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This review is focused on the behavior of finite macroscopic systems (as opposed to infinitely
large systems) determined from microscopic interactions. The temperature is assumed to be
sufficiently below the critical point so that coexistence of two or more phases can occur and
the systems can undergo first-order phase transitions. We summarize the rigorous results on
the finite-size behavior for a specific but wide class of models of real systems—the lattice-gas
models of dimension d ≥ 2 with a finite number of ground states for which the free energy
density can be expressed via convergent cluster expansion series. The behavior is rather sen-
sitive to the interaction of the system with its surroundings (boundary conditions). In addition
to periodic boundary conditions, which is a very popular choice, weak boundary conditions
are considered. The latter are much more realistic, although they rule out the presence of large
interfaces or droplets (phase separation) in the systems. For boundary conditions so strong
that phase separation is possible, the situation is very complex, and we provide rigorous re-
sults only for a two-dimensional Ising model. The majority of the paper, however, is devoted
to an application of these finite-size results to an interesting phenomenon in electrochemistry
in which first-order phase transitions may occur at metal–electrolyte interfaces as a result of
the deposition of metals on surfaces of other, more noble metals at electric potentials above
the Nernst threshold. This is called underpotential deposition (UPD), and, for example, cop-
per or silver may be so deposited on a surface of gold or platinum. The presence of such
transitions is associated with sharp spikes that are observed in the current vs. electric poten-
tial plots of UPD processes. The application of the finite-size results to this problem is not
straightforward, for it must take into account a polycrystalline structure of the surfaces. In
fact, for a single crystalline domain on the surface the theory predicts spikes that are two or
more orders of magnitude taller and sharper than those observed in experiments. On the other
hand, when the surface is modeled realistically as an ensemble of many crystalline domains
whose individual contributions are summed up to produce an overall spike, the agreement
with experiment can be rather accurate. This is demonstrated in detail for two experimental
spikes associated with UPD of copper on the (111) surface of platinum and gold electrodes.
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Introduction 471

1 Introduction

Phase transitions are determined by non-analyticities of the specific free energy f . When such a
non-analyticity is caused by a discontinuity in a first-order derivative, the phase transition is said
to be of first order. The very introduction of phase transitions is somewhat contradictory. In fact,
it relies, on the one hand, on properties of the specific free energy f , a quantity characterizing
only an idealized, infinitely large system (the thermodynamic limit). On the other hand, real
systems are always finite. However, the finite-volume free energy is, as a rule, analytic, and
no discontinuities can therefore appear in its first-order derivatives (such as the internal energy,
magnetization, etc.). Instead, infinite-volume jumps are smoothed out into rounded transitions.
It is expected, though, that the rounding becomes more and more abrupt as the system size
increases. In addition, it is expected that the positions of the rounded transitions are in general
shifted with respect to those of the infinite-volume jumps. If we consider the derivatives of
second order (the heat capacity, susceptibility, etc.) or higher order, these have singularities of
the δ-function type in the thermodynamic limit. In a finite system they are changed into sharp
spikes, and the points where the spikes are maximal are suitable to describe the above-mentioned
shifts of the rounded transitions: at these points the transitions are the steepest. The phenomena
connected with the asymptotic behaviour of finite systems are commonly referred to as the finite-
size effects (at or near first-order phase transitions in the case considered here). It is important
to realize that they are significantly affected by boundary conditions, i.e., the influence of the
system’s environment.

The finite-size effects are always distinguishable in computer simulations (where the studied
systems are rather small), but they might be imperceptible in experiments and practical appli-
cations (where the systems are large). If external changes to a macroscopic system are carried
out sufficiently slowly, a rounding of a first-order phase transition should be sufficiently sharp so
that even an extremely careful measurement could not distinguish it from a mathematical non-
analyticity; any distinct rounding that could be measured would only be due to non-equilibrium
effects. In some experiments, however, the rounding does not seem to tend to non-analyticities
with a decreasing rate of external changes. For example, spikes in the heat capacity vs. temper-
ature plots [1, 2] or in the current vs. voltage plots for underpotential deposition (see Figs. 4.2
and 4.3 below) are of finite heights and widths even at very slow heating/scan rates. This may be
attributed to the fact that real systems are not perfectly homogeneous. Some can be composed
of many small homogeneous subsystems whose contributions are distinctly rounded and mutu-
ally shifted so that, when their total is measured, clear roundings remain even in the quasistatic
regime. In the present paper this idea is developed in the case of a specific application.

A deeper understanding of the effects of finite size requires a description at a microscopic
level. One possible approach is to construct simplified microscopic models and to identify and
include the key properties of real systems into the models so that the macroscopic behaviour
of the systems can be explained. Perhaps the most popular systems of this sort are classical
lattice-gas models, and in this paper we shall provide a concise overview of rigorous results
on their finite-size behavior (see Section 2). The main focus is, however, on application of
these theoretical results to a specific problem in electrochemistry concerning the description of
current density vs. electric potential plots for underpotential deposition of metals on crystalline
surfaces (see Sections 4 – 6). The plots usually contain sharp spikes that are associated with
phase transitions at the surfaces. Therefore, combined with the fact that these transitions can be
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conveniently modeled by lattice gases, they offer a marvelous area where the theoretical results
can be applied. The application is not straightforward, but it requires a generalization of finite-
size effects from a single system to an ensemble of systems. Since the results are not necessarily
related to underpotential deposition but are of universal nature, we present them in a separate
Section 3. Concluding remarks are provided in a final section.
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2 Effects of a finite system size

In this section we shall discuss how finiteness of a system affects its behavior at the macroscopic
level. Theories of the finite-size effects near first-order phase transitions go back to the 1980s
when the works of Imry [3], Fisher and Berker [4], Blöte and Nightingale [5], Binder and co-
workers [6, 7, 8], Privman and Fisher [9], and others appeared. These theories were in the early
1990s systematized in a rigorous framework by Borgs and Kotecký [10, 11]. Their results cover
the finite-size effects for the cubic systems describing the coexistence of a finite number of phases
with both field- and temperature-driven transitions under periodic boundary conditions. As the
main tool, they used the Pirogov-Sinai theory of first-order phase transitions [12,13,14]. Periodic
boundary conditions do not allow the description of the finite-size effects in real systems in which
the influence of the surface may play a major role. Therefore, they later extended their theory to
the cubic systems with free or, more generally, weak boundary conditions; i.e., those not strongly
favoring any of the considered phases near the system’s surface [15,16]. Besides cubic volumes,
Borgs and Imbrie [17, 18, 19] investigated systems in long cylinders. A rigorous study of finite-
size effects for strong boundary conditions when a macroscopic droplet occurs in the system was
carried out for a two-dimensional Ising model [20].

Of these results we will present those predicted by the rigorous theories of Borgs and Kotecký
for periodic [10] and weak [15] boundary conditions as well as the rigorous results for the strong
boundary conditions for the 2D Ising model [20]. We begin by specifying the statistical mechan-
ical models to which the results can be applied.

2.1 Considered lattice gases

We will consider a macroscopic system in a finite d-dimensional cubic volume V = Ld of side
length L represented by a rectangular lattice {0, 1, . . . , L}d ofN = (L+1)d sites. Modifications
of the presented results to other volumes of a parallelogram shape or other lattices are quite
straightforward. It will be always understood that the length L is large, say, several tens or
hundreds (for a 3D system of 1026 particles it is of order 109).

In general, lattice gases are statistical mechanical models in which lattice sites are either oc-
cupied by a particle or vacant [21,22]. Thus, their microscopic configurations are the collections
ω = {ω1, . . . , ωN}, with ωi = 0 corresponding to a vacant site i and ωi = 1 to an occupied
site i. The models can be extended to situations with two or more particle species (see Section 6
for an example). The interactions between the particles are introduced via interaction potentials,
UA, between various groups A of particles (pairs, triples, etc.), and the system Hamiltonian is
their sum,

H =
∑
A

UA. (2.1)

Perhaps the most frequent simplification is to restrict the interactions to the nearest-neighbor
pairs; the most famous example is the Ising model [23] (see Section 2.1.2 below).

2.1.1 Contour models

In the Borgs–Kotecký theory the starting point is not a system specified by its potentials UA.
Instead, the theory works with an abstract system whose configurations can be rewritten in a
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geometrical fashion as regions in V with the lowest energy (the ground state regions) that are
separated by energetically unfavorable regions. The latter correspond to objects called contours
(or polymers) [12, 14]. The partition function, Z, of such a system is then given as the sum of
contour partition functions, Zq, each corresponding to one of a finite number of ground states
(labeled by the subscript q from a finite set Q),

Z =
∑
q∈Q

Zq, (2.2a)

with

Zq = e−βEq
[
1 +

∑
M=1,2,...

∑
{γ1,...,γM}

M∏
j=1

wq(γj)
]
. (2.2b)

Here Eq is the energy of the qth ground state, β = 1/kBT is the inverse temperature, wq are
contour weights, and the second summation in Zq is over all collections of M contours that lie
in V and are mutually non-intersecting.

It may not be obvious if a given lattice gas can be reformulated as a contour model (2.2).
It turns out, however, that this is so for a large group of lattice gases. The group includes, in
particular, the lattice gases with translation invariant potentials UA that are of finite range [12].
Let us discuss this point in some detail. First, we shall consider a specific lattice gas (the standard
ferromagnetic Ising model) and then a lattice gas with a finite-ranged potential.

2.1.2 Ising model

The model was introduced to simulate the behavior of a ferromagnet, and the value ωi = 0
(ωi = 1) is meant to express that the site i ‘has a spin oriented down (up).’ (In fact, the values
σi = ±1 are usually used instead of ωi = 0, 1, as depicted in Fig. 2.5 below. This is not
physically important, however, because the transformations ωi = (σi + 1)/2 and σi = 2ωi − 1
enable us to get from one interpretation to the other [21].) The interaction is assumed to be
pairwise and limited to the nearest neighbors (n.n.). Thus, the potential UA vanishes for all
groups A of sites except when A = 〈i, j〉 is a pair of n.n. sites i and j in which case U〈i,j〉 has
two values so that parallel spins are energetically more favorable than antiparallel ones, as in a
ferromagnet. For example, U〈i,j〉 may be set equal to ε if ωi = ωj (parallel spins) and to −ε if
ωi 6= ωj (antiparallel spins), where ε < 0 is an interaction energy. The Hamiltonian of the model
is thus given as

H(ω) =
∑
〈i,j〉

U〈i,j〉(ωi, ωj) = ε[Npar(ω)−Nanti(ω)] = −2εNanti(ω) + εN, (2.3)

where the sum goes over all n.n. pairs of sites and Npar (Nanti) is the number of (anti)parallel
n.n. pairs.

It is possible to represent each configuration ω in the cube V in a geometric fashion using
the boundaries that separate the region, V↑, of sites in V with ‘spins up’ from the region, V↓, of
sites in V with ‘spins down.’ Namely, V↑ (V↓) is the union of all unit cubes in V at the centers i
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V

Fig. 2.1. An example of contours (the lines) corresponding to a microstate in a rectangular lattice of 10×10
sites (indicated by the dashed square) under fixed boundary conditions (i.e., ωi = 0 is fixed at all sites i
outside V ). Vacant (occupied) sites are depicted as circles (disks).

of which ωi = 1 (ωi = 0). Each connected component of the intersection V↑ ∩ V↓ represents an
energetically unfavorable region and is a contour γ (see Fig. 2.1 for a two-dimensional example).
Since contours are constructed as the boundaries between V↑ and V↓, the number of unit segments
in all contours is equal to the number Nanti of the antiparallel n.n. sites. Therefore,

H(ω) = −2ε
∑
γ

Λ(γ) + εN, (2.4)

where the sum is over all contours γ and Λ(γ) is the number of unit segments in γ.
There is a unique collection of contours for each configuration ω. On the other hand, there

are two possible configurations for each collection of contours. In fact, starting at a site i, the
value ωj at every n.n. site j of i coincides with ωi, unless j is separated from i by a contour; the
value ωk at every n.n. site k of j coincides with ωj , unless k is separated from j by a contour;
etc. Every time we cross a contour, the value of the spin is changed. Hence, there are two
configurations of spins for a given collection of contours, corresponding to two possible values
of ωi at the starting site. Consequently, the partition function of the Ising model (2.3) can be
rewritten as

Z =
∑
ω

e−βH(ω) = 2 e−βεN
[
1 +

∑
M=1,2,...

∑
{γ1,...,γM}

M∏
j=1

e−2β|ε|Λ(γj)
]
; (2.5)

i.e., as a sum of two identical contour partition functions (c.f. Eq. (2.2)) with the contour weights
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given as

w(γ) = e−2β|ε|Λ(γ). (2.6)

Note that Z is actually the sum of two contour partition functions that are identical. This is due
to the symmetry of the Ising model (2.3) with respect to the interchange of spins ωi with values 0
and 1. If a symmetry-breaking term is added to the Hamiltonian (2.3), such as the term−h

∑
i ωi

with an external magnetic field h (as in Eq. (2.76) below), the two contour partition functions
would become different.

2.1.3 A general case

The above procedure to introduce contours for the Ising model can be extended to cover a much
wider group of lattice gases. Even though contours can be tailored to a particular lattice gas (and
even for a given lattice gas it is possible to introduce various definitions of contours depending
on the particular aim of study), there are rather canonic definitions of contours that may be found,
for example, in [12, 13, 10, 15].

To describe the procedure, let us consider the interaction potentials UA that are translation
invariant and of finite range R (i.e., UA vanishes once the diameter of the group A of sites
exceeds R). The Hamiltonian of the system will be given by Eq. (2.1) with the summation over
allA lying inside the system volume V . Given a configuration ω, the ground-state regions V0 and
V1 in the volume V contain all those sites i for which the configurations ωj at the sites within the
distance R from i (including i itself) are all equal to 0 and 1, respectively. The remaining sites,
with configurations in theirR-vicinities that differ from the constant 0 or 1 configurations, should
represent energetically unfavorable regions, i.e., contours. Therefore, we split these remaining
sites into connected components denoted as Γ.

We may now rewrite the system Hamiltonian (2.1) as

H =
∑
A in V

UA =
∑
A in V

∑
i inA

UA
|A|

=
∑
i in V

∑
A contains i

UA
|A|

=
( ∑
q=0,1

∑
i in Vq

+
∑
Γ

∑
i in Γ

) ∑
A contains i

UA
|A|

, (2.7)

where |A| is the number of sites in A. In the ground-state regions Vq the configurations are
constant (ωi = q for all sites i in Vq), and so

Eq(Vq) =
∑
i in Vq

∑
A contains i

UA(ωq)
|A|

=
∑

A intersects Vq

|A ∩ Vq|
|A|

UA(ωq), q = 0, 1, (2.8)

are the energies of the ground-state regions. Note that the interaction potentials UA in Eq are
evaluated for the constant configuration ωq = {ωi = q for all sites i}. In addition, we have∑

i in Γ

∑
A contains i

UA
|A|

=
∑

A intersects Γ

∑
i inA∩Γ

UA
|A|

= ΦΓ, (2.9)
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with

ΦΓ =
∑

A intersects Γ

|A ∩ Γ|
|A|

UA. (2.10)

Combined together, the Hamiltonian may be written as the sum [12, 14]

H = E0(V0) + E1(V1) +
∑
Γ

ΦΓ. (2.11)

The first two terms on the right-hand side correspond to the ground-state regions, while the sum
represents the contributions due to energetically unfavored regions.

Remark 2.1. For all sites i in the system volume V whose distance from the boundary is larger
than the interaction range R, the quantity

eq(i) =
∑

A contains i

UA(ωq)
|A|

(2.12)

is the same (independent of the exact position of i) and is equal to the specific energy of the fully
vacant (q = 0) and fully occupied (q = 1) ground state. Similarly, for all sites i in V that are
closer than R from an m-dimensional face of the boundary of V but farther than R from any of
its lower dimensional faces, the quantity eq(i) is identical. The ground-state energy

Eq =
∑
i in V

eq(i) (2.13)

in the whole system (c.f. Eq. (2.8)) may be therefore split into bulk and boundary terms. This fact
will be used later in Eq. (2.55) below.

Using the expression (2.11) for the Hamiltonian, the partition function is given as

Z =
∑
ω

e−βH =
∑
ω

e−βE0(V0)−βE1(V1)
∏
Γ

e−βΦΓ . (2.14)

A contour γ is introduced as a pair (supp γ, lγ), where supp γ is a connected collection of sites
and lγ is an assignment of a label 0 or 1 to the boundary of each component of the complement to
supp γ [13]. Since ΦΓ depends only on the configuration at the sites in Γ, the partition function
may be rewritten as

Z =
∑

M=1,2,...

∑
{γ1,...,γM}

e−βE0(V0)−βE1(V1)
∑
ω(1)

· · ·
∑
ω(M)

M∏
k=1

e−βΦsupp γk . (2.15)

The second sum is over all collections of non-overlapping contours {γk} that lie inside the vol-
ume V and have labels lγk that are constant on the boundaries of each component of V \ ∪Mk=1

supp γk. The ground-state regions V0 and V1 are all of these components that have the boundary
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label 0 and 1, respectively. The last M sums are over all configurations on the supports of con-
tours for which ω(k)

i coincides with the label lγk of the contour γk if the site i is on the boundary
of the contour. Observing that

∑
ω(1)

· · ·
∑
ω(M)

M∏
k=1

e−βΦsupp γk =
M∏
k=1

∑
ω(k)

e−βΦsupp γk , (2.16)

we obtain

Z =
∑

M=1,2,...

∑
{γ1,...,γM}

e−βE0(V0)−βE1(V1)
M∏
k=1

Y (γk) (2.17)

with

Y (γk) =
∑
ω(k)

e−βΦsupp γk . (2.18)

The representation (2.17) of the partition function can be rewritten to have form of the sum

Z = Z0 + Z1 (2.19)

of two contour partition functions given as in Eq. (2.2) with the labels q = 0 and q = 1. The
corresponding contour weights are [15]

wq(γ) = Y (γ) eβEq(supp γ) Z1−q(Int γ)
Zq(Int γ)

, (2.20)

where Zq(Int γ) is the contour partition function in the interior of the contour γ (in the region
encircled by the contour) rather than in the whole system volume V . We can therefore conclude
that a lattice gas with translation invariant potentials UA of finite range can be reformulated as a
contour model (2.2).

2.2 Cluster expansions. Free energy

Since the contours γ are introduced so as to represent the boundaries of thermal perturbations of
a microstate over the ground state, the contour weights wq should be decaying with the contour
size Λ(γ). The exponential decay

|wq(γ)| ≤ e−c βΛ(γ) (2.21)

with a constant c > 0 is often assumed; it is called the Peierls condition. The Ising weights (2.6)
satisfy the condition with c = 2|ε|. More generally, contour weights of a lattice gas at low tem-
peratures (high β) are known to satisfy the condition if the interaction potential UA constitutes
an m-potential—if there are finitely many microscopic configurations (the ground states) each
of which minimizes UA for any group A of particles [24, 25]. Examples of such lattice gases
will be given later in Sections 5 and 6 (see Eqs. (5.1) and (6.1)). If UA is not an m-potential,
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the Peierls condition may be still satisfied, but this must be verified individually for the contour
weights under consideration.

One-dimensional thermal perturbations need not increase their boundaries when their size
grows, thus violating the Peierls condition. Therefore, in the following we shall always consider
only the systems of dimension two or higher; i.e.,

d ≥ 2 (2.22)

will be always assumed.
As long as the Peierls condition is satisfied, the dominant contribution to each contour par-

tition function Zq from Eq. (2.2) is due to the qth ground state. This contribution is represented
by the Boltzmann factor exp(−βEq). The contours, on the other hand, yield higher-order con-
tributions to Zq. It is therefore convenient to write

Zq = e−βEqZq, (2.23)

where Zq is the expression in the square brackets in Eq. (2.2). To evaluate the free energy

Fq = − 1
β

lnZq = Eq −
1
β

lnZq, (2.24)

a sort of perturbative technique that would treat the contribution lnZq from contours is needed.
Expansions of lnZq via contour clusters are a very popular approach [26, 27, 28, 29]. There
are different versions of cluster expansions and definitions. Here a cluster will be defined as a
collection of contours that cannot be split into two parts such that every contour from one part
would intersect no contours from the other one [26]. Using the clusters, the free energy may be
expressed as a cluster expansion series [26, 27, 28, 29]

Fq = Eq −
1
β

∑
K in V

Φq(K), (2.25)

where the summation is over all clusters K lying in the system volume. The cluster weights
Φq(K) are expressed in terms of the weights of the contours of which they are composed. A
general expression for Φq(K) is given by Eq. (3) in [26]. For example,

Φq({γ}) = ln(1 + wq(γ)) (2.26)

is the weight of a cluster K = {γ} containing just one contour γ.
The cluster expansion can be used to obtain the specific free energy fq = limV→∞(Fq/V )

of the system. In fact, if eq = limV→∞(Eq/V ) is the specific energy of the qth ground state, we
may write

fq = eq + ϕq, (2.27)

where ϕq = −(1/β) limV→∞(lnZq)/V is the contribution due to contour clusters. Thus, fq is
expressed as a sum of a zero temperature term eq and a thermal perturbations term ϕq. According
to Eq. (2.25), we have

lnZq =
∑
K in V

Φq(K) =
∑

Kb in V

Φq(Kb) +
∑

Ks in V

Φq(Ks), (2.28)
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where Kb (Ks) are the bulk (surface) clusters that contain only the contours not intersecting
(intersecting) the system surface. The last sum, being over the surface clusters, is proportional
to the system surface and its contribution to ϕq vanishes. The sum over the bulk clusters may be
rewritten as∑

i in V

∑
Kb contains i,
Kb in V

Φq(Kb)
W (Kb)

=
∑
i in V

( ∑
Kb contains i

−
∑

Kb contains i,
Kb not wholly in V

)Φq(Kb)
W (Kb)

, (2.29)

where a cluster is said to contain a site i whenever i lies inside one or more of its contours, and
W (Kb) is the number of sites in all contours contained in the cluster Kb. The last sum is over
the bulk clusters that intersect the system surface, so its contribution to ϕq vanishes, too. Thus,
we get [26, 27, 28, 29]

ϕq = − 1
β

∑
Kb contains i

Φq(Kb)
W (Kb)

(2.30)

(it is tacitly assumed that the cluster weights are translation invariant). Note that the expression
for ϕq is independent of the site i, and so i can be arbitrarily prefixed.

Due to the Peierls condition, the cluster expansion in Eq. (2.25) converges very fast in terms
of the length Λ(K) of a cluster that is given as the sum

∑
γ∈K Λ(γ) of lengths of its contours.

Indeed, similarly to the contour weights, the cluster weights decay exponentially with the cluster
length as

|Φq(K)| ≤ e−b βΛ(K) (2.31)

with a constant b > 0 slightly smaller than the constant c in the Peierls condition (2.21). An even
stronger bound is true, however, because we have [26]∑

K contains i

eb βΛ(K)|Φq(K)| ≤ 1 (2.32)

for any prefixed site i. Consequently, if γ0
b is the bulk contour of shortest possible length, Λ0, the

estimate

|ϕq| ≤
1
β

∑
Kb contains i

|Φq(Kb)| ≤
e−bβΛ0

β

∑
K contains i

eb βΛ(K)|Φq(K)| ≤ e−bβΛ0

β
(2.33)

can be established (for the Ising contours from Fig. 2.1 the shortest contour is a unit cube with
Λ0 = 2d, which corresponds to an addition/removal of a particle at a single site). This shows
that the leading contribution to ϕq corresponds to the bulk cluster containing just the contour γ0

b .
Explicitly,

ϕq = − 1
β

( ln(1 + wq(γ0
b ))

W (γ0
b )

+ · · ·
)
, (2.34)

where Eq. (2.26) was taken into account. In other words, the leading cluster contributions to
the free energy fq or Fq come from the clusters of small sizes; i.e., the clusters of a few small
contours.
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2.3 Low-temperature phases and phase diagrams

When the Peierls condition (2.21) is fulfilled for a given q, then the qth ground state gives rise to
a unique low-temperature phase [12]. Its typical microscopic configuration looks as a ‘sea’ of the
qth ground state in which small isolated ‘islands’ of non-ground-state configurations (represented
by contours) are scattered. The volume density of the islands is not equal to zero, but is of order
exp(−bβΛ0), where Λ0 is the length of the shortest bulk contour γ0

b (c.f. Eq. (2.33)).
It cannot be expected that the Peierls condition is satisfied simultaneously for the contour

weights wq with all labels q, but only for those q for which the corresponding phases are stable
in the system. For example, for a system with two possible phases (when there are only two
different labels q) the condition holds for both phases at and very close to the coexistence of
these phases, while farther away from the coexistence only one of the two phases is stable and
the condition holds for this phase and fails for the other one. Which phases are stable in a given
region of parameters (external fields, temperature, etc.) is determined by the single-phase free
energies fq; i.e., they determine the phase diagram of the system. Namely, a phase q is said
to be stable if its free energy fq is the lowest of all free energies [12, 13]. Of course, several
phases may be stable at the same time in this sense. It is thus possible to identify points, curves,
surfaces, etc. in the space of parameters where one or several phases coexist. This is analogous
to the construction of the ground-state diagram where the specific single-phase energies eq are
mutually compared rather than the free energies fq. Since

fq = eq +O(e−bβΛ0) (2.35)

by Eqs. (2.27) and (2.30), it is clear that a low-temperature phase diagram is a ‘slight deforma-
tion’ of the ground-state diagram, the differences being just of order exp(−bβΛ0). The symbol
O(x) denotes an error term of order x.

2.4 Periodic boundary conditions

The behaviour of a macroscopic system is strongly affected by the boundary conditions; i.e.,
the interaction of the system with its surroundings. The simplest case is periodic boundary
conditions when surface effects are significantly suppressed by a trick: systems are defined on a
d-dimensional torus (with sides of length L) rather than on a cube, as if the opposite faces of the
cube were identical.

2.4.1 Coexistence of several phases

For periodic boundary conditions the qth ground-state energy has the form Eq = eqV , where
eq is its specific value. Similarly, if the contour weights wq are translation invariant, the cluster
expansion (2.25) can be rewritten to yield [10]

Fq = fqV +O(e−b βL) (2.36)

for the corresponding free energy, where fq is its specific value given by Eqs. (2.27) and (2.30),
and the second term on the right-hand side is due to the clusters of very long contours, Λ(γ) ≥ L,
that may even ‘wrap around’ the torus.
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The expression (2.36) can be true only if the Peierls condition is fulfilled for the contour
weights wq. Suppressing the contours whose weights do not satisfy the Peierls condition, fq can
be introduced as a sort of auxiliary, ‘meta-stable’ specific free energies so that [12, 13]

(a) their minimum,

f = min
q∈Q

fq, (2.37)

is equal to the specific free energy f of the system, and

(b) fq = f when the qth phase is stable, while fq > f if the qth phase is unstable (see
Section 2.3 above).

It is then possible to express the system partition function as [10] (c.f. Eq. (2.2))

Zper =
( ∑
q∈Q

e−βfqV
)
[1 +O(e−b βL)]. (2.38)

This relation is the basis for evaluating any thermodynamic quantity in a finite system of volume
V = Ld with periodic boundary conditions.

Thus, let us consider a quantity

aper(y) = − 1
V

∂Fper(y)
∂y

(2.39)

that is the first derivative of the system free energy Fper = −(1/β) lnZper with respect to a
parameter (an external field) denoted as y. Examples of aper and y are the magnetization and
magnetic field, or the particle density and chemical potential. If we introduce the single-phase
quantities

aq(y) = −∂fq(y)
∂y

(2.40)

as the derivatives of the single-phase specific free energies, then aper can be shown to be their
convex combination [10],

aper =
∑
q∈Q

aqpq +O(e−b βL), (2.41)

where the coefficients

pq =
e−βfqV∑
q′ e

−βfq′V
(2.42)

sum to 1. In addition, a relation analogous to Eq. (2.41) holds for derivatives of aper: they are
equal to the derivatives of

∑
q aqpq with the same error term O(exp(−b βL)).
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Fig. 2.2. The plot of the functions J(x) and P (x) that describe the jump and spike in aper and its derivative,
respectively. For comparison, the dashed lines depict the Gaussian error function (of the same slope at
x = 0) and Gaussian bell curve (of the same height and area).

2.4.2 Coexistence of two phases

In the special case when there can be only two possible stable phases (when there are only two
labels, q = 1 and q = 2, say), Eq. (2.41) may be further rewritten to get an explicit dependence
of the quantity aper on the parameter y as follows. Let us introduce the sigmoid function and its
derivative

J(x) =
1

1 + e−2x
=

1 + tanhx
2

, (2.43a)

P (x) = 2
dJ(x)
dx

=
4

(ex + e−x)2
= cosh−2 x. (2.43b)

Note that J(x) has a profile of a jump that interpolates between the values 0 and 1, while P (x)
exhibits a spike of height and area equal to 1 and 2, respectively (see Fig. 2.2). Both the jump
and spike are positioned at x = 0. The convex coefficients p1 and p2 have the form of the jump
functions,

p1 = J
(β

2
∆f V

)
, p2 = J

(
− β

2
∆f V

)
, (2.44)

whose arguments depend on the difference ∆f = f2−f1 between the single-phase free energies.
If yt is the point at which both phases coexist so that ∆f(yt) = 0, then the infinite-volume jump,
∆a, of the quantity aper at the transition point yt is [10]

∆a = a2(yt)− a1(yt), (2.45)

and the Taylor expansion around yt yields

∆f(y) = −∆a (y − yt) +O((y − yt)2). (2.46)
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Thus, using that [15]

|J(x1)− J(x2)| ≤
1
2

min
{ 1
|x1|

,
1
|x2|

}
|x1 − x2|, (2.47)

the error in replacing the argument of J in the coefficient p2 by

Λ =
1
2

∆a (y − yt)βV (2.48)

is

|p2 − J(Λ)| =
∣∣∣J(

− β

2
∆f V

)
− J(Λ)

∣∣∣ ≤ ∣∣− β
2 ∆f V − Λ

∣∣
2|Λ|

= O(|y − yt|). (2.49)

If we restrict y to an interval |y − yt| ≤ const /L, then Eq. (2.41) yields the expression [10]

aper = a1 + (a2 − a1)p2 +O(e−b βL)

= a1 + (a2 − a1)J(Λ) +O(L−1). (2.50)

When y is farther away from the transition point, |y − yt| ≥ const /L, then

β|∆f |V = β
∣∣∣∂∆f(ỹ)

∂y

∣∣∣ |y − yt|V ≥ constβLd−1 � 1 (2.51)

by the mean-value theorem, so that one of the coefficients p1 and p2 is equal to 1 and the other
one to 0, the errors being extremely small, just of order exp(− constβLd−1). The quantity
aper therefore very precisely coincides with a1 or a2. The same result, although with a larger
error, is predicted by Eq. (2.50). The equation can be thus applied for any y. It shows that aper

interpolates between the two single-phase quantities a1 and a2 as the sigmoid function, and the
change from one to the other takes place at the transition point yt within a range of order 1/βV
(see Fig. 2.3). This range becomes extremely narrow as the system size L grows.

It is also possible to investigate the behavior of the derivatives of aper. Let us consider only
the first-order derivative

a′per(y) =
∂aper(y)
∂y

(2.52)

(if aper stands for the magnetization, for example, then its derivative is the susceptibility). It can
be shown that it has a very sharp and tall spike described by the peak function P (see Fig. 2.3)
and it is given as [10]

a′per =
(∆a

2

)2

(1 +O(L−1))βV P (Λ) + δa′per (2.53)

with

δa′per = a′1 + (a′2 − a′1)J(Λ) +O(L−1), a′i =
∂ai
∂y

. (2.54)
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Fig. 2.3. A schematic dependence of aper and its derivative on the parameter y as given by Eqs. (2.50) and
(2.53). The single-phase quantities a1 and a2 are depicted by dashed lines, at

j stand for their values at the
transition, and ‘max’ denotes a maximal value of the derivative of aper. Note that the maximum position is
practically equal to the transition point yt.

The height and width of the spike (the first term in a′per) are of order βV and 1/βV , respectively.
The second term δa′per in a′per is of order O(1) in the system size, thus being only a small
contribution to a′per near the transition. It has the same form as aper itself (see Eq. (2.50)),
describing a sharp jump interpolating between a′1 and a′2. It can be also shown that the maximum
position, ymax, of a′per practically coincides with the transition point yt: the shift between them
is just of order 1/V 2 [10].

Remark 2.2. In the range |y − yt| ≤ const /L near the transition point the single-phase quan-
tities are practically constant, ai(y) ≈ ai(yt) and a′i(y) ≈ a′i(yt), the error terms being of order
1/L. Thus, in this range it is possible to apply Eqs. (2.50) and (2.53) with ai and a′i taken as
these constants. As already pointed out, far from the transition, when |y − yt| ≥ const /L,
Eq. (2.50) shows that aper reduces to one of the single-phase quantities ai (to one of them above
the transition point yt and to the other one below yt). Similarly, Eq. (2.53) shows that the deriva-
tive a′per reduces to one of the single-phase quantities a′i. Indeed, while the spike function P (Λ)
practically vanishes, the jump function J(Λ) in the term δa′per becomes equal to ±1.

2.5 Weak boundary conditions

Although simple to treat, periodic boundary conditions are not realistic. Interactions of a system
with its surroundings (i.e., surface effects) may significantly influence the macroscopic behavior
of the system. For example, they should slightly shift the position of a phase transition jump from
the transition point—by an amount of order of the surface vs. bulk ratio; i.e., of order 1/L. To
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describe such surface effects, it is more proper to consider weak boundary conditions. They work
with a true, cubic volume of the system, but the interactions with the surroundings are restricted
so that they do not strongly favor any phase near the system surface. Thus, no large interfaces
and/or droplets occur in the system. With this restriction, the system’s behavior can be studied
by the same perturbative techniques as for the periodic boundary conditions.

2.5.1 Coexistence of several phases

For weak boundary conditions the key point is to take into account also the surface contributions
to the free energies Fq from Eq. (2.25). Thus, it is first assumed that the system has bulk specific
energies eq (the same as for periodic boundary conditions, of course) as well as boundary specific
energies, e(m)

q , associated with m-dimensional faces of the system volume V (with m = d −
1, . . . , 0) such that the ground-state energies can be expressed as a bulk-surface expansion (see
Remark 2.1)

Eq = eqV +
d−1∑
m=0

e(m)
q ∂Vm, (2.55)

where ∂Vm = 2d−m
(
d
m

)
Lm is the joint m-dimensional area of all m-dimensional faces of V .

The fact that the boundary conditions are weak is specified by requiring that the boundary specific
energies do not differ much from the bulk ones [15],

|e(m)
q − eq| ≤ γ (2.56)

with not too large a constant γ. Furthermore, an analogous bulk-surface expansion can be ob-
tained for Fq, if the contour weights wq(γ) are (a) translation invariant whenever a contour γ is
a bulk contour (i.e., it does not touch the boundary of V ) and (b) translation invariant along an
m-dimensional face of V whenever γ does not touch any of the (m − 1)-dimensional faces. In
fact, then the cluster expansion in Eq. (2.25) can be rewritten to yield [15] (c.f. Eq. (2.36))

Fq = fqV +
d−1∑
m=0

f (m)
q ∂Vm +O(e−b βL), (2.57)

where fq are given by Eqs. (2.27) and (2.30). The boundary specific free energies may be written
in a form similar to that for the bulk free energies,

f (m)
q = e(m)

q + ϕ(m)
q ; (2.58)

i.e., they are sums of a zero-temperature (ground-state) term and a thermal perturbations term.
The dominant surface effects are due to the (d − 1)-dimensional faces: their contribution to
Fq is of order Ld−1, while the contribution from all remaining faces of lower dimensions is by
1/L smaller. An explicit expression for ϕ(d−1)

q can be found in [30]. As may be expected, its
leading contribution corresponds to the cluster containing a single contour attached to a (d− 1)-
dimensional face whose length is the shortest. If this length is denoted as Λs, Eq. (2.32) yields
the bound

|ϕ(d−1)
q | ≤ e−bβΛs

β
(2.59)
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analogous to the bound (2.33). For the Ising contours from Fig. 2.1 the shortest surface contour
is associated with a single-site perturbation on a (d−1)-dimensional face, yielding Λs = 2d−1.

The Peierls condition (2.21) for the contour weights wq must be satisfied (i.e., the qth phase
must be stable) in order that the bulk-surface expansion (2.57) holds. As for periodic boundary
conditions, this is achieved by suppressing the contours that violate the Peierls condition, and fq
and f (m)

q are introduced as ‘meta-stable’ specific free energies. It remains true, of course, that
minq fq is the specific free energy of the system and that fq = f when the qth phase is stable.
Combining Eqs. (2.2) and (2.57), the system partition function is given as [15]

Zweak =
( ∑
q∈Q

e−βFq
)
[1 +O(e−b βL)]. (2.60)

For weak boundary conditions it is this relation that determines the thermodynamic quantities
for a finite system. Namely, it implies that a first derivative

aweak(y) = − 1
V

∂Fweak(y)
∂y

(2.61)

of the system free energy Fweak = −(1/β) lnZweak with respect to a parameter (an external
field) y is the convex combination [15]

aweak =
∑
q∈Q

ãqp̃q +O(e−b βL) (2.62)

of the single-phase quantities (c.f. Eq. (2.40))

ãq(y) = − 1
V

∂Fq(y)
∂y

= aq(y) +O(L−1) (2.63)

with the convex coefficients

p̃q =
e−βFq∑
q′ e

−βFq′
. (2.64)

Moreover, derivatives of aweak are equal to the derivatives of
∑
q ãqp̃q with the same error term

as in Eq. (2.62).

2.5.2 Coexistence of two phases

When the system has only two possible stable phases to be labeled q1 = 1 and q2 = 2, it is
possible to obtain explicit dependences of the quantity aweak and its derivative

a′weak(y) =
∂aweak(y)

∂y
(2.65)

as for periodic boundary conditions. Thus, the convex coefficients

p̃1 = J
(β

2
∆F

)
, p̃2 = J

(
− β

2
∆F

)
, (2.66)
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are given by the jump function from Eq. (2.43) with the arguments depending on the difference
∆F = F2 − F1 of the single-phase free energies. The difference does not vanish at the tran-
sition point yt, as for periodic boundary conditions, but at a point, yL, that is shifted from yt
by a distance of order 1/L and coincides with the position, ymax, of the maximal value of the
derivative aweak up to an error of order 1/(βV )2 [15]. The Taylor expansion around the point yL
thus yields

∆F (y) = [ã1(yL)− ã2(yL)]V (y − yL) +O((y − yL)2V )

= −[∆a+O(L−1)]V (y − yL) +O((y − yL)2V ), (2.67)

where ∆a is the infinite-volume jump in aweak at the transition point (see Eq. (2.45)). So, if the
argument of J in the coefficient p̃2 is replaced by

Ω =
1
2

∆a (y − ymax)βV, (2.68)

the so caused error is only (c.f. Eq. (2.47))

|p̃2 − J(Ω)| ≤
∣∣∣J(

− β

2
∆F

)
− J(Ω0)

∣∣∣ + |J(Ω0)− J(Ω)|

≤
∣∣− β

2 ∆F − Ω0

∣∣
2|Ω0|

+
|Ω0 − Ω|

2
= O(L−1) +O(|y − yL|) +O(V −1),

(2.69)

where Ω0 = (∆a/2) (y − yL)βV and we used that |J(x1)− J(x2)| ≤ |x1 − x2|/2 [15]. So, if
we restrict y to the interval |y − ymax| ≤ const /L, Eq. (2.62) yields the expressions [15]

aweak = a1 + (a2 − a1) J(Ω) +O(L−1). (2.70)

When y is beyond this interval, |y − ymax| ≥ const /L, then

β|∆F | = β
∣∣∣∂∆F (ỹ)

∂y

∣∣∣ |y − yL| ≥ constβLd−1 � 1 (2.71)

by the mean-value theorem, so that one of the coefficients p̃1 and p̃2 is equal to 1 and the other
one to 0, the errors being extremely small, just of order exp(− constβLd−1). The quantity aweak

therefore very precisely coincides with a1 or a2, which follows also from Eq. (2.50) (just with a
larger error term). The equation can be thus applied for any y. It shows that, similarly to periodic
boundary conditions, aweak interpolates between the single-phase quantities a1 and a2 as the
sigmoid function, and the change from one to the other occurs within a range of order 1/βV (see
Fig. 2.4).

In addition, the derivative of aweak can be expressed as [15]

a′weak =
(∆a

2

)2

(1 +O(L−1))βV P (Ω) + δa′weak (2.72)

with

δa′weak = a′1 + (a′2 − a′1) J(Ω) +O(L−1), a′i =
∂ai
∂y

. (2.73)
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Fig. 2.4. A schematic dependence of aweak and its derivative on the parameter y as given by Eqs. (2.70) and
(2.72). The single-phase quantities a1 and a2 are depicted by dashed lines, at

j stand for their values at the
transition, and ‘max’ denotes a maximal value of the derivative of aweak. Note that the maximum position
is shifted from the transition point yt by an amount of order 1/L.

The first term in the derivative has the profile of a sharp and tall spike with the height and width
of order βV and 1/βV , respectively (see Fig. 2.4). The second term δa′weak is of order O(1) in
L and has the profile a sharp jump interpolating between a′1 and a′2 (analogously to aweak). The
first term is dominant near the phase transition, while the second one is dominant farther away
from the transition where a′weak reduces to one of the single-phase quantities a′i.

A major difference between the weak and periodic boundary conditions is that the position,
ymax, of a maximal value of the derivative a′weak is shifted with respect to the transition point yt
due to the presence of boundary interactions. The shift is of order 1/L and is given as [15]

ymax − yt =
τ

∆a
2d
L

(1 +O(L−1)), (2.74)

where

τ = f
(d−1)
2 (yt)− f

(d−1)
1 (yt) (2.75)

is the difference in the surface free energies evaluated at the transition point. The jump in the
quantity aweak and its derivative a′weak are therefore positioned not at the transition point yt but
slightly away from it (see Fig. 2.4).

2.6 Strong boundary conditions

In reality it may often happen that the surroundings strongly affect a system through all or a part
of its surface, thus imposing the presence of large interfaces in the system; i.e., separation of
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phases occurs. (For example, if a half of the system is immersed in one phase and the other half
in another, an interface that crosses the system may appear.) Then the above results for the finite-
size behavior of macroscopic quantities cannot be applied, because the Peierls condition (2.21)
(i.e., an exponential decay of contours with their size) is violated for the contours representing
the interfaces.

As an example of a system with strong boundary conditions, we shall consider the well-
known Ising model [23] on a square lattice. The model was originally proposed to describe a
first-order phase transition in a ferromagnet: the magnetization of the model stays positive (i.e.,
a spontaneous magnetization, m∗ > 0, appears) even if an external magnetic field vanishes,
provided the temperature is sufficiently low, below its critical value [31] (as will be assumed in
the following).

The configurations of the standard Ising model in a finite lattice ofN = (L+1)×(L+1) sites
are the collections σ = {σ1, . . . , σN} of ‘spins’ with σi = ±1 representing a ‘spin up/down’ at a
site i (see Fig. 2.5). Note that ωi = (σi + 1)/2 coincide with the occupation numbers of a lattice
gas. The interactions between the spins are limited to the nearest-neighbor (n.n.) sites. Thus,
UA is set equal to −J σiσj when A is a pair of n.n. spins i and j and to 0 when A is any other
group of spins (J > 0 is an interaction coupling parameter). The minus sign corresponds to a
ferromagnetic behavior when two equal n.n. spins interact with a lower energy than two unequal
n.n. spins. Taking into account an external (positive or negative) magnetic field h, the model has
the Hamiltonian

HV (σ) = −J
∑

n.n. in V

σiσj − h
∑
i in V

σi + J
∑

boundary i

niσi. (2.76)

The first summation is over all n.n. sites i and j in the system volume, the second one over all
sites i in the volume (a positive/negative field h favors up/down ‘spins’), and the third one over
those sites i near the system boundary that have n.n. sites outside the system (whose number is
denoted as ni). The latter corresponds to the boundary conditions in which all ‘spins’ outside the
system are fixed to be down (σj = −1, yielding −σiσj = σi) and the interaction coupling J is
the same as for n.n. sites in the system bulk.

When the field h is non-zero, boundary effects are negligible in the bulk of a macroscopic
system, and there is a unique phase in an infinite system—the minus/plus phase for h nega-
tive/positive. Boundary conditions could play an important role only when the magnetic field
depends on the system size, h = hL, so that it decreases to 0 with a growing L. The chosen
minus boundary conditions force the system along its surface to be in the minus phase. Thus, a
negative hL would ally with the boundary conditions and lead to the minus phase. An intrigu-
ing case is, therefore, when hL is positive and draws the system toward the plus phase. The
influence of the magnetic field hL (which is a bulk effect) is comparable to that of the minus
boundary conditions (a surface effect) when hL = B/L. Then the behavior of the Ising system
is as follows [32].

If B is less than a certain positive value, B0, then the minus boundary conditions prevail and
select the minus phase in the (finite but large) system. On the other hand, if B > B0, then the
magnetic field is the dominant effect and a single droplet of the plus phase is created inside the
system, with the minus phase being near the system boundary (see Fig. 2.6). The droplet touches
the boundary of the system along four equally long segments. Its shape is a squeezed version of
the usual equilibrium crystal (Wulff) shape (the one minimizing the interfacial surface tension,
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V

Fig. 2.5. A microscopic configuration for the Ising model in a rectangular lattice of 10× 10 sites (indicated
by the dashed square) under fixed minus boundary conditions (σi = −1 outside V ). Note that this is the
same configuration as that for the lattice gas in Fig. 2.1.

assuming that its volume is fixed [33]). In terms of the magnetization m = m(hL) these results
imply that, as the system size L grows, it tends to −m∗ for B < B0 and to

mB = m∗ − κ

4B2
(2.77)

for B ≥ B0 (see Fig. 2.6), where the parameter κ is a function of the specific surface tension.
For the Ising model (2.76) with the strong minus boundary conditions, the macroscopic

quantities of interest in a finite volume V = L2 are the magnetization, mstr, and susceptibil-
ity, χstr = ∂mstr/∂h, as its derivative. Their behaviour reflects the above-described balance
between the competing influences of the magnetic field and minus boundary conditions. Consid-
ering the magnetic field to be constrained to an interval |h−B0/L| ≤ c/L with a positive c, we
have [20]

mstr(h) = −m∗ + [mLh − (−m∗)]J(Ψ) +O(L−1/5) (2.78)

and

χstr(h) =
(mLh − (−m∗)

2

)2

βV P (Ψ) + δχstr(h) (2.79)

with

δχstr(h) =
χLh

1 + e−2Ψ
+O(L−1/5), χB =

∂mB

∂B
=

κ

2B3
. (2.80)



492 Phase transitions in finite volumes

mB-

+

-

- -

-

Dm

m+

0 B0B*

-1
-m*

0

m*
1

Parameter B

L
im

it
of

m
HB
�L
L

Fig. 2.6. As the Ising system size L grows, its magnetization m(hL) with hL = B/L converges to −m∗

for B < B0 and to mB for B ≥ B0. The minus phase is stable in the former case, while a squeezed Wulff
shaped droplet of the plus phase is immersed in the minus phase in the latter case.

Thus, the behavior of the magnetization and susceptibility (see Fig. 2.7) is again described by
the jump and spike functions J and P from Eq. (2.43) with the argument

Ψ =
1
2

∆m (h− hmax)βV, ∆m = mB0 − (−m∗). (2.81)

The position hmax of the jump in the magnetization and of the susceptibility spike is shifted with
respect to the transition point ht = 0 by an order of 1/L,

hmax − ht =
B0

L
(1 +O(L−1/5)). (2.82)

These expressions formstr and χstr are very similar to those for aweak and a′weak from Eqs. (2.70)
and (2.72) considered for weak boundary conditions, with a1 and a2 corresponding here to−m∗

and mLh. The key difference is that (a) near the transition mLh and χLh significantly vary with
h and cannot be approximated by constants and (b) the error terms are of a higher order here.
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Fig. 2.7. A schematic dependence of the magnetization and susceptibility on the magnetic field near h =
B0/L for the Ising model with minus boundary conditions as given by Eqs. (2.78) and (2.79). The symbol
‘max’ denotes a maximal value of the susceptibility.

3 Finite-size effects for a large ensemble of systems

Sometimes the studied system, S0, may be composed of a large number of finite subsystems,
S, so that the macroscopic behavior of the system is a cumulative result of the behavior of its
subsystems. This will be the situation for the current density measured in underpotential deposi-
tion experiments that is studied below in Section 4: a typical electrode surface is polycrystalline,
consisting of many separate finite crystalline domains.

To describe the macroscopic properties of the system S0 of dimension two or higher (d ≥ 2)
in a simple way, we shall adopt the assumption that the subsystems S are mutually independent
(non-interacting). This is quite a crude simplification that may be, nevertheless, thought of as a
first approximation. The partition function of the system is then the product of the partition func-
tions of the individual subsystems and its free energy is the sum of the individual free energies,

Z0 =
∏
S

ZS , F0 =
∑
S

FS , (3.1)

where F0 = −(1/β) lnZ0 and FS = −(1/β) lnZS . Consequently, specific macroscopic quan-
tities of the system are weighted averages of their subsystems equivalents. In fact, for the first
and second derivatives

a0 = − 1
V0

∂F0

∂y
, a′0 =

∂a0

∂y
(3.2)
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of the system free energy and their equivalents

aS = − 1
VS

∂FS
∂y

, a′S =
∂aS
∂y

(3.3)

in the subsystems we get

a0 = − 1
V0

∂

∂y

∑
S

FS =
∑
S

VS
V0

aS = 〈aS〉, (3.4a)

a′0 =
∂

∂y

∑
S

VS
V0

aS =
∑
S

VS
V0

a′S = 〈a′S〉, (3.4b)

where the weighted average is defined as

〈 · 〉 =
∑
S

· wS , wS =
VS
V0
. (3.4c)

Note that the weights wS are equal to the fractions of the subsystems volumes VS in the volume
V0 of the whole system S0.

We may now apply the results from Section 2 to describe the subsystems quantities aS and
a′S . Then, as soon as the weights wS are known (either from experiment or theory), we may
use Eq. (3.4) to evaluate, at least numerically, the quantities a0 and a′0 characterizing the whole
system.

3.1 Alternative expressions

To evaluate a0 and a′0 and to analyze their behavior, it is convenient to rewrite the weighted aver-
ages over subsystems in Eq. (3.4) in an alternative form. The form must be determined, of course,
by the factors that make aS and a′S change from one subsystem to another. As the results from
Section 2 show, these factors are the subsystem size L (or volume VS) and boundary conditions.
The subsystem size L affects the maximum position ymax (which is inversely proportional to L)
and the rounding of the phase transition (i.e., the width of the jump in aS and spike in a′S as well
as the height of the spike—all via the subsystem volume VS = Ld). The influence of boundary
conditions is also twofold: they determine

(a) the maximum position ymax;

(b) the single-phase quantities ai as functions of the parameter y, depending on whether phase
separation (i.e., the presence of macroscopic interfaces) occurs in a subsystem or not.

The results from Section 2 are insufficient, however, to precisely describe (a) and (b) for strong
boundary conditions with varying strengths of boundary interactions. For weak boundary con-
ditions, on the other hand, the results are very detailed. Therefore, we shall simplify the forth-
coming discussion by restricting our attention to one type of boundary conditions—the weak
ones.



Finite-size effects for a large ensemble of systems 495

Remark 3.1. Actually, shapes of the subsystems should be also taken into account whenever the
shapes may vary significantly. We shall assume, for simplicity, that this is not the case. Therefore,
all subsystems will have cubic volumes VS = Ld (with various sizes L) in the following, and thus
any effects from possibly varying subsystems shapes will be neglected.

For weak boundary conditions the influence of the boundary conditions with various strengths
is given by a single parameter, the surface free energy difference τ , that affects the maximum
position ymax (see Eq. (2.74)) but not the single-phase quantities ai = −∂fi/∂y. Thus, we shall
apply Eqs. (2.70) and (2.72) for aS and a′S , respectively, in the following. Consequently, near a
first-order transition between two phases, we have

aS ≈ a1 + (a2 − a1)JS , a′S = â′S + δa′S (3.5a)

with

â′S ≈
∆a
∆yS

PS , δa′S ≈ a′1 + (a′2 − a′1)JS , (3.5b)

where ∆a 6= 0 is the jump at the transition point yt (see Eq. (2.45)) and

∆yS =
4

∆a βVS
, a′i =

∂ai
∂y

. (3.5c)

The jump and spike functions are given as (see Eq. (2.43))

JS = J(ΩS) =
1

1 + e−2ΩS
=

1 + tanhΩS
2

, (3.5d)

PS = P (ΩS) =
( 2
eΩS + e−ΩS

)2

= cosh−2 ΩS , (3.5e)

where

ΩS = 2
y − ymax

∆yS
, ymax ≈ yt +

2d τ
∆a

1
L
. (3.5f)

The point ymax is the position of a maximal value of the derivative a′S and |∆yS | is the half-width
of the spike function PS . Note that the derivative a′S is expressed as a sum of an excess part â′S
(described by the spike function P0) and a baseline part δa′S (described by the jump function J0),
the former being of order VS and the latter being much smaller, ranging between VS independent
quantities a′1 and a′2.

We may classify all subsystems according to their size L and their value of the surface free
energy difference τ and obtain an alternative expression for the weighted averages from Eq. (3.4)
as double weighted averages. Namely, we observe that for any function gS = gS(L, τ) of
subsystems we have

〈gS〉 =
∑
S

VS
V0

gS =
∑
L

∑
τ

∑
S: sizeL and

surf. diff. τ

VS
V0

gS(L, τ) =
∑
L

Ld

V0

∑
τ

gS(L, τ)NLwτ

=
∑
L

NL
Ld

V0

∑
τ

wτ gS(L, τ), (3.6)
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where NL is the number of all subsystems with size L and wτ is the fraction of the subsystems
of size L whose value of the surface free energy difference is equal to τ . It thus follows that

a0 = 〈 〈aS〉τ 〉L a′0 = 〈 〈a′S〉τ 〉L, (3.7a)

where aS = aS(L, τ) and a′S = a′S(L, τ) are given by Eq. (3.5) and the two weighted averages
are given as

〈 · 〉L =
∑
L

· wL, 〈 · 〉τ =
∑
τ

· wτ . (3.7b)

The size weights

wL = NL
Ld

V0
(3.8)

are the fractions of the total system volume occupied by all subsystems of size L.
Using Eqs. (3.5) and (3.7), it is possible to rewrite the quantities for the whole system in a

form analogous to that for the subsystems,

a0 ≈ a1 + (a2 − a1)J0, a′0 = â′0 + δa′0, (3.9a)

where

â′0 ≈
∆a
∆y0

P0, δa′0 ≈ a′1 + (a′2 − a′1)J0 (3.9b)

and

∆y0 =
4

∆a βV0
, J0 = 〈 〈JS〉τ 〉L, P0 =

〈Ld
V0

〈PS〉τ
〉
L
. (3.9c)

The reason why the fraction Ld/V0 appears in P0 is that

〈 〈â′S〉τ 〉L =
〈 〈 ∆a

∆yS
PS

〉
τ

〉
L

=
∆a
∆y0

〈 〈Ld
V0

PS

〉
τ

〉
L

(3.10)

as follows from the definitions of ∆yS and ∆y0.
We shall now study the properties of the functions J0 and P0 that describe the jump in a0 and

the spike in its derivative a′0, respectively. It is sufficient to focus just on the spike function P0,
because the jump function can be easily obtained from P0 by integration,

J0(y) =
1

∆y0

∫ y

∓∞
P0(ỹ) dỹ =

1
∆a

∫ y

∓∞
â′0(ỹ) dỹ, (3.11)

where the minus/plus signs correspond to the case when ∆a is positive/negative.
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3.2 Surface effects

Let us consider the subsystems with a fixed size L, whose number was denoted by NL, and let
us study the average 〈PS〉τ of the spike functions PS over the surface free energy differences τ .
It is understood that the values of τ are constrained to a finite interval,

τ0 −∆τ ≤ τ ≤ τ0 + ∆τ, (3.12)

so that the boundary conditions remain weak (see Eq. (2.56)).
We shall assume that the subsystems are created in a random process (this will be the case

studied in Section 4 below). Thus, the boundary conditions for various subsystems are irregu-
lar, and this is the reason why τ changes from one subsystem to another. To approximate this
situation by the boundary conditions in which the boundary interactions have fixed values, we
identify these values with arithmetic averages of the random ones. Then the weights wτ can be
approximated to have the Gaussian form [34] (see Fig. 3.1)

wτj ≈ ρ(τj) δτ (3.13a)

with

ρ(τ) =
1√
2π σ

e−
1
2

(
τ−τ0
σ

)2

, σ =
∆τ√

2dLd−1
, (3.13b)

where τj = τ0−∆τ+j δτ (with j = 1, . . . , NL) are the values of τ for the individual subsystems
of size L and δτ = 2∆τ/(NL − 1) ≈ 2∆τ/NL is the distance between two adjacent values.
The fluctuation (standard deviation) σ of τ is inversely proportional to the square root of the
subsystem boundary, because τ is a random boundary quantity.

If we approximate the spike function PS = cosh−2 ΩS by the Gaussian exp(−πΩ2
S/4) that

has the same area and height, we get

〈PS〉τ =
NL∑
j=1

wτj cosh−2 ΩS(τj) ≈
∫ τ0+∆τ

τ0−∆τ

ρ(τ) cosh−2[ΩS(τ)] dτ

≈ 1√
2π σ

∫ τ0+∆τ

τ0−∆τ

e−
1
2

(
τ−τ0
σ

)2

e
−π

(
y−ymax(τ)

∆yS

)2

dτ ; (3.14)

having in mind that the studied ensemble of subsystems (i.e., NL) is large, making δτ practically
vanishing. Evaluating the last integral, we get

〈PS〉τ ≈
∆yS
∆y

X e−x
2

(3.15)

with

X =
1
2

[
erf(c(x+ x0))− erf(c(x− x0))

]
, (3.16)
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Fig. 3.1. The Gaussian weights wτj from Eq. (3.13) on the interval τ0 − ∆τ ≤ τj ≤ τ0 + ∆τ for
NL = 100 and L = 10. The values τj (with j = 1, . . . , NL) are chosen to be spread equidistantly with a
mutual distance 2∆τ/(NL − 1). The maximal value is max = δτ/

√
2π σ.

where

x =
√
π
y − ymax(τ0)

∆y
, c =

∆yτ
∆yS

> 0, x0 =
∆τ ∆y√
2σ|∆yτ |

> 0. (3.17)

Within the interval |x| . x0 with x0 ≥ ∆τ/
√

2σ =
√
dLd−1 � 1 the factor X is very

precisely equal to 1. Thus, for all x where the Gaussian exp(−x2) is non-vanishing we have
X exp(−x2) ≈ exp(−x2), and it follows that

〈PS〉τ ≈
∆yS
∆y

e−π
(
y−ymax(τ0)

∆y

)2

, (3.18a)

where we used that ymax(τ) = yt +Bτ with B = 2d/∆aL and introduced

∆y =
√

∆y2
S + ∆y2

τ , ∆yτ =
√

2π σB =

√
πd

Ld+1

2∆τ
∆a

. (3.18b)

Note that ymax(τ0) is the maximum position of the spike function PS for the value τ = τ0 and
|∆yS | is its half-width (c.f. Eq. (3.5)). Moreover, |∆yτ | is the half-width of the range over which
the dominant, high-weighted spike functions PS (those corresponding to τ between τ0 −

√
2π σ

and τ0 +
√

2π σ) are spread. Indeed, since ymax(τ) = yt + Bτ , a change in τ makes a spike
PS shift proportionally to this change, but its profile is unaffected. Thus, spikes with different τ
have identical shapes (including their heights and widths), their maxima are just mutually shifted
(see Fig. 3.2(a)). If the range of values τ is |τ − τ0| ≤

√
2π σ, then the spikes are spread over

the range |y − ymax(τ0)| ≤ |∆yτ |.
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The ratio

∆yτ
∆yS

=
β∆τ

2

√
πdLd−1 ≥ β∆τ

√
L� 1 (3.19)

at low temperatures even for subsystems of small sizes. Thus, the high-weighted spikes PS are
spread over an interval that is much wider than any of the spikes. Consequently, ∆y ≈ |∆yτ |,
and the average

〈PS〉τ ≈
∆yS
∆yτ

e−π
(
y−ymax(τ0)

∆yτ

)2

=
∆yS
B

ρ
(y − yt

B

)
(if ∆yS � ∆yτ ) (3.20)

has the same shape as the weight function ρ, but it is re-scaled to have the height ∆yS/∆yτ
and half-width ≈ |∆yτ |. Recalling that each PS has the height 1 and half-width ≈ |∆yS |, we
conclude that the average 〈PS〉τ is rather different from a spike function PS associated with a
single subsystem: it is substantially smaller and wider (see Fig. 3.2). This latter fact is important
because the spikes measured in experiments are much smaller and wider than the spikes predicted
for a single subsystem by Eq. (3.5).

It is interesting to note that the details of the shape of the subsystem spikes PS are rather
irrelevant for the resulting average PL, for it is determined primarily by the shape of the weight
function ρ. The relevant property is that the spikes PS are much sharper that the interval over
which they are spread for various τ . This shows that the result Eq. (3.20) is quite robust.

Remark 3.2. In general, without assuming the Gaussian or other specific form of the weights
wτ , we may write [35]

〈PS〉τ =
∑
τ

wτ cosh−2 ΩS(τ) ≈
∫ ∞

−∞
ρ(τ) cosh−2[KS(τ − τS)] dτ

= 〈PS〉aτ + 〈PS〉bτ + 〈PS〉cτ , (3.21)

where KS = 2B/∆yS = dβLd−1 and τS = (y − yt)/B. The first term is

〈PS〉aτ = ρ(τS)
∫ ∞

−∞
cosh−2[KS(τ − τS)] dτ =

2
KS

ρ(τS). (3.22)

The second term is

〈PS〉bτ =
∫
|τ−τS |≤ε

[ρ(τ)− ρ(τS)] cosh−2[KS(τ − τS)] dτ

≤ sup
|τ−τS |≤ε

|ρ(τ)− ρ(τS)|
∫ ∞

−∞
cosh−2[KS(τ − τS)] dτ ≤ 2

KS
ρ̄′ ε (3.23)

with ρ̄′ = supτ |dρ(τ)/dτ |. Finally, the third term is

〈PS〉cτ =
∫
|τ−τS |≥ε

[ρ(τ)− ρ(τS)] cosh−2[KS(τ − τS)] dτ

≤ sup
τ
|ρ(τ)− ρ(τS)|

∫
|τ−τS |≥ε

4e−2KS |τ−τS |dτ ≤ 4
KS

ρ̄ e−2KSε (3.24)
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Fig. 3.2. (a) The spike functions PS(τj) = cosh−2 ΩS(τj) for j = 20, 30, . . . , 80, taking L = 10,
NL = 100, ∆a = 1, β∆τ = 2, and d = 2. (b) The same spike functions multiplied by the Gaussian
weights λ(τj) from Fig. 3.1. (c) The average 〈PS〉τ computed numerically from its definition (the full line)
and from the approximation (3.20) (the dashed line). (d) The average 〈PS〉τ is smaller and wider than the
spike function PS(τ0) by the factor ∆yS/∆yτ equal to 7.9 for the considered values of parameters.

with ρ̄ = supτ ρ(τ), where we used the bound cosh−2 x ≤ 4 exp(−2|x|). Thus, combining all
three terms, choosing ε = L−3/4/β, and estimating ρ̄′ ∼ ρ̄/σ ∼ ρ̄

√
L, we get

〈PS〉τ ≈
2
KS

[
ρ(τS) +O(ρ̄

√
Lε) +O(ρ̄ e−2KSε)

]
=

∆yS
B

[
ρ
(y − yt

B

)
+O

( ρ̄

βL1/4

)
+O(ρ̄ e−4L1/4

)
]
. (3.25)

This is the same result as that obtained for the special case of a Gaussian weight function ρ in
Eq. (3.20).
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3.3 The resulting spike and jump

To evaluate the resulting spike represented by the baseline part (c.f. Eq. (3.9))

â′0 =
∆a
∆y0

〈Ld
V0

〈PS〉τ
〉
L

=
(∆a

2

)2 β

V0

∑
L

NLL
2d 〈PS〉τ , (3.26)

it is necessary to know the number NL. Even if it is available from experiment, it may have a
very complex form and P0 could be then calculated from Eq. (3.26) only in a numerical way. We
will therefore obtain P0 and describe its basic features for a general NL, so that the fitting of P0

to experimental data will be straightforward to calculate whenever NL is known or estimated for
a given experiment.

The resulting spike can be expressed from Eqs. (3.20) and (3.26) as

â′0 ≈
∆a2

2
√
πd ∆τV0

∑
L

NL L
(3d+1)/2 e−z

2
L , zL =

√
dLd−1

(
L
y − yt
b∆τ

− r
)
, (3.27)

where b = 2d/∆a and r = τ0/∆τ . Thus, P0 is a sum of spikes whose maxima are located
at ymax(τ0) = yt + rb∆τ/L (where zL = 0). As the subsystem length L increases, these
maximum positions get closer and closer to the phase-transition point yt. The mutual distances
between the spikes are not equal, however, because ymax(τ0) decreases inversely with L. The
spikes are therefore accumulated on one side of yt (either below it, if r is negative, or above it,
if r is positive). Consequently, P0 as a sum of these spikes will in general exhibit an asymmetric
spike, which is usually the case observed in experiments. This asymmetry is a pure finite-size
effect, requiring no asymmetries in the weightswL orwτ (in fact, here we consider these weights
to be symmetric).

Let us now describe basic properties of the spike exhibited by â′0 as given by Eq. (3.27).

(a) Its area, A, is, according to Eq. (3.9), equal to the double weighted average of the area
of (∆a/∆y0)(Ld/V0)PS . The latter area is equal to (∆a/∆y0)(Ld/V0)|∆yS | = |∆a|,
yielding

A = 〈 〈|∆a|〉τ 〉L = |∆a|. (3.28)

(b) Its maximum position, y∗, is obtained from the condition (dP0/dy)y=y∗ = 0. If we express
y∗ in the same form as ymax(τ0),

y∗ = yt +
bτ0
L∗

(3.29)

with a suitable length L∗, then the condition may be rewritten as the equation∑
L

NLL
2d+1 z∗L e

−(z∗L)2 = 0 (3.30)

with

z∗L = zL(ψ∗) = r
√
dLd−1

( L

L∗
− 1

)
. (3.31)

From this equation the length L∗ can be obtained.
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(c) Once the size L∗ and, thus, the maximum position y∗ of the spike â′0 have been calculated,
its height is given as

Ht = â′0(y
∗) ≈ ∆a2

2
√
πd ∆τV0

∑
L

NL L
(3d+1)/2 e−(z∗L)2 . (3.32)

(d) To describe asymmetry of the spike function, let us consider an asymmetry factor, 0 <
α < 1, equal to the ratio of the area under the spike that lies below the maximum position
y∗ to the spike’s total area A. From Eq. (3.27) we get

α =
1
A

∫ y∗

−∞
â′0(y) dy ≈

1
V0

∑
L

NLL
d 1± erf z∗L

2
, (3.33)

where erf is the Gauss error function and the plus/minus sign corresponds to a posi-
tive/negative ∆a. When α is smaller than 1/2 (larger than 1/2), most of the spike’s area
lies above (below) its maximum position; if α = 1/2, the areas below and above y∗ are
equal.

According to Eqs. (3.11) and (3.33), the jump function J0 and asymmetry factor α are related
as J0(y∗) = α for ∆a positive and as J0(y∗) = 1− α for ∆a negative. Thus, Eq. (3.33) can be
also used to calculate the jump function J0 for any y, if we replace z∗L by ±zL in it,

J0 ≈
1
V0

∑
L

NLL
d 1 + erf zL

2
. (3.34)

The same expression follows, of course, if we integrate Eq. (3.27) according to Eq. (3.11).

3.4 Fitting to experimental data: Four fitting parameters

The spike â′0 and jump J0, as given by Eqs. (3.27) and (3.34), respectively, depend on seven
parameters: ∆a, ∆τ , V0, NL, yt, r, and τ0. The number NL of subsystems of a given size
and the total volume V0 are assumed to be provided from experimental data (or be plausibly
estimated), and τ0 = r∆τ . Thus, there are actually four independent parameters that may vary
from experiment to experiment over significant ranges: the phase-transition point yt, the value
of the phase transition jump ∆a, half-width ∆τ , and ratio r. Their values can be uniquely
determined by fitting four properties of the spike â′0—its area, maximum position, height, and
asymmetry—to an experimental spike, using the following procedure.

1. The value of the phase transition jump ∆a is determined as the area of the spike â′0. The
spike is obtained from experiment as the difference a′0−δa′0 between the derivative a′0 and
its ‘baseline’ part δa′0.

2. Solving Eq. (3.30) for various r yields the dependence L∗(r). Then the asymmetry factor
α(r) can be calculated from Eq. (3.33). By fitting α(r) to an experimental value, the ratio
r is obtained.

3. Plugging L∗(r) and r into Eq. (3.32), we obtain the height Ht of the spike â′0 in the form
Ht = const /∆τ . The experimental value of the height thus yields the half-width ∆τ .
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4. According to Eq. (3.29), we have yt = y∗−2dr∆τ/∆aL∗. Using the already determined
parameters and experimental value of the maximum spike position y∗, we get the phase-
transition point yt.

Knowing all parameters, the spike â′0 and jump J0 are finally obtained from Eqs. (3.27) and
(3.34), respectively. We will apply this procedure to a specific experimental situation in Section 4
where the spikes and jumps will be associated with the current and surface coverage, respectively,
measured during deposition of metals on electrode surfaces.
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4 Current spikes due to phase transitions at electrode–electrolyte interfaces

Bulk electrodeposition from a solution of a given metal ion, M+z , onto an electrode surface
consisting of atoms of the same metal M occurs at the thermodynamically reversible (Nernst)
potential. Above this value the bulk deposition does not take place. Another type of deposition
may be possible, however. Namely, deposition of metal ions M+z (such as copper or silver) on
a substrate of a foreign, more noble metal S 6= M (such as gold or platinum). This is called
underpotential deposition (UPD). The reason for its occurrence is that the interaction between
metal M and the substrate metal S is thermodynamically more advantageous than that between
M and M . Consequently, only a submonolayer or a single monolayer of metal M can be so
deposited on the substrate metal S (bulk deposition is absent because it is thermodynamically
disadvantageous to deposit M on itself). In addition, the deposited (sub)monolayers are often
observed to form ordered two-dimensional phases commensurate with the geometrical alignment
of the substrate metal atoms (see Fig. 4.1).

In UPD experiments the measured quantity is the current density, I0, as a function of an
externally controlled electric potential, ψ, by which an electrode is polarized. A plot of I0
vs. ψ is called a voltammogram. The potential is usually varied with time at a constant rate,
ν = dψ/dt = const, within a finite interval in cycles. Namely, when ψ is decreased at a rate ν
from an initial to a final value, the ion is being deposited on the electrode surface. Reversing ψ
at the final value and returning it at the rate ν back to its initial value, the ion is being stripped
off of the electrode surface. A new cycle may begin subsequently.

Remark 4.1. In general, two main contributions to the current density I0 exist. One is the

Bulk deposition

Hside viewL

UPD deposition

Hside viewL

Substrate HSL

Deposited metal HML

An ordered 2D phase
Htop viewL

Fig. 4.1. Bulk vs. underpotential deposition (a schematic picture).
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Fig. 4.2. Voltammogram for the UPD of copper on Pt(111) from 1 mM Cu2+ and 0.1 M H2SO4 (adapted
from [46]). The scan rate is ν = 1 mV.s−1. The triplet 111 stands for the crystallographic Miller indices
hkl.

Faradaic current. It occurs due to electrochemical reactions in the experimental cell and the
corresponding charge transfer at the electrode surfaces. The other one is the capacitive current
that occurs due to (dis)charge of the electrical double layer capacitance of the electrode. This
current does not involve chemical reactions. It is responsible for accumulation (removal) of
charge on and near the electrode.

If a metallic (sub)monolayer is suddenly deposited on a crystalline electrode, one or more
sharp spikes appear in the associated voltammogram (see Figs. 4.2 and 4.3). Such a spike can
be interpreted as corresponding to a phase transition at the electrode surface [36]. In the cases
when the (sub)monolayer is ordered, it may be expected that 2D lattice-gas models could be
used to simulate the associated UPD process in a reliable way. This was first shown in the pi-
oneering studies of Blum and Huckaby. They were able to introduce a lattice-gas model [37]
that successfully described the structure of phases experimentally observed in the UPD of Cu on
Au(111) [37,38,39,40]. (The triplet 111 stands for the crystallographic Miller indices hkl.) Their
description of voltammogram spikes was not entirely satisfactory, however, because their theo-
retical spikes were infinitely tall and sharp and they resolved the problem by adding a qualitative
‘switching function’ [37, 41]. The UPD studies based on Monte Carlo simulations for lattice
gases produced voltammogram spikes of finite height and non-zero width that were in qualitative
agreement with experiment, but the simulated spikes were still too tall and sharp [42,43,44,45].
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Fig. 4.3. Voltammogram for the UPD of copper on Au(111) from 1 mM Cu2+ and 0.05 M H2SO4 (adapted
from [47]). The scan rate is ν = 1 mV.s−1. The triplet 111 stands for the crystallographic Miller indices
hkl.

In this section we discuss the key features of our statistical mechanical theory [35, 48] from
which voltammogram spikes corresponding to first-order phase transitions can be obtained. To
illustrate the theoretical results, in Sections 5 and 6 we will show how the theory can be applied
to experimental data.

4.1 Current density and coverage

We shall consider an electrode surface with a flow of current in it. The two contributions to
the current (see Remark 4.1 above) will be as follows: (1) the Faradaic part is assumed to be
exclusively due to the discharge of a single type of ion, and (2) capacitive contributions will be
neglected. Moreover, we will consider only the stripping part of the deposition process (when
ν > 0). The reason is that non-equilibrium effects should be rather less important in stripping
processes that in the deposition ones, and therefore our equilibrium analysis can be applied at
slow scan rates (in the ‘quasistatic’ limit ν → 0). Under these conditions the current density at
the electrode interface can be expressed as [38]

I0(ψ) = −κe0γν
∂Θ0(ψ)
∂ψ

, (4.1)
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Electrode surface

Crystal

Crystal spikes

Fig. 4.4. A schematic picture of current density spikes from the individual crystals on an electrode surface.

where κ is the number of adsorption sites on the electrode surface per unit area, e0 is the ele-
mentary charge, γ is the effective electrovalence of the ion deposited on the electrode surface,
and Θ0 is the surface coverage of the ion. The minus sign in Eq. (4.1) ensures that the current
density I0 is positive for a stripping process (when Θ0 decreases). The quantity γ is considered
independent of ψ, and it relates the applied electric potential ψ to the chemical potential of the
ion in a linear fashion [39],

µ(ψ) = −e0γ(ψ − ψ0), (4.2)

where the constant ψ0 is a reference potential. The coverage Θ0 is defined as the statistical
average value of the fraction of adsorption sites occupied by the ion. Thus,

Θ0(ψ) =
1

Z0(ψ)

∑
ω

N(ω)
N0

e−β[H0(ω)−µ(ψ)N(ω)]

= − 1
e0γβN0

∂

∂ψ
logZ0(ψ), (4.3)

where the sum runs over the microscopic configurations ω on the electrode surface, N(ω) is the
number of occupied adsorption sites in a given ω, and N0 is the total number of adsorption sites.

We shall now invoke the observation that an electrode surface has a polycrystalline structure;
i.e., it consists of a large number of finite crystalline domains that we shall call crystals. It is
therefore natural to assume that each crystal makes a contribution to the overall current density
in dependence on its size, shape, and boundary conditions (see Fig 4.4). Consequently, a voltam-
mogram spike is an averaged result of the contributions coming from all crystals [49, 34, 35].
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It might seem redundant to take into account the polycrystalline structure of electrode sur-
faces: it should be possible to obtain a voltammogram spike as a result of a first-order phase
transition in a single, ‘typical’ crystal. This approach turns out to be erroneous, however. In fact,
for a crystal of a typical size (few hundreds of sites) the current density would exhibit a spike
about a hundred times taller and sharper than the experimental one [49, 34]. On the other hand,
if the polycrystalline structure of electrode surfaces is considered, then the spikes from various
crystals are mutually shifted and of varying heights and widths so that their resulting average can
very well fit the profile of a real voltammogram spike. The crucial point is that the individual
spikes are shifted with respect to each other (otherwise the average would still be too tall and
sharp), so that periodic boundary conditions are inappropriate to consider.

Therefore, we shall imagine that a large ensemble of crystals, C, lying on the electrode sur-
face is given and that boundary conditions for all crystals are fixed. The boundary conditions
represent the interaction of the crystals with those parts of the electrode surface that separate the
crystals from each other (i.e., with the defect regions on the electrode surface). To be able to
apply the theory of finite-size effects for an ensemble of systems from Section 3, the boundary
conditions will be assumed to be weak. In addition, as long as the crystals are not too oblong,
their shapes are not a key factor [35], and we shall suppose that all crystal are of a uniform, paral-
lelogram shape. Finally, using the approximation that the crystals are mutually non-interacting,
the partition function Z0 for the whole ensemble of crystals becomes the product of the partition
functions of individual crystals, yielding [34]

Θ0(ψ) = 〈ΘC(ψ)〉C , I0(ψ) = 〈IC(ψ)〉C (4.4)

with

〈 · 〉C =
∑
C

· wC , wC =
NC
N0

. (4.5)

The weights wC are equal to the fractions of all adsorption sites contained in individual crystals.
Hence, the electrode coverage Θ0 and current density I0 are averages of the coverages ΘC and
current densities IC from the crystals. The latter are given as (c.f. Eqs. (4.1) and (4.3))

ΘC(ψ) = − 1
e0γβNC

∂ logZC(ψ)
∂ψ

, (4.6a)

IC(ψ) = −κe0γν
∂ΘC(ψ)
∂ψ

, (4.6b)

with the crystal partition function

ZC(ψ) =
∑
ωC

e−β[H0(ω)−µ(ψ)N(ω)], (4.7)

(the summation is over the microscopic configurations ωC in the crystal).
Comparing Eqs. (4.4) and (4.6) with Eq. (3.4), we conclude that the description of the cur-

rent density I0 and coverage Θ0 is a specific two-dimensional case of the general situation
studied in Section 3. We may therefore apply the results given there to obtain voltammogram
spikes associated with the first-order phase transitions that correspond to sudden depositions of
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(sub)monolayers of metals on electrode surfaces. To be able to apply the general results easily,
we will use Table 4.1 where the correspondence between the general quantities from Section 3
and the quantities studied here is provided. Let us first describe the results in a single crystal and
then on the whole electrode surface.

4.2 Rounding of phase transitions in a single crystal

Using Table 4.1 and Eq. (3.5), the coverage and current density in a crystal C, as functions of the
electric potential ψ, may be expressed as

ΘC ≈ θ1 + (θ2 − θ1) JC , IC = ÎC + δIC , (4.8a)

where

ÎC ≈
1
4
κν(e0γ∆θ)2βL2 PC , δIC ≈ κν(e0γ)2[θ′1 + (θ′2 − θ′1) JC ] (4.8b)

with the derivatives θ′i = ∂θi/∂µ. The jump and spike functions are given as

JC = J(ΩC) =
1

1 + e−2ΩC
=

1 + tanhΩC
2

, (4.8c)

PC = P (ΩC) =
( 2
eΩC + e−ΩC

)2

= cosh−2 ΩC , (4.8d)

with

ΩC = 2
ψ − ψmax

∆ψC
, ψmax ≈ ψt −

4τ
e0γ∆θ

1
L
, ∆ψC = − 4

e0γ∆θ βL2
. (4.8e)

We use ∆θ = θ2(µt)−θ1(µt) to denote the infinite-volume jump in the coverage at the transition
point µt. Note that the current density IC is a sum of two contributions—the excess and baseline
current densities ÎC and δIC , respectively. In addition, κνe0γ|∆θ| and |∆ψC | are equal to the
area and half-width, respectively, of the spike in the excess crystal current density ÎC .

4.3 Boundary effects

Boundary conditions for the individual crystals on the electrode surface are determined by var-
ious defects separating the crystals. Thus, random boundary conditions seem to be the most
suitable. To treat averaging over this randomness for all crystals of a given size L, it was sug-
gested [34] that practically the same result should be obtained when (a) the boundary conditions
are fixed to have constant values of interaction energies along the boundary of every crystal, and
(b) the constant values vary from crystal to crystal. The boundary average is thus represented
by the average 〈 · 〉τ over the values of the specific surface free energies τ . While τ has a defi-
nite value for every crystal, it may be different for different crystals, ranging within an interval
|τ − τ0| ≤ ∆τ (c.f. Eq. (3.12)). The connection between τ and the interaction energies will be-
come clear later on when specific lattice-gas models will be considered to simulate UPD process
from a microscopic viewpoint.



510 Phase transitions in finite volumes

General quantity corresponds to UPD quantity Remark
subsystem S crystal C
volume VS crystal size NC
y ψ

ai = −∂fi
∂y −e0γθi θi = −∂fi

∂µ

∆a = a2(yt)− a1(yt) −e0γ∆θ ∆θ = θ2(µt)− θ1(µt)
aS −e0γθC
a′i = ∂ai

∂y (e0γ)2θ′i θ′i = ∂θi
∂µ

a′S = ∂aS
∂y

1
κν IC

â′S
1
κν ÎC

δa′S
1
κν δIC

Tab. 4.1. The correspondence between the general quantities from Section 3 and the quantities studied for
UPD. The chemical potential µ is the linear function of the electric potential ψ as given by Eq. (4.2).

Classifying all crystals according to their length L and value of τ , the electrode coverage and
current density from Eq. (4.4) may be expressed as the double averages (c.f. Eq. (3.7))

Θ0 = 〈 〈ΘC〉τ 〉L I0 = 〈 〈IC〉τ 〉L, (4.9)

with

〈 · 〉L =
∑
L

· wL, 〈 · 〉τ =
∑
τ

· wτ . (4.10)

The weights

wL = NL
L2

N0
(4.11)

are the fractions of the total electrode surface occupied by all crystals of length L (whose number
isNL), and the weightswτ are the fractions of the crystals of length Lwhose value of the surface
free energy difference is equal to τ .

In [34] the local-limit theorem was invoked to argue that the weights wτ could be approxi-
mated by a Gaussian probability distribution ρ(τ) (see Eq. (3.13)). Hence, wτ = ρ(τ) δτ , where
δτ is the distance between adjacent values of τ . Since τ is a random quantity associated with the
crystal boundary, the fluctuation (standard deviation) in the Gaussian distribution is proportional
to the square root of the crystal boundary, σ = ∆τ/2

√
L. The mean value is identified with τ0.

Introducing

∆ψτ =
√

8π∆τ
e0γ∆θ L3/2

(4.12)

and observing that the ratio

∆ψτ
∆ψC

= β∆τ
√
π

2
L� 1 (4.13)
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at low temperatures even for crystals of small lengths, Eq. (3.20) implies that

〈cosh−2 ΩC〉τ ≈
∆ψC
∆ψτ

e−π
(
ψ−ψmax(τ0)

∆ψτ

)2

. (4.14)

Thus, the τ average of the crystal current density IC exhibits a spike that is much shorter and
wider than that exhibited by IC itself. This is important for fitting theoretical voltammogram
spikes to experimental ones: the latter are about a hundred times shorter and wider that the
spikes from a single crystal of typical lengths L (say, 10 or 15) [49].

4.4 Rounding of phase transitions on an electrode surface

If we now apply Table 4.1 and Eqs. (3.9), (3.11), (3.27), and (3.34), we may express the coverage
and current density for the whole electrode as

Θ0(ψ) ≈ θ1 + (θ2 − θ1) J0(ψ), I0(ψ) = Î0(ψ) + δI0(ψ), (4.15a)

where

Î0(ψ) ≈ κν(e0γ∆θ)2√
8π ∆τN0

∑
L

NL L
7/2 e−[zL(ψ)]2 , (4.15b)

δI0(ψ) ≈ κν(e0γ)2 [θ′1 + (θ′2 − θ′1) J0(ψ)], (4.15c)

and

J0(ψ) ≈ 1
N0

∑
L

NLL
2 1 + erf zL(ψ)

2
. (4.15d)

The factor

zL(ψ) =
√

2L
[e0γ∆θ

4∆τ
(ψt − ψ)L− r

]
, r =

τ0
∆τ

. (4.16)

In addition, applying Eqs. (3.28) – (3.33), the excess current density Î0 has the area

A =
∫ ∞

−∞
Î0(ψ) dy = κνe0γ|∆θ|, (4.17a)

position of its maximal value at

ψ∗ = ψt −
4τ0

e0γ∆θ L∗
, (4.17b)

height

Ht = Î0(ψ∗) ≈
κν(e0γ∆θ)2√

8π ∆τN0

∑
L

NL L
7/2 e−(z∗L)2 , (4.17c)
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and asymmetry factor

α =
1
A

∫ ψ∗

−∞
Î0(ψ) dy ≈ 1

N0

∑
L

NLL
2 1∓ erf z∗L

2
. (4.17d)

The minus/plus sign in the expression for α corresponds to a positive/negative ∆θ (whose sign
is opposite to that of ∆a), the shorthand

z∗L = r
√

2L
( L

L∗
− 1

)
, (4.18)

and ∑
L

NLL
5 z∗L e

−(z∗L)2 = 0 (4.19)

is the equation whose solution is the length L∗.

4.5 Fitting to a voltammogram spike

There are four adjustable parameters in the theoretical results from Eq. (4.15) that can be used
to obtain a voltammogram spike. Namely, the electrovalence γ, half-width ∆τ of the range of
values τ , phase-transition potentialψt, and ratio r (from which we get the mean value τ0 = r∆τ ).
The values of these four parameters are adjusted from given experimental data as follows (see
Section 3.4).

First, γ is determined from the areaA of the excess spike Î0 that is obtained from experiment
as the difference between the voltammogram spike I0 and its baseline part δI0. (The phase
transition jump ∆θ is known from experiment.)

Second, by solving Eq. (4.19) for various r, we get the dependence L∗(r), and α(r) is then
calculated. When this α(r) is fitted to an experimental value, r is obtained.

Third, using L∗(r) and r, we calculate Ht = const /∆τ and get ∆τ by fitting the experi-
mental value of the height.

Finally, from the already determined parameters and experimental value of the maximum
spike position, we get the phase-transition point ψt = ψ∗ + 4r∆τ/e0γ∆θ L∗.

To apply the procedure, it is necessary to know the size distribution NL. This is hardly
available from experiment. Nevertheless, a simple theoretical mechanism was suggested in [49]
to describe the distribution. It is based on the assumption that the crystals of a parallelogram
shape are formed due to line defects that occur on an electrode surface with a certain probability,
P . Let us choose a crystal corner and either of its edges that meet at the corner. The probability
that the site next to the corner as well as all sites on the half-line perpendicular to the edge and
pointing inside the crystal are part of the crystal is equal to 1− P . Thus, the fraction of crystals
of size L on the electrode surface is proportional to ((1−P )LP )2. Consequently, the fraction of
adsorption sites that lie in the crystal of size L is proportional to L2((1 − P )LP )2. Introducing
p = (1− P )2 and evaluating the normalization constant, we get [49]

NL = N0
(1− p)3

p(1 + p)
pL (4.20a)
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Fig. 4.5. The model weights wL from Eq. (4.20) for the probability P of line defects 0.2, 0.15, and 0.1.

and

wL = NL
L2

N0
=

(1− p)3

p(1 + p)
L2pL. (4.20b)

This model weights are plotted in Fig. 4.5. For small sizes wL increases (proportionally to the
crystal area) and, after reaching its maximum (at Lmax = 2/| ln p| ≈ (1 + p)/(1 − p)), it
vanishes (at an exponential rate). This should represent a general behavior of the weights. Note
that the mean size and its fluctuation for these weights are approximately equal to (3/2)Lmax

and (
√

3/2)Lmax, respectively. Physically interesting values of p should be 0.8 ≤ p ≤ 0.9 (i.e.,
0.05 . P . 0.1) for which the mean value of the crystal size L is between 14.4 and 28.5.

Using the size distribution from Eq. (4.20), the dependences L∗(r) and α(r) can be obtained
by solving Eq. (4.19) and Eq. (4.17d), respectively (see Fig. 4.6). Evaluation of the remaining
quantities (the area A, height Ht, jump function J0, and excess current density Î0) can be done
only when a specific experiment is considered (so that κ, ν, ∆θ, and ψ∗ are known).

In Sections 5 and 6 we shall consider two examples of UPD processes and apply the above
theoretical results to obtain the corresponding voltammogram spikes, using the weights wL from
Eq. (4.20).
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Eqs. (4.19) and (4.17d), respectively, for the range−1 ≤ r ≤ 1 and p = (1−P )2 with P = 0.1, 0.15, 0.2.

5 Example 1: Underpotential deposition of Cu on Pt(111)

As a first example, let us consider the voltammogram spike that was measured during the strip-
ping part of the underpotential deposition of Cu on Pt(111) [46] (see Fig. 4.2). The spike cor-
responds to a first-order phase transition when a full monolayer of deposited ions is completely
stripped off of the electrode surface [49]. This corresponds to a transition between a fully oc-
cupied and a fully vacant phase, the former being commensurate with the (111) surface whose
adsorption sites constitute a triangular lattice.

5.1 Lattice-gas model

To model the considered UPD process, we may consider crystals that have a parallelogram shape
of NC = L × L adsorption sites (see Fig. 5.1) and use the standard, one-component lattice gas
on a triangular lattice with an attractive interaction energy, ε < 0, between a pair of n.n. ions
in the crystal [49]. It is known that at µ = µt = 3ε a first-order phase transition between a
fully occupied and a fully vacant phase occurs for this lattice gas below the critical temperature
β > βc = (ln 3)/|ε|. The surface coverage has a jump from (1−m∗)/2 for the vacant phase to
(1 +m∗)/2 for the occupied phase, where m∗ > 0 is the Ising spontaneous magnetization (see
Section 2.6). The boundary conditions are chosen so that each adsorption site outside the crystal
is occupied by an ion that interacts with any n.n. ions inside the crystal with an attractive bound-
ary energy, η, different from ε. The Hamiltonian of this lattice gas is given as (c.f. Eq. (2.76))

HC(ω) = ε
∑

n.n. in C

ωiωj − µ
∑
i in C

ωi + η
∑

boundary i

niωi. (5.1)

The first summation is over all n.n. sites i and j in the crystal, the second one over all sites i
in the crystal, and the third one over the sites i on the crystal boundary (ni is the number of its
n.n. ions outside the crystal). To ensure that the boundary conditions are weak, it is necessary
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¶
Η

Fig. 5.1. A crystal of a parallelogram shape with 7×7 adsorption sites (the dashed lines) with fixed constant
boundary conditions. The bulk and surface interaction energies ε and εs, respectively, are indicated for a
pair of n.n. ions. The contours are the Ising contours from Fig. 2.1 adapted to a triangular lattice.

that [49]∣∣∣η
ε
− 1

2

∣∣∣ ≤ 1
6
; (5.2)

i.e., the boundary energy η is close to half of the bulk energy.
At low temperatures the specific bulk and surface energies for the fully vacant and occupied

phases for the model (5.1) are (c.f. Eq. (2.57)) [49, 30]

fvac ≈ − 1
β
eβµ, focc ≈ 3ε− µ− 1

β
eβ(6ε−µ), (5.3a)

f (1)
vac ≈ − 1

β
eβ(µ−2η), f (1)

occ ≈ 2η − ε− 1
β
eβ(4ε−µ+2η), (5.3b)

where the exponentials represent small corrections due to thermal perturbations. Thus, the single-
phase coverages and their derivatives are

θvac = −∂fvac
∂µ

≈ eβµ, θocc = −∂focc

∂µ
≈ 1− eβ(6ε−µ), (5.3c)

θ′vac =
∂θvac
∂µ

≈ βeβµ, θ′occ =
∂θocc

∂µ
≈ βeβ(6ε−µ), (5.3d)

and the coverage jump and difference in the specific surface free energies at the transition are

∆θ = θocc(µt)− θvac(µt) ≈ 1− 2e−3β|ε| > 0, (5.3e)

τ = f (1)
occ(µt)− f (1)

vac(µt) ≈ 2η − ε+
2
β

sinh[β(ε− 2η)] e−2β|ε|, (5.3f)

respectively.
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5.2 Crystal coverage and current density

Applying Eqs. (4.8) and (5.3) and introducing the shorthand notations

u(ψ) = e−e0γβ(ψ−ψt), x = e−β|ε| � 1, (5.4)

the coverage and current density in a crystal C, as functions of the electric potential ψ, may be
expressed as

ΘC ≈ JC , IC = ÎC + δIC , (5.5a)

with

ÎC ≈
1
4
κν(e0γ)2βL2PC , (5.5b)

δIC ≈ κν(e0γ)2βx3
[
u+

( 1
u
− u

)
JC

]
, (5.5c)

where

ΩC =
e0γ

2
(ψmax − ψ)βL2, ψmax ≈ ψt −

4(2η − ε)
e0γ

1
L
. (5.6)

Note that we neglected the lowest thermal perturbations terms in the single-phase coverages,
coverage jump, and surface free energy difference, approximating them as θvac ≈ 0, θocc ≈
1, ∆θ ≈ 1, and τ ≈ 2η − ε, respectively. On the other hand, we took the lowest thermal
perturbations into account in the coverage derivatives, so that θ′vac ≈ βx3u and θ′occ ≈ βx3/u,
and the baseline part δIC is evaluated explicitly (rather than approximated as δIC ≈ 0).

5.3 Electrode coverage and current density: Experiment vs. theory

The theoretical expressions for the electrode coverage Θ0 and current density I0 are given by
Eq. (4.15) in which we may approximate ∆θ ≈ 1. Before the four fitting parameters γ, r, ∆τ ,
and ψt are adjusted to fit the experimental spike from Fig. 4.2, we need to determine its baseline
and excess current densities δI0 and Î0, respectively. This in turn requires to know the jump
function J0 and single-phase coverages θocc and θvac. According to Eqs. (4.1) and (4.17), we
have

Θ0(ψ) =

∫∞
ψ
I0(ψ̃) dψ̃∫∞

−∞ I0(ψ) dψ
. (5.7)

Thus, using the current density I0 from the stripping part of the voltammogram (see Fig. 5.2(a)),
the coverage Θ0 can be evaluated by a numerical calculation from Eq. (5.7) (see Fig. 5.2(b)).
Fitting the coverage values within the intervals 0.2V ≤ ψ ≤ 0.27V and 0.36V ≤ ψ ≤ 0.42V
by quadratic polynomials,

θocc ≈ −3.94ψ2 + 1.51ψ + 0.85, θvac ≈ 1.18ψ2 − 1.72ψ + 0.64, (5.8)
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Fig. 5.2. (a) The stripping part of the voltammogram for the UPD of copper on Pt(111) from Fig. 4.2. (b)
The corresponding coverage Θ0 (the full curve), and the coverages for the occupied and vacant phases (the
dashed curves). (c) The resulting jump function J0.

we then obtain the coverages for the occupied and vacant phases, respectively (see Fig. 5.2(b)).
The jump function J0 is determined from the first relation in Eq. (4.15) (see Fig. 5.2(c)). The
same equation shows that the baseline current density

δI0(ψ) = ivac + (iocc − ivac)J0, (5.9)

with

iocc = − A0

|∆θ|
∂θocc

∂ψ
≈ 3.89ψ− 0.74, ivac = − A0

|∆θ|
∂θvac
∂ψ

≈ −1.16ψ+0.85, (5.10)

where A0 = 0.430µA.V.cm−2 is the area under the low voltage spike and the coverage jump
∆θ ≈ 1. The excess current density is then determined as the difference Î0 = I0 − δI0 (see
Fig. 5.3).
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Fig. 5.3. (a) The current density I0 corresponding to the stripping part of the voltammogram for the UPD of
copper on Pt(111) from Fig. 4.2 and its splitting into the excess and baseline parts Î0 and δI0. (b) A detail
of the plot from (a).

We may now adjust the four parameters γ, r, ∆τ , and ψt so that the theoretical formula
for the excess current density Î0 in Eq. (4.15) would fit the Î0 that we have just determined
from experiment. We will employ the size distribution wL from Eq. (4.20) with p = 0.81 (i.e.,
P = 0.1) and the fitting procedure described in Section 4.5. The values

κe0 = 241.1µC.cm−2, ν = 1 mV.s−2, ∆θ ≈ 1 (5.11)

are known from experiment (κ is chosen so as to correspond to the Cu–Cu distance 2.77 Å [50]).
The experimental Î0 from Fig. 5.3 has the area, maximum position, height, and asymmetry factor
equal to

A = 0.356µA.V.cm−2,

ψ∗ = 0.320V ,

Ht = 19.23µA.cm−2,

α = 0.327,

(5.12)

respectively. From the area A and Eq. (4.17a) we get

γ = 1.48. (5.13)

Using the dependence α(r) from Fig. 4.6(b), the value of the asymmetry factor determined from
experiment occurs when

r = −0.158, (5.14)

which corresponds toL∗ = 27.51 in Fig. 4.6(a). These r andL∗ yield e0∆τHt = 5.50µA.V.cm−2

from Eq. (4.17c). Thus, to get the correct height, we must have

∆τ = 286.2meV , (5.15a)
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yielding

τ0 = r∆τ = − 45.2meV . (5.15b)

Using now the position of the spike maximum, the phase-transition voltage is

ψt = 0.315V (5.16)

by Eq. (4.17b).
Finally, the parameters γ, r, ∆τ , and ψt being adjusted, we use Eq. (4.15) to calculate the

theoretical ψ dependences for the excess current density Î0, jump function J0, total coverage Θ0,
baseline current density δI0, and total current density I0 (see Fig. 5.4). Their agreement with the
experimental dependences from Figs. 5.2 and 5.3 is rather good.

5.4 Interaction energies

The mean value τ0 and range half-width ∆τ are related to the interaction energies ε and η in the
considered lattice-gas model (5.1) as follows [34,35]. Recalling that τ ≈ 2η−ε in the model, the
randomness in the boundary conditions corresponds to that of the boundary interaction energy η.
To describe it, we express η as proportional to the bulk interaction, η = ϑε, where 0 ≤ ϑ ≤ 1
is the total occupancy of the deposited ion in the defect regions surrounding a given crystal C.
(Thus, ϑ is the number of defect sites along the boundary of C occupied by the ion divided by
the number of all defect boundary sites). Approximating the occupancies at the individual defect
sites to be independent, we may invoke the local limit theorem to estimate the probability of ϑ
having a specific value by a Gaussian distribution. Its mean value and variance are equal to the
probability, 0 ≤ ϑ0 ≤ 1, that a given defect site is occupied and to D2 = ϑ0(1 − ϑ0)/4L,
respectively. Therefore, τ should have the mean value τ0 = E(τ) ≈ 2E(η) − ε and variance
σ2 = var(τ) ≈ 2var(η) = 2(εD)2. Writing η0 = E(η) = ϑ0ε for the mean boundary
interaction energy (the one associated with the mean single-site occupancy ϑ0) and recalling that
σ = ∆τ/2

√
L, we get [34, 35]

τ0 = 2η0 − ε, ∆τ =
√

2η0(ε− η0). (5.17)

For the values of τ0 and ∆τ from Eq. (5.15) adjusted so as to fit the experimental data, the bulk
and mean boundary interaction energies are

ε = − 407.2meV , η0 = − 226.2meV , (5.18)

respectively. Note that η0/ε = 0.56 so that the condition (5.2) for the boundary conditions to be
weak is satisfied.
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Fig. 5.4. The theoretical ψ dependences for the (a) excess current density Î0, (b) total current density I0, (c)
jump function J0, (d) total coverage Θ0, and (e) baseline current density δI0 as calculated from Eq. (4.15)
and their comparison with the experimental ones from Figs. 5.2 and 5.3.
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6 Example 2: Underpotential deposition of Cu on Au(111)

As a second example, we consider the voltammogram that was measured for the underpoten-
tial deposition of copper on the (111) surface of a gold electrode in the presence of a sulfate
electrolyte [47] (see Fig. 4.3). The voltammogram has two distinct spikes and a broad foot re-
gion near the spike at higher potentials. The following scenario of this deposition process was
suggested [51, 40, 52, 34]. Let C and S denote that a site is occupied by copper and sulfate, re-
spectively, and let O denote a vacant site. In addition, let XYZ denote a phase with a

√
3 ×

√
3

structure in which one triangular sublattice of the electrode surface is covered by X, one sub-
lattice by Y, and the remaining sublattice by Z. The spike at lower potentials corresponds to a
first-order phase transition between the phase CCC (a full monolayer of copper) and the phase
SCC (sulfate covers a triangular sublattice and the remaining sites are occupied by copper). The
high voltage spike corresponds to the transition between the SCC phase and the SCO phase (one
sublattice is covered by sulfate, one by copper, and the remaining sublattice is vacant). Finally,
the foot region corresponds to the transition between the SCO phase and the OOO (a fully vacant)
phase. Note that the jump in the copper coverage at each of these three transitions is ∆θ ≈ −1/3.
The structure of the four phases is shown in Fig. 6.1.

In the following we shall consider only the low voltage spike. Theoretical results for the
whole voltammogram, including the high voltage spike and foot region, are quite complex and
can be found in [34, 48].

Fig. 6.1. The structure of the CCC, SCC, SCO, and OOO phases.
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6.1 Lattice-gas model

We again consider crystals that have a parallelogram shape of NC = L× L adsorption sites. To
model the considered UPD process, we shall employ the two-component lattice gas of Huckaby,
Blum, and Legault [37,39,40] on the two-dimensional triangular lattice. The lattice gas has three
n.n. interactions:

(a) two S ions are excluded from occupying n.n. sites,

(b) a pair of n.n. C’s interact with a repulsive energy εC1 > 0,

(c) an adsorbed C interacts with a n.n. adsorbed S with an attractive energy εS1 < 0.

These interactions are sufficient to obtain the structure of the observed phases [39]. They are not
sufficient, however, to establish that the involved phase transitions are of first order. To this end,
two next nearest-neighbor (n.n.n.) interactions are included [34]:

(d) a pair of n.n.n. C’s interact with an attractive energy εC2 < 0,

(e) a pair of n.n. S’s interact with an attractive energy εS2 < 0.

Note that two n.n.n. sites are neighbors on one of the three triangular sublattices of the (111)
surface. The boundary conditions are chosen so that a fixed configuration SCC is present outside
the crystal, because SCC can be weak with respect to all four phases CCC, SCC, SCO, and OOO
that appear in the scenario of the deposition process. The boundary interactions are limited to
n.n. neighbors XY and, if X lies inside the crystal and Y outside, they interact with an attractive
or repulsive energy ηXY . A n.n. pair of S’s is excluded, as in the bulk.

Let us use NXY 1, NXX2, and NX to denote the number of n.n. XY pairs, n.n.n XX pairs,
and sites occupied by X, respectively, in a given microscopic configuration. Moreover, let ÑXY
stand for the number of n.n. XY sites such that X is in the crystal and Y outside it. Then the
Hamiltonian of the considered lattice gas is given as [34]

HC(ω) = εC1NCC1 + εS1NCS1 + εC2NCC2 + εS2NSS2 − µCNC − µSNS

+ ηCCÑCC + ηCSÑCS + ηSCÑSC . (6.1)

The chemical potentials µX are linear functions of the applied electric potential (c.f.Eq. (4.2)),

µC(ψ) = −e0γC(ψ − ψC), µS(ψ) = −e0γS(ψ − ψS), (6.2)

where γC and γS are the effective electrovalences and ψC and ψS are the reference potentials of
copper and sulfate, respectively. As the potential ψ varies, the chemical potentials form a line, `,
in the (µC , µS) plane given as

µS =
γS
γC

µC + e0γS(ψS − ψC) = KµC +Q, (6.3)

where K is its slope and Q its µS intercept.
The ground state diagram of the lattice gas from Eq. (6.1) is shown in Fig. 6.2. Recalling

that, at temperatures well below the critical point, the phase diagram is a ‘slight deformation’ of
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Fig. 6.2. The ground-state diagram of the lattice gas (6.1) when εS1 < −εC1. The values µC1 = 3(εS1 +
εC2), µC2 = 3(εC1 + εS1 + εC2), µC3 = 3εC2, µC4 = 3(εC1 + εC2), µC5 = 6εC1 + 3εC2, and
µS1 = 3εS2, µS2 = 3(εS2−εC1), µS3 = 3(εC1 +2εS1 +εS2, µS4 = 6εS1 +3εS2 [34]. The degeneracy
of the ground states is indicated in parentheses.

the ground-state one and that typical microscopic configurations of low-temperature phases have
the structure as their ground states (see Section 2.3), it is clear that the lattice gas can be used
to describe the above-mentioned scenario for the considered UPD process in which the phases
CCC, SCC, SCO, and OOO are stable one after the other as the potential ψ is increased. In
addition, the CCC–SCC, SCC–SCO, and SCO–OOO phase transitions are of first order, because
the copper coverage has a jump (of absolute value 1/3) at each of them.

As already mentioned, we shall focus on the CCC-SCC transition associated with the low
voltage spike. For the CCC and SCC phase the specific bulk and surface energies are

fCCC = 3εC1 + 3εC2 − µC + o, (6.4a)

fSCC = εC1 + 2εS1 + 2εC2 + εS2 −
2
3
µC −

1
3
µS + o, (6.4b)

f
(1)
CCC = −εC1 − 2εC2 +

4
3
ηCC +

2
3
ηCS + o, (6.4c)

f
(1)
SCC = −1

3
εC1 −

2
3
εS1 −

4
3
εC2 −

2
3
εS2 +

2
3
ηCC +

2
3
ηCS +

2
3
ηSC + o, (6.4d)
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where the terms o represent small corrections of order exp(−cβ) due to thermal perturbations.
Thus, the single-phase copper coverages are

θCCC = −∂fCCC
∂µC

= 1 + o, θSCC = −∂fSCC
∂µC

=
2
3

+ o. (6.4e)

Their derivatives with respect to either chemical potential are all of order o. The coverage jump
and difference in the specific surface free energies at the transition are

∆θ = θSCC(µt)− θCCC(µt) = −1
3

+ o > 0, (6.4f)

τ = f
(1)
SCC(µt)− f

(1)
CCC(µt) =

2
3

(εC1 − εS1 + εC2 − εS2 − ηCC + ηSC) + o, (6.4g)

respectively.

6.2 Crystal coverage and current density

Since the model has two chemical potentials, the coverage and current density in a crystal C are
given as

ΘC(ψ) =
1

βNC

∂ logZC(µC(ψ), µS(ψ))
∂µC

, (6.5a)

IC(ψ) = −κe0γCν
∂ΘC(ψ)
∂ψ

. (6.5b)

Applying Eq. (4.8) with θ1 = θCCC and θ2 = θSCC and Eq. (6.4), the coverage and current
density in a crystal C, as functions of the electric potential ψ, may be expressed as [34]

ΘC ≈ 1− 1
3
JC , IC = ÎC + δIC , (6.6a)

with

ÎC ≈
1−K

36
κν(e0γC)2βL2PC , (6.6b)

δIC ≈ κν(e0γC)2(o+ o JC), (6.6c)

where

ΩC =
(1−K)e0γC

6
(ψ − ψmax)βL2 (6.7)

and

ψmax ≈ ψt +
8(εC1 − εS1 + εC2 − εS2 − ηCC + ηSC)

(1−K)e0γC
1
L
. (6.8)

The phase transition point ψt is determined from the condition fCCC = fSCC , and Eq. (6.4)
yields

ψt ≈ ψC −
6(εC1 − εS1) + 3(εC2 − εS2) +Q

(1−K)e0γC
(6.9)

with ψt being below ψC − (6εC1 + 3εC2)/e0γ (so that µC stays above µC5 from Fig. 6.2).
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Fig. 6.3. (a) The stripping part of the voltammogram for the UPD of copper on Au(111) from Fig. 4.3 for
voltages 0.018V ≤ ψ ≤ 0.13V . (b) The corresponding coverage Θ0 (the full curve), and the coverages
for the occupied and vacant phases (the dashed curves). (c) The resulting jump function J0.

6.3 Electrode coverage and current density: Experiment vs. theory

Using the data from the stripping part of the voltammogram in Fig. 4.3 for the UPD of copper
on Au(111), the coverage Θ0 can be evaluated from Eq. (5.7) (see Fig. 6.3(b)). The low voltage
current density spike lies within the range 0.018V ≤ ψ ≤ 0.13V and is shown in Fig. 6.3(a).
Fitting the coverage values within the intervals 0.018V ≤ ψ ≤ 0.045V and 0.09V ≤ ψ ≤
0.13V by quadratic polynomials,

θCCC ≈ 1.00 + 0.06ψ − 10.58ψ2, θSCC ≈ 0.70− 0.24ψ − 2.75ψ2, (6.10)

we then obtain the coverages for the CCC and SCC phases, respectively (see Fig. 6.3(b)). The
jump function J0 is determined from the first relation in Eq. (4.15) (see Fig. 6.3(c)). The same
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Fig. 6.4. (a) The current density I0 corresponding to the stripping part of the voltammogram for the UPD
of copper on Au(111) from Fig. 4.3 and its splitting into the excess and baseline parts Î0 and δI0. (b) A
detail of the plot from (a).

equation shows that the baseline current density is

δI0(ψ) = iSCC + (iCCC − iSCC)J0 (6.11)

with

iCCC = − A0

|∆θ|
∂θCCC
∂ψ

≈ 12.40ψ − 0.04, (6.12a)

iSCC = − A0

|∆θ|
∂θSCC
∂ψ

≈ 3.22ψ + 0.14, (6.12b)

where A0 = 0.195µA.V.cm−2 is the area under the low voltage spike and the coverage jump
∆θ ≈ −1/3. The excess current density is then the difference Î0 = I0 − δI0 (see Fig. 6.4).

We may now adjust the four parameters γ, r, ∆τ , and ψt so that the theoretical formula for
the excess current density Î0 in Eq. (4.15) would fit the one determined from experiment. We
will again employ the size distribution wL from Eq. (4.20) with p = 0.81 (i.e., P = 0.1), the
fitting procedure described in Section 4.5, and the experimental values [34]

κe0 = 222.4µC.cm−2, ν = 1 mV.s−2, ∆θ ≈ −1/3. (6.13)

The experimental Î0 from Fig. 5.3 has the area, maximum position, height, and asymmetry factor
equal to

A = 0.146µA.V.cm−2,

ψ∗ = 0.054V ,

Ht = 10.50µA.cm−2,

α = 0.269,

(6.14)
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respectively. From the area A and Eq. (4.17a) we get

γ = 1.97. (6.15)

The dependence L∗(r) and α(r) are determined just by the size distribution wL and not the
considered UPD process, so their plots within the range −1 ≤ r ≤ 1 from Fig. 4.6 can be
applied. To fit the value of the asymmetry factor determined from experiment, we get

r = 0.261, (6.16)

which corresponds to L∗ = 25.08. These r and L∗ yields e0∆τHt = 0.843µA.V.cm−2 from
Eq. (4.17c). Thus, to get the correct height, we must have

∆τ = 80.3meV , (6.17a)

yielding

τ0 = r∆τ = 21.0meV . (6.17b)

Using now the position of the spike maximum, the phase-transition voltage is

ψt = 0.049V (6.18)

by Eq. (4.17b).
Using the adjusted parameters γ, r, ∆τ , and ψt, we calculate the theoretical ψ dependences

for the excess current density Î0, jump function J0, total coverage Θ0, baseline current den-
sity δI0, and total current density I0 from Eq. (4.15) (see Fig. 6.5). Their agreement with the
experimental dependences from Figs. 6.3 and 6.4 is rather good.

6.4 Interaction energies

Let us obtain the relation between the mean value τ0 and range half-width ∆τ and the interaction
energies in the considered lattice-gas model (6.1). The randomness in the boundary conditions is
again represented by that of the boundary interactions given in this model by the energies ηCC ,
ηCS , and ηSC . We describe the latter via the total occupancies 0 ≤ ϑC ≤ 1 and 0 ≤ ϑS ≤
1 of the deposited copper and sulfate, respectively, in the defect regions surrounding a given
crystal C. Namely, we express the boundary interaction energies to be proportional to the bulk
n.n. interaction energies as [34]

ηCC = ϑC εC1, ηCS = ϑS εS1, ηSC = ϑC εS1. (6.19)

Referring to the local limit theorem, the probability that ϑC and ϑS have given values is estimated
by a product of two Gaussian distributions, one for ϑC and one for ϑS . Their mean values are
equal to the probabilities, 0 ≤ ϑ0

C ≤ 1 and 0 ≤ ϑ0
S ≤ 1, that a given defect site is occupied by

copper and sulfate, respectively. Their variances are D2
C = ϑ0

C(1 − ϑ0
C)/(2/3)4L and D2

S =
ϑ0
S(1− ϑ0

S)/(1/3)4L, respectively (in the SCC boundary conditions one third of the outer sites
is occupied by sulfate and two thirds by copper).
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Fig. 6.5. The theoretical ψ dependences for the (a) excess current density Î0, (b) total current density I0, (c)
jump function J0, (d) total coverage Θ0, and (e) baseline current density δI0 as calculated from Eq. (4.15)
and their comparison with the experimental ones from Figs. 6.3 and 6.4.
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Recalling the expression for τ in Eq. (6.4), the mean value of τ should be

τ0 ≈
2
3

(εC1 − εS1 + εC2 − εS2 − η0
CC + η0

SC), (6.20)

where η0
CC = ϑ0

C εC1 and η0
SC = ϑ0

C εS1 are the mean boundary interaction energies. Its
variance should be σ2 = var(τ) ≈ (2/3)[(εC1DC)2 + (εS1DS)2]. Since σ = ∆τ/2

√
L, we

get [34]

∆τ =
[
η0
CC(εC1 − η0

CC) + 2η0
SC(εS1 − η0

SC)
]1/2

. (6.21)

It is not possible to uniquely determine the six energies εC1, εS1, εC2, εS2, η0
CC , and η0

SC from
the two adjusted values of τ0 and ∆τ . This can be done only when not only the low voltage spike
but also the high voltage spike and its foot region from the voltammogram are fitted by theoretical
formulas. We shall not carry out this analysis here, it was presented in [34]. There the values
εC1 = 18.7meV , εS1 = − 100meV , εC2 = − 4.5meV , εS2 = − 9meV , η0

CC = 14.0meV ,
and ε0SC = − 75.1meV were obtained.
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7 Conclusions

The main goal of this review was to describe macroscopic behavior, as determined by micro-
scopic interactions, in systems that are large, but finite rather than infinite, and to illustrate how
this can be applied to obtain voltammogram spikes measured in electrochemical experiments.

In Section 2 we began by presenting rigorous results on finite-size effects valid for a wide
group of models—the contour models—of dimension d ≥ 2 at temperatures well below the
critical point where first-order phase transitions could occur. We showed that lattice-gas models
that are often employed in various applications could be rewritten as contour models and that
low-temperature cluster expansion series could be used to obtain the models’ free energy, phases,
and phase diagrams. Since the finite-size behavior is very sensitive to boundary conditions, we
considered three cases (periodic, weak, and strong boundary conditions) and presented the results
for each case separately. For weak and strong boundary conditions the surface effects caused a
shift of the actual position of the finite-volume transition from the infinite-transition point (for
periodic boundary conditions the shift is negligible). For strong boundary conditions there was,
in addition, a significant dependence of single-phase quantities on the external fields due to the
presence of phase separation in the system.

We then used the rigorous results in the case of weak boundary conditions to obtain the
coverage and current density in dependence on the applied electric potential measured in under-
potential deposition experiments. The key idea behind the results is that surfaces of electrodes
used in the experiments have a polycrystalline structure, being composed of a large number of
single-crystalline domains. In Section 3 we first presented the results that are of general nature
and could be applied to a system of dimension d ≥ 2 that is composed of many subsystems. We
expressed a quantity related to the whole system as a double average of the quantities related to
the individual subsystems. One average was over the subsystem sizes and one over the surface
free energy differences in the subsystems. After evaluating the latter average, we provided results
for a general distribution of subsystem sizes that could be calculated in a numerical way. We de-
scribed a procedure to fit experimental data with theoretical results, using only four adjustable
parameters.

Finally, in Sections 4 – 6, we focused on first-order phase transitions that might occur at
an electrode–electrolyte interface due to a sudden UPD deposition of a metal on the electrode
surface. We pointed out that sharp spikes were known to be present in the voltammograms
(the current vs. electric potential plots) when such transitions took place. As two examples, we
showed voltammograms for UPD of copper on the (111) surface of platinum and gold electrodes.
Applying the general results from Section 3 to this two-dimensional phenomenon, we obtained
rather good agreement between theoretical and experimental spikes. The fitting procedure was
described in detail for both experiments, and we were even able to obtain the corresponding
values of the microscopic interaction energies in the models that simulate the two UPD processes.

Acknowledgement: The research in this paper was supported by the Czech Science Foundation,
Project No. P105/12/G059, and by the VEGA project No. 1/0162/15.
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