.93)

On the right side LI(ϕ, π) is the interaction functional, in which the operators ϕ̂ and π̂ in L̂I =
L̂− L̂0 are replaced by functions ϕ and π. Then the reduction operator

P = exp

(
δ

δϕ
∆12

δ

δπ

)
replaces pairs of functions ϕ and π by the propagator

∆12(t, t′) = T [ϕ̂(t)π̂(t′)]−N [ϕ̂(t)π̂(t′)]

after which all remaining functions ϕ and π are replaced by corresponding operators in the
normal order, because by definition

N {P [π̂(t1) · · · π̂(tm)ϕ̂(t′1) · · · ϕ̂(t′n)]} = π̂(t1) · · · π̂(tm)ϕ̂(t′1) · · · ϕ̂(t′n) ,

where P stands for any ordering of operators π̂ and ϕ̂.
Thus, we arrive at the representation

G(A) = Tr

(
Û(ti, 0) ρ̂ Û(0, tf )N

{
exp

(
δ

δϕ
∆12

δ

δπ

)
exp

[∫ tf

ti

LI(ϕ(t), π(t)) dt

+

∫ tf

ti

ϕ(t)A(t) dt

]}∣∣∣∣∣
ϕ=ϕ̂
π=π̂

)
. (1.94)

for the generating function. At this point the ambiguity in the definition of the T product should
be fixed, because it affects the explicit form of the interaction functional. The point is that
contributions to perturbation expansion produced by the action of the reduction operator on the
interaction functional LI(ϕ, π) give rise to a reduced interaction functional (or to the normal
form of the interaction functional)

L′I(ϕ, π) = exp

(
δ

δϕ
∆12

δ

δπ

)
LI(ϕ, π) ,

which, in general, is different from LI(ϕ, π). The form of the interaction functional generated
by the Fokker-Planck is preserved, if the T product at coinciding time arguments is defined as
the N product, in which case, in particular, ∆12(t, t) = 0 and the normal form of the time-local
interaction functional coincides with the original interaction functional.

In (1.94) under the sign of normal product N there stands some operator functional F [ϕ̂, π̂],
i.e. a Taylor series of operators ϕ̂ and π̂. To calculate the expectation value (1.94) of an arbitrary
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operator functional, it is sufficient to calculate the expectation value of a linear exponential,
because

Tr
{
N [F (ϕ̂, π̂)] Û(ti, 0) ρ̂ Û(0, tf )

}
= F

(
δ

δA
,
δ

δB

)
Tr

{
Û(ti, 0) ρ̂ Û(0, tf )

×N exp (ϕ̂A+ π̂B)

}∣∣∣
A=B=0

. (1.95)

Writing out explicitly the trace in the coordinate representation, the density operator ρ̂ =∫
dϕ| p0 〉〈ϕ |, and an identity resolution

∫
dζ | ζ 〉〈 ζ | = 1 to produce matrix elements of evolu-

tion operators we arrive at the representation

Tr
{
Û(ti, 0) ρ̂ Û(0, tf )N exp (ϕ̂A+ π̂B)

}
=

∫
dχ 〈χ |Û(ti, 0)

∫
dϕ | p0 〉〈ϕ |Û(0, tf )N exp (ϕ̂A+ π̂B) |χ 〉

=

∫
dχ

∫
dϕ

∫
dζ 〈χ |Û(ti, 0)| p0 〉〈ϕ |Û(0, tf )| ζ 〉〈 ζ |N exp (ϕ̂A+ π̂B) |χ 〉 .

(1.96)

With the choice of the free Liouvillean in the form L̂0 = −π̂Kϕ̂ the time-dependent operators
are

π̂(t) = π̂ eKt , ϕ̂(t) = ϕ̂ e−Kt . (1.97)

Calculate first the matrix element of the exponential in the coordinate basis:

〈 ζ |N exp (ϕ̂A+ π̂B) |χ 〉 = 〈 ζ | exp
(
π̂B̃
)

exp
(
ϕ̂Ã
)
|χ 〉 . (1.98)

where Ã =
∫
e−KtA(t) dt and B̃ =

∫
eKtB(t) dt. In the coordinate basis the operator ϕ̂ is

the multiplication operator, whereas the exponential of the momentum operator is the translation
operator. Therefore (1.98) immediately yields

〈 ζ |N exp (ϕ̂A+ π̂B) |χ 〉 = δ
(
ζ − χ− B̃

)
exp

(
χÃ
)
. (1.99)

The simple and sufficient choice for the Cauchy problem is to put ti = 0, after which the matrix
element 〈χ |Û(ti, 0)| p0 〉 in (1.96) reduces to 〈χ | p0 〉 = p0(χ). The matrix element of the other
evolution operator in (1.96) yields the unity due to probability conservation:∫

dϕ〈ϕ |Û(0, tf )| ζ 〉 = 1 .

Thus, the average of the linear exponential (1.96) is reduced to

Tr
{
Û(ti, 0) ρ̂ Û(0, tf )N exp (ϕ̂A+ π̂B)

}
=

∫
dχ

∫
dζ δ

(
ζ − χ− B̃

)
exp

(
χÃ
)
p0(χ) =

∫
dχ exp

(
χÃ
)
p0(χ) . (1.100)
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Therefore, the expectation value of the normal product of any operator function(al) F [ϕ̂(t), π̂(t)]
is (here, ti = 0 at the outset) [52]∫

dχ

∫
dϕ 〈χ | p0 〉〈ϕ | Û(0, tf )N [F (ϕ̂(t), π̂(t))] |χ 〉

= F

[
δ

δA(t)
,

δ

δB(t)

] ∫
dχ

∫
dϕ 〈χ | p0 〉〈ϕ | Û(0, tf )N exp (ϕ̂A+ π̂B) |χ 〉

∣∣
A=B=0

=

∫
dχF

[
δ

δA(t)
, 0

]
p0(χ) exp

(
χÃ
)∣∣
A=0

=

∫
dχF [ϕχ(t), 0] p0(χ) , (1.101)

where ϕχ is the solution of the free-field equation

(∂t +K)ϕχ(t) = 0

with the initial condition ϕχ(0) = χ. It should be borne in mind that functional variables here
may be fields, in which case K usually is a second-order differential operator in space.

Introducing the Liouville operator L̂ = L̂0 + L̂I and corresponding functionals explicitly, we
obtain the generating function of Green functions of the Cauchy problem of the Fokker-Planck
equation in the form

G(A) =

∫
dχ

∫
dϕp0(χ) 〈ϕ |T exp (ϕ̂HA) | χ 〉

=

∫
dχp0(χ)

{
exp

(
δ

δϕ
∆
δ

δπ

)
exp

[∫ tf

0

[LI(ϕ(t), π(t)) + ϕ(t)A(t)]dt

]}
ϕ=ϕχ
π=0

.

(1.102)

It should be noted that ϕ̂H here refers to the position operator of the Fokker-Planck equation, not
to the generic field operator and that the propagator

∆(t, t′) = T [ϕ̂(t)π̂(t′)]−N [ϕ̂(t)π̂(t′)] = θ(t− t′)e−K(t−t′) , (1.103)

is also written for fields of this particular problem.
Representation in the form of a functional integral may be introduced by the trick using a

formal functional integral for the reduction operator:

exp

(
δ

δϕ
∆12

δ

δπ

)
=

∫
Dϕ

∫
Dϕ̃ exp

[
ϕ̃ (−∂t −K)ϕ+ ϕ

δ

δϕ
+ ϕ̃

δ

δπ

]
. (1.104)

Here, the determinant of the differential operator has been included in the integration measure
and for integration variables a notation has been introduced which will be used in the analysis of
the Langevin equation.

Functional shift operators on the right side of (1.104) generate argument changes ϕ→ ϕ+ϕ
and π → π+ ϕ̃ in the interaction functional in (1.102), after which the substitutions ϕ = ϕχ and
π = 0 may be carried out leading to expression

G(A) =

∫
dχp0(χ)

∫
Dϕ

∫
Dϕ̃ exp

{
S[ϕ+ ϕχ, ϕ̃] +

∫ tf

0

[ϕ(t) + ϕχ(t)]A(t)dt

}
, (1.105)
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where the De Dominicis-Janssen dynamic action S[ϕ, ϕ̃] is

S[ϕ, ϕ̃] =
1

2
ϕ̃2B(ϕ)DB(ϕ) + ϕ̃ [−∂tϕ−Kϕ+ U(ϕ)] . (1.106)

The form of the dynamic action is unambiguously determined by the appearance of the Fokker-
Planck equation. It has to be kept in mind that functional representations (1.102) and (1.105)
have been derived with the use of the convention that the T product at coinciding time arguments
is defined as the N product. In particular, this means that the propagator vanishes at coinciding
time arguments ∆12(t, t) = 0.

The explicit shift of the field ϕ + ϕχ in the functional integral (1.105) may be absorbed in
the definition of the space of integration. The point is that formal convergence of the Gaussian
integral (1.104) requires that solutions of the homogeneous equation (∂t + K)ϕ0 = 0 must be
excluded from the space of integration of the Gaussian integral. The space of integration may
be constructed as ϕ(t) =

∫ t
0
dt′∆(t − t′)η(t′), where η(t) is a function vanishing at all borders

of the spacetime. Then, by definition, ϕ(0) = 0 and the combination ϕ(t) = ϕ(t) + ϕχ(t) is
the solution of the inhomogeneous equation (∂t +K)ϕ(t) = η(t) satisfying the initial condition
ϕ(0) = χ. Defining the space of integration as a manifold consisting of such functions we may
write

G(A) =

∫
dχp0(χ)

∫
Dχϕ

∫
Dϕ̃ exp

{
S[ϕ, ϕ̃] +

∫ tf

0

ϕ(t)A(t)dt

}
, (1.107)

where the subscript χ in the measure reminds on the dependence on the initial condition for ϕ.
The dynamic action (1.106) obtained for the functional representation of the solution of

the Fokker-Planck equation (1.81) is different from the dynamic action (1.80) obtained for the
Langevin equation (1.47). This difference is connected with different interpretations of the
stochastic differential equation (1.47). Dynamic action (1.80) corresponds to the Stratonovich
interpretation of the SDE, whereas dynamic action (1.106) corresponds to the Ito interpretation
of the same SDE. Which interpretation is chosen as the basis of the field theory is largely a matter
of model construction. In those cases, however, when the SDE is considered as white-noise limit
of a sequence of colored noises, the Stratonovich interpretation must be used.

1.4 Master equation

Markov processes described in terms of the Fokker-Planck equation have continuous sample
paths. Not all interesting stochastic processes belong to this category. A wide class of such pro-
cesses describe changes in occupation numbers (e.g. individuals of some population, molecules
in chemical reaction) which cannot be naturally described by continuous paths. This kind of pro-
cesses are described by master equations – a special case of (differential) Kolmogorov equations.

The generic form of a master equation written for the conditional probability density
p (ϕ, t|ϕ0, t0) of a Markov process is

∂

∂t
p (ϕ, t|ϕ0, t0) =

∫
dχ [W (ϕ|χ, t)p (χ, t|ϕ0, t0)−W (χ|ϕ, t)p (ϕ, t|ϕ0, t0)] , (1.108)
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where W (ϕ|χ, t) is the transition probability per unit time, whose formal definition from the
differential Kolmogorov equation is (for all ε > 0)

W (ϕ|χ, t) = lim
∆t→0

p (ϕ, t+ ∆t|χ, t)
∆t

,

uniformly in ϕ, χ and t for all |ϕ− χ| ≥ ε.
We shall be using the master equation for discrete variables, in this case the discontinuous

character of the paths of the jump processes described by the master equation is especially trans-
parent:

∂

∂t
p (n, t|m, t0) =

∑
l

[W (n|l, t)p (l, t|m, t0)−W (l|n, t)p (n, t|m, t0)] . (1.109)

This set of master equations shall also be cast in the form of an evolution equation of the type
of Schrödinger equation, but the representation is not as straightforward as in the case of the
Fokker-Planck equation.

In the occupation-number basis and in the stationary field operators there is no explicit Planck
constant. The ideas of the Fock-space representation and creation/annihilation operators may
therefore as well be used in classical problems with a variable number of particles or some other
entities.

Various processes in biology and chemistry are described in terms of variable numbers of
some agents or representatives of species (”particle numbers” or ”occupation numbers”). In
many cases changes in the particle number are caused by interactions between colliding particles,
i.e. reactions.

Description of a particular reaction may usually be given by the reaction equation. For
instance, for a two species process with the rate constants k+ and k− the reaction equation is

sAA+ sBB
k+




k−
rAA+ rBB , (1.110)

where A and B denote the two species and sA, sB , rA and rB are coefficients (usually integers)
describing in which proportions the agents react.

The simplest kinetic description of the dynamics of the average particle numbers is given by
the rate equation. For the binary reaction (1.110), e.g.

dcA
dt

= k+(rA − sA)csAA csBB + k−(sA − rA)crAA crBB , (1.111)

where cX is the concentration of the species X .
The rate equation is a deterministic differential equation for average particle numbers in a

homogeneous system, therefore it does not take into account boundary conditions, spatial inho-
mogeneities and randomness in the individual reaction events.

To keep things simple, consider a system with just one variable. A classic example is the
Verhulst (logistic ) model of population growth. The rate equation for the particle number n (the
number of individuals in the population) may be written as

dn

dt
= −βn+ λn− γn2 , (1.112)
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where β is the death rate, λ the birth rate and γ the damping coefficient necessary to bring about
a saturation for the population.

A complete (microscopic) description of a stochastic problem of random particle number is
given by the master equations written for the probabilities P (t, n) to find exactly n particles
in the system at the time instant t. Transition rates (transition probabilities per unit time) of
master equations are related to coefficients of the rate equation, but the correspondence is not
unambiguous: given rate equations may generate different master equations, therefore a verbal
description of the process is often necessary.

Regarding birth and death as reactions

A
λ
�

γ
2A , A

β−→ ∅

master equations for the stochastic Verhulst model may be written as (this is slightly different
from the original formulation by Feller [53])

dP (t,N)

dt
= λ(N − 1)P (t,N − 1)−

(
βN + γN2

)
P (t,N) ,

dP (t, n)

dt
= [β(n+ 1) + γ(n+ 1)2]P (t, n+ 1) + λ(n− 1)P (t, n− 1)

−
(
βn+ λn+ γn2

)
P (t, n) , 0 < n < N , (1.113)

dP (t, 0)

dt
= (β + γ)P (t, 1) .

Here, boundary conditions for the particle number are made explicit in the equations for the
probabilities of the boundary values of the particle number. Usually, the empty state (n = 0) is
an absorbing state (once the system occurs in an absorbing state, it will stay there forever) and
the state with the maximum sustainable population (n = N ) is a reflecting state (there are no
available states beyond a reflecting state, but the system does not get stuck to that state) as here.

Using master equations (1.113) a coupled set of evolution equations for the moments of the
particle number 〈nm〉 may be written. The evolution equation for the average particle number
〈n〉 coincides with the rate equation (1.112), when all correlations are neglected, i.e. moments
replaced by corresponding powers of the average particle number 〈nm〉 → 〈n〉m. This, however,
is not always the case, but only if the transition rates vanish with n.

The set of master equations for the probabilities P (t, n) may be cast into a single kinetic
equation by the ”second quantization” of Doi [54, 55]. Recall that the conditional probabilities
P (t, n|t0,m) obey the same set of equations, but with a different initial condition:

P (t0, n|t0,m) = δnm. (1.114)

Let us first construct a Fock space spanned by the annihilation and creation operators â, â†

[ â, â†] = 1 , [ â, â] = [ â†, â†] = 0 (1.115)

and the vacuum vector | 0 〉

â| 0 〉 = 0 (1.116)
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so that the basis vectors are

|n 〉 =
(
â†
)n | 0 〉 . (1.117)

From these relations it follows that

â|n 〉 = n|n− 1 〉 , â†|n 〉 = |n+ 1 〉 , 〈n |m 〉 = n!δnm . (1.118)

Note that the action of creation and annihilation operators on the basis vector as well as the
normalization of the latter are different from those used in quantum mechanics. Connection
between Fock space and occupation numbers is given by the occupation number operator n̂ =
â†â, which obeys

n̂|n 〉 = â†â|n 〉 = n|n 〉 . (1.119)

To cast the set of master equations into a single kinetic equation, define the state vector

|Pt 〉 =

∞∑
n=0

P (t, n)|n 〉 . (1.120)

The probability of occupation number n may by extracted from the state vector through the
following scalar product

P (t, n) =
1

n!
〈n |Pt 〉 .

The set of master equations yields for the state vector (1.120) a single kinetic equation without
any explicit dependence on the occupation number:

d|Pt 〉
dt

= L̂(â†, â)|Pt 〉 , (1.121)

where the Liouville operator L̂(â†, â) is constructed from the set of master equations according
to rules:

nP (t, n)|n 〉 = â†âP (t, n)|n 〉 ,
nP (t, n)|n− 1 〉 = âP (t, n)|n 〉 ,
nP (t, n)|n+ 1 〉 = â†â†âP (t, n)|n 〉 .

For instance, the Liouville operator for the stochastic Verhulst model is

L̂(â†, â) = β(I − â†)â+ γ(I − â†)ââ†â+ λ(â† − I)â†â . (1.122)

The formal solution of (1.121) is

|Pt 〉 = etL̂(â†, â)|P0 〉 , (1.123)
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where the initial state vector is determined by the initial condition for the probabilities:

|P0 〉 =

∞∑
n=0

P (0, n)|n 〉 .

In principle, the relation (1.123) may be used for a compact representation of the solution of the
set of master equations, particularly if it is possible to calculate the matrix exponential in a closed
form.

To represent expectation values of occupation-number dependent quantities in the operator
formalism use the projection vector 〈P |:

〈P | =
∞∑
n=0

1

n!
〈n | =

∞∑
n=0

1

n!
〈 0 |ân = 〈 0 |eâ . (1.124)

The projection vector is a left eigenvector of the creation operator with the eigenvalue equal to
unity

〈P | â† = 〈P | . (1.125)

From here it follows that

〈P |n 〉 = 1 , ∀ n . (1.126)

Basis states are eigenstates of the number operator n̂ = â†â, therefore from relation (1.126) it
follows

〈P |(â†â)m|n 〉 = nm〈P |n 〉 = nm . (1.127)

Equation (1.121) gives rise to the Heisenberg evolution of operators

â†H(t) = e−L̂tâ†eL̂t , âH(t) = e−L̂tâeL̂t . (1.128)

To construct interaction representation, we need Dirac operators as well:

â†(t) = e−L̂0tâ†eL̂0t , â(t) = e−L̂0tâeL̂0t . (1.129)

It is convenient to choose the free Liouville operator in the form

L̂0 = −(â† − I)Kâ , (1.130)

because it has the property of ”probability conservation”

〈P |L̂0 = 0 . (1.131)

From the structure of master equations it follows that the Liouville operator always has the struc-
ture

L̂(â†, â) = (â† − I)K(â†, â)
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and therefore obeys the probability conservation

〈P |L̂ = 0 (1.132)

as well.
The basic relation for calculation of expectation values follows from the definition in terms

of probabilities, which may be cast in the form of a matrix element between the projection vector
〈P | and the state vector |Pt 〉:

〈Q(n)〉 =

∞∑
n=0

Q(n)P (t, n) = 〈P |Q(â†â)|Pt 〉 . (1.133)

The last equality, again without explicit occupation-number dependence, comes from the the
relation (1.127). Here and henceforth, it is assumed that Q(n) is a polynomial function or Taylor
series of n.

Thus, with the use of the solution (1.123) the expectation value of an occupation-number
dependent quantity Q(n) may be written as

〈Q(n)〉 = 〈P |Q(â†â) etL̂(â†, â)|P0 〉 . (1.134)

We are dealing with non-commuting operators, therefore the question of operator ordering arises
here as well. Define the normal product of creation and annihilation operators as a product, in
which all creation operators stand to the left of all annihilation operators. Define further the
normal form of the operator Q(â†â) as

Q(â†â) = N
[
QN (â†, â)

]
. (1.135)

Then we see that the expectation value of Q(n) is equal to

〈Q(n)〉 = 〈P |QN (1, â) etL̂(â†, â)|P0 〉 . (1.136)

Introducing identity resolutions 1 = exp(L̂t) exp(−L̂t) between operators â and using proba-
bility conservation to write

〈P | = 〈P | exp(−L̂t)

we obtain

〈Q(n)〉 = 〈P |QN (1, âH(t)) |P0 〉 . (1.137)

Here, the right side is a linear combination of equal-time Green functions of the annihilation
operators.

Consider the Green function of creation and annihilation operators â†H(t) and âH(t):

Gm,n(t1, . . . tm; t′1, . . . t
′
n) = Tr

{
ρ̂ T
[
â†H(t1) · · · â†H(tm)âH(t′1) · · · âH(t′n)

]}
, (1.138)

with the density operator

ρ̂ = |P0 〉〈P | . (1.139)
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From definitions it follows that the conditional probability density function for the master equa-
tion may be written as (the factorial in front of the matrix element is due to the unusual normal-
ization of the basis states)

P (n, t|n0, t0) =
1

n!

〈
n
∣∣∣ eL̂(t−t0)

∣∣∣ n0

〉
. (1.140)

Choosing, for definiteness, the time sequence t1 > t2 > t3 > . . . > tn−1 > tn > t0 it is readily
seen by direct substitution of relations (1.140) and (1.139) in (1.138) with the aid of the normal-

ization conditions of the PDF and insertions of the resolution of the identity
∑
n

1

n!
|n 〉〈n | = 1

that ∑
n1

. . .
∑
nm

n1 · · ·nmP (n1, t1; . . . ;nm, tm) = Gm,m(t1, , . . . tm; t1, . . . tm) , (1.141)

i.e. the Green function (1.138) is equal to the moment function (1.141). This relation connects
the operator approach to evaluation of moments of the random process described by a master
equation.

Reduction to the interaction representation and Wick’s theorem for the normal product are
– up to notation – the same as in the case of the Fokker-Planck equation. Calculation of the
expectation value of the linear exponential is, however, different.

In case of master equation the form of the evolution operator is just the same as in the case
of Fokker-Planck equation, but the density operator is different. Operators â† and â specific for
this problem shall be used in what follows.

Tr
{
Û(ti, 0) ρ̂ Û(0, tf )N exp

(
âB† + â†B

)}
=
∑
n

1

n!
〈n |Û(ti, 0)|P0 〉〈P |Û(0, tf )N exp

(
âB† + â†B

)
|n 〉

= 〈P |Û(0, tf )N exp
(
âB† + â†B

)
Û(ti, 0)|P0 〉 . (1.142)

Again, to keep things simple, choose ti → 0, which yields

Û(ti, 0)|P0 〉 → |P0 〉 .

Choose the free Liouville operator in the form

L̂0 = −
(
â† − I

)
Kâ (1.143)

for which the ”conservation of probability” holds:

〈P |eL̂0t = 〈P |

because the projection vector is the left eigenstate of the creation operator

〈P |â† = 〈P | .
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The evolution operator Û(0, tf ) is a product of operator exponentials of L̂0 and L̂. The ”conser-
vation of probability” holds also for the latter by the very construction, thus

〈P | L̂0 = 0 , 〈P | L̂ = 0 .

Therefore, we obtain

〈P |Û(0, tf )N exp
(
âB† + â†B

)
|P0 〉 = 〈P |N exp

(
âB† + â†B

)
|P0 〉

= 〈P | exp
(
â†B

)
exp

(
âB†

)
|P0 〉 . (1.144)

The free Liouvillean (1.143) gives rise to time-dependent operators

â†(t) = â† eKt +
(
1− eKt

)
, â(t) = â e−Kt . (1.145)

Therefore, writing the time integrals in (1.144) explicitly, we arrive at representation

〈P | eâ
†B eâB

†
|P0 〉 = exp

[∫ tf

0

(
1− eKt

)
B(t) dt

]
〈P | eâ

†B̃ eâB̃
† |P0 〉 , (1.146)

where
B̃ =

∫
eKtB(t)dt , B̃† =

∫
e−KtB†(t)dt .

Pull now the operator exponential exp â from 〈P | to the right by the rule

(exp â) â† = (â† + I) exp â ,

which boils down to the shift â† → â† + I in operators, through which the coherent-state expo-
nential is pulled:

〈P | exp
(
â†B̃

)
exp
(
âB̃†

)
|n 〉 = 〈 0 | exp

((
â† + I

)
B̃
)

exp
(
âB̃†

) (
â† + I

)n | 0 〉 (1.147)

Combining (1.146) and (1.147) we obtain

〈
P
∣∣ exp

(
â†B

)
exp

(
âB†

) ∣∣ P0

〉
= P (0, n) exp

[∫ tf

0

B(t)dt

] [∫ tf

0

e−KtB†(t)dt+ 1

]n
.

(1.148)

Thus, the expectation value of the linear exponential (1.142) is [52]〈
P
∣∣∣ Û(0, tf )N exp

(
âB† + â†B

) ∣∣∣ P0

〉
=
∑
n

P (0, n) exp

[∫
B(t)dt

]
×
[∫ ∞

0

e−KtB†(t)dt+ 1

]n
. (1.149)

The result for the expectation value of the normal form of an operator functional F
[
â†(t), â(t)

]
may be written in a compact form with the use of the identity

xn =
n!

2πi

∮
C

exz

zn+1
dz ,
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where C is a closed Jordan contour encircling the origin of the complex z plane. We obtain〈
P
∣∣N F

[
â†(t), â(t)

] ∣∣ P0

〉
= F

[
δ

δB(t)
,

δ

δB†(t)

]〈
P
∣∣∣N eâB

†+â†B
∣∣∣ P0

〉∣∣∣∣
B=B†=0

= F

[
δ

δB(t)
,

δ

δB†(t)

]
exp

(∫
B(t)dt

)
(1.150)

∑
n

P (0, n)
n!

2πi

∮
C

exp
[
z
(∫ tf

0
e−KtB†(t)dt+ 1

)]
zn+1

dz

∣∣∣∣
B=B†=0

=
∑
n

P (0, n)
n!

2πi

∮
C

ez

zn+1
F [1, nz] dz

=
1

2πi

∮
C

ezG̃(z)F [1, nz] dz , (1.151)

where nz = e−Ktz. In (1.150) the shorthand notation

G̃(z) =
∑
n

P (0, n)n!

zn+1

has been used on the right side.
If the initial PDF is that of the Poisson distribution, which is the assumption usually made

[42],

P (0, n) =
nn0 e−n0

n!
, (1.152)

then the expression for the expected value of linear exponential is tremendously simplified, since〈
P

∣∣∣∣ Û(0, tf )N exp

(
âB† + â†B

) ∣∣∣∣ P0

〉
=
∑
n

P (0, n) exp

[∫
B(t) dt

] [∫ ∞
0

e−KtB†(t)dt+ 1

]n
= exp

[∫
B(t)dt+ n0

∫ ∞
0

e−KtB†(t)dt

]
. (1.153)

Therefore, we arrive at the representation〈
P
∣∣∣ Û(0, tf )N F (â†, â)

∣∣∣ P0

〉
= F (1, e−Ktn0) . (1.154)

Introducing again the Liouville operator L̂ = L̂0 + L̂I and corresponding functionals explic-
itly, we obtain the generating function of Green functions of the Cauchy problem of the master
equation equation in the form:

G(A) = 〈P |Û(0, tf )T exp

(
âHA

† + â†HA

)
|P0 〉
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=
1

2πi

∮
C

ezG̃(z)

[
exp

(
δ

δa
∆

δ

δa†

)
exp

{∫ tf

0

LI(a(t), a†(t)) dt

+

∫ tf

0

[
a(t)A†(t) + a†(t)A(t)

]
dt

}]
a=nz
a†=1

. (1.155)

In case of initial Poisson distribution the generating function is

G(A) = exp

(
δ

δa
∆

δ

δa†

)
× exp

{∫ tf

0

LI(a(t), a†(t)) dt+

∫ tf

0

[
a(t)A†(t) + a†(t)A(t)

]
dt

}∣∣∣∣∣ a=e−Ktn0

a†=1

.

(1.156)

The functional-differential representation may again be transformed to a functional integral
by a trick similar to that used in the Fokker-Planck case with the result

G(A) =

∫
Dϕ

∫
Dϕ̃ exp

{
S[ϕ,ϕ†] +

∫ tf

0

[
ϕ(t)A†(t) + ϕ†(t)A(t)

]}
, (1.157)

where the Peliti dynamic action [56] is

S[ϕ,ϕ†] = ϕ† (−∂tϕ−Kϕ) + LI(ϕ
† + 1, ϕ+ e−Ktn0) . (1.158)

The explicit shift of the field argument by the solution of the homogeneous free-field equation
ϕ + e−Ktn0 is the same as in the Fokker-Planck case. The shift ϕ† + 1 may be carried out
explicitly and gives rise to the ”shifted” action discussed in the literature.

For the Verhulst model the Peliti action after this procedure is

S[ϕ,ϕ†] = ϕ† [−∂tϕ+ (λ− β − γ)ϕ]− γϕ†ϕ2 + λϕ†
2
ϕ− γϕ†2ϕ2 . (1.159)

The structure of the dynamic action here is similar to that of the Fokker-Planck problem. We
have seen that a very similar expression arises in the case, when the account of randomness is
introduced by constructing a Langevin equation instead of the master equation. Therefore, func-
tional representation leads also to a possibility make conclusions on this basis about connections
between different approaches to stochastic problems.

1.5 Random sources and sinks in the master equation

Apart from reactions and transport of particles effect of random sources and sinks may sometimes
be of interest, e.g., to maintain a steady state in the system. In most cases this is carried out
by including an additive noise term in the Langevin equation of the stochastic process. When
the analysis is based on the master equation, this is not quite appropriate and a more elaborated
approach is called for [57]. Unfortunately, there is no unique way to introduce random sources in
the master equation corresponding to the random noise of the mean-field (Langevin) description.
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We use the simplest choice, described in detail, e.g., in [58], which is tantamount to amending
the problem by reactions A → X and Y → A, where X and Y stand for particle baths of the
sink and the source, respectively. In a homogeneous system these reactions give rise to the master
equations

dP (t, n)

dt
= µ+V [P (t, n− 1)− P (t, n)]+µ− [(n+ 1)P (t, n+ 1)− nP (t, n)]+. . . (1.160)

where P (t, n) is the probability to find n particles at the time instant t in the system. The ellipsis
in (1.160) stands for the terms describing the annihilation reaction, diffusion and advection in
the system. In (1.160) µ+ and µ− are the reaction constants of the creation and annihilation
reactions, respectively. The transition rate has been chosen proportional to the particle number
n, which seems the quite natural and also preserves the empty state as an absorbing state. In
the transition rate for creation process V is the volume of the (for the time being) homogeneous
system and will be important in passing to the continuum limit of the inhomogeneous system.
We recall that the master equation (1.160) gives rise to the reaction-rate equation

d〈n〉
dt

= µ+V − µ−〈n〉+ . . . (1.161)

Master equations (1.160) give rise to the following terms in the Liouville operator

L̂g(â
†, â) = µ+V

(
â† − I

)
+ µ−

(
I − â†

)
â , (1.162)

where I is the identity operator. The corresponding contribution to the dynamic action is

Sg =

∞∫
0

dt
[
µ+V a

+(t)− µ−a+(t)a(t)
]
. . . (1.163)

Only the generic time-derivative term and terms brought about by the random source model are
expressed here explicitly, while the ellipsis stands for terms corresponding to other reactions and
initial conditions.

Let the transition rates µ± be random functions uncorrelated in time with a probability dis-
tribution given in terms of the moments 〈µn±〉 = E± ,n. At this point we also generalize the
treatment to the case of a spatially inhomogeneous system and introduce a lattice subscript as
the spatial argument, e.g. a(t)→ ai(t). In this case the volume V becomes the volume element
attached to the lattice site. For simplicity, we replace the time integral with the integral sum∫∞

0
dt →

∑
α ∆t and assume that the transition rates at each time instant and lattice site µ±,α,i

are independent random variables. Then the average over the distribution of random sources
reduces to the calculation of the expectation value∏

α,i

〈eµ+ ,α,iV ãα,i∆t−µ− ,α,iãα,iaα,i∆t〉 . (1.164)

For each particular time instant and lattice this yields (we assume that the moments of µ± are the
same for all α and i and omit labels for brevity) this gives rise to the usual cumulant expansion

〈eµb∆t〉 = 1 + b∆tE1 +
1

2
E2(b∆t)2 +

1

6
E3(b∆t)3 + · · ·
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= eb∆tE1+ 1
2 (E2−E2

1)(b∆t)2+ 1
6 (E3−3E1E2+E3

1)(b∆t)3+··· (1.165)

Here, b stands for either V ã or −ãa. Thus, for instance the average over µ+ assumes the form∏
α,i

〈eµ+ ,α,iV ãα,i∆t〉 = e
∑
α

∑
i[∆tE+1V ãα,i+

1
2 (E+2−E2

+1)(V ãα,i∆t)
2]

× e
∑
α

∑
i[ 1

6 (E+3−3E+1E+2+E3
+1)(V ãα,i∆t)

3+··· ] . (1.166)

In the continuum limit the function ãα,i is replaced by the field ϕ†(t,x), whereas in the limit
V → 0 the expression aα,i/V gives rise to the field ϕ(t,x). The sum over α together with ∆t
gives rise to the time integral and the sum over i together with the volume element gives rise to
the spatial integral

∑
i V →

∫
ddx. In the first term of the exponential in (1.166) we thus obtain∑

α

∑
i

∆tE+1V ãα,i → E+1

∫
dt

∫
ddxϕ†(t,x) .

In the cumulants of second and higher order the continuum limit is not so obvious. We assume
the simplest nontrivial distribution for µ±, in which only the variance term has a finite limit,
when ∆t → 0 and V → 0, whereas the contributions of higher-order cumulants vanish, for
instance (

E+2 − E2
+1

)
V∆t→ σ+ , ∆t→ 0 , V → 0 , (1.167)(

E+3 − 3E+1E+2 + E3
+1

)
(V∆t)2 → 0 , ∆t→ 0 , V → 0 . (1.168)

Therefore, the contribution of the average over µ+ to the effective dynamic action assumes the
form

S+ =

∫
dt

∫
ddx

{
E+1ϕ

†(t,x) +
1

2
σ+

[
ϕ†(t,x)

]2}
. (1.169)

For the average over µ− a similar argument yields

S− =

∫
dt

∫
ddx

{
−E−1ϕ

†(t,x)ϕ(t,x) +
1

2
σ−
[
ϕ†(t,x)ϕ(t,x)

]2}
. (1.170)

These contributions to the effective dynamic action may, of course, be generated by suitably
chosen normal distributions of µ±.

This way of introduction of random sources and sinks has the annoying feature that it does
not conserve the number of particles in the system. For a comparison with the treatment of this
problem in the Langevin approach the random sources and sinks should be introduced in such a
way that the particle number is conserved.

The simplest way to effect this is to add to the random source a term proportional to the
particle number, i.e. use the ”reaction constant” µ+V + µ1+n instead of µ+V in the master
equation. The source terms on the right-hand side of the master equation (1.160) in this case the
assume the form

dP (t, n)

dt
= µ+V [P (t, n− 1)− P (t, n)] + µ1+ [(n− 1)P (t, n− 1)− nP (t, n)] . . .
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The new part of the master equation corresponds to a branching process [58].
The added term gives rise to the following contribution to the Liouville operator

L̂g2
(â†, â) = µ1+

(
â† − I

)
â†â . (1.171)

Performing the steps described above we arrive at the contribution to the dynamic action in the
form

S1+ =

∫
dt

∫
ddx

{
E1+1ϕ

† (ϕ† + 1
)
ϕ+

1

2
σ1+ϕ

†2 (ϕ† + 1
)2
ϕ2

}
. (1.172)

It is easy to see now that if we exclude the plain source (i.e. put E+1 = σ+ = 0) and choose
E1+1 = E−1, then the empty state remains absorbing and the ”mass term”∝ ϕ+ϕ disappears in
the dynamic action and we arrive at the dynamic action of random sources and sinks

Sgc =

∫
dt

∫
ddx

{
E1+1ϕ

†2ϕ+
1

2
σ−
(
ϕ†ϕ

)2
+

1

2
σ1+ϕ

†2 (ϕ† + 1
)2
ϕ2

}
which conserves the average number of particles.
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2 Renormalization group in field theory

2.1 Renormalization procedure and renormalization group

Usually, the Feynman graphs of Green functions, which are the graphical representation of some
integrals, contain divergences in the range of large and small scales (wave vectors.) Therefore
it is necessary to find an effective procedure to eliminate these divergences step by step in each
order of concrete perturbation scheme. Below we will demonstrate renormalization methods in
the framework of the stochastic model of developed turbulence and related applications.

The method of renormalization group (RG) has been proposed in the framework of the quan-
tum field theory in the fifties of the previous century [2–5, 59, 60]. From the practical point of
view RG method represents an effective way to determine non-trivial asymptotic behavior of
Green functions in the range of large (ultraviolet) or small (infrared) wave vectors (scales). The
asymptotic behavior is non-trivial if in a given order of a perturbative calculation the divergences
in a certain range of wave vectors appear (e.g. so called large logarithms) which compensate the
smallness of coupling constant g. In such a case one needs to sum all terms of perturbation series.
This summation can be carried out by means of RG approach. Technically, one obtains linear par-
tial differential RG equations for the Green functions. The coefficient functions (RG-functions)
in the differential operator (see below) are calculated at a given order of the perturbation scheme.
However, the solution of the RG equation represents the sum of the infinite series. For exam-
ple, if the RG-functions are calculated at the lowest non-trivial order of the perturbation theory
and after corresponding RG-equation is solved, obtained result is a sum of leading logarithms
of all the perturbation series. Moreover if the RG-functions will be calculated with an improved
precision the solution of the RG equation will include corrections to the leading logarithms.

A simple criterion how to determine the true asymptotic range exist in the framework of RG.
One of the RG-functions is the β-function, which is a coefficient at the operation ∂g in the RG
equation. The β-function is calculated perturbatively as infinite series of powers of the coupling
constant g and for relativistic models has form: β(g) = β2g

2 +β3g
3 + .... Non-trivial asymptotic

behavior is governed by RG fixed points g∗, which are roots of β-functions (solutions of equation
β(g) = 0). A fixed point can be IR or UV stable depending on behavior of the β-function in th
vicinity g∗. If the coefficient β2 > 0 then g∗ is an IR stable fixed point. In the opposite case
it is UV stable fixed point. In the time when the RG technique appeared no physical models
with non-trivial UV asymptotic behavior were known. Moreover, as non-trivial IR behavior is
possible only for massless models, which also were not known in this time, RG method remained
unused up to the seventies of the previous century.

In 1977 D. Forster, D. R. Nelson and M. J. Stephen applied the RG method to calculate the
correlations of velocity field [61] governed by stochastic Navier-Stokes equation with external
random forcing. Later it was shown by C. De Dominicis and P. C. Martin [62] that in the range of
small wave numbers the correlations of the velocity field manifest a scaling behavior with the cel-
ebrated Kolmogorov exponents. The basic idea of application of RG in the theory of developed
turbulence consists in elimination of the direct influence of the modes with high frequencies and
wave numbers on observed quantities. Effectively their influence is included to some effective
variables, e.g. to the turbulent viscosity.

Numerous versions of RG methods exist. Constricted all they are equivalent but technically
can be quite different. The most formalized is RG developed in the framework of the quantum
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field theory (field-theoretic RG), which has been used in papers [30, 63].
The field theoretic RG is based on non-trivial techniques of UV renormalization. The basic

procedure consists of calculation of the RG-functions in the framework of a prescribed scheme
of regularization [24]. To find and analyze all possible UV divergences in concrete field-theoretic
models a counting of canonical scaling dimensions of fields and parameters of the model is used.
Let us briefly remind the essence of such a power counting which is closely connected with the
existence of a scale invariance in the model.

2.2 Extended homogeneity

This conception is introduced for the formulation of the hypothesis of similarity (critical scal-
ing, scale invariance) and it is useful for classification of all UV divergences in field-theoretical
models: critical statics and dynamics, developed turbulence and so on [24, 25, 44]. We give its
definition and basic properties.

A function F (e) which depends on variables e ≡ {e1 . . . eN} is termed extended homo-
geneous (or simply speaking dimensional) if for a set of numbers ∆ and arbitrary λ > 0 the
following equation is valid:

F (λ∆1e1, ..., λ
∆N eN ) = λ∆WF (e1, ..., eN ) , (2.1)

or shortly

F (eλ) = λ∆FF (e), (2.2)

where eλ = λ∆iei and i = 1, ..., N . The parameters ∆i ≡ ∆ei ≡ ∆[ei] are (canonical or critical
or anomalous) scaling dimensions (exponents) of corresponding variables ei and ∆F ≡ ∆[F ]
represents dimension (exponent) of function F . If ∆F = 0 then the function F is scale invariant
(dimensionless). A dimensional function F (e) depending on one variable e is proportional to
the power |e|β with the exponent β = ∆F /∆e. A function F depending on N variables can be
expressed in the form of product of a power function and scaling function R which is a function
of N − 1 dimensionless combinations of its arguments, e.g.

F (e1, . . . , eN ) = |eN |βR
(

e1

|eN |β1
, . . . ,

eN−1

|eN |βN−1

)
, (2.3)

where β = ∆F /∆n and βi = ∆i/∆n i = 1, 2, . . . n− 1. If one differentiates the equation (2.2)
with respect to λ and afterwards puts λ = 1, then will obtain Euler differential equation, which
represents another equivalent formulation of the extended homogeneity (2.2):[∑

e

∆ee∂e −∆F

]
F (e) = 0. (2.4)

The substitution λ → λa in the equation (2.2) is equivalent to multiplying of all exponents
∆ by parameter a, therefore the exponent of one of the variables can be fixed. Usually the
dimension of the wave number k is selected to be the unity (or, equivalently, dimension of the
space coordinate is equal to −1):

∆[k] = 1 . (2.5)
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This definition is standard and we use it everywhere. We note that in dynamical models (1.106)
also the dimension of frequency can be fixed (see below).

2.3 UV-renormalization. RG equations

Let us summarize main ideas of the quantum-field theory of renormalization and RG tech-
nique; a detailed account can be found in monographs [24, 25, 44, 64, 65].

We will be mainly concerned with models whose diagrams are calculated without UV-cut-
off Λ and UV-divergences manifest themselves as poles in a certain dimensionless “parameter
of deviation from logarithmic theory ε”. Historically, this term appeared in connection with
infinite summation of main logarithms (see aforementioned discussion)), which is necessary to
make in the case when the bare coupling constant g0 (or constants) is canonically dimensionless
(∆g ≡ dg = 0.) The procedure of multiplicative renormalization removing UV-divergences (in
the given case, poles in in a parameter ε) consists in the following: the original action S(ϕ, e0) is
declared to be unrenormalized; its parameters e0 (letter e0 stands for the whole set of parameters)
are the bare parameters, and they are considered to be some functions of the new renormalized pa-
rameters e, whereas a new renormalized action is assumed to be the functional SR[ϕ] = S[ϕZϕ]
with certain (also to be determined) renormalization constants of fields Zϕ (one per each inde-
pendent component of the field). In unrenormalized full Green functions GN = 〈ϕ . . . ϕ〉 the
functional averaging 〈. . . 〉 is performed with the ”weight” expS[ϕ]; while in renormalized func-
tions ,GRN with the ”weight” expSR[ϕ]. The connection between the functionals S[ϕ] and SR[ϕ]
leads to the relation between the corresponding Green functions GRN = Z−Nϕ GN , where by defi-
nition GN = GN (e0, ε . . . )(ellipsis denotes other arguments like coordinates or wave numbers),
and, by convention, the quantities GRN and Zϕ are expressed in terms of the parameters e. The
correspondence e0 ↔ e within perturbation theory is assumed to be one-to-one, therefore either
of the sets e0, e can be taken as the independent variables.

For translation invariant theories it is convenient to deal not with the full Green functionsGN ,
but either with their connected partsWN (their generating functional beingW(A) = lnG(A)) or
with 1-irreducible functions ΓN (also called one particle irreducible functions), which generating
functional is defined by the functional Legendre transform [39]

Γ(α) = W (A)−Aα, α =
δW(A)

δA(x)
. (2.6)

These unrenormalized and renormalized Green functions satisfy relation:

WR
N (e, ε, . . . ) = Z−Nϕ (e, ε)WN (e0(e, ε), ε, . . . ) , (2.7)

ΓRN (e, ε, . . . ) = ZNϕ (e, ε)ΓN (e0(e, ε), ε, . . . ) ,− (2.8)

where the functions e0(e, ε), ZNϕ (e, ε) can be chosen arbitrarily, which implies an arbitrary
choice of normalization of the fields and parameters e at given e0. In the present text we also
interchangeably use the following notation for the connected Green functions

Wϕ1...ϕN ≡ 〈ϕ1 . . . ϕN 〉conn. (2.9)

and for the one particle irreducible (1PI) Green functions

Γϕ1...ϕN ≡ 〈ϕ1 . . . ϕN 〉1-ir. (2.10)
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In the present section it is superfluous, because for simplicity we are assuming one field theory.
However, later on we will discuss theories with more than one field and then it becomes necessary
to have more general notation at hand.

The basic statement of the theory of renormalization is that for the multiplicatively renor-
malizable models these functions can be chosen to provide UV-finiteness of Green functions as
ε → 0. With this choice, all UV-divergences (poles in ε) contained in the functions e0(e, ε),
ZNϕ (e, ε) are absent in renormalized Green functions WR

N (e, ε). We note that the UV-finiteness
in this sense of any one set of Green functions (full, connected, 1-irreducible) automatically leads
to the UV-finiteness of any other. The RG equations are written for the renormalized functions
WR
N which differ from the original unrenormalized functions WN only by normalization, and

therefore, can be used equally well to analyze the critical scaling. Let us demonstrate an ele-
mentary derivation of the RG equations [25, 64]. The requirement of elimination of divergences
does not uniquely determine the functions e0(e, ε) and Zϕ(e, ε). An arbitrariness remains which
allows to introduce in these functions (and via them also into WR

N ) an additional dimensional
parameter - scale setting parameter (renormalization mass) µ:

WR
N (e, µ, ε, . . . ) = Z−Nϕ (e, µ, ε)WN (e0(e, µ, ε), ε, . . . ) . (2.11)

A change of µ at fixed e0 leads to a change of e, Zϕ and WR for unchanged WN (e0, ε, . . . ).
We use D̃µ to denote the differential operator µ∂µ for fixed e0 and operate on both sides of the
equation ZϕWR

N = WN with it. This gives the basic RG differential equation :[
µ∂µ +

∑
e

D̃µe∂e +Nγϕ

]
WR
N (e, µ, ε, . . . ) = 0, γϕ ≡ D̃µ lnZϕ (2.12)

where the operator D̃µ is expressed in the variables µ, e. The coefficients D̃µe and γϕ are called
the RG functions and are calculated in terms of various renormalization constants Z. Coupling
constants (charges) g are those parameters e, on which the renormalization constants Z = Z(g)
depend. Logarithmic derivatives of charges in (2.12) are β functions

βg = D̃µg . (2.13)

All the RG-functions are UV-finite, i.e. have no poles in ε, which is a consequence of the func-
tions WR

N being UV-finite in (2.12).
The general theory of renormalization [25,65] distinguishes unrenormalized S, renormalized

SR, and base SB actions; the last is obtained from S by replacement of all the bare parameters
e0 by their renormalized counterparts e. The UV-divergences are removed by adding to the
base action SB all necessary counterterms ∆S which are determined by the known rules (see
below). If the renormalized action thus obtained SR = SB + ∆S can be reproduced by the
above procedure of redefinition of fields and parameters in the original unrenormalized action S,
the model is multiplicatively renormalizable. Therefore, the first step in the RG analysis of any
model is to explicitly determine all counter-terms required for the removal of UV-divergences
and to verify its multiplicative renormalizability.

The form of the required counterterms is determined by the analysis of canonical (engi-
neering) dimensions of the 1PI Green functions of model with the action SB , which satisfy the
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equation of extended homogeneity (2.1) (or, equivalently, (2.4)) with definite canonical expo-
nents ∆e ≡ de, dµ = 1, dϕ of parameters e0, e, µ and fields ϕ respectively. Dynamical models
(1.106), in contrast to static ones, are two-scale models, i.e. two independent canonical wave-
number (momentum) dQk and frequency dQω dimensions can be assigned to every quantity Q
(fields and parameters in the action). They are easily determined from the natural normalization
conditions

dkk = −dkx = 1, dωω = −dωt = 1 (2.14)

and from the requirement that every term T of the actions S, SB is dimensionless (dTk = dTω =
0). After that summarized full canonical (engineering) dimension dQ can be determined by
means of dQk and dQω . Formally one can write

dF = dQk + dωd
Q
ω , (2.15)

where a value of dω depends on the particular model [25]. For example, for stochastic developed
turbulence and relaxational models A and B we have dω = 2, whereas for models D and H
dω = 4.

Of course, the existence of the two aforementioned wave-number and frequency scale in-
variance can be expressed by means of two differential equations similar to the Eq. (2.4) with
corresponding exponents dek, d

e
ω of parameters e.

In the scheme of renormalization of dynamical models (1.106) the full dimension dQ plays
the same role as the conventional (momentum) dimension does in static problems. Canonical
dimensions of an arbitrary 1PI Green function Γ with nϕ (multiple index) fields ϕ′, ϕ for a d+1-
dimensional problem are given by the relations

dkΓ = d−
∑
ϕ

nϕd
k
ϕ , dωΓ = d−

∑
ϕ

nϕd
ω
ϕ , dΓ = d+ 2−

∑
ϕ

nϕdϕ (2.16)

with summation over all the fields ϕ entering into given function Γ. In a logarithmic theory,
which corresponds to ε = 0 when bare coupling constant(s) g of concrete model is (are) di-
mensionless (dg = dgk = dgω = 0), full canonical dimension of ΓN is equal to a formal index
of UV-divergence δ. The UV-divergences which must be removed by suitable counterterms are
allowable only in those functions ΓN for which index δ is nonnegative and integer [25]. All
counterterms are polynomial functions of wave vector k and frequency ω.

For models considered in the present work the analysis of divergences should be based on
the following auxiliary considerations:
a) For any dynamic model (1.106) all 1PI Green functions containing only the original fields
ϕ are proportional to the closed circles of step functions hence they vanish, and thus do not
generate counterterms.

b) If for some reason several external momenta or frequencies occur as an overall factor in
all the graphs of a particular Green function, the real degree of divergence δ′ is less than
δ ≡ dΓ(ε = 0) by the corresponding number of units.

c) Sometimes the divergences formally allowed dimensionally are absent due to symmetry re-
quirements, for instance, the Galilean invariance of the fully developed turbulence [32] re-
stricts the form of possible counterterms.
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d) Nonlocal terms of the model are not renormalized.

These general considerations and formula (2.16) permit us to determine all superficially di-
vergent functions and to explicitly obtain the corresponding counter-terms for any concrete dy-
namic model.

2.4 Solution of RG equations. Invariant variables. RG-representations of correlation
functions.

In this section we demonstrate general mathematical methods how to find solutions of RG
equations of type (2.12) which are typical of models under consideration. Consider linear differ-
ential equation which is typical of RG approach:

LF (u) = γ(u) , L = −s∂s +

n∑
i=2

Qi(u)∂ei , (2.17)

where s = u1 is the scaling parameter, ei = ui, i = 2, . . . , n, Qi are given functions of the
parameters u and F is a sought function. The general solution of this inhomogeneous equation
is the sum of its particular solution and a solution of the homogeneous equation. The latter is an
arbitrary function of the full set of independent first integrals, which represent arbitrary solutions
of the homogeneous equation. The number of independent first integrals is equal to the number
of parameters e. It is convenient to choose first integrals ēi = ēi(s, e), which are defined as
follows:

Lēi(s, e) = 0 , ēi(s, e)|s=1 = ei . (2.18)

These quantities are usually called invariant (running) variables (charges).
The differential operator in the RG-equation (2.12) belongs to an important type of operators

DRG defined by the equation

DRGΥ(s, g, a) = 0 , DRG ≡

[
−s∂s + β(g)∂g −

∑
a

γa(g)a∂a + γ(g)

]
, (2.19)

where g is the charge which defines β-function, a are other parameters (e = g, a) and the func-
tions β(g), γa(g) and γ(g) are independent of s. It is possible to show, that in this special case
the invariant charge ḡ = ḡ(s, g) is independent of the parameters a and satisfies the differential
equation known as the Gell-Mann-Low equation:

s∂sḡ = β(ḡ) , ḡ|s=1 = g . (2.20)

This equation is easily integrable:

ln s =

∫ ḡ

g

dx

β(x)
. (2.21)

The last expression implicitly defines ḡ = ḡ(s, g) as a function of the scale parameter s and the
charge g. For models with n charges gi (i = 1, 2, . . . n) one obtains a set of n equations

s
dḡi
ds

= βgi(ḡ) , ḡ ≡ (ḡ1, ḡ2, . . . ḡn) , (2.22)
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where ḡi is a set of invariant charges with initial values equal to gi (ḡi|s=1 = gi). A straightfor-
ward integration (at least numerically) of these equations gives a way to find their fixed points.
Instead, very often one solves the set of equations

βg∗i = 0 (2.23)

which defines so-called fixed points g∗ ≡ (g∗1 , . . . g
∗
n) of the model. To determine the type of a

fixed point one calculates the matrix Ω ≡ Ωik of the first derivatives of β functions at a given
fixed point g∗:

Ωik =
∂βgi(g)

∂gk

∣∣∣∣
∗
, i, k = 1, 2, . . . n, . . .

∣∣∣∣
∗
≡ . . .

∣∣∣∣
g=g∗

. (2.24)

If the matrix Ω is positive (negative) definite, then the fixed point is IR (UV) stable. Technically
one needs to determine the eigenvalues {λj}, j = 1, . . . , n of the Ω matrix. A given fixed point
is infrared (or ultraviolet) if all real parts of the eigenvalues are positive (or negative). In other
words for g(s) close to g∗ we obtain a system of linearized equations(

I
d

d ln s
− Ω

)
(g − g∗) = 0, (2.25)

where I is the unit matrix of the size n. Solutions of this system behave like g = g∗ +O(sλj ),
when s→ 0.

The other invariant variables ā satisfy equations

s∂sā = −āγa(ḡ) , ā|s=1 = a . (2.26)

In models with one charge (coupling constant) g these equations are easily integrable and the
solution can be written [24, 64] the form

ā = ā(s, g, a) = a exp

[
−
∫ ḡ

g

dx
γa(x)

β(x)

]
. (2.27)

Finally, the general solution of the equation (2.19) has the form

Υ(s, g, a) = Υ(1, ḡ, ā) exp

[∫ ḡ

g

dx
γ(x)

β(x)

]
, (2.28)

where Υ(1, ḡ, ā) is an arbitrary (scaling) function of the first integrals.

2.5 Dimensional renormalization and the scheme of minimal subtractions

Parameters e, on which the renormalization constant Zϕ(g, ε) depends, are coupling con-
stants or charges of the model. It is customary to choose renormalized charges dimensionless,
therefore in concrete models renormalized and unrenormalized values of charges g obey relations
of the type

g0 = µ2εgZg(g, ε) , (2.29)
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where the renormalization constant Zg is dimensionless and the canonical dimension of the un-
renormalized coupling constant in this example is 2ε. RG functions corresponding to charges are
β functions (single charge is assumed here for simplicity). From (2.29) it follows that

βg = D̃µg = g [−2ε− γg(g, ε)] . (2.30)

According to the main statement of renormalization theory, renormalization constants Z can be
chosen so as to eliminate all the UV divergences in the Green functions, in this case, poles in
ε. This is the main requirement on the functions Z, but it does not determine them uniquely.
The remaining arbitrariness is fixed by imposing some auxiliary conditions. This is referred
to as the choice of subtraction scheme. Various schemes are used in which the renormalized
Green functions differ only by a UV-finite renormalization and from the viewpoint of physics are
equivalent. Therefore, the scheme is chosen on the basis of convenience.

The most convenient scheme for analytic calculations is the minimal subtraction (MS) scheme
proposed in [66], in which all the constants Z have the following form in perturbation theory:

ZMS(g, ε) = 1 +

∞∑
n=1

gn
n∑
k=1

ε−kcn,k . (2.31)

In dimensional renormalization the contribution to the coefficient of gn in (2.31) may be ex-
pressed as a Laurent series in ε. In the MS scheme only the singular part of the Laurent expansion
of each coefficient is retained. In any other renormalization scheme the renormalization constant
is of the form

Z(g, ε) = 1 +

∞∑
n=1

gn
∞∑

k=−n

εkcn,−k , (2.32)

where the regular part of each coefficient
∑∞
k=0 ε

kcn,−k is, by and large, an arbitrary regular
function of ε at the origin.

It should be emphasized that even in the MS scheme the contribution of a graph to the renor-
malization constant is not determined solely by the singular part of the Laurent expansion of the
graph itself. Calculations in perturbation theory are usually carried out order by order in the num-
ber of loops. For example, in the ϕ4−theory the singular part of a one-loop graph is a constant
(i.e. independent of external wave vectors and frequencies), which is taken as the contribution
of the graph to the renormalization constant at one-loop order. When a superficially divergent
one-irreducible graph contains two or more loops, its singular part is a function of external wave
vectors and frequencies. To extract its contribution to the renormalization constant, renormal-
ization of various subgraphs must be taken into account according to the rules of the consistent
renormalization procedure (R operation) [65]. In the course of this operation the Laurent series
of each one-loop subgraph up to the constant term is included in the calculation of the contri-
bution of a two-loop graph to the renormalization constant in the MS scheme. For consistent
calculation of the contribution of a superficially divergent three-loop graph to the renormaliza-
tion constant the Laurent expansion of each one-loop subgraph is needed to the linear order in
ε etc. Therefore, even in the MS scheme the Laurent series in ε of each superficially divergent
graph must eventually be calculated. The difference is, so to speak, in the order of appearance of
the terms of this series.
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In the theory of critical phenomena and stochastic dynamics there are several models in-
cluding long-range correlations or interactions described – in the Fourier space – by fractional
powers of wave numbers of the type k−2a. When the exponent a is treated as a parameter of the
model, the model may become logarithmic at some critical value ac. In such a case the differ-
ence ε = ac − a may be used as a regulator of the model and we arrive at a particular case of
analytic renormalization [67] with a single regulator. In this particular case all relations about
the analytic behavior of graphs, renormalization constants and RG functions are the same as
in dimensional renormalization and henceforth the terminology of dimensional renormalization
will be used both in the case of genuine dimensional renormalization and in the case of analytic
renormalization with a single regulator.

2.6 Scheme dependence of critical exponents in dimensional renormalization

It is one of the basic properties and the main reason of success of the RG approach to asymptotic
analysis that values of relevant physical quantities are independent of the finite renormalization,
i.e. independent of the renormalization scheme (see, e.g. [64]). The basic scheme-independent
quantities are the anomalous dimensions (i.e. values of the coefficient functions γ at the fixed
point) and the eigenvalues of the Jacobi matrix of the set of β functions at the fixed point. This,
however, is a global statement which does not take into account the approximation method used
in the calculation of these quantities. In particular, in dimensional renormalization of perturbation
theory the RG functions are calculated as power series in coupling constants at fixed ε. The
leading term in the β function in this expansion is proportional to ε, whereas coefficient of
high-order terms have – as a rule – a finite limit, when ε→ 0. Therefore, power counting of RG-
functions in the coupling constant and power counting in ε of fixed-point values thereof do not
coincide. As a consequence, at any finite order of perturbation theory the condition of the scheme
independence is not fulfilled and anomalous dimensions as well as fixed-point eigenvalues of
the Jacobi matrix exhibit heavy dependence of the renormalization scheme, as will be shown
below. Calculations within the dimensional renormalization have been customarily carried out
with the use of the MS (minimal subtractions) scheme, therefore the issue of scheme dependence
of critical exponents practically has not appeared.

Consider a dimensionally renormalized model with a single dimensionless renormalized
charge g and a single coefficient function γa related to renormalization of a field, temperature
(mass) or transport coefficient. In the dimensional renormalization the generic form of the RG
functions is

β(g, ε) = D̃µg = g [−ε− γg(g, ε)] , (2.33)

γϕ(g, ε) = D̃µ lnZϕ(g, ε) . (2.34)

In perturbation theory the γ functions of the RG are series expansions in the renormalized charge
by construction, whose coefficient are regular functions of the parameter ε at the origin, i.e.

γ(g, ε) =

∞∑
n=1

ag n(ε)gn , (2.35)

γϕ(g, ε) =

∞∑
n=1

aϕn(ε)gn . (2.36)
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The usual argument leading to scheme independence of an anomalous dimension (i.e. the value
of a γ function at a fixed point of the RG) goes as follows [64]. In two different schemes the
renormalized charges g and g′ are connected by a relation g′ = G(g) in the form of series
expansion in g. Renormalization constants giving rise to γ functions are connected – due to the
group property – by the multiplicative relation

Z ′i(g
′, ε) = Fi(g, ε)Zi(g, ε) , i = g, ϕ , (2.37)

where the function F (g, ε) is also expressed as a series in g with regular in ε coefficients. There-
fore,

γ′i(g
′, ε) = γi(g, ε) + β(g)

∂

∂g
lnFi(g, ε) , i = g, ϕ . (2.38)

At a fixed point g∗ of the RG β(g∗) = 0 and β′(G(g∗)) = 0. Therefore, the second term on the
right side of (2.38) vanishes rendering the anomalous dimensions equal in the two renormaliza-
tion schemes.

This is a global argument assuming that all functions in relation (2.38) are known completely.
This is not the case, however, in perturbation theory. Renormalization constants and the RG
functions are calculated order by order as power series in the charge g. Typically, expansions
of the coefficient functions start with a linear term. In that case the linear term on the right
side of (2.38) is produced by the function γ(g, ε) and the term gε multiplied by the coefficient
of the linear term of ∂g lnF (g, ε). The second contribution to the β function (2.33) is O(g2),
should not be included in the linear contribution to the right side (2.38) and the vanishing at the
fixed point factor is lost! Obviously, the same property holds at every finite order of perturbation
theory and we arrive at the conclusion that in the perturbative dimensional renormalization the
value of the anomalous dimension at a non-trivial (g∗ 6= 0) fixed point heavily depends on the
renormalization scheme!

To analyze this scheme dependence in more detail, consider renormalization constants and
RG functions calculated to some finite orderN of perturbation theory. In this case relation (2.38)
gives rise to

N∑
n=1

a′i n(ε)g′
n

=

N∑
n=1

ai n(ε)gn +

N∑
m=1

[
gε− g

m∑
n=1

ag n(ε)gn

]
N−m−1∑
n=1

fi n(ε)gn , (2.39)

where terms to the order gN are taken into account on the right side. In (2.39) fi n(ε) are the
coefficients of the perturbation expansion of lnF (g, ε). They are regular functions of ε by defi-
nition. The perturbative non-trivial (g∗ 6= 0) fixed point is sought in the form of an ε expansion

g∗ =
∑
n=1

g∗nε
n (2.40)

for the solution of the equation ε + γg(g, ε) = 0. By direct substitution it is seen that at such a
fixed point

g∗ε− g∗
m∑
n=1

ag n(ε)g∗n = O(εm+2) . (2.41)
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At the fixed point (2.40) we therefore see that the second term on the right side of (2.39) is of the
order O(εN+1) and the statement of the scheme independence is actually that the ε expansion
of a critical dimension is scheme independent up to the order given by a consistent perturbative
calculation. The ε expansion is given by the MS scheme, therefore in any other renormalization
scheme anomalous dimensions contain ε dependent contributions which are not controlled by
the perturbation theory beyond the order of calculation of the renormalization constants.

In case of the stability exponent the renormalization invariance is based on the connection
between β functions

β′(g′) =
dG(g)

dg
β(g) (2.42)

from which it follows that

dβ′(g′)

dg′
=

dβ(g)

dg
+

[
dG(g)

dg

]−1
d2G(g)

dg2
β(g) . (2.43)

At a fixed point the rightmost term on the right side of (2.43) vanishes, if complete functions are
known and the value of the derivative of the β function at the fixed point (the critical exponent ω)
is the same in both renormalization schemes. Order by order in perturbation theory this is again
not true. Again, the β function of the additional term on the right side of (2.43) at a fixed point in
the ε expansion produces an excess factor O(ε) and the exponent ω is renormalization invariant
at the leading order of the ε expansion, which is easily verified by direct calculation with the
use of representations (2.35) and (2.36). It should also be recalled that in the usual single-charge
case (i.e. when the leading term in γg is linear in g) all anomalous dimensions and the stability
exponent ω are expressed in regular at the origin power expansions in ε. This is not always the
case in multi-charge problems.

Critical dimensions and stability conditions of asymptotic patterns should be independent of
the renormalization scheme and the different values obtained for them signal that approxima-
tions used for their calculation are different as well. In dimensional renormalization differences
in renormalization schemes show in the ε dependence of various quantities in the renormalized
model. It is customary to carry out calculations in the form of ε expansions. Practical evaluation
is usually performed loop by loop in graphs of perturbation theory with each consecutive loop
improving the accuracy of results of the ε expansions by some fixed order in ε. In the prevail-
ing MS scheme of the field-theoretic approach the contribution of each superficially divergent
graph to a renormalization constant at a given order of the loop expansion is restricted to the
singular part of its Laurent expansion in ε which in practice means that within this scheme the
calculation of critical exponents and other relevant quantities yields directly the ε expansions
thereof without any excessive ε on top of that. If any other renormalization scheme is used, then
finite renormalization means, in principle, that to the singular part of the Laurent expansion of
the graph an arbitrary regular function of ε is added. This finite renormalization introduces ε
dependence in coefficients of the perturbation expansions of RG functions which destroys the
connection between the order of the ε expansion and the loop expansion. This in turn means that
values of critical exponents and other relevant quantities calculated in an arbitrary dimensional
renormalization scheme at each finite order in loops contain terms of the ε expansion, whose
coefficients are subject to corrections in the subsequent orders of the loop expansion. Reliable in
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this sense information is provided by expanding everything in the results of the arbitrary renor-
malization scheme in ε and retaining only terms whose coefficients are consistently given by the
current order of loop expansion. This returns us to the calculation in the MS scheme. It is quite
possible that evaluation of a power series in some other way than simply adding terms order
by order provides advantages in numerical accuracy. However, to make such a conclusion, the
functions expanded in the power series should be known in some other, preferably closed form.
In perturbation expansion of a field theory this kind of information is not available directly and
usually it is quite difficult to obtain, e.g. by instanton analysis. The bottom line here is that al-
though different renormalization schemes provide different information about critical exponents
and the like, to make conclusions going beyond the strict ε expansion some additional arguments
are required.

2.7 Composite operators and operator product expansion

In this section we recall the basic information about renormalization and critical exponents
(dimensions) of composite operators. A composite operator F is any monomial of the basic fields
of model and their derivatives. In models we are interested they are constructed from the velocity
field v, scalar field θ or magnetic field b at the single space-time point x ≡ (t,x). Examples
are vn, bn, θn, ∂tv

n, v∆v, (∇θ ·∇θ)n and so on. The term is borrowed from the quantum
field theory, where fields and anything constructed from them are actually operators in a Hilbert
space. In statistical field theory they are just random fluctuating quantities.

Study of composite operators and their renormalization is important at least for two reasons.
First, their critical dimensions and correlation functions can be measured experimentally and for
some operators such data are available [68, 69]. In the developed turbulence the mean of the
energy dissipation proportional to the statistical average of the composite operator v∆v enters
the equation of energy balance, hence playing a crucial role in redistribution of the energy of the
turbulent motion and its dissipation. Moreover, strong statistical fluctuations of the operator of
energy dissipation seem to be responsible for deviations from Kolmogorov exponents and lead
to the intermittency (multifractality) of the turbulent processes [70]. Second, the general solution
of the RG equation (2.28) contains an unknown scaling function depending on dimensionless
effective variables (coupling constants, viscosity etc.). This function can be calculated in the
framework of usual perturbation scheme in an expansion parameter but as was already men-
tioned above, in certain asymptotic ranges of scales this calculation fails. In theory of turbulence
dependence of correlation functions on outer (integral) scale L is of interest. In particular, in
turbulence one is interested in the scaling function R(1, g∗, kL) (compare with Eq. (2.3)) in the
inertial interval kL � 1. In the theory of critical phenomena, the asymptotic form of scaling
functions for kL � 1 (formally L → ∞) is studied using the well known the Wilson operator
product expansion (OPE), see e.g. [65], [24]; the analog of L is there the correlation length rc.
It has turned out that this technique can be used also in the theory of turbulence and simplified
(toy) models associated with the genuine turbulence, see e.g. [25, 32, 71–73].

The generating functional of the correlation functions of the field ϕ with one insertion of the
composite operator F (ϕ) has the form (compare with the generating functional (1.56) for the
usual correlation functions of ϕ)

G(A,F ) =

∫
Dϕ F (ϕ) exp [S[ϕ] +Aϕ] , (2.44)
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where all normalization factors are included in the functional measure. Since the arguments
of the fields in F coincide, correlation functions with these operators contain additional UV
divergences, which are removed by an additional renormalization procedure, see e.g. [24, 25,
65]. For the renormalized correlation functions the standard RG equations are obtained, which
describe IR scaling with definite critical dimensions ∆F ≡ ∆[F ] of certain “basis” operators
F . Owing to the renormalization, ∆[F ] does not coincide in general with the naive sum of
critical dimensions of the fields and derivatives entering into F . Detailed description of the
renormalization of composite operators for the stochastic Navier–Stokes equation is given in the
review paper [71], below we confine ourselves to only the necessary information.

In general, composite operators are mixed in renormalization, i.e., an UV finite renormalized
operator FR (the correlation functions with one insertion of FR don’t possess the UV diver-
gences) has the form FR = F+ counterterms, where the contribution of the counterterms is a
linear combination of F itself and, possibly, other unrenormalized operators which “admix” to F
in renormalization. Let F ≡ {Fα} be a closed set, all of whose monomials mix only with each
other in renormalization. The renormalization matrix ZF ≡ {Zαβ} and the matrix of anomalous
dimensions γF ≡ {γαβ} for this set are given by

Fα =
∑
β

ZαβF
R
β , γF = Z−1

F D̃µZF , (2.45)

and the corresponding matrix of critical dimensions ∆F ≡ {∆αβ} is given by

∆[F ] ≡ ∆F = dkF + ∆ωd
ω
F + γ∗F , (2.46)

in which dkF , dωF , and dF are understood as the diagonal matrices of canonical dimensions of
the operators under consideration (with the diagonal elements equal to sums of corresponding
dimensions of all fields, their derivatives and renormalized parameters constituting F ) and γ∗F ≡
γF (g∗) is the matrix (2.45) at the fixed point.

Critical dimensions of the set F ≡ {Fα} are given by the eigenvalues of the matrix ∆F . The
“basis” operators that possess definite critical dimensions have the form

F̄Rα =
∑
β

UαβF
R
β (2.47)

where the matrix UF = {Uαβ} is such that ∆′F = UF∆FU
−1
F is diagonal.

In general, counterterms to a given operator F are determined by all possible 1PI Green
functions with one operator F and arbitrary number of primary fields ϕ,

ΓN ;F = 〈F (t,x)ϕ(t,x1) . . . ϕ(t,xN )〉. (2.48)

The total canonical dimension (formal index of divergence) for such functions is given by

dΓ = dF −NΦdΦ, (2.49)

with the summation over all types of fields entering into the function. For the UV divergent
diagrams, dΓ is a nonnegative integer (cf. 2.16).
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According to the OPE, the single-time product F1(t,x1)F2(t,x2) of two renormalized op-
erators at x ≡ (x1 + x2)/2 = const, and r ≡ x1 − x2 → 0 has the representation

F1(t,x1)F2(t,x2) =
∑
α

Aα(r)F̄Rα (t,x), (2.50)

in which the functions Aα are the Wilson coefficients regular in L and F̄Rα are all possible
renormalized local composite operators of the type (2.47) allowed by symmetry, with definite
critical dimensions ∆F̄Rα

.
The renormalized correlator 〈F1(t,x1)F2(t,x2)〉 is obtained by averaging (2.50) with the

weight expSR, the quantities 〈F̄Rα 〉 ∝ L−dαfα(g, Lµ) involving dimensionless (scaling) func-
tions fα(g, Lµ) appear on the right hand side. Their asymptotic behavior for Lµ → 0 is found
from the corresponding RG equations (see [74] for the case of Kraichnan model) and has the
form

〈F̄Rα 〉 ∝ L
∆F̄Rα . (2.51)

From the operator product expansion (2.50) we therefore

〈F1(t,x1)F2(t,x2)〉 =
∑
F̄R

CF̄R(r/L)∆F̄R , r/L→ 0, (2.52)

Here CF̄R generated by the Wilson coefficients Aα in (2.50) are regular in L, the summation
is implied over all possible composite basic renormalized operators F̄R allowed by the symme-
try of the left-hand side, and ∆F̄R are their critical dimensions. The leading contributions for
r/L→ 0 are those with the smallest dimension ∆F̄R . In the theory of critical phenomena all the
nontrivial composite operators have positive critical dimensions ∆F̄R > 0 for small ε and the
leading term in (2.52) is determined by the simplest operator F̄R = 1 with ∆F̄R = 0, i.e., the
function R(r/L) is finite as L ≡ rc → 0, see [24]. However, as has been observed in [72] in the
model of developed turbulence composite operators with negative critical dimensions exist and
are responsible for possible singular behavior of the scaling functions like N-point correlation
functions WN = 〈ϕ . . . ϕ〉 as r/L → 0. We shall term the operators with ∆F̄R < 0, if they
exist, dangerous [71], as they correspond to contributions to (2.52) which diverge for r/L → 0.
The scaling functions (2.52) decomposed in dangerous operators exhibit anomalous scaling be-
havior which is a manifestation of a nontrivial multifractal (intermittent) nature of the statistical
fluctuations of the random fields under consideration and globally all the physical system.

Dangerous composite operators in the stochastic model of turbulence occur only for finite
values of the RG expansion parameter ε, and within the ε expansion it is impossible to decide
whether or not a given operator is dangerous, provided its critical dimension is not found ex-
actly using the Schwinger-type functional equations or the Galilean symmetry, see [71], [75].
Moreover, dangerous operators enter into the operator product expansion in the form of infinite
families with the spectrum of critical dimensions unbounded from below, and the analysis of the
large L behavior implies the summation of their contributions.

In view of the difficulties encountered by the RG approach to the model of developed tur-
bulence it is reasonable to apply the formalism to simpler models, which exhibit some of the
features of genuine turbulent flows, but are easier to study. Much attention has been attracted
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by a simple model of the passive advection of a scalar quantity by a Gaussian velocity field,
introduced by Obukhov [76] and Kraichnan [77]. Of special interest are structure functions SN ,
which for the scalar field θ can be defined as follows

SN (r) ≡
〈
[θ(t,x + r)− θ(t,x)]N

〉
, r ≡ |r|, (2.53)

where homogeneity and isotropy has been assumed. It turns out, that the structure functions of
the scalar field in aforementioned Obukhov-Kraichan model exhibit anomalous scaling behavior
and the corresponding anomalous exponents can be calculated explicitly within an expansion in
certain small parameter, see [43, 73] and reference therein.



Stochastic models of developed turbulence 127

3 Stochastic models of developed turbulence

3.1 Stochastic version of Navier-Stokes equation

Systems with large number of degrees of freedom display similar behavior in certain asymp-
totic regimes independently of numerous microscopic details of the system. In the theory of
strongly developed turbulence this universality is connected with long-distance asymptotics of
velocity correlation functions. The main indication of the universality in the turbulence comes
from the celebrated Kolmogorov scaling theory [78] describing the large-scale behavior of ve-
locity structure functions.

During the last decade much attention has been paid to the inertial range of fully developed
turbulence, which contains wave numbers larger then those that pump the energy into the system
and smaller enough then those that are related to the dissipation processes [79, 80]. Foundations
of theory of the inertial range turbulence were laid in the well known Kolmogorov–Obukhov
(KO) phenomenological theory (see, e.g., [70, 79, 81]). One of the main problems in the mod-
ern theory of fully developed turbulence is to verify the validity of the basic principles of KO
theory and their consequences within the framework of a microscopic model. Recent experimen-
tal and theoretical studies indicate possible deviations from the celebrated Kolmogorov scaling
exponents. The scaling behavior of the velocity fluctuations with exponents, which values are
different from Kolmogorov ones, is called as anomalous and usually is associated with phe-
nomenon of intermittency. Roughly speaking, intermittency means that statistical properties (for
example, correlation or structure functions of the turbulent velocity field) are dominated by rare
spatiotemporal configurations, in which the regions with strong turbulent activity have exotic
(fractal) geometry and are embedded into the vast regions with regular (laminar) flow. In the tur-
bulence such phenomenon is believed to be related to the strong fluctuations of the energy flux
which, therefore leads to deviations from the predictions of the aforementioned KO theory. Such
deviations, referred to as “anomalous” or “non-dimensional” scaling, manifest themselves in sin-
gular (arguably power-like) dependence of correlation or structure functions on the distances and
the integral (external) turbulence scale L. The corresponding exponents are certain nontrivial
and nonlinear functions of the order of the correlation function, the phenomenon referred to as
“multiscaling”.

Although great progress in the understanding of intermittency and anomalous scaling in tur-
bulence has been achieved as a result of intensive studies, their investigation in fully developed
turbulence still remains a major theoretical problem.

Although the theoretical description of the fluid turbulence on the basis of the ”first princi-
ples”, i.e., on the stochastic Navier-Stokes (NS) equation [79] remains essentially an open prob-
lem, considerable progress has been achieved in understanding simplified model systems that
share some important properties with the real problem: shell models [82], stochastic Burgers
equation [83] and passive advection by random “synthetic” velocity fields [73].

A crucial role in these studies is played by models of advected passive scalar field [76]. A
simple model of a passive scalar quantity advected by a random Gaussian velocity field, white
in time and self-similar in space (the latter property mimics some features of a real turbulent
velocity ensemble), the so-called Kraichnan’s rapid-change model [84], is an example. The in-
terest to these models is based on two important facts: first, as were shown by both natural
and numerical experimental investigations, the deviations from the predictions of the classical
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Kolmogorov-Obukhov phenomenological theory [70,79,81,85] is even more strongly displayed
for a passively advected scalar field than for the velocity field itself (see, e.g., [86–96] and ref-
erences cited therein), and second, the problem of passive advection is much more easier to be
consider from theoretical point of view. There, for the first time, the anomalous scaling was
established on the basis of a microscopic model [77], and corresponding anomalous exponents
was calculated within controlled approximations [89–91, 97–102] (see also reviews [43, 73] and
references therein).

The greatest stimulation to study the simple models of passive advection not only of scalar
fields but also of vector fields (e.g., weak magnetic field) is related to the fact that even simplified
models with given Gaussian statistics of so-called ”synthetic” velocity field describes a lot of
features of anomalous behavior of genuine turbulent transport of some quantities (as heat or
mass) observed in experiments, see, e.g., [77, 84, 88–108].

An effective method for investigation of a self-similar scaling behavior is the renormalization
group (RG) technique [24, 25, 65]. It was widely used in the theory of critical phenomena to
explain the origin of the critical scaling and also to calculate corresponding universal quantities
(e.g., critical dimensions). This method can be also directly used in the theory of turbulence
[25,32,62,63,71], as well as in related models like a simpler stochastic problem of a passive scalar
advected by prescribed stochastic flow. In these investigations, the diagram technique of Wyld
[109] for the stochastically forced Navier-Stokes equation with powerlike correlation function
of the random force f . The exponent of this correlation function gives rise to an expansion
parameter similar to that of the famous ε = dc−d expansion in the theory of critical phenomena.
In the wave-vector space the spectrum of force correlations of the form

〈fi(k)fj(−k)〉 ∝ k4−d−2ε (3.1)

allows to obtain a regular expansion of scaling exponents and amplitude coefficients in the small
parameter ε. In what follows the conventional (”quantum field theory” or field-theoretic) RG
will be use which is based on the standard renormalization procedure, i.e., on the elimination of
the UV divergences in the logarithmic model.

In work [110] the field theoretic RG and operator-product expansion (OPE) were used in
the systematic investigation of the rapid-change model. It was shown that within the field the-
oretic approach the anomalous scaling is related to the very existence of so-called ”dangerous”
composite operators with negative critical dimensions in OPE (see, e.g., [25, 32] for details). In
the subsequent papers [111] the anomalous exponents of the model were calculated within the ε
expansion to order ε3 (three-loop approximation). Here ε is a parameter which describes a given
equal-time pair correlation function of the velocity field (see subsequent section).

Afterwards, various generalized descendants of the Kraichnan model, namely, models with
inclusion of large and small scale anisotropy [112], compressibility [113] and finite correlation
time of the velocity field [74,114] were studied by the field theoretic approach. Moreover, advec-
tion of a passive vector field by the Gaussian self-similar velocity field (with and without large
and small scale anisotropy, pressure, compressibility, and finite correlation time) has been also
investigated and all possible asymptotic scaling regimes and cross-over among them have been
classified [115–119]. General conclusion is: the anomalous scaling, which is the most important
feature of the Kraichnan rapid change model, remains valid for all generalized models.

Let us describe briefly the solution of the problem in the framework of the field theoretic
approach. It can be divided into two main stages. On the first stage the multiplicative renor-
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malizability of the corresponding field theoretic model is demonstrated and the differential RG
equations for its correlation functions are obtained (See Sec. 2.3). The asymptotic behavior of
the latter on their ultraviolet argument (r/`) for r � ` and any fixed (r/L) is given by infrared
stable fixed points of those equations. Here ` and L are an inner (ultraviolet) and an outer (in-
frared) scales. It involves some “scaling functions” of the infrared argument (r/L), whose form
is not determined by the RG equations. On the second stage, their behavior at r � L is found
from the OPE (See Sec. 2.7) within the framework of the general solution of the RG equations.
There, the crucial role is played by the critical dimensions of various composite operators, which
give rise to an infinite family of independent aforementioned scaling exponents (and hence to
multiscaling). Of course, these both stages (and thus the phenomenon of multiscaling) have long
been known in the RG theory of critical behavior.

In Ref. [74] the problem of a passive scalar advected by the Gaussian self-similar velocity
field with finite correlation time [101,120] was studied by the field theoretic RG method. There,
the systematic study of the possible scaling regimes and anomalous behavior was present at one-
loop level. The two-loop corrections to the anomalous exponents were obtained in work [121].
It was shown that the anomalous exponents are non-universal as a result of their dependence on a
dimensionless parameter, the ratio of the velocity correlation time, and turnover time of a scalar
field.

The Navier-Stokes equations conserve kinetic energy and helicity in inviscid limit. Presence
of two quadratic invariants leads to the possibility of appearance of double cascade. It means that
cascades of energy and helicity take place in different ranges of wave numbers analogously to the
two-dimensional turbulence and/or the helicity cascade appears concurrently to the energy one
in the direction of small scales [122,123]. Particularly, helicity cascade is closely connected with
the existence of exact relation between triple and double correlations of velocity known as “2/15”
law analogously to the “4/5” Kolmogorov law [124]. According to [122] aforementioned scenar-
ios of turbulent cascades differ from each other by spectral scaling. Theoretical arguments given
by Kraichnan [125] and results of numerical calculations of Navier-Stokes equations [126–128]
support the scenario of concurrent cascades. The appearance of helicity in turbulent system leads
to constraint of non-linear cascade to the small scales. This phenomenon was firstly demonstrated
by Kraichnan [125] within the modeling problem of statistically equilibrium spectra and later in
numerical experiments.

3.2 Double expansion and the ray scheme

RG calculations with two (or even more) small parameters which may serve as regulators in
dimensional or analytic renormalization have been widely used in the analysis of static critical
phenomena [129–131], dynamic critical phenomena [132–136], diffusion in random environ-
ment [137–140], interface growth [141] and in stochastic hydrodynamics [142–150]. Critical
exponents and other relevant quantities may be expressed in a double expansion in these param-
eters. The two parameters may both be regulators of analytic renormalization or one of them is
the regulator of dimensional renormalization. In the following, this pair of parameters will be
denoted ε and ∆.

Analytic renormalization would be a natural renormalization scheme to use to construct a
double expansion in the two regulators, since it yields the RG functions as analytic functions of
the two parameters at the origin. The genuine analytic renormalization involves rather tedious
calculations [151]. Moreover, in analytic renormalization there is no analog of the MS scheme



130 Advanced field-theoretical methods

to simplify practical calculations. Therefore, it is invariably assumed (implicitly or explicitly)
that both parameters are of the same order of magnitude. This is made explicit by putting them
proportional to each other in the ray scheme [152,153]): ∆ = ζε, where ζ is fixed and finite. This
assumption effectively restores the dimensional renormalization with a single small parameter
and the MS scheme may be used.

In any case, critical exponents turn out to be scheme dependent in the same sense as in the
dimensional renormalization. Typically there are at least two charges in these models and there-
fore a rather generic case of two charges and a single anomalous dimension γ (corresponding to
a field renormalization) will be analyzed here. It should be emphasized that we are considering
coupling constants which serve as expansion parameters of the perturbation theory. When there
are several coupling constants, it is customary to classify the order of perturbation theory by
the number of loops. In multi-charge problems there are coupling constants, which should be
calculated in closed form at each such order of perturbation theory (e.g. ratios of coefficients of
viscosity, diffusion and thermal conductivity). We do not discuss such coupling constants here.

Two different structures of β functions are met. In stochastic hydrodynamics two (or more)
random sources with different powerlike falloff of correlation functions are often introduced
[142, 143, 145, 147, 148]: always random force for the stochastic momentum equation (Navier-
Stokes equation) and the random source for either the stochastic diffusion or heat conduction
equation (the passive scalar problem) or for Faraday’s law (magnetohydrodynamics). Similar
constructions have been used in critical dynamics [43, 133–136] and the interface growth prob-
lem [141]. Thus, two analytic regulators are used: deviations of exponents of these powerlike
correlation functions from their critical values. The regulators are invariably put explicitly pro-
portional to each other and renormalization is treated in the framework of the usual dimensional
renormalization. Nevertheless, a double expansion in the regulators is implied, if not always
worked out explicitly. In models of this type the structure of the β functions is similar to the
single-charge case, i.e. the renormalized coupling constant is a common factor in the expres-
sion for the corresponding β function (for brevity, parameters ε and ∆ are omitted in the list of
arguments):

β1(g1, g2) = µ
∂

∂µ

∣∣∣
0
g1 = g1 [−ε− γ1(g1, g2)] , (3.2)

β2(g1, g2) = µ
∂

∂µ

∣∣∣
0
g2 = g2 [−∆− γ2(g1, g2)] , (3.3)

γϕ(g1, g2) = µ
∂

∂µ

∣∣∣
0
lnZϕ(g1, g2) (3.4)

and the coefficient functions γ1, γ2 and γϕ are regular expansions in powers of g1 and g2, whose
coefficients depend on the regulators ε and ∆. We shall refer to this situation as the regular
multi-charge case.

Connections between renormalization constants and the corresponding RG functions in dif-
ferent schemes in this case are

Z ′i(g
′
1, g
′
2) = Fi(g1, g2)Zi(g1, g2) , i = 1, 2, ϕ, (3.5)

γ′i(g
′
1, g
′
2) = γi(g1, g2) +

2∑
j=1

βj(g1, g2)
∂

∂gj
lnFi(g1, g2) . (3.6)
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When the problem is treated in the framework of analytic renormalization, coefficients of the per-
turbation expansion of the RG functions are regular functions of the two parameters ε and ∆ at
the origin by construction of the renormalization scheme. The argument about the scheme depen-
dence of the anomalous dimensions then goes in analogy with the dimensional renormalization
argument above. Due to the analytic properties of the RG functions the perturbative non-trivial
fixed point may be found in the form of a double expansion in ε and ∆. Here and henceforth
only fixed points with both non-vanishing charges (g∗1 6= 0, g∗2 6= 0) will be considered, if not
stated otherwise.

Regularity of the fixed points and RG functions imply that anomalous dimensions are ob-
tained in the form of regular expansions in ε and ∆. Little reflection shows that the second
term in relation (3.6) at a fixed point gives rise to a contribution which is of higher order by
O(ε) or O(∆) in comparison with the double expansion of the anomalous dimension in the two
renormalization schemes.

However, in practical calculations instead of the analytic renormalization the ray scheme is
used, in which the regulators are proportional to each other and the renormalization is carried
out as in dimensional renormalization with an additional finite and fixed parameter ζ = ∆/ε. At
one-loop order the γ’s are linear functions of the charges vanishing at the origin with coefficients
which are regular functions of ε and ∆ in the ray scheme as well. This is because the UV di-
vergences show in the form of meromorphic functions with simple poles A(ε,∆)/ε, B(ε,∆)/∆
and C(ε,∆)/(ε + ∆), where A, B and C are regular functions of ε and ∆ which determine
the RG functions at the one-loop order. At higher orders, however, subtraction of divergent sub-
graphs in the renormalization gives rise to expressions containing products of terms of the type
[εD(ε,∆) + ∆E(ε,∆)] /(mε + n∆), where – in analytic renormalization – integers m and n
are the numbers of correlations functions with exponents ε and ∆, respectively, in a (sub)graph
and D and E are regular functions of ε and ∆ at the origin. In case of combined dimensional
and analytic renormalization m is the number of loops in the (sub)graph. It should be noted that
in the ray scheme such expressions are finite quantities, but in analytic renormalization they are
singular functions which should not appear in the RG functions. In the ray scheme the common
power of ε is extracted by the rule ∆ = ζε, which gives rise to meromorphic functions of ζ as co-
efficients of the perturbative expansion. From the point of view of dimensional renormalization
these meromorphic functions produce contributions to finite renormalization. Thus, in the ray
scheme the coefficient functions of the perturbation expansion of RG functions are not analytic
in the variable ζ = ∆/ε, i.e. they are not analytic functions of the regulators ε and ∆.

At the leading one-loop order in both schemes the equations for the fixed point with both
g∗1 6= 0 and g∗2 6= 0 are linear equations for the fixed point values of the charges, whose solution
is a unique linear function of ε and ∆. In the analytic renormalization all γ’s are power series in
charges with analytic in ε and ∆ coefficients. Therefore, it is immediately seen that in analytic
renormalization all anomalous dimensions are regular functions of ε and ∆. Notwithstanding
the non-analytic coefficient functions, the result for the anomalous dimensions is the same up to
the order in ε and ∆ guaranteed by the loop expansion within the ray scheme. In the ray scheme
minimal subtractions may be used leading to much simpler calculation of graphs.

The other possibility is dimensional regularization amended by analytic regularization (only
one analytic regulator will be considered here, although several have been introduced). In this
case either in propagators or interactions the wave-number dependence contains the combination
a + bk−2α, in which α > 0 (in propagators this combination is usually multiplied by the factor
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k2). For small α a non-trivial problem of renormalization of field operators with this structure
arises [43, 129–131, 133–136, 140, 141, 146], since in the limit α → 0 the terms in a + bk−2α

become indistinguishable and it is not clear, which of them should be renormalized. The problem
is solved by the prescription of the counter terms to renormalization of the local (analytic in k2)
contribution [146,153]. The basic idea is that renormalization produces only local counterterms.
Construction of renormalization constants is carried out in the regularized model, in which the
local and non-local term are clearly distinguishable (α > 0 although small) and the countert-
erms have the structure of the local term and thus contribute to the renormalization of that term
only. If the original model did not contain the local term at the outset (which is often the case
when models with long-range effects are constructed), then it is usually brought about by the
renormalization procedure [129]. In the field-theoretic approach such ”generation terms” are to
the original model to make it multiplicatively renormalizable, which is very convenient from the
technical point of view.

In many cases the analytic properties of RG functions in problems with combined dimen-
sional and analytic regulators are analogous to those of the case with two analytic regulators.
A different situation takes place, for instance, in critical systems with quenched disorder [129–
131, 140] and in stochastic hydrodynamics with competing long-range and short-range correla-
tions [146]. The interplay of long-range and short-range correlations is accompanied by the ap-
pearance of generation terms. Generation terms are contributions to renormalization of a charge
produced by other charges only. Generation terms produce contributions to renormalization con-
stant of the corresponding charges in which the charge corresponding to the generation term
stands in the denominator of a polynomial functions of other charges. This introduces signifi-
cant changes to conclusions obtained from connections between renormalization constants and
charges in different schemes. First, contrary to the regular multi-charge case the fixed-point
values of charges in the analytic renormalization are not regular functions of the regulators (al-
though the RG functions are). Therefore, critical exponents may not be regular functions of
regulators either. Another feature of this class of models is that the very number of the fixed
points becomes scheme dependent. This may be seen in the example of stochastic hydrody-
namics near two dimensions, in which one-loop calculations in four different schemes are avail-
able [146, 149, 153, 154]. In the MS scheme in the ray approach the one-loop solution for the
two charges g∗1 6= 0 and g∗2 6= 0 is obtained from a system of equations which is essentially
linear and the solution is unique [146], whereas in the other schemes the one-loop equation for
charges is quadratic [149, 153] with two different solutions corresponding to different choices
of the sign of the quadratic root in the solution. In most cases only the stable fixed point with
a regular expansion in regulators has been discussed, however, with modifications taking into
account the additional solution [43,149]. The explicit root solutions have been used in a random
walk problem [140].

In the multi-charge case the stability exponents are eigenvalues of the Jacobi matrix of the
set of β functions. From connections between charges

g′i = Gi(g1, g2) , i = 1, 2 , (3.7)

it follows that

∂β′i
∂g′j

= [J(G)]−1
ni

∂βm(g)

∂gn
J(G)jm + [J(G)]−1

ni

∂2Gj(g)

∂gngm
βm(g) , (3.8)
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where

J(G)ij =
∂Gi
∂gj

and summation over repeated indices is implied. The matrix transformation of the Jacobi matrix
on the right side leaves eigenvalues intact, but the β functions in the second term produce again
non-vanishing terms of higher order than the matrix transformation of the first term in the double
expansion of the Jacobi matrix and thus to its eigenvalues. Eigenvalues are solutions of algebraic
equations containing fractional powers, therefore at the outset there is no expectation of regu-
larity of the stability exponents, but the very equations are scheme independent only up to the
consistently calculated order of the double expansion. The scheme dependence of perturbation
expansion has been used in field-theoretic RG approach to critical dynamics to catch qualitative
features absent at the leading order of a double expansion [141, 150, 155] as well as to improve
numerical results [152–154]. It appears that in the momentum-shell RG approach this is not con-
sidered an issue at all. However, conclusions made on the basis of scheme-dependent behavior
should be corroborated by independent arguments to be reliable.

3.3 Randomly stirred fluid near two dimensions

Let us now analyze the large-distance long-time behavior of randomly stirred fluid with pow-
erlike correlation (3.1) of the random force near two dimensions. This problem may not be
directly related to the problem of two-dimensional turbulence due to significant physical dif-
ferences between turbulence in two and three dimensions. Nevertheless, this analysis allows to
infer useful information about the behavior of the perturbation expansion in the most generic
case which may then be used to improve numerical accuracy of calculation of the amplitudes
– which, in general, are scheme dependent – of the powerlike asymptotics of correlation and
response functions. In the stochastic model of fully developed turbulence a double expansion
in dimensional and analytic regulators may be constructed using the two-dimensional system
as the formal starting point. Two is the critical dimension of the model of randomly stirred
fluid [61], for which an expansion in the parameter 2∆ = d − 2, the deviation of the space
dimensionality from the critical value, has been constructed in full analogy with the theory of
the critical phenomena. Near two dimensions both deviation parameters ε and ∆ are small, and
a double expansion may be established. The renormalization is carried out at the critical values
of the parameters, which leads to the following problem. The long-range correlation function
of the random force is a powerlike function of the momentum ∝ k4−d−2ε and thus, in gen-
eral, a singular function of the momentum at the origin. Renormalization gives rise to regular
in the momentum terms only, therefore singular terms are not renormalized. When d = 2 and
ε = 0, however, the correlation function becomes a regular function of the momentum ∝ k2.
It is not obvious, how the model should be renormalized in this case. This problem was origi-
nally discussed for this model in [144], but due to an incorrect renormalization procedure with
false conjectures about the asymptotic behavior of the forced Navier-Stokes equation. Similar
inconsistencies have occurred in the renormalization of magnetohydrodynamics with long-range
correlations of the random force [142, 143] and in the renormalization-group approach to two-
dimensional turbulence [156, 157].

We consider the stochastic Navier - Stokes equation for the homogeneous flow of incom-
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pressible fluid

∇tvi = ν0∇2vi − ∂ip+ fvi , ∇t ≡ ∂t + v ·∇, (3.9)

where v(t,x) is the transverse velocity field, ν0 is the kinematic viscosity. Here and henceforth
because of the future use of renormalization group we distinguish between unrenormalized (with
the subscript “0”) quantities and renormalized terms (without the subscript “0”). The renormal-
ized fields will be denoted by the subscript R. Further, Pij , is the transverse projection operator,
in the momentum space given as follows

Pij = δij − kikj/k2. (3.10)

Further, p is the pressure and fi is the random force. Here, and henceforth summation over
repeated indices is implied. As usual [62, 63, 158, 159], the random force is assumed to have a
gaussian distribution with zero mean and the correlation function in the momentum space of the
form

〈fvi (t,x)fvj (t′,x′)〉 ≡ Dij(t,x; t′x′) =
δ(t− t′)

(2π)d

∫
ddkPij(k)df (k)eik·(x−x

′), (3.11)

df (k) = D0k
4−d−2ε, (3.12)

〈fvi (t,k)fvj (t′,k′)〉 = df (k)Pij(k)δ(k + k′)δ(t− t′). (3.13)

Here, ε is an arbitrary parameter, the ”physical” value of which is determined by the condition
that the parameter g0ν

3
0 has the dimension of the energy injection rate [62,63]. Moreover as ε→

2, the amplitude D0∼(2 − ε) [32], from which it follows that df (k)∼δ(k), which corresponds
to the energy injection by infinitely large eddies.

The connection between D0 and E is determined by an exact relation expressing E in terms
of the function df (k) in the correlation function (3.11)

E =
(d− 1)

2(2π)d

∫
ddk df (k). (3.14)

Substituting here function (3.12) and introducing the UV cutoff k ≤ Λ = (E/ν3
0)1/4 (the inverse

dissipation length), we obtain the following connection between the parameters E and D0

D0 =
4(2− ε) Λ2ε−4

Sd(d− 1)
E . (3.15)

Idealized injection by infinitely large eddies corresponds to df (k) ∝ δ(k). More precisely,
according to Eq. (3.14)

df (k) =
2(2π)d E δ(k)

d− 1
. (3.16)
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In view of the relation

δ(k) = lim
ε→2

(2π)−d
∫

ddx(Λx)2ε−4 exp(ik · x) = S−1
d k−d lim

ε→2

[
(4− 2ε)(k/Λ)4−2ε

]
,

the powerlike injection with df = D0k
4−d−2ε and the amplitude D0 from Eq. (3.15) in the limit

ε→ 2 from the the region 0 < ε < 2 gives rise to the δ sequence (3.16).
The stochastic problem (3.9) and (3.11) may be cast [62,63] to a field theory with the gener-

ating functional

G(A) =

∫
Dv
∫
Dv′ eS+Av+Ãv′ (3.17)

where v′ is an auxiliary field, A, Ã are the source fields, and the action

S[v,v′] =
1

2

∫
dt

∫
ddx

∫
dt′
∫

ddx′ v′i(t,x)Dij(t,x; t′,x′)vj(t
′,x′)

+

∫
dt

∫
ddx v′i(t,x)

[
−∂tvi(t,x) + ν0∇2vi(t,x)− vj(t,x)∂jvi(t,x)

]
.

(3.18)

The canonical scaling dimensions of fields and variables are summarized in Tab. 3.1. The model

Q v v′ ν0 g0

dkQ −1 d+ 1 −2 2ε

dωQ 1 −1 1 0

dQ 1 d− 1 0 2

Table 3.1. Canonical dimensions of the bare fields and bare parameters for the model (3.18).

(3.18) gives rise to the standard Feynman diagrammatic technique; the bare propagators (lines in
the diagrams) in the time-wave-vector (t,k) representation are〈

vi(t)v
′
j(t
′)
〉

0
= θ(t− t′) exp

{
−ν0k

2(t− t′)
}
Pij(k) = ,〈

vi(t)vj(t
′)
〉

0
=
df (k)

2ν0k2
exp

{
−ν0k

2|t− t′|
}
Pij(k) = ,〈

v′i(t)v
′
j(t
′)
〉

0
= 0, (3.19)

with df (k) from (3.12) and the Heaviside step function θ(. . . ). The interaction in (3.18) corre-
sponds to the three-point vertex −v′(v∂)v = v′iVijsvjvs/2 with the vertex factor

Vijs = i(kjδis + ksδij) = , (3.20)

where k is the wave-vector argument of the field v′. The coupling constant g0 ≡ D0/ν
3
0 is the

expansion parameter of the perturbation theory.
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The model (3.18) is logarithmic, i.e. dg0
= 0, when ε = 0 independently of the dimension of

the space d. Due to the Galilei invariance of the action (3.18), the one-particle irreducible (1PI)
Green function Γv′vv , which is superficially divergent by power counting, is actually convergent
[61–63]. Therefore, above two dimensions only the graphs of the 1PI Green function Γv′v , yield
divergent contributions to the renormalization of the model, which leads to the renormalization
of the parameter ν. At d = 2, however, a new set of graphs corresponding to the 1PI Green
function Γv′v′ becomes divergent, and they must be taken into account in the renormalization of
the model.

In the stochastic Navier-Stokes problem [63] critical dimensions are expressed through γν ,
whose value at the fixed point is determined to all orders in perturbation theory by the fixed-
point equation. Thus, critical dimensions do not depend on d and thus for them the problem
of singularities in the limit d → 2 is not relevant. There are, however, other important physi-
cal quantities such as the skewness factor, Kolmogorov constant, critical dimensions of various
composite operators to which this problem persists. It is important that for these quantities the
problem of anomalous scaling is absent, which cannot be treated in the framework of the model
with massless injection (3.12) lacking a dimensional parameter to account for the external scale
of turbulence.

For such quantities, the solutions contain full series of the form

R(ε, d) =

∞∑
k=0

Rk(d)εk, (3.21)

and the coefficients Rk(d) in the limit d→ 2 reveal singular behavior of the type∼ (d−2)−k ∼
∆−k (2∆ ≡ d− 2) giving rise to the growth of the relative part of the correction terms at d→ 2.
The effect of these is fairly discernable also at the real value d = 3, hence the natural desire to
sum up contributions of the form (ε/∆)k at all orders of the ε expansion (3.21). This may be
done with the aid of the double (ε, ∆) expansion [144, 146].

In a fixed dimension d > 2 the value ε = 2 corresponds to the ”real problem”. Calculations in
the framework of the ε expansion have a rigorous meaning only in the vicinity of ε = 0, whereas
continuation of the results to the ”real” value ε = 2 is always understood as an extrapolation.
In the scheme applicable for d > 2 this extrapolation corresponds to the continuation along the
vertical ray from the point (d, ε = 0) to the point (d, ε = 2) in the (d, ε) plane. The same final
point may be reached along a ray from any starting point (d0 6= d, ε = 0) at which the model is
logarithmic as well. The extrapolation along the ray starting from the origin (d0 = 2, ε = 0) is,
however, singled out, because at d = 2 in model (3.18) an additional UV divergence (absent at
d > 2) occurs in the 1PI function Γv′v′ . On such a ray we put

d = 2 + 2∆, ∆/ε = ζ = const. (3.22)

The parameters ε and ∆ are considered small of the same order and their ratio ∆/ε = ζ a fixed
constant [ζ = 1/4 in the extrapolation to the point (d = 3, ε = 2)].

Extraction of contributions of the order εm with ∆/ε = const corresponds to the account of
all contributions of the form εm(ε/∆)n with any n = 0, 1, 2... and m + n = k in Eq. (3.21).
Thus the use of the (ε, ∆) expansion in such a form is directly related to the problem of the
account of the singularities at ∆→ 0 pointed out in the discussion of relation (3.21).
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ε

Figure 3.1. The borderline BAC between the regions of parameter space d, ε corresponding to direct (to the
right from the curve BAC) and inverse (to the left) energy cascades.

It is worth emphasizing that the very process of extrapolation along a ray from the starting
point (d = 2, ε = 0) is inapplicable to description of two-dimensional turbulence in which
the physics is totally different from the three-dimensional problem due to the appearance of the
inverse energy cascade [70]. In Fig. 3.1 we have plotted the borderline curve BAC between
the direct (normal) and inverse energy cascades obtained in Ref. [61]. The starting point of
the extrapolation for the two-dimensional case (d = 2, ε = 0) lies in the region of the direct
cascade, whereas the final point (d = 2, ε = 2) in the region of the inverse cascade. Thus the
ray connecting these points intersects the borderline – the curve BAC – so that the extrapolation
becomes impossible. However, the ray connecting the starting point (d = 2, ε = 0) and a final
point like (d = 3, ε = 2) lies completely in the region of the direct cascade, therefore on such a
ray the problem of the change of the cascade pattern does not arise. The rightmost point of the
region of the inverse cascade (point A on Fig. 3.1) has the coordinate dA ' 2.06 [160]. In the
preceding discussion of the extrapolation along the vertical ray from the point (d, ε = 0) to the
point (d, ε = 2) at d > 2, it should have been noted that the condition is not simply d > 2, but
d > dA = 2.06. From the practical point of view this is irrelevant, because we are interested in
the space dimension d = 3.

The idea of the double (ε,∆) expansion together with the extrapolation along the ray ∆ ∼ ε
of relation (3.22) in the context of the present problem was first put forward in Ref. [144]. The
UV divergences are present not only in the 1PI function Γv′v but also in Γv′v′ and appear in the
form of poles in the parameters ε and ∆ and linear combinations thereof, or, equivalently, as
poles in ε with the fixed ratio ∆/ε ≡ ζ = const. To remove the additional divergences from the
graphs of the 1PI function Γv′v′ renormalization of the amplitude D0 in the nonlocal correlation
function of the random force (3.11) and (3.12) was used in Ref. [144]. The renormalization
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scheme of Ref. [144] is not internally consistent, however. This is not obvious in the one-loop
approximation, but becomes apparent already in the two-loop approximation [153].

In the (ε ,∆) scheme (3.22) the multiplicative renormalization [144] of the amplitude D0 in
Eq. (3.12) is not acceptable. The reason is that the counterterm with structure (3.12) is nonlocal
∼ k4−d−2ε = k2−2∆−2ε on rays (3.22).

Guided by the general theory of the UV renormalization, the authors of Ref. [146] put for-
ward another scheme, in which a local counterterm∼ k2 instead of the nonlocal one∼ k2−2∆−2ε

is used to absorb singularities from the graphs of the 1PI function Γv′v′ . This corresponds to ad-
dition of the term ∼ v′∇2v′ to the action functional. In functional (3.18) with the correlation
function D from Eqs. (3.11) and (3.12) there is no such term, so that upon the addition of the
term∼ v′∇2v′ the renormalization ceases to be multiplicative. This would be unessential, if our
only goal was the elimination of divergences from Green’s functions which is quite possible by a
non-multiplicative renormalization. For the use of the standard technique of the RG multiplica-
tive renormalization is, however, necessary. This is why the authors of Ref. [146] proposed to
consider a two-charge model in which to function (3.12) ∼ k4−d−2ε = k2−2∆−2ε the term ∼ k2

is added at the outset with an independent coefficient:

df (k) = D10k
2−2∆−2ε +D20k

2 = g10ν
3
0 k

2−2∆−2ε + g20ν
3
0 k

2 . (3.23)

Here, the amplitude D0 of Eq. (3.12) is denoted by D10. The parameters g10 and g20 introduced
in Eq. (3.23) play the role of two independent bare charges.

We investigate the model in d = 2 + 2∆ dimensions regarding ε and ∆ as small parameters
of a regular expansion. The renormalized action is

SR =
1

2
g1ν

3µ2εv′Dv′+
1

2
ZD2

g2ν
3µ−2∆∂iv

′
j∂iv

′
j+v′ ·[−∂tv+Zνν∇2v−(v ·∇)v], (3.24)

where µ is the scaling-setting parameter (or renormalization mass). Note that in this work we
always interpret µ in this way. Further, the renormalized parameters ν and g are defined by
ν0 = νZν and g10 = µ2εg1Zg1 , g20 = µ−2∆g2Zg2 . As usual, the renormalized coupling
constants g are chosen to be both spatially and temporally dimensionless. The non-local term
of the action (3.24) is not renormalized, therefore the renormalization constants Zg1

and Zν , are
related as

Zg1
= Z−3

ν . (3.25)

We have introduced a new parameter g2 with the canonical scaling dimensions dkg20
= 2 −

d = −2∆, dωg20
= 0, dg20

= −2∆ to account for the new divergences at two dimensions.
This is necessary, because the counterterms from the graphs are always local in space and time,
and therefore cannot be taken into account by renormalization of the parameters of the initial
action, in which the v′v′ term has a non-local kernel. This amendment is crucial to the correct
renormalization of the model. This subtle point has caused confusion on several other occasions
[142, 143, 156, 157]. The anomalous asymptotic behavior in the present problem arises from the
singularities of the perturbation expansion at small momenta and frequencies. The region of large
momenta is assumed to have a physical ultraviolet cutoff parameter Λ inversely proportional to
the typical microscopic length of the problem. Here, the cutoff is most conveniently implemented
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in the correlation function of the random force, which therefore is a rapidly decaying function at
large momenta. For instance, the substitution

k4−d−2ε → k4−d−2εe−k
2/Λ2

(3.26)

would suffice. It is not difficult to see by power counting that there are no singularities in the
infrared limit, when ε < 0 and ∆ > 0 and the ultraviolet-regularized perturbation expansion may
be used as it stands. If ε ≥ 0 or ∆ ≤ 0 small-momentum singularities do occur. At present, there
is no way to treat these infrared singularities of the perturbation expansion in a consistent man-
ner, except for the logarithmic case ε = ∆ = 0, in which the analysis can be entirely transferred
to the analysis of ultraviolet divergences. By the scale transformation k → sk, ω → s2ω of all
the momenta and frequencies the analysis of the behavior of the perturbation expansion at small
momenta and frequencies, i.e. in the limit s → 0, may be transferred to the large momentum
limit of the momentum integrals of the perturbation expansion, since the cutoff becomes Λ/s and
there is no other s-dependence left in these integrals. However, the coupling constants scale as
g10 → g10s

−2ε, g20 → g20s
2∆, and the effective expansion parameters g10s

−2ε, g20s
2∆ become

large in the limit s → 0, when (ε > 0 or ∆ < 0. In general, the effect of these singular terms
cannot be estimated in any consistent manner. However, in the logarithmic case ε = ∆ = 0,
and the coupling constants remain fixed. Then, by the standard procedure of the field-theoretic
renormalization [65, 75, 86, 130] the ultraviolet singularities of the integrals may be absorbed
in a redefinition of the parameters of the model. The renormalization relevant to the anoma-
lous asymptotic behavior must therefore be carried out at the critical values of the parameters
ε = 0, d = 2, which correspond to the logarithmic model. The model cannot be consistently
renormalized at any other values of ε > 0 and d < 2. This is a somewhat dangerous point,
since the inconsistencies do not show in any way in the one-loop calculations, which are usually
performed, although they become obvious already in two-loop order [153]. When the model is
renormalized at d = 2, the two terms ∝ v′v′ of the action (3.24) are indistinguishable: both are
of the form const ×

∫
dω
∫

ddk v′i(ω,k)k2v′i(−ω,−k) and the question arises, which one of
them should be renormalized? To answer this question, let us look at the renormalization proce-
dure at d > 2, ε < 0. In this case the terms of the ultraviolet-regularized perturbation expansion
do not contain any infrared divergences and there is no anomalous asymptotic behavior brought
about by the higher order terms. We may, of course, carry out renormalization of the model
also in this case in the usual way, which means that we perform the first steps of the gradient
expansion of the perturbation expansion, and add all the higher order perturbative contributions
to the coefficients of the corresponding terms of the action (3.24). The renormalization constants
obtained are finite and do not give rise to any anomalous asymptotic behavior of the Green func-
tions. The important feature here is that the gradient expansion produces only terms, the Fourier
transforms of which are polynomial functions of the momenta, at least if the large-momentum
cutoff is chosen wisely to be smooth enough.

Therefore, the non-local term v′k4−d−2εv′ is not renormalized at all in this case, when it
is not a polynomial of the momentum and thus it is clearly distinguishable from the local term
v′ik

2v′i. When we go to the limit ε → 0, d → 2, the renormalization constants become singular
reflecting the infrared divergences of the integrals discussed above. Therefore, it is reasonable to
prescribe all the contributions ∝ v′v′ produced by the renormalization to the local term ∂iv

′∂iv
′

also in the limit ε→ 0, d→ 2. Another argument to support this renormalization prescription is
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obtained, when dimensional and analytic regularization are used. When the renormalization con-
stants are calculated with ε and ∆ as regulators, the long-range term stands in the non-analytic
form v′k2−2ε−2∆v′, therefore the polynomial in k2 counterterms do not renormalize it, but the
short-range term v′k2v′. It should be noted that this local term is always produced by the renor-
malization, but it is irrelevant for d > 2. To keep the model multiplicatively renormalizable, the
local term with an independent coupling constant should be added to the original action at the
outset.

3.3.1 Renormalization-group equations and fixed points

From the connection between the renormalized and unrenormalized generating functionals
GR(g1, g2, ν, µ) = G(g10, g20, ν0) (there are enough parameters available, no field renormaliza-
tion is needed here) we obtain the basic RG equation

DRGWR ≡ [Dµ + β1∂g1 + β2∂g2 − γνDν ]WR = 0 (3.27)

for the generating functionalWR = lnGR of the connected renormalized Green functions.
To illustrate the idea of asymptotic analysis, we consider the equal-time velocity-velocity

correlation function Gij(x − x′) = 〈vi(t,x)vj(t,x
′)〉. It is convenient to express the Fourier

transform of the correlation function

〈vi(t,x)vj(t,x
′)〉 ≡ Gij(r) , r ≡ x− x′ (3.28)

in the form

Gij(p) = Pij(p)G(p), (3.29)

where Pij(p) is the transverse projection operator and p ≡ |p|. By dimensional arguments the
scalar function G(p) can be expressed as

G(p) = ν2p−d+2R(s, g), s ≡ p/µ, g ≡ (g1, g2), (3.30)

whereR is a scaling function of dimensionless arguments. Introduce a set of invariant parameters
ē(s) = (ν̄(s), ḡ1(s), ḡ2(s)) corresponding to the set of renormalized parameters e = (ν, g1, g2)
as solutions fixed bare parameters e0. In terms of invariant parameters the correlation function
assumes the form

G(p) = ν2p2−dR(s, g) = ν̄2p2−dR(1, ḡ). (3.31)

Equation (3.31) is valid because both sides of it satisfy the RG equation and coincide at s = 1 ow-
ing to the normalization of the invariant parameters. The right-hand side of (3.31) depends on s
through the invariant parameters ē(s, e). They have simple asymptotic behavior as s→ 0, which
is governed by the infrared-stable fixed point: the invariant charges ḡ tend to the fixed-point val-
ues g∗ = O(ε) and the invariant coefficient of viscosity ν̄ exhibits simple power-law behavior.
To determine the latter it is convenient to express the invariant parameters ē = (ν̄, ḡ1, ḡ2) in
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terms of the bare variables e0 = (ν0, g10, g20) and the wave number p. Due to definition the bare
variables e0 also satisfy the RG equation by relations

ν0 = ν̄Zν(ḡ), g10 = ḡ1p
2εZg1(ḡ), g20 = ḡ2p

−2∆Zg2(ḡ). (3.32)

Relations (3.32) are valid because both sides of them satisfy the RG equation, and because re-
lations (3.32) at s ≡ p/µ = 1 coincide with their counterparts in (3.55) owing to the nor-
malization conditions. Using the connection ZgZ3

ν = 1 between the renormalization constants
defined in (3.55), and eliminating these constants from the first two expressions in (3.32) we find
g10ν

3
0 = D10 = ḡ1p

2ε ν̄ 3 , from which it follows that

ν̄ = (D10p
−2ε/ ḡ1)1/3 . (3.33)

In the limit ḡ1 → g∗1 the sought asymptotic behavior of the invariant coefficient of viscosity as
s→ 0 thus assumes the form

ν̄ → ν̄∗ = (D10/g
∗
1)1/3p−2ε/3, s→ 0. (3.34)

Substituting this result into (3.31) we obtain the relation

G(p) ' (D10/g
∗
1)2/3p2−d−4ε/3R(1, g∗), s→ 0 (3.35)

describing the large-scale asymptotic behavior of the pair correlation function.
For the physical values of the parameters ∆ = 1/2, ε = 2, chosen from the condition that

the dimensional parameters of the model are viscosity and energy injection rate, the scaling
behavior of the equal-time correlation function G in the three-dimensional space corresponds to
the Kolmogorov scaling G(p) ∼ p−11/3 [62, 63]. The scaling form (3.35) yields the large-scale
asymptotic behavior of the original correlation function, if the fixed point is infrared stable, i.e.
if g1 → g∗1 , g2 → g∗2 , when p→ 0.

One-loop calculation in the ray scheme yields the following expressions for the β functions:

β1 = g′1 (2∆− 3g′2 − 3g′1) , β2 = g′2

(
2ε− g′1

2

g′2
+ g′1 + 2g′2

)
, (3.36)

where g′2 = g2/(32π), g′1 = g1/(32π). Three fixed points are determined by the system of
equations β1(g∗1 , g

∗
2) = β2(g∗1 , g

∗
2) = 0.

From relation (3.31) near a fixed point it follows that the fixed point is infrared stable, when
the matrix Ωij defined in Eq. (2.24) is positively definite at the fixed point. The trivial fixed point:
g′1
∗

= g′2
∗

= 0 is infrared stable only if ∆ > 0 , ε < 0. For the nontrivial fixed point g′1
∗

= 0,
g′2
∗

= −∆ the region of stability is determined by the inequalities ∆ < 0, 2ε < −3∆. This fixed
point corresponds to the fixed point for the model A of Forster, Nelson and Stephen [61] and
yields the asymptotic behavior of the solution of the Navier-Stokes equation with short-range
correlated random force. Physically, this corresponds to the effect of thermal fluctuations.

The anomalous asymptotic behavior of the long-range model above two dimensions is gov-
erned by the third fixed point

g′1
∗

=
2

9

ε(3∆ + 2ε)

∆ + ε
, g′2

∗
=

2

9

ε2

∆ + ε
, (3.37)
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at which the Ω matrix is

Ω =

 2(2ε2+3ε∆)
3(ε+∆)

2(2ε2+3ε∆)
3(ε+∆)

− 2(2ε2+3ε∆)
3(ε+∆)

2(3∆2+4ε∆+2ε2)
3(ε+∆)

 (3.38)

with the eigenvalues

Ω1,2 =
1

3
[3∆ + 4ε±

√
9∆2 − 12∆ε− 8ε2] (3.39)

It should be noted that the fixed point g′1
∗ 6= 0, g′2

∗ 6= 0 is unique due to the degeneracy of the β
functions in the ray scheme.

The inequalities ∆ + (2/3)ε > 0, ε > 0 determine the basin of attraction of the fixed point
(3.37), in which the present results may be compared with those of the RG analysis above two
dimensions [62, 63]. The anomalous dimension γ∗ν is a continuous function of the parameters ∆
and ε at the borderlines of the basins of attraction on the (∆, ε)-plane.

3.4 Improved ε expansion in the RG analysis of turbulence

In the description of developed turbulence in the framework of the stochastic Navier-Stokes
equation representation of the problem in the form of an effective field-theoretic model opens
new possibilities for understanding of both the Kolmogorov scaling and the deviation therefrom
as well as for calculation of principal physical quantities. The RG approach with its various
perturbation schemes (e.g. the famous ε expansion [9]), with effective analytical and numerical
algorithms for evaluation of quantities involved forms a robust method, which allows to put into
practice this scenario.

A specific feature of the renormalization-group approach and the ε expansion in the theory of
developed turbulence is that the formal small parameter ε is not connected with the space dimen-
sion and it is determined only by the noise correlator of random forcing in the stochastic Navier-
Stokes equation [62, 63]. Its physical value ε = 2 is not small [32, 71], hence reasonable doubts
arise about the effectiveness of such an expansion. For some paramount physical quantities like
the critical dimensions of the velocity field and the coefficient of viscosity the ε expansion termi-
nates at the first term due to the Galilei invariance of the theory [62, 63]. Therefore, exact values
are predicted for these quantities. However, there are other physically important quantities, viz.
the skewness factor, the Kolmogorov constant and critical dimensions of various composite op-
erators, for which the ε series do not terminate [152, 153, 161], therefore the question about the
effectiveness of the expansion remains open.

Consider a quantity A calculated at the fixed point of the RG in the renormalized field theory
of developed turbulence. In d dimensions it is a function of the parameters ε and d: A =
A(ε, d). In practice, calculations are often carried out in the ε expansion, whose coefficients for
the quantity A(ε, d) depend on the space dimension d

A(ε, d) =

∞∑
k=0

Ak(d)εk. (3.40)

Analysis shows that these coefficients Ak(d) have singularities at small dimension d ≤ 2. The
singularity at d = 2 – the nearest to the physical value d = 3 – gives rise to new divergences
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as d → 2 not eliminated by the renormalization of the d-dimensional theory [144, 146, 153].
These divergences manifest themselves in the form of poles in the parameter (d − 2) ≡ 2∆ in
the coefficients of the ε expansion Ak(d), which therefore may be expressed as Laurent series of
the form

Ak(d) =

∞∑
l=0

akl ∆
l−k. (3.41)

A two-loop calculation of the Kolmogorov constant and skewness factor at various values of
space dimension d carried out in [161] has shown that at d = 3 the relative part of the two-loop
contribution is just large – it is of order 100% in comparison with the one-loop contribution. The
two-loop contribution, however, rapidly decreases as d increases, and at d = 5 it gives only 30
%, and at d→∞ decreases to 10 %. On the contrary, when the space dimension decreases from
d = 3 to d = 2 rapid growth of the two-loop correction term is observed. This growth is due to
diagrams which contain singularities at d = 2. Analysis has shown that it is just these diagrams
which form the main part of two-loop contribution at d = 3. Therefore, the nearest singularity
strongly manifests itself at the realistic value d = 3 and allows to improve the ε expansion by
means of summation of singular contributions in all orders of this expansion [152, 153].

Divergences in ∆ may be absorbed to suitable additional counterterms, which gives rise
to a different renormalized field theory (the physical unrenormalized field theory is, of course,
the same in both cases). Henceforth, we therefore consider the theory with two formal small
parameters ε and ∆, which satisfy the relation ζ ≡ ∆/ε = const, and then construct a new ε
expansion proposed by Honkonen and Nalimov [146], an alternative to the expansion (3.40)

A(ε, ζ) =

∞∑
k=0

bk(ζ)εk , ζ ≡ ∆/ε . (3.42)

Relation between the two expansions (3.40) and (3.42) of the quantity A becomes evident upon
substitution of the Laurent series (3.41) into the ε expansion (3.40), which gives rise to the double
series

A(ε, d) =

∞∑
k=0

∞∑
l=0

akl
∆l

ζk
. (3.43)

To clarify the connection between representations (3.40), (3.42) and (3.43), consider Figure 3.2.
The point (k, l) corresponds to a term with the coefficient akl in the double sum (3.43). Thus,
all points of the first quadrant in the k, l plane correspond to the full double sum (3.43). In the
usual ε expansion (3.40) the index of summation labels columns in the graphical representation
of the double sum (3.43). In the alternative expansion (3.42) the index of summation labels rows
of points in Figure 3.2 (see [153] and also [154]). Therefore, the coefficients bk are expressed as

bk(ζ) =

∞∑
l=0

alk ζ
k−l. (3.44)

An n-loop calculation in the usual scheme leads to the approximate expression

A
(n)
ε, d ≡

n−1∑
k=0

Ak(d)εk (3.45)
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for the quantity sought, which corresponds to the inclusion of all terms of the double sum in the
first n vertical bands shown in Figure 3.2. Calculation in the alternative scheme gives rise to the
approximation

A
(n)
ε, ζ ≡

n−1∑
k=0

bk(ζ)εk, (3.46)

which includes all terms in n horizontal bands.

0 1 2 n k
0

1

2

n

l

1-loop

2-loop

n-loop

1-loop 2-loop n-loop

δA
(n)

A
(n)
ε,ζ

A
(n)
ε,d

Figure 3.2. Illustration of the subsequences of the double sum (3.43) summed in the calculation in the
usual ε expansion (3.40) and in the alternative expansion (3.42) Terms in the double sum (3.43) taken into
account in the approximations A(n)

ε, d (3.45) and A(n)
ε, ζ (3.46) at the two-loop order correspond to the shaded

horizontal and vertical stripes, respectively. The correction term δA(n) corresponds to the double sum in
(3.47) over the double-shaded square.

The ε expansion may be improved by the use of the complementary information about the
quantity A contained in the finite sums (3.45) and (3.46). This is carried out by means of the
approximation

A
(n)
eff = A

(n)
ε, d +A

(n)
ε, ζ −

n−1∑
k=0

n−1∑
l=0

ζ−kakl ∆
l , (3.47)

which includes all terms in n vertical and horizontal bands simultaneously (”n region”) and also
eliminates the double counting in the overlap region of these bands. These calculations have
led to notable improvement of the agreement of calculated values of the Kolmogorov constant
and skewness factor with their experimental values [152, 153] in comparison with the results of
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the usual ε expansion [161]. We recall that calculations in [152, 153, 161] were carried out in
two-loop order.

The MS ray scheme was used in [152, 153]. It turns out that even better numerical per-
formance may be obtained with the use of the scheme with a normalization point, in which
the renormalization constants are normalized by prescribing to suitable renormalized correlation
functions finite values at given wave numbers. An n-loop calculation in such a scheme (with-
out expansion in ε) guarantees true reproduction of terms from the n region and leads to good
agreement with experiment already in the one-loop approximation. From the point of view of
renormalization of the d-dimensional theory this approach corresponds to the inclusion in the ac-
tion (see below) of an infrared irrelevant at d > 2 operator, which becomes relevant, when d→ 2.

3.4.1 Renormalization with inclusion of divergences at d = 2

We shall not dwell on the detailed analysis of the rather cumbersome results of the two-loop
calculation of the amended double expansion in the MS scheme [152, 153]. Instead, we present
main steps of this analysis in the case of an NP scheme following [154]. The only difference
between the two cases is in the renormalization schemes, the rest of the analysis is completely
analogous in both cases.

We start the analysis from the stochastic Navier-Stokes model in d dimensions (3.18), in
which, however, to the energy pumping kernel (3.12) we prefer the more realistic function

df (k) = D0 k
4−d−2ε h(m/k), h(0) = 1, (3.48)

where m = 1/L is the reciprocal to the integral turbulence scale L and h(m/k) is some well-
behaved function that provides the infrared regularization. Its specific form is inessential and we
shall always use the sharp cutoff

h(m/k) = θ(k −m), . (3.49)

Choice (3.49) is the most convenient from the point of view of calculation of graphs of perturba-
tion theory.

Model (3.18) is logarithmic (i.e. the coupling constant g0 is dimensionless) at ε = 0, and
the ultraviolet (UV) divergences appear in the form of the poles in ε in the correlation functions
of the fields {v, v′}. The standard analysis of canonical dimensions supplemented by arguments
of Galilei invariance shows that for d > 2 superficial UV divergences in the model (3.18) are
present only in the one-irreducible function 〈v′v〉1−ir (notation introduced in (2.10) is employed)
and the compensating counterterm enters in the form v′∂2v. In the special case d = 2 a new UV
divergence appears in the one-irreducible function 〈v′v′〉1−ir.

The inclusion of the counterterm v′∇2v in the action (3.18) is tantamount to multiplicative
renormalization of the parameters ν0 and g0 :

ν0 = νZν , D0 = g0ν
3
0 = gµ2εν3, g0 = gµ2εZg, Zg = Z−3

ν . (3.50)

The renormalization constant of viscosity Zν is the only independent renormalization constant in
(3.50). Relation between the renormalization constants of the coupling constant and coefficient
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of viscosity shown in (3.50) follows from the fact that the amplitude of the correlator of the
random force D0 is not renormalized [no renormalization constant is needed for the term v′v′

in action (3.18)]. The quantity µ in (3.50) is the scale setting parameter, ν is the renormalized
viscosity and g is the dimensionless renormalized coupling constant (charge).

An RG analysis of the model (3.18) shows the presence of an IR-stable fixed point g∗∼ε
at small ε > 0, which governs the infrared scaling. The parameters of this scaling – critical
dimensions and universal scaling functions – are calculated in the form of series in ε. Due to
the Galilei invariance of the theory the series for critical dimensions of fields ∆v , ∆v′ and the
frequency ∆ω are terminated at the first order

∆v = 1− 2ε/3, ∆v′ = d− 1 + 2ε/3, ∆ω = 2− 2ε/3. (3.51)

These formulas are exact without higher order corrections with respect to ε. They follow from
relation (3.50) between the renormalization constantsZg andZν , which, in turn, is a consequence
of the absence of renormalization of the non-local term in (3.18). At the realistic value ε = 2
quantities (3.51) assume the Kolmogorov values

∆v = −1/3, ∆ω = 2/3. (3.52)

Critical dimensions (3.51) are free from singularities at d → 2 referred to in section 3.2. How-
ever, other physical quantities like the skewness factor, the Kolmogorov constant and critical
dimensions of various composite operators strongly depend on the space dimension. Contrary to
(3.51), these quantities are expressed in the form of infinite series of types (3.40), (3.41), (3.42).
The following sections will be devoted to the analysis of the renormalization of the model at the
exceptional space dimension d = 2 and to the construction of a renormalization scheme which
provides for improved ε expansions of the aforementioned quantities.

As it was already emphasized, in model (3.18) additional UV divergences appear in the one-
irreducible function

〈
v′v′

〉
1−ir

as d→ 2. In particular, these divergences manifest themselves in
the form of singularities in ∆ = (d− 2)/2 in coefficients of the usual ε-expansion (3.40). They
can be eliminated by addition of a counterterm of the form v′∇2v′ to the action. This counterterm
is local and quite different from the nonlocal contribution v′Dv′/2 to action (3.18). To restore
the (technically convenient) multiplicative renormalization of the model, the authors of [146]
have proposed to pass to the two-charge model (i.e. with two coupling constants) in which to the
function (3.12) ∼k4−d−2ε = k2−2∆−2ε the term ∼k2 with an independent coefficient is added:

df (k) = D10k
2−2∆−2ε +D20k

2, Di0 = gi0ν
3
0 , i = 1, 2 . (3.53)

Here, the amplitude D0 from (3.12) is now denoted by D10. The parameters g10 and g20 intro-
duced in (3.53) play the rôle of two independent bare charges. The noise correlation function
chosen for the velocity field reflects the detailed intrinsic statistical definition of forcing, whose
consequences are thoroughly discussed in Ref. [162]. Correlation functions of noise with long-
range and short-range terms include two principal — low and high wave number scale — kinetic
forcings separated by a transition region at the vicinity of the characteristic wavenumber of or-
der O([gv10/gv20]

1
5 ). In the language of classical hydrodynamics the forcing contribution ∝ k2

corresponds to the appearance of large eddies convected by small and active eddies.
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As before, the unrenormalized action is taken in the form (3.18), but now instead of the
injection function (3.12) the function (3.53) is used in function (3.48); thus the unrenormalized
action of the extended model is

S =
1

2
v′(D10k

2−2∆−2ε +D20k
2)v′ + v′ · [−∂tv + ν0∇2v − (v ·∇)v] . (3.54)

Relations between renormalized and bare parameters are expressed by the formulas

D10 = g10ν
3
0 = g1µ

2εν3, D20 = g20ν
3
0 = g2µ

−2∆ν3ZD2 , ν0 = νZν ,

g10 = g1µ
2εZg1

, g20 = g2µ
−2∆Zg2

, (3.55)

with two independent renormalization constants for the coefficient of viscosity ν0 and for the
amplitude D20. The amplitude D10 of the non-local term of the correlator of the random force is
not renormalized. Therefore two additional relations follow

Zg1Z
3
ν = 1, Zg2Z

3
ν = ZD2 . (3.56)

The independent renormalization constants Zν and ZD2
are found from the condition that the

one-irreducible functions
〈
v′v
〉

1−ir

∣∣
ω=0

and
〈
v′v′

〉
1−ir

∣∣
ω=0

are UV finite (are free from poles
with respect to ε at ∆/ε = const). In [146] the renormalization constants are calculated in the
minimal subtraction scheme (MS) [only poles with respect to ε, ∆ = O(ε) and their linear com-
binations are subtracted]. To reach our goal a different subtraction scheme with a normalization
point (NP) is more suitable. To this end, introduce normalized scalar one-irreducible functions
as

Γv′v =

〈
v′ivi

〉
1−ir

∣∣
ω=0

νp2(1− d)
, Γv′v′ =

〈
v′iv
′
i

〉
1−ir

∣∣
ω=0

ν3p2(d− 1)
− g1(µ/p)2∆+2ε − g2 (3.57)

and determine the renormalization constants from the conditions

Γv′v

∣∣∣
p=0,
µ=m

= 1 , Γv′v′
∣∣∣
p=0,
µ=m

= 0 . (3.58)

Note that these normalization conditions are different from those used in [152, 153].
Application of the RG approach to the renormalized model specified by the condition (3.58)

leads to the same ε,∆ expansions in the ray scheme as in [146]. Instead, to exploit the scheme
dependence of perturbation theory, we propose to use the renormalization scheme (3.58) without
the ε, ∆ expansion. Such a scheme reproduces correctly the leading terms of expansion in both
regimes ε → 0 ,∆ = const and ε∼∆ → 0 simultaneously. For all that, in the first case, the
additional term v′∇2v′ is an infrared irrelevant operator in the action and the renormalization
constant ZD2

describes the renormalization of this additional operator.
One-loop calculation of these renormalization constants yields

Zν = 1 +
d− 1

4(d+ 2)

(
− u1

2ε
+
u2

2∆

)
, (3.59)

ZD2
= 1 +

d2 − 2

4d(d+ 2)

(
− u2

1

2(2ε+ ∆)u2
− u1

ε
+
u2

2∆

)
, (3.60)
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where instead of g1 and g2 more convenient charges u1 and u2 are used:

u1 ≡ S̄dg1 , u2 ≡ S̄dg2 , (3.61)

where

S̄d ≡ Sd/(2π)d, Sd ≡ 2πd/2/Γ(d/2) (3.62)

are often encountered geometrical factors. Here, Sd is the surface area of the unit sphere in
d-dimensional space and Γ is Euler’s Gamma function. From (3.55), (3.59) and (3.60) the renor-
malization constants of the charges u1 and u2 are determined as

Zu1
= 1 +

3(d− 1)

4(d+ 2)

(u1

2ε
− u2

2∆

)
, (3.63)

Zu2
= 1 +

d2 − 2

4d(d+ 2)

(
− u2

1

2(2ε+ ∆)u2
− u1

ε
+
u2

2∆

)
+

3(d− 1)

4(d+ 2)

(u1

2ε
− u2

2∆

)
. (3.64)

The corresponding RG functions are then found straightforwardly

γi = (β1∂u1
+ β2∂u2

) lnZui , i = 1, 2 , (3.65)

β1 = −u1(2ε+ γ1) , β2 = −u2(−2∆ + γ2) . (3.66)

In the linear approximation for γ’s with respect to charges u1 and u2 it is enough to use β1 '
−2u1ε , β2 ' 2u2∆ , because γ1 = O(u) and γ2 = O(u) in (3.65). We find

γ1 = −3(d− 1)

4(d+ 2)
(u1 + u2) , (3.67)

γ2 =
(d2 − 2)(u1 + u2)2

4d(d+ 2)u2
− 3(d− 1)

4(d+ 2)
(u1 + u2). (3.68)

With the use of (3.66), (3.67) and (3.68), the coordinates of the nontrivial fixed point u∗1 > 0,
u∗2 > 0 are found as the solution of the equations β1(u∗) = 0, β2(u∗) = 0 in the form

u∗1 + u∗2 =
8ε(d+ 2)

3(d− 1)
, (3.69)

u∗2 =
ε2

ε+ ∆

8(d2 − 2)(d+ 2)

9d(d− 1)2
. (3.70)
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Stability of the fixed point is determined by the sign of the real part of the eigenvalues Ω± of the
matrix Ω:

Ω± = ∆ +
2ε(2d2 − 3d+ 2)

3d(d− 1)
±

√
∆2 − 4(d2 − 2)

3d(d− 1)
ε∆− 4(d2 − 2)(2d2 − 3d+ 2)

9d2(d− 1)2
ε2 .

(3.71)

We are interested in the region ε > 0, ∆ > 0, in which the eigenvalues Ω± are positive. There-
fore, the fixed point (3.69), (3.70) is infrared stable. In the regime ε∼∆ → 0 with the use of
(3.71) we obtain

Ω± = ∆ +
4ε

3
±
√

∆2 − 4

3
ε∆− 8

9
ε2 +O(ε2) (3.72)

which is consistent with the result of [146]. At ε→ 0, ∆ = const it follows that

Ω− = 2ε+
2(d2 − 2)

3d(d− 1)
· ε

2

∆
+O(ε3) , (3.73)

Ω+ = 2∆ +
2(d2 − 3d+ 4)

3d(d− 1)
ε− 2(d2 − 2)

3d(d− 1)
· ε

2

∆
+O(ε3) . (3.74)

The quantity Ω− plays the rôle of the correction index ω in the framework of the prevailing ε
expansion in the theory of developed turbulence whereas Ω+ determines the critical exponent of
the infrared-irrelevant composite operator v′∂2v′.

The terms ∼ε in (3.73) and (3.74) are reliable: for Ω− relation (3.73 reproduces the known
one-loop expression [62] for the exponent ω; for Ω+ we have checked the result by a direct
calculation of the critical dimension of the composite operator v′∂2v′ in the usual ε expansion.
Moreover, the terms ∼ε2/∆ yield the true singular part with respect to ∆ in the coefficients
of ε2: for Ω− it was confirmed by the pioneering two-loop calculation [161], for Ω+ we have
checked it by calculation of the critical dimension of the composite operator v′∂2v′ in two-loop
approximation. Expression (3.71), in fact, correctly reproduces main singular terms of the form
ε(ε/∆)k and all leading terms of the ε expansion, i.e. the first terms of the corresponding Laurent
series (3.41).

Calculation of graphs with increasing number of loops in our renormalization scheme guar-
antees that results become more precise step by step in the sense that the number of true terms
of the ε expansion and the number of singular in ∆ contributions is increased: an n-loop calcu-
lation correctly reproduces first n of all coefficients Ak(d) in (3.40), while simultaneously of the
coefficients Ak(d) with k > n the first n terms of their Laurent series (3.41) will be reproduced
correctly.

3.4.2 Calculation of the Kolmogorov constant through the skewness factor

Even in the field-theoretic RG approach several ways have been proposed [72, 148, 149, 153,
154, 161, 163] to calculate the (non-universal) amplitude factor – the Kolmogorov constant – in
Kolmogorov’s 5/3 law for the turbulent energy spectrum

E(k) ∼ C ′KE
2/3
k−5/3 , (3.75)
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where E is the average energy injection rate per unit mass. The notation in (3.75) follows that
of [161].

Different approximations for the connection of model parameters and the average energy
injection rate lead have resulted in different values for the Kolmogorov constant. At present
the most reliable approach appears to be that based on the connection between the Kolmogorov
constant and the skewness factor [161]. For the latter consistent expansions both in ε and ε, ∆
may be constructed and actually have been calculated in two-loop approximation. As in case
of critical exponents, scheme-dependence or perturbative calculation may be used to improve
the performance of regulator expansions. The renormalization scheme presented in preceding
sections following [154] allows to obtain best match with experimental data up to date.

The Kolmogorov constant is not determined uniquely in the ε expansion in the model with
power-law injection (3.12) (for details, see [153]). On the other hand physical quantities inde-
pendent of the amplitude D10 (3.12) (universal quantities) are determined unambiguously in the
framework of the ε expansion. The skewness factor

S ≡ S3/S
3/2
2 , (3.76)

is an example of such a quantity. In (3.76) Sn are structure functions defined by relations

Sn(r) ≡
〈
[vr(t,x + r)− vr(t,x)]n

〉
, vr ≡ (v · r)/r, r ≡ |r|. (3.77)

According to the Kolmogorov theory, the second-order structure function S2(r) in the inertial
range is of the form

S2(r) = CKE2/3r2/3, (3.78)

where E is the average energy dissipation rate per unit mass (in the steady state it coincides with
the mean energy injection rate E , see Eq. (3.75)) and CK is the Kolmogorov constant, the value
of which is not determined in the framework of the phenomenological approach. Although there
is strong experimental evidence that the Kolmogorov scaling Sn(r)∼rn/3 does not hold in the
inertial range for the structure functions of order n ≥ 4, for the second-order structure function
S2(r) the experimental situation about anomalous scaling [i.e., deviation of the power of r from
the Kolmogorov value 2/3 in (3.35)] in the inertial range is still controversial and in any case
this deviation is small [164,165]. Therefore, we shall use the Kolmogorov asymptotic expression
(3.78) for the second-order structure function S2(r) in the following analysis.

The amplitude of the third-order structure function S3(r) is determined in the Kolmogorov
theory exactly [70, 79]:

S3(r) = − 12

d(d+ 2)
E r. (3.79)

All these expressions together with (3.76), (3.78) allow to connect the Kolmogorov constant with
the skewness factor:

CK =
[
− 12

d(d+ 2)S

]2/3
. (3.80)
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Among the three quantities S2(r), S3(r) and S only the last one has a unique well-defined
ε expansion. Thus, relation (3.80) (valid only at the physical value ε = 2) may be used to
determine CK by means of the calculated value S(ε = 2).

To find the RG representation of the skewness factor (3.76) the RG representations of the
functions S2(r) and S3(r) have to be determined. The function S2(r) is connected with the
Fourier transform of the pair correlation function G(p) by relation

S2(r) = 2

∫
ddk

(2π)d
G(k)

[
1− (k · r)2/(kr)2

]
{1− exp [i(k · r)]} . (3.81)

Therefore, the RG representation of S2(r) can be specified with the aid of the RG representation
(3.35). A similar RG representation can be written for the function S3(r). It is, however, more
convenient to use the exact result analogous to expression (3.79)

S3(r) = −3(d− 1) Γ(2− ε) (r/2)2ε−3D10

(4π)d/2 Γ(d/2 + ε)
. (3.82)

This relation clearly demonstrates that the amplitude of the structure function expressed through
D10 has a singularity at ε→ 2. In this case the singularity is in the form ∼(2− ε)−1. After the
substitution of the amplitude D10∼(2 − ε) into (3.82) the singularity on the right-hand side of
(3.82) is canceled by the node of D10. This leads to a finite expression for S3(r) at ε = 2 which
coincides with (3.79).

Relations (3.35), (3.81) and (3.82) could be used as the basis for the construction of the ε
expansion of the skewness factor (3.76), but on this way there is an additional complication. The
point is that the behavior S2(r)∼r2−2ε/3, which is determined by power counting from (3.81)
and (3.35), is valid only at ε > 3/2, because at ε < 3/2 the integral (3.81) diverges as k → ∞
[it means that in this case the leading contribution to S2(r) is given by the term

〈
v2
r(t,x)

〉
independent of r]. The derivative r∂rS2(r), however, is free from this flaw and according to
(3.81) it assumes the form

r∂rS2(r) = 2

∫
ddk

(2π)d
G(k)

[
1− (k · r)2/(kr)2

]
(k · r) sin(k · r). (3.83)

The integral in (3.83) converges at all values 0 < ε < 2. On the other hand, at the physical
value ε = 2 the amplitudes in S2(r) and r∂rS2(r) differ from each other only by the factor
2/3, therefore the ε expansion has been constructed for the following analogue of the skewness
factor [152, 161, 166]

Q(ε) ≡ r∂rS2(r)

|S3(r)|2/3
=

r∂rS2(r)

(−S3(r))2/3
. (3.84)

The Kolmogorov constant and the skewness factor are expressed through the value Q(ε = 2)
according to (3.76), (3.78) and (3.79) by relations:

CK = [3Q(2)/2] [12/d(d+ 2)]
2/3

, S = − [3Q(2)/2]
−3/2

. (3.85)

Substituting expressions (3.83), (3.35) and (3.82) into (3.84) we obtain

Q(ε) =
[
4(d− 1)/9/u2

1∗
]1/3

A(ε)R(1, u1∗, u2∗), (3.86)
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where

A(ε) =
Γ(2− 2ε/3)Γ1/3(d/2)Γ2/3(d/2 + ε)

Γ(d/2 + 2ε/3)Γ2/3(2− ε)
= 1 +O(ε2). (3.87)

Consecutive loop calculations of the coordinates of the fixed point u∗1, u
∗
2 and the scaling function

R(1, u∗1, u
∗
2) in (3.86) in the framework of the scheme used increase the number of true terms of

the usual ε expansion in these quantities. In all higher coefficients of the ε expansion the number
of true terms of their Laurent series (3.41) increases as well. The quantity A(ε) is not singular at
d = 2 therefore it is sufficient to use the corresponding part of its ε-expansion.

At the leading order the scaling function R(1, u∗1, u
∗
2) in (3.86) is

R(1, u∗1, u
∗
2) ≈ u∗1 + u∗2

2
. (3.88)

Putting A(ε) ≈ 1 we obtain in one-loop approximation

Q(ε) =
[
4(d− 1)/9/(u∗1)2

]1/3 · u∗1 + u∗2
2

, (3.89)

where for the coordinates u∗1, u
∗
2 values (3.69) and (3.70) are implied. Calculating Q in (3.89)

at d = 3 and ε = 2 we obtain Q(2) ≈ 1.461 . Further, using this value for calculation of
the Kolmogorov constant and skewness factor (3.85) we arrive at the values CK ≈ 1.889 and
S ≈ −0.308 . The values CK ≈ 2.01 and S ≈ −0.28 are considered the most reliable exper-
imental values of these quantities [167]. Therefore, the scheme which we have suggested for
calculations by means of improvement of the ε expansion provides quite reasonable agreement
with the experiment. It should be recalled that the prevailing ε expansion at one-loop order gives
the values CK ≈ 1.47 and S ≈ −0.45 .

The version of the RG approach used in the present paper bears certain resemblance with
the well known RG method in the real space, which is widely used in the theory of critical
phenomena (it is also called the ”g expansion”). In the theory of phase transitions the parameter
ε has the meaning of deviation from the critical space dimension (e.g, ε = 4 − d for the ϕ4-
model). In the framework of the g expansion renormalization constants – adopted from the
logarithmic theory – are calculated in the form of power series in the coupling constant g directly
at ε = 1, i.e. at real value of the space dimension d = 3. The use of term ”RG in real space” is
just explained by this feature. In the theory of turbulence the parameter ε has different meaning
and it is more pragmatic to use the term g expansion. In the framework of the g expansion
calculations are notably simplified because it is much easier to calculate finite integrals in three
dimensions than to calculate integrals with singularities at d → 4. This is the reason why the
use of the g expansion in the theory of critical phenomena has allowed to achieve better accuracy
in perturbative calculations than in the usual ε expansion. However, we must keep in mind
a drawback of the g expansion. While the results of the ε expansion are unambiguous and
independent of the renormalization scheme, the g expansion approximates higher terms of the ε
expansion, and the result of such an approximation depends, in particular, on the choice of the
form of the IR regularization. In the theory of critical phenomena a natural regularization present
in the model at T − Tc 6= 0 is usually used, but it does not eliminate the problem of ambiguity.

Here, an approach akin to the g expansion has been used to achieve a different aim. The
choice of the renormalization constants from natural normalization conditions for the response
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and correlation functions together with the additional renormalization of random forcing allowed
to include singular in d− 2 contributions to the coefficients in all orders of the ε expansion. This
summation led to a remarkable improvement of agreement of the theoretical prediction with the
experimental value of the Kolmogorov constant already in the one-loop approximation.

3.5 Advection of passive scalar

One of the most studied models related to the turbulence is an advection of passive scalar
quantity [32, 73]. The main object of study are statistical properties of a field, which is coupled
to the velocity field v through advective term (See Sec. 1.2.3). From general point of view there
are two main approaches depending on the way v is generated:
a) field v is governed by the stochastic Navier-Stokes equation.

b) field v is considered as an random variable with prescribed properties.

In what follows, we apply the first approach, whereas the latter will be analyzed in Sec. 4.

3.5.1 Functional formulation of the passive scalar problem near two dimensions

Here, we study the problem of the advection of the passive scalar using a random velocity
field generated by the stochastically forced Navier-Stokes equation [109], which has been widely
used to produce stochastic velocity field with the Kolmogorov scaling behavior obtained by the
use of the field-theoretic renormalization group [62, 63]. The passive scalar problem has already
been treated within the RG approach of the randomly forced Navier-Stokes equation for both the
local [61] and long-range [168] correlations of the random force, but without random pumping
of the passive scalar, due to which the behavior of the correlation functions of the passive scalar
was not addressed at all.

The velocity field in the functional-integral approach is generated by the dynamic action
of the randomly forced Navier-Stokes equation (3.54), to which a contribution corresponding
to the advection of the passive scalar is added. The statistical model of the advection of the
passive scalar characterized by the concentration field θ(x) in the turbulent environment (see
e.g. [168], [145]) is given by the stochastic differential equation

∂tθ + (v ·∇)θ − ν0u0∇2θ = fθ , (3.90)

where u0 is the inverse Prandtl number. Physically it represents the ratio between diffusion and
viscosity in a liquid. The random source field fθ is assumed to be Gaussian with zero mean and
the correlation function’

〈 fθ(x1)fθ(x2) 〉 ≡ Dθ(x1 − x2)

=
u3

0ν
3
0

d− 1
δ(t1 − t2)

∫
ddk

(2π)d
eik·x

[
gθ10 k

2−2∆−2aε + gθ20k
2
]
. (3.91)

Since near two dimensions a local term is generated to the correlation function of the scalar noise
(describing thermal noise), we have taken the correlation function with both the long-range and
local term at the outset.
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A detailed analysis [168] of the renormalization of the passive scalar model has shown that
there are superficial divergences in the graphs corresponding to the 1PI Green functions Γv′v , and
Γθ′θ in the renormalization scheme of Refs. [62, 63] applicable for space dimensions d > 2. We
will refer to the approach of [62,63] as the standard scheme. The 1PI Green functions Γv′vvv , and
Γθ′θv, which could, by standard power counting, give rise to the renormalization of the nonlinear
terms in the Navier-Stokes and advection-diffusion equation, are actually finite due to the Galilei
invariance of the stochastic equations with temporally white noise.

The stochastic problem of the passive scalar (3.90), (3.91) gives rise to the field-theoretic
action

SPS[θ, θ′,v] =
1

2
θ′Dθθ′ + θ′

[
−∂tθ + u0ν0∇2θ − (v ·∇)θ

]
. (3.92)

As explained above, this action containing non-analytic terms (proportional to the coupling con-
stants gv10 and gθ10) requires also the analytic terms (proportional to gv20 and gθ20) in order to be
multiplicatively renormalizable. All dimensional constants gv10, gv20, gθ10 and gθ20, which con-
trol the amount of randomly injected energy and mass play the role of the expansion parameters
of the perturbation theory.

For convenience of further calculations the factors ν3
0 and ν3

0u
3
0 including the ”bare” (molec-

ular) viscosity ν0 and the ”bare” (molecular or microscopic ) diffusion coefficient ν0u0 have been
extracted.

3.5.2 Calculation of the fixed points of the renormalization group

The model given by the sum of dynamic actions (3.54) and (3.92) is renormalizable by the
standard power-counting rules for ∆ = 0 (see (3.22) for the definition of ∆) and ε = 0. The
divergent 1PI Green functions are Γvv′ , Γθθ′ as in the standard case [63] and also Γv′v′ , Γθ′θ′

typical of d = 2, so that the model is multiplicatively renormalizable. The standard Feynman
diagrammatic expansion can be used in a straightforward fashion. The inverse matrix of the
quadratic part in the actions determines a form of the bare propagators. The propagators are pre-
sented in the wave-number-time representation, which is for the translationally invariant systems
the most convenient way for doing explicit calculations. Graphical representation of propagators
is depicted in Fig. 3.3 and the corresponding algebraic expressions are

∆vv′

ij (k, t) = ∆v′v
ij (−k,−t) = θ(t)Pij(k) e−ν0 k

2t,

∆θθ′(k, t) = ∆θ′θ(−k,−t) = θ(t)e−u0ν0 k
2t,

∆vv
ij (k, t) =

1

2
ν2

0 Pij(k)
(
gv10 k

−2ε−2∆ + gv20

)
e−ν0 k

2|t|,

∆θθ(k, t) =
1

2
u2

0 ν
2
0

(
gθ10k

−2 aε−2∆ + gθ20

)
e−u0ν0 k

2|t|. (3.93)

In our model there are two different interaction vertices, which are graphically depicted in
Fig. 3.4, where we have included also the corresponding vertex factors. The corresponding
expressions in momentum representation are

Vijl = i(pjδil + plδij) (3.94)

and

Vj = ikj . (3.95)
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v v
′= ∆

vv′ , θ θ′= ∆
θθ′ ,

v v= ∆
vv, θ θ = ∆

θθ.

Figure 3.3. Diagrammatic representation of the bare propagators. The time flows from right to left.

v′i(p)

vj

vl

≡ Vijl,
vj

θ′(k)

θ

≡ Vj.

Figure 3.4. Diagrammatic representation of the interaction vertices describing an interactions between
velocity components (left) and advection interaction (right).

Note that the momentum is always carried by the slashed field.
Graphical representation of the one-loop contributions to diverging 1PI functions is depicted

in Fig. 3.5.
The divergences show in the form of poles in ∆, ε and their linear combinations and the ray

scheme is used (which implies that ∆ and ε are treated as small parameters of same order).
Renormalized Green functions are expressed in terms of the renormalized parameters

gv1 = gv10µ
−2ε Z3

1 , gv2 = gv20 µ
2∆ Z3

1Z
−1
3 , ν = ν0Z

−1
1 ,

gθ1 = gθ10µ
−2aε−2∆Z3

2 , gθ2 = gθ20Z
3
2Z
−1
4 , u = u0Z1Z

−1
2 (3.96)

appearing in the renormalized action. From connections (3.96) it follows that the β functions are

βv1 = gv1 (−2ε+ 3γ1) , βv2 = gv2 (2∆ + 3γ1 − γ3) , βu = u (γ1 − γ2) ,

βθ1 = gθ1 (−2aε− 2∆ + 3γ2) , βθ2 = gθ2 (3γ2 − γ4) . (3.97)

Figure 3.5. One-loop graphs giving rise to the divergent terms in the perturbative expansion of the one-
particle irreducible Green functions Γvv′ , Γθθ′ , Γθ′θ′ , and Γθ′θ′ , respectively. The slashes on the lines
denote the derivatives appearing in the cubic interaction terms.
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The function γ4 may be expressed in the following form

γ4 = γ′4(gv1, gv2, u) +
gθ1
gθ2

γ′′4 (gv1, gv2, u). (3.98)

As a consequence, the RG functions βθ1 and βθ2 are linear functions of the coupling constants
gθ1 and gθ2

βθ1 = gθ1(−2aε− 2∆ + 3γ2) , βθ2 = gθ2(3γ2 − γ′4)− gc1γ′′4 . (3.99)

Since γ1, γ2 and γ3 functions depend on gv1, gv2 and u only, vanishing of the first three β
functions in (3.97) already yields a closed system of equations for the fixed point values of gv1,
gv2 and u.

Thus, fixed points in the model with scalar pumping are determined by the system of equa-
tions

gv1 (−2ε+ 3γ1) = 0, gv2 (2∆ + 3 γ1 − γ3) = 0, u (γ1 − γ2) = 0, (3.100)

of the passive scalar model without the random scalar source.
Apart from the Gaussian fixed point g∗v1 = g∗v2 = 0, which is stable for ∆ > 0, ε < 0,

there are two nontrivial fixed points of the RG: the fixed point corresponding to short-range
correlations of the random force [61] with

g∗v1 = 0, g∗v2 = −32π∆, (3.101)

and the inverse Prandtl number

u∗ =

√
17− 1

2
' 1.562. (3.102)

The region of stability of this short-range fixed point 2∆ + 3ε < 0, ∆ < 0 is determined by the
positivity of the eigenvalues Ωi, i = 1, 2, 3 of the Ω matrix

Ω1 = −2ε− 3∆, Ω2 = −2∆, Ω3 = −2∆

√
17√

17 + 1
. (3.103)

The third fixed point is the kinetic fixed point, which is the fixed point relevant to the description
of turbulent diffusion. At the kinetic fixed point the value of the renormalized inverse Prandtl
number u is given by (3.102) and the values of the other relevant coupling constants

g∗v1 =
64π

9

ε (2ε+ 3∆)

ε+ ∆
, g∗v2 =

64π

9

ε2

∆ + ε
, (3.104)

of the double expansion of the stochastic Navier-Stokes equation [146].
The calculation of the Ω matrix (up to the order O(ε,∆)) at this fixed point yields the eigen-

values

Ω1,2 =
1

3

[
(3∆ + 4ε)±

√
9∆2 − 12∆ε− 8ε2

]
, Ω3 =

4
√

17√
17 + 1

ε. (3.105)
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From these expressions we see that the region of stability of the kinetic fixed point is ε > 0,
2ε+ 3∆ > 0. Further analysis of this model can be found in [169].

3.6 Stochastic magnetohydrodynamics at d ≥ 2

During the past four decades asymptotic analysis of stochastic transport equations [Navier-
Stokes equation, magnetohydrodynamic (MHD) equations, advection-diffusion equation and the
like] has attracted increasing attention. Somewhat less effort has been devoted to the asymptotic
analysis of stochastic magnetohydrodynamics since the pioneering work of Fournier et al [142]
and Adzhemyan et al [143]. In particular, in these papers the existence of two different anoma-
lous scaling regimes (kinetic and magnetic) in three dimensions was established corresponding
to two non-trivial infrared-stable fixed points of the renormalization group. It was also conjec-
tured that in two dimensions the magnetic scaling regime does not exist due to instability of
the magnetic fixed point. However, in both papers there were flaws in the renormalization of the
model in two dimensions [32,146]. Even more serious shortcomings are present in investigations
of MHD turbulence [170, 171], in which a specifically two-dimensional setup has been applied
with the use of the stream function and magnetic potential. Therefore, results obtained for the
two-dimensional case in these papers cannot be considered completely conclusive.

Here, we present a field-theoretic RG analysis of the stochastically forced equations of mag-
netohydrodynamics with the proper account of additional divergences which arise in two dimen-
sions. This gives rise to a double expansion in the analytic and dimensional regulators ε and
∆, respectively. In the ray scheme of the double expansion the standard procedure of minimal
subtractions was used. The RG analysis of the large-scale asymptotic behavior of the model
confirms the basic conclusions of the previous analyses [142, 143] that near two dimensions a
scaling regime driven by the velocity fluctuations may exist, but no magnetically driven scaling
regime can occur.

Second, a renormalization of the model with a different choice of finite renormalization is
performed in order to find at which non-integer dimension the magnetic fixed point ceases to
be stable. This borderline dimension was found in Ref. [142] with the use of the momentum-
shell RG in a setup valid in a fixed space dimension d > 2. In the double expansion in ε and
2∆ = d − 2 this effect cannot be traced at one-loop order, but higher-order calculation is re-
quired. Therefore, also a description based on the RG analysis according to the ”principle of
maximum divergences” is included. This procedure gives rise to RG functions such that in the
limit of small ∆, ε they reproduce the results of the two-parameter expansion, and in the limit of
small ε (but finite ∆) they yield the results of the usual ε expansion [142, 143]. These properties
are similar to those of the normalization point schemes in the stochastic Navier-Stokes problem.

3.6.1 Field theory for stochastic magnetohydrodynamics

The model of stochastically forced conducting fluid is described by the system of magneto-
hydrodynamic equations for the fluctuating velocity field v(t,x) ≡ v(x) of an incompressible
conducting fluid and the magnetic induction B =

√
ρµb (ρ is the density and µ the permeability

of the fluid) in the form [142, 143]

∂tb + (v ·∇)b− (b ·∇)v − ν0u0∇2b = f b , ∇ · f b = 0 (3.106)

In (3.106) parameter 1/u0 is the unrenormalized magnetic Prandtl number.
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The statistics of v and b are completely determined by the non-linear equations (3.9), (3.106)
and the probability distribution of the external large-scale random forces fv , f b.

To analyze renormalization near two dimensions the SDE (3.106) is supplemented by the
forcing statistics

〈 f bi (x1)f bj (x2) 〉 = u2
0 ν

3
0 Dijδ(t)

∫
ddk

(2π)d
Pij(k) eik·x1−x2

×
[
gb10 k

2−2∆−2 a ε + gb20 k
2
]
≡ Db

ij(x1 − x2) , (3.107)

〈 fvi (x1)f bj (x2) 〉 = 0 . (3.108)

We choose uncorrelated kinematic and magnetic driving [〈 fvi f bj 〉 = 0], because we are
considering arbitrary space dimension d ≥ 2 and it is not possible to define a non-vanishing
correlation function of a vector field and a pseudovector field in this case. This can be done
separately for integer dimensions of space, but, contrary to claims of some authors [142, 172], is
no obstacle for application of the RG [143]. As usual the prefactors u0 ν

3
0 and u2

0 ν
3
0 in (3.108)

have been extracted for the dimensional reasons.
We are working in an arbitrary dimension, but the renormalization will be carried out within

the two-dimensional model. In magnetohydrodynamic turbulence, in contrast to fluid turbulence,
there are direct energy cascades in both two and three dimensions. Therefore it is natural to
expect that the scaling behavior is rather similar in both cases, and we apply the same forcing
spectrum in all space dimensions d ≥ 2.

The system of the stochastic MHD equations (3.9), (3.106) and (3.108) gives rise to the
following De Dominicis-Janssen action:

S[v,v′, b, b′] =
1

2
b′Dbb′ + b′ · [−∂tb + u0ν0∇2b + (b ·∇)v − (v ·∇)b]

+
1

2
v′Dvv′ + v′ · [−∂tv − (v ·∇)v + ν0∇2v + (b ·∇)b]. (3.109)

The dimensional constants gv10, gb10, gv20, and gb20, which control the amount of randomly in-
jected energy through (3.108), play the role of expansion parameters of the perturbation theory.

3.6.2 Double expansion of the model

The action (3.109) gives rise to four three-point interaction vertices defined by the standard
rules [25], and the following set of propagators

∆vv′

ij (k, t) = ∆v′v
ij (−k,−t) = θ(t)Pij(k) e−ν0 k

2t , (3.110)

∆bb′

ij (k, t) = ∆b′b
ij (−k,−t) = θ(t)Pij(k) e−u0ν0k

2t , (3.111)

∆vv
ij (k, t) =

1

2
u0 ν

2
0 Pij(k) e−ν0k

2|t| ( gv10 k
−2ε−2δ + gv20

)
, (3.112)

∆bb
ij (k, t) =

1

2
u0 ν

2
0 Pij(k) e−u0ν0k

2|t| ( gb10 k
−2 aε−2δ + gb20

)
(3.113)

in the time-wave-number representation. With due account of Galilei invariance of the ac-
tion (3.109), and careful analysis of the structure of the perturbation expansion it can be shown
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[143] that for any fixed space dimension d > 2 only three one-particle irreducible (1PI) Green
functions Γv′v , Γb′b and Γv′bb with superficial UV divergences are generated by the action. They
give rise to counterterms of the form already present in the action, which thus is multiplicatively
renormalizable by power counting for space dimensions d > 2.

We would like to emphasize that the structure of renormalization should always be analyzed
separately and it is not at all obvious that the nonlinear terms are not renormalized in the solution
of the stochastic MHD equations. In fact, direct calculation shows that the Lorentz-force term is
renormalized. There seems to be a certain amount of confusion about this point in the literature.
For instance, in Refs. [170, 172] the authors erroneously neglect renormalization of nonlinear
terms as high-order effect. The approach adopted in Ref. [170] for two-dimensional MHD turbu-
lence was criticized by Kim and Young [171], who, alas, in their field-theoretic treatment of the
same problem ignore renormalization of the Lorentz force without any justification. They also
neglect renormalization of the forcing correlations by effectively considering renormalization of
the model at d > 2, which does not seem to be appropriate in a setup in which the strictly two-
dimensional quantities, the stream function and magnetic potential, are used for the description
of the problem.

The analysis of the correlation functions of the velocity field and magnetic induction is es-
sential near two dimensions, since in two dimensions additional divergences in the graphs of the
1PI Green functions Γv′v′ and Γb′b′ occur. The simplest way to include the corresponding local
counter terms v′∇2v′ and b′∇2b′ in the renormalization is to add corresponding local terms
to the force correlation function at the outset in order to keep the model multiplicatively renor-
malizable. This is why we have used the force correlation functions (3.108) and (3.13) with the
relation (3.23) with both long-range and short-range correlations taken into account. As a result,
the action (3.109) is multiplicatively renormalizable and allows for a standard RG asymptotic
analysis [25, 173].

The model is regularized using a combination of analytic and dimensional regularization
with the parameters ε and ∆, the latter was introduced in Eq. (3.22). As a consequence, the UV
divergences appear as poles in the following linear combinations of the regularizing parameters:
ε, ∆, 2ε+ ∆, and (a+ 1)ε+ ∆. In principle, the exponent of magnetic forcing correlations 2aε
may be treated as the second analytic regulator to construct a triple expansion of renormalized
quantities at a suitable fixed point. However, in the ray scheme used here all regulators are
assumed to be of same order and the discussion of a triple expansion in this case would be rather
formal.

The UV divergences can be removed by adding suitable counterterms to the basic action SB
obtained from the unrenormalized one (3.109) by the substitution of the renormalized parameters
for the bare ones: gv10 → µ2εgv1, gv20 → µ−2∆gv2, gb10 → µ2aεgb1, gb20 → µ−2∆gb2,
ν0 → ν, u0 → u, where µ is a scale setting parameter having the same canonical dimension as
the wave number.

For the actual calculations the ray scheme with minimal subtractions is convenient. The
counter terms for the basic action corresponding to the unrenormalized action (3.109) are

∆S = ν (Z1 − 1)v′∇2 v + uν (Z2 − 1) b′∇2 b +
1

2
(1− Z4)uν3gv2µ

−2δv′∇2v′

+
1

2
(1− Z5)u2ν3gb2µ

−2∆b′∇2b′ + (Z3 − 1)v′(b ·∇)b, (3.114)
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where the renormalization constants Z1, Z2, Z4, Z5 renormalizing the unrenormalized (bare)
parameters e0 = {gv10, gv20, gb10, gb20, u0, ν0} and the constant Z3 renormalizing the fields b,
and b′, are chosen to cancel the UV divergences appearing in the Green functions constructed
using the basic action. Due to the Galilean invariance of the action the fields v′, and v are not
renormalized.

In a multiplicatively renormalizable model, such as (3.109), the counter terms (3.114) can
be chosen in a form containing a finite number of terms of the same algebraic structure as the
terms of the original action (3.109). Thus, all UV divergences of the graphs of the perturbation
expansion may be eliminated by a redefinition of the parameters of the original model.

Renormalized Green functions are expressed in terms of the renormalized parameters

gv1 = gv10µ
−2εZ2

1Z2, gv2 = gv20µ
2∆Z2

1Z2Z
−1
4 , ν = ν0Z

−1
1 ,

gb1 = gb10µ
−2 aεZ1Z

2
2Z
−1
3 , gb2 = gb20µ

2∆Z1Z
2
2Z
−1
3 Z−1

5 , u = u0 Z
−1
2 Z1 . (3.115)

The definitions (2.30) and the relations (3.115) yield β functions of the form

βgv1 = gv1(−2ε+ 2γ1 + γ2), βgv2 = gv2(2∆ + 2γ1 + γ2 − γ4),

βgb1 = gb1(−2aε+ γ1 + 2γ2 − γ3), βgb2 = gb2(2∆ + γ1 + 2γ2 − γ3 − γ5),

βu = u(γ1 − γ2). (3.116)

Apart from the Gaussian fixed point g∗v1 = g∗v2 = g∗b1 = g∗b2 = 0 with no fluctuation effects
on the large-scale asymptotics, which is IR stable for ∆ > 0, ε < 0, a > 0, there are two
nontrivial IR stable fixed points of the RG with nonnegative g∗v1, g∗v2, g∗b1,g∗b2, and u∗.

The thermal fixed point is generated by short-range correlations of the random force with

g∗v1 = 0, g∗v2 = −4π(1 +
√

17)∆, g∗b1 = 0, g∗b2 = 0, (3.117)

and the inverse magnetic Prandtl number

u∗ =

√
17− 1

2
' 1.562 . (3.118)

Physically, the asymptotic behavior described by this fixed point is brought about by thermal
fluctuations of the velocity field [61]. The region of stability of the thermal fixed point (3.117),
(3.118) is 2ε + 3∆ < 0, ∆ < 0 in the ∆, ε plane. For the magnetic forcing-decay parameter a
the stability region is determined by the inequality 8aε+ (13 +

√
17)∆ < 0.

The kinetic fixed point [142] generated by the forced fluctuations of the velocity field is given
by the universal inverse magnetic Prandtl number (3.118), the parameters

g∗v1 =
128π

9(
√

17− 1)

ε(2ε+ 3∆)

ε+ ∆
, g∗v2 =

128π

9(
√

17− 1)

ε2

∆ + ε
, (3.119)

and zero couplings of the magnetic forcing

g∗b1 = g∗b2 = 0 , (3.120)

and it may be associated with turbulent advection of the magnetic field. The values of g∗v1 and
g∗v2 in (3.119) correspond to those find previously in Ref. [146]. The region of stability of the
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kinetic fixed point in the ∆, ε plane is ε > 0, 2ε+ 3∆ > 0. The stability of this fixed point also
requires that the parameter a < (13 +

√
17)/12 ≈ 1.427 independent of the ratio ∆/ε. In spite

of the absence of renormalization of the forcing correlation, the momentum-shell approach [142]
yields the same condition.

The system of equations for the fixed points in this multi-charge problem is rather com-
plicated and thus has several (in general complex-number) solutions, which we do note quote
explicitly here, because they are not physically relevant: apart from the fixed points listed above
there are eight IR unstable real-number fixed points in the physical region (all g ≥ 0) of the
parameter space, and several unphysical ones. Among the unstable fixed points are, in particu-
lar, all the possible candidates to magnetic fixed points, i.e. fixed points with a non-vanishing
magnetic coupling constant. Therefore, the conclusion made in Refs. [142, 143] (although on
inconsistent grounds) that the RG does not predict any magnetically driven scaling regime at and
near two dimensions, is confirmed in the double-expansion approach.

An analysis of beta functions reveals that at the leading order of the ray scheme there is no
fixed point with both gb1 and gb2 non-vanishing: at least one of them must be zero [149]. This,
of course, severely reduces the set of possible magnetic fixed points at the outset.

In three dimensions there are stable magnetic fixed points, whose stability as a function of
space dimension may be followed in the usual ε expansion. Stability of the magnetic fixed point
disappears at a borderline dimension, whose leading-order value is dc = (3 +

√
649)/10 ≈

2.848 [142]. As seen from the results presented above, to follow the crossover between the two
regimes from below within the ray scheme of triple expansion calculation beyond the one-loop
order is needed.

3.6.3 Renormalization with maximum divergences above two dimensions

All the renormalization constants and the RG functions quoted above may be calculated also
at finite ∆. The resulting system of fixed-point equations allows for a solution in a form of an
ε expansion (with finite ∆) and yields the same result as the usual ε expansion at the leading
order. However, this approach is not self-consistent in the sense that the field theory is not
renormalizable at finite ∆ > 0, but only in the form of a simultaneous expansion in the coupling
constants and ∆ [25].

The aim is now to maintain the model UV finite for ∆ > 0 and simultaneously keep track
of the effect of the additional divergences near two dimensions. To this end we introduce an
additional UV cutoff in all propagators, i.e. instead of the set (3.113) we use the propagators

∆vv′Λ
ij (k, t) = θ(t) θ(Λ− k)Pij(k)e−ν0 k

2t, (3.121)

∆bb′Λ
ij (k, t) = θ(t)θ(Λ− k)Pij(k)e−u0ν0k

2t, (3.122)

∆vvΛ
ij (k, t) =

1

2
θ(Λ− k)u0ν

2
0 Pij(k)e−ν0k

2|t| (gv10k
−2ε−2∆ + gv20

)
, (3.123)

∆bbΛ
ij (k, t) =

1

2
θ(Λ− k)u0ν

2
0Pij(k)e−u0ν0k

2|t| (gb10k
−2aε−2∆ + gb20

)
, (3.124)

where Λ is the cutoff wave number. This change obviously does not affect the large-scale prop-
erties of the model. We would like to emphasize that the additional cutoff must be introduced
uniformly in all lines in order to maintain the model multiplicatively renormalizable. An attempt
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to introduce the cutoff, say, in the local part of the correlation functions only by the substitution
k2 → θ(Λ − k)k2 would fail to renormalize the model multiplicatively, because loop contribu-
tions to the complete (dressed) correlation function would not reproduce such a structure in the
wave-vector space.

In contrast with particle field theories we will keep the cutoff parameter Λ fixed, although
large compared with the physically relevant wave-number scale. This introduces an explicit
dependence on Λ in the coefficient functions of the RG, which has to be analyzed separately in the
large-scale limit in the coordinate space. The setup is thus very similar to that of Polchinski [174].

The coefficient functions of the RG equations become, in general, functions of the parameters
µ and Λ through the dimensionless ratio µ/Λ. Solution for the scalar coefficients of equal-time
velocity and magnetic induction pair correlation functions is (cf. (3.29)):

Gvv(sk,Λ; g) = ν2k−2∆Rv

(
1,
µs

Λ
; g
)
, (3.125)

Gbb(sk,Λ; g) = e
∫ s
1

dx γ3(x)/xν2k−2∆Rb

(
1,
µs

Λ
; g
)
, (3.126)

where g is now the solution of the Gell-Mann-Low equations:

dg(s)

d ln s
= βg

[
g(s),

µs

Λ

]
, (3.127)

with the β functions explicitly depending on s, the dimensionless wave number.
Above two dimensions an UV renormalization of the model would require and infinite num-

ber of counter terms and in this sense it is not renormalizable in the limit Λ→∞. To avoid deal-
ing with these formal complications, we keep the additional cutoff Λ fixed (although large), and
choose the renormalization procedure according to the principle of maximum divergences [130]:
the same terms of the action are renormalized as in the two-dimensional case in the previous
section (3.114), but the renormalization constants may have an explicit dependence on the scale-
setting parameter through the ratio µ/Λ. The two counter terms∫

dx
[1
2

(1− Z4)uν3gv2 µ
−2∆v′∇2v′ +

1

2
(1− Z5)u2ν3gb2µ

−2∆b′∇2b′
]

(3.128)

are superfluous in the sense that in the limit µ/Λ → 0 the contribution to the Green functions
of the graphs containing the coupling constants gv2 and gb2 remains finite provided 2∆ = d −
2 is fixed and finite and the other counter terms are properly chosen. This is guaranteed by
Polchinski’s theorem [174]. We retain these counter terms in order to have a possibility to pass
to the limit ∆→ 0 in the RG equations.

The presence of the explicit cutoff implies some technical difficulties in the calculation of
the renormalization constants in the traditional field-theoretic approach, which arise because we
are dealing with massless vector fields. It turns out that the coefficient functions of the RG
equation are simplest in a renormalization procedure, which is similar to the momentum-shell
renormalization of Wilson [9]. If we were calculating over the whole wave-vector space without
an explicit UV cutoff, there would not be much difference between the effort required in both
approaches. The presence of the UV cutoff makes calculations with non-vanishing external wave
vectors rather tedious.
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Let us remind that the choice of a renormalization procedure basically is the choice of the rule
according to which the counter-term contributions are extracted from the perturbation expansion
of the Green functions of the model. The usual field-theoretic prescription goes as follows [65]:
Consider a 1PI graph γ, let R(γ) be the renormalized value of the graph, and let R(γ) the value
of the graph with subtracted counter terms of all the subgraphs, then

R(γ) = R(γ)− TR(γ) (3.129)

where the operator T extracts the counter-term contribution from R(γ). Usually R(γ) = γ on
one-loop graphs, and the renormalization scheme is specified by the action ofR(γ) on multi-loop
graphs together with the definition of the operator T . The counter terms may then be constructed
recursively with the use of (3.129) and the definitions of T and R(γ). There is rather large
freedom in the choice of the counter-term operator, but to arrive at Green functions finite in the
limit Λ→∞ in two dimensions – which we want to have a connection with the double expansion
– the operation R must be chosen properly.

Here, we have used a renormalization procedure, in which the operationR(γ) is standard [65],
and the subtraction operator T is defined as follows: let Fγ(ω,k,Λ) be the function of external
frequencies and wave-vectors (which also depends on the cutoff parameter Λ) corresponding to
the expression R(γ) (this is not a 1PI graph, in general). The subtraction operator T extracts the
same set of terms of the Maclaurin-expansion in the external wave-vectors, which generate the
counter terms (3.114), from the difference Fγ(ω,k,Λ) − Fγ(ω,k, µ). These coefficients of the
Maclaurin-expansion are calculated at vanishing external frequencies and wave-vectors. It should
be noted that the coefficients of this Maclaurin expansion of the function Fγ(ω,k,Λ) itself may
not exist in the limit ω → 0 in this ”massless” model, but the differenceFγ(ω,k,Λ)−Fγ(ω,k, µ)
allows for a Maclaurin expansion finite in the limit ω → 0 to the order required for the renormal-
ization. The counter-term operator T and the combinatorics of the renormalization procedure for
higher-order graphs may then be constructed in the standard fashion. Although this is actually
not needed in the present one-loop calculation, the very possibility of this extension is neces-
sary to guarantee that the renormalization renders the model finite in the limit Λ → ∞ in two
dimensions.

Effectively, at one-loop order this prescription reduces the region of integration to the mo-
mentum shell µ < k < Λ, which leads to the same calculation as in the momentum-shell
renormalization. In higher orders, however, our renormalization scheme does not coincide with
the momentum-shell renormalization. The point of the present renormalization procedure is that
without some sort of IR cutoff the subtraction at zero momenta and frequencies is, in general,
not possible in a massless model, whereas a subtraction at vanishing frequencies and external
momenta of the order of µ leads to much more complicated calculations due the heavy index
structure.

At one-loop accuracy in this scheme the γ functions are

γ1 =
1

2B

[(
d2 − d− 2ε

)
u gv1 +

(
d2 + d− 4 + 2aε

)
gb1 +

(
d2 − 2

)
(u gv2 + gb2)

]
,

γ2 =
1

(1 + u)B

[
(d− 1) (d+ 2) (gv1 + gv2) + (d+ 2) (d− 3) (gb1 + gb2)

]
,

γ3 =
2

B
[gb1 + gb2 − gv1 − gv2] ,
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γ4 =
d2 − 2

2gv2B

[
u (gv1 + gv2)

2
+ (gb1 + gb2)

2
]
,

γ5 =
2(d− 2)(d+ 2)

gb2(1 + u)B
(gb1 + gb2) (gv1 + gv2) , (3.130)

where B = d(d + 2)Γ(d/2)(4π)d/2. These expressions reveal an additional advantage of this
renormalization scheme: at one-loop order there is no explicit dependence on µ/Λ in the coeffi-
cient functions of the RG. At one-loop level a direct comparison with the expressions obtained
in the framework of the Wilson RG is also possible: the dependence on gv1, gb1, and u of the β
functions βgv1, βgb1 and βu corresponding to (3.130) coincides with that of their counterparts of
Ref. [142] up to notation.

The set of β functions generated by (3.130) allows for a fixed-point solution in the form
of an ε expansion. Little reflection shows that the fixed-point equations in this case have a
self-consistent solution with the following leading-order behavior: u = O(1), gv1 = O(ε),
gb1 = O(ε), gv2 = O(ε2) and gb2 = O(ε2). The actual fixed-point values of gv1, gb1 and u in
the ε expansion as well as the stability regions with respect to ε are determined by the same set of
equations as in the earlier momentum-shell [142] and field-theoretic [143] calculation above two
dimensions. The stability condition with respect to the dimension of space of these fixed points
is, as expected, d > 2.

It should be noted that the function γ5 is finite in the set (3.130), whereas in the double-
expansion approach it was equal to zero This means that magnetic fixed points with both gb1
and gb2 may exist. In fact, there is one such fixed point stable at high dimensions of space
which gives rise to a magnetically driven scaling regime. This fixed point may be found in
the ε expansion, and we have also investigated its stability numerically. Technically speaking,
the appearance of a magnetic fixed point with both magnetic couplings non-vanishing would
be a completely expected thing to happen in the two-loop approximation, since we have not
found any symmetry reasons or the like to prevent the renormalization of the magnetic forcing at
higher orders. Thus, to investigate this effect consistently in the ε expansion would require a full
two-loop renormalization of the model, which is beyond the scope of the present analysis.

The stability of the kinetic scaling regime is strongly affected by the behavior of magnetic
fluctuations: from Fig. 3.6 it is seen that the steeper falloff of the correlations of the magnetic
forcing in the wave-vector space compared with that of the kinetic forcing the lower is the space
dimension, above which the kinetic fixed point is stable. In particular, when the parameter a >
1.427 the kinetic fixed point ceases to be stable even in two dimensions. In three dimensions the
kinetic scaling regime is stable against magnetic forcing, when a < 1.15.

The monotonic growth of the kinetic-fixed-point value of the inverse magnetic Prandtl num-
ber u∗ as a function of the kinetic forcing-decay parameter in a fixed space dimension is de-
picted in Fig. 3.7. The plot shows also that u∗ is a monotonically decreasing function of the
space dimension at fixed ε. The lowest-lying curve corresponds to the leading order of the ε
expansion [142, 168]

u∗ =
1

2

[
−1 +

√
1 +

8 (d+ 2)

d

]
. (3.131)

We are particularly interested in the stability of the magnetic fixed point, and have carried out
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Figure 3.6. The borderline dimension dc between
the stability regions of the kinetic fixed point of
the RG equations for (3.116) and (3.130) for mag-
netic forcing-decay parameter a near the double-
expansion threshold a = 1.427. This plot reveals
the strong dependence of the borderline dimension
on the parameter a. The shaded region on the
right corresponds to values ε > 2/a, for which the
forcing correlation function in the powerlike form
(3.12) leads to intractable IR divergences, and a
corresponding IR cutoff (magnetic integral length
scale) must be introduced.
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Figure 3.7. The fixed-point value of the inverse
magnetic Prandtl number u∗ as a function of the
space dimension d and the decay parameter ε. The
lowest curve corresponds to the leading order in the
ε expansion, which is not affected by thermal fluc-
tuations. The shaded region in the upper part of the
plot corresponds to values ε > 2, for which an IR
cutoff (kinetic integral length scale) must be intro-
duced in the correlation function (3.12).

extensive numerical calculations of the stability of this fixed point as a function of ε and the space
dimension d. The results are plotted in Figs. 3.8 and 3.9.

In Fig. 3.8 the magnetic forcing-decay parameter a < 1 (i.e. the kinetic-forcing cor-
relations fall off steeper in the wave-vector space than those the magnetic forcing) and it is
seen that for very small a a slowly enough decaying kinetic forcing renders the magnetic scal-
ing regime unstable. In particular, this threshold is very small in three dimensions. With the
growth of a a strip of stability of the magnetic fixed point in the ε, d plane appears such
that the magnetic regime remains stable in three dimensions for all allowed kinetic forcing
patterns. It is also seen that the magnetic fixed point is persistently unstable at d ≤ 2.46
for all ε. This borderline dimension should be compared with that given by the ε expansion
dc = 2.85. From the solution it can be seen that this significant discrepancy is due to the
appearance of a stable magnetic fixed point completely different from that found in the ε ex-
pansion: in the latter the magnetic fixed point is given by g∗v1 = g∗v2 = g∗b2 = u∗ = 0 and
g∗b1 = 4d(d + 2)Γ(d/2)(4π)d/2aε/(d2 − 3d − 32), whereas at the magnetic fixed point, whose
stability is plotted in Figs. 3.8 and 3.9, only g∗v1 = u∗ = 0 with non-vanishing fixed-point values
of the other couplings. Thus, the lowering of the borderline dimension of stability of the mag-
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netic scaling regime is a strong effect of the thermal fluctuations described by the short-range
terms in the forcing correlation functions. Fig. 3.9 shows the lower boundary of the stability
region of the magnetic fixed point for large values of a, when magnetic-forcing correlations fall
off much faster that kinetic-forcing correlations in the wave-vector space. A remarkable feature
of both plots is the insensitivity of the lower border of the stability strip to the value of magnetic
forcing-decay parameter a.
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4 Violated symmetries

Models that we have considered so far can be in some sense regarded as ideal. As has been
mentioned in Sec. 3 a traditional approach to the description of fully developed turbulence is
based on the stochastic Navier-Stokes equation [109]. The complexity of this equation leads to
great difficulties which do not allow one to solve it even in the simplest case when one assumes
the isotropy of the system under consideration. On the other hand, the isotropic turbulence is
almost delusion and if exists is still rather rare. Therefore, if one wants to model more or less
realistic developed turbulence, one is pushed to consider more general models of turbulence.
This, of course, rapidly increases complexity of the corresponding model which itself has to
involve the part responsible for description of the anisotropy.

In this section we give a brief overview of two possible deviation from ideality. First, in Sec.
4.1 employing the Kraichnan model, we study violation of mirror-symmetry on the advection of
passive quantity. Later, in Sec. 4.2, the advection problem will be studied using velocity field
with strong anisotropy taken into account and in Sec. 4.3 the effect of anisotropy on stochastic
magnetohydrodynamics will be studied. In the last part, Sec. 4.4, the anisotropy will be intro-
duced in the stochastic Navier-Stokes equation itself and corresponding influence on large-scale
regimes will be determined.

4.1 Effect of helicity

Further topic we want to address is the effect of helicity or violation of mirror symmetry.
Helicity is defined as the scalar product of velocity and vorticity and its non zero value expresses
mirror symmetry breaking of turbulent flow. It plays significant role in the processes of magnetic
field generation in electrically conductive fluid [175, 176] and represents one of the most impor-
tant characteristics of large-scale motions as well [177–179]. The presence of helicity is observed
in various natural (like large air vortices in atmosphere) and technical flows [180–182]. Despite
of this fact the role of the helicity in hydrodynamical turbulence is not completely clarified up to
now.

Turbulent viscosity and diffusivity, which characterize influence of small-scale motions on
heat and momentum transport, are basic quantities investigated in the theoretic and applied mod-
els. The constraint of direct energy cascade in helical turbulence has to be accompanied by
decrease of turbulent viscosity. However, no influence of helicity on turbulent viscosity was
found in some works [183, 184]. Similar situation is observed for turbulent diffusivity in helical
turbulence. Although the modeling calculations demonstrate intensification of turbulent transfer
in the presence of helicity [185, 186] direct calculation of diffusivity does not confirm this ef-
fect [185, 187, 188]. Helicity is the pseudoscalar quantity hence it can be easily understood, that
its influence appears only in quadratic and higher terms of perturbation theory or in the com-
bination with another pseudoscalar quantities (e.g. large-scale helicity). Really, simultaneous
consideration of memory effects and second order approximation indicate effective influence of
helicity on turbulent viscosity [189, 190] and turbulent diffusivity [186, 191, 192] already in the
limit of small or infinite correlation time.

Helicity, as we shall see below, does not affect known results in one-loop approximation
and, therefore, it is necessary to turn to the second order (two-loop) approximation to be able
to analyze possible consequences. It is also important to say that in the framework of classical
Kraichnan model, i.e., model of passive advection by the Gaussian velocity field with δ-like
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correlations in time, it is not possible to study the influence of the helicity because all diagrams
with helical contribution are identically equal to zero at all orders in the perturbation theory. It
is interesting and important to study the helicity effects because many turbulence phenomena are
directly influenced by them (like large air vortices in atmosphere). For example, in stochastic
magnetic hydrodynamics, which studies the turbulence in electrically conducting fluids, it leads
to a nontrivial fact of the very existence of so called ”turbulent dynamo” – the generation of a
large-scale magnetic field by the energy of the turbulent motion [175, 176, 193–197]. This is an
important effect in astrophysics.

4.1.1 The model

As we have already seen the advection of a passive scalar field θ ≡ θ(x) ≡ θ(t,x) by a Navier-
Stokes ensemble is governed by Eq. (3.90). Although the theoretical description of the fluid
turbulence on the basis of the ”first principles”, i.e., on the stochastic Navier-Stokes (NS) equa-
tion [79] remains an open problem, considerable progress has been achieved in understanding
simplified model systems that share some important properties with the real problem: shell mod-
els [82], stochastic Burgers equation [83] and passive advection by random “synthetic” velocity
fields [73].

The crucial role in these studies are played by models of advected passive scalar field [76].
We just note here that it is also possible to consider a vector formulation of this problem and his
numerous variants [198–202]. A simple model of a passive scalar quantity advected by a random
Gaussian velocity field, white in time and self-similar in space (the latter property mimics some
features of a real turbulent velocity ensemble), the so-called Kraichnan’s rapid-change model
[84], is an example. The interest to these models is based on two important facts: first, as were
shown by both natural and numerical experimental investigations, the deviations from the pre-
dictions of the classical Kolmogorov-Obukhov phenomenological theory [70, 79, 81, 85] is even
more strongly displayed for a passively advected scalar field than for the velocity field itself (see,
e.g., [86–96] and references cited therein), and second, the problem of passive advection is much
more easier to be consider from theoretical point of view. There, for the first time, the anomalous
scaling was established on the basis of a microscopic model [77], and corresponding anomalous
exponents was calculated within controlled approximations [89–91,97–102] (see also review [73]
and references therein). Within the “zero-mode approach,” developed in [89, 91, 97–102], non-
trivial anomalous exponents are related to the zero modes (unforced solutions) of the closed
exact equations satisfied by the equal-time correlations. Within the approach based on the field
theoretic RG and OPE (discussed in Sec. 2), the anomalous scaling emerges as a consequence
of the existence in the model of composite operators with negative critical dimensions, which
determine the anomalous exponents [74, 110, 113, 114, 203, 204].

The standard notation for advection problem using Kraichnan model slightly differs from the
one using stochastic Navier-Stokes ensemble. Therefore in what follows we give a brief overview
of basic physical ideas behind Kraichnan model and introduce corresponding notation.

The analog of Eq. (3.90) is now given by the following stochastic equation

∂tθ + (v ·∇)θ − ν0∇2θ = fθ, (4.1)

where ν0 is the coefficient of molecular diffusivity and fθ ≡ fθ(x) is a Gaussian random noise
with zero mean and correlation function

〈fθ(x)fθ(x′)〉 = δ(t− t′)C(r/L), r = x− x′. (4.2)
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The noise fθ in (4.1) maintains the steady-state of the system but the concrete form of the corre-
lator is not essential. The only condition which must be fulfilled by the function C(r/L) is that it
must decrease rapidly for r ≡ |r| � L, where L denotes an integral scale related to the stirring.
In the case when C depends not only on the modulus of the vector r but also on its direction,
it plays the role of a source of large-scale anisotropy, whereupon the noise can be replaced by a
constant gradient of scalar field. Eq. (4.1) then reads

∂tθ + (v ·∇)θ − ν0∇2θ = −h · v. (4.3)

Here, θ(x) is the fluctuation part of the total scalar field Θ(x) = θ(x) +h ·x, and h is a constant
vector that determines distinguished direction. The direct formulation with a scalar gradient is
even more realistic one; see, e.g. Refs. [74, 88–91, 101, 102, 114].

In accordance with the generalized Kraichnan model [74, 88] with finite correlation time
taken into account we assume that the velocity field is driven by simple linear stochastic equation

∂tvi +Rvi = fvi , (4.4)

where R ≡ R(x) is a linear operation to be specified below and fvi ≡ fvi (x) is an external
random stirring force with zero mean and the correlator

〈fvi (x)fvj (x′)〉 ≡ Df
ij(x;x′) =

1

(2π)d+1

∫
dω

∫
ddkP ρij(k)D̃f (ω,k)e−i(t−t

′)+ik·(x−x′).

(4.5)

It should be noted that in the SDE (4.1) the multiplicative noise due to random velocity is not a
white noise in time as in the original Kraichnan model. Therefore there is no need to specify the
interpretation of the SDE. However, in the analysis the white-noise limit will be considered and
it should recalled that in this limit the results correspond to the Stratonovich interpretation of the
SDE (4.1).

The transition to a helical fluid corresponds to the giving up of conservation of spatial parity,
and technically, this is expressed by the fact that the correlation function is specified in the form
of mixture of a true tensor and a pseudotensor. In our approach, it is represented by two parts of
transverse projector

P ρij(k) = Pij(k) +Hij(k), (4.6)

which consists of non-helical standard transverse projector Pij(k) (See Eq.(3.10)) and presence
of helicity is modeled by a term

Hij(k) = iρ εijlkl/k, (4.7)

where k = |k| is the wave number and εijl is Levi-Civita’s completely antisymmetric tensor
of rank 3 (it is equal to 1 or −1 according to whether (i, j, l) is an even or odd permutation of
(1, 2, 3) and zero otherwise), and the real parameter of helicity, ρ, characterizes the amount of
helicity. Due to the requirement of positive definiteness of the correlation function the absolute
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value of ρ must be in the interval |ρ| ∈ 〈0, 1〉 [194, 195]. Physically, non-zero helical part
(proportional to ρ) expresses existence of non-zero correlations 〈v · rot v〉.

Of course, due to the presence of Levi-Civita’s tensor, the dimension of the x space must be
considered to be three. Nevertheless, in what follows, we shall remain the d-dimensionality of
all results which are not related to helicity to be also able to study d-dependence of non-helical
case of the model. The correlator D̃f is chosen [43, 74, 114] in the following form

D̃f (ω,k) = g0ν
3
0(k2 +m2)2−d/2−ε−η/2, (4.8)

where

R̃(k) = u0ν0(k2 +m2)1−η/2, (4.9)

the wave-number representation of R(x). Positive amplitude factors g0 and u0 play the role of
the coupling constants of the model. In addition, g0 is a formal small parameter of the ordinary
perturbation theory. The positive exponents ε and η (ε = O(η)) are small RG expansion param-
eters, the analogs of the parameter ε = 4− d in the ϕ4− theory. Thus, from the point of view of
perturbation theory we again have to deal with a double expansion model discussed in Sec. 3.2.
Now in the (ε, η)-plane around the origin ε = η = 0.

Note the presence of two scales in the problem - integral scale L introduced in (4.2) and
momentum scale m, which has appeared in (4.9). Clearly, they have different physical origin.
However, these two scales can be related to each other and for technical purposes [43] it is
reasonable to choose L = 1/m. When not explicitly stated, this relation is always assumed.

In the limit k � m the functions (4.8) and (4.9) take on simple powerlike form

D̃f (ω,k) = g0ν
3
0k

4−d−2ε−η, R̃(k) = u0ν0k
2−η, (4.10)

which are used in actual calculations. The needed IR regularization will be given by restrictions
on the region of integrations.

From Eqs. (4.4), (4.5), and (4.10) the statistics of the velocity field v can be determined. It
obeys Gaussian distribution with zero mean and correlator

〈vi(x)vj(x
′)〉 ≡ Dv

ij(x;x′) =
1

(2π)d+1

∫
dω

∫
ddkP ρij(k)D̃v(ω,k)e−iω(t−t′)+ik·(x−x′)

(4.11)

with

D̃v(ω,k) =
g0ν

3
0k

4−d−2ε−η

(iω + u0ν0k2−η)(−iω + u0ν0k2−η)
. (4.12)

The correlator (4.12) is directly related to the energy spectrum via the frequency integral [74,
103–107]

E(k) ' kd−1

∫
dωD̃v(ω, k) ' g0ν

2
0

u0
k1−2ε. (4.13)

Therefore, the coupling constant g0 and the exponent ε describe the equal-time velocity correlator
or, equivalently, energy spectrum. On the other hand, the constant u0 and the second exponent
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η are related to the frequency ω ' u0ν0k
2−η (or to the function R̃(k), the reciprocal of the

correlation time at the wave number k) which characterizes the mode k [74, 103–107, 203, 205].
Thus, in our notation, the value ε = 4/3 corresponds to the well-known Kolmogorov ”five-thirds
law” for the spatial statistics of velocity field, and η = 4/3 corresponds to the Kolmogorov
frequency. Simple dimensional analysis shows that the parameters (charges) g0 and u0 are related
to the characteristic ultraviolet (UV) momentum scale Λ (of the order of inverse Kolmogorov
length) by

g0 ' Λ2ε+η, u0 ' Λη. (4.14)

In Ref. [88], it was shown that the linear model (4.4) (and therefore also the Gaussian model
(4.11), (4.12)) is not Galilean invariant and, as a consequence, it does not take into account
the self-advection of turbulent eddies. As a result of these so-called ”sweeping effects” the
different time correlations of the Eulerian velocity are not self-similar and depend strongly on
the integral scale; see, e.g., Ref. [206, 206–208]. But, on the other hand, the results presented in
Ref. [88] show that the Gaussian model gives reasonable description of the passive advection in
the appropriate frame, where the mean velocity field vanishes. One more argument to justify the
model (4.11), (4.12) is that, in what follows, we shall be interested in the equal-time, Galilean
invariant quantities (structure functions), which are not affected by the sweeping, and therefore,
as we expect (see, e.g., Ref. [74,114,121]), their absence in the Gaussian model (4.11), (4.12) is
not essential.

In the end of this section, let us briefly discuss two important limits of the considered model
(4.11), (4.12). First of them it is so-called rapid-change model limit when u0 → ∞ and g′0 ≡
g0/u

2
0 = const,

D̃v(ω,k)→ g′0ν0k
−d−2ε+η, (4.15)

and the second one is so-called quenched (time-independent or frozen) velocity field limit which
is defined by u0 → 0 and g′′0 ≡ g0/u0 = const,

D̃v(ω,k)→ g′′0 ν
2
0πδ(ω)k−d+2−2ε, (4.16)

which is similar to the well-known models of the random walks in random environment with
long range correlations; see, e.g., Refs. [138, 209–213]. The third order results of the composite
operators for the former case (4.15) have been obtained in [214,215] and belong to a few models
for which high order calculations were possible.

4.1.2 Field theoretic formulation of the model

For completeness of our text in this and next section we shall present and discuss the principal
moments of the RG theory of the model defined by Eqs. (4.3), (4.11), and (4.12).

Using Eq. (1.106) the stochastic problem (4.3)-(4.5) can be recast into the equivalent field
theoretic model of the doubled set of fields Φ ≡ {θ, θ′,v,v′} with the action functional

S[Φ] =
1

2
v′Dfv′ + θ′

[
−∂tθ − (v ·∇)θ + ν0∇2θ − h · v

]
+ v′ · [−∂tv −Rv] , (4.17)

where Df
ij is defined in Eq. (4.5), and as usual θ′ and v′ are auxiliary response fields.
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Generating functionals of full Green functions G(A) and connected Green functionsW(A)
are defined by the Eq. (1.56), where now linear form Aϕ is defined as

AΦ = Aθθ +Aθ
′
θ′ +Avi vi +Av

′

i v
′
i(x). (4.18)

Following the arguments in [74], we can put Av′

i = 0 in Eq. (4.18) and then perform the explicit
Gaussian integration over the auxiliary vector field v′ as a consequence of the fact that, in what
follows, we shall not be interested in the Green functions involving field v′. After this integration
one is left with the field theoretic model described by the functional action

S[Φ] = −1

2
v(Dv)−1v + θ′[−∂tθ − (v ·∇)θ + ν0∇2θ − h · v], (4.19)

where the second term represents De Dominicis-Janssen action for the stochastic problem (4.3)
at fixed velocity field v, and the first term describe the Gaussian averaging over v defined by the
correlator Dv in Eqs. (4.11) and (4.12). The latter explicitly reads

Svel[v] =
1

2

∫
dt1

∫
dt2

∫
ddx1

∫
ddx2 vi(t1, x1)D−1

ij (t1−t2,x1−x2)vj(t2,x2). (4.20)

Action (4.19) is given in a form convenient for a realization of the field theoretic perturbation
analysis with the standard Feynman diagrammatic technique. From the quadratic part of the
action one obtains the matrix of bare propagators. The wave-number-frequency representation
of, in what follows, important propagators are: a) the bare propagator 〈θθ′〉0 defined as

〈θθ′〉0 = 〈θ′θ〉∗0 =
1

−iω + ν0k2
, (4.21)

and b) the bare propagator for the velocity field 〈vv〉0 given directly by Eq. (4.12), namely

〈vivj〉0 = P ρij(k)D̃v(ω,k), (4.22)

where P ρij(k) is the transverse projector defined in previous section by Eq. (4.6). Their graphical
representation is given in a similar manner as has been presented in Fig.3.3. It should be noted
that the choice of the action in the rather standard form (4.19) corresponds to the choice of the
diagonal value of the propagator equal to zero: 〈θθ′〉0(0, 0) = 0.

The triple (interaction) vertex −θ′vj∂jθ = θ′vjVjθ has been presented by the right picture
in Fig. 3.4.

It is appropriate to eliminate the magnitude h ≡ |h| of the vector field h from the action
(4.19) by rescaling of the scalar fields: θ → hθ and θ′ → θ′/h. This representation directly
leads to the fact, which is important from the point of view of the renormalization of the model
(see next section), namely, that the superficial divergences can be presented only in the Green
functions 〈θ(x1) · · · θ(xn)θ′(y1) · · · θ′(yp)〉 with n = p, i.e., equal number of θ and θ′ fields (see
Ref. [74] for details).

4.1.3 UV renormalization and RG analysis

Detail analysis of divergences in the problem (4.19) was done in Ref. [216, 217] (see also
Refs. [32, 71, 74]), therefore we shall present here only basic facts and conclusions rather than
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F v θ θ′ m,Λ, µ ν0, ν g0 u0 g, u, h

dkF -1 -1 d+ 1 1 -2 2ε+ η η 0

dωF 1 0 0 0 1 0 0 0

dF 1 -1 d+ 1 1 0 2ε+ η η 0

Table 4.1. Canonical dimensions of the fields and parameters of the model under consideration.

to repeat all details. First of all, every the one-irreducible Green function with Nθ′ < Nθ vanish.
On the other hand, dimension analysis based on the Table I leads to the conclusion that for any
d, superficial divergences can be present only in the one-irreducible Green functions 〈θ′θ · · · θ〉
with only one field θ′ (Nθ′ = 1) and arbitrary number Nθ of field θ. Therefore, in the model
under investigation, the superficial divergences can be found only in the one-irreducible function
〈θ′θ〉. To remove them one needs to include into the action functional the counterterm of the form
θ′∇2θ. Its inclusion is manifested by the multiplicative renormalization of the bare parameters
g0, u0, and ν0 in action functional (4.19)

ν0 = νZν , g0 = gµ2ε+ηZg, u0 = uµηZu. (4.23)

The standard notation is employed, where the dimensionless parameters g, u, and ν are the
renormalized counterparts of the corresponding bare ones, µ is the scale setting parameter, and
Zi = Zi(g, u) are renormalization constants.

The renormalized action functional has the following form

SR[Φ] = −1

2
v[Dv]−1v + θ′

[
−∂tθ − (v ·∇)θ + νZ1∇2θ − h · v

]
, (4.24)

where the correlator Dv
ij is written in renormalized parameters (in wave-number-frequency rep-

resentation)

D̃v
ij(ω, k) =

P ρij(k)gν3µ2ε+ηk4−d−2ε−η

(iω + uνµηk2−η)(−iω + uνµηk2−η)
. (4.25)

By comparison of the renormalized action (4.24) with definitions of the renormalization con-
stants Zi, i = g, u, ν (4.23) we are coming to the relations among them:

Zν = Z1, Zg = Z−3
ν , Zu = Z−1

ν . (4.26)

The second and third relations are consequences of the absence of the renormalization of the
term with Dv in renormalized action (4.24). Renormalization of the fields, the mass parameter
m, and the vector h is not needed, i.e., ZΦ = 1 for all fields, Zm = 1, and also Zh = 1.

The issue of interest is, in particular, the behavior of the equal-time structure functions

Sn(r) ≡ 〈[θ(t,x)− θ(t,x′)]n〉 (4.27)

in the inertial range, specified by the inequalities l ∼ 1/Λ � r � L = 1/m (l is an inter-
nal length). Here parentheses 〈· · · 〉 mean functional average over fields Φ = {θ, θ′,v} with
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weight expSR[Φ]. In the isotropic case, the odd functions S2n+1 vanish, while for S2n simple
dimensional considerations give

S2n(r) = ν−n0 r2nR2n(r/l, r/L, g0, u0, ρ), (4.28)

where R2n are scaling functions of dimensionless variables (see Sec. 2.2). In principle, they
can be calculated within the ordinary perturbation theory (i.e., as series in g0), but this is not
useful for studying inertial-range behavior: the coefficients are singular in the limits r/l → ∞
and/or r/L→ 0, which compensate the smallness of g0, and in order to find correct IR behavior
we have to sum the entire series. The desired summation can be accomplished using the field
theoretic RG and OPE; see Sec. 2 and Refs. [74, 110, 111].

The RG analysis consists of two main stages (Sec. 2). On the first stage, the multiplicative
renormalizability of the model is demonstrated and the differential RG equations for its corre-
lation (structure) functions are obtained. The asymptotic behavior of the functions like (4.27)
for r/l � 1 and any fixed r/L is given by IR stable fixed points (see next section) of the RG
equations and has the form

S2n(r) = ν−n0 r2n (r/l)−γnR2n(r/L, ρ), r/l� 1 (4.29)

with yet unknown scaling functionsR2n(r/L, ρ). We remind the reader that the quantity ∆[S2n] ≡
−2n+ γn is termed the critical dimension, and the exponent γn, the difference between the crit-
ical dimension ∆[S2n] and the canonical dimension −2n, is called the anomalous dimension. In
the case at hand, the latter has an extremely simple form: γn = nε. Whatever be the functions
Rn(r/L, ρ), the representation (4.29) implies the existence of a scaling (scale invariance) in the
IR region (r/l � 1, r/L fixed) with definite critical dimensions of all “IR relevant” parameters,
∆[S2n] = −2n+ nε, ∆r = −1, ∆L−1 = 1 and fixed “irrelevant” parameters ν0 and l.

On the second stage, the small r/L behavior of the functions R2n(r/L, ρ) is studied within
the general representation (4.29) using the OPE technique (Sec. 2.7). It shows that, in the limit
r/L→ 0, the functions R2n(r/L, ρ) have the asymptotic forms

R2n(r/L) =
∑
F

CF (r/L) (r/L)∆n , (4.30)

where CF are coefficients regular in r/L. In general, the summation is implied over certain
renormalized composite operators F with critical dimensions ∆n. In case under consideration
the leading operators F have the form Fn = (∂iθ∂iθ)

n. In Sec. 4.1.6 we shall consider them in
detail where the complete two-loop calculation [217] of the critical dimensions of the composite
operators Fn will be present for arbitrary values of n, d, u and ρ.

The actual calculation [216, 217] have been performed to the with two-loop approximation.
The calculation of higher-order corrections is more difficult in the models with turbulent velocity
field with finite correlation time than in the cases with δ-correlation in time. First of all, one
has to calculate more relevant Feynman diagrams in the same order of perturbation theory (see
below). Second, and more problematic distinction is related to the fact that the diagrams for the
finite correlated case involve two different dispersion laws, namely, ω ∝ k2 for the scalar field
and ω ∝ k2−η for the velocity field. This leads to complicated expressions for renormalization
constants even in the simplest (one-loop) approximation [74, 114]. But, as was discussed in
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[74, 114, 121], this difficulty can be avoided by the calculation of all renormalization constants
in an arbitrary specific choice of the exponents ε and η that guarantees UV finiteness of the
Feynman diagrams. From the point of calculations the most suitable choice is to put η = 0 and
leave ε arbitrary.

Thus, the knowledge of the renormalization constants for the special choice η = 0 is suf-
ficient to obtain all important quantities as the γ-functions, β-functions, coordinates of fixed
points, and the critical dimensions.

Such possibility is not automatic in general. In the model under consideration it is the conse-
quence of an analysis which shows that in the MS scheme all the needed anomalous dimensions
are independent of the exponents ε and η in the two-loop approximation. But in the three-loop
approximation they can simply appear [121].

In Ref. [121] the two-loop corrections to the anomalous exponents of model (4.19) without
helicity were studied. Now the effect of helicity can be discussed for comparison.

Now we can continue with renormalization of the model. The relation S[θ, θ′,v, e0] =
SR[θ, θ′,v, e, µ], where e0 stands for the complete set of bare parameters and e stands for renor-
malized one, leads to the relation W(A, e0) = WR(A, e, µ) for the generating functional of
connected Green functions. By application of the operator D̃µ ≡ µ∂µ at fixed e0 on both sides
of the latest equation one obtains the basic RG differential equation

DRGWR(A, e, µ) = 0, (4.31)

where DRG represents operation D̃µ written in the renormalized variables. Its explicit form is

DRG = Dµ + βg(g, u)∂g + βu(g, u)∂u − γν(g, u)Dν , (4.32)

where we denote Dx ≡ x∂x for any variable x and the RG functions (the β and γ functions)
are given by well-known definitions and in our case, using relations (4.26) for renormalization
constants, they have the following form

γν ≡ D̃µ lnZν , (4.33)

βg ≡ D̃µg = g(−2ε− η + 3γν), (4.34)

βu ≡ D̃µu = u(−η + γν). (4.35)

The renormalization constant Zν is determined by the requirement that the one-irreducible
Green function 〈θ′θ〉1−ir must be UV finite when is written in renormalized variables. In our
case it means that they have no singularities in the limit ε, η → 0. The one-irreducible Green
function 〈θ′θ〉1−ir is related to the self-energy operator Σθ′θ by the Dyson equation

〈θ′θ〉1−ir = −iω + ν0p
2 − Σθ′θ(ω, p). (4.36)

Thus Zν is found from the requirement that the UV divergences are canceled in Eq. (4.36) after
substitution ν0 = νZν . This determines Zν up to an UV finite contribution, which is fixed by the
choice of the renormalization scheme. In the MS scheme all the renormalization constants have
the form: 1 + poles in ε, η and their linear combinations. The self-energy operator Σθ′θ is repre-
sented by the corresponding one-irreducible diagrams. In contrast to rapid-change model, where
only one-loop diagram exists (it is related to the fact that all higher-loop diagrams contain at least
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Σθ′θ = + +

Figure 4.1. The one- and two-loop diagrams that contribute to their self-energy operator Σθ′θ .

one closed loop which is built on by only retarded propagators, thus are automatically equal to
zero), in the case with finite correlations in time of the velocity field, higher-order corrections are
non-zero. In two-loop approximation the self-energy operator Σθ′θ is defined by diagrams which
are shown in Fig. 4.1.

4.1.4 Fixed points and scaling regimes

Possible scaling regimes of a renormalizable model are directly given by the IR stable fixed
points of the corresponding system of RG equations [24, 25]. In the considered model, the
coordinates g∗, u∗ of the fixed points are found from the system of two equations

βg(g
∗, u∗) = βu(g∗, u∗) = 0. (4.37)

The beta functions βg and βu are defined in Eqs. (4.34), and (4.35). To investigate the IR stability
of a fixed point the eigenvalues of the matrix Ω

Ω =

 ∂βg
∂g

∂βg
∂u

∂βu
∂g

∂βu
∂u


∗

. (4.38)

have to be determined (see Eq. 2.24 for general case).
The possible scaling regimes of the model in one-loop approximation were investigated in

Ref. [74]. Our first question is how the two-loop approximation change the picture of ”phase”
diagram of scaling regimes discussed in Ref. [74], and the second one is what restrictions on
this picture are given by helicity (in two-loop approximation). The two-loop approximation in
the model under our consideration without helicity was studied in Ref. [121] but the question of
scaling regimes from two-loop approximation point of view was not discussed in details.

First of all, let us take a look at the rapid-change limit, which is obtained in the limit u→∞.
In this regime, it is convenient to make transformation to new variables, namely, w ≡ 1/u, and
g′ ≡ g/u2, with the corresponding changes in the β functions:

βg′ = g′(η − 2ε+ γν), βw = w(η − γν). (4.39)

In the rapid-change limit w → 0 (u→∞) the two-loop contribution to γν is equal to zero [217].
It is not surprising because in the rapid-change model there are no higher-loop corrections to the
self-energy operator [110, 111], thus we are coming to the one-loop result of Ref. [74] with the
anomalous dimension γν of the form

γν = lim
w→0

(d− 1)gS̄d
2d(1 + w)

≡ (d− 1)ḡ′

2d
. (4.40)
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Figure 4.2. Regions of the stability for the fixed
points in one-loop approximation. The regions of
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d in two-loop approximation is shown in Fig. 4.3.
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Figure 4.3. Regions of the stability for the fixed
point FPIV in two-loop approximation without he-
licity for different space dimensions d. The IR
fixed point is stable in the region given by inequal-
ities: ε > 0, ε > η, and ε < d− 1.

In this regime we have two fixed points denoted as FPI and FPII in Ref. [74]. The first fixed
point is trivial, namely

FPI : w∗ = g′
∗

= 0, (4.41)

with γ∗ν = 0, and diagonal matrix Ω with eigenvalues (diagonal elements)

Ω1 = η, Ω2 = η − 2ε. (4.42)

The region of stability is shown in Fig. 4.2. The second point is defined as

FPII : w∗ = 0, ḡ′∗ =
2d

d− 1
(2ε− η), (4.43)

with γ∗ν = 2ε − η. These are exact one-loop expressions as a result of non-existence of the
higher-loop corrections. That means that they have no corrections of orderO(ε2) and higher (we
work with assumption that ε ' η, therefore it also includes corrections of the type O(η2) and
O(ηε)). The corresponding ”stability matrix” is triangular with diagonal elements (eigenvalues):

Ω1 = 2(η − ε), Ω2 = 2ε− η. (4.44)

The region of stability of this fixed point is shown in Fig. 4.2.
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The frozen velocity field is mathematically obtained from the model under consideration in
the limit u → 0. To study this transition it is appropriate to change the variable g to the new
variable g′′ ≡ g/u. Then the β functions are transform to the following ones:

βg′′ = g′′(−2ε+ 2γν), βu = u(−η + γν). (4.45)

The system of β functions (4.45) exhibits two fixed points, denoted as FPIII and FPIV in Ref.
[74], related to the corresponding two scaling regimes. One of them is trivial,

FPIII : u∗ = g′′
∗

= 0, (4.46)

with γ∗ν = 0. The eigenvalues of the corresponding matrix Ω, which is diagonal in this case, are

Ω1 = −2ε, Ω2 = −η. (4.47)

Thus, this regime is IR stable only if both parameters ε, and η are negative simultaneously as can
be seen in Fig. 4.2. The second, non-trivial, point is

FPIV : u∗ = 0, ḡ′′∗ = − ε

2A′′0
− B

′′
0

2A′′20
ε2, (4.48)

where explicit expressions for A′′0 and B′′0 can be found in [217].
What is the influence of two-loop approximation on this IR scaling regime without helic-

ity in general d-dimensional case? We denote the corresponding fixed point as FPIV0, and its
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coordinates are

FPIV0 : u∗ = 0, ḡ′′∗ =
2d

d− 1

(
ε+

1

d− 1
ε2

)
, (4.49)

with anomalous dimension γν defined as

γ∗ν =
d− 1

2d

(
ḡ′′∗ − (ḡ′′∗)2

2d

)
= ε, (4.50)

which is the exact one-loop result [74]. The eigenvalues of the matrix Ω (taken at the fixed point)
are

Ω1 = 2

(
ε+

1

1− d
ε2

)
, Ω2 = ε− η. (4.51)

The eigenvalue Ω2 = ∂uβu|∗ = −η + γ∗ν is also exact one-loop result. The conditions ḡ′′∗ >
0,Ω1 > 0, and Ω2 > 0 for the IR stable fixed point lead to the following restrictions on the
values of the parameters ε and η:

ε > 0, ε > η, ε < d− 1. (4.52)

The region of stability is shown in Fig. 4.3. The region of stability of this IR fixed point increases
when the dimension of the coordinate space d is increasing.

For the system with helicity the dimension of the space is fixed for d = 3. Thus, our starting
conditions for stable IR fixed point of this type are obtained from conditions (4.52) with explicit
value d = 3: ε > 0, ε > η, ε < 2. But they are valid only if helicity is vanishing and could
be changed when non-zero helicity is present. When helicity is present the fixed point FPIV is
given as

u∗ = 0 ḡ′′∗ = 3ε+
3

2

(
1− 3π2ρ2

16

)
ε2, (4.53)

Therefore, in helical case, the situation is a little bit more complicated as a result of a competition
between non-helical and helical term within two-loop corrections. The matrix Ω is triangular
with diagonal elements (taken already at the fixed point)

Ω1 = 2ε+

(
−1 +

3π2ρ2

16

)
ε2, Ω2 = ε− η, (4.54)

where explicit dependence of eigenvalue Ω1 on parameter ρ takes place. The requirement to have
positive values for parameter ḡ′′∗, and at the same time for eigenvalues Ω1,Ω2 leads to the region
of stable fixed point. The results are shown in Fig. 4.4. The picture is rather complicated due to
the very existence of the ”critical” absolute value of ρ:

ρc =
4√
3π
, (4.55)
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which is defined from the condition of vanishing of the two-loop corrections in Eqs. (4.53), and
(4.54):(

−1 +
3π2ρ2

16

)
= 0. (4.56)

As was already discussed above, when the helicity is not present, the system exhibits this type
of fixed point (and, of course, the corresponding scaling behavior) in the region restricted by
inequalities: ε > 0, ε > η, and ε < 2. The last condition is changing when helicity is switched
on. The important feature here is that the two-loop contributions to ḡ′′∗ and Ω1 have the same
structure but opposite sign. This leads to the different sources of conditions in the case when
|ρ| < ρc and |ρ| > ρc, respectively. In the situation with |ρ| < ρc the positiveness of Ω1 plays
crucial role and one has the following region of stability of IR fixed point FPIV:

ε > 0, ε > η, ε <
32

16− 3π2ρ2
. (4.57)

On the other hand, in the case with |ρ| > ρc, the principal restriction on the IR stable regime is
yield by condition ḡ′′∗ > 0 with final IR stable region defined as

ε > 0, ε > η, ε <
32

−16 + 3π2ρ2
. (4.58)

Therefore, if we are continuously increasing absolute value of helicity parameter ρ, the region
of stability of the fixed point defined by the last inequality in Eq. (4.57) is increasing too. This
restriction vanishes completely when |ρ| reaches the ”critical” value ρc, and the picture becomes
the same as in the one-loop approximation [74]. In this rather specific situation the two-loop
influence on the region of stability of fixed point is exactly zero: the helical and non-helical
two-loop contributions are canceled by each other. Then if the absolute value of parameter ρ
increases further, the last condition appears again, namely the third condition in Eq. (4.58), and
restriction becomes stronger when |ρ| tends to its maximal value, |ρ| = 1. In this case of the
maximal breaking of mirror symmetry (maximal helicity), |ρ| = 1, the region of the IR stability
of the fixed point is defined by inequalities: ε > 0, ε = η, and ε < 2.351 (see Fig. 4.4). It
is interesting enough that the presence of helicity in the system leads to the enlargement of the
stability region.

The most interesting scaling regime is the one with finite value of the fixed point for the
variable u. But by short analysis one immediately concludes that the system of equations (see
also [74])

βg = g(−2ε− η + 3γν) = 0, βu = u(−η + γν) = 0 (4.59)

can be fulfilled simultaneously for finite values of g, u only in the case when the parameter ε is
equal to η: ε = η. In this case, the function βg is proportional to function βu. As a result we
have not one fixed point of this type but a curve of fixed points in the (g, u)- plane with exact
one-loop result for γ∗ν = ε = η (this is already directly given by Eq. (4.59)). We denote the
corresponding point as in Ref. [74] as FPV. The possible values of the fixed point for variable u
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can be restricted (and will be restricted) as we shall discuss below. The matrix Ω defined in Eq.
(2.24) has the following eigenvalues

Ω1 = 0, Ω2 = 3ḡ∗
(
∂γν
∂g

)
∗

+ u∗
(
∂γν
∂u

)
∗
. (4.60)

The vanishing of the Ω1 is an exact result which is related to the degeneracy of the system of Eqs.
(4.59) when nonzero solutions in respect to g, and u are assumed, or, equivalently, it reflects the
existence of a marginal direction in the (g, u)-plane along the line of the fixed points.

The analysis of the last fixed point can start with the investigation of influence of the two-
loop correction on the corresponding scaling regime when helicity is not present in the system
(ρ = 0). In this situation it is interesting to determine the dependence of scaling regime on
dimension d. In Fig. 4.5, the regions of stability for the fixed point FPV without helicity in the
ε − u plane for different space dimension d are shown. It is interesting that in two-loop case
nontrivial d-dependence of IR stability appears in contrast to one-loop approximation [74].

Now the investigation of the situation with helicity follows and its influence on the stability
of the IR fixed point is analyzed. In this case we work in three-dimension space. The competition
between helical and non-helical terms appears again which will lead to a nontrivial restriction
for the fixed point values of variable u to have positive fixed values for variable

Numerical analysis [217] shows important role is played by ρc = 4/(
√

3π). First, the case
|ρ| < ρc is studied. The corresponding regions of stable IR fixed points with g∗ > 0 is shown
in Fig. 4.6. In the case when helicity is not present (ρ = 0, see the corresponding curve in
Fig. 4.6), the only restriction is given by condition that Ω2 > 0, on the other hand, the condition
g∗ > 0 is fulfilled without restriction on the parameter space. When arbitrary small helicity is
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present, i.e., ρ > 0, the restriction related to positiveness of g∗ arises and is stronger when |ρ|
is increasing (the right curve for the concrete value of ρ in Fig. 4.6) and becomes to play the
dominant role. At the same time, with increasing of |ρ| the importance of the positiveness of
the eigenvalue Ω2 decreases (the left curve for the concrete value of ρ in Fig. 4.6). For a given
|ρ| < ρc there exists an interval of values of the variable u∗ for which there is no restriction
on the value of the parameter ε. For example, for |ρ| = 0.1, it is 1.128 < u∗ < 13.502, for
|ρ| = 0.5, 0.217 < u∗ < 0.394, and for |ρ| = 0.7, 0.019 < u∗ < 0.029. Now turn to the case
|ρ| ≥ ρc. When |ρ| acquires its ”critical” value ρc, the IR fixed point is stable for all values of
u∗ > 0 and ε > 0, i.e., the condition Ω2 > 0 becomes fulfilled without restrictions on parameter
space. On the other hand, the condition g∗ > 0 yields strong enough restriction and it becomes
stronger when |ρ| tends to its maximal value |ρ| = 1 as it can be seen in Fig. 4.7).

The most important conclusion of two-loop approximation [217] of the model is the fact that
the possible restrictions on the regions of stability of IR fixed points are ”pressed” to the region
with rather large values of ε, namely, ε ≥ 2, and do not disturb the regions with relatively small
ε. For example, the Kolmogorov point (ε = η = 4/3) is not influenced.

If F denotes some multiplicatively renormalized quantity (a parameter, a field or composite
operator) then its critical dimension is given by the expression

∆[F ] ≡ ∆F = dkF + ∆ωd
ω
F + γ∗F , (4.61)

see, e.g., Refs. [25, 32, 71] for details. In Eq. (4.61) dkF and dωF are the canonical dimensions of
F , ∆ω = 2 − γ∗ν is the critical dimension of frequency, and γ∗F is the value of the anomalous
dimension γF ≡ D̃µ lnZF at the corresponding fixed point. Because the anomalous dimension
γν is already exact for all fixed points at one-loop level, the critical dimensions of frequency ω
and of fields Φ ≡ {v, θ, θ′} are also found exactly at one-loop level approximation [74]. In our
notation they read

∆ω = 2− 2ε+ η for FPII,

∆ω = 2− ε for FPIV, (4.62)
∆ω = 2− ε = 2− η for FPV,

and

∆v = 1− γ∗ν , ∆θ = −1, ∆θ′ = d+ 1. (4.63)

General equal-time two-point quantity F (r) depends on a single distance parameter r which
is multiplicatively renormalizable (F = ZFF

R, where ZF is the corresponding renormalization
constant). Then the renormalized function FR must satisfy the RG equation of the form

(DRG + γF )F (r) = 0, (4.64)

with operator DRG given explicitly in Eq. (4.32) and standardly γF ≡ D̃µ lnZF . The difference
between functions F and FR is only in normalization, choice of parameters (bare or renormal-
ized), and related to this choice the form of the perturbation theory (in g0 or in g). The existence
of a nontrivial IR stable fixed point means that in the IR asymptotic region r/l� 1 and any fixed
r/L the function F (r) takes on the self-similar form

F (r) ' νd
ω
F

0 l−dF (r/l)−∆F f(r/L), (4.65)
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where the values of the critical dimensions correspond to the given fixed point (see above in
this section and Table 4.1). The dependence of the scaling functions on the argument r/L in the
region r/L� 1 can be studied using the well-known OPE technique discussed in Sec. 2.7.

4.1.5 Effective diffusivity

One of the interesting object from the theoretical as well as experimental point of view is so-
called effective diffusivity ν̄. In this section let us briefly investigate the effective diffusivity ν̄,
which replaces initial molecular diffusivity ν0 in equation (4.1) due to the interaction of a scalar
field θ with random velocity field v. Molecular diffusivity ν0 governs exponential attenuation
in time of all fluctuations in the system in the lowest approximation, which is given by the
propagator (response function)

G(t− t′,k) = 〈θ(t,k)θ′(t′,k)〉0 = θ(t− t′) exp(−ν0k
2(t− t′)). (4.66)

Analogously, the effective diffusivity ν̄ governs exponential attenuation of all fluctuations de-
scribed by full response function, which is defined by Dyson equation (4.36). Its explicit ex-
pression can be obtained by the RG approach. In accordance with general rules of the RG (see,
e.g., Ref. [25]) all principal parameters of the model g0, u0 and ν0 are replaced by their effective
(running) counterparts, which satisfy Gell-Mann-Low RG equations

s
dḡ

ds
= βg(ḡ, ū), s

dū

ds
= βu(ḡ, ū), s

dν̄

ds
= −ν̄γν(ḡ, ū) , (4.67)

with initial conditions ḡ|s=1 = g, ū|s=1 = u, ν̄|s=1 = ν. Here s = k/µ, β and γ functions are
defined in (4.33) - (4.35) and all running parameters clearly depend on variable s. Straightfor-
ward integration (at least numerical) of equations (4.67) gives way how to find their fixed points.
Instead, one very often solves the set of equations βg(g∗, u∗) = βu(g∗, u∗) = 0 which defines all
fixed points g∗, u∗. Just this approach was used above when we classified all fixed points. Due
to special form of β-functions (4.34), (4.35) we are able to solve equation (4.67) analytically.
Using Eqs. (4.67), and (4.34) one immediately rewrites (4.67) in the form

s
dν̄

ν̄
=

γν
2ε+ η − 3γν

dḡ

ḡ
(4.68)

which can be easily integrated. Using initial conditions the solution acquires the form

ν̄ =

(
gν3

ḡs2ε+η

)1/3

=

(
D0

ḡk2ε+η

)1/3

, (4.69)

where to obtain the last expression we used the equations gµ2ε+ην3 = g0ν
3
0 = D0. We em-

phasize that above solution is exact, i.e., the exponent 2ε + η is as well. However, in infrared
region k � Λ ∼ l−1, ḡ → g∗, which can be calculated only pertubatively. In the two-loop
approximation g∗ = g(1)∗ε+ g(2)∗ε2 and after the Taylor expansion of (g∗)1/3 in Eq. (4.69) we
obtain

ν̄ ≈ ν∗
(

D0

g(1)∗ε

)1/3

k−
2ε+η

3 , ν∗ ≡ 1− g(2)∗ε

3g(1)∗ . (4.70)
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Remind that for Kolmogorov values ε = η = 4/3 the exponent in (4.70) becomes equal to−4/3.
Let us estimate the contribution of helicity to the effective diffusivity in nontrivial point above
denoted as FPV. At this point ε = η ((2ε+ η)/3 = ε) and

ν∗ = 1− ε
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Figure 4.8. The dependence of ν∗ on the helicity
parameter ρ for definite IR fixed point values u∗ of
the parameter u.
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Figure 4.9. The dependence of ν∗ on the IR fixed
point u∗ for the concrete values of the helicity pa-
rameter ρ.

In Figs. 4.8, and 4.9 the dependence of the ν∗ on the helicity parameter ρ and the IR fixed
point u∗ of the parameter u is shown. As one can see from these figures when u∗ →∞ (the rapid
change model limit) the two-loop corrections to ν∗ = 1 are vanishing. Such behavior is related
to the fact, which was already stressed in the text, that within the rapid change model there are
no two and higher loop corrections at all. On the other hand, the largest two-loop corrections
to the ν∗ are given in the frozen velocity field limit (u∗ → 0). It is interesting that for all finite
values of the parameter u∗ there exists a value of the helicity parameter ρ for which the two-loop
contribution to ν∗ are canceled. For example, for the frozen velocity field limit (u∗ = 0) such
situation arises when the helicity parameter ρ is equal to its ”critical” value ρc = 4/(

√
3π) (this

situation can be seen in Fig. 4.9). It is again the result of the competition between the non-helical
and helical parts of the the two-loop corrections as is shown in Eq. (4.71). Further important
feature of the expression (4.71) is that it is linear in the parameter ε. Thus, when one varies the
value of ε the picture is the same as in Figs. 4.8, and 4.9 and only the scale of corrections is
changed. In Figs. 4.8, and 4.9 we have shown the situation for the most interesting case when ε
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is equal to its ”Kolmogorov” value, namely, ε = 4/3.

Finally, time behavior of the retarded response function G ≡ Wθθ′〈θθ′〉conn in the limit
t→∞ is analyzed. In frequencywave vector representationG(ω,p) satisfies the Dyson equation
(4.36) when one takes into account the relation Γθ′θWθθ′ = 1 that follows from Eq. (2.6).
The self-energy operator Σ is expressed via multi-loop Feynman graphs and can be calculated
perturbatively. Its divergent part was found [216] up to the two-loop approximation and its finite
part with the one-loop precision was calculated. Using the Dyson equation the response function
can be written in the timewave vector representation

G(t,p) =

∫
dω

2π
e−iωtG(ω,p) =

∫
dω

2π

e−iωt

−iω + ν0p2 − Σ(ω,p)
. (4.72)

In the lowest approximation Σ(ω,p) = 0; thus the integral can be easily calculated: G0(t,p) =
θ(t)e−iωrt. Here θ(t) denotes the usual step function and ωr is a residuum in complex plain ω in
point iν0p

2. Let us suppose that this situation remains the same for the full response function G;
i.e., the leading contribution to its asymptotic behavior for t→∞ is determined by the residuum
ω = ωr, which corresponds to the smallest root of the dispersion relation

G−1(ω,p) = iωr + ν0p
2Σ(ωr,p) = 0. (4.73)

It is advantageous to rewrite the last relation in the dimensionless form:

1− z − I(1, z) = 0, z ≡ iωr
ν0p2

, I(1, z, g) ≡ Σ(ω,p)

ν0p2
, (4.74)

which after renormalization can be rewritten in the fixed point g∗ () as follows:

1− z − I = 0, (4.75)

where ν̄ is effective diffusivity (4.70) and I∗ ≡ I∗(1, z∗, g∗) is the renormalized (finite) part of
the dimensionless self-energy operator I at the fixed point g∗. After some algebraic manipula-
tions [216] the decay law G0(t,p) ∼ exp(−ν0p

2t) is changed into

G(t,p) ∼ exp(−iωrt) = exp(−z∗ν̄p2t), t→∞. (4.76)

Due to the existence of two complex conjugate values z∗ the response function G(t, p2) can be
written in the asymptotic limit t→∞ in the following final form:

G(t, p2) ∼= sin(νfp
2−εt) exp(−νeffp

2−εt) (4.77)

where
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. (4.78)

It is clear that the exponential attenuation is accompanied by the oscillations.
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4.1.6 Operator product expansion, critical dimensions of composite operators, and
anomalous scaling

The behavior of the scaling function in Eq. (4.65) can be analyzed using OPE technique (Sec.
2.7).

In what follows, we shall concentrate on the equal-time structure functions of the scalar field
defined as

Sn(r) ≡ 〈[θ(t,x)− θ(t,x′)]n〉, r = |x− x′|, (4.79)

which are also interesting from experimental point of view. The representation (4.65) is valid
with the dimensions dωF = 0 and dF = ∆F = n∆θ = −n. In general, not only the operators
which are present in the corresponding Taylor expansion are entering into the OPE but also all
possible operators that admix to them in renormalization. In present model the leading contribu-
tion of the Taylor expansion for the structure functions (4.79) is given by the tensor composite
operators constructed solely of the scalar gradients

F [n, p] ≡ ∂i1θ · · · ∂ipθ(∂iθ∂iθ)l, (4.80)

where n = p+2l is the total number of the fields θ entering into the operator and p is the number
of the free vector indices.

4.1.7 Anomalous scaling: two-loop approximation

The influence of the helicity on the anomalous scaling is the most interesting for the degenerate
fixed point, namely, the fixed point denoted as FPV in Sec.4.1.4. In this case, the dimensions
∆Fnp are represented in the following series in the only independent exponent ε = η

∆Fnp = ε∆
(1)
Fnp

+ ε2∆
(2)
Fnp

. (4.81)

The one-loop contribution has the form

∆
(1)
Fnp

=
2n(n− 1)− (n− p)(d+ n+ p− 2)(d+ 1)

2(d+ 2)(d− 1)
, (4.82)

which is independent of the parameter u. Although the fixed point value g∗ depends on helicity
parameter ρ, the two-loop contribution to the critical dimension ∆

(2)
Fnp

is independent of ρ. Thus,
the result is the same as that obtained in Ref. [121] (the correct formula was republished in
Ref. [218]).

In this section, the influence of helicity on the stability of asymptotic regimes, on the anoma-
lous scaling, and on the effective diffusivity was briefly reviewed in the framework of the pas-
sive scalar advected by the turbulent flow with finite correlations in time of the velocity field
[216, 217]. Such investigation is important and useful for understanding of efficiency of toy
models (like Kraichnan model, and related ones) to study the real turbulent motions by means of
modern theoretical methods including renormalization group approach. Thus, it can be consider
as the first step in investigation of the influence of helicity in real turbulent environment.

The RG calculations [217] are necessary to two-loop approximation in order to observe ef-
fects of helicity. It has been mentioned that the anomalous scaling of the structure functions,
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which is typical for the Kraichnan model and its numerous extensions, is not changed by the
inclusion of helicity to the incompressible fluid. It is given mathematically by the very inter-
esting fact that although separated two-loop Feynman diagrams of the corresponding composite
operators strongly depend on the helicity parameter ρ, their sum - the critical dimension ∆n is
independent of ρ in the asymptotic regime defined by IR stable fixed point.

On the other hand, stability of possible asymptotic regimes, values of the fixed RG points and
the turbulent diffusivity strongly depend on amount of helicity. The presence of helicity in the
system leads to the restrictions on the possible values of the parameters of the model. The most
interesting fact is the existence of a ”critical” value ρc of the helicity parameter ρ which divides
the interval of possible absolute values of ρ into two parts with completely different behavior. It
is related to the existence of a competition between non-helical and helical contributions within
two-loop approximation. As a result of this competition, within of the so-called frozen limit,
the presence of helicity enlarges the region of parameter space with stable scaling regime, and if
|ρ| = ρc the corresponding two-loop restriction is vanished completely and one is coming to the
one-loop results [74]. Similar splitting, although more complicated, into two nontrivial behavior
of the fixed point was also obtained in the general case with finite correlations in time of the
velocity field.

Another quantity which rather strongly depends on the helicity parameter ρ is effective dif-
fusivity. The value of effective diffusivity can be 50% larger in helical case in comparison with
non-helical case.

4.2 Effect of strong anisotropy

Another important question addressed is the effects of large-scale anisotropy on inertial-
range statistics of passively advected fields [74, 89, 91, 101, 102, 114, 115, 204, 219–224] and
the velocity field itself [225–229]. According to the classical Kolmogorov–Obukhov theory,
the anisotropy introduced at large scales by the forcing (boundary conditions, geometry of an
obstacle etc.) dies out when the energy is transferred down to the smaller scales owing to the
cascade mechanism [70, 79]. A number of works confirms this picture for the even correlation
functions, thus giving some quantitative support to the aforementioned hypothesis on the restored
local isotropy of the inertial-range turbulence for the velocity and passive fields [74, 114, 115,
219–222, 225, 227–229]. More precisely, the exponents describing the inertial-range scaling
exhibit universality and hierarchy related to the degree of anisotropy, and the leading contribution
to an even function is given by the exponent from the isotropic shell [74,114,115,204,220–222,
227–229]. Nevertheless, the anisotropy survives in the inertial range and reveals itself in odd
correlation functions, in disagreement with what was expected on the basis of the cascade ideas.
The so-called skewness factor decreases down the scales much slower than expected [86–89,
89, 91, 93, 101, 102, 230], while the higher-order odd dimensionless ratios (hyperskewness etc.)
increase, thus signaling of persistent small-scale anisotropy [74, 114, 115, 219, 231]. The effect
seems rather universal, being observed for the scalar [74,114] and vector [115] fields, advected by
the Gaussian rapid-change velocity, and for the scalar advected by the two-dimensional Navier-
Stokes velocity field [219]. Problem of large-scale anisotropy for strongly compressible fluid
was recently analyzed in works [232, 233].

Here we demonstrate the anomalous scaling behavior of a passive scalar advected by the
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time-decorrelated strongly anisotropic Gaussian velocity field. In contradistinction with the stud-
ies of [74, 88, 89, 91, 93, 101, 102, 114], where the velocity was isotropic and the large-scale
anisotropy was introduced by the imposed linear mean gradient, the uniaxial anisotropy in con-
sidered model persists for all scales, leading to non-universality of the anomalous exponents
through their dependence on the anisotropy parameters.

The aim is twofold. First, explicit inertial-range expressions for the structure functions and
correlation functions of the scalar gradients are obtained and then the corresponding anoma-
lous exponents to the first order of the ε expansion are computed. The exponents become non-
universal through the dependence on the parameters describing the anisotropy of the velocity
field. Owing to the anisotropy of the velocity statistics, the composite operators of different
ranks mix strongly in renormalization, and the corresponding anomalous exponents are given by
the eigenvalues of the matrices which are neither diagonal nor triangular (in contrast with the
case of large-scale anisotropy). In the language of the zero-mode technique this means that the
SO(d) decompositions of the correlation functions (employed, e.g., in Refs. [221, 222]) do not
lead to the diagonalization of the differential operators in the corresponding exact equations.

4.2.1 Definition of the model. Anomalous scaling and “dangerous” composite operators.

The discussion here closely follows exposition in Sec. 4.1. As has been mentioned there the
advection of a passive scalar field θ(x) ≡ θ(t,x) in the rapid-change model is described by the
stochastic equation (4.1). The velocity v(x) correlator now instead of Eq. (4.11) reads

〈vi(x)vj(x
′)〉 = D0

δ(t− t′)
(2π)d

∫
ddk Tij(k) (k2 +m2)−d/2−ε/2 exp[ik · (x−x′)], (4.83)

where

D0

ν0
≡ g0 ≡ Λε (4.84)

and as was already mentioned in Sec. 4.1.1 the relationm = 1/L holds. In the isotropic case, the
tensor quantity Tij(k) in (4.83) is taken to be the ordinary transverse projector Tij(k) = Pij(k)
(See Eq. (3.10)). The velocity statistics is taken to be anisotropic also at small scales. The
ordinary transverse projector is replaced by the general transverse structure that possesses the
uniaxial anisotropy:

Tij(k) = a(ψ)Pij(k) + b(ψ)ñi(k)ñj(k). (4.85)

Here the unit vector n determines the distinguished direction (n2 = 1),

ñi(k) ≡ Pij(k)nj , (4.86)

and ψ is the angle between the vectors k and n, so that (n · k) = k cosψ [note that (ñ · k) =
0]. The scalar functions can be decomposed the Gegenbauer polynomials (the d-dimensional
generalization of the Legendre polynomials, see Ref. [234]):

a(ψ) =

∞∑
l=0

alP2l(cosψ), b(ψ) =

∞∑
l=0

blP2l(cosψ). (4.87)
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The positivity of the correlator (4.83) leads to the conditions

a(ψ) > 0, a(ψ) + b(ψ) sin2 ψ > 0. (4.88)

In practical calculations one works with the special case

Tij(k) =

[
1 + α1

(n · k)2

k2

]
Pij(k) + α2ñi(k)ñj(k). (4.89)

Then the inequalities (4.88) reduce to α1,2 > −1. Later it will be shown that this choice repre-
sents nicely all the main features of the general model (4.85).

We note that the quantities (4.85), (4.89) possess the symmetry n → −n. The anisotropy
makes it possible to introduce mixed correlator 〈vf〉 ∝ nδ(t− t′)C ′(r/L) with some function
C ′(r/L) analogous to C(r/L) from Eq. (4.2). This violates the evenness in n and gives rise
to non-vanishing odd functions S2n+1. However, this leads to no serious alterations in the RG
analysis; this case is discussed in Sec. 4.2.6, and for now we assume 〈vf〉 = 0.

In a number of papers, e.g. [74, 88, 89, 91, 93, 101, 102, 114], the artificial stirring force in
Eq. (4.1) was replaced by the term (h · v), where h is a constant vector that determines the
distinguished direction and therefore introduces large-scale anisotropy. The anisotropy gives
rise to non-vanishing odd functions S2n+1. The critical dimensions of all composite operators
remain unchanged, but the irreducible tensor operators acquire nonzero mean values and their
contributions appear on the right hand side of Eq. (4.30); see [74,114]. This is easily understood
in the language of the zero-mode approach: the noise f and the term (h · v) do not affect the
differential operators in the equations satisfied by the equal-time correlations functions; the zero
modes (homogeneous solutions) coincide in the two cases, but in the latter case the modes with
nontrivial angular dependence should be taken into account.

The direct calculation to the order O(ε) has shown that the leading exponent associated with
a given rank contribution to Eq. (4.1) decreases monotonically with the rank [74, 114]. Hence,
the leading term of the inertial-range behavior of an even structure function is determined by
the same exponent as was obtained isotropic model [112], while the exponents related to the
tensor operators determine only subleading corrections. A similar hierarchy was established in
Ref. [220] (see also [115]) for the magnetic field advected passively by the rapid-change velocity
in the presence of a constant background field, and in [227–229] within the context of the Navier–
Stokes turbulence.

In a number of papers, e.g., [235–239], the RG techniques were applied to the anisotropically
driven Navier–Stokes equation, including passive advection and magnetic turbulence, with the
expression (4.89) entering into the stirring force correlator. The detailed account can be found in
Ref. [32], where some errors of the previous treatments were corrected. However, these studies
have up to now been limited to the first stage, i.e., investigation of the existence and stability of
the fixed points and calculation of the critical dimensions of basic quantities. Calculation of the
anomalous exponents in those models remains an open problem.
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4.2.2 Field theoretic formulation and the Dyson–Wyld equations

The stochastic problem is equivalent to the field theoretic model of the set of three fields Φ ≡
{θ′, θ,v} with action functional

S[Φ] =
1

2
θ′Dθθ

′ + θ′
[
−∂t − (v ·∇) + ν0∇2 +

1

2
Dvij(0)∂i∂j

]
θ − 1

2
vD−1

v v. (4.90)

Here Dθ and Dv are the correlators (4.2) and (4.83), respectively, and

Dvij(0) = D0

∫
ddq

(2π)d
Tij(q)

(q2 +m2)d/2+ε/2
(4.91)

is the diagonal term (in spatial variables) of the coefficient of the temporal δ function in the
velocity pair correlation function (4.83).

The model (4.90) corresponds to a standard Feynman diagrammatic technique with the triple
vertex (3.95), propagators (4.21) and

〈θθ〉0 = C(k) (ω2 + ν2
0k

4)−1, 〈θ′θ′〉0 = 0, (4.92)

where C(k) is the Fourier transform of the function C(r/L) from Eq. (4.2) and the bare prop-
agator 〈vv〉0 ≡ 〈vv〉 is given by Eq. (4.83) with the transverse projector from Eqs. (4.85) or
(4.89).

The pair correlation functions 〈ΦΦ〉 of the multicomponent field Φ ≡ {θ′, θ,v} satisfy the
standard Dyson equation, which in the component notation reduces to the system of two equa-
tions, cf. [79]

G−1(ω,k) = −iω + ν0k
2 − Σθ′θ(ω,k), (4.93)

D(ω,k) = |G(ω,k)|2 [C(k) + Σθ′θ′(ω,k)], (4.94)

where G(ω,k) ≡ 〈θθ′〉 and D(ω,k) ≡ 〈θθ〉 are the exact response function and pair corre-
lator, respectively, and Σθ′θ, Σθ′θ′ are self-energy operators represented by the corresponding
1-irreducible diagrams; all the other functions ΣΦΦ in the model (4.90) vanish identically.

The characteristic feature of the models like (4.90) is that all the skeleton multi-loop diagrams
entering into the self-energy operators Σθ′θ, Σθ′θ′ contain effectively closed circuits of retarded
propagators 〈θθ′〉 (it is crucial here that the propagator 〈vv〉0 in Eq. (4.83) is proportional to the
δ function in time) and therefore vanish.

Therefore the self-energy operators in (4.93-4.94) are given by the one-loop approximation
exactly and have the form

Σθ′θ(ω,k) = −D0 kikj
2

∫
ddq

(2π)d
Tij(q)

(q2 +m2)d/2+ε/2
. (4.95)

Σθ′θ′(ω,k) = D0 kikj

∫
dω′

2π

∫
ddq

(2π)d
Tij(q)

(q2 +m2)d/2+ε/2
D(ω′, q′), (4.96)

where q′ ≡ k − q.
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The integration over ω′ on the right-hand side of Eq. (4.96) gives the equal-time pair corre-
lator

D(q) = (1/2π)

∫
dω′D(ω′, q). (4.97)

Note that both the self-energy operators are in fact independent of ω.
The integration of Eq. (4.94) over the frequency ω gives a closed equation for the equal-time

correlator. Using Eq. (4.95) it can be written in the form

2ν0k
2D(k) = C(k) +D0 kikj

∫
ddq

(2π)d
Tij(q)

(q2 +m2)d/2+ε/2

[
D(q′)−D(k)

]
. (4.98)

Equation (4.98) can also be rewritten as a partial differential equation for the pair correlator
in the coordinate representation, D(r) ≡ 〈θ(t,x)θ(t,x + r)〉 [we use the same notation D for
the coordinate function and its Fourier transform]. Noting that the integral in Eq. (4.98) involves
convolutions of the functionsD(k) andD0 Tij(q)/(q2+m2)d/2+ε/2, and replacing the momenta
by the corresponding derivatives, iki → ∂i and so on, the following equation

2ν0∂
2D(r) + C(r/L) +D0 Sij(r) ∂i∂j D(r) = 0 (4.99)

can be obtained, where the “effective eddy diffusivity” is given by

Sij(r) ≡
∫

ddq

(2π)d
Tij(q)

(q2 +m2)d/2+ε/2

[
1− exp (iq · r)

]
. (4.100)

For 0 < ε < 2, equations (4.98)–(4.100) allow for the limitm→ 0: the possible IR divergence of
the integrals at q = 0 is suppressed by the vanishing of the expressions in the square brackets. For
the isotropic case (i.e., after the substitution Tij → Pij) Eq. (4.99) coincides (up to the notation)
with the well-known equation for the equal-time pair correlator in the model [77, 84, 240, 241].

4.2.3 Renormalization, RG functions, and RG equations

The analysis of the UV divergences is based on the analysis of canonical dimensions introduced
in Sec. 2. The dimensions for the model (4.90) are given in Table 4.2.3, including the parameters

F θ θ′ v ν, ν0 m, µ, Λ g0 g, α, α0

dkF 0 d −1 −2 1 ε 0

dωF −1/2 1/2 1 1 0 0 0

dF −1 d+ 1 1 0 1 ε 0

Table 4.2. Canonical dimensions of the fields and parameters in the model (4.101).

which will be introduced later on.
In the presence of anisotropy, it is necessary to also introduce new counterterm of the form

θ′(n·∇)2θ, which is absent in the unrenormalized action functional (4.90). Therefore, the model
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(4.90) in its original formulation is not multiplicatively renormalizable, and in order to use the
standard RG techniques it is necessary to extend the model by adding the new contribution to the
unrenormalized action:

S[Φ] = θ′Dθθ
′/2 + θ′

[
−∂t − (v ·∇) + ν0∇2 + χ0ν0(n ·∇)2

]
θ− vD−1

v v/2. (4.101)

Here χ0 is a new dimensionless unrenormalized parameter. The stability of the system implies
the positivity of the total viscous contribution ν0k

2 +χ0ν0(n ·k)2, which leads to the inequality
χ0 > −1. Its real (“physical”) value is zero, but this fact does not hinder the use of the RG
techniques, in which it is first assumed to be arbitrary, and the equality χ0 = 0 is imposed as
the initial condition in solving the equations for invariant variables (see Sec. 4.2.4). The zero
value of χ0 corresponds to certain nonzero value of its renormalized analog, which can be found
explicitly.

For the action (4.101), the nontrivial bare propagators in (4.92) are replaced with

〈θθ′〉0 = 〈θ′θ〉∗0 =
1

−iω + ν0k2 + χ0ν0(n · k)2
, (4.102)

〈θθ〉0 =
C(k)

| − iω + ν0k2 + χ0ν0(n · k)2|2
. (4.103)

After the extension, the model has become multiplicatively renormalizable: inclusion of the
counterterms is reproduced by the inclusion of two independent renormalization constants Z1,2

as coefficients in front of the counterterms. This leads to the renormalized action of the form

SR[Φ] = θ′Dθθ
′/2+θ′

[
−∂t − (v ·∇) + νZ1∇2 + χνZ2(n ·∇)2

]
θ−vD−1

v v/2, (4.104)

or, equivalently, to the multiplicative renormalization of the parameters ν0, g0 and χ0 in the
action functional (4.101):

ν0 = νZν , g0 = gµεZg, χ0 = χZχ. (4.105)

The correlator (4.83) in (4.104) is expressed in renormalized variables using Eqs. (4.105). The
comparison of Eqs. (4.101), (4.104), and (4.105) leads to the relations

Z1 = Zν , Z2 = ZχZν , Zg = Z−1
ν . (4.106)

The beta functions are given by

βg(g, α) ≡ D̃µg = g (−ε− γg) = g (−ε+ γν) = g (−ε+ γ1), (4.107)

βχ(g, χ) ≡ D̃µχ = −χγχ = χ(γ1 − γ2). (4.108)

The relation between βg and γν in Eq. (4.107) results from the definitions and the last relation in
(4.106).
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One-loop calculation [112] yields the following expressions for renormalization constants Z1

and Z2

Z1 = 1− gS̄d
2d(d+ 2)ε

[
(d− 1)(d+ 2) + α1(d+ 1) + α2

]
, (4.109)

Z2 = 1− gS̄d
2d(d+ 2)χε

[
−2α1 + α2(d2 − 2)

]
, (4.110)

where the geometrical factor S̄d stemming from angular integration has been introduced in Eq.
(3.62).

For the anomalous dimension γ1(g) one obtains

γ1(g) =
−εDg lnZν
1−Dg lnZν

=
gS̄d

2d(d+ 2)

[
(d− 1)(d+ 2) + α1(d+ 1) + α2

]
, (4.111)

and for γ2(g, α) one has

γ2(g, α) =

[
(−ε+ γ1)Dg + γ1Dχ

]
lnZ2

1 +Dχ lnZ2
=
−εDg lnZ2

1 +Dχ lnZ2
(4.112)

=
gS̄d

2d(d+ 2)χ

[
−2α1 + α2(d2 − 2)

]
(4.113)

[note that (Dg + Dχ) lnZ2 = 0]. The cancellation of the poles in ε in Eqs. (4.111) and (4.113)
is a consequence of the UV finiteness of the anomalous dimensions γF ; their independence of
ε is a property of the MS scheme. Note also that the expressions (4.110)–(4.113) are exact, i.e.,
have no corrections of order g2 and higher; this is a consequence of the fact that the one-loop
approximation (4.95) for the self-energy operator is exact.

The coordinates g∗, χ∗ of the fixed points are found from the equations

βg(g
∗, χ∗) = βχ(g∗, χ∗) = 0, (4.114)

with the beta functions from Eqs. (4.107)-(4.108). The type of the fixed point is determined by
the eigenvalues of the matrix Ω defined in Eq. (2.24). The IR asymptotic behavior is governed
by the IR stable fixed points. From the explicit expressions (4.111), (4.113) it then follows that
the RG equations of the model have the only IR stable fixed point with the coordinates

g∗S̄d =
2d(d+ 2)ε

(d− 1)(d+ 2) + α1(d+ 1) + α2
, χ∗ =

−2α1 + α2(d2 − 2)

(d− 1)(d+ 2) + α1(d+ 1) + α2
.

(4.115)

For this point, both the eigenvalues of the matrix Ω equal to ε; the values γ∗1 = γ∗2 = γ∗ν = ε
are also found exactly from Eqs. (4.107)-(4.108) [here and below, γ∗F ≡ γF (g∗, χ∗)]. The fixed
point (4.115) is degenerate in the sense that its coordinates depend continuously on the anisotropy
parameters α1,2.?

? Formally, α1,2 can be treated as the additional coupling constants. The corresponding beta functions β1,2 ≡
D̃µα1,2 vanish identically owing to the fact that α1,2 are not renormalized. Therefore the equations β1,2 = 0 give no
additional constraints on the values of the parameters g, χ at the fixed point.
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4.2.4 Solution of the RG equations. Invariant variables

The solution of the RG equations is discussed in Sec. 2.4; below we confine ourselves to only
the information we need.

Consider the solution of the RG equation on the example of the even different-time structure
functions

S2n(r, τ) ≡ 〈[θ(t,x)− θ(t′,x′)]2n〉, r ≡ x− x′, τ ≡ t− t′. (4.116)

It satisfies the RG equationDRGS2n = 0 with the operatorDRG = Dµ+βg∂g+βχ∂χ−γnuDν .
In renormalized variables, dimensionality considerations give

S2n(r, τ) = ν−nr2nR̃2n(µr, τν/r2, r/L, g, χ), (4.117)

where R̃2n is a scaling function of completely dimensionless arguments (the dependence on d,
ε, α1,2 and the angle between the vectors r and n is also implied). From the RG equation the
identical representation follows,

S2n(r, τ) = (ν̄)−nr2nR̃2n(1, τ ν̄/r2, r/L, ḡ, χ̄), (4.118)

where the invariant variables ē = ē(µr, e) satisfy Eq. (2.18). The identity L̄ ≡ L is a con-
sequence of the fact that L is not renormalized. The relation between the bare and invariant
variables has the form

ν0 = ν̄Zν(ḡ), g0 = ḡr−εZg(ḡ), χ0 = χ̄Zχ(ḡ, χ̄). (4.119)

Equation (4.119) determines implicitly the invariant variables as functions of the bare parameters;
it is valid because both sides of it satisfy the RG equation, and because Eq. (4.119) at µr = 1
coincides with (4.105) owing to the normalization conditions.

In general, the large µr behavior of the invariant variables is governed by the IR stable fixed
point: ḡ → g∗, χ̄ → χ∗ for µr → ∞. However, in multi-charge problems one has to take
into account that even when the IR point exists, not every phase trajectory (i.e., solution of Eq.
(4.119)) reaches it in the limit µr → ∞. It may first pass outside the natural region of stability
[physical region is given by the inequalities g > 0, χ > −1] or go to infinity within this region.
Fortunately, in our case the constants ZF entering into Eq. (4.119) are known exactly from Eqs.
(4.110), and it is readily checked that the RG flow indeed reaches the fixed point (4.115) for any
initial conditions g0 > 0, χ0 > −1, including the physical case χ0 = 0. Furthermore, the large
µr behavior of the invariant viscosity ν̄ is also found explicitly from Eq. (4.119) and the last
relation in (4.106): ν̄ = D0r

ε/ḡ → D0r
ε/g∗ (we recall that D0 = g0ν0). Then for µr → ∞

and any fixed mr we obtain

S2n(r, τ) = D−n0 rn(2−ε)g∗nR2n(τD0r
∆t , r/L), (4.120)

where the scaling function

R2n(D0τr
∆t , r/L) ≡ R̃2n(1, D0τr

∆t , r/L, g∗, α∗), (4.121)
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has appeared and ∆t ≡ −2 + γ∗ν = −2 + ε is the critical dimension of time. For the equal-time
structure function (4.27), the first argument of R2n in the representation (4.121) is absent:

S2n(r) = D−n0 rn(2−ε)g∗nR2n(r/L), (4.122)

where the definition of R2n is obvious from (4.121). It is noteworthy that Eqs. (4.120)–(4.122)
prove the independence of the structure functions in the IR range (large µr and any r/L) of the
viscosity coefficient or, equivalently of the UV scale: the parameters g0 and ν0 enter into Eq.
(4.120) only in the form of the combination D0 = g0ν0. A similar property was established in
Ref. [242] for the stirred Navier–Stokes equation.

In contrast to the previously mentioned models the scaling function R̃ in (4.118) contains two
different scales - corresponding to spatial and time differences, respectively. The information
about its behavior can be again using OPE method from Sec. 2.7. Therefore, let F (r, τ) stands
for some multiplicatively renormalized quantity. Dimensionality considerations give

FR(r, τ) = νd
ω
F r−dF R̃F (µr, τν/r2, r/L, g, α), (4.123)

where dωF and dF are the frequency and total canonical dimensions of F (see Sec. 2.3) and RF
is a function of dimensionless arguments. The analog of Eq. (4.118) has the form

F (r, τ) = ZF (g, α)FR = ZF (ḡ, ᾱ) (ν̄)d
ω
F r−dF R̃F (1, τ ν̄/r2, r/L, ḡ, ᾱ). (4.124)

In the large µr limit, one has ZF (ḡ, ᾱ) ' const (Λr)−γ
∗
F ; see, e.g., [243]. The UV scale appears

in this relation from Eq. (4.84). Then in the IR range (Λr ∼ µr large, r/L arbitrary) Eq. (4.124)
takes on the form

F (r, τ) ' const Λ−γ
∗
F D

dωF
0 r−∆[F ]RF (D0τr

∆t , r/L). (4.125)

Here

∆[F ] ≡ ∆F = dkF −∆td
ω
F + γ∗F , ∆t = −2 + ε (4.126)

is the critical dimension of the function F and the scaling function RF is related to R̃F as in
Eq. (4.120). For nontrivial γ∗F , the function F in the IR range retains the dependence on Λ or,
equivalently, on ν0.

4.2.5 Renormalization and critical dimensions of composite operators

Operators of the form θN (x) with the canonical dimension dF = −N enter into the structure
functions (4.27). From Table 4.2.3 in Sec. 4.2.3 and Eq. (2.49) the relation dΓ = −N + Nθ −
Nv − (d + 1)Nθ′ can be obtained, and from the analysis of the diagrams it follows that the
total number of the fields θ entering into the function Γ can never exceed the number of the
fields θ in the operator θN itself, i.e., Nθ ≤ N (cf. item (i) in Sec. 4.2.3). Therefore, the
divergence can only exist in the functions with Nv = Nθ′ = 0, and arbitrary value of N = Nθ,
for which the formal index vanishes, dΓ = 0. However, at least one of Nθ external “tails” of
the field θ is attached to a vertex θ′(v ·∇)θ (it is impossible to construct nontrivial, superficially
divergent diagram of the desired type with all the external tails attached to the vertex F ), at least
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one derivative ∂ appears as an extra factor in the diagram, and, consequently, the real index of
divergence d′Γ is necessarily negative.

This means that the operator θN requires no counterterms at all, i.e., it is in fact UV finite,
θN = Z [θN ]R with Z = 1. It then follows that the critical dimension of θN (x) is simply given
by the expression (4.126) with no correction from γ∗F and is therefore reduced to the sum of the
critical dimensions of the factors:

∆[θN ] = N∆[θ] = N(−1 + ε/2). (4.127)

Since the structure functions (4.27) or (4.116) are linear combinations of pair correlators involv-
ing the operators θN , equation (4.127) shows that they indeed satisfy the RG equation of the
form (2.12), discussed in Sec. 4.2.4. We stress that the relation (4.127) was not clear a priori; in
particular, it is violated if the velocity field becomes non-solenoidal [113].

In the following, an important role will be also played by the tensor composite operators
∂i1θ · · · ∂ipθ (∂iθ∂iθ)

n constructed solely of the scalar gradients. It is convenient to deal with the
scalar operators obtained by contracting the tensors with the appropriate number of the vectors
n,

F [N, p] ≡ [(n ·∇)θ]p(∂iθ∂iθ)
n, N ≡ 2n+ p. (4.128)

Their canonical dimensions depend only on the total number of the fields θ and have the form
dF = 0, dωF = −N .

In this case, from Table 4.2.3 and Eq. (2.49) we obtain dΓ = Nθ −Nv − (d + 1)Nθ′ , with
the necessary condition Nθ ≤ N , which follows from the structure of the diagrams. It is also
clear from the analysis of the diagrams that the counterterms to these operators can involve the
fields θ, θ′ only in the form of derivatives, ∂θ, ∂θ′, so that the real index of divergence has the
form d′Γ = dΓ − Nθ − Nθ′ = −Nv − (d + 2)Nθ′ . It then follows that superficial divergences
can exist only in the Green functions with Nv = Nθ′ = 0 and any Nθ ≤ N , and that the
corresponding operator counterterms reduce to the form F [N ′, p′] with N ′ ≤ N . Therefore, the
operators (4.128) can mix only with each other in renormalization, and the corresponding infinite
renormalization matrix

F [N, p] =
∑
N ′,p′

Z[N,p] [N ′,p′] F
R[N ′, p′] (4.129)

is in fact block-triangular, i.e., Z[N,p] [N ′,p′] = 0 for N ′ > N . It is then obvious that the critical
dimensions associated with the operators F [N, p] are completely determined by the eigenvalues
of the finite subblocks with N ′ = N .

In the isotropic case, as well as in the presence of large-scale anisotropy, the elements
Z[N,p] [N,p′] vanish for p < p′, and the block Z[N,p] [N,p′] is triangular along with the corre-
sponding blocks of the matrices UF and ∆F from Eqs. (2.47), (4.126). In the isotropic case
it can be diagonalized by changing to irreducible operators (scalars, vectors, and traceless ten-
sors), but even for nonzero imposed gradient its eigenvalues are the same as in the isotropic case.
Therefore, the inclusion of large-scale anisotropy does not affect critical dimensions of the op-
erators (4.128); see [74, 114]. In the case of small-scale anisotropy, the operators with different
values of p mix heavily in renormalization, and the matrix Z[N,p] [N,p′] is neither diagonal nor
triangular here.
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The calculation of the renormalization constantsZ[N,p] [N,p′] can be illustrated within the one-
loop approximation. Let Γ(x; θ) be the generating functional of the 1-irreducible Green functions
with one composite operator F [N, p] from Eq. (4.128) and any number of fields θ. Here x is
the argument of the operator and θ is the functional argument, the “classical counterpart” of the
random field θ. The general interest is in the N -th term of the expansion of Γ(x; θ) in θ, which
is denoted as ΓN (x; θ); it has the form

ΓN (x; θ) =
1

N !

∫
dx1 · · ·

∫
dxN θ(x1) · · · θ(xN ) 〈F [N, p](x)θ(x1) · · · θ(xN )〉1−ir. (4.130)

The matrix of critical dimensions (4.126) is given in the one-loop approximation by the
expression

∆[N,p][N,p′] = Nε/2 + γ∗[N,p][N,p′], (4.131)

where the asterisk implies the substitution (4.115). The details of calculation of γ[N,p][N,p′] can
be found in [112].

As already said above, the critical dimensions themselves are given by the eigenvalues of
the matrix (4.131). One can check that for the isotropic case (α1,2 = 0), its elements with
p′ > p vanish, the matrix becomes triangular, and its eigenvalues are simply given by the diagonal
elements ∆[N, p] ≡ ∆[N,p][N,p]. They are found explicitly and have the form

∆[N, p] = Nε/2 +
2p(p− 1)− (d− 1)(N − p)(d+N + p)

2(d− 1)(d+ 2)
ε+O(ε2). (4.132)

It is easily seen from Eq. (4.132) that for fixedN and any d ≥ 2, the dimension ∆[N, p] decreases
monotonically with p and reaches its minimum for the minimal possible value of p = pN , i.e.,
pN = 0 if N is even and pN = 1 if N is odd:

∆[N, p] > ∆[N, p′] if p > p′ . (4.133)

Furthermore, this minimal value ∆[N, pN ] decreases monotonically as N increases for odd and
even values of N separately, i.e.,

0 ≥ ∆[2n, 0] > ∆[2n+ 2, 0], ∆[2n+ 1, 1] > ∆[2n+ 3, 1]. (4.134)

A similar hierarchy is demonstrated by the critical dimensions of certain tensor operators in
the stirred Navier–Stokes turbulence; see Ref. [244] and Sec. 2.3 of [32]. However, no clear
hierarchy is demonstrated by neighboring even and odd dimensions: from the relations

∆[2n+1, 1]−∆[2n, 0] =
ε(d+ 2− 4n)

2(d+ 2)
, ∆[2n+2, 0]−∆[2n+1, 1] =

ε(2− d)

2(d+ 2)
(4.135)

it follows that the inequality ∆[2n+ 1, 1] > ∆[2n+ 2, 0] holds for any d > 2, while the relation
∆[2n, 0] > ∆[2n+ 1, 1] holds only if n is sufficiently large, n > (d+ 2)/4. ?

?The situation is different in the presence of the linear mean gradient: the first termNε/2 in Eq. (4.132) is then absent
owing to the difference in canonical dimensions, and the complete hierarchy relations hold, ∆[2n, 0] > ∆[2n+ 1, 1] >
∆[2n+ 2, 0]; see [74, 114].
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In what follows, we shall use the notation ∆[N, p] for the eigenvalue of the matrix (4.131)
which coincides with (4.132) for α1,2 = 0. Since the eigenvalues depend continuously on α1,2,
this notation is unambiguous at least for small values of α1,2.

The dimension ∆[2, 0] vanishes identically for any α1,2 and to all orders in ε. Like in the
isotropic model, this can be demonstrated using the Schwinger equation of the form∫

DΦ
δ

δθ′(x)

[
θ(x)eSR[Φ]+AΦ

]
= 0, (4.136)

(in the general sense of the word, Schwinger equations are any relations stating that any func-
tional integral of a total variational derivative is equal to zero; see, e.g., [24, 25]). In (4.136), SR
is the renormalized action (4.104) and Eq. (4.136) can be rewritten in the form〈

θ′Dθθ −∇t[θ2/2] + νZ1∆[θ2/2] + ανZ2(n ·∇)2[θ2/2]− νZ1F [2, 0] =

− ανZ2F [2, 2]
〉
A
−Aθ′

δWR(A)

δAθ
. (4.137)

Here Dθ is the correlator (4.2), 〈· · · 〉A denotes the averaging with the weight exp[SR[Φ] +AΦ],
WR is determined by Eq. (1.80) with the replacement S → SR, and the argument x common to
all the quantities in (4.137) is omitted.

The quantity 〈F 〉A is the generating functional (defined in Eq. (2.44)) of the correlation func-
tions with one insertion of the operator F and any number of the primary fields Φ, therefore the
UV finiteness of the operator F is equivalent to the finiteness of the functional 〈F 〉A. The quan-
tity in the right hand side of Eq. (4.137) is UV finite (a derivative of the renormalized functional
with respect to finite argument), and so is the operator in the left hand side. Operators F [2, 0],
F [2, 2] do not admix in renormalization to θ′Dθθ (no needed diagrams can be constructed), and
to the operators ∇t[θ2/2] and ∇2[θ2/2] (they have the form of total derivatives, and F [N, p] do
not reduce to this form). On the other hand, all the operators in (4.137) other than F [N, p] do not
admix to F [N, p], because the counterterms of the operators (4.128) can involve only operators
of the same type; see above. Therefore, the operators F [N, p] entering into Eq. (4.137) are in-
dependent of the others, and so they must be UV finite separately: νZ1F [2, 0] + ανZ2F [2, 2] =
UV finite. Since the operator in (4.137) is UV finite, it coincides with its finite part,

νZ1F [2, 0] + ανZ2F [2, 2] = νFR[2, 0] + ανFR[2, 2], (4.138)

which along with the relation (4.129) gives

Z1Z[2,0][2,0] + αZ2Z[2,2][2,0] = 1, Z1Z[2,0][2,2] + αZ2Z[2,2][2,2] = α, (4.139)

and therefore for the anomalous dimensions in the MS scheme one obtains

γ1 + γ[2,0][2,0] + αγ[2,2][2,0] = 0, γ[2,0][2,2] + αγ2 + αγ[2,2][2,2] = 0. (4.140)

Bearing in mind that γ∗1 = γ∗2 = ε (see Sec. 4.2.3), the conclusion can be made that among
the four elements of the matrix γ∗F only two, which we take to be γ∗[2,2][2,0] and γ∗[2,2][2,2], are
independent. Then the matrix of critical dimensions (4.132) takes on the form

∆[2,p][2,p′] = ε+

−ε− α∗γ∗[2,2][2,0] −α∗ε− α∗γ
∗
[2,2][2,2]

γ∗[2,2][2,0] γ∗[2,2][2,2]

 . (4.141)
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It is then easily checked that the eigenvalue of the matrix (4.141), which is identified with ∆[2, 0],
does not involve unknown anomalous dimensions and vanishes identically, ∆[2, 0] ≡ 0, while
the second one is represented as

∆[2, 2] = ε− α∗γ∗[2,2][2,0] + γ∗[2,2][2,2]. (4.142)

Using the explicit O(ε) expressions [112] one obtains to the order O(ε):

∆[2, 2]/ε = 2 +
{
−(d− 2)d(d+ 2)(d+ 4)F ∗0 − (d+ 2)(d+ 4)(2 + (d− 2)α1

+ dα2)F ∗1 + +3(d+ 4)(d− 2α1 + 2dα2)F ∗2 + 15d(α1 − α2)F ∗3

}/{
(d− 1)

× (d+ 4)[(d− 1)(d+ 2) + (d+ 1)α1 + α2]
}
, (4.143)

where F ∗n ≡ F (1, 1/2 + n; d/2 + n;−α∗) with α∗ from Eq. (4.115).
In Fig. 4.10, we present the levels of the dimension (4.143) on the (α1, α2)-plane for d = 3.

We note that the dependence on α1,2 is quite smooth, and that ∆[2, 2] remains positive on the
whole of the (α1, α2)-plane, i.e., the first of the hierarchy relations (4.133)-(4.135) remains valid
also in the presence of anisotropy. A similar behavior takes place also for d = 2.

For N > 2, the eigenvalues can be found analytically only within the expansion in α1,2. The
explicit expressions can be found in [112]. They illustrate two facts which seem to hold for all
N :

(i) The leading anisotropy correction is of order O(α1,2) for p 6= 0 and O(α2
1,2) for p = 0, so

that the dimensions γ∗[N, 0] are anisotropy independent in the linear approximation, and

(ii) This leading contribution depends on α1,2 only through the combination α3 ≡ 2α1 + dα2.

This conjecture is confirmed by the following expressions for N = 6, 8 and p = 0:

γ∗[6, 0]/ε =
−2(d+ 6)

(d+ 2)
− 12(d− 2)2(d+ 1)(d2 + 14d+ 48)α2

3

(d− 1)2d(d+ 2)4(d+ 4)2
, (4.144)

γ∗[8, 0]/ε =
−4(d+ 8)

(d+ 2)
− 24(d− 2)2(d+ 1)(d2 + 18d+ 80)α2

3

(d− 1)2d(d+ 2)4(d+ 4)2
. (4.145)

The eigenvalues beyond the small α1,2 expansion have been obtained numerically [112].
Some of them are presented in Figs. 4.11-4.14, namely, the dimensions ∆[n, p] for n = 3, 4, 5, 6
vs α1 for α2 = 0, vs α1 = α2, and vs α2 for α1 = 0. The main conclusion that can be drawn
from these diagrams is that the hierarchy (4.133-4.135) demonstrated by the dimensions for the
isotropic case (α1,2 = 0) holds valid for all the values of the anisotropy parameters.

4.2.6 Operator product expansion and anomalous scaling

From the operator product expansion (Sec. 2.7) we find the following expression for the scaling
function R(r/L) in the representation (4.122) for the correlator 〈F1(x)F2(x′)〉:

R(r/L) =
∑
F

AF

(
r

L

)∆F

, r � L, (4.146)
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with the coefficients AF regular in (r/L)2.
Now let us turn to the equal-time structure functions SN from (4.27). From it is assumed

that the mixed correlator 〈vf〉 differs from zero (see Sec. 4.2.1); this does not affect the critical
dimensions, but gives rise to non-vanishing odd structure functions. In general, the operators
entering into the OPE are those which appear in the corresponding Taylor expansions, and also all
possible operators that admix to them in renormalization [24,25]. The leading term of the Taylor
expansion for the function SN is obviously given by the operator F [N,N ] from Eq. (4.128); the
renormalization gives rise to all the operators F [N ′, p] with N ′ ≤ N and all possible values of
p. The operators with N ′ > N (whose contributions would be more important) do not appear
in Eq. (4.146), because they do not enter into the Taylor expansion for SN and do not admix
in renormalization to the terms of the Taylor expansion; see Sec. 4.2.5. Therefore, combining
the RG representation (4.120) with the OPE representation (4.146) gives the desired asymptotic
expression for the structure function in the inertial range:

SN (r) = D
−N/2
0 rN(1−ε/2)

∑
N ′≤N

∑
p

{
CN ′,p (r/L)∆[N ′,p] + · · ·

}
. (4.147)

The second summation runs over all values of p, allowed for a given N ′; CN ′,p are numerical
coefficients dependent on ε, d, α1,2 and the angle ϑ between r and n. The dots stand for the
contributions of the operators other than F [N, p], for example, ∂2θ∂2θ; they give rise to the
terms of order (r/L)2+O(ε) and higher and will be neglected in what follows.

Some remarks are now in order.

(i) If the mixed correlator 〈vf〉 is absent, the odd structure functions vanish, while the con-
tributions to even functions are given only by the operators with even values of N ′. In the
isotropic case (α1,2 = 0) only the contributions with p = 0 survive; see [110, 112]. In
the presence of the anisotropy, α1,2 6= 0, the operators with p 6= 0 acquire nonzero mean
values, and their dimensions ∆[N ′, p] also appear on the right hand side of Eq. (4.147).

(ii) The leading term of the small r/L behavior is obviously given by the contribution with
the minimal possible value of ∆[N ′, p]. Now we recall the hierarchy relations (4.133),
(4.134), which hold for α1,2 = 0 and therefore remain valid at least for α1,2 � 1. This
means that, if the anisotropy is weak enough, the leading term in Eq. (4.147) is given by
the dimension ∆[N, 0] for any SN . For all the special cases studied in Sec. 4.2.5, this
hierarchy persists also for finite values of the anisotropy parameters, and the contribution
with ∆[N, 0] remains the leading one for such N and α1,2.

(iii) Of course, it is not impossible that the inequalities (4.133), (4.134) break down for some
values of n, d and α1,2, and the leading contribution to Eq. (4.147) is determined by a
dimension with N ′ 6= N and/or p > 0.

Furthermore, it is not impossible that the matrix (4.131) for some α1,2 had a pair of complex
conjugate eigenvalues, ∆ and ∆∗. Then the small r/L behavior of the scaling function ξ(r/L)
entering into Eq. (4.147) would involve oscillating terms of the form

(r/L)Re ∆
{
C1 cos

[
Im ∆ (r/L)

]
+ C2 sin

[
Im ∆ (r/L)

]}
,
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with some constants Ci.
Another exotic situation emerges if the matrix (4.131) cannot be diagonalized and is only

reduced to the Jordan form. In this case, the corresponding contribution to the scaling function
would involve a logarithmic correction to the powerlike behavior, (r/L)∆

[
C1 ln(r/L) + C2

]
,

where ∆ is the eigenvalue related to the Jordan cell. However, these interesting hypothetical
possibilities are not actually realized for the special cases studied above in Sec. 4.2.5.

(iv) The inclusion of the mixed correlator 〈vf〉 ∝ nδ(t − t′)C ′(r/L) violates the evenness
in n and gives rise to non-vanishing odd functions S2n+1 and to the contributions with odd N ′

to the expansion (4.147) for even functions. If the hierarchy relations (4.133), (4.134) hold, the
leading term for the even functions will still be given by the contribution with ∆[N, 0]. If the
relations (4.135) hold, the leading term for the odd function S2n+1 will be given by the dimension
∆[2n, 0] for n < (d+ 2)/4 and by ∆[2n+ 1, 1] for n > (d+ 2)/4. Note that for the model with
an imposed gradient, the leading terms for S2n+1 are given by the dimensions ∆[2n + 1, 1] for
all n; see [74, 114].

Representations similar to Eqs. (4.122), (4.147) can easily be written down for any equal-
time pair correlator, provided its canonical and critical dimensions are known. In particular, for
the operators F [N, p] in the IR region (Λr →∞, r/L fixed) one obtains

〈F [N1, p1]F [N2, p2]〉 = ν
−(N1+N2)/2
0

∑
N,p

∑
N ′,p′

(Λr)−∆[N,p]−∆[N′,p′]RN,p;N ′,p′(r/L), (4.148)

where the summation indices N , N ′ satisfy the inequalities N ≤ N1, N ′ ≤ N2, and the indices
p, p′ take on all possible values allowed for given N , N ′. The small r/L behavior of the scaling
functions RN,p;N ′,p′(r/L) has the form

ξN,p;N ′,p′(mr) =
∑
N ′′,p′′

CN ′′,p′′ (r/L)∆[N ′′,p′′], (4.149)

with the restriction N ′′ ≤ N +N ′ and corresponding values of p′′; CN ′′,p′′ are some numerical
coefficients.

So far, we have discussed the special case of the velocity correlator given by Eqs. (4.83) and
(4.89). From the explicit calculations [112] follows that only even polynomials in the expansion
(4.87) can give contributions to the renormalization constants, and consequently, to the coordi-
nates of the fixed point and the anomalous dimensions. For this reason, the odd polynomials were
omitted in Eq. (4.87) from the very beginning. Moreover, it is clear from Eq. (4.95) that only the
coefficients al with l = 0, 1 and bl with l = 0, 1, 2 contribute to the constants Z1,2 in Eq. (4.104)
and therefore to the basic RG functions (4.107) and (4.108) to the coordinates of the fixed point
in Eq. (4.115). Therefore, the fixed point in the general model (4.85) is parametrized completely
by these five coefficients; the higher coefficients enter only via the positivity conditions (4.88).

Furthermore, for χ = 0, only coefficients al with l ≤ 2 and bl with l ≤ 3 can contribute to
the integrals Hn and, consequently, to the one-loop critical dimensions (4.131). Therefore, the
calculation of the latter essentially simplifies for the special case a0 = 1, a1 = 0 and bl = 0
for l ≤ 2 in Eq. (4.85). Then the coordinates of the fixed point (4.115) are the same as in the
isotropic model, in particular, α∗ = 0, and the anomalous exponents will depend on the only
two parameters a2 and b3. We have performed a few sample calculations for this situation; the
results are presented in Figs. 6–9 for ∆[n, p] with n = 3, 4, 5, 6 vs a2 for b3 = 0, vs a2 = b3, and
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Figure 4.10. Levels of the dimension ∆[2, 2] for d = 3 on the plane α1–α2. Value changes from 1.15
(left-bottom) to 1.4 (right-top) with step 0.05.

vs b3 for a2 = 0. In all cases studied, the general picture has appeared similar to that outlined
above for the case (4.89). In particular, the hierarchy of the critical dimensions, expressed by the
inequalities (4.133)-(4.135), persists also for this case. We may conclude that the special case
(4.89) case represents nicely all the main features of the general model (4.85).

The exponents are determined by the critical dimensions of composite operators (4.128) built
of the scalar gradients. In contrast with the isotropic velocity field, these operators in the model
under consideration mix in renormalization such that the matrices of their critical dimensions
are neither diagonal nor triangular. These matrices are calculated explicitly to the order O(ε),
but their eigenvalues (anomalous exponents) can be found explicitly only as series in α1,2 [Eqs.
(4.144), (4.145)] or numerically [Figs. 4.10–4.18].

In the limit of vanishing anisotropy, the exponents can be associated with definite tensor
composite operators built of the scalar gradients, and exhibit a kind of hierarchy related to the
degree of anisotropy: the less is the rank, the less is the dimension and, consequently, the more
important is the contribution to the inertial-range behavior [see Eqs. (4.133)-(4.135)].

The leading terms of the even (odd) structure functions are given by the scalar (vector) op-
erators. For the finite anisotropy, the exponents cannot be associated with individual operators
(which are essentially “mixed” in renormalization), but, surprising enough, the aforementioned
hierarchy survives for all the cases studied, as is shown in Figs. 4.11–4.18.

The short comment about the second-order structure function S2(r) is appropriate. It can be
studied using the RG and zero-mode techniques [112]; like in the isotropic case [77,84,240,241],
its leading term has the form S2 ∝ r2−ε, but the amplitude now depends on α1,2 and the angle



Violated symmetries 203

2 4 6 8 10

0.5

1

1.5

2

2 4 6 8 10

0.5

1

1.5

2

2 4 6 8 10

0.5

1

1.5

2

Figure 4.11. Behavior of the critical dimension
∆[3, p] for d = 3 with p = 1, 3 (from below to
above) vs α1 for α2 = 0—top, vs α ≡ α1 = α2—
center, vs α2 for α1 = 0—bottom.

2 4 6 8 10

1

2

3

2 4 6 8 10

-1

1

2

3

2 4 6 8 10

-1

1

2

3

Figure 4.12. Behavior of the critical dimension
∆[4, p] for d = 3 with p = 0, 2, 4 (from below to
above) vs α1 for α2 = 0—top, vs α ≡ α1 = α2—
center, vs α2 for α1 = 0—bottom.

between the vectors r and n from Eq. (4.89). The first anisotropic correction has the form
(r/L)∆[2,2] with the exponent ∆[2, 2] = O(ε) from Eq. (4.143).

It is well known that, for the isotropic velocity field, the anisotropy introduced at large scales
by the external forcing or imposed mean gradient, persists in the inertial range and reveals itself in
odd correlation functions: the skewness factor S3/S

3/2
2 decreases for r/L → 0 but slowly (see

Refs. [86–89, 89, 91, 93, 101, 102, 230]), while the higher-order ratios S2n+1/S
n+1/2
2 increase

(see, e.g., [74, 114, 115, 219]).
In the case at hand, the inertial-range behavior of the skewness is given by S3/S

3/2
2 ∝

(r/L)∆[3,1]. For α1,2 → 0, the exponent ∆[3, 1] is given by Eq. (4.132) with n = 3 and
p = 1; it is positive and coincides with the result of Ref. [89, 91]. The levels of the dimension
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Figure 4.13. Behavior of the critical dimension
∆[5, p] for d = 3 with p = 1, 3, 5 (from below to
above) vs α1 for α2 = 0—top, vs α ≡ α1 = α2—
center, vs α2 for α1 = 0—bottom.
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Figure 4.14. Behavior of the critical dimension
∆[6, p] for d = 3 with p = 0, 2, 4, 6 (from below to
above) vs α1 for α2 = 0—top, vs α ≡ α1 = α2—
center, vs α2 for α1 = 0—bottom.

∆[3, 1] on the (α1, α2)-plane are shown in Fig. 4.19. One can see that, if the anisotropy be-
comes strong enough, ∆[3, 1] becomes negative and the skewness factor increases going down
towards to the depth of the inertial range; the higher-order odd ratios increase already when the
anisotropy is weak.

4.3 Passively advected magnetic field in the presence of strong anisotropy

It is of general interest to compare passive advection of scalar and vector quantity. Though
there are some common features, also important differences are observed. Here, the spatial struc-
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Figure 4.15. Behavior of the critical dimension
∆[3, p] for d = 3 with p = 1, 3 (from below to
above) vs a2 for b3 = 0—top, vs a2 = b3—center,
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Figure 4.16. Behavior of the critical dimension
∆[4, p] for d = 3 with p = 0, 2, 4 (from below to
above) vs a2 for b3 = 0—top, vs a2 = b3—center,
vs b3 for a2 = 0—bottom.

ture of correlations of fluctuations of the magnetic (vector) field b in a given turbulent fluid in
the framework of the kinematic MHD Kazantsev-Kraichnan model (KMHD) is studied. These
fluctuations are generated stochastically by a Gaussian random emf and a white in time and
anisotropic self-similar in space Gaussian drift. The main goal is the calculation of the anoma-
lous exponents as functions of the anisotropy parameters of the drift.
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Figure 4.17. Behavior of the critical dimension
∆[5, p] for d = 3 with p = 1, 3, 5 (from below to
above) vs a2 for b3 = 0—top, vs a2 = b3—center,
vs b3 for a2 = 0—bottom.
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Figure 4.18. Behavior of the critical dimension
∆[6, p] for d = 3 with p = 0, 2, 4 (from below to
above) vs a2 for b3 = 0—top, vs a2 = b3—center,
vs b3 for a2 = 0—bottom.

4.3.1 Kinematic MHD Kazantsev-Kraichnan model

Consider passive advection of a solenoidal magnetic field b ≡ b(t,x) in the framework of the
KMHD model described by the stochastic equation

∂tb = ν0∇2b− (v ·∇)b + (b ·∇)v + f , (4.150)
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Figure 4.19. Levels of the dimension ∆[3, 1] for d = 3 on the plane α1–α2. Value changes from −0.3
(top) to 0.1 (bottom) with step 0.05.

where ν0 is the coefficient of the magnetic diffusivity, and v ≡ v(t,x) is a random solenoidal
velocity field. Thus, both v and b are divergence-free vector fields: ∇ · v = ∇ · b = 0. A
transverse Gaussian emf flux density f ≡ f(x, t) with zero mean and the correlation function

Df
ij ≡ 〈fi(t,x)fj(t

′,x′)〉 = δ(t− t′)Cij(r/L), r = x− x′ (4.151)

is the source of the fluctuations of the magnetic field b. The parameter L represents an integral
scale related to the stirring, and Cij is a function finite in the limit L → ∞. In the present
treatment its precise form is irrelevant, and with no loss of generality, we take Cij(0) = 1 in
what follows. The random velocity field v obeys Gaussian statistics with zero mean and the
correlation function

Dv
ij(t,x) ≡ 〈vi(t,x)vj(0,0)〉 =

D0δ(t)

(2π)d

∫
ddk

eik·x Tij(k)

(k2 + r−2
l )d/2+ε/2

, (4.152)

where rl is another integral scale. In general, the scale rl may be different from the integral
scale L, below we, however, take rl ' L. D0 > 0 is an amplitude factor related to the coupling
constant g0 of the model by the relation (4.84). In the isotropic case, the second-rank tensor
Tij(k) in Eq. (4.152) has the simple form of the ordinary transverse projector: Tij(k) = Pij(k).
The latter was defined in Eq. (3.10).

Although the structure functions SN (r) of the magnetic field defined in analogy with (4.27)
as

SN (r) ≡ 〈[br(t,x)− br(t,x′)]N 〉, r ≡ |x− x′|, br =
b · r
r
. (4.153)

are important tools in the analysis of MHD turbulence in the inertial range [defined by the in-
equalities l� r � L, where l ' Λ−1 is an internal (viscous) scale], here the analysis of simpler
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quantities (the equal-time two-point correlation functions of the composite operators) is invoked
bN−mr (t,x) and bmr (t,x))

BN−m,m(r) ≡ 〈bN−mr (t,x)bmr (t,x′)〉 r ≡ |x− x′|. (4.154)

for two reasons: first, the field-theoretic approach yields the scaling behavior of these quantities
in the first place, while the scaling behavior of the structure functions (4.153) emerges from their
representation as linear combinations of the two-point correlation functions (4.154). Second,
contrary to the problems of turbulent velocity of incompressible fluid and passive scalar advected
by such fluid, the basic stochastic equation (4.150) is not invariant under the shift b → b +
c, where c is a constant vector. Thus, there is no compelling need to aim at the analysis of
more complex quantities, the structure functions, instead of their building blocks, the correlation
functions (4.154).

Dimensional analysis yields

BN−m,m(r) = ν
−N/2
0 rN R̃N,m(r/l, r/L), (4.155)

where RN,m are functions of dimensionless parameters. When the random source field f and
the velocity field v are uncorrelated, the correlation functions of odd order B2n+1−m,m vanish,
however. The standard perturbation expansion (series in g0) is ill suited for calculation of corre-
lation functions (4.155) in the limit r/l → ∞ and r/L → 0, due to the singular behavior of the
coefficients of the expansion. Therefore, to find the correct IR behavior it is necessary to sum the
whole series. Such a summation can be carried out within the field-theoretic RG and OPE given
in Sec. 2.

First, the UV renormalization of correlation functions (4.154) is carried out. As a conse-
quence of this the asymptotic behavior of these functions for r/l � 1 and arbitrary but fixed
r/L is given by IR stable fixed point(s) of the corresponding RG equations and for correlation
functions (4.154) the following asymptotic form is obtained

BN−m,m(r) ∼ ν−N/20 rNd

(r
l

)−∆[BN−m,m]

RN,m(r/L)
r

l
� 1 , (4.156)

where the critical dimensions ∆[BN−m,m] are expressed in terms of the ”anomalous dimen-
sions” γ∗ν and γ∗N of the viscosity ν and the composite operators bNr , respectively, as:

∆[BN−m,m] = −N
(

1− γ∗ν
2

)
+ γ∗N−m + γ∗m . (4.157)

The scaling functions RN,m(r/rl) in relations (4.156) remain unknown. The critical dimensions
∆[BN−m,m] are calculated as (asymptotic) series in ε with the use of renormalized perturbation
theory.

Second, the small r/L behavior of the functions RN,m(r/L) has to be estimated. This may
be done using the OPE, which leads to the following asymptotic form in the limit r/L→ 0

RN,m(r/L) =
∑
F

CF (r/L)
( r
L

)∆F
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where CF (r/L) are coefficients regular in r/L. The summation is implied over all possible
renormalized scale-invariant composite operators F , and ∆F are their critical dimensions.

In the limit r/L → 0 correlation function (4.151) of the random source field is uniform in
space, which – as usual in stochastic models describing passive transport [74, 110, 112–114] –
brings about composite operators with negative critical dimensions (dangerous composite oper-
ators) at the outset in the asymptotic analysis. This takes place because the limiting behavior of
the correlation function determines the canonical scaling dimension of the magnetic field which
in this case becomes equal to −1. Origin of the dangerous operators is thus different from
that of the stochastic Navier-Stokes problem, where canonical field dimensions are positive and
composite operators become dangerous (i.e. acquire negative scaling dimension) only for large
enough values of the RG expansion parameter [32, 71].

The velocity fluctuation contribution to the scaling dimension in the passive transport prob-
lems is independent of the statistical properties of the source field. It is important to bear this in
mind, because below it will be shown that calculation of the fluctuation corrections in the present
problem is very similar to that in the case of passively advected scalar if the magnetic field b is
traded for the vector field ∇θ – the gradient of the scalar. This occurs because – as a consequence
of the invariance of the transport equation for the scalar θ with respect to the shift θ → θ+c with
any constant c – in the scalar problem fluctuation corrections to scaling behavior are determined
by composite operators constructed not from the scalar field itself but its derivatives ∇θ. Physi-
cally, however, these problems are different, because the usual random source for the scalar with
a correlation function C(r/L) → 1 in the limit r/L � 1 corresponds to random source for the
vector field ∇θ with correlations concentrated at small separations (large wave numbers) instead
of the asymptotically flat correlation function in the coordinate space (corresponding to strong
correlation at small wave numbers in the wave-vector space).

Contributions of these dangerous operators with negative scaling dimensions to the OPE
imply singular behavior of the scaling functions in the limit r/L → 0. The leading term is
given by the operator with the most negative critical dimension ∆F . The leading contributions to
correlation functions of even order BN−m,m (N = 2n) are given by scalar operators FN = (b ·
b)N/2 with their critical dimensions ∆N = −N(1−γ∗ν/2)+γ∗N , which eventually determine the
nontrivial asymptotic behavior of the correlation functions BN−m,m of the form (the correlation
function BN,0 = B0,N is a constant)

BN−m,m(r) ∼ ν−N/20 LN
(
l

L

)Nγ∗ν/2 (r
l

)−γ∗N−m−γ∗m ( r
L

)γ∗N
∼ rγ

∗
N−γ

∗
N−m−γ

∗
m . (4.158)

In the isotropic case, the anomalous dimensions γ∗N in the one-loop approximation are related
[113] to anomalous dimensions of composite operators of a simpler model of passively advected
scalar field [110], viz. γ∗N are given by

γ∗N = −N(N + d)ε

2(d+ 2)
+O(ε2) , N ≥ 2 , γ∗1 = 0 . (4.159)

From this relation it follows that the scaling exponent in expression (4.158) γ∗N−γ∗N−m−γ∗m < 0
at this order. Below it will be shown that these relations are stable against small-scale anisotropy.

In the anisotropic case we will assume that the statistics of the velocity field is anisotropic at
all scales and replace the ordinary transverse projection operator in Eq. (4.152) with the operator
(4.89), which has been introduced in Sec. 4.2.1.
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The strong small-scale anisotropy (4.85) affects the inertial-range asymptotic behavior of the
correlation functions (4.158) in two respects: the anomalous dimensions γ∗N become dependent
on the anisotropy parameters α1 and α2 and powerlike corrections with new anomalous dimen-
sions appear. Combining the results of multiplicative renormalization and OPE in the manner
sketched above for the isotropic case, we arrive at the following expression for the inertial-range
asymptotics of the correlation functions of the passively advected vector field BN−m,m:

BN−m,m(r) ∼ ν−N/20 LN
(
l

L

)γ∗N+Nε/2 (r
l

)γ∗N−γ∗N−m−γ∗m
, γ∗

1
= 0 , m ≥ 1 ,

(4.160)

with negative exponents γ∗N+Nε/2 < 0 and γ∗N−γ∗N−m−γ
∗
m
< 0. The anomalous dimensions

γ∗N , γ∗
N−m, and γ∗

m
in (4.160) will be defined in relation (4.187) and results of their numerical

calculation discussed in detail in Sec. 4.3.3. The scaling behavior in expression (4.160) is similar
to that of the correlation functions of the passive scalar advected by a compressible vector field
[113].

4.3.2 Field-theoretic formulation, renormalization, and RG analysis

The stochastic problem (4.150)–(4.152) in the Stratonovich interpretation is equivalent to the
field-theoretic model of the set of the three fields Φ = {b′, b,v} with the action functional

S[Φ] ≡ 1

2
b′Dbb

′+ b′ · [−∂t− (v ·∇) + ν0∇2 + Σb′b]b+ b′(b ·∇)v− 1

2
vD−1

v v, (4.161)

where b′ is an auxiliary field (all required integrations over space-time coordinates and sum-
mations over the vector indices are implied). To keep notation simple, we have denoted the
white-noise contraction term in dynamic action (4.161) in terms of the self energy operator (cf.
the dynamic action of the passive scalar case (4.90) and the relation to the self-energy operator
there (4.95). We recall that the self energy operator is given by a single one-loop graph corre-
sponding to the white-noise contraction term in the limit of white noise in the SDE). The first five
terms in Eq. (4.161) represent the De Dominicis-Janssen action corresponding to the stochastic
problem at fixed v (see, e.g., Refs. [28]), the sixth term comes from the Stratonovich interpre-
tation of the SDE, whereas the last term represents the Gaussian averaging over v. The kernel
functions Db and Dv are the correlation functions (4.151) and (4.152), respectively.

In this field-theoretic language, the correlation functions (4.154) are defined as

BN−m,m(r) ≡
∫
DΦ bN−mr (t,x)bmr (t,x′)eS[Φ] (4.162)

with the action S[Φ] defined above.
From the action (4.161) the propagators for the fields b′ and b are directly obtained and in

the wave-vector-frequency representation they read

〈bib′j〉0 = 〈b′jbi〉∗0 =
Pij(k)

−iω + ν0k2
, 〈bibj〉0 =

Cij(k)

ω2 + ν2
0k

4
, 〈b′ib′j〉0 = 0, (4.163)
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where Cij(k) is the Fourier transform of the function Cij(r/L) from Eq. (4.151). The bare
propagator of the velocity field 〈vv〉0 ≡ 〈vv〉 is defined by Eq. (4.152) with the transverse
projector given by Eq. (4.89). The interaction in the model is given by the nonlinear terms
−b′i(v · ∇)bi + b′i(b · ∇)vi ≡ b′iVijlvjbl with the vertex factor which in the wave-number-
frequency representation has the following form

Vijl = i(δijkl − δilkj),

where k is momentum flowing through the corresponding prime field. With the use of the stan-
dard power counting [24,25] correlation functions with superficial UV divergences may be iden-
tified. In the present model superficial divergences exist only in the 1PI Green function Γb′b. In
the isotropic case this Green function gives rise only to the renormalization of the term ν0b

′∆b
of action (4.161) and the corresponding UV divergences may be fully absorbed in the proper
redefinition of the existing parameters g0, ν0.

When anisotropy is introduced, however, the situation becomes more complicated, because
the 1PI Green function Γb′b produces divergences corresponding to the structure b′(n ·∇)2b
in the action of the model [due to peculiarities of the rapid-change models [110] the term
(b′ · n)∇2(b · n) possible on dimensional and symmetry grounds does not appear]. The term
b′(n ·∇)2b is not present in the original unrenormalized action (4.161), but has to be added to
the renormalized action, therefore the model is not multiplicatively renormalizable. In such a
case it is customary to extend the original action (4.161) by including all terms needed for the
renormalization of the correlation functions and thus adding new parameters. As a result the
extended model is described [245] by a new action of the form:

S[Φ] ≡ 1

2
b′Dbb

′ + b′[−∂t − (v ·∇) + ν0∇2 + χ0ν0(n ·∇)2 + Σb′b]b

+ b′(b ·∇)v − 1

2
vD−1

v v, (4.164)

where a new unrenormalized parameter χ0 has been introduced in the same sense as in the action
(4.101) and the self-energy operator is calculated in terms of the extended model.

Of course, the bare propagators (4.163) of the isotropic model are modified and for the ex-
tended action (4.164) assume the form

〈bib′j〉0 = 〈b′jbi〉∗0 =
Pij(k)

−iω + ν0k2 + χ0ν0(n · k)2
, (4.165)

〈bibj〉0 =
Cij(k)

| − iω + ν0k2 + χ0ν0(n · k)2|2
, (4.166)

〈b′ib′j〉0 = 0 .

After this modification all terms needed to remove the divergences are present in action (4.164),
therefore the model becomes multiplicatively renormalizable allowing for the standard RG anal-
ysis. The corresponding renormalized action may be written down immediately:



212 Advanced field-theoretical methods

SR[Φ] ≡ 1

2
b′Dbb

′ + b′[−∂t − (v ·∇) + νZ1∇2 + χνZ2(n ·∇)2 + Σb′b]b

+ b′(b ·∇)v − 1

2
vD−1

v v . (4.167)

Here, Z1 and Z2 are the renormalization constants in which the UV divergent parts of the 1PI
response function Γb′b are absorbed. Thus, from the renormalized self-energy operator Σb′b
in (4.167) the divergent parts corresponding to the chosen renormalization scheme have been
subtracted. The renormalized action (4.167) leads to the multiplicative renormalization of the
parameters ν0, g0 and χ0 given by the relations (4.105).

Identification of the unrenormalized action (4.164) with the renormalized one (4.167) leads
to the following relations between the renormalization constants:

Z1 = Zν , Z2 = ZχZν , Zg = Z−1
ν . (4.168)

As has been discussed after Eq. (4.94) the rapid-change-like models (4.164) have a distinguished
property that in all multi-loop diagrams of the self-energy operator Σb′b closed circuits of the
retarded bare propagators 〈bb′〉0 are produced, because the propagator 〈vv〉0 is proportional to
the δ function in time. As a result, also the one-loop self energy operator Σb′b with the graphical
notation of Fig. 4.20 is exact.

Figure 4.20. The (exact) graphical expression for the self-energy operator Σb′b of the response function of
the passive vector field. The plain line denotes the bare propagator (4.166), and the line with slash (denoting
the end corresponding to the arguments of the field b′) corresponds to the bare propagator (4.165).

The divergent part of the graph in Fig. 4.20 is

Σb′b(p) = − gνS̄d
2d(d+ 2)ε

{[
(d− 1)(d+ 2) + α1(d+ 1) + α2

]
p2 − (2α1 − (d2 − 2)α2)

× (n · p)2

}
. (4.169)

The expression (4.169) leads to a straightforward determination of the renormalization constants
Z1 and Z2:

Z1 = 1− gCd
2d(d+ 2)ε

[(d− 1)(d+ 2) + α1(d+ 1) + α2] ,

Z2 = 1− gCd
2d(d+ 2)χε

[
−2α1 + (d2 − 2)α2

]
. (4.170)



Violated symmetries 213

The RG differential equations for the renormalized correlation functions of the fields read

(Dµ + βg∂g + βχ∂χ − γνDν)〈b(t,x)b(t,x′)〉R = 0 (4.171)

with the definition standard definition from Sec. 2.3. The β functions can be written as follows

βg ≡ D̃µg = g(−ε+ γ1) , βχ ≡ D̃µχ = χ(γ1 − γ2) . (4.172)

The anomalous dimensions γ1 and γ2 can be computed using definition (2.34) and Eqs.
(4.170)

γ1 =
gCd

2d(d+ 2)
[(d− 1)(d+ 2) + α1(d+ 1) + α2] , (4.173)

γ2 = 1− gCd
2d(d+ 2)χ

[
−2α1 + (d2 − 2)α2

]
. (4.174)

It should be emphasized that both the renormalization constants (4.170) and the corresponding
anomalous dimensions (4.173) and (4.174) in the present model are exact, i.e., they have no
corrections of order g2 or higher.

The fixed points (g∗, χ∗) of the RG equations are defined by the system of two equations

βg(g
∗, χ∗) = 0 , βχ(g∗, χ∗) = 0 . (4.175)

It should be noted that as a consequence of relations (4.168), (4.172) and (4.175) at any fixed
point with g∗ 6= 0 the anomalous dimension of viscosity assumes the exact value γ∗ν = ε.

The IR stability of a fixed point is determined by the eigenvalues of the matrix

Ω =

 ∂βg
∂g

∂βg
∂χ

∂βχ
∂g

∂βχ
∂χ


∗

which for the IR stable fixed point have to have positive real parts. Calculation shows that the
RG equations have only one non-trivial IR stable fixed point defined by expressions

g∗ =
2d(d+ 2)ε

Cd [(d− 1)(d+ 2) + α1(d+ 1) + α2]
, (4.176)

χ∗ =
−2α1 + (d2 − 2)α2

(d− 1)(d+ 2) + α1(d+ 1) + α2
. (4.177)

Both eigenvalues of the stability matrix Ω are equal to ε at this fixed point, therefore, the IR fixed
point (4.176), (4.177) is stable for ε > 0 and all values of the anisotropy parameters α1 and α2.

Rather unexpectedly, the β functions and, consequently, the fixed points of the present model
of passively advected vector field are exactly the same as in the model of passively advected
scalar field [112]. In Sec. 4.3.3 it will be shown that this similarity is extended to the anoma-
lous scaling dimensions of the composite operators in the OPE representation of the correlation
functions as well.
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The fixed point (4.176), (4.177) governs the behavior of solutions of Eqs. (4.171) and the
like, and at large scales far from viscous length r � l at any fixed ratio r/L yields the scaling
form

〈b(t,x)b(t,x− r)〉 = D−1
0 r2−εR2(r/L) , (4.178)

for the unrenormalized correlation function (we remind that due to the absence of field renormal-
ization renormalized and unrenormalized correlation functions are equal but expressed in terms
of different variables). It should be noted, however, that the scaling function R2(r/L) in Eq.
(4.178) is not determined by the RG Eqs. (4.171).

The correlation functions (4.154) contain UV divergences additional to those included in
the renormalization constants (4.170). These additional divergences due to composite operators
(products of fields and their derivatives with coinciding space and time arguments) can be dealt
with in a manner similar to that applied to the divergences in the usual correlation functions [25].

4.3.3 Renormalization and critical dimensions of composite operators

Two-point correlation functions (4.162) are averages of products of composite operators at two
separate space points. These composite operators are integer powers of the field br and contain
additional UV divergences, which also may be removed by a suitable renormalization procedure
discussed in Sec. 2.7.

The two-point correlation functions are, however, quantities with insertions of two com-
posite operators. This is the crucial difference with the previous models (and also Sec. 2.7).
Nevertheless, field theoretic RG technique is capable of dealing with this problem. It would
seem that we would have to consider renormalization of products of two composite operators as
well, the aim being then to render UV finite all 1PI correlation functions with two insertions of
composite operators. Superficially divergent correlation functions with operator insertions are
identified by power counting similar to that of the basic renormalization. In the present model
such a power counting shows that insertion of products of composite operators of the structure
bm(t,x)bn(t,x′) does not bring about any new superficial divergences and it is thus sufficient to
renormalize the composite operators themselves only in order to make the two-point correlation
functions UV finite. Therefore, from the RG analysis of composite operators it follows – by
virtue of relations (2.45) and (2.47) – that the two-point correlation function BN−m,m given in
Eq. (4.160) may be expressed as a functional average of a quadratic form

BN−m,m(r) =
∑
α,β

Bαβ

〈
F̄Rα

(
t,x +

1

2
r

)
F̄Rβ

(
t,x− 1

2
r

)〉
R

(4.179)

with coefficients Bαβ independent of spatial coordinates and basis operators have been intro-
duced in Eq. (2.47). Each term in expression (4.179) obeys the following asymptotic form in the
limit l� r, r . L〈

F̄Rα

(
t,x +

1

2
r

)
F̄Rβ

(
t,x− 1

2
r

)〉
R

∼ Ddωα+dωβ
0 r−∆α−∆βr

γ∗α+γ∗β
d Ξαβ

( r
L

)
(4.180)

with the scaling functions Ξαβ still to be determined.
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The physically interesting range of scales, however, is the inertial range, specified by the
inequalities l � r � L. The limit r � L may be explored with the use of the OPE [24, 25] as
was already discussed in Sec. 2.7. The basic statement of the OPE theory is summarized in the
relation (2.50), which we know write as follows

FRα

(
t,x +

1

2
r

)
FRβ

(
t,x− 1

2
r

)
=
∑
γ

Cαβγ(r)FRγ (t,x), (4.181)

where the functions Cαβγ are the Wilson coefficients regular in 1/L, and FRγ are renormalized
local composite operators which appear in the formal Taylor expansion with respect to r together
with all operators that mix with them in renormalization. If these operators have additional vector
indices, they are contracted with the corresponding indices of the coefficients Cαβγ .

Without loss of generality we may take the expansion on the right-hand side of Eq. (4.181)
in terms of the basis operators with definite critical dimensions ∆F . The renormalized correla-
tion function 〈FRα FRβ 〉R is obtained by averaging Eq. (4.181) with the weight generated by the
renormalized action, the quantities 〈F〉R appear now only on the right-hand side. Their asymp-
totic behavior for r/L → 0 is found from the corresponding RG equations and is of the form
〈F〉 ∝ L−∆F . Comparison of the expression for a given function 〈FRα FRβ 〉R in terms of the IR
scaling representation of correlation functions of the basis operators (4.180) on one hand and the
OPE representation brought about by relation (4.181) on the other in the limit L→∞ allows to
find the asymptotic form of the scaling functions Ξαβ(r/L) in relation (4.180).

The two-point correlation functions are products of integer powers of the field br of the form
bN−mr (t,x)bmr (t,x′). Thus, at the leading order in r their OPE contains operators of the closed
set generated by the operator bNr (t,x). Power counting and analysis of the structure of graphs
shows that this set of composite operators contains only operators consisting of exactly N com-
ponents of the vector field b, viz. the tensor operators constructed solely of the fields b without
derivatives: bi1 ...bip(bibi)

l with p + 2l = N . It is convenient to deal with the scalar operators
obtained by contracting the tensor with the appropriate number of the anisotropy vectors n:

F [N, p](t,x) ≡ [n · b(t,x)]p[b2(t,x)]l (4.182)

withN ≡ 2l+p. Analysis of graphs shows that composite operators (4.182) with differentN do
not mix in renormalization, and therefore the corresponding renormalization matrix Z[N,p][N ′,p′]

is in fact block-diagonal, i.e., Z[N,p][N ′,p′] = 0 for N ′ 6= N and

F [N, p] =

[N/2]∑
l=0

Z[N,p][N,N−2l]F
R[N,N − 2l] ,

where [N/2] stands for the integer part of the rational number N/2 for odd N (although the odd-
order correlation functions B2n+1−m,m vanish, renormalization of the even-order correlation
functions B2n−m,m involves odd-order composite operators). Each block with fixed N gives
rise to a (N + 1) × (N + 1) matrix of critical dimensions whose eigenvalues at the IR stable
fixed point are the critical dimensions ∆[N, p] of the set of operators F [N, p].

Taking into account that renormalization of the composite operators bN−mr and bmr in the
correlation function BN−m,m involves operators of the sets F [N −m, p] and F [m, q], respec-
tively, whereas the leading contribution to the OPE involves the set F [N, s], the basis-operator
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decomposition of the correlation function may be written as

BN−m,m(r) ∼ rNd

ν
N/2
0

[(N−m)/2]∑
l1=0

[m/2]∑
l2=0

N/2∑
l3=0

ANml1l2l3(r/L)
( r
L

)∆[N,N−2l3]

×
(r
l

)−∆[N−m,N−m−2l1]−∆[m,m−2l2]

(4.183)

where the coefficients ANml1l2l3(r/L) are regular in (r/L)2.
The decomposition (4.183) reveals the inertial-range scaling form of the correlation func-

tions. The leading singular contribution in the limit L→∞, l→ 0 is given by the basis operator
F [N, s] with the minimal critical dimension ∆[N, s] and operators F [N − m, p] and F [m, q]
with the minimal sum of critical dimensions ∆[N −m, p] + ∆[m, q]. We also remind that the
critical dimensions of the basis operators have the structure ∆[N, p] = −N

(
1− ε

2

)
+ γ∗[N,p],

where γ∗[N,p] is the anomalous dimension. Therefore, in expression (4.183) other contributions
than the anomalous dimensions cancel in the power of separation distance r. As a result, the cor-
relation functions have asymptotic powerlike behavior as r/L→ 0 with the minimal anomalous
dimension in the basis set generated by the composite operator bNr (t,x) and the sum of mini-
mal anomalous dimensions in the basis set brought about by operators bN−mr (t,x) and bmr (t,x).
Calculation shows that these anomalous dimensions grow with the number of field components
in the anisotropy direction and thus the minimal anomalous dimension γ∗

N
in any set with fixed

N is γ∗[N,0] = γ∗N for N even and γ∗[N,1] for N odd. Therefore, the leading asymptotic term of
the correlation functions in the inertial range is of the form (we remind that N is an even integer
here)

BN−m,m(r) ∼ ν−N/20 LN
(
l

L

)γ∗N+Nε/2 (r
l

)γ∗N−γ∗N−m−γ∗m
, γ∗

1
= 0 , m ≥ 1 .

(4.184)

Numerical results at one-loop order yield negative exponents γ∗N+Nε/2 < 0 and γ∗N−γ∗N−m−
γ∗
m
< 0, see Figs. 4.21 – 4.26. Note that two-loop approximation has been analyzed in the works

[246–250] for models without anisotropy but helicity and compressibility taken into account.
A few words about the structure functions (4.153) are in order. These structure functions may

be expressed as linear combinations of two-point correlation functions, in which the constant
term corresponding to BN,0 is always present in even-order structure functions. The present
asymptotic analysis does not allow for direct comparison of this constant and the powerlike
asymptotics predicted in relation (4.184) for the ”genuine” two-point correlation functions in the
inertial range. If a powerlike behavior is to be detected, however, this constant must be small at
least compared to the leading powerlike term. One-loop results show that the leading powerlike
term in the inertial range corresponds to the two-point correlation function BN−1,1 with the
asymptotic behavior (γ∗1 = 0)

BN−1,1(r) ∼ ν−N/20 LN
(
l

L

)γ∗N+Nε/2 (r
l

)γ∗N−γ∗N−1
. (4.185)
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A detailed account of calculation of the matrix of the renormalization constants Z[N,p][N,p′]

(which may be readily extended to investigation of all related problems) has been given in
Ref. [112] for the advection of a passive scalar and in Ref. [245] for passive vector admixture,
therefore we will not describe all details of the determination of renormalization constants in the
present vector model, rather we will discuss its specific features.

It turned out that not only the β functions in the vector and scalar models coincide, but the
one-loop renormalization matrices as well. This nontrivial fact stems from the similarities of the
mathematical structure of both models. In the model of scalar advection [112] the composite
operators ∂i1θ...∂ipθ(∂iθ∂iθ)

l constructed solely of the scalar gradients of the scalar admixture
θ are needed for calculation of the asymptotic behavior of the correlation functions, whereas in
vector case [245] the main contribution is given by composite operators constructed solely of
the fields b without derivatives. As direct inspection of the relevant diagrams shows, the tensor
structures arising upon functional averaging in both cases are in fact identical, which yields the
same renormalization matrix Z[N,p][N,p′] in both models.

The only nonzero elements of the matrix Z[N,p][N,p′] are

Z[N,p][N,p−2] =
gS̄d
d2 − 1

1

4ε
Q1 , Z[N,p][N,p] = 1 +

gS̄d
d2 − 1

1

4ε
Q2 ,

Z[N,p][N,p+2] =
gS̄d
d2 − 1

1

4ε
Q3 , Z[N,p][N,p+4] =

gS̄d
d2 − 1

1

4ε
Q4 ,

with the coefficients Qi given in [245] and S̄d was given in Eq. (3.62). The nontrivial elements
of the matrix of anomalous dimensions γ[N,p][N,p′] are

γ[N,p][N,p−2] = − gS̄d
4(d2 − 1)

Q1 , γ[N,p][N,p] = − gS̄d
4(d2 − 1)

Q2 ,

γ[N,p][N,p+2] = − gS̄d
4(d2 − 1)

Q3 , γ[N,p][N,p+4] = − gS̄d
4(d2 − 1)

Q4 , (4.186)

and the matrix of critical dimensions (2.46) is thus

∆[N,p][N,p′] = −N
(

1− ε

2

)
δpp′ + γ∗[N,p][N,p′] , (4.187)

where the asterisk stands for the value at the fixed point (4.176), (4.177). This represents the
critical dimensions of the composite operators (4.182) at the first order in ε. It should to be
stressed that in contrast to the value of the fixed point (4.176), (4.177), which has no higher order
corrections, the expressions for anomalous dimensions (4.186) have non-vanishing corrections
of order g2 and higher.

The critical dimensions ∆[N, p] = −N (1− ε/2) + γ∗[N,p] are given by the eigenvalues of
the matrix (4.187).

Since the result for the anomalous dimensions is the same as in Ref. [112] for the admixture
of a passive scalar, all conclusions about the hierarchical behavior of the critical dimensions of
the composite operators are also valid in the analysis of the vector model. Nevertheless, the
inertial-range asymptotic behavior of the correlation functions in these two problems is com-
pletely different, because, first, in the scalar problem single-point products of the scalar are not
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Figure 4.21. Behavior of the anomalous dimension γ∗[10,p]/ε in space dimension d = 3 and for representa-
tive values of p as functions of anisotropy parameters α1 and α2.
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Figure 4.22. Behavior of the anomalous dimension γ∗[11,p]/ε in space dimension d = 3 and for representa-
tive values of p as functions of anisotropy parameters α1 and α2.

renormalized, while in the vector problem they are, and, second, the leading contribution to the
OPE is given by the products of derivatives of the scalar, whereas in the vector problem products
of the field components themselves yield the leading contribution.

In Ref. [112] the behavior of the critical dimensions ∆[N, p] forN = 2, 3, 4, 5, and 6 was nu-
merically studied. The main conclusion is that the dimensions ∆N remain negative in anisotropic
case and decrease monotonically as N increases for odd and even values of N separately.

Here the main attention is paid to the investigation of the composite operators (4.182) for rela-
tively large values ofN , namely we will analyze cases withN = 10, 11, 20, 21, 30, 31, 40, 41, 50,
and 51. The aim has been to find out whether hierarchies which hold for small values ofN remain
valid for significantly larger values of N , and the answer turned out to be in the affirmative.

In Figs. 4.21-4.26 behavior of the eigenvalues of the matrix of anomalous dimensions γ∗[N,p]
for relatively large values of the N are shown. It can be seen that only real eigenvalues exist in
all cases, and also their hierarchical behavior discussed in Ref. [112] is conserved. At first sight
the curves for p = 0 and p = 2 in the even case and the curves for p = 1 and p = 3 in the odd
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Figure 4.23. Behavior of the anomalous dimension γ∗[30,p]/ε in space dimension d = 3 and for representa-
tive values of p as functions of anisotropy parameters α1 and α2.
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Figure 4.24. Behavior of the anomalous dimension γ∗[31,p]/ε in space dimension d = 3 and for representa-
tive values of p as functions of anisotropy parameters α1 and α2.
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Figure 4.25. Behavior of the anomalous dimension γ∗[50,p]/ε in space dimension d = 3 and for representa-
tive values of p as functions of anisotropy parameters α1 and α2.
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Figure 4.26. Behavior of the anomalous dimension γ∗[51,p]/ε in space dimension d = 3 and for representa-
tive values of p as functions of anisotropy parameters α1 and α2.

case in Figs. 4.23-4.26 appear to be crossing at the point α1 = α2 = 0 but in fact the curves are
only visually running very near together at that point which is a mathematical consequence of
the formulas for critical dimensions in the infinitesimal limit α1 → 0 and α2 → 0.

In Figs. 4.27, 4.28 the eigenvalues are presented as the functions of two variables α1 and α2

for N = 30, 31, 50, 51 for the first the most singular modes p = 0 for even N and p = 1 for odd
ones. It can clearly be seen that as values of the parameters α1 and α2 increase the anomalous
dimensions become more negative approaching some saturated values, therefore the anisotropy
amplifies the anomalous scaling.

From the mathematical point of view the present model is found to be similar to the model
of a passive scalar quantity advected by a Gaussian strongly anisotropic velocity field [112] in
that the fluctuation contributions to the critical dimensions ∆F of the OPE representation of the
structure functions coincide in both cases and thus the hierarchical dependence on the degree
of anisotropy is also the same. Here, numerical calculation of the critical dimensions ∆F in
the one-loop approximation has been extended to dimensions related to correlation functions of
order N = 51 to explore possible departures from powerlike asymptotic behavior. However,
contrary to the scalar case, in the inertial range the leading terms of the structure functions of the
magnetic field themselves are shown to be coordinate independent with powerlike corrections
whose exponents are generated by the calculated critical dimensions.

It is shown that in the inertial range the leading-order powerlike asymptotic behavior of
the correlation functions is determined by the critical dimensions brought about already in the
isotropic case, which, however, acquire rather strong dependence on the parameters of anisotropy.
Powerlike corrections also appear with critical dimensions generated entirely by anisotropic ve-
locity fluctuations. We have calculated numerically the anomalous correction exponents up to
order N = 51 to explore possible oscillatory modulation or logarithmic corrections to the lead-
ing powerlike asymptotics, but have found no sign of this kind of behavior: all calculated correc-
tions have had purely powerlike behavior. Our results show that the exponents of the powerlike
corrections tend to decrease with increasing relative impact of the anisotropy.

From the renormalization-group point of view the present model of passively advected vector
field in the presence of strong anisotropy is technically similar to that of passively advected scalar
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Figure 4.27. Behavior of the anomalous dimensions γ∗[30,0]/ε and γ∗[31,1]/ε in space dimension d = 3 as
functions of anisotropy parameters α1 and α2.
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Figure 4.28. Behavior of the anomalous dimensions γ∗[50,0]/ε and γ∗[51,1]/ε in space dimension d = 3 as
functions of anisotropy parameters α1 and α2.

field [112]. In particular, the β functions and the one-loop contributions to renormalization
matrices of relevant composite operators are the same. Since in the published analysis of the
scalar problem [112] there were some misprints, we have also presented corrected complete
results of the calculation of the renormalization matrices.

However, physically the two models differ significantly: instead of the anomalous powerlike
growth of the correlation and structure functions of the scalar problem in the inertial range, in
the present vector case a powerlike falloff is predicted for the correlation and structure functions.
Moreover, in the scalar problem velocity fluctuation contributions to the inertial-range scaling ex-
ponents are (small in ε) corrections to the exponents determined by canonical dimensions of the
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fields, whereas in the vector problem the inertial-range scaling exponents are solely determined
by the fluctuation contributions.

4.4 Developed turbulence with weak anisotropy

Usually, the RG approach is applied to the isotropic models of developed turbulence. How-
ever, the field theoretical approach can be used (with some modifications) in the theory of
anisotropic developed turbulence. A crucial question immediately arises, whether the princi-
pal properties of the isotropic case and anisotropic one are the same at least at the qualitative
level. If they are, then it is possible to consider the isotropic case as a first step in the investi-
gation of real systems. On this way of transition from the isotropic developed turbulence into
the anisotropic one we have to learn whether the scaling regime does remain stable under this
transition. That means, whether the stable fixed points of the RG equations remain stable under
the influence of anisotropy.

During the last thirty years a few papers have appeared in which the above question has
been considered. In some cases it has been found out that stability really takes place (see,e.g.
[235,238]). On the other hand, existence of systems without such a stability has been proved too.
As has been shown in Ref. [237], in the anisotropic magnetohydrodynamic developed turbulence
a stable regime generally does not exist. In [238, 239], d-dimensional models with d > 2 were
investigated for two cases: weak anisotropy [238] and strong one [239], and it has been shown
that the stability of the isotropic fixed point is lost for dimensions d < dc = 2.68. It has also been
shown that stability of the fixed point even for dimension d = 3 takes place only for sufficiently
weak anisotropy. The only problem in these investigations is that it is impossible to use them in
the case d = 2 because new UV divergences appear in the Green functions when one considers
d = 2, and they were not taken into account in [238, 239].

In paper [146], a correct treatment of the two-dimensional isotropic turbulence has been
given. The correctness in the renormalization procedure has been reached by introduction into
the model a new local term (with a new coupling constant) which allows one to remove additional
UV-divergences. From this point of view, the results obtained earlier for anisotropical developed
turbulence presented in [157] and based on the paper [144] (the results of the last paper are
in conflict with [146]) cannot be considered as correct because they are inconsistent with the
basic requirement of the UV-renormalization, namely with the requirement of the localness of
the counterterms [24, 65].

The authors of the paper [251] have used the double-expansion procedure introduced in Sec.
3.2 for investigation of developed turbulence with weak anisotropy for d = 2. In such a per-
turbative approach the deviation of the spatial dimension from d = 2, ∆ = (d − 2)/2, and
the deviation of the exponent of the powerlike correlation function of random forcing from their
critical values, ε, play the role of the expansion parameters.

The main result of the paper [251] was the conclusion that the two-dimensional fixed point
is not stable under weak anisotropy. It means that two-dimensional turbulence is very sensitive
to the anisotropy and no stable scaling regimes exist in this case. In the case d = 3, for both
the isotropic turbulence and anisotropic one, as it has been mentioned above, existence of the
stable fixed point, which governs the Kolmogorov asymptotic regime, has been established by
means of the RG approach by using the analytical regularization procedure [235, 238, 239]. One
can make analytical continuation from d = 2 to the three-dimensional turbulence (in the same
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sense as in the theory of critical phenomena) and verify whether the stability of the fixed point
(or, equivalently, stability of the Kolmogorov scaling regime) is restored. From the analysis
made in Ref. [251] it follows that it is impossible to restore the stable regime by transition from
dimension d = 2 to d = 3. We suppose that the main reason for the above described discrepancy
is related to the straightforward application of the standard MS scheme. In the standard MS
scheme one works with the purely divergent part of the Green functions only, and in concrete
calculations its dependence on the space dimension d resulting from the tensor nature of these
Green functions is neglected (see Sect.3). In the case of isotropic models, the stability of the
fixed points is independent of dimension d. However, in anisotropic models the stability of fixed
points depends on the dimension d, and consideration of the tensor structure of Feynman graphs
in the analysis of their divergences becomes important.

Here we describe modified MS scheme [155] in which we keep the d−dependence of UV-
divergences of graphs. There it was confirmed that after such a modification the d-dependence
is correctly taken into account and can be used in investigation of whether it is possible to re-
store the stability of the anisotropic developed turbulence for some dimension dc when going
from a two-dimensional system to a three-dimensional one. In the limit of infinitesimally weak
anisotropy for the physically most reasonable value of ε = 2, the value of the borderline dimen-
sion is dc = 2.44. Below the borderline dimension, the stable regime of the fixed point of the
isotropic developed turbulence is lost by influence of weak anisotropy.

4.4.1 Description of the model

As has already been discussed above, the aim is now to study fully developed turbulence with
assumed weak anisotropy. It means that the parameters that describe deviations from the fully
isotropic case are sufficiently small and allow one to forget about corrections of higher degrees
(than linear) which are made by them.

In the statistical theory of anisotropically developed turbulence the turbulent flow can be
described by a random velocity field v(t,x) and its evolution is given by the stochastically forced
Navier-Stokes equation

∂tv + (v ·∇)v − ν0∇2v − fA = f , (4.188)

which is slightly modified with respect to the isotropic case (3.9). The incompressibility of the
fluid is again assumed. The term fA is related to anisotropy and will be specified later. The
large-scale random force per unit mass f is assumed to have Gaussian statistics defined by the
averages

〈fi〉 = 0, 〈fi(x1, t)fj(x2, t)〉 = Dij(x1 − x2, t1 − t2). (4.189)

The two-point correlation matrix

Dij(~x, t) = δ(t)

∫
ddk

(2π)d
D̃ij(k) exp(ik · x) (4.190)

is convenient to be parameterized in the following way [235, 237]:

D̃ij(k) = g0ν
3
0k

4−d−2ε

{[
1 + α10

(n · k)2

k2

]
Pij(k) + α20ñi(k)ñj(k)

}
, (4.191)
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where ñi has been introduced in Eq. (4.86). In what it is assumed that parameters α10 and α20

are small enough and generate only small deviations from the isotropy case.
The action of the fields v and v, is given in the compact form

S =
1

2
v,iDijv

,
j + v, ·

[
−∂tv − (v ·∇)v + ν0∇2v + fA

]
. (4.192)

Now we can return back to give an explicit form of the anisotropic dissipative term fA.
When d > 2 the UV-divergences are only present in the one-particle-irreducible Green function
〈v,v〉. To remove them, one needs to introduce into the action in addition to the counterterm
v,∇2v (the only counterterm needed in the isotropic model) the following ones v,(n ·∇)2v,
(n · v,)∇2(n · v) and (n · v,)(n ·∇)2(n · v). These additional terms are needed to remove
divergences related to anisotropic structures. In this case (d > 2), one can use the above action
(4.192) with (4.191) to solve the anisotropic turbulent problem. Therefore, in order to arrive at
the multiplicative renormalizable model, it is necessary to take the term fA in the form

fA = ν0

[
χ10(n ·∇)2v + χ20n∇2(n · v) + χ30n(n ·∇)2(n · v)

]
. (4.193)

Bare parameters χ10, χ20 and χ30 characterize the weight of the individual structures in (4.193).
As was discussed in Sec. 3.2 more complicated situation arises in the specific case d = 2

where new divergences appear. They are related to the 1-irreducible Green function 〈v,v,〉which
is finite when d > 2. Here one comes to a problem how to remove these divergences because the
term in our action, which contains a structure of this type is nonlocal, namely v,k4−d−2εv,. The
only correct way of solving the above problem is to introduce into the action a new local term of
the form v,∇2v, (isotropic case) [146]. In the anisotropic case, we have to introduce additional
counterterms v,(n ·∇)2v,, (n · v,)∇2(n · v,) and (n · v,)(n ·∇)2(n · v,).

In this case, the kernel (4.191) corresponding to the correlation matrix Dij(x1−x2, t2− t1)
in action (4.192) is replaced by the expression

D̃ij(k) = g10ν
3
0k

2−2∆−2ε

{[
1 + α10

(n · k)2

k2

]
Pij(~k) + α20ñi(k)ñj(k)

}
+ g20ν

3
0k

2

{[
1 + α30

(n · k)2

k2

]
Pij(k) +

[
α40 + α50

(n · k)2

k2

]
ñi(k)ñj(k)

}
.

(4.194)

Here g20, α30, α40 and α50 are new parameters of the model, and the parameter g0 in Eq. (4.191)
is now renamed as g10. One can see that in such a formulation the counterterm v,∇2v, and all
anisotropic terms can be taken into account by renormalization of the coupling constant g20, and
the parameters α30, α40 and α50.

It has to be stressed that the last term of the ~fA in Eq. (4.193) which is characterized by the
parameter χ30 and the term of the correlation matrix (4.194) related to the parameter α50 are of
the order O(n4) in contrast to the others which are either O(n0) (the isotropic terms) or O(n2).
Because we work in the limit of weak anisotropy this fact has its consequence in the vanishing
of their values at the fixed point. On the other hand, the eigenvalues of the stability matrix which
correspond to the parameters χ30 and α50 are of the same order, O(ε), as the eigenvalues which
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correspond to the other parameters and they play important role in determination of stability of
the regime.

The action (4.192) with the kernel D̃ij(k) (4.194) is given in the form convenient for real-
ization of the quantum field perturbation analysis with the standard Feynman diagram technique.
From the quadratic part of the action one obtains the matrix of bare propagators. Their wave-
number - frequency representation reads

∆vv
ij (ωk,k) = − K3

K1K2
Pij +

1

K1(K2 + K̃(1− ξ2
k))

×
[
K̃K3

K2
+
K̃(K3 +K4(1− ξ2

k))

(K1 + K̃(1− ξ2
k))

−K4

]
ñi(k)ñj(k)

∆vv,

ij (ωk,k) =
1

K2
Pij −

K̃

K2(K2 + K̃(1− ξ2
k))

ñi(k)ñj(k) , (4.195)

where for brevity following notation has been used

ξk =
n · k
k

,

K1 = iωk + ν0k
2 + ν0χ10(n · k)2 ,

K2 = −iωk + ν0k
2 + ν0χ10(n · k)2 ,

K3 = −g10ν
3
0k

2−2∆−2ε(1 + α10ξ
2
k)− g20ν

3
0k

2(1 + α30ξ
2
k) ,

K4 = −g10ν
3
0k

2−2∆−2εα20 − g20ν
3
0k

2(α40 + α50ξ
2
k) ,

K̃ = ν0χ20k
2 + ν0χ30(n · k)2 . (4.196)

The propagators are written in the form suitable also for strong anisotropy when the parameters
αi0 are not small. In the case of weak anisotropy, it is possible to make the expansion and work
only with linear terms with respect to all parameters which characterize anisotropy.

4.4.2 RG-analysis and stability of the fixed point

Using the standard analysis of quantum field theory (see e.g. [24, 25, 65, 71]), one can find out
that the UV divergences of one-particle-irreducible Green functions 〈v′v〉1-ir and 〈v′v′〉1-ir are
quadratic in the wave vector. The last one takes place only in the case when dimension of
the space is two. All terms needed for removing the divergences are included in the action
(4.192) with (4.193) and kernel (4.194). This leads to the fact that the model is multiplicatively
renormalizable. Thus, one can immediately write down the renormalized action in wave-number
- frequency representation with ∇ → ik, ∂t → −iωk (all needed integrations and summations
are assumed)

SR[v,v′] =
1

2
v,i

{
g1ν

3µ2εk2−2∆−2ε

(
1 + α1ξ

2
k

)
Pij + α2ñi(k)ñj(k)

+ g2ν
3µ−2∆k2

[(
Z5 + Z6α3ξ

2
k

)
Pij +

(
Z7α4 + Z8α5ξ

2
k

)
ñi(k)ñj(k)

]}
v,j
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+ v,i

{
(iωk − Z1νk

2)Pij − νk2

[
Z2χ1ξ

2
kPij +

(
Z3χ2 + Z4χ3ξ

2
k

)
× ñi(k)ñj(k)

]}
vj +

1

2
v,ivjvlVijl. (4.197)

Quantities gi, χi, α3, α4, α5 and ν are the renormalized counterparts of bare ones and Zi
are renormalization constants which are expressed via the UV divergent parts of the functions
〈v′v〉1-ir and 〈v′v′〉1-ir. Their general form in one loop approximation is

Zi = 1− Fi Poles∆,ε
i . (4.198)

In the standard MS scheme the amplitudes Fi are only some functions of gi, χi, α3, α4, α5

and are independent of d and ε. The terms Poles∆,ε
i are given by linear combinations of the poles

1
2ε , 1

2∆ and 1
4ε+2∆ (for ∆ → 0, ε → 0). The amplitudes Fi = F

(1)
i F

(2)
i are a product of two

multipliers F (1)
i , F

(2)
i . One of them, say, F (1)

i is a multiplier originating from the divergent part
of the Feynman diagrams, and the second one F (2)

i is connected only with the tensor nature of the
diagrams. For illustration purposes let us consider the following simple example (UV-divergent
diagram)

I(k,n) ≡ ninjklkm
∫

ddq
1

(q2 +m2)1+2∆

(
qiqjqlqm

q4
− δijqlqm + δilqjqm + δjlqiqm

3q2

)
,

(4.199)

where summations over repeated indices are implied. It can be simplified in the following way:

I(k,n) ≡ ninjklkmSijlm
∫ ∞

0

dq2 q2∆

2(q2 +m2)1+2∆
, (4.200)

where

Sijlm =
Sd

d(d+ 2)

(
δijδlm+δilδjm+δimδjl−

(d+ 2)

3
(δijδlm+δilδjm+δimδjl)

)
, (4.201)

∫ ∞
0

dq2 q2∆

2(q2 +m2)1+2∆
=

Γ(∆ + 1)Γ(∆)

2m2∆Γ(2∆ + 1)
. (4.202)

The purely UV divergent part manifests itself as the pole in ∆; therefore, one finds

UV div. part of I =
1

2δ
(F

(2)
1 k2 + F

(2)
2 (n · k)2),

where F (2)
1 = F

(2)
2 /2 = (1− d)Sd/3d(d+ 2) (F (1)

1 = F
(1)
2 = 1).

In the standard MS scheme one puts d = 2 in F (2)
1 , F

(2)
2 ; therefore the d-dependence of these

multipliers is ignored. For the theories with vector fields and, consequently, with tensor diagrams,
where the sign of values of fixed points and/or their stability depend on the dimension d, the
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procedure, which eliminates the dependence of multipliers of the type F (2)
1 , F

(2)
2 on d, is not

completely correct because one is not able to control the stability of the fixed point when drives
to d = 3. In the analysis of Feynman diagrams slightly modified MS scheme was proposed [155]
in such a way that we keep the d-dependence of F in (4.198). The following calculations of
RG functions (β functions and anomalous dimensions) allow one to arrive at the results which
are in qualitative agreement with the results obtained in the framework of the simple analytical
regularization scheme [239], i.e., the fixed point was obtained [155] which is not stable for d = 2,
but whose stability is restored for a borderline dimension 2 < dc < 3.

The transition from the action (4.192) to the renormalized one (4.197) is given by the intro-
duction of the following renormalization constants Z:

ν0 = νZν , g10 = g1µ
2εZg1

, g20 = g2µ
−2∆Zg2

, χi0 = χiZχi , α(i+2)0 = αi+2Zαi+2
,

(4.203)

where i = 1, 2, 3. By comparison of the corresponding terms in the action (4.197) with defini-
tions of the renormalization constants Z for the parameters (4.203), one can immediately write
down relations between them

Zν = Z1, Zg1 = Z−3
1 , Zg2 = Z5Z

−3
1 , Zχi = Z1+iZ

−1
1 , Zαi+2 = Zi+5Z

−1
5 ,

(4.204)

where again i = 1, 2, 3.
In the one-loop approximation, divergent one-irreducible Green functions are 〈v′v〉1-ir and

〈v′v′〉1-ir Corresponding divergent parts of these diagrams Γv
,v, , Γv

,v have the structure

Γv,v, =
1

2
ν3A

[
g2

1

4ε+ 2∆

(
a1∆ijk

2 + a2δij(n · k)2 + a3ninjk
2 + a4ninj(n · k)2

)
+
g1g2

2ε

(
b1δijk

2 + b2δij(n · k)2 + b3ninjk
2 + b4ninj(n · k)2

)
+

g2
2

−2∆

(
c1δijk

2 + c2δij(n · k)2 + c3ninjk
2 + c4ninj(n · k)2

) ]
,

Γv,v = −νA

[
g1

2ε

(
d1δijk

2 + d2δij(n · k)2 + d3ninjk
2 + d4ninj(n · k)2

)
+

g2

−2∆

(
e1δijk

2 + e2δij(n · k)2 + e3ninjk
2 + e4ninj(n · k)2

) ]
, (4.205)

where parameter A and functions ai, bi, ci, di and ei are not not needed for a discussion of basic
idea. Their explicit expressions can be found in [155]. The counterterms are built up from these
divergent parts which lead to the following equations for renormalization constants:

Z1 = 1−A
(g1

2ε
d1 −

g2

2∆
e1

)
,

Z1+i = 1− A

χi

(g1

2ε
d1+i −

g2

2∆
e1+i

)
,
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Z5 = 1 +
A

2

(
g2

1

g2

a1

4ε+ 2∆
+
g1

2ε
b1 −

g2

2∆
c1

)
,

Z5+i = 1 +
A

2αi+2

(
g2

1

g2

ai+1

4ε+ 2∆
+
g1

2ε
bi+1 −

g2

2∆
ci+1

)
,

i = 1, 2, 3 . (4.206)

By substitution of the anomalous dimensions γi (3.4) into the expressions for the β-functions
one obtains

βg1
= g1

[
− 2ε+ 3A(g1d1 + g2e1)

]
,

βg2
= g2

[
2∆ + 3A(g1d1 + g2e1) +

A

2

(
g2

1

g2
a1 + g1b1 + g2c1

)]
,

βχi = −A [(g1di+1 + g2ei+1)− χi(g1d1 + g2e1)] ,

βαi+2
= −A

2

[
−
(
g2

1

g2
ai+1 + g1bi+1 + g2ci+1

)
+ αi+2

(
g2

1

g2
a1 + g1b1 + g2c1

)]
,

i = 1, 2, 3 . (4.207)

Now we have all necessary tools at hand to investigate the fixed points and their stability. In
the isotropic case all parameters which are connected with the anisotropy are equal to zero, and
one can immediately find the Kolmogorov fixed point, namely:

g1∗ =
1

A

8(2 + d)ε(2ε− 3d(∆ + ε) + d2(3∆ + 2ε))

9(−1 + d)3d(1 + d)(∆ + ε)
,

g2∗ =
1

A

8(−4− 2d+ 2d2 + d3)ε2

9(−1 + d)3d(1 + d)(∆ + ε)
, (4.208)

where corresponding Ω matrix has the following eigenvalues:

λ1,2 =
1

6d(d− 1)

{
6d∆(d− 1) + 4ε(2− 3d+ 2d2)

±

[
(6d∆(1− d)− 4ε(2− 3d+ 2d2))2

− 12d(d− 1)ε(12d∆(d− 1) + 4ε(2− 3d+ 2d2))

] 1
2
}
. (4.209)

From detailed analysis of these eigenvalues it follows [155] that in the interesting region of
parameters, namely ε > 0 and ∆ ≥ 0 (it corresponds to d ≥ 2) the above computed fixed point
is stable. In the limit d = 2, this fixed point is in agreement with that given in [146, 251].

When one considers the weak anisotropy case the situation becomes more complicated be-
cause of necessity to use all system of β-functions if one wants to analyze the stability of the
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fixed point. It is also possible to find analytical expressions for the fixed point in this more com-
plicated case because in the weak anisotropy limit it is enough to calculate linear corrections of
α1 and α2 to all the quantities.

To investigate the stability of the fixed point it is necessary to apply it in the matrix (2.24).
Analysis of this matrix shows us that it can be written in the block-diagonal form: (6×6)(2×2).
The (2× 2) part is given by the β-functions of the parameters α5 and χ3 and, namely, this block
is responsible for the existence of the borderline dimension dc because one of its eigenvalues, say
λ1(ε, d, α1, α2), has a solution dc ∈ 〈2, 3〉 of the equation λ1(ε, dc, α1, α2) = 0 for the defined
values of ε, α1, α2. Te details of determination of fixed points’ structure and the corresponding
eigenvalues of the stability matrix responsible for instability can be found in [155].
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For the energy pumping regime (ε = 2) and α1 = α2 = 0 the critical dimension dc = 2.44 is
found. This is the case when one supposes only the fact of anisotropy. Using nonzero values of
α1 and α2 one can also estimate the influence of these parameters on the borderline dimension
dc. It is interesting to calculate the dependence of dc on the parameter ε too. In Fig. 4.29, this
dependence and the dependence on small values of α1 and α2 are presented. As one can see from
this figure dc increases when ε→ 0 and also the parameters α1 and α2 give small corrections to
dc. In Fig. 4.30, the dependence of dc on α1 and α2 for ε = 2 is presented.
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5 Reaction-diffusion problems

Reaction-diffusion models introduced in Sec. 1.2.2 play an important role in non-equilibrium
physics. In contrast to the models of critical dynamics they are often described by non-hermitian
operators. This leads to intrigued and interesting phenomena [33, 34]. This will serve us as
an illustration of possible use of technique introduced in Secs. 1.2 and 1.4. For an analysis of
resulting field-theoretic actions again theoretical approaches from Sec. 2 will be used. The main
aim here is to analyze scaling behavior of two important models:

1. annihilation process A+A→ ∅.

2. directed bond percolation process.

Velocity fluctuations are hardly avoidable in any of experiments. For example, a vast majority
of chemical reactions occurs at finite temperature, which is inevitably encompassed with the
presence of a thermal noise. Furthermore, disease spreading and chemical reactions could be
affected by the turbulent advection to a great extent. Fluid dynamics is in general described
by the Navier-Stokes equations [31]. A general solution of these equations remains an open
question [70,79]. For both of these problems very important role is played by the properties of the
environment in which these processes take place. It can be expected that impurities and defects,
which are not taken into account in the original formulation, could cause a change in the universal
properties of the model. This is believed to be one of the reasons why there are not so many
direct experimental realizations [252,253] of the percolation process itself. A study of deviations
from the ideal situation could proceed in different routes and this still constitutes a topic of an
ongoing debate [33]. A substantial effort has been made in studying a long-range interaction
using Lévy-flight jumps [254–256], effects of immunization [35,257], mutations [258], feedback
of the environment on the percolating density [259], or in the presence of spatially quenched
disorder [260]. In general, the novel behavior is observed with a possibility that critical behavior
is lost or profoundly changed. For example, the latter is observed in annihilation process [261].
There was shown that thermal fluctuations makes otherwise IR stable regime unstable. On the
other hand, the presence of a quenched disorder in percolation process causes a shift of the critical
fixed point to the unphysical region. This leads to such interesting phenomena as an activated
dynamical scaling or Griffiths singularities [262–265].

5.1 Effect of velocity fluctuations on A+A→ ∅

The irreversible annihilation reaction A + A→ ∅ is a fundamental model of non-equilibrium
physics. The reacting particles perform chaotic motion due to diffusion or some external advec-
tion field such as atmospheric eddy and may react after the mutual collision with constant mi-
croscopic probability K0 per unit time. Implicitly it is assumed that resulting molecule is inert,
i.e. chemically inactive, and has no influence on the movement of the reacting A particles. Many
reactions of this type are observed in diverse chemical, biological or physical systems [266,267].
The usual approach to this kind of problems is based on the use of the kinetic rate equation. It
leads to a self-consistent description analogous to the mean-field approximation in the theory of
critical phenomena. The basic assumption of the rate-equation approach is that the particle den-
sity is spatially homogeneous. This homogeneity can be thought as a consequence of either an
infinite mobility of the reactants or of a very small probability that a chemical reaction actually
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occurs when reacting entities meet each other. On the other hand, if the particle mobility be-
comes sufficiently small, or equivalently, if the microscopic reaction probability becomes large
enough there is a possible transition to a new regime where is is more probable that the given
particle reacts with local neighbors than with distant particles. This behavior is known as the
diffusion-controlled regime [58, 268]. For the annihilation reaction limited assumption of the
density homogeneity leads to the following equation for the mean particle number

∂tn(t) = −K0n
2(t). (5.1)

This equation predicts a long-time asymptotic decay as n(t) ∼ t−1 and the decay exponent does
not depend on the space dimension. This is a common situation observed in the mean field the-
ory. However, it turns out [269, 270] that in lower space dimensions d ≤ 2 the assumption of
spatially uniform density, or equivalently of negligible density fluctuations of reacting particles,
is not appropriate. The upper critical dimension for this reaction dc = 2 [269], above which
mean field approximation is valid. Re-entrancy of the diffusing particles [271] in low space di-
mensions leads to effective decrease of the decay exponent.

A typical reaction occurs in liquid or gaseous environment. Thermal fluctuations of this under-
lying environment cause additional advection of the reacting particles. Therefore, it is interesting
to study the influence of the advection field on the annihilation process.

Most of the renormalization-group analyses of the effect of random drift on the annihilation
reaction A + A→ ∅ in the framework of the Doi approach have been carried out for the case of
a quenched random drift field. Potential random drift with long-range [272,273] and short-range
correlations [274] have been studied as well as ”turbulent” flow (i.e. quenched solenoidal ran-
dom field) with potential disorder [275, 276]. For a more realistic description of a turbulent flow
time-dependent velocity field would be more appropriate. In Ref. [276] dynamic disorder with
a given Gaussian distribution has been considered, whereas the most ambitious approach on the
basis of a velocity field generated by the stochastic Navier-Stokes equation has been introduced
here by two of the present authors [261]. From the point of the Navier-Stokes equation the situ-
ation near the critical dimension dc = 2 of the pure reaction model is even more intriguing due
to the properties of the Navier-Stokes equation (see Sec. 3.3). The aim of this part is to examine
the IR behavior of the annihilation process under the influence of advecting velocity fluctuations
and to determine its stability in the second order of the perturbation theory. Using mapping
procedure based on the Doi formalism (see Sec. 1.4) an effective field-theoretic model for the
annihilation process is constructed. The RG method is applied on the model in the field-theoretic
formulation, which is the most efficient in calculations beyond the one-loop order, and within the
two-parameter expansion the renormalization constants and fixed points of the renormalization
group are determined in the two-loop approximation. The non-linear integro-differential equa-
tion, which includes first non-trivial corrections to the (5.1), is obtained for the mean particle
number and it is shown how the information about IR asymptotics can be extracted from it in
the case of a homogeneous system. This equation allows to investigate heterogeneous systems
as well with the account of the effect density and advecting velocity fluctuations. The solution
of the equation in the heterogeneous case requires numerical calculations and was considered



232 Advanced field-theoretical methods

in [277].
5.1.1 Field-theoretic model of the annihilation reaction

The goal is to analyze anomalous kinetics of the irreversible single-species annihilation reaction

A+A
K0−−→ ∅, (5.2)

with the unrenormalized (mean field) rate constant K0. This can be considered as a special
case of the Verhulst model 1.112. The corresponding field-theoretic action 1.159 with velocity
fluctuations taken into account reads

S1 = −
∫ ∞

0

dt

∫
ddx {ψ′∂tψ + ψ′∇ · (vψ)−D0ψ

′∇2ψ

+ λ0D0[2ψ′ + (ψ′)2]ψ2 + n0

∫
ddxψ′(x, 0)}. (5.3)

In the usual fashion the diffusion constant D0 has been extracted from the rate constant K0 =
λ0D0.

The most realistic description of the velocity field v(x) is based on the use of the stochas-
tic Navier-Stokes equation (3.9). Averaging over the random velocity field v is done with the
”weight” functionalW = eSNS , where SNS is the effective action for the advecting velocity field
(3.18).

It is easily seen that the studied model contains three different types of propagators ∆vv′ ,∆vv

and ∆ψψ′ . The former two were given in (3.93) and the latter one reads

∆ψψ′(ωk,k) =
1

−iωk +D0k2
. (5.4)

The two reaction vertices derived from the functional (5.3) are depicted on Fig. 5.1 and physi-

ψ′

ψ

ψ

,

ψ′

ψ′

ψ

ψ

≡ −4λ0D0

Figure 5.1. Interaction vertices responsible for density fluctuations and their corresponding vertex factor

cally describe the density fluctuations of the reactant particles. It should be stressed that in this
model no backward influence of the reactants on the velocity field is assumed. Therefore, the
model given by actions (5.3) and (3.9) may be characterized as a model for the advection of the
passive chemically active admixture.

In the one-loop approximation velocity fluctuations have no effect on the renormalization
of the interaction vertex [261], whereas in the two-loop approximation situation becomes more
complicated and all graphs in Fig. 5.2 must be considered [278].
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Figure 5.2. Two-loop graphs needed for UV renormalization of Γψ′ψ(left) and Γψ′ψψ(left) 1PI functions.

5.1.2 UV renormalization of the model

In what follows we will employ the modified minimal subtraction scheme. What we mean here,
is the ray scheme [153] introduced in Sec. 3.2, in which the two regularizing parameters ε, ∆
(ε has been introduced in (3.12) and ∆ in (3.22)) are taken proportional to each other: ∆ = ξε,
where the coefficient ξ is arbitrary but fixed. In this case, only one independent small parameter,
say, ε remains and the notion of minimal subtraction becomes meaningful. In the modified
scheme, as usual, certain geometric factors are not expanded in ε (for details see [153]).

In order to apply the dimensional regularization for the evaluation of renormalization con-
stants, an analysis of possible superficial divergences has to be performed. For the power count-
ing in the actions (5.3) and (3.18) the scheme from Sec. 2.3 is employed, in which to each
quantity Q two canonical dimensions are assigned, one with respect to the wave number dkQ and
the other to the frequency dωQ. The normalization for these dimensions is given by Eq. (2.14).
The canonical dimensions for fields and parameters of the model are derived from the condition
for action to be a scale-invariant quantity, i.e. to have a zero canonical dimension.

The quadratic part of the action (5.3) determines only the canonical dimension of the quadratic
product ψ†ψ. In order to keep both terms in the nonlinear part of the action

λ0D0

∫
dt

∫
ddx [2ψ† + (ψ†)2]ψ2, (5.5)

the field ψ† must be dimensionless. If the field ψ† has a positive canonical dimension, which
is the case for d > 2, then the quartic term should be discarded as irrelevant by the power
counting. The action with the cubic term only, however, does not generate any loop integrals
corresponding to the density fluctuations and thus is uninteresting for the analysis of fluctuation
effects in the space dimension d = 2. One-loop calculation has been performed in [261] and
the two-loop approximation can be found in the work [278], where all computational details can
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Q ψ ψ′ ν0, D0 λ0

dωQ 0 0 1 0

dkQ d 0 −2 −2∆

dQ d 0 0 −2∆

Table 5.1. Canonical dimensions for the parameters and the fields of the model with action (5.3).

found. Similar approach was used using Kraichnan model for generating velocity fluctuations
[279]. There the RG analysis was somewhat simpler due to the absence of interaction between
velocity fluctuations.

Using the normalization choice (2.14), we are able to obtain the canonical dimensions for all
the fields and parameters in the d-dimensional space. The results are summarized in Table 5.1.
The dimensions of quantities related to velocity can be found in Tab. 3.1. Here, dQ = dkQ+2dωQ is
the total canonical dimension and it is determined from the condition that the parabolic differen-
tial operator of the diffusion and Navier-Stokes equation scales uniformly under the simultaneous
momentum and frequency dilatation k → µk, ω → µ2ω.

The total canonical dimension of an arbitrary one-particle irreducible Green 1PI is given by
the relation (2.16). Superficial UV divergences may be present only in those Γ functions for
which dΓ is a non-negative integer. Using the dimensions of the fields from Table 5.1 we see that
the superficial degree of divergence for a 1PI function Γ is given by the expression

dΓ = 4−Nv −Nṽ − 2Nψ. (5.6)

However, the real degree of divergence δΓ is smaller, because of the structure of the interaction
vertex (3.95), which allows for factoring out the operator ∇ to each external line v′. Thus the
real divergence exponent δΓ may be expressed as

δΓ ≡ dΓ −Nv′ = 4−Nv − 2Nv′ − 2Nψ (5.7)

Although the canonical dimension for the field ψ′ is zero, there is no proliferation of superficial
divergent graphs with arbitrary number of externalψ′ legs. This is due to the condition nψ′ ≤ nψ ,
which may be established by a straightforward analysis of the Feynman graphs [269]. As has
already been shown [121] the divergences in 1PI Green functions containing at least one velocity
field v may be removed by a single counterterm of the form ψ′∇2ψ.

Brief analysis shows that the UV divergences are expected only for the 1PI Green functions
listed in Table 5.2. This theoretical analysis leads to the following renormalization of the param-
eters g0, D0 and u0:

g1 = g10µ
−2εZ3

1 , g2 = g20µ
2∆Z3

1Z
−1
3 , ν = ν0Z

−1
1

u = u0Z1Z
−1
2 , λ = λ0µ

2∆Z2Z
−1
4 , D = D0Z

−1
2 , (5.8)

where the inverse Prandtl number has been introduced in the same way as was done for advection
of passive scalar in action 3.90. From Table 5.1 it follows that u is purely dimensionless quantity
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Γ1−ir 〈ψ′ψ〉 〈ψ′ψv〉 〈v′v〉 〈v′vv〉 〈v′v′〉 〈ψ′ψ2〉

dΓ 2 1 2 1 2 0

δΓ 2 1 1 0 0 0

Table 5.2. Canonical dimensions for the 1PI divergent Green functions of the model

(dku = dωu = du = 0). In terms of the introduced renormalized parameters the total renormalized
action for the annihilation reaction in a fluctuating velocity field is

S1R =

∫
ddr

∫ ∞
0

dt

{
ψ′∂tψ + ψ′∇ · (vψ)− uνZ2∇2ψ + λuνµ−2∆Z4[2ψ†

+ (ψ′)2]ψ2

}
+n0

∫
ddrψ′(r, 0). (5.9)

The renormalization constants Zi, i = 1, 2, 3, 4 are to be calculated perturbatively through the
calculation of the UV divergent parts of the 1PI functions Γv′v , Γv′v′ , Γψ′ψ , Γψ′ψ2 and Γ(ψ′)2ψ2 .
Interaction terms corresponding to these functions have to be added to the original action S =
S1+S2 with the aim to ensure UV finiteness of all Green functions generated by the renormalized
action SR. At this stage the main goal is to calculate the renormalization constants Zi, i =
1, 2, 3, 4. The explicit expressions for them could be found in [278] and are not needed here.

5.1.3 IR stable fixed points and scaling regimes

RG analysis reveals an existence of four IR stable fixed points and one IR unstable fixed point. In
this section they are presented together with their regions of stability. For brevity, in the following
the abbreviation g ≡ gSd for the parameters {g10, g20, λ0} or their renormalized counterparts is
assumed.

(i ) The trivial (Gaussian) fixed point

g1
∗ = g2

∗ = λ
∗

= 0 , (5.10)

with no restrictions on the inverse Prandtl number u. The Gaussian fixed point is stable, when

ε < 0 , ∆ > 0 . (5.11)

and physically corresponds to the case, when the mean-field solution is valid and fluctuation
effects negligible.

(ii ) The short-range (thermal) fixed point

g1
∗ = 0, g2

∗ = −16∆ + 8(1 + 2R)∆2,

u∗ =

√
17− 1

2
− 1.12146∆, λ

∗
= −∆ +

∆2

2
(ξ − 2.64375), (5.12)

where R = −0.168 is a numerical constant. At this point local correlations of the random force
dominate over the long-range correlations. This fixed point has the following basin of attraction

∆− 2R− 1

2
∆2 < 0, 2ε+ 3∆− 3∆2

2
< 0,
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∆ +
1

2
∆2 < 0, ∆ + 0.4529∆ε < 0 (5.13)

and corresponds to anomalous decay faster than that due to density fluctuations only, but slower
than the mean-field decay.

(iii ) The kinetic fixed point (corresponds to regime (3.104)) with finite rate coefficient:

g1
∗ =

32

9

ε (2ε+ 3∆)

ε+ ∆
+ g∗12(ξ)ε2, g2

∗ =
32

9

ε2

∆ + ε
+ g∗22(ξ)ε2,

u∗ =

√
17− 1

2
+ u∗1(ξ)ε, λ

∗
= −2

3
(ε+ 3∆) +

1

9π
(3∆ + ε)(Qε−∆).

(5.14)

Here Q = 1.64375. The fixed point (5.14) is stable, when inequalities

Re Ω± > 0 , ε > 0 , −2

3
ε < ∆ < −1

3
ε, (5.15)

are fulfilled, where

Ω± = ∆ +
4

3
ε±
√

9∆2 − 12ε∆− 8ε2

3
+

2ε

9

(
4ε(ε+ 3∆)R− 6ε2 − 12ε∆− 9∆2

√
9∆2 − 12∆− 8ε2

− (3 + 2R)ε− 3∆

)
. (5.16)

The decay rate controlled by this fixed point of the average number density is faster than the
decay rate induced by dominant local force correlations, but still slower than the mean-field
decay rate.

(iv ) The kinetic fixed point with vanishing rate coefficient:

g1
∗ =

32

9

ε (2ε+ 3∆)

ε+ ∆
+ g∗12(ξ)ε2, g2

∗ =
32

9

ε2

∆ + ε
+ g∗22(ξ)ε2,

u∗ =

√
17− 1

2
+ u∗1(ξ)ε, λ

∗
= 0 . (5.17)

The expressions for g∗12(ξ), g∗22(ξ) and u∗1(ξ) are rather cumbersome. They can be found in [278],
therefore we do not repeat them here. This fixed point is stable, when the long-range correlations
of the random force are dominant

ReΩ± > 0, ε > 0, ∆ > −1

3
ε , (5.18)

and corresponds to reaction kinetics with the normal (mean-field like) decay rate.
(v ) Driftless fixed point given by

g1
∗ = g2

∗ = 0, u∗ not fixed, λ
∗

= −2∆, (5.19)

with the following eigenvalues of stability matrix (2.24)

Ω1 = −2ε, Ω2 = −Ω4 = 2∆, Ω3 = 0. (5.20)
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Figure 5.3. Regions of stability for the IR stable fixed points (i)− (iv) in (ε,∆)-plane.

An analysis of the structure of the fixed points and the basins of attraction leads to the following
physical picture of the effect of the random stirring on the reaction kinetics. Anomalous behavior
always emerges below two dimensions, when the local correlations are dominant in the spectrum
of the random forcing [the short-range fixed point (ii )]. However, the random stirring gives rise
to an effective reaction rate faster than the density-fluctuation induced reaction rate even in this
case. The anomaly is present (but with still faster decay, see the next Section) also, when the
long-range part of the forcing spectrum is effective, but the powerlike falloff of the correlations
is fast [this regime is governed by the kinetic fixed point (iii )]. Note that this is different from the
case in which the solenoidal random velocity field is time-independent, in which case there is no
fixed point with λ∗ 6= 0 [275]. At slower spatial falloff of correlations, however, the anomalous
reaction kinetics is replaced by a mean-field-like behavior [this corresponds to the kinetic fixed
point (iv )]. In particular, in dimensions d > 1 this is the situation for the value ε = 2 which
corresponds to the Kolmogorov spectrum of the velocity field in fully developed turbulence.
Thus, long-range correlated forcing gives rise to a random velocity field, which tends to suppress
the effect of density fluctuations on the reaction kinetics below two dimensions.

For better illustration, regions of stability for fixed points (i) − (iv) are depicted in Fig.5.3.
Wee see that in contrast to the one-loop approximation [261], overlap (dashed region) between
regions of stability of fixed points (ii) and (iii) is observed. It is a common situation in the per-
turbative RG approach that higher order terms lead to either gap or overlap between neighboring
stability regions. The physical realization of the large-scale behavior then depends on the initial
state of the system.

5.1.4 Long-time asymptotics of number density

Because the renormalization and calculation of the fixed points of the RG are carried out at two-
loop level,it is possible to find the first two terms of the ε, ∆ expansion of the average number
density, which corresponds to solving the stationarity equations at the one-loop level. The sim-
plest way to find the average number density is to calculate it from the stationarity condition of
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the functional Legendre transform [25] (which is often called the effective action) of the gen-
erating functional obtained by replacing the unrenormalized action by the renormalized one in
the weight functional. This is a convenient way to avoid any summing procedures used [269]
to take into account the higher-order terms in the initial number density n0. The standard aim
in reaction-diffusion problems is the solution for the number density. Therefore the expectation
values of the fields v and ṽ can be set to zero at the outset (but retain, of course, the propa-
gator and the correlation function). Therefore, at the second-order approximation the effective
renormalized action for this model is

ΓR = S1+
1

4
+

1

8
+ +. . . ,

(5.21)

where S1 is the action (5.3) (within a convention SNS = 0 in the effective action) and graphs
are shown together with their symmetry coefficients. The slashed wavy line corresponds to the
field ψ† and the single wavy line to the field ψ. The stationarity equations for the variational
functional

δΓR
δψ′

=
δΓR
δψ

= 0 (5.22)

give rise to the equations

∂tψ = uνZ2∇2ψ − 2λuνµ−2∆Z4 (1 + ψ′)ψ2 + 4u2ν2λ2µ−4∆

×
∞∫

0

dt′
∫

ddy (∆ψψ′)2(t− t′,x− y)ψ2(t′,y) + 4u2ν2λ2µ−4∆ψ′(t,x)

×
∞∫

0

dt′
∫

ddy (∆ψψ′)2(t− t′,x− y)ψ2(t′,y)

+
∂

∂xi

∞∫
0

dt′
∫

ddy ∆vv
ij (t− t′,x− y)

∂

∂xj
∆ψψ′(t− t′,x− y)ψ(t′,y) + . . . ,

(5.23)

and

−∂tψ′ = uνZ2∇2ψ′ − 2λuνµ−2∆Z4

[
2ψ′ + (ψ′)

2
]
ψ + 8u2ν2λ2µ−4∆

×
∞∫

0

dt′
∫

ddy(∆ψψ′)2(t′ − t,y − x)ψ′(t′,y)ψ(t,x) + 4u2ν2λ2µ−4∆

×
∞∫

0

dt′
∫

ddy(∆ψψ′)2(t′ − t,y − x) [ψ′(t′,y)]
2
ψ(t,x)



Reaction-diffusion problems 239

+

∞∫
0

dt′
∫

ddy ∆vv
ji (t′ − t,y − x)

∂

∂xi
∆ψψ′(t′ − t,y − x)

∂

∂yj
ψ′(t′,y) + . . .

(5.24)

In (5.23) and (5.24), in the integral terms it is sufficient to put all renormalization constants equal
to unity. Substituting the solution ψ′ = 0 of (5.24) into (5.23) one arrives at the fluctuation-
amended rate equation in the form

∂tψ =uνZ2∇2ψ−2λuνµ−2∆Z4ψ
2+ 4u2ν2µ−4∆λ2

∞∫
0

dt′
∫

ddy(∆ψψ′)2(t− t′,x− y)

× ψ2(t′,y) +
∂

∂xi

∞∫
0

dt′
∫

ddy ∆vv
ij (t− t′,x− y)

∂

∂xj
∆ψψ′(t− t′,x− y)ψ(t′,y)

+ . . . , (5.25)

This is a nonlinear partial integro-differential equation, whose explicit solution is not known. It
is readily seen that for a homogeneous solution the term resulting from the third graph in (5.21)
vanishes and hence the influence of the velocity field on the homogeneous annihilation process
would be only through the renormalization of the coefficients λ and D. However, in case of a
nonuniform density field ψ the effect of velocity fluctuations is explicit in (5.25). Such a solution
can be most probably found only numerically.

To arrive at an analytic solution, we restrict ourselves to the homogeneous density n(t) =
〈ψ(t)〉. In this case the last term in (5.25) vanishes together with the Laplace operator term and
the remaining coordinate integral may be calculated explicitly . The propagator is the diffusion
kernel of the renormalized model (the system is considered in the general space dimension d)

∆ψψ′(t− t′,x) =
θ(t− t′)

[4πuν(t− t′)]d/2
exp

[
− x2

4uν(t− t′)

]
. (5.26)

As noted above, for calculation of the one-loop contribution it is sufficient to put the renormaliza-
tion constant Z2 = 1 in the propagator ∆ψψ′ . Therefore, evaluation of the Gaussian coordinate
integral in (5.25) yields∫

ddy (∆ψψ′)2(t− t′,x− y) =
θ(t− t′)

[8πuν(t− t′)]d/2
(5.27)

and the ordinary integro-differential equation

dn(t)

dt
= −2λuνµ−2∆Z4n

2(t) + 4λ2u2ν2µ−4∆

t∫
0

dt′
n2(t′)

[8πuν(t− t′)]d/2
. (5.28)

is obtained. Naively one can assume that concentrating on homogeneous solution n(t) the infor-
mation about spatial fluctuations has been lost. However, the integral term in (5.28) corresponds



240 Advanced field-theoretical methods

these fluctuations and cause rather heavy effect even on the homogeneous solution. In particular,
the integral in (5.28) diverges at the upper limit in space dimensions d ≥ 2. This is a conse-
quence of the UV divergences in the model above the critical dimension dc = 2 and near the
critical dimension is remedied by the UV renormalization of the model. To see this, subtract and
add the term n2(t) in the integrand to obtain

dn(t)

dt
= −2λuνµ−2∆Z4n

2(t) + 4λ2u2ν2µ−4∆n2(t)

t∫
0

dt′

[8πuν(t− t′)]d/2

+ 4λ2u2ν2µ−4∆

t∫
0

dt′
n2(t′)− n2(t)

[8πuν(t− t′)]d/2
. (5.29)

The last integral here is now convergent at least near two dimensions, provided the solution
n(t) is a continuous function. This is definitely the case for the iterative solution constructed
below. The divergence in the first integral in (5.29) may be explicitly calculated below two
dimensions and is canceled – in the leading order in the parameter ∆ – by the one-loop term of
the renormalization constant Z4 [278]. Expanding the right-hand side of (5.29) in the parameter
∆ to the next-to-leading order the equation

dn(t)

dt
= −2λuνµ−2∆n2(t) + 2λuνµ−2∆n2(t)

{
λ

4π

[
γ + ln

(
2uνµ2t

)]}

+
λ2uνµ−2∆

2π

t∫
0

dt′
n2(t′)− n2(t)

t− t′
(5.30)

can be derived without divergences near two dimensions. Here, the factor µ−2∆ has been re-
tained intact in order not to spoil the consistency of scaling dimensions in different terms of the
equation. In (5.30), γ = 0.57721 is Euler’s constant and the coupling constant λ and the pa-
rameter ∆ have been considered to be small parameters of the same order taking into account
the magnitudes of the parameters in the basins of attraction of the fixed points of the RG. The
leading-order approximation for n(t) is given by the first term on the right-hand side of (5.30) and
it is readily seen that after substitution of this expression the integral term in (5.30) is of the order
of λ3 and thus negligible in the present next-to-leading-order calculation. In this approximation,
Eq. (5.30) yields

n(t) =
n0

1 + 2λuνt
{

1 + λ
4π [1− γ − ln (2uνµ2t)]

}
µ−2∆n0

, (5.31)

where n0 is the initial number density.
Green functionsWR differ from the unrenormalizedW = 〈Φ . . .Φ〉 [25] only by the choice

of parameters and thus one may write

WR(g, ν, µ, . . .) =W(g0, ν0, . . .), (5.32)
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where g0 = {g10, g20, u0, λ0} is the full set of the bare parameters and dots denotes all variables
unaffected by the renormalization procedure. The independence of renormalization mass param-
eter µ is expressed by the equation µ∂µWR = 0. Using this equation the RG equation for the
mean particle number n(t) is readily obtained:(

µ
∂

∂µ
+
∑
g

βg
∂

∂g
− γ1ν

∂

∂ν

)
n(t, µ, ν, n0, g) = 0, (5.33)

where in the second term the sum runs over all charges g1, g2, u and λ of the model. From
macroscopic point of view the most interesting is long-time behavior of the system (t → ∞),
therefore the scale setting parameter µ should be traded for the time variable. Canonical scale
invariance (Sec. 2.2 and [32]) yields relations(

µ
∂

∂µ
− 2ν

∂

∂ν
+ dn0

∂

∂n0
− d
)
n(t, µ, ν, n0, g) = 0, (5.34)

(
−t ∂
∂t

+ ν
∂

∂ν

)
n(t, µ, ν, n0, g) = 0, (5.35)

where the first equation expresses scale invariance with respect to wave number and the second
equation with respect to time. Eliminating partial derivatives with respect to parameter µ and
viscosity ν we obtain the Callan-Symanzik equation for the mean particle number:[

(2− γ1)t
∂

∂t
+
∑
g

βg
∂

∂g
− dn0

∂

∂n0
+ d

]
n (t, µ, ν, n0, g) = 0 (5.36)

To separate information given by the RG, consider the dimensionless normalized mean particle
number

n

n0
= Φ

(
νµ2t, λu

n0

µd
, g

)
. (5.37)

For the asymptotic analysis, it is convenient to express the particle density in the combination
used here. Solution of (5.36) by the method of characteristics yields

Φ

(
νµ2t, λu

n0

µd
, g

)
= Φ

(
νµ2τ, λu

n0

µd
, g

)
(5.38)

where τ is the convenient time scale. In Eq. (5.38), g and n0 are the first integrals (discussed in
Sec. 2.4) of the system of differential equations

t
d

dt
g = − βg(g)

2− γ1(g)
, t

d

dt
n0 = d

n0

2− γ1(g)
. (5.39)

Here g = {g1, g2, u, λ} with initial conditions g|t=τ = g and n0|t=τ = n0. In particular,

λun0 = λun0

(
t

τ

)
exp

[∫ t

τ

γ4ds

(2− γ1)s

]
. (5.40)
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The asymptotic expression of the integral on the right-hand side of (5.40) in the vicinity of the
IR-stable fixed point g∗ is of the form

∫ t

τ

γ4ds

(2− γ1)s
∼

t→∞

γ∗4
2− γ∗1

ln

(
t

τ

)
+

2

2− γ∗1

∞∫
τ

(γ4 − γ∗4)ds

(2− γ1)s
=

γ∗4
2− γ∗1

ln

(
t

τ

)
+ cn(τ) ,

(5.41)

corrections to which vanish in the limit t → ∞. Quantities with asterisk always refer to corre-
sponding fixed point value. In (5.41) and henceforth, the notation γ∗1 = γ1 (g∗) has been used.
From the point of view of the long-time asymptotic behavior the next-to-leading term in (5.41)
is an inessential constant. In the vicinity of the fixed point

λu
n0

µd
∼ λu n0

µd

(
t

τ

)1 +
γ∗4

2− γ∗1 Cn ≡ λu
n0

µd

(
t

τ

)α
Cn ≡ y Cn , (5.42)

where a shorthand notation y has been introduced for the long-time scaling of the normalized
number density as well as the dimensional normalization constant

Cn = edc̃n(τ) .

and the decay exponent

α = 1 +
γ∗4

2− γ∗1
(5.43)

The asymptotic behavior of the normalized particle density is described by the scaling function
f(x, y):

Φ

(
νµ2t, λu

n0

µd
, g

)
∼ Φ

(
νµ2τ, Cny, g

∗) ≡ f (νµ2τ, Cny
)
. (5.44)

The scaling function f(x, y) describing the asymptotic behavior of the normalized number den-
sity Φ = n/n0 is a function of two dimensionless argument only, whereas the generic Φ has
six dimensionless arguments (all four coupling constants on top of the scaling arguments of
f(x, y)). We recall that the generic solution of the Callan-Symanzik equation (5.36) does not
give the explicit functional form of the function n = n0Φ, which may to determined from the
solution (5.31) of the stationarity equation of the variational problem for the effective potential.
The free parameters in the variables of the scaling function f(x, y) correspond to the choice of
units of these variables, whereas the objective information is contained in the form of the scaling
function [25, 32]. Here, it is convenient to use the explicit solution (5.31) to obtain the ε, ∆
expansion for the inverse h(x, y) = 1/f(x, y) of the scaling function. From solution (5.31) the
generic expression

h(x, y) =
1

f(x, y)
= 1 + 2xy

{
1 +

λ∗

4π
[1− γ − ln (2u∗x)]

}
(5.45)
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is obtained, the substitution in which of the various fixed-point values λ∗ (at the leading order
λ∗ ≈ 2πλ

∗
) and u∗ in the leading approximation yields the corresponding ε, ∆ expansions.

Below, we list the scaling functions h(x, y) and the dynamic exponents α at the stable fixed
points in the next-to-leading-order approximation.
(i ) At the trivial (Gaussian) fixed point (5.10) the mean-field behavior takes place with

h(x, y) = 1 + 2xy ,

α = 1 . (5.46)

(ii ) The thermal (short-range) fixed point (5.12) leads to scaling function and decay exponent

h(x, y) = 1 + 2xy

{
1− ∆

2

[
1− γ − ln

(√
17− 1

)
x
]}

, α = 1 +
∆

2
+

∆2

2
. (5.47)

Here, the last coefficient is actually a result of numerical calculation, which in the standard
accuracy of Mathematica [280] is equal to 0.5. The authors of [278] have not been able to sort
out this result analytically, but think that most probably the coefficient of the ∆2 term in the
decay exponent α in (5.47) really is 1

2 .
(iii ) The kinetic fixed point with an anomalous reaction rate (5.14) corresponds to

h(x, y) = 1 + 2xy

{
1− ε+ 3∆

3

[
1− γ − ln

(√
17− 1

)
x
]}

, α = 1 +
3∆ + ε

3− ε
,

(5.48)

with an exact value of the decay exponent.
(iv ) At the kinetic fixed point with mean-field-like reaction rate (5.17) we obtain

h(x, y) = 1 + 2xy, α = 1 . (5.49)

In the actual asymptotic expression corresponding to (5.44) the argument y → C̃ny is different
from that of the Gaussian fixed point.

To complete the picture, we recapitulate – with a little bit more detail – the asymptotic be-
havior of the number density in the physical space dimension d = 2 predicted within the present
approach [261] (it turns out that for these conclusions the one-loop calculation is sufficient). On
the ray ε ≤ 0, ∆ = 0 logarithmic corrections to the mean-field decay take place. The integral
determining the asymptotic behavior of the variable (5.40) yields in this case∫ t

τ

γ4ds

(2− γ1)s
∼

t→∞
−1

2
ln ln

(
t

τ

)
+ cn(τ) , (5.50)

with corrections vanishing in the limit t→∞. Therefore, in the vicinity of the fixed point

λu
n0

µd
∼ λu n0

µd

(
t

τ

)
ln−1/2

(
t

τ

)
Cn ≡ y Cn . (5.51)

The scaling function h is of the simple form

h(x, y) = 1 + 2xy
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and gives rise to asymptotic decay slower than in the mean-field case by a logarithmic factor:

n ∼ ln1/2 (t/τ)

2νλuCnt
.

It is worth noting that this logarithmic slowing down is weaker than that brought about the density
fluctuations only [281] and this change is produced even by the ubiquitous thermal fluctuations
of the fluid, when the reaction is taking place in gaseous or liquid media.

On the open ray ε > 0, ∆ = 0 the kinetic fixed point with mean-field-like reaction rate (5.17)
is stable and the asymptotic behavior is given by (5.49) regardless of the value of the falloff
exponent of the random forcing in the Navier-Stokes equation. In particular, only the amplitude
factor in the asymptotic decay rate in two dimensions is affected by the developed turbulent flow
with Kolmogorov scaling, which corresponds to the value ε = 2. This is in accordance with the
results obtained in the case of quenched solenoidal flow with long-range correlations [275, 276]
as well as with the usual picture of having the maximal reaction rate in a well-mixed system.

To conclude, the effect of density and velocity fluctuations on the reaction kinetics of the
single-species decay A + A → ∅ universality class has been analyzed within the framework of
field-theoretic renormalization group and calculated the scaling function and the decay exponent
of the mean particle density for the four asymptotic patterns predicted by the RG.

5.2 Effect of velocity fluctuations on directed bond percolation

Another important model in non-equilibrium physics is directed percolation (DP) bond pro-
cess [33, 282]. Its aim is to describe phase transition between absorbing and active phase. In
contrast to the annihilation process (5.2) also spreading process A → 2A, and death process
A → ∅ are allowed [35]. As pointed out by Janssen and Grassberger [283, 284], necessary
conditions for corresponding universality class are: i) a unique absorbing state, ii) short-ranged
interactions, iii) a positive order parameter and iv) no extra symmetry or additional slow vari-
ables. Among a few models described within this framework we name population dynamics,
reaction-diffusion problems [285], percolation processes [35], hadron interactions [286], etc.

We focus on the directed bond percolation process in the presence of advective velocity fluc-
tuations. However, to provide more insight we restrict ourselves to a more decent problem.
Namely, we assume that the velocity field is given by the Gaussian velocity ensemble with pre-
scribed statistical properties [74, 84]. Although this assumption appears as oversimplified, com-
pared to the realistic flows at the first sight, it nevertheless captures essential physical information
about advection processes [32, 73, 84].

Recently, there has been increased interest in different advection problems in compressible
turbulent flows [287–290]. These studies show that compressibility plays a decisive role for
population dynamics or chaotic mixing of colloids. The aim here is to analyze an influence of
compressibility [113,114] on the critical properties of the directed bond percolation process [33].
To this end, the advective field is described by the Kraichnan model with finite correlation time,
in which not only a solenoidal (incompressible) but also a potential (compressible) part of the
velocity statistics is involved. Similarly as the annihilation process from the previous part the
model under consideration corresponds to the passive advection of the reacting scalar.
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The details of the calculations can be found in the work [291]. Here, only main steps are
reviewed.

5.2.1 The model

A continuum description of DP in terms of a density ψ = ψ(t,x) of infected individuals typically
arises from a coarse-graining procedure in which a large number of fast microscopic degrees of
freedom are averaged out. A loss of the physical information is supplemented by a Gaussian
noise in a resulting Langevin equation. Obviously, a correct mathematical description has to be
in conformity regarding the absorbing state condition: ψ = 0 is always a stationary state and no
microscopic fluctuation can change that. The coarse grained stochastic equation then reads [35]

∂tψ = D0(∇2 − τ0)ψ − g0D0

2
ψ2 + ξ, (5.52)

where ξ denotes the noise term, D0 is the diffusion constant, g0 is the coupling constant and τ0
measures a deviation from the threshold value for injected probability. It can be thought as an
analog to the temperature (mass) variable in the standard ϕ4−theory [24,35]. Due to dimensional
reasons, we have extracted the dimensional part from the interaction term.

It can be shown [35] that the Langevin equation (5.52) captures the gross properties of the
percolation process and contains essential physical information about the large-scale behavior
of the non-equilibrium phase transition between the active (ψ > 0) and the absorbing state
(ψ = 0). The Gaussian noise term ξ with zero mean has to satisfy the absorbing state condition.
Its correlation function can be chosen in the following form

〈ξ(t1,x1)ξ(t2,x2)〉 = g0D0ψ(t1,x1)δ(t1 − t2)δ(d)(x1 − x2) (5.53)

up to irrelevant contributions [44]. It should be noted that due to the dependence of the noise
correlations on the density, in the stochastic problem (5.52), (5.53) the noise is multiplicative. It
is customary to use the Itô interpretation in this case [35] and we stick to this convention.

A further step consists in incorporating of the velocity fluctuations into the model (5.52).
The standard route [31] based on the replacement (1.46) is not sufficient due to the assumed
compressibility. As shown in [292], the following replacement is then adequate

∂t → ∂t + (v ·∇) + a0(∇ · v), (5.54)

where a0 is an additional positive parameter, whose significance will be discussed later.
Note that the last term in (5.54) contains a divergence of the velocity field v and thus ∇

operator does not act on what could possibly follow.
Following [114], we consider the velocity field to be a random Gaussian variable with zero

mean and a translationally invariant correlator given as follows:

〈vi(t,x)vj(0,0)〉 =

∫
dω

2π

∫
ddk

(2π)d
[P kij + αQkij ]Dv(ω,k)e−iωt+k·x, (5.55)

where in contrast to the Sec. 4.1.3 we consider the kernel function Dv(ω,k) in the form

Dv(ω,k) =
g10u10D

3
0k

4−d−y−η

ω2 + u2
10D

2
0(k2−η)2

. (5.56)
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The reason is that the model (5.52) has an upper critical dimension dc = 4 and in perturbation
theory poles in d−dc are expected. In accordance with the standard notation [24,25] we therefore
retain symbol ε for the expression 4 − d and y for a scaling exponent of velocity field. Just for
completeness we note that parameter ε from Secs. 3-5.1 is related to y as follows y = 2ε.
The incompressible version of the considered model, α = 0, has been studied in works [292–
296]. The velocity field here is a colored noise field and does not require any specification of
interpretation. It should be noted, however, the rapid change limit discussed below corresponds
to the white-noise problem in the Stratonovich interpretation.

The stochastic problem (5.52-5.56) can be cast into a field-theoretic form and the resulting
dynamic functional [291] reads

S[Φ] = Sdiff[ψ
′, ψ] + Svel[v] + Sint[Φ], (5.57)

where Φ = {ψ′, ψ,v} stands for the complete set of fields and ψ′ is the auxiliary response
field [28]. The first term represents a free part of the equation (5.52) and is given by the following
expression:

Sdiff[ψ
′, ψ] =

∫
dt

∫
ddx

{
ψ′[−∂t +D0∇2 −D0τ0]ψ

}
. (5.58)

Averaging over the velocity fluctuations is performed with the action (4.20) and fhe final inter-
action part can be written as

Sint[Φ] =

∫
dt

∫
ddx

{
D0λ0

2
[ψ′−ψ]ψ′ψ+

u20

2D0
ψ′ψv2−ψ′(v·∇)ψ−a0ψ

′(∇·v)ψ

}
. (5.59)

All but the third term in (5.59) directly stem from the nonlinear terms in (5.52) and (5.54).
The third term proportional to ∝ ψ′ψv2 deserves a special consideration. The presence of this
term is prohibited in the original Kraichnan model due to the underlying Galilean invariance.
However, in present case the general form of the velocity kernel function does not lead to such
restriction. Moreover, by direct inspection of the perturbative expansion, one can show that this
kind of term is indeed generated under RG transformation. This term was considered for the first
time in [296], where the incompressible case is analyzed.

Let us also note that for the linear advection-diffusion equation [31, 114], the choice a0 = 1
corresponds to the conserved quantity ψ (advection of a density field), whereas for the choice
a0 = 0 the conserved quantity is ψ′ (advection of a tracer field). From the point of view of
the renormalization group, the introduction of a0 is necessary, because it ensures multiplicative
renormalizability of the model [292].

As was mentioned in Sec. 1.2.4, basic ingredients of any stochastic theory, correlation and re-
sponse functions of the concentration field ψ(t,x), can be computed as functional averages with
respect to the weight functional expS with action (5.57). Further, the field-theoretic formulation
summarized in (5.58)-(5.59) has an additional advantage to be amenable to the full machinery
of (quantum) field theory reviewed in Sec. 2. Next, the RG perturbative technique is applied
that allows to study the model in the vicinity of its upper critical dimension dc = 4. By direct
inspection of the Feynman diagrams one can observe that the real expansion parameter is rather
λ2

0 than λ0. This is a direct consequence of the duality symmetry [35] of the action for the pure



Reaction-diffusion problems 247

percolation problem with respect to time inversion

ψ(t,x)→ −ψ′(−t,x), ψ′(t,x)→ −ψ(−t,x). (5.60)

Therefore, it is convenient to consider a new charge g20

g20 = λ2
0 (5.61)

and express the perturbation calculation in terms of this parameter.

5.2.2 Fixed points and scaling regimes

From the technical point of view the model is an example of multicharge problem with five
charges {g1, g2, u1, u2, a}. The β-function, are now given by the expressions

βg1
= g1(−y + 2γD − 2γv), βg2

= g2(−ε− γg2
), βa = −aγa.

βu1
= u1(−η + γD), βu2

= −u2γu2
. (5.62)

It turns out [291] that for some fixed points the computation of the eigenvalues of the matrix
(2.24) is cumbersome and rather unpractical. In those cases it is possible to obtain information
about the stability from analyzing RG flow equations (2.20). Using approach from Sec. (2.3) the
following relations

∆ψ̃ =
d

2
+ γψ′∗ , ∆ψ =

d

2
+ γψ∗ , ∆τ = 2 + γ∗τ . (5.63)

are derived in straightforward manner. Important information about the physical system can
be read out from the behavior of correlation functions, which can be expressed in terms of the
cumulant Green functions. In the percolation problems one is typically interested [33, 35] in the
behavior of the following functions

a) The number N(t, τ) of active particles generated by a seed at the origin

N(t) =

∫
ddr 〈ψ(t, r)ψ′(0,0)〉conn, (5.64)

where the notation from Eq. (2.10) has been employed.

b) The mean square radius R2(t) of percolating particles, which started from the origin at time
t = 0

R2(t) =

∫
ddr r2〈ψ(t, r)ψ′(0,0)〉conn

2d
∫

ddr 〈ψ(t, r)ψ′(0,0)〉conn
. (5.65)

c) Survival probability P (t) of an active cluster originating from a seed at the origin (see [297]
for derivation)

P (t) = − lim
k→∞

〈ψ′(−t,0)e−k
∫

ddr ψ(0,r)〉. (5.66)
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FPI g′∗1 g∗2 u∗2 a′∗

FPI
1 0 0 NF NF

FPI
2 0 2ε

3 0 0

FPI
3

4ξ
3+α 0 0 NF

FPI
4 − 4ξ

3+α 0 1
2 0

FPI
5

24ξ−2ε
3(5+2α)

4ε(3+α)−24ξ
3(5+2α) 0 0

FPI
6

2[ε−4ξ]
9+2α

4ε(3+α)+24ξ
3(9+2α)

(3+α)ε−3ξ(7+2α)
3(3+α)[ε−4ξ] 0

FPI
7 − ξ

3+α 2ξ 1 − 3(5+2α)
α + 2(3+α)ε

αξ

Table 5.3. List of all fixed points obtained in the rapid-change limit. The coordinate w∗ is equal to 0 for all
points.

By straightforward analysis [35] it can be shown that the scaling behavior of these functions
is given by the asymptotic relations

R2(t) ∼ t2/∆ω , N(t) ∼ t−(γψ∗+γψ′∗ )/∆ω , P (t) ∼ t−(d+γψ∗+γψ′∗ )/2∆ω . (5.67)

Although to some extent it is possible to obtain coordinates of the fixed points, the eigen-
values of the matrix (2.24) in this case pose a more severe technical problem. Hence, in order
to gain some physical insight into the structure of the model, the overall analysis is divided into
special cases and analyzed separately.

The fixed points for rapid change model are listed in Tab. 5.3, for frozen velocity field in
Tab. 5.4 and for an illustration purposes nontrivial point in Tab. 5.5. For convenience a new
parameter a′ has been introduced via the relation a′ = (1 − 2a)2 and NF stands for Not Fixed,
i.e., for the given FP the corresponding value of a charge coordinate could not be unambiguously
determined.

5.2.3 Rapid change

First, an analysis of the rapid-change limit is performed. It is convenient [74, 114] to introduce
the new variables g′1 and w given by

g′1 =
g1

u1
, w =

1

u1
. (5.68)

The rapid change limit then corresponds to fixed points with a coordinate w∗ = 0. The beta-
functions for the charges (5.68) are easily obtained

βg′1 = g′1(η − y + γD − 2γv), βw = w(η − γD). (5.69)

Analyzing the resulting system of equations seven possible regimes can be found. Due to the
cumbersome form of the matrix (2.24), the determination of all the corresponding eigenvalues in
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FPII g∗1 g∗2 u∗2 a′
∗

FPII
1 0 0 NF NF

FPII
2 0 2ε

3 0 0

FPII
3

2y
9 (3− α) 0 α

2(α−3) 0

FPII
4

2(ε−y)
2α−9

4[3ε+2y(α−6)]
2α−9 1 ε(12−α)+5y(α−6)

α(ε−y)

FPII
5 − 2[6ε+5y(α−3)]

3(9+α) 0 3[ε+y(α−1)]
6ε+5y(α−3)

18ε−(α−6)(α−3)y
α[6ε+5(α−3)y]

FPII
6 NF 0 NF NF

FPII
7 g∗1 g∗2 u∗2 0

FPII
8 g∗1 g∗2 u∗2 0

Table 5.4. List of all fixed points obtained in the frozen velocity limit. The value of the charge u∗1 is equal
to 0 for all points.

FP g∗1 g∗2 u∗1 u∗2 a′
∗

FPII
7 0.532193 9.89135 0 0.37859 0

FPIII
1 0.365039 6.38225 0.24709 0.352422 0

FPIII
2 0.399062 7.29847 0.148951 0.35954 0

Table 5.5. Coordinates of the IR stable fixed points obtained by numerical integration of flow equations
(2.20) the model (5.57). The relevant parameters were fixed as follows α = 110, ε = 1 and y = 2η = 8/3
(Kolmogorov regime).
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an explicit form is impossible. In particular, for nontrivial fixed points (with non-zero coordinates
of g′1, g2 and u2) the resulting expressions are of a quite unpleasant form. Nevertheless, using
numerical software [280] it is possible to obtain all the necessary information about the fixed
points’ structure and in this way the boundaries between the corresponding regimes have been
obtained. In the analysis it is advantageous to exploit additional constraints following from the
physical interpretation of the charges. For example, g′1 describes the density of kinetic energy of
the velocity fluctuations, g2 is equal to λ2 and a′ will be later on introduced as (1−2a)2. Hence,
it is clear that these parameters have to be non-negative real numbers. Fixed points that violate
this condition can be immediately discarded as non-physical.

Out of seven possible fixed points, only four are IR stable: FPI
1, FPI

2, FPI
5 and FPI

6. Thus,
only regimes which correspond to those points could be in principle realized in real physical
systems. As expected [114], the coordinates of these fixed points and the scaling behavior of
the Green functions depend only on the parameter ξ = y − η. In what follows, we restrict our
discussion only to them.

Figure 5.4. A qualitative sketch of the regions of stability for the fixed points in the limit of the rapid-change
model. The borders between the regions are depicted with the bold lines.

The FPI
1 represents the free (Gaussian) FP for which all interactions are irrelevant and ordi-

nary perturbation theory is applicable. As expected, this regime is IR stable in the region

y < η, η > 0, ε < 0. (5.70)

The latter condition ensures that the system is considered above the upper critical dimension
dc = 4. For FPI

2 the correlator of the velocity field is irrelevant and this point describes standard
the DP universality class [35] and is IR stable in the region

ε > 0, ε/12 + η > y, ε < 12η. (5.71)

The remaining two fixed points constitute nontrivial regimes for which velocity fluctuations as
well as percolation interaction become relevant. The FPI

5 is IR stable in the region given by

(α+ 3)ε > 3(2α+ 7)(y − η), 12(y − η) > ε, 2η > y. (5.72)
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Figure 5.5. Fixed points’ structure for the thermal noise situation (5.73). From above to bottom the com-
pressibility parameter α attains consecutively the values: (a) α = 0, (b) α = 5 and (c) α = 100.

The boundaries for FPI
6 can be only computed by numerical calculations.

Using the information about the phase boundaries, a qualitative picture of the phase diagram
can be constructed. In Fig. 5.4 the situation in the plane (ε, y) is depicted. The compressibility
affects only the outer boundary of FPI

5. The larger value of α the larger area of stability. Also
the realizability of the regime FPI

5 crucially depends on the nonzero value of η.
The important subclass of the rapid-change limit constitutes thermal velocity fluctuations,

which are characterized by the quadratic dispersion law [61]. In formulation (5.56) this is
achieved by considering the following relation:

η = 6 + y − ε (5.73)

which follows directly from expression (4.15). The situation for increasing values of the param-
eter α is depicted in Fig. 5.5. We see that for physical space dimensions d = 3 (ε = 1) and
d = 2 (ε = 2) the only stable regime is that of pure DP. The nontrivial regimes FPI

5 and FPI
6 are

realized only in the nonphysical region for large values of ε. This numerical result confirms our
previous expectations [292, 293]. It was pointed out [261, 278] that genuine thermal fluctuations
could change IR stability of the given universality class. However, this is not realized for the
percolation process.

5.2.4 Regime of frozen velocity field

The regime of the frozen velocity field corresponds to the charge constraint u∗1 = 0. As analysis
show eight possible fixed points are obtained. However, only three of them (FPII

1 , FPII
2 and FPII

7 )
could be physically realized (IR stable).

The fixed point FPII
1 describes the free (Gaussian) theory. It is stable in the region

y < 0, ε < 0, η < 0. (5.74)

For FPII
2 the velocity field is asymptotically irrelevant and the only relevant interaction is due

to the percolation process itself. This regime is stable in the region

ε > 6y, ε > 0, ε > 12η. (5.75)



252 Advanced field-theoretical methods

-2 0 2 4 6 8 10 12

-1

0

1

2

3

4

Ε

y

FP
1

II

FP
2

II

FP
7

II

HaL

-2 0 2 4 6 8 10 12

-1

0

1

2

3

4

Ε

y

FP
1

II

FP
2

II

FP
7

II

HbL

-2 0 2 4 6 8 10 12

-1

0

1

2

3

4

Ε

y

FP
1

II

FP
2

II

HcL

FP
7

II

Figure 5.6. Fixed points’ structure for frozen velocity case with η = 0. From above to bottom the com-
pressibility parameter α attains consecutively the values: (a) α = 0, —(b) α = 3.5 and (c) α = 8.

On the other hand, FPII
7 represents a truly nontrivial regime for which both velocity and

percolation are relevant. Since for the points FPII
1 and FPII

2 the velocity field could be effectively
neglected, the trivial observation is that these boundaries do not depend on the value of the
parameter α. The stability region of FPII

7 can be computed only numerically.
In order to illustrate the influence of compressibility on the stability in the nontrivial regime

FPII
7 , let us take a look at situation for η = 0. For other values of η the situation remains

qualitatively the same. The situation for increasing values of α is depicted in Fig. 5.6. For α = 0
there is a region of stability for FPII

7 , which shrinks for the immediate value α = 3.5 to a smaller
area. Numerical analysis [291] shows that this shrinking continues well down to the value α = 6.
A further increase of α leads to a substantially larger region of stability for the given FP. Already
for α = 8 this region covers all the rest of the (y, ε) plane. The compressibility thus changes
profoundly a simple picture expected from an incompressible case. Altogether the advection
process becomes more efficient due to the combined effects of compressibility and the nonlinear
terms.

5.2.5 Turbulent advection

In the last part the focus is on a special case of the turbulent advection. Main aim is to deter-
mine whether Kolmogorov regime [70], which corresponds to the choice y = 2η = 8/3, could
lead to a new nontrivial regime for the percolation process. In this section, the parameter η is
always considered to attain its Kolmogorov value, 4/3. For a better visualization we present
two-dimensional regions of stability in the plane (ε, y) for different values of the parameter α.

First, let us reanalyze the situation for the rapid-change model. The result is depicted in
Fig. 5.7. It is clearly visible that for this case a realistic turbulent scenario (ε = 1 or ε = 2) falls
out of the possible stable regions. This result is expected because the rapid-change model with
vanishing time-correlations could not properly describe well-known turbulent properties [70,79].
We also observe that compressibility mainly affects the boundaries between the regions FPI

5 and
FPI

6. However, this happens mainly in the nonphysical region.
Next, let us make a similar analysis for the frozen velocity field. The corresponding stability

regions are depicted in Fig. 5.8. Here it can be seen that the situation is more complex. The
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Figure 5.7. Fixed points’ structure for rapid change model with η = 4/3. From above to bottom the
compressibility parameter α attains consecutively the values: (a) α = 0, (b) α = 5 and (c) α = ∞. The
dot denotes the coordinates of the three-dimensional Kolmogorov regime.

regime FPII
2 is situated in the non-physical region and could not be realized. For small values

of the parameter α the Kolmogorov regime (depicted by a point) does not belong to the frozen
velocity limit. However, from a special value α = 6 up to α → ∞ the Kolmogorov regime
belongs to the frozen velocity limit. Note that the bottom line for the region of stability of FPII

7

is exactly given by y = 4/3. We observe that compressibility affects mainly the boundary of the
nontrivial region. We conclude that the presence of compressibility has a stabilizing effect on the
regimes where nonlinearities are relevant.
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Figure 5.8. Fixed points’ structure for the frozen velocity case with η = 4/3. From above to bottom the
compressibility parameter α attains consecutively the values: (a) α = 0, (b) α = 8 and (c) α = ∞. The
dot denotes the coordinates of the three-dimensional Kolmogorov regime.

Finally, let us take look at the nontrivial regime, which means that no special requirements
were laid upon the parameter u1. The corresponding differential equations for the RG flow (2.20)
have been analyzed numerically [291]. The behavior of the RG flows has been found as follows.
There exists a borderline in the plane (ε, αc) given approximately by the expression

αc = −12.131ε+ 117.165. (5.76)
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Below αc, only the frozen velocity regime corresponding to FPII
7 is stable. Above αc, three fixed

points FPII
7 , FPIII

1 and FPIII
2 are observed. Whereas two of them (FPII

7 and FPIII
1 ) are IR stable, the

remaining one FPIII
2 is unstable in the IR regime. Again one of the stable FPs corresponds to FPII

7 ,
but the new FP is a regime with finite correlation time. Since all free parameters (ε, η, y, α) are
the same for both points, which of the two points will be realized depends on the initial values of
the bare parameters. A similar situation is observed for the stochastic magnetohydrodynamic tur-
bulence [149], where the crucial role is played by a forcing decay-parameter a (See Eq. (3.107).

Figure 5.9. Demonstration of the RG trajectories flows’ in: (a) the plane (g1, u1) and (b) the plane (g2, u1)
for three dimensional (ε = 1) turbulent advection with α = 110. The square � denotes frozen velocity
regime FPII

7 , triangle J corresponds to the unstable regime FPIII
2 and circle • to the nontrivial regime FPIII

1

for which the time correlations are relevant. Dashed lines corresponds to the chosen flows to the point FPII
7 ,

whereas the full lines to the flows to the other stable point FPIII
1 .

For illustration purposes the projections of the RG flow onto the planes (g1, u1) and (g2, u1)
are depicted in Fig. 5.9. The two stable points are clearly separated by the unstable one.
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6 Conclusion

Methods of quantum field theory including functional differential equations, functional integrals,
renormalization group and operation product expansion have been successfully applied for a de-
scription of second order phase transitions [24,25,64]. They cover a broad set of problems, such
as critical behavior in ferromagnets, transition to the superfluid phase in 4He, multicriticality and
many others. Nowadays, these methods and the related theoretical framework form a cornerstone
of the research area of critical phenomena.

Classical dynamic systems, such as developed turbulence, turbulent transport phenomenon,
magnetohydrodynamics and reaction-diffusion models, could not be described within the stan-
dard equilibrium statistical physics. All these problems are examples of systems far from equilib-
rium. They are fundamentally different from systems near the thermal equilibrium in two crucial
points. First, they do not possess equivalent to the Gibbs thermal state. Second, their underlying
dynamics cannot – as a rule – be described by a single hermitian evolution operator.

Nevertheless, these problems and problems in quantum field theory share several common
properties. Namely, the fluctuation-dissipation condition is broken in systems far from equilib-
rium and strong correlations are present over large spatial scales. This often causes diverging
correlation length, which allows a description in terms of continuous fields. The fact that classi-
cal systems can be considered as euclidean versions of quantum models induced a great stimulus
in application of field-theoretic methods in the aforementioned classical problems.

The second half of 70s was a crucial period when quantum field theory and renormalization
group were used for the first time in theory of developed isotropic turbulence, stochastic magne-
tohydrodynamics and for analysis of transport phenomena in random environments. The effort
paid off and led, e.g., to a proof of the second Kolmogorov hypothesis about the independence
of statistical correlations in velocity fluctuations of viscosity in the inertial interval. This fact is
directly related to the scaling with the celebrated universal Kolmogorov exponents. Furthermore,
an endeavor has been undertaken with a goal of a controllable calculation of non-universal quan-
tities such as the Kolmogorov constant, Prandtl number and explanation of large-scale generation
of magnetic fields due to spontaneous symmetry breaking. The critical exponents of composite
operators were computed allowing to analyze behavior of experimentally measurable quantities,
e.g., rate of energy dissipation on large scales. It is known that strong fluctuations of this quantity
could violate Kolmogorov scaling, especially for higher order structure functions of the velocity
field. Generally speaking, the research in this area based on field-theoretical methods was and
still is very fruitful and has led to a number of important results summarized in many review
articles.

Consequently it became clear that it was important to study not only ideal systems but also
more realistic systems with anisotropy, non-homogeneities, broken parity symmetry and com-
pressible fluid. These effects could profoundly change the macroscopic behavior: not only sta-
bility of universal regimes but also values of critical exponents.

Due to the fact that most chemical reactions occur in fluids, it was clear that the effect of
hydrodynamic fluctuations stemming e.g. from thermal fluctuations must be properly taken into
account for reaction-diffusion systems, phase transitions and percolation problems.

During last two decades the anomalous scaling in the developed turbulence (known as inter-
mittency) has been intensively studied. The results have theoretically confirmed the existence
of anomalous scaling in open non-equilibrium systems. Study of such systems has also brought
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about a further research activity in quantum-field methods. Mainly, the paradigmatic ε expansion
has been improved and specific algorithms have been created for more effective calculation of
composite operators and multi-loop Feynman diagrams.

In this article it has been our aim summarize and elucidate theoretical approaches and results
found in last twenty years in classical stochastic problems far from equilibrium. We have tried
to discuss a rather broad set of problems to demonstrate the robustness and effectiveness of
functional methods and the renormalization-group technique.

The first part of the article, which is of methodological nature, reveals the importance of
functional methods suitable for systems with multiplicative noise. Functional methods in study-
ing systems with intrinsic noise and the double expansion scheme have been presented in detail.
The latter is an invaluable tool in problems involving hydrodynamic fluctuations.

The second part has been devoted to the study of systems with some violation from ideality.
The effect of helicity and anisotropy has been investigated in the Kraichnan model as well as
in the Navier-Stokes equation. A general conclusion is that both violations have a substantial
effect on the stability of universal regimes and values of critical exponents. Positions of non-
universal fixed points as well as their regions of stability change profoundly with the parameters
characterizing quantitatively the violation from ideality. They influence the crossover behavior
between different universality classes as well.

An analysis of paradigmatic models that describe spreading of a passive scalar admixture and
a vector quantity (magnetic field) has revealed similarities but also differences between these two
cases. The rôle played by tensor structures of the fields and effects thereof on the phenomenon
of intermittency and the values of critical dimensions of composite operators have been inferred.
The results clearly show that critical dimensions for given harmonics describing anisotropy are
identical. However, the behavior of scaling functions is completely different due to the leading
term. In the last part it is shown that in realistic models, in which, e.g., compressibility of the
environment is allowed, new universality classes appear. Their existence can be traced back to
new interactions, which in ideal systems are usually prohibited by symmetry reasons.

All the mentioned results and observations generate new questions and challenges. In the
future, it is desirable to investigate new universal patterns, crossovers between them and to de-
velop effective techniques for higher loop calculations. From a qualitative point of view, a study
of more complicated reaction schemes is called for. In an analysis of intermittent behavior, de-
velopment of new models with velocity fluctuations – as close to real fluids as possible – is
needed.
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E 74 (2006), 036310.
[218] L. Ts. Adzhemyan, N. V. Antonov, J. Honkonen, and T. L. Kim, Phys. Rev. E 71 (2005), 016303.
[219] A. Celani, A. Lanotte, A. Mazzino, and M. Vergassola, Phys. Rev. Lett. 84 (2000), 2385.
[220] A. Lanotte and A. Mazzino, Phys. Rev. E 60 (1999), R3483.
[221] I. Arad, L. Biferale, and I. Procaccia, Phys. Rev. E 61 (2000), 2654.



References 263

[222] I. Arad, V. S. Lvov, E. Podivilov, and I. Procaccia, Phys. Rev. E 62 (2000), 4904.
[223] R. Remecký M. Scholtz E. Jurčišinová, M. Jurčišin, Int. Journal of Modern Physics B 21 (2008), 22.
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[249] M. Jurčišin E. Jurčišinová and P. Zalom, Phys. Rev. E 89 (2014), 043023.
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