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The present article provides a tutorial review on how to treat the Ising and Ising-like models
within the mean-field, effective-field and exact methods. The mean-field approach is illus-
trated on four particular examples of the lattice-statistical models: the spin-1/2 Ising model
in a longitudinal field, the spin-1 Blume-Capel model in a longitudinal field, the mixed-spin
Ising model in a longitudinal field and the spin-S Ising model in a transverse field. The mean-
field solutions of the spin-1 Blume-Capel model and the mixed-spin Ising model demonstrate
a change of continuous phase transitions to discontinuous ones at a tricritical point. A con-
tinuous quantum phase transition of the spin-S Ising model driven by a transverse magnetic
field is also explored within the mean-field method. The effective-field theory is elaborated
within a single- and two-spin cluster approach in order to demonstrate an efficiency of this ap-
proximate method, which affords superior approximate results with respect to the mean-field
results. The long-standing problem of this method concerned with a self-consistent deter-
mination of the free energy is also addressed in detail. More specifically, the effective-field
theory is adapted for the spin-1/2 Ising model in a longitudinal field, the spin-S Blume-Capel
model in a longitudinal field and the spin-1/2 Ising model in a transverse field. The particular
attention is paid to a comprehensive analysis of tricritical point, continuous and discontinu-
ous phase transitions of the spin-S Blume-Capel model. Exact results for the spin-1/2 Ising
chain, spin-1 Blume-Capel chain and mixed-spin Ising chain in a longitudinal field are ob-
tained using the transfer-matrix method, the crucial steps of which are also reviewed when
deriving the exact solution of the spin-1/2 Ising model on a square lattice. The critical points
of the spin-1/2 Ising model on several planar (square, honeycomb, triangular, kagomé, deco-
rated honeycomb, etc.) lattices are rigorously obtained with the help of dual, star-triangle and
decoration-iteration transformations. The mapping transformation technique
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is subsequently adapted to obtain exact results for the critical temperature and spontaneous
magnetization of the mixed-spin Ising model on decorated planar lattices and three-coordi-
nated archimedean (honeycomb, bathroom-tile and square-hexagon-dodecagon) lattices. It is
shown that an increase in the coordination number of the mixed-spin Ising model on deco-
rated planar lattices gives rise to reentrant phase transitions, while the critical temperature of
the mixed-spin Ising model on a regular honeycomb lattice is always greater than the critical
temperature of the same model on two semi-regular archimedean lattices with the same co-
ordination number. The effect of selective site dilution of the mixed-spin Ising model on a
honeycomb lattice upon phase diagrams is also examined in detail. Last but not least, the re-
view affords a brief account of the Ising-like models previously solved within the mean-field,
effective-field and exact methods along with a few comments on their future applicability.

Contents

1 Introduction 238

2 Mean-field theory 241
2.1 Spin-1/2 Ising model in a longitudinal field . . . . . . . . . . . . . . . . . . . . 241
2.2 Spin-1 Blume-Capel model in a longitudinal field . . . . . . . . . . . . . . . . . 244
2.3 Mixed-spin Ising model in a longitudinal field . . . . . . . . . . . . . . . . . . . 249
2.4 Spin-S Ising model in a transverse field . . . . . . . . . . . . . . . . . . . . . . 252
2.5 Historical survey and future perspectives . . . . . . . . . . . . . . . . . . . . . . 258

3 Effective-field theory 259
3.1 Callen-Suzuki identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
3.2 Spin-1/2 Ising model within a single-spin cluster approach . . . . . . . . . . . . 262

3.2.1 Spontaneous magnetization and critical temperature . . . . . . . . . . . 266
3.2.2 Initial magnetic susceptibility . . . . . . . . . . . . . . . . . . . . . . . 268

3.3 Internal energy, enthalpy and specific heat . . . . . . . . . . . . . . . . . . . . . 270
3.4 Helmholtz and Gibbs free energy. Entropy . . . . . . . . . . . . . . . . . . . . . 273
3.5 Exact results for a spin-1/2 Ising chain . . . . . . . . . . . . . . . . . . . . . . . 276
3.6 Spin-1/2 Ising model in a transverse field within a single-spin cluster approach . 279
3.7 Spin-1 Blume-Capel model within a single-spin cluster approach . . . . . . . . . 284

3.7.1 Continuous phase transitions and tricritical point . . . . . . . . . . . . . 287
3.7.2 Discontinuous phase transitions . . . . . . . . . . . . . . . . . . . . . . 289

3.8 Exact van der Waerden identities for higher-spin Ising models . . . . . . . . . . 289
3.9 Approximate van der Waerden identities for higher-spin Ising models . . . . . . 291
3.10 Spin-S Ising model in a transverse field within a single-spin cluster approach . . 295
3.11 Spin-1/2 Ising model within a two-spin cluster approach . . . . . . . . . . . . . 297
3.12 Historical survey and future perspectives . . . . . . . . . . . . . . . . . . . . . . 303



CONTENTS 237

4 Exact results 305
4.1 One-dimensional Ising models . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

4.1.1 Spin-1/2 Ising chain in a longitudinal field . . . . . . . . . . . . . . . . . 305
4.1.2 Spin-1 Blume-Capel chain in a longitudinal field . . . . . . . . . . . . . 312
4.1.3 Mixed-spin Ising chain in a longitudinal field . . . . . . . . . . . . . . . 314

4.2 Two-dimensional Ising models . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
4.2.1 Dual lattice and dual transformation . . . . . . . . . . . . . . . . . . . . 316
4.2.2 Star-Triangle Transformation . . . . . . . . . . . . . . . . . . . . . . . . 322
4.2.3 Decoration-Iteration Transformation . . . . . . . . . . . . . . . . . . . . 326
4.2.4 Critical points of spin-1/2 Ising archimedean lattices . . . . . . . . . . . 330
4.2.5 Transfer-Matrix Approach . . . . . . . . . . . . . . . . . . . . . . . . . 332
4.2.6 Mixed-spin Ising model on decorated planar lattices . . . . . . . . . . . 338
4.2.7 Mixed-spin Ising model on three-coordinated planar lattices . . . . . . . 342
4.2.8 Selectively diluted mixed-spin Ising model . . . . . . . . . . . . . . . . 346

4.3 Historical survey and future perspectives . . . . . . . . . . . . . . . . . . . . . . 349

5 Conclusion 353

Acknowledgement 354

Appendix: Gibbs-Bogoliubov inequality 355

References 357



238 A brief account of the Ising and Ising-like models

1 Introduction

The Ising model represents one of the simplest but at the same time also one of the most fre-
quently studied models of cooperative phenomena in statistical mechanics. An early history of
the Ising model dates back to pioneering works by Lenz [1] and Ising [2], which have introduced
and exactly solved one-dimensional (1D) version of this lattice-statistical model originally aimed
at a theoretical description of a magnetic phase transition of ferromagnetic materials. However,
the exact solution has refuted an existence of finite-temperature phase transition in the spin-
1/2 Ising linear chain, whereas the same conclusion was erroneously drawn also for its higher-
dimensional versions [2]. This faulty conjecture has significantly suppressed an investigation
of the Ising model over subsequent two decades during which it became of marginal research
interest. The situation has dramatically changed after Onsager found the exact solution for the
spin-1/2 Ising model on a rectangular lattice [3], which has rigorously proved an intriguing phase
transition at finite temperature notwithstanding of an extremely short-ranged character of the in-
teraction potential. The two-dimensional (2D) Ising model has accordingly gained a prominent
place in statistical mechanics as paradigmatic example of exactly solved lattice-statistical model
with a remarkable phase transition. It is beyond the scope of the present work to review here
all crucial aspects of historical development of the Ising model and its various extensions, which
have been exhaustively described in several previous review papers [4,5] to which the interested
readers are referred to for further details. By contrast, the primary goal of the present work is
to provide a comprehensive description of mean-field, effective-field and exact methods when
applying them to different variants of the Ising model. Before doing this, it might be quite useful
to recall some elementary facts about possible applications of the Ising model.

The Ising model and its various extensions have an extraordinary capability of elucidating co-
operative phenomena of seemingly diverse physical origin in spite of the fact that the model was
originally proposed for a theoretical description of insulating magnetic materials. In this regard,
let us at first briefly comment on traditional applications of the Ising model in magnetism. It is
quite curious that it took almost a half century from the early development of the Ising model
until the first experimental realizations of it were found in magnetism. For many years, the
Ising model was therefore regarded more as a mathematical curiosity without any detailed corre-
spondence to a specific magnetic material, because this model totally disregards quantum effects
closely related to a non-commutability of spin operators. There are three principal requirements
for a magnetic substance in order to be identified as the Ising-like material:

1. The dominant interaction between magnetic ions, which governs the overall magnetic be-
havior, must be extremely short-ranged.

2. The ground state of magnetic ion must be a doublet, which is well separated in energy
from all other excited states (typically magnetic ions with Kramer’s doublet ground state).

3. There should be no quantum-mechanical coupling between the states of mutually interact-
ing magnetic ions.

At present, two families of insulating magnetic materials are known, which conform with greater
or lesser success all three aforementioned requirements. The first class of the Ising-like magnetic
materials are rare-earth compounds, which contain as the only carriers of magnetic moment
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rare-earth ions (such as Dy3+, Ho3+, Tb3+, etc.) interacting among themselves almost entirely
through dipolar forces. Although the magnetic dipole-dipole interaction is in its essence long-
ranged, the dipolar interactions between more distant rare-earth ions can occasionally cancel out.
Under this circumstance, one may merely consider the dipole-dipole interaction between nearest-
neighbor rare-earth ions and to neglect all other dipolar interactions between more distant rare-
earth ions. In spite of a certain oversimplification, the agreement between theoretical predictions
of the Ising model and relevant experimental data is found to be very satisfactory [6–8].

The second class of the Ising-like magnetic materials represent some particular examples
of coordination compounds. The most important interaction between magnetic centers (usu-
ally transition-metal ions) within this class of magnetic compounds is a superexchange cou-
pling, which is mediated via intervening non-magnetic ligand and is therefore extremely short-
ranged. However, the highly anisotropic Ising interaction between the magnetic centers can be
obtained just for the magnetic ions with a strong enough spin-orbit interaction and/or crystal-field
anisotropy such as for instance Co2+ or low-spin Fe3+ ions. This specific condition represents
the most important limitation for transition-metal coordination compounds to be identified as
experimental realizations of the Ising-like materials [6–8]. For illustration, a few typical experi-
mental realizations of the Ising-like spin systems from both aforementioned families of magnetic
materials are listed in Tab. 1.1.

Apart from the traditional applications in magnetism, the Ising-like models have also found
manifold applications closely related to cooperative phenomena of interacting many-particle
systems from seemingly diverse research areas. As a matter of fact, there are several phys-
ical motivations for exploring the Ising model and its different variants, which have proved
their usefulness in the realm of statistical physics for modeling of order-disorder phase tran-
sitions in metal alloys [9–11], vapour-liquid coexistence curves at liquid-gas transition [10–12]
or phase separation of liquid mixtures [12–14]. The Ising-like models also reveal a profound
essence of various collective phenomena in biophysics such as for instance the saturation curve
of hemoglobine [15–17], the initial reaction rate of allosteric enzymes [16,17], the melting curve
of helix-coil transition in DNA [18–21] or the critical behavior of lipid membranes [22–26].
More recently, the Ising-like models have opened up a brand new research field focused on sev-
eral socio-economical aspects of society. Among these unconventional applications of the Ising
model one could mention an investigation of the role of socio-economic interactions in relation
to business confidence indicators [27–29], the analysis of financial time series in business mar-

Tab. 1.1. The list of Ising-like magnetic materials compiled from Refs. [6–8].

Chem. formula Type of ordering Tc(K)
Dy(C2H5SO4)3.9H20 dipolar ferromagnet 10
LiTbF4, LiHoF4 dipolar ferromagnet 29
Dy2Ti2O7 spin ice < 0.05
Dy3Al5O12 antiferromagnet 25
DyPO4 antiferromagnet 34
Rb2CoF4, K2CoF4 2D antiferromagnet 101
Rb3CoCl5, Cs3CoCl5 2D antiferromagnet 1.1, 0.5
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kets [30, 31], urban segregation [32–34] or linguistic change of language [29, 35, 36]. Another
remarkable applications of the Ising model have been recently found in the medicine when af-
fording promising modeling of a tumor growth [37] or electromechanical alternans of cardiac
cells [38, 39]. The latter undesirable effect is caused by an instability of calcium cycling closely
connected with the order-disorder phase transition from the Ising universality class [38, 39].
Nowadays, the Ising model is also being considered as a useful framework for the chronifica-
tion of pain due to unknown causes, which represents challenging up-to-date topic of current
medicine aimed at a more thorough understanding and treating of long-standing pain [40]. Of
course, the aforementioned list of applications is far from being completed, because the main
purpose of this list is to demonstrate versatility of the Ising-like models rather than to provide
comprehensive description of all possible applications reported hitherto.

It has been already mentioned that the primary goal of this article is to provide a tutorial
review on mean-field, effective-field and exact theories when applied to various versions of the
Ising-like models. It is our hope that the present review will afford a fairly good background even
for graduate students or non-experts how to treat the Ising-like models within all three aforemen-
tioned approaches widely used for diverse lattice-statistical spin models. Because of manifold
applications reaching far beyond typical problems of physics (e.g. economics or medicine) we
have decided to present a theoretical treatment of the Ising-like models in its full details prefer-
ably on a few selected textbook examples for which a lot of (even exact) results can be derived
after relatively straightforward and modest calculations. The extension to other more complex
Ising-like models is of course possible and is briefly commented on at the end of each section.
Last but not least, a comparison between exact and approximate theories should contribute to a
capability of distinguishing reliability of the obtained approximate results, because a danger of
over-interpretation is inherent in any approximation.

The organization of this short review is as follows. The section 2 is devoted to the mean-
field theory, which is still frequently used due to its conceptual simplicity as a useful benchmark
for more precise approximate and exact theories. Among other matters, we will address in this
section a possible change of continuous phase transitions to discontinuous ones at a so-called
tricritical point, as well as, a quantum phase transition driven by a transverse magnetic field.
The basic ideas of the effective-field theory, which is superior with respect to the mean-field
theory, are reviewed in the section 3. This section provides a more fundamental understanding
of how magnetic response functions are influenced when short-range correlations are accounted
for. In addition, the section 3 also brings insight into a long-standing problem of the effective-
field theory concerned with a self-consistent determination of the Gibbs free energy. The section
4 provides a lot of exact results for 1D and 2D Ising models. The presented exact results shed
light on a strong universality of the critical behavior of the simple spin-1/2 and mixed-spin Ising
model on several planar lattices, whereas our particular attention is paid to the dependence of
critical temperature on the lattice geometry. Finally, the review ends up with a brief summary of
our findings and conclusions mentioned in the section 5.
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2 Mean-field theory

In this section we will provide a comprehensive description of the calculation procedure based on
the molecular-field (mean-field) approximation [41,42], which is often used due to its simplicity
as the first primary tool for rough estimate of a magnetic behavior of more complex lattice-
statistical spin systems. All crucial steps of this approximate method will be illustrated on four
essential lattice-statistical spin models: the spin-1/2 Ising model in a longitudinal magnetic field,
the spin-1 Blume-Capel model in a longitudinal magnetic field, the mixed-spin Ising model in a
longitudinal magnetic field and the spin-S Ising model in a transverse magnetic field.

2.1 Spin-1/2 Ising model in a longitudinal field

Let us begin with by considering the simplest example of the spin-1/2 Ising model in a longitu-
dinal magnetic field, which can be defined through the Hamiltonian:

H = −J

Nq/2∑
〈ij〉

σiσj − h

N∑
k=1

σk. (2.1)

In above, σi = ±1/2 is the Ising spin placed at the ith lattice point, the first summation accounts
for the Ising coupling J between the nearest-neighbor spin pairs, the second summation accounts
for the Zeeman’s energy of individual magnetic moments, N denotes the total number of the
lattice sites (spins) and q is their coordination number (i.e. the number of nearest neighbors).
It worth mentioning that the Ising spin variable σi = ±1/2 can be alternatively viewed as the
z-component of the standard spin-1/2 operator (Pauli matrix) with the eigenvalues σz

i = ±1/2,
whereas its canonical ensemble average directly equals to the magnetization as the Landé g-factor
and Bohr magneton µB were adsorbed into the definition of the magnetic field (h = gµBH)
within this convention. The Ising model given by the Hamiltonian (2.1) is semi-classical, because
it correctly takes into account a quantization of the magnetic moment (spin), but it disregards
quantum fluctuations connected to a non-commutability of other spatial components of the same
spin operator completely left out from the Hamiltonian (2.1).

An exact treatment of the Ising model given by the Hamiltonian (2.1) demands (notwithstand-
ing of its conceptual simplicity) an utilization of very sophisticated mathematical methods (see
Section 4), since degrees of freedom of individual spins cannot be accounted for independently
of each other due to mutual nearest-neighbor spin-spin interactions. To avoid this complexity of
the cooperative nature one performs within the mean-field approximation a summation over spin
degrees of freedom of just one individual (central) spin and replaces an expectation value for all
other spins by the mean value. Hence, it follows that the Hamiltonian of a single spin is at the
mean-field level given by:

Hi = −Jσi

q∑
j=1

〈σj〉 − hσi. (2.2)

The keystone of the mean-field approximation is to neglect all local fluctuations in spin-spin
correlations, which substantially simplifies further treatment as the considered model essentially
becomes a set of non-interacting spins in a presence of the effective field hm.f. = h + Jq〈σj〉.
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In the following, we will elaborate the mean-field theory starting from the Gibbs-Bogoliubov
inequality [43–45], because this approach allows to obtain ’self-consistent’ expressions for all
basic thermodynamic quantities unlike a few other alternative formulations.

The Gibbs-Bogoliubov variational principle [43–45] is based on a validity of the inequality:

G ≤ Φ ≡ G0 + 〈H −H0〉0 , (2.3)

which is proved in full details in Appendix. Above, G and H represent the true Gibbs free
energy and the full Hamiltonian of a considered lattice-statistical model, whereas G0 and H0

represent the trial Gibbs free energy and the trial Hamiltonian of a simplified lattice-statistical
model for which the relevant calculations can be performed exactly (the symbol 〈· · · 〉0 denotes
canonical ensemble average within the simplified model defined by the Hamiltonian H0). It can
be understood from the inequality (2.3) that the expression Φ represents the variational Gibbs
free energy, which provides an upper bound for the true Gibbs free energy G. In this respect,
the variational Gibbs free energy Φ is subject to minimalization achieved by convenient choice
of variational parameters involved in the trial Hamiltonian H0. An accuracy of the developed
variational approach will of course depend on how concisely the simplified lattice-statistical
model describes the original lattice-statistical model.

It has been argued previously that the mean-field theory presumes a virtual independence of
the Ising spins, which is achieved by the renormalization of the actual magnetic field to the effec-
tive field taking into account the contribution from the averaged nearest-neighbor interactions.
According to this, the mean-field approximation of the spin-1/2 Ising model in a longitudinal
magnetic field can be accomplished by the following choice of the trial Hamiltonian:

H0 = −γ

N∑
k=1

σk, (2.4)

which depends on a single variational parameter γ with the physical meaning of the effective
field. The partition function Z0, the Gibbs free energy G0 and the magnetization m0 = 〈σi〉0 of
the spin-1/2 Ising model defined by the trial Hamiltonian (2.4) are given by:

Z0 =
∑
{σk}

exp(−βH0) =
N∏

k=1

∑
σk=± 1

2

exp(βγσk) =
[
2 cosh

(
βγ

2

)]N

,

G0 = −kBT lnZ0 = −NkBT ln 2−NkBT ln cosh
(

βγ

2

)
,

m0 = − 1
N

∂G0

∂γ
=

1
2

tanh
(

βγ

2

)
, (2.5)

where β = 1/(kBT ), kB is Boltzmann’s constant, T is the absolute temperature and the symbol∑
{σk} labels summation over all possible states of a set of non-interacting Ising spins. It can

be easily proved with the help of Eq. (2.5) that the expectation value of the spin-spin correlation
can be decoupled within the mean-field theory to a second power of the magnetization:

〈σiσj〉0 = 〈σi〉0〈σj〉0 = m2
0, (2.6)
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and subsequently, one in turn obtains the mean value for a difference between the true and trial
Hamiltonians entering the right-hand-side of the Gibbs-Bogoliubov inequality (2.3):

〈H −H0〉0 = −Nq

2
Jm2

0 −N(h− γ)m0. (2.7)

The final explicit form of the variational Gibbs free energy Φ, which determines an upper bound
for the true Gibbs free energy, is then given by:

Φ = −NkBT ln 2−NkBT ln cosh
(

βγ

2

)
− Nq

2
Jm2

0 −N(h− γ)m0. (2.8)

At this stage, one may minimize the variational Gibbs free energy (2.8) in order to get the mean-
field estimate for the true Gibbs free energy from the extremum condition:

∂Φ
∂γ

= 0 ⇐⇒ (qJm0 + h− γ)
∂m0

∂γ
= 0, (2.9)

which implies the optimal value of the variational parameter γ = qJm0 + h in agreement with
the previous phenomenological expectation (2.2). The mean-field estimate for the true Gibbs free
energy of the spin-1/2 Ising model in a longitudinal field can be now obtained by substituting the
gained optimal value of the variational parameter γ = qJm0 + h into Eq. (2.8):

G = −NkBT ln 2−NkBT ln cosh
[
β

2
(qJm + h)

]
+

Nq

2
Jm2, (2.10)

whereas the magnetization m = m0 should obey according to Eqs. (2.5) and (2.10) the following
’self-consistent’ equation:

m =
1
2

tanh
[
β

2
(qJm + h)

]
. (2.11)

In a zero magnetic field h = 0, the ’self-consistent’ formula for the magnetization (2.11) reduces
to a simpler form:

m =
1
2

tanh
(

βqJm

2

)
, (2.12)

which indicates the non-zero spontaneous magnetization related to the ferromagnetic long-range
order at low enough temperatures.

It is well known that the spin-1/2 Ising model may exhibit in an absence of the magnetic field
(h = 0) a continuous (second-order) phase transition from a spontaneously ordered ferromag-
netic state to a disordered paramagnetic state upon rising temperature. The critical temperature of
the order-disorder phase transition can be accordingly acquired by expanding the right-hand-side
of Eq. (2.12) and keeping just the first linear term from the relevant expansion (tanhx→0 x ≈ x)
as soon as the spontaneous magnetization continuously vanishes at a critical point. This straight-
forward procedure gives the following critical condition:

m =
1
4
βcqJm ⇐⇒ qβcJ = 4 ⇐⇒ kBTc

qJ
=

1
4
, (2.13)
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where Tc and βc = 1/(kBTc) is the critical temperature and inverse critical temperature, respec-
tively. The precise nature of how the spontaneous magnetization disappears in a vicinity of the
critical point can be obtained from the expansion of the right-hand-side of Eq. (2.12) when keep-
ing two first non-zero terms (tanhx→0 x ≈ x−x3/3), which serve in evidence of the power-law
behavior of the spontaneous magnetization with the critical exponent βm = 1/2 close to but
slightly below the critical temperature:

m(T ≤ Tc, h = 0) ≈
(

1− T

Tc

) 1
2

. (2.14)

It should be stressed that the critical point of a continuous phase transition can be alternatively
attained according to the Landau theory of phase transitions from the expansion of the zero-field
Gibbs free energy with respect to the relevant order parameter. The formula (2.10) for the Gibbs
free energy reduces in a zero magnetic field to the following expression:

G(h = 0) = −NkBT ln 2−NkBT ln cosh
(

βqJm

2

)
+

Nq

2
Jm2, (2.15)

whereas its expansion with respect to the magnetization in a vicinity of the critical point reads:

G(h = 0,m → 0) = N
(
g0 + g2m

2 + g4m
4 + . . .

)
g0 = −kBT ln 2,

g2 =
qJ

2

(
1− βqJ

4

)
,

g4 =
qJ

24

(
βqJ

2

)3

. (2.16)

The continuous phase transition is given by the constraint g2 = 0, g4 > 0 within the Landau the-
ory of phase transitions, which is indeed in accordance with the critical condition (2.13) reported
previously from the ’self-consistent’ relation for the spontaneous magnetization. The Landau
theory thus unambiguously verifies an existence of the continuous phase transition at a critical
point of the spin-1/2 Ising model independently of the lattice coordination number and the lattice
dimensionality. It should be also pointed out that a rather naive expression for the critical tem-
perature (2.13) obtained within the mean-field theory depends exclusively upon the coordination
number of the underlying lattice, while it does not depend neither on the lattice dimensionality
nor the lattice topology. From this point of view, the non-zero critical temperature of the spin-1/2
Ising linear chain (kBTc/J = 1/2 for q = 2) represents the most principal artifact of the mean-
field approximation, whereas the mean-field estimate of the critical temperature (2.13) generally
becomes more reliable for the spin-1/2 Ising model on 2D and 3D lattices with sufficiently high
coordination numbers. As a matter of fact, the mean-field theory becomes exact in the limit
q →∞ due to diminishing importance of local fluctuations.

2.2 Spin-1 Blume-Capel model in a longitudinal field

The foremost advantage of the mean-field theory lies in that it can be readily generalized to more
complex lattice-statistical models as for instance the spin-1 Blume-Capel model [46–48], which
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may even display a greater versatility of the critical behavior including a change of continuous
phase transitions to discontinuous ones at a tricritical point. The Hamiltonian of the spin-1
Blume-Capel model in a longitudinal magnetic field reads:

H = −J

Nq/2∑
〈ij〉

SiSj −D

N∑
k=1

S2
k − h

N∑
k=1

Sk, (2.17)

where Si = ±1, 0 is the spin-1 particle placed at the ith lattice point, the first summation takes
into account the bilinear nearest-neighbor Ising interaction, the second summation the uniaxial
single-ion anisotropy and the third one the Zeeman’s energy in a longitudinal magnetic field.

The trial Hamiltonian for the spin-1 Blume-Capel model in a magnetic field should include
within the mean-field approximation two different variational parameters γ and η:

H0 = −γ

N∑
k=1

Sk − η

N∑
k=1

S2
k, (2.18)

which have physical meaning of the effective field and the effective single-ion anisotropy act-
ing on a spin and quadrupolar moment, respectively. With regard to this, the Hamiltonian
(2.17) of interacting many-particle system is approximated by the Hamiltonian (2.18) of the
non-interacting system of the spin-1 particles, for which the partition function Z0, the Gibbs free
energy G0, the magnetization m0 = 〈Si〉0 and the quadrupolar moment q0 = 〈S2

i 〉0 can easily
be calculated:

Z0 =
∑
{Sk}

exp(−βH0) =
N∏

k=1

∑
Sk=±1,0

exp(βγSk + βηS2
k) = [1 + 2 exp(βη) cosh (βγ)]N,

G0 = −kBT lnZ0 = −NkBT ln [1 + 2 exp(βη) cosh (βγ)] ,

m0 = − 1
N

∂G0

∂γ
=

2 exp(βη) sinh (βγ)
1 + 2 exp(βη) cosh (βγ)

,

q0 = − 1
N

∂G0

∂η
=

2 exp(βη) cosh (βγ)
1 + 2 exp(βη) cosh (βγ)

. (2.19)

The mean value for the difference between the true and trial Hamiltonians entering the right-
hand-side of the Gibbs-Bogoliubov inequality (2.3) is given by:

〈H −H0〉0 = −Nq

2
Jm2

0 −N(D − η)q0 −N(h− γ)m0, (2.20)

which leads in combination with Eq. (2.19) to the following expression for the variational Gibbs
free energy Φ determining an upper bound for the true Gibbs free energy:

Φ = −NkBT ln cosh [1 + 2 exp(βη) cosh (βγ)]−Nq

2
Jm2

0−N(D−η)q0−N(h−γ)m0. (2.21)

The minimalization of the variational Gibbs free energy (2.21) with respect to both variational
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parameters γ and η results in two equations:

∂Φ
∂γ

= 0 ⇐⇒ (qJm0 + h− γ)
∂m0

∂γ
+ (D − η)

∂q0

∂γ
= 0,

∂Φ
∂η

= 0 ⇐⇒ (qJm0 + h− γ)
∂m0

∂η
+ (D − η)

∂q0

∂η
= 0, (2.22)

which are simultaneously satisfied if the variational parameters γ and η obey the relations:

γ = qJm0 + h and η = D. (2.23)

The mean-field calculation thus yields, after substituting the variational parameters γ and η sat-
isfying the extremum condition (2.23) to Eq. (2.21), the following estimate of the Gibbs free
energy:

G = −NkBT ln cosh {1 + 2 exp(βD) cosh [β(qJm + h)]}+
Nq

2
Jm2, (2.24)

whereas the magnetization (m = m0) and the quadrupolar moment (qD = q0) are determined
by the expressions:

m =
2 exp(βD) sinh [β(qJm + h)]

1 + 2 exp(βD) cosh [β(qJm + h)]
,

qD =
2 exp(βD) cosh [β(qJm + h)]

1 + 2 exp(βD) cosh [β(qJm + h)]
. (2.25)

In a zero magnetic field h = 0, the final formulas for the magnetization and the quadrupolar
moment (2.25) substantially simplify to the following expressions:

m =
2 exp(βD) sinh (βqJm)

1 + 2 exp(βD) cosh (βqJm)
,

qD =
2 exp(βD) cosh (βqJm)

1 + 2 exp(βD) cosh (βqJm)
. (2.26)

On assumption that the spin-1 Blume-Capel model undergoes a continuous phase transition
from the ferromagnetic state to the disordered paramagnetic state one may easily derive the
critical condition:

m =
2 exp(βcD)βcqJm

1 + 2 exp(βcD)
⇐⇒ kBTc

qJ
=

2 exp(βcD)
1 + 2 exp(βcD)

, (2.27)

which readily follows from the expansion of the spontaneous magnetization (2.26) when retain-
ing only the linear term. Moreover, the critical value of the quadrupolar moment can be related
to the reduced critical temperature when substituting the critical condition (2.27) to Eq. (2.26):

qD(T = Tc) =
kBTc

qJ
. (2.28)

It can be easily understood from Eq. (2.27) that the critical temperature depends basically on a
relative strength of the uniaxial single-ion anisotropy, whereas it equals to kBTc/(qJ) = 2/3 for
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the particular case without single-ion anisotropy D = 0. The critical value of the quadrupolar
moment (2.28) for the special case with D = 0 suggests that all three spin states±1, 0 are equally
populated at a critical temperature. It should be mentioned that the critical condition (2.27) can
be also recovered from the Landau expansion of the zero-field Gibbs free energy (2.24):

G(h = 0) = −NkBT ln cosh [1 + 2 exp(βD) cosh (βqJm)] +
Nq

2
Jm2, (2.29)

which takes the following form in a close vicinity of the critical point:

G(h = 0,m → 0) = N
(
g0 + g2m

2 + g4m
4 + . . .

)
g0 = −kBT ln[1 + 2 exp(βD)],

g2 =
qJ

2

(
1− βqJ

2 exp(βD)
1 + 2 exp(βD)

)
,

g4 =
qJ

24
(βqJ)3

2 exp(βD)
1 + 2 exp(βD)

[
6 exp(βD)

1 + 2 exp(βD)
− 1
]

. (2.30)

The necessary condition g2 = 0, g4 > 0 for a presence of the continuous phase transition
within the Landau theory of phase transitions is repeatedly in concordance with the critical con-
dition (2.27) gained from an expansion of the spontaneous magnetization, but the latter condition
g4 > 0 restricts the second-order phase transitions to the single-ion anisotropies greater than the
boundary value D > Dt with Dt/(qJ) = − ln(4)/3. The special constraint g2 = 0, g4 = 0 in
the Landau theory of phase transitions is prerequisite for an existence of tricritical point, which
occurs in the spin-1 Blume-Capel model at the coordinates:

kBTt

qJ
=

1
3
,

Dt

qJ
= − ln 4

3
. (2.31)

Interestingly, the tricritical point of the spin-1 Blume-Capel model can be eventually located
from the series expansion of the spontaneous magnetization (2.26) in a close vicinity of the
critical point:

m = f1m + f3m
3 + . . .

f1 = βqJ
2 exp(βD)

1 + 2 exp(βD)
,

f3 =
(βqJ)3

6
2 exp(βD)

1 + 2 exp(βD)

[
1− 6 exp(βD)

1 + 2 exp(βD)

]
. (2.32)

According to Eq. (2.32), the spontaneous magnetization follows near a critical point of the
continuous phase transition the power-law behavior with the mean-field critical exponent βm =
1/2:

m(T ≤ Tc, h = 0) ≈
(

1− f1

f3

) 1
2

. (2.33)

It is quite evident from Eq. (2.33) that the critical condition for the second-order phase transition
is given by the constraint 1−f1 = 0, f3 < 0, which is actually equivalent to the critical condition
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Fig. 2.1. (a) The critical temperature of the spin-1 Blume-Capel model as a function of the uniaxial single-
ion anisotropy. The critical line of continuous (discontinuous) phase transitions is displayed by solid (bro-
ken) line, an open circle denotes a tricritical point (TCP). The inset shows detailed plot of a tricritical region
including the unstable solution of the critical condition (2.27) shown by a thin dotted line; (b) Thermal vari-
ations of the spontaneous magnetization for a few different values of the uniaxial single-ion anisotropy.
Broken lines denote magnetization jumps connected with the discontinuous phase transitions.

(2.27) provided that D > Dt. In addition, it turns out that the constraint 1 − f1 = 0, f3 = 0 is
fully consistent with the locus of the tricritical point (2.31) afforded by the Landau expansion of
the Gibbs free energy with the special values of the expansion coefficients g2 = 0, g4 = 0.

It could be concluded on the basis of our mean-field calculations that the spin-1 Blume-
Capel model should exhibit the second-order phase transitions with a continuous vanishing of the
spontaneous magnetization at a critical temperature just for D > Dt, while the first-order phase
transitions with a discontinuous (abrupt) jump of the spontaneous magnetization at a critical point
should emerge in the reverse case D < Dt (see Fig. 2.1(a)). The locus of discontinuous phase
transitions can be found from a comparison of the Gibbs free energies (2.29) of the ferromagnetic
state with a non-zero spontaneous magnetization m 6= 0 and the disordered paramagnetic state
with a zero spontaneous magnetization m = 0 both satisfying the ’self-consistent’ equation
(2.26) for the magnetization. The lines of continuous and discontinuous phase transitions merge
together at a tricritical point, which is displayed in Fig. 2.1(a) by an open circle. The unstable
solution of the critical condition (2.27) for the continuous phase transitions is shown in the inset
of Fig. 2.1(a) by a thin dotted line. The overall correctness of the established phase diagram is
demonstrated by temperature dependences of the spontaneous magnetization, which are depicted
in Fig. 2.1(b) for several values of the uniaxial single-ion anisotropy. In agreement with our
argumentation, the spontaneous magnetization exhibits at a critical temperature an abrupt jump
to the zero magnetization for the uniaxial single-ion anisotropies D < Dt (see the curves for
D/(qJ) = −0.47 and −0.49) instead of a continuous vanishing observed for D > Dt.
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2.3 Mixed-spin Ising model in a longitudinal field

Another interesting example of the lattice-statistical spin system, which may display a more
diverse critical behavior than the usual spin-1/2 Ising model, represents the mixed spin-1/2 and
spin-1 Ising model refined by the uniaxial single-ion anisotropy and longitudinal magnetic field.
The Hamiltonian of the mixed spin-1/2 and spin-1 Ising model taking into consideration the
uniaxial single-ion anisotropy and longitudinal magnetic field can be defined as:

H = −J

Nq/2∑
〈ij〉

σiSj −D

N∑
j=1

S2
j − hA

N∑
i=1

σi − hB

N∑
j=1

Sj , (2.34)

where σi = ±1/2 and Sj = ±1, 0 are the spin-1/2 and spin-1 Ising variables located at the ith
and jth lattice point, respectively. The first summation accounts for the nearest-neighbor Ising
interaction J , the second summation accounts for the uniaxial single-ion anisotropy D acting on
the spin-1 particles only, while the third and fourth summations account for the Zeeman’s energy
of the spin-1/2 and spin-1 particles in a longitudinal magnetic field. Note that the effective
magnetic fields hA and hB acting on the spin-1/2 and spin-1 magnetic particles are chosen to be
different, because different magnetic ions generally possess different Landé g-factors absorbed
into the effective magnetic fields hA = gAµBH and hB = gBµBH .

The mean-field theory for the mixed spin-1/2 and spin-1 Ising model should be developed
from the trial Hamiltonian involving three different variational parameters:

H0 = −γA

N∑
i=1

σi − γB

N∑
j=1

Sj − η

N∑
j=1

S2
j , (2.35)

which correspond to the effective fields γA and γB acting on the spin-1/2 and spin-1 particles,
respectively, and the effective uniaxial single-ion anisotropy η acting on the quadrupolar mo-
ment of the spin-1 particles. The Hamiltonian (2.34) of the interacting mixed-1/2 and spin-1
Ising system is thus approximated within the mean-field theory by the Hamiltonian (2.35) of the
non-interacting system of the spin-1/2 and spin-1 particles, for which the partition function Z0,
the Gibbs free energy G0, both sublattice magnetizations mA = 〈σi〉0, mB = 〈Sj〉0 and the
quadrupolar moment qB = 〈S2

j 〉0 can readily be calculated:

Z0 =
∑
{σi}

∑
{Sj}

exp(−βH0) =
N∏

i=1

∑
σi=± 1

2

exp(βγAσi)
N∏

j=1

∑
Sj=±1,0

exp(βγBSj + βηS2
j )

= [2 cosh (βγA)]N [1 + 2 exp(βη) cosh (βγB)]N,
G0 = −NkBT ln 2−NkBT ln cosh (βγA)−NkBT ln [1 + 2 exp(βη) cosh (βγB)] ,

mA = − 1
N

∂G0

∂γA
=

1
2

tanh
(

βγA

2

)
,

mB = − 1
N

∂G0

∂γB
=

2 exp(βη) sinh (βγB)
1 + 2 exp(βη) cosh (βγB)

,

qB = − 1
N

∂G0

∂η
=

2 exp(βη) cosh (βγB)
1 + 2 exp(βη) cosh (βγB)

. (2.36)
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The right-hand-side of the Gibbs-Bogoliubov inequality (2.3) requires calculations of the mean
value for the difference between the true and trial Hamiltonians:

〈H −H0〉0 = −NqJmAmB−N(D−η)qB−N(hA−γA)mA−N(hB−γB)mB , (2.37)

which in combination with the trial Gibbs free energy G0 given by Eq. (2.36) gives the following
expression for the variational Gibbs free energy Φ:

Φ = − NkBT ln 2−NkBT ln cosh (βγA)−NkBT ln cosh [1 + 2 exp(βη) cosh (βγB)]
− NqJmAmB −N(D − η)qB −N(hA − γA)mA −N(hB − γB)mB . (2.38)

The minimalization of the variational Gibbs free energy (2.38) with respect to all three variational
parameters γA, γB and η leads to three equations:

(qJmB + hA − γA)
∂mA

∂γA
+ (qJmA + hB − γB)

∂mB

∂γA
+ (D − η)

∂qB

∂γA
= 0,

(qJmB + hA − γA)
∂mA

∂γB
+ (qJmA + hB − γB)

∂mB

∂γB
+ (D − η)

∂qB

∂γB
= 0,

(qJmB + hA − γA)
∂mA

∂η
+ (qJmA + hB − γB)

∂mB

∂η
+ (D − η)

∂qB

∂η
= 0, (2.39)

which are simultaneously satisfied if the variational parameters γA, γB and η fulfill the relations:

γA = qJmB + hA, γB = qJmA + hB , and η = D. (2.40)

After substituting the variational parameters γA, γB and η obeying the extremum condition (2.40)
to the variational Gibbs free energy (2.38) one obtains the mean-field estimate of the true Gibbs
free energy:

G = − NkBT ln 2−NkBT ln
{

cosh
[
β

2
(qJmB + hA)

]}
− NkBT ln {1 + 2 exp(βD) cosh [β(qJmA + hB)]}+ NqJmAmB , (2.41)

whereas the sublattice magnetizations mA, mB and the quadrupolar moment qB are determined
by the following expressions:

mA =
1
2

tanh
[
β

2
(qJmB + hA)

]
,

mB =
2 exp(βD) sinh [β(qJmA + hB)]

1 + 2 exp(βD) cosh [β(qJmA + hB)]
,

qB =
2 exp(βD) cosh [β(qJmA + hB)]

1 + 2 exp(βD) cosh [β(qJmA + hB)]
. (2.42)

In a zero magnetic field, the derived expressions (2.42) for both sublattice magnetizations and
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quadrupolar moment reduce to:

mA =
1
2

tanh
(

βqJmB

2

)
,

mB =
2 exp(βD) sinh (βqJmA)

1 + 2 exp(βD) cosh (βqJmA)
,

qB =
2 exp(βD) cosh (βqJmA)

1 + 2 exp(βD) cosh (βqJmA)
. (2.43)

It can be understood from Eq. (2.43) that one has to solve at first a system of two coupled
equations for both sublattice magnetizations mA and mB in order to get the mean-field estimate
of the true Gibbs free energy according to Eq. (2.41). Besides, it is quite obvious from Eq. (2.43)
that both spontaneous magnetizations mA and mB simultaneously vanish at a critical point of
the continuous phase transition and consequently, the spontaneous magnetizations mA and mB

can still be expanded up to the linear term (and subsequently eliminated) with the aim to locate
the critical temperature of the second-order phase transition. Following this procedure one gains
the critical condition for the continuous phase transitions:

mA = βcqJ
4 mB ,

mB = 2βcqJ exp(βcD)
1+2 exp(βcD) mA

⇐⇒
(

βcqJ

2

)2

=
1 + 2 exp(βcD)

2 exp(βcD)
, (2.44)

which implies a highly non-trivial dependence of the critical temperature on the uniaxial single-
ion anisotropy. It is worthy to notice, moreover, that the critical condition (2.44) of the mixed
spin-1/2 and spin-1 Ising model is nothing but a geometric mean of the critical conditions (2.13)
and (2.27) of the spin-1/2 Ising model and the spin-1 Blume-Capel model, respectively. In an
absence of the uniaxial single-ion anisotropy D = 0, the critical condition (2.44) allows to
obtain the closed-form expression for the critical temperature of the mixed spin-1/2 and spin-1
Ising model:

kBTc

qJ
=

1√
6
, (D = 0). (2.45)

However, one should bear in mind that the critical behavior of the mixed spin-1/2 and spin-1
Ising model may be more intricate, because an existence of the discontinuous phase transitions
cannot be definitely ruled out in this more complex spin system. The tricritical point can be
simply obtained from the expansion of both sublattice magnetizations when retaining the first
two non-zero terms:

mA =
βqJ

4
mB −

(βqJ)3

48
m3

B , (2.46)

mB = βqJ
2 exp(βD)

1 + 2 exp(βD)
mA +

(βqJ)3

6
2 exp(βD)

1 + 2 exp(βD)

[
1− 6 exp(βD)

1 + 2 exp(βD)

]
m3

A.

An elimination of one of the sublattice magnetizations (say mB) from the system of two mutually
coupled equations (2.46) yields the following expansion for the other sublattice magnetization
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(mA):

mA = f1mA + f3m
3
A + . . .

f1 =
(βqJ)2

4
2 exp(βD)

1 + 2 exp(βD)

f3 =
(βqJ)4

24
2 exp(βD)

1 + 2 exp(βD)

{
1− 6 exp(βD)

1 + 2 exp(βD)
− 2

[
βqJ exp(βD)
1 + 2 exp(βD)

]2}
, (2.47)

which gives evidence for the mean-field critical exponent βm = 1/2 of the spontaneous magne-
tization close to a critical point of the second-order phase transition:

mA(T ≤ Tc, h = 0) ≈
(

1− f1

f3

) 1
2

. (2.48)

The tricritical point, at which the lines of second- and first-order phase transitions of the mixed
spin-1/2 and spin-1 Ising model coalesce, can be consequently found from the condition 1−f1 =
0, f3 = 0 fulfilled at:

kBTt

qJ
=

1√
20

,
Dt

qJ
= − ln 8√

20
. (2.49)

Altogether, it can be concluded that the mean-field theory predicts for the mixed spin-1/2
and spin-1 Ising model with the uniaxial single-ion anisotropy a rather diverse phase diagram,
which is quite reminiscent of that previously discussed for the spin-1 Blume-Capel model. The
phase diagram of the mixed spin-1/2 and spin-1 Ising model shown in Fig. 2.2(a) indeed exhibits
the second-order phase transitions for D > Dt with a continuous vanishing of the spontaneous
magnetization at the critical temperature (2.44), while the first-order phase transitions with a
discontinuous (abrupt) jump of the spontaneous magnetization appear for D < Dt owing to a
mutual coexistence of the ferromagnetic and paramagnetic states at a critical point. The lines
of continuous and discontinuous phase transitions merge together at a tricritical point, which is
unambiguously given by the coordinates (2.49) and is displayed in Fig. 2.2(a) by an open circle.
The inset of Fig. 2.2(a) also shows the unstable solution of the critical condition (2.44) for the
continuous phase transitions by a thin dotted line. To provide an independent check of the es-
tablished phase diagram we have plotted in Fig. 2.2(b) a few typical temperature dependences
of both spontaneous sublattice magnetizations. It can be seen from Fig. 2.2(b) that thermal vari-
ations of the sublattice magnetizations actually exhibit an abrupt jump at a critical temperature
for D < Dt (e.g. D/(qJ) = −0.47 and −0.49) contrary to a continuous disappearance of both
sublattice magnetizations at a critical point provided that D > Dt.

2.4 Spin-S Ising model in a transverse field

Finally, the mean-field calculations will be exemplified on the particular example of the spin-S
Ising model in a transverse magnetic field, which represents a paradigmatic example of lattice-
statistical spin model displaying a quantum phase transition. The spin-S Ising model in a trans-
verse magnetic field can be defined through the Hamiltonian:

Ĥ = −J

Nq/2∑
〈ij〉

Ŝz
i Ŝz

j − Ω
N∑

k=1

Ŝx
k , (2.50)
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Fig. 2.2. (a) The critical temperature of the mixed spin-1/2 and spin-1 Ising model as a function of the
uniaxial single-ion anisotropy. The critical line of continuous (discontinuous) phase transitions is displayed
by solid (broken) line, an open circle denotes a tricritical point (TCP). The inset shows detailed plot of a
tricritical region including the unstable solution of the critical condition (2.44) shown by a thin dotted line;
(b) Thermal variations of the sublattice magnetizations mA (broken lines) and mB (solid lines) for a few
different values of the uniaxial single-ion anisotropy. Dotted lines denote magnetization jumps connected
with the discontinuous phase transitions.

which involves two different spatial components Ŝx
j and Ŝz

j of the spin-S operator at the jth
lattice site that do not commute with each other owing to a validity of the commutation relation
[Ŝz

j , Ŝx
j ] = iŜy

j (i2 = −1, ~ = 1). The first summation in the Hamiltonian (2.50) accounts for
the Ising coupling J between the nearest-neighbor spin pairs, while the second one accounts for
the Zeeman’s energy of magnetic moments in the transverse magnetic field Ω. In a consequence
of this fact, the magnetic behavior of the transverse Ising model given by the Hamiltonian (2.50)
will be fundamentally affected by quantum fluctuations.

The trial Hamiltonian of the spin-S Ising model in a transverse magnetic field will include
within the mean-field approximation two different variational parameters γz and γx:

Ĥ0 = −γz

N∑
i=1

Ŝz
i − γx

N∑
i=1

Ŝx
i , (2.51)

which correspond to effective fields acting on each individual spin along the longitudinal and
transverse direction, respectively. For further convenience, it is possible to rewrite the trial
Hamiltonian (2.51) as a sum of single-spin Hamiltonians Ĥi:

Ĥ0 =
N∑

i=1

Ĥi, Ĥi = −γzŜ
z
i − γxŜx

i , (2.52)

since the individual spins are treated independently of each other within the framework of the
mean-field theory. The single-spin Hamiltonian Ĥi represents in general (2S + 1) × (2S + 1)
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matrix, which must be further diagonalized in order to calculate the trial partition function:

Z0 = Tr exp(−βĤ0) =
N∏

i=1

Tri exp(−βĤi). (2.53)

Here, the symbols Tr and Tri stand for a trace over degrees of freedom of the full set of the
Ising spins and the ith Ising spin, respectively. The most straightforward diagonalization of the
single-spin Hamiltonian Ĥi can be accomplished by the spin rotation transformation:

Ŝx
i = Ŝx

i
′ cos φ + Ŝz

i
′ sinφ,

Ŝz
i = −Ŝx

i
′ sinφ + Ŝz

i
′ cos φ, (2.54)

which brings the single-spin Hamiltonian Ĥi to the following form:

Ĥi = −Ŝz
i
′(γz cos φ + γx sinφ)− Ŝx

i
′(−γz sinφ + γx cos φ). (2.55)

A suitable choice of the rotation angle tanφ = γx/γz consequently ensures a diagonal form of
the single-spin Hamiltonian Ĥi:

Ĥi = −Ŝz
i
′
√

γ2
z + γ2

x, (2.56)

which allows a straightforward calculation of the trial partition function Z0, the Gibbs free energy
G0, the longitudinal and transverse magnetizations mz = 〈Ŝz

i 〉0 and mx = 〈Ŝx
i 〉0:

Z0 =
N∏

i=1

Tri exp(−βĤi) =

[
S∑

n=−S

exp
(
βn
√

γ2
z + γ2

x

)]
,

G0 = −kBT lnZ0 = −NkBT ln

[
S∑

n=−S

cosh
(
βn
√

γ2
z + γ2

x

)]
,

mz = − 1
N

∂G0

γz
=

γz√
γ2

z + γ2
x

S∑
n=−S

n sinh
(
βn
√

γ2
z + γ2

x

)
S∑

n=−S

cosh
(
βn
√

γ2
z + γ2

x

) ,

mx = − 1
N

∂G0

γx
=

γx√
γ2

z + γ2
x

S∑
n=−S

n sinh
(
βn
√

γ2
z + γ2

x

)
S∑

n=−S

cosh
(
βn
√

γ2
z + γ2

x

) . (2.57)

At this stage, it is easy to compute the canonical ensemble average for a difference between
the true and trial Hamiltonians within the simplified model system given by Eq. (2.51):

〈H −H0〉0 = −Nq

2
Jm2

z −Nγzmz −N(Ω− γx)mx, (2.58)
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which in combination with the trial Gibbs free energy G0 given by Eq. (2.57) provides the
following expression for the variational Gibbs free energy Φ:

Φ =−NkBT ln

[
S∑

n=−S

cosh
(
βn
√

γ2
z + γ2

x

)]
−Nq

2
Jm2

z−Nγzmz−N(Ω−γx)mx.(2.59)

The minimalization of the variational Gibbs free energy (2.59) with respect to both variational
parameters γz and γx affords two equations:

∂Φ
∂γz

= 0 ⇐⇒ (qJmz − γz)
∂mz

∂γz
+ (Ω− γx)

∂mx

∂γz
= 0,

∂Φ
∂γx

= 0 ⇐⇒ (qJmz − γz)
∂mz

∂γx
+ (Ω− γx)

∂mx

∂γx
= 0, (2.60)

which are simultaneously satisfied for the following choice of the variational parameters:

γz = qJmz and γx = Ω. (2.61)

The mean-field estimate of the variational Gibbs free energy can be now obtained upon substitu-
tion of the variational parameters given by the extremum condition (2.61) into Eq. (2.59):

G = −NkBT ln

{
S∑

n=−S

cosh
[
βn
√

(qJmz)2 + Ω2
]}

+
Nq

2
Jm2

z, (2.62)

whereas the longitudinal and transverse magnetizations follow from the relations:

mz =
qJmz√

(qJmz)2 + Ω2

S∑
n=−S

n sinh
[
βn
√

(qJmz)2 + Ω2
]

S∑
n=−S

cosh
[
βn
√

(qJmz)2 + Ω2
] ,

mx =
Ω√

(qJmz)2 + Ω2

S∑
n=−S

n sinh
[
βn
√

(qJmz)2 + Ω2
]

S∑
n=−S

cosh
[
βn
√

(qJmz)2 + Ω2
] . (2.63)

At first, let us examine in detail the ground state of the spin-S Ising model in a transverse
magnetic field. It can be readily proved from Eqs. (2.62) and (2.63) that the longitudinal and
transverse magnetizations undergo a dramatic qualitative change at the critical field Ωc = qJS:

mz =
{

S
[
1−

(
Ω
Ωc

)2] 1
2
,

0,
mx =

{ S Ω
Ωc

, for Ω < Ωc,

S, for Ω ≥ Ωc.
(2.64)

It is quite evident from Eq. (2.64) that the ground state exhibits a peculiar ferromagnetic order
with a non-zero longitudinal magnetization mz 6= 0 whenever the transverse field is smaller than
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Fig. 2.3. The zero-temperature magnetization curve of the spin-S Ising model in a transverse magnetic field:
(a) longitudinal magnetization; (b) transverse magnetization. Both magnetizations are normalized with
respect to the saturation value and the transverse field is scaled with respect to its critical value Ωc = qJS.

the critical value Ω < Ωc. However, the spontaneous longitudinal magnetization gradually di-
minishes with an increase in the transverse field until it completely disappears at the critical field
Ωc, while the transverse magnetization steadily (linearly) increases with the rising transverse
field until it reaches the saturated value at the critical field Ωc (see Fig. 2.3). The spin-S Ising
model additionally exhibits a disordered paramagnetic ground state with the zero longitudinal
magnetization mz = 0 and the fully saturated transverse magnetization mx = S for the stronger
transverse fields Ω ≥ Ωc. A continuous disappearance of the spontaneous longitudinal magneti-
zation in a vicinity of the critical field Ωc evidently bears a close resemblance with a continuous
phase transition of the spin-1/2 Ising model in a zero magnetic field invoked by the rising temper-
ature [cf. Eq. (2.64) with Eq. (2.14)]. It is worthwhile to remark, however, that the breakdown of
the spontaneous ferromagnetic long-range order of the transverse Ising model is driven by quan-
tum fluctuations invoked by the transverse field and not by thermal fluctuations. The continuous
order-disorder transition emerging in the spin-S Ising model due to the transverse magnetic field
at absolute zero temperature is therefore referred to as a quantum phase transition.

Of course, it might be also of particular interest to investigate a precise nature of the order-
disorder phase transition between the ferromagnetic and paramagnetic states of the transverse
Ising model at finite temperatures. The vanishing longitudinal magnetization at a critical point
of the continuous ferromagnetic-to-paramagnetic phase transition allows us to derive from Eq.
(2.63) the following critical condition:

S∑
n=−S

n sinh (βcnΩ)

S∑
n=−S

cosh (βcnΩ)

=
Ω
qJ

,

(
βc =

1
kBTc

)
. (2.65)

The critical temperature of the spin-S Ising model computed according to Eq. (2.65) is plotted
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Fig. 2.4. (a) The critical temperature of the spin-S Ising model as a function of the transverse magnetic field
for several values of the quantum spin number S; (b) Typical temperature dependences of the longitudinal
magnetization (broken line) and transverse magnetization (solid lines) of the spin-1/2 Ising model for two
different transverse fields selected below and above the critical field Ωc/qJ = 1/2.

in Fig. 2.4(a) against a relative strength of the transverse magnetic field for several values of
the quantum spin number S. Apparently, the transverse field generally causes a progressive re-
duction of the critical temperature until it entirely tends to zero at the critical field Ωc = qJS
and this generic feature remains valid irrespective of the quantum spin number S. The gradual
decline of the critical temperature due to the transverse magnetic field can be attributed to rein-
forcing quantum fluctuations, which support thermal fluctuations in destroying the spontaneous
ferromagnetic long-range order. The highest critical temperature of the spin-S Ising model can
be accordingly found in the limit of zero transverse magnetic field:

lim
Ω→0

kBTc

qJ
=

S(S + 1)
3

, (2.66)

which can be derived from Eq. (2.63) in the asymptotic limit of vanishing transverse field Ω.
The longitudinal and transverse magnetizations of the spin-1/2 Ising model are depicted in

Fig. 2.4(b) as a function of temperature for two different transverse magnetic fields selected
below and above the critical field Ωc/qJ = 1/2. In the former case Ω < Ωc, the longitudi-
nal magnetization already undergoes at zero temperature a quantum reduction of magnetization
due to the transverse magnetic field, whereas this reduced initial value is further progressively
suppressed by thermal fluctuations upon increasing temperature until the longitudinal magneti-
zation completely vanishes at the critical temperature. By contrast, the transverse magnetization
keeps constant unless the critical temperature is reached and then it shows monotonous decline
with increasing the temperature. In the latter case Ω > Ωc, the longitudinal magnetization is
zero regardless of the temperature, while the transverse magnetization shows the monotonous
decrease upon raising temperature. Finally, it is worthy to notice that the spin-S Ising model
in a transverse magnetic field cannot exhibit discontinuous phase transitions provided that the
uniaxial single-ion anisotropy is set to zero.
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2.5 Historical survey and future perspectives

Although it is beyond the scope of the present review to provide a comprehensive list on all pre-
vious mean-field calculations, let us conclude this section with a brief summary of a few selected
achievements acquired by making use of the mean-field theory. A versatility and conceptual sim-
plicity are two apparent advantages of the mean-field approximation, which can be rather easily
adapted to complex lattice-statistical spin models that are fully intractable or difficult of approach
within more sophisticated analytical methods. Among other matters, the mean-field theory has
played an important role for a deeper understanding of more intricate phase transitions and crit-
ical phenomena. For instance, the early mean-field results for the spin-S Blume-Capel [46–53]
and Blume-Emery-Griffiths [54–59] models predicted a variety of multicritical phenomena in-
cluding tricritical points, isolated critical points, critical end points, bicritical points, triple points
and tetracritical points in addition to the usual critical points. It is worthy to notice, moreover,
that an intriguing multicritical behavior have been later found using the mean-field calculations
also in various mixed-spin Ising models with the uniaxial crystal-field anisotropy [60–71]. All
aforementioned mean-field results were derived for the Ising-like spin systems, which represent
plausible models for magnetic materials with a regular crystal structure.

Another wide family of magnetic materials form amorphous magnets with a certain degree
of randomness, which makes theoretical modeling of respective magnetic properties particu-
larly intriguing. However, the mean-field theory has been also adapted to the Ising-like models
accounting for the site and/or bond disorder [72, 73] as well as the random distribution of mag-
netic ions within the binary [74–78], ternary [79–82] or quaternary [83] alloys. It has been also
demonstrated by the mean-field calculations that the effect of structural disorder on some mag-
netic properties of amorphous materials can be captured by the random magnetic field [84–89]
or random crystal field [90–97].

Quantum effects introduced into the Ising spin systems either by the transverse magnetic
field or the transverse crystal field represent another challenging topic to account for within the
framework of the mean-field treatment. The effect of transverse magnetic field on a magnetic
behavior of the Ising models has been thoroughly investigated for example in the mixed-spin sys-
tems [98–100], ternary alloy [101] and thin films [102–107]. A lot of the mean-field calculations
has been carried out for the transverse Ising models, which take into consideration a random
character of the transverse magnetic field [108, 109], the multispin interactions [110, 111], the
longitudinal magnetic field [112], the longitudinal [113, 114] or transverse [115] crystal field.

Although the results obtained within the mean-field theory might be largely affected by a
rather crude approximation ignoring all spin-spin correlations, the mean-field theory will cer-
tainly remain the primary method for obtaining a rough estimate of a magnetic behavior of more
complex lattice-statistical spin models.
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3 Effective-field theory

To go beyond the accuracy of the mean-field theory Honmura and Kaneyoshi have suggested a
new type of the effective-field theory utilizing the differential operator technique [116, 117]. It
is noteworthy that the effective-field theory has been originally applied to the simplest spin-1/2
Ising model, for which the obtained results indeed turned out to be quite superior with respect
to the relevant mean-field results. In addition, the simplicity and versatility of the effective-field
approach based on the differential operator technique has been recognized soon after pioneering
works due to Honmura and Kaneyoshi [116, 117] when several research groups have applied
this relatively simple mathematical technique to diverse Ising-like spin systems of much more
complex nature. Before describing the crucial steps of this interesting method it is worthwhile
to remark that several alternative mathematical formulations of the effective-field theory have
been later discovered using the integral operator formulation [118] or finite-cluster approxima-
tion [119], but these alternative mathematical approaches have never gained the popularity and
applicability of the original formulation based on the differential operator technique even though
they provide results of exactly the same numerical accuracy.

3.1 Callen-Suzuki identity

The common starting point for developing various effective-field theories will be a simple equa-
tion, which is currently known in the literature as the Callen-Suzuki identity. This identity
has been originally derived by Callen for a spin-1/2 Ising model using Green function tech-
nique [120, 121]. Using different mathematical methods this useful relation has been later gen-
eralized for the Ising-like models with arbitrary spin values, amorphous systems, site- and bond-
diluted models, the systems with random exchange interactions, random crystal and/or external
magnetic fields and many others physically interesting systems [122]. The quantum version of
Callen-Suzuki identity has been at first derived and applied to the transverse Ising model by
Sá Barreto, Fittipaldi a Zeks [123].

Our first and very important goal in this work is a detailed derivation of the Callen-Suzuki
identity within the standard canonical ensemble of statistical mechanics. For this purpose we
will consider a quantum system consisting of N spins that are localized on the sites of an infinite
crystalline lattice with the coordination number q. Next, we will assume that our system is
described by the Hamilton operator Ĥ, which in general depends on spin operators of all lattice
sites. Naturally, such a Hamiltonian also includes various physical parameters like exchange
interactions, external and internal fields and so on.

Under these very general assumptions, we at first separate the total Hamiltonian into two
parts as follows:

Ĥ = Ĥi + Ĥ
′
, (3.1)

where Ĥi contains all interaction terms related to the ith site of the lattice and all remaining
terms are of course included in Ĥ′

. It is useful noticing here that the Hamiltonians Ĥi and Ĥ′
do

not commute in general, i.e.,[
Ĥi, Ĥ

′]
6= 0. (3.2)
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The canonical expectation value of a physical quantity Ôi related to the ith site of the lattice can
be calculated from the well-known relation:〈

Ôi

〉
=

1
Z

Tr Ôi exp(−βĤ), (3.3)

where the canonical partition function Z is given by the formula:

Z = Tr exp(−βĤ). (3.4)

Here, β = 1/(kBT ), T is the absolute temperature and kB represents the Boltzmann’s constant.
The total trace (Tr) in Eqs. (3.3) and (3.4) can be formally expressed as a product of partial traces
over the spin operators on individual lattice sites. Taking this fact into account, we can rewrite
(3.3) in the form:〈

Ôi

〉
=

1
Z

Tr
′
Tri Ôi exp

[
−β(Ĥi + Ĥ

′
)
]
,

=
1
Z

Tr
′
Tri Ôi

[
exp
(
−βĤi

)
exp
(
−βĤ

′)
+ ∆̂

]
, (3.5)

where Tri denotes the partial trace over the spin operator related to the ith lattice site, Tr
′

rep-
resents the trace over all remaining degrees of freedom and the operator ∆̂ is defined by the
formula:

∆̂ = exp
[
−β(Ĥi + Ĥ

′
)
]
− exp

(
−βĤi

)
exp
(
−βĤ

′)
. (3.6)

For further manipulations it is useful to rewrite (3.5) as follows:〈
Ôi

〉
=

1
Z

Tr
′
[
Tri Ôi exp

(
−βĤi

)]
exp
(
−βĤ

′)
+

1
Z

Tr
(
Ôi∆̂

)
. (3.7)

If we now insert the expression Tri exp
(
−βĤi

)
/Tri exp

(
−βĤi

)
into first term of Eq. (3.7),

then after a small manipulation we obtain equation:

〈
Ôi

〉
=

1
Z

Tr
′
{

Tri Ôi exp
(
−βĤi

)
Tri exp

(
−βĤi

) }Tri exp
(
−βĤi

)
exp
(
−βĤ

′)
+

1
Z

Tr
(
Ôi∆̂

)
. (3.8)

Using the fact that expression in curled brackets does not depend on degrees of freedom of the
ith lattice site one may rearrange Eq. (3.8) by taking the partial trace Tri before this expression
and employing Tr

′
Tri = Tr:

〈
Ôi

〉
=

1
Z

Tr
{

Tri Ôi exp
(
−βĤi

)
Tri exp

(
−βĤi

) } exp
(
−βĤi

)
exp
(
−βĤ

′)
+

1
Z

Tr
(
Ôi∆̂

)
. (3.9)
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Next, one may rewrite (3.9) with the help of Eq. (3.6) into the form:

〈
Ôi

〉
=

1
Z

Tr
{

Tri Ôi exp
(
−βĤi

)
Tri exp

(
−βĤi

) } exp
(
−βĤ

)
− 1

Z
Tr
{

Tri Ôi exp
(
−βĤi

)
Tri exp

(
−βĤi

) − Ôi

}
∆̂, (3.10)

or alternatively:

〈
Ôi

〉
=

〈
Tri Ôi exp

(
−βĤi

)
Tri exp

(
−βĤi

) 〉

−
〈(

Tri Ôi exp
(
−βĤi

)
Tri exp

(
−βĤi

) − Ôi

)
D̂
〉

, (3.11)

where we have introduced the operator D̂ as:

D̂ = ∆̂ exp
(
βĤ
)

= Î − exp
(
−βĤi

)
exp
(
−βĤ

′)
exp
(
βĤ
)

(3.12)

with Î standing for the identity operator in the relevant Hilbert space.
It should be emphasized here that Eq. (3.11) cannot be further manipulated exactly, therefore

to proceed further with calculations, we now apply the following decoupling procedure:〈(
Tri Ôi exp

(
−βĤi

)
Tri exp

(
−βĤi

) − Ôi

)
D̂
〉

≈
〈(

Tri Ôi exp
(
−βĤi

)
Tri exp

(
−βĤi

) − Ôi

)〉〈
D̂
〉

(3.13)

and express Eq. (3.11) in the form:(〈
Ôi

〉
−
〈

Tri Ôi exp
(
−βĤi

)
Tri exp

(
−βĤi

) 〉)(Î − 〈D̂〉) = 0. (3.14)

Taking into account that
〈
D̂
〉
6= Î one finally gets from (3.14) the following simple equation:

〈
Ôi

〉
=
〈

Tri Ôi exp
(
−βĤi

)
Tri exp

(
−βĤi

) 〉, (3.15)

which represents a generalized form of the original Callen-Suzuki identity. This relation fre-
quently serves as a starting point for thermodynamic descriptions of localized spin models with
short-range interactions. Moreover, it is clear that the Callen-Suzuki identity given by Eq. (3.15)
represents only an approximate expression whenever Eq. (3.2) is fulfilled due to the decoupling
procedure used in (3.13). On the other hand, the Callen-Suzuki identity (3.15) becomes naturally
exact in the particular case of commuting Hamiltonians

[
Ĥi, Ĥ

′]
= 0 since ∆̂ = 0.
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In order to analyze physical properties of localized spin models it is frequently very useful
to evaluate correlation functions among various spin variables. For this purpose, we may use
instead of Eq. (3.15) its extended version, namely,

〈
Ôi

{
fi

}〉
=
〈{

fi

}Tri Ôi exp
(
−βĤi

)
Tri exp

(
−βĤi

) 〉, (3.16)

where
{
fi

}
represent a function of arbitrary spin operators except those belonging to the ith

lattice site.
In all previous calculations we have considered a spin cluster consisting of one central spin

only. It is however quite clear that a finite-size spin cluster generalization of the Callen-Suzuki
identity can be readily obtained by using the same mathematical procedures as formerly de-
scribed for the single-spin cluster version. The derivation of the generalized Callen-Suzuki iden-
tity for a finite-size spin cluster is straightforward and very similar to that of the single-spin
cluster case and we will therefore not repeat it. Hence, let us merely quote the final form of the
generalized Callen-Suzuki identity for the n-spin central cluster, which takes the following form:

〈
Ôij...n

{
fij...n

}〉
=
〈{

fij...n

}Trij...n Ôij...n exp
(
−βĤij...n

)
Trij...n exp

(
−βĤij...n

) 〉
, (3.17)

where the operator Ôij...n may contain all spin operators belonging to the n-spin central cluster
and

{
fij...n

}
represents a function of arbitrary spin operators except those of the n-spin central

cluster. The cluster Hamiltonian Ĥij...n exactly accounts for all interaction terms within the
central cluster and also the terms describing interactions of the central cluster with its nearest-
neighboring spins and also the interactions with an external magnetic field.

3.2 Spin-1/2 Ising model within a single-spin cluster approach

In this part we will study a spin-1/2 Ising model on a crystalline lattice characterized through the
coordination number q. The Ising model represents a strongly anisotropic limit of a more general
Heisenberg model in which we only consider interactions between z-components of spins. For
that reason one can avoid a strict operator formalism in all subsequent calculations.

Let us start our analysis with the Hamiltonian of the spin-1/2 Ising model in a longitudinal
magnetic field, which can be written in the form:

H = −
∑
i,j

Jijσiσj − h
∑

i

σi, (3.18)

where σi = ±1/2 are Ising spin variables representing two possible spin projections onto the z
direction, h denotes value of external magnetic field and Jij stands for the exchange interaction
between the spins. Most frequently the exchange interaction Jij is assumed to be non-zero only
between nearest-neighbor spins on the lattice, however, an inclusion of the exchange couplings
between the next-nearest or next-next-nearest neighbors is also possible within the present for-
mulation. It should be noticed here that the summation in the first term of Eq. (3.18) will be
hereafter restricted to all different pairs of nearest-neighbor spins and that one in the second term
of Eq. (3.18) is performed over all spins.
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In order to employ the Callen-Suzuki identity (3.15) for developing a new type of the effective-
field theory it is convenient to separate the total Hamiltonian (3.18) into two parts:

H = Hi +H
′
, (3.19)

with

Hi = −σi

( q∑
j=1

Jijσj + h
)
. (3.20)

It is worth recalling here that q denotes the coordination number (i.e. the number of nearest
neighbors) and the Hamiltonian Hi contains all interaction terms of the central spin σi with its
nearest-neighbor spins on a lattice and also with an external magnetic field. All other interaction
terms are included in the remaining Hamiltonian H′

. Our main task is now the derivation of
closed-form equations for important thermodynamic quantities such as the magnetization, Curie
temperature, magnetic susceptibility, internal energy, specific heat and so on.

It will be exemplified in subsequent calculations that one can obtain relatively simple expres-
sions for all relevant physical quantities of the spin-1/2 Ising model within such an effective-field
theory, in which the structure of the lattice is taken into account only by one parameter, namely,
the coordination number q. This fact is very comfortable and useful from the mathematical point
of view, since it enables a unified formulation of the theory for all crystalline structures. On
the other hand, this is an undesirable deficiency of the theory from the physical point of view,
which does not enable to distinguish physical properties of the spin-1/2 Ising model on lattices
with the same coordination numbers but different geometry. Therefore, the single-spin cluster
formulation of the effective-field theory gives identical results for the spin-1/2 Ising model on
several lattices (for example, plane triangular and simple cubic lattices, or square and kagomé
lattices) despite of their different topology.

The original quantum-mechanical formulation of the Callen-Suzuki identity (3.15) can be
rewritten for the spin-1/2 Ising model in a longitudinal magnetic field in the following simple
exact form:

〈
σi

〉
=

〈 ∑
σi=±1/2

σi exp
(
−βHi

)
∑

σi=±1/2

exp
(
−βHi

) 〉, (3.21)

where we have at first set Ôi = σi into Eq. (3.15) and then we have substituted the summation
over spin variable σi = ±1/2 instead of Tri. The angular brackets naturally denote the standard
canonical ensemble averaging.

Performing the summation over two available states of a central spin σi one obtains from Eq.
(3.21) the following expression for the magnetization m:

m ≡
〈
σi

〉
=
〈

1
2

tanh
[β
2

( q∑
j=1

Jijσj + h
)]〉

. (3.22)

At this stage, we are faced with a non-trivial problem how to preform averaging over spin vari-
ables σj = ±1/2 entering the hyperbolic tangent. Obviously, one cannot treat this problem
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exactly, so we are forced to adopt some approximation. The simplest but the least accurate ap-
proximation is obtained by a direct averaging the argument of hyperbolic tangent in Eq. (3.22).
In this way one gets:

m =
1
2

tanh
[β
2
(
qJm + h

)]
, (3.23)

where we have employed the relation m = 〈σi〉 ∀i due to translation invariance of the lattice and
we have also assumed a unique ferromagnetic exchange interaction Jij = J > 0 ∀i, j between
the nearest-neighbor spins. It is worthy to note that the previous equation is identical with that
one obtained within the standard mean-field theory for the spin-1/2 Ising model in a longitudinal
magnetic field (c.f. Eq. (2.11)). One should also notice that the same procedure can be used
to obtain the mean-field results also for other more complex Ising-like spin models although the
standard mean-field approximation is usually formulated in a somewhat different way (c.f. with
the approach elaborated in Section 2 on the basis of the Gibbs-Bogoliubov inequality). However,
the numerical accuracy and physical predictions of the mean-field theory are frequently rather
crude, so it is desirable to develop more precise approximation procedures going beyond the
standard mean-field theory.

It has been already mentioned that an improved approximation can be obtained using the
effective-field method due to Honmura and Kaneyoshi, which takes advantage of the differential
operator technique [116, 117]. Thus, the effective-field theory is in its essence based on the
following property of differential operator:

exp
(
α∇x

)
f(x) = f(x + α), (3.24)

where α is an arbitrary parameter and ∇x = ∂/∂x represents the differential operator.
Using Eq. (3.24) we may rewrite Eq. (3.22) in the form:

m ≡
〈
σi

〉
=
〈
exp
[(

J

q∑
j=1

σj

)
∇x

]〉1
2

tanh
[β
2
(
x + h

)]∣∣∣
x=0

, (3.25)

or alternatively:

m =
〈 q∏

j=1

exp
(
Jσj∇x

)〉1
2

tanh
[β
2
(
x + h

)]∣∣∣
x=0

, (3.26)

where we have employed the commutation of all terms in the argument of exponential function.
The next step in calculations can be achieved by applying the exact van der Waerden identity
[124]:

exp
(
ασj

)
= cosh

(α

2

)
+ 2σj sinh

(α

2

)
(3.27)

which is evidently fulfilled for any parameter α and σj = ±1/2. With the help of Eq. (3.27) one
may rewrite Eq. (3.26) into the form:

m =
〈 q∏

j=1

[
cosh

(J∇x

2

)
+ 2σj sinh

(J∇x

2

)]〉1
2

tanh
[β
2
(
x + h

)]∣∣∣
x=0

. (3.28)
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It should be emphasized here that the previous equation is still exact and any kind of approxima-
tion made at this stage will be superior with respect to the mean-field theory, since the exact van
der Waerden identity (3.27) exactly accounts for the following relations:

σ2n+1
j = 4−nσj , σ2n

j = 4−n. (3.29)

In order to proceed further in formulation of the single-spin cluster effective-field theory, we may
split on the r.h.s of Eq. (3.28) correlations between all nearest-neighbor spins of the central spin
in the following way:

〈σjσkσ` . . . σn〉 = 〈σj〉〈σk〉〈σ`〉 . . . 〈σn〉 (3.30)

and obtain the relatively simple relation for the magnetization:

m =
[
cosh

(J∇x

2

)
+ 2m sinh

(J∇x

2

)]q 1
2

tanh
[β
2
(
x + h

)]∣∣∣
x=0

. (3.31)

Applying the binomial theorem one can rewrite the previous equation into the form:

m =
q∑

k=0

(
q

k

)
mk2k

[
cosh

(J∇x

2

)]q−k[
sinh

(J∇x

2

)]k 1
2

tanh
[β
2
(
x + h

)]∣∣∣
x=0

, (3.32)

which can be finally simplified to:

m =
q∑

k=0

(
q

k

)
mkA

(q)
k . (3.33)

In above, we have introduced the coefficients:

A
(q)
k = 2k

[
cosh

(J∇x

2

)]q−k[
sinh

(J∇x

2

)]k 1
2

tanh
[β
2
(
x + h

)]∣∣∣
x=0

. (3.34)

Any numerical calculation, of course, requires the explicit knowledge of all relevant coefficients
in previous equation. Let us now explain in detail how to calculate these coefficients. At first,
we use definitions of hyperbolic functions to transform Eq. (3.34) into form:

A
(q)
k = 2k−qe−

q
2 J∇x

(
eJ∇x + 1

)q−k(
eJ∇x − 1

)k 1
2

tanh
[β
2
(
x + h

)]∣∣∣
x=0

(3.35)

and then after the straightforward application of the binomial theorem and Eq. (3.24) we obtain
the final result:

A
(q)
k = A

(q)
k (t, h̃) = 2k−q−1

q−k∑
i=0

k∑
j=0

(
−1
)j(q − k

i

)(
k

j

)
tanh

[ t

4

(
q − 2i− 2j + 2h̃

)]
,

(3.36)

where we have introduced the dimensionless parameters t = βJ and h̃ = h/J . To complete
this subsection one should emphasize that on the basis of Eqs. (3.33) and (3.36) we can numeri-
cally study either magnetization processes at fixed temperatures or alternatively to investigate the
temperature variations of magnetization at fixed external magnetic field for an arbitrary lattice
defined solely through the coordination number q.
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3.2.1 Spontaneous magnetization and critical temperature

The spontaneous magnetization is defined as a magnetic moment per unit volume of a magnetic
system in a zero external magnetic field. Within the single-spin cluster effective-field theory one
determines the spontaneous magnetization from Eq. (3.33) by setting h̃ = 0:

m =
q∑

k=0

(
q

k

)
mkA

(q)
k (t), (3.37)

where temperature-dependent coefficients A
(q)
k (t) = A

(q)
k (t, 0) are given by:

A
(q)
k (t) = 2k−q−1

q−k∑
i=0

k∑
j=0

(
−1
)j(q − k

i

)(
k

j

)
tanh

[ t

4

(
q − 2i− 2j

)]
. (3.38)

One can easily verify that for an arbitrary q and even values of k one has

A
(q)
k (t) = 0. (3.39)

Thus, Eq. (3.37) contains only terms proportional to odd powers of the spontaneous magne-
tization m simultaneously serving also as the order parameter. Consequently, this polynomial
equation has always one trivial root m = 0 corresponding to the well-known disordered param-
agnetic phase. Although the trivial solution exists at all temperatures, the paramagnetic phase is
under normal circumstances stable only above some characteristic temperature, which is for fer-
romagnets called as a Curie temperature. The Curie temperature represents a critical temperature,
at which the disordered paramagnetic phase and the spontaneously ordered ferromagnetic phase
coincide, and the system under investigation undergoes a second-order phase transition. The
ferromagnetic phase exhibits a nonzero spontaneous magnetization, which takes its maximum
possible value m = 1/2 at T = 0 and then gradually decreases with the increasing temperature
until it completely vanishes at the critical temperature. The regions of stability for the paramag-
netic and ferromagnetic phases are obviously determined by comparing the values of Helmholtz
free energy of these phases.

It follows from the general theory of phase transitions and critical phenomena that different
quantities of very diverse physical systems may exhibit near the critical point a universal power-
law behavior, which can be mathematically described by critical indexes. Thus, various physical
systems exhibiting phase transitions can be divided into a few universality classes depending on
the spatial dimension, kind of the order parameter and symmetry of the Hamiltonian. Now, let us
find the Curie temperature of the ferromagnetic spin-1/2 Ising model on several lattices within
single-spin cluster effective-field theory and afterwards we will investigate the behavior of the
spontaneous magnetization near a critical point. For this purpose, one may take advantage of the
aforementioned fact that the spontaneous magnetization (i.e. the order parameter) gradually de-
creases with temperature until it continuously tends to zero at the Curie temperature. Hence, one
can neglect in Eq. (3.37) all terms including higher-order powers of the spontaneous magnetiza-
tion and retain only terms linear in the spontaneous magnetization m, because the spontaneous
magnetization is sufficiently small m � 1 close to a phase transition point. Then, one may
evaluate the Curie temperature from the following simple equation using the fact that m 6= 0 for
T ↗ Tc:

1 = qA
(q)
1 (tc), (3.40)
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with tc = J/(kBTc).
The numerical solution of Eq. (3.40) gives Curie temperatures of the ferromagnetic spin-1/2

Ising model on various lattices within the single-spin cluster effective-field theory, which are
listed in Tab. 3.1 along with the critical temperatures obtained for the same model within the
framework of other theories. The results obtained within the single-spin cluster effective-field
theory clearly improve those of the standard mean-field theory, but at the same time, they do
not overcome the accuracy of the Bethe-Peierls approximation. In the case of 1D Ising model
one obtains within the single-spin cluster approach the zero critical temperature in accordance
with the exact result. It should be also pointed out that the single-spin cluster effective-field
theory does not discern between the spin-1/2 Ising lattices with the same coordination number
but different topological structure, for example, the obtained Curie temperature for q = 6 is
equally valid for the ferromagnetic spin-1/2 Ising model on 2D triangular lattice as well as 3D
simple cubic lattice. This is of course an unpleasant feature of this approximation, however, it is
possible to improve the formulation of effective-field theory in order to eliminate this failure as
it will be discussed later.

Similarly as in the case of mean-field approximation, we can now investigate the behavior
of spontaneous magnetization in the vicinity of the Curie temperature also within the single-spin
cluster effective-field theory. To this end, we retain in Eq. (3.37) only terms up to m3 and obtain
the following expression:

m = ±

√√√√6
1− qA

(q)
1 (t)

q(q − 1)(q − 2)A(q)
3 (t)

, (3.41)

where

A
(q)
1 (t) =

1
2q

q−1∑
i=0

1∑
j=0

(−1)j

(
q − 1

i

)(
1
j

)
tanh

[ t

4

(
q − 2i− 2j

)]
. (3.42)

Tab. 3.1. A comparison of the Curie temperatures for the ferromagnetic spin-1/2 Ising model on several
lattices obtained within different approximate and exact theories (see Ref. [125]). The abbreviation used:
MFA - mean-field approximation, SEFA - single-spin cluster formulation of the effective-field theory, BPA
- Bethe-Peierls approximation, Exact/HTSE - exact results/high-temperature series expansion, lc - linear
chain, hc - honeycomb, sq - square, sc - simple cubic, bcc - body centered cubic, fcc - face centered cubic.

MFA SEFA BPA Exact/HTSE
q kBTc/J kBTc/J kBTc/J kBTc/J
2 0.500 0.000 0.000 0.000 (lc)
3 0.750 0.526 0.455 0.380 (hc)
4 1.000 0.773 0.721 0.567 (sq)
6 1.500 1.268 1.233 1.128 (sc)
8 2.000 1.765 1.738 1.588 (bcc)
12 3.000 2.761 2.743 2.449 (fcc)
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Fig. 3.1. Temperature dependences of the spontaneous magnetization for the spin-1/2 Ising model on a
square lattice (q = 4) within different approximations. The red curve represents the mean-field result, the
blue one the single-spin cluster formulation of the effective-field theory and the green one is the exact result
according to Yang [126]. The values of the Curie temperatures are also indicated.

A
(q)
3 (t) =

1
22−q

q−1∑
i=0

3∑
j=0

(−1)j

(
q − 1

i

)(
3
j

)
tanh

[ t

4

(
q − 2i− 2j

)]
. (3.43)

Expanding the r.h.s of (3.41) with respect to δ = Tc − T one obtains the familiar formula:

m ≈ const · (Tc − T )
1
2 , (3.44)

which proves that the critical index of the spontaneous magnetization equals βm = 1/2 indepen-
dently of spatial dimensionality and geometry of a given lattice. This result is identical with the
standard mean-field prediction and it is obviously in contradiction with the results obtained from
exact or more accurate approximate theories. It could be therefore concluded that the single-spin
cluster effective-field theory has the same accuracy as traditional mean-field theory in the critical
region and hence, it fails to reproduce correct critical indexes. On the other hand, this theory
gives numerically better results than the mean-field theory outside of the critical region as it is
quantitatively illustrated in Fig. 3.1, where we have depicted the thermal variations of the spon-
taneous magnetization obtained within the single-spin cluster effective-field theory, mean-field
theory and exact calculations for the particular case of the spin-1/2 Ising model on a square lattice
with the coordination number q = 4.

3.2.2 Initial magnetic susceptibility

In magnetic systems, the initial magnetic susceptibility represents an important physical quantity
characterizing a response of the spin system with respect to variations of the external magnetic
field and it is defined as:

χ = lim
Hext→0

(
∂M

∂Hext

)
T

, (3.45)
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where M = NgµBm is the total magnetization of the system, Hext = h/(gµB) denotes the
intensity of external magnetic field, g is the Landé factor and µB represents the Bohr magneton.
For our purpose it is more useful to express the previous equation in the form:

χ =
N

J
g2µ2

B lim
h̃→0

(
∂m

∂h̃

)
t

, (3.46)

In order to determine the initial susceptibility of the spin-1/2 Ising model on a lattice with
the coordination number q within the single-spin cluster effective-field theory one has at first to
evaluate the expression (∂m/∂h̃)t from the equation of state (3.33) and then to take the limit
of vanishing external field. For this purpose it is sufficient to perform the Taylor expansion of
coefficients on the r.h.s of Eq. (3.33) and to retain only expressions up to linear term in h̃ since
all other terms will vanish for h̃ → 0. Following this procedure one obtains the expression:

m =
q∑

k=0

(
q

k

)
mk
[
A

(q)
k (t) +

t

2
h̃B

(q)
k (t)

]
, (3.47)

where A
(q)
k (t) = A

(q)
k (t, 0) is given by (3.38) and the coefficients B

(q)
k (t) take the following

explicit form:

B
(q)
k (t) = 2k−q−1

q−k∑
i=0

k∑
j=0

(
−1
)j(q − k

i

)(
k

j

)
sech2

[ t

4

(
q − 2i− 2j

)]
. (3.48)

It is useful to note for further calculation that the coefficients B
(q)
k (t) = 0 for all odd values of

k. Now, one may differentiate Eq. (3.47) with respect to h̃ in order to get:

(
∂m

∂h̃

)
t

=

t
2

q∑
k=0

(
q

k

)
mkB

(q)
k (t)

1−
q∑

k=0

(
q

k

)
kmk−1A

(q)
k (t)

. (3.49)

After inserting Eq. (3.49) into Eq. (3.46) one obtains the following relation for the initial mag-
netic susceptibility:

χ =
Ng2µ2

B

2J

t

q∑
k=0

(
q

k

)
mkB

(q)
k (t)

1−
q∑

k=0

(
q

k

)
kmk−1A

(q)
k (t)

. (3.50)

In the paramagnetic region (T > Tc) one obviously has zero spontaneous magnetization (m =
0), so the previous equation can be simplified as follows:

χ =
Ng2µ2

B

2J

tB
(q)
0 (t)

1− qA
(q)
1 (t)

, (T > Tc) (3.51)
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where A
(q)
1 (t) is given by Eq. (3.42) and the coefficients B

(q)
0 (t) follow from:

B
(q)
0 (t) =

1
2q+1

q∑
i=0

(
q

i

)
sech2

[ t

4

(
q − 2i

)]
. (3.52)

The result (3.51) offers a unique opportunity to test our calculations against the experimental
observations, since the initial paramagnetic susceptibility obeys at high enough temperatures the
Curie-Weiss law for many real ferromagnetic materials.

In order to investigate the high-temperature behavior of the initial paramagnetic susceptibil-
ity, we take into account the fact that for T � Tc we have t � 1, so that we can expand the
hyperbolic function in Eqs. (3.42) and (3.52) and retain only absolute terms and those linear in
t. Completing this mathematical procedure one obtains the relations:

A
(q)
1 (t) ≈ t

4
, B

(q)
0 (t) ≈ 1

2
, (3.53)

which enable to rewrite Eq. (3.51) as:

χ =
Ng2µ2

B

4J

t

1− qt
4

, (3.54)

or alternatively

χ =
C

T −Θ
. (3.55)

Above, C = Ng2µ2
B/(4kB) denotes the Curie constant and Θ = qJ/(4kB) represents the Weiss

constant. The previous equation represents nothing but the famous Curie-Weiss law for ferro-
magnets and hence, one may conclude that our theory agrees well with experimental findings in
high-temperature region.

3.3 Internal energy, enthalpy and specific heat

In general, the internal energy is in statistical mechanics defined as the expectation value of the
Hamiltonian with vanishing external fields. Thus, the internal energy of the Ising model with the
unique nearest-neighbor exchange interaction J is given by:

U =
〈
H0

〉
= −

〈
J
∑
〈ij〉

σiσj

〉
. (3.56)

where the subscript 0 indicates that no external field is included in the Hamiltonian. By taking
into account the translation invariance of the lattice one obtains:

U =
N

2
〈
Hi0

〉
= −N

2
〈
σiEi

〉
, (3.57)

where N is the number of lattice sites and Ei is given by:

Ei = J

q∑
j=1

σj . (3.58)
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It is quite evident that one has to determine the expectation value of
〈
σiEi

〉
on the r.h.s of Eq.

(3.24) in order to get the closed-form expression for the internal energy. To this end, one may
exploit Eq. (3.16) by setting Ô = σi, {fi} = Ei and Tri =

∑
σi=±1/2. Then, one may rewrite

Eq. (3.16) using the fact that Hi0 = −σiEi into the following form:

〈
σiEi

〉
=
〈

Ei

∑
σi=±1/2

σi exp
(
βσiEi

)
∑

σi=±1/2

exp
(
βσiEi

) 〉. (3.59)

Performing the summation over σi and applying Eq. (3.24) we obtain the following relation:〈
σiEi

〉
=
〈
Ei exp

(
Ei∇x

)〉1
2

tanh
(β

2
x
)∣∣∣∣

x=0

, (3.60)

which can be rewritten in the following more elegant form:〈
σiEi

〉
=
[

∂

∂y

〈
exp
(
Eiy

)〉]
y=∇x

1
2

tanh
(β

2
x
)∣∣∣∣

x=0

. (3.61)

After substituting Eq. (3.61) to Eq. (3.57) we obtain the formula for the internal energy of the
spin-1/2 Ising model:

U = −N

4

{
∂

∂y

〈 q∏
j=1

[
cosh

(Jy

2

)
+ 2σj sinh

(Jy

2

)]〉}
y=∇x

tanh
(β

2
x
)∣∣∣∣

x=0

. (3.62)

To be consistent with previous calculations we now apply the same decoupling procedure as in
Eq. (3.30) and rewrite previous equation into the form:

U = −N

4

{
∂

∂y

[
cosh

(Jy

2

)
+ 2m sinh

(Jy

2

)]q}
y=∇x

tanh
(β

2
x
)∣∣∣∣

x=0

, (3.63)

or alternatively:

− 2U

qNJ
=

[
sinh

(J∇x

2

)
+ 2m cosh

(J∇x

2

)][
sinh

(J∇x

2

)
+ 2m cosh

(J∇x

2

)]q−1

× 1
2

tanh
(β

2
x
)∣∣∣∣

x=0

. (3.64)

In order to obtain an expression suitable for numerical calculations we again utilize the binomial
theorem to recast Eq. (3.64) as follows:

− 4U

qNJ
=

q−1∑
k=0

(
q − 1

k

)(
2m
)k+1[

cosh
(J∇x

2

)]q−k−1[
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(J∇x

2

)]k+1
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(β

2
x
)∣∣∣∣

x=0

+
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k=0

(
q − 1

k

)(
2m
)k[

cosh
(J∇x

2

)]q−k[
sinh

(J∇x

2

)]k
tanh

(β

2
x
)∣∣∣∣

x=0

.

(3.65)
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The previous equation can be naturally expressed in the following abbreviated and simpler form:

− 2U

qNJ
=

q−1∑
k=0

(
q − 1

k

)[
mkC

(q)
k

(
t
)

+ mk+1D
(q)
k

(
t
)]

, (3.66)

where we have denoted t = βJ and we have also introduced the thermal coefficients C
(q)
k (t) a

D
(q)
k (t) as follows:

C
(q)
k (t) = 2k−1

[
cosh

(J∇x

2

)]q−k−1[
sinh

(J∇x

2

)]k+1

tanh
(β

2
x
)∣∣∣∣

x=0

, (3.67)

D
(q)
k (t) = 2k

[
cosh

(J∇x

2

)]q−k[
sinh

(J∇x

2

)]k
tanh

(β

2
x
)∣∣∣∣

x=0

. (3.68)

After a straightforward application of the binomial theorem and Eq. (3.24) one easily gets these
coefficients in the following final form:

C
(q)
k (t) = 2k−q−1

q−k−1∑
i=0

k+1∑
j=0

(
−1
)j(q − k − 1

i

)(
k + 1

j

)
tanh

[ t

4

(
q − 2i− 2j

)]
(3.69)

D
(q)
k (t) = 2k−q

q−k∑
i=0

k∑
j=0

(
−1
)j(q − k

i

)(
k

j

)
tanh

[ t

4

(
q − 2i− 2j

)]
. (3.70)

For practical applications it is useful to take into account the following relations:

C
(q)
k (t) = 0, for k even (3.71)

D
(q)
k (t) = 0, for k odd. (3.72)

Altogether, we have obtained the polynomial equation (3.66) with temperature dependent co-
efficients for the internal energy of the spin-1/2 Ising model on the arbitrary crystalline lattice,
which can be easily numerically solved. In this equation the lattice structure is specified solely
by the coordination number q, whereas the spontaneous magnetization entering the r.h.s of this
equation must be calculated from Eq. (3.37).

Having obtained the explicit form of the internal energy one can simply calculate other phys-
ical quantities using basic thermodynamic relations. At first, the enthalpy H of the spin-1/2 Ising
model can be easily obtained from the equation:

H = U −Nhm, (3.73)

where the internal energy is given by (3.66), magnetization by (3.33) and h represents an external
magnetic field. Note that the internal energy and enthalpy represent important thermodynamic
potentials, which enable to understand behavior of the system under different physical conditions.
Within the effective-field theories, the significance of these two quantities is reinforced because
they also serve as a starting point for a calculation of other thermodynamic quantities such as
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magnetic specific heat, Helmholtz and/or Gibbs free energy. In fact, the specific heat at constant
magnetization or constant external magnetic field are respectively calculated from the relations:

Cm =
(

∂U

∂T

)
m

(3.74)

and

Ch =
(

∂H

∂T

)
h

. (3.75)

Of course, one can in principle obtain the relevant expressions by the differentiation of (3.66)
and (3.73), however, it is easy to see that the final analytical results will be too intricate. For
that reason it is in practice very comfortable to calculate both specific heats using a numerical
differentiation of relevant thermal variations of the internal energy or enthalpy.

3.4 Helmholtz and Gibbs free energy. Entropy

The Helmholtz and Gibbs free energies play an important role in theoretical investigation of
magnetic systems, because they enable to analyze the thermodynamic stability of all possible
phases appearing in system under various external physical conditions. Both these quantities are
in thermodynamics defined as a Lagrange transform of the internal energy or enthalpy of the
system and these procedures require explicit knowledge of the entropy. It is well known fact
that the phenomenological thermodynamics does not provide a mathematical tool for explicit
calculation of the entropy, so that one cannot use the Lagrange transform to determine relevant
free energies.

Let us utilize the framework of statistical mechanics when defining some magnetic system
through the Hamiltonian, so that the Helmholtz and Gibbs free energy are formally given by the
same equations:

F = − 1
β

lnZ(β) (3.76)

and

G = − 1
β

lnZ(β, h) (3.77)

where β = 1/kBT , h denotes the external magnetic field and the relevant partition functions are
respectively given by:

Z(β) = Tr e−βĤ0 (3.78)

and

Z(β, h) = Tr e−βĤ. (3.79)

In order to avoid confusion one should notice that in Eqs. (3.77) and (3.79) the Hamiltonian Ĥ of
a given magnetic system includes also the Zeeman’s term associated with the external magnetic
field, while the Hamiltonian Ĥ0 in Eqs. (3.76) and (3.78) must not depend on the external
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magnetic field as formally denoted by the subscript zero. Moreover, it should be emphasized
here that the direct application of the previous equations is not straightforward, since it requires
the calculation of partition function that is usually very hard problem even in some approximate
theories.

As far as the effective-field theories based on the differential operator technique are con-
cerned, it is necessary to note that the calculation of free energies represents a crucial problem
of the theory, which has not been solved yet. The basic problem lies in fact that one always
uses as a starting point within these theories the Callen-Suzuki identities, which do not enable to
obtain the closed-form expression for the partition function. In order to avoid this serious limita-
tion of effective-field theory, we now derive general equations for the Helmholtz and Gibbs free
energy allowing to calculate these quantities numerically for a wide class of the Ising-like spin
systems. It will be shown below that the proposed numerical method for a calculation of the free
energy assumes the knowledge of the internal energy. This is much easier task in comparison
with the evaluation of the partition function, because it is enough to evaluate the nearest-neighbor
correlation function and then to use the following general relation:

U = 〈H0〉0 = −NzJ

2
〈σiσj〉0, (3.80)

where the subscript 0 means that relevant expectations are calculated with the Hamiltonian H0.
Of course, one can readily use Eq. (3.65) in the case of a spin-1/2 Ising model.

The starting point for a calculation of Helmholtz free energy is the well-known equation for
the internal energy:

U(β) = − ∂

∂β
lnZ(β), (3.81)

where the partition function is given by Eq. (3.78). Now, integrating the previous equation over
the (inverse) temperature range from 0 to β one obtains the relation:∫ β

0

U(β′)dβ′ = −
[
lnZ(β)− lnZ(0)

]
. (3.82)

The partition function of the spin-S Ising model on a lattice with the total number of spins N
can be simply evaluated at infinite (zero inverse) temperature:

Z(0) = TrI = (2S + 1)N (3.83)

since I represents in general a (2S + 1)N × (2S + 1)N identity matrix. Finally, one obtains for
the Helmholtz free energy the following formula from Eqs. (3.76) and (3.83):

F = −N

β
ln(2S + 1) +

1
β

∫ β

0

U(β′)dβ′. (3.84)

Moreover, it is quite clear that one gets very similar expression for the Gibbs free energy of
the spin-S Ising model when the same procedure is repeated under a mere replacement of the
internal energy through the enthalpy:

G = −N

β
ln(2S + 1) +

1
β

∫ β

0

H(β′, h)dβ′. (3.85)
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For the sake of completeness, it is worth recalling that the enthalpy H can be simply obtained
from Eq. (3.73). It should be stressed that Eqs. (3.84) and (3.85) are very general and they
are applicable within any statistical-mechanical theory, which enables to calculate the internal
energy and/or enthalpy of the system under investigation. Of course, the numerical accuracy of
Eqs. (3.84) and (3.85) is basically determined by the applied analytical approach, so that one
may obtain only approximate results in some particular cases, whereas in some others one may
even obtain the free energy exactly.

Finally, let us note that the entropy of the system can be very simply obtained from the
following formulas:

S = −
(∂F

∂T

)
m

(3.86)

and

S = −
(∂G

∂T

)
h
. (3.87)

Now, performing the differentiation of (3.84) and (3.85) with respect to temperature one obtains
the final expressions for entropy:

S = NkB ln(2S + 1)− kB

∫ β

0

U(β′, h)dβ′ + kBβU(β) (3.88)

S = NkB ln(2S + 1)− kB

∫ β

0

H(β′, h)dβ′ + kBβH(β). (3.89)

Here, one should emphasize that our Eq. (3.88) is identical with the formula for the entropy
obtained by Žukovič using a different approach [127].

Let us illustrate the applicability of Eq. (3.85) by calculating the Gibbs free energy of the
spin-1/2 Ising model within the mean-field approach. The enthalpy of the spin-1/2 Ising model
is within the mean-field approximation given by:

H(β, h) = −NqJ

2
m2 −Nmh, (3.90)

whereas the magnetization should be calculated from the self-consistency condition:

m(β, h) =
1
2

tanh
[β
2
(
qJm + h

)]
. (3.91)

Substituting Eq. (3.90) into Eq. (3.85) one obtains the expression:

G = −N

β
ln 2− NqJ

2β

∫ β

0

m2(β′, h)dβ′ −Nh

∫ β

0

m(β′, h)dβ′. (3.92)

It is advisable to change an integration variable before evaluating the integrals on the r.h.s of the
previous equation:

G = −N

β
ln 2− NqJ

2β

∫ m

0

m′2 dβ′

dm′ dm′ − Nh

β

∫ m

0

m′ dβ′

dm′ dm′, (3.93)
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and subsequently to utilize the integration by parts in combination with the expression:

β =
1

(qJm + h)
ln
(1 + 2m

1− 2m

)
(3.94)

in order to obtain the Gibbs free energy in the following form:

G(β, h) =
N

2β
ln
(1− 4m2

4

)
+

NqJ

2
m2. (3.95)

Finally, substituting the r.h.s of Eq. (3.91) into argument of logarithmic function one may recast
the previous equation into the identical form as Eq. (2.10):

G = −NkBT ln 2−NkBT ln cosh
[β
2

(qJm + h)
]

+
Nq

2
Jm2. (3.96)

This calculation clearly illustrates that the proposed formulas for the Helmholtz and Gibbs free
energies can be very powerful in combination with various analytical (even approximate) the-
ories. These formulas can be readily combined with all exact or approximate theories, which
provide the explicit knowledge of the internal energy and/or the enthalpy. In the following, this
property will be explicitly illustrated by an exact calculation of the Helmholtz free energy for the
spin-1/2 Ising chain. Another pleasant feature of the approach based on Eqs. (3.84) and (3.85) is
that it is also compatible with the Monte Carlo simulations and others computational techniques.
Last but not least, it should be pointed out that the expressions for the Helmholtz and Gibbs free
energy are not limited to magnetic systems, so the procedure can also be simply applied to more
general statistical-mechanical systems. It is of course clear that the approach for obtaining the
Helmholtz and Gibbs free energies presented in above is of principal importance especially for
those cases, for which the free energies cannot be obtained by means of other methods.

3.5 Exact results for a spin-1/2 Ising chain

It has been demonstrated in previous parts that one can develop a simple approximate theory
using the differential operator method, which preserves a single-spin kinematic relations exactly
and neglects all correlations among nearest-neighbors spins of the central spin of the selected
spin cluster. This approach represents a kind of effective-field theory with a better numerical
accuracy than that one of the standard mean-field theory. Surprisingly, the critical temperature
for the spin-1/2 Ising chain with the coordination number q = 2 obtained from the single-spin
cluster effective-field theory coincides with the exact result (Tc = 0). It is worthwhile to recall
that the mean-field theory predicts for the spin-1/2 Ising chain the non-zero Curie temperature
(kBTc/J = 2) and thus, it fails to reproduce exact Curie temperature in one spatial dimension.
It is of course very interesting to verify whether the single-spin cluster effective-field theory may
reproduce exact results also for other physical quantities of the spin-1/2 Ising chain.

The starting point for our calculation will be the following equation:〈
σi

{
fi

}〉
=
〈{

fi

}〈 ∏
j=±1

[
cosh

(J∇x

2

)
+ 2σi+j sinh

(J∇x

2

)]〉1
2

tanh
[β
2
(
x + h

)]∣∣∣∣
x=0

(3.97)

which can be easily obtained from the generalized Callen-Suzuki identity (3.16) by repeating the
same procedure as described in the subsection 3.2. In order to obtain exact results for physical
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quantities of the spin-1/2 Ising chain one may expand the previous equation with respect to the
magnetic field h up to linear term:

〈
σi

{
fi

}〉
=
〈{

fi

}〈 ∏
j=±1

[
cosh

(J∇x

2

)
+ 2σi+j sinh

(J∇x

2

)]〉1
2

tanh
(βx

2

)∣∣∣∣
x=0

+ h
〈{

fi

}〈 ∏
j=±1

[
cosh

(J∇x

2

)
+ 2σi+j sinh

(J∇x

2

)]〉β

4
sech2

(βx

2

)∣∣∣∣
x=0

.

(3.98)

To make a progress with calculations, one may take advantage of Eq. (3.24) and express the
previous relation in a more suitable form for further manipulation:〈

σi

{
fi

}〉
=
〈{

fi

}(
2σi−1 + 2σi+1

)〉
A

(2)
1 + h

〈{
fi

}(
A

(2)
0 + 4σi−1σi+1A

(2)
2

)〉
, (3.99)

where σi+1 and σi−1 denote two nearest-neighbor spins of the central spin σi and the coefficients
A

(2)
i are respectively given by:

A
(2)
0 =

β

4
cosh2

(J∇
2

)
sech2

(βx

2

)∣∣∣∣
x=0

=
β

8

[
sech2

(βJ

2

)
+ 1
]
, (3.100)

A
(2)
1 =

1
2

cosh
(J∇

2

)
sinh

(J∇
2

)
tanh

(βx

2

)∣∣∣∣
x=0

=
1
4

tanh
(βJ

2

)
, (3.101)

A
(2)
2 =

β

4
sinh2

(J∇
2

)
sech2

(βx

2

)∣∣∣∣
x=0

=
β

8

[
sech2

(βJ

2

)
− 1
]
. (3.102)

Setting
{
fi

}
= 1 and h = 0 to Eq. (3.99) one obtains the following simple relation for the

spontaneous magnetization m =
〈
σi

〉
of the spin-1/2 Ising chain:

m = 4mA
(2)
1 . (3.103)

The critical temperature of the spin-1/2 Ising chain can be accordingly determined form the
expression:

1 = tanh
( J

2kBTc

)
, (3.104)

which implies only a trivial solution Tc = 0 in agreement with the exact result obtained by means
of the transfer-matrix method in Section 4.

In order to calculate exact results for some other physical quantities, let us set
{
fi

}
= σk,

h = 0 and substitute Eq. (3.101) into Eq. (3.99) to obtain:〈
σkσi

〉
=

1
2

tanh
(βJ

2

)(〈
σkσi−1

〉
+
〈
σkσi+1

〉)
. (3.105)

Here, σk represent an arbitrary Ising spin variable situated the kth lattice site, which is located at
the absolute distance r = |i−k| with respect to the central spin σi of the considered spin cluster.
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At this stage, one should realize that the correlation function
〈
σkσi

〉
depends only on the

absolute distance between the relevant lattice sites at a fixed temperature. We can therefore
introduce the correlation function g(r):

g(r) = g(|i− k|) =
〈
σkσi

〉
(3.106)

and rewrite Eq. (3.105) into the form:

2 coth
(βJ

2

)
=

g(r + 1)
g(r)

+
g(r − 1)

g(r)
. (3.107)

Since the l.h.s of this functional equation is independent of r, so the the r.h.s must not depend on
the distance as well. Thus, the following relations must be satisfied quite generally:

g(r + 1)
g(r)

= γ(βJ), (3.108)

where the function γ(βJ) can be simply determined after substitution of Eq. (3.107) into Eq.
(3.108). In this way one obtains a quadratic equation, which unambiguously determines the
unknown function γ:

γ = tanh
(βJ

4

)
. (3.109)

Using the property g(0) = 1/4 one easily obtains the well-known exact result for the correlation
function of the spin-1/2 Ising chain (see Eq. (4.36) in Section 4):〈

σkσi

〉
= g(r) =

1
4

[
tanh

(βJ

4

)]r
. (3.110)

Our further goal is to illustrate how to obtain exact results for the internal energy, specific heat
and initial magnetic susceptibility of the spin-1/2 Ising chain within the single-spin cluster for-
mulation of the effective-field theory.

The internal energy can be determined from Eq. (3.57) after substituting instead of Ei the
following expression:

Ei = J(σi−1 + σi+1). (3.111)

In this way one gets the relation:

U = −NJ

2

(〈
σiσi−1

〉
+
〈
σiσi+1

〉)
, (3.112)

which can be rewritten using Eq. (3.110) as:

U = −NJ

4
tanh

(
βJ

4

)
. (3.113)

By differentiating the previous equation with respect to temperature one obtains the specific heat:

C =
NJ2

16kBT 2
sech2

(
J

4kBT

)
. (3.114)
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Next, substituting Eq. (3.113) into Eq. (3.84) one easily finds the Helmholtz free energy:

F = −NkBT ln
[
2 cosh

(
J

4kBT

)]
, (3.115)

by virtue of which the entropy of the spin-1/2 Ising chain is given by:

S = NkB ln
[
2 cosh

(
J

4kBT

)]
+

NJ

4kBT
tanh

(
J

4kBT

)
. (3.116)

Finally, let us calculate the initial magnetic susceptibility from Eq. (3.46). One obtains from Eq.
(3.99) by setting {fi} = 1:

m = 4mA
(2)
1 + h

[
A

(2)
0 + 4

〈
σi−1σi+1

〉
A

(2)
2

]
, (3.117)

where the two-spin correlation function 〈σi−1σi+1〉 is given by (see Eq. (3.110)):

g(2) =
〈
σi−1σi+1

〉
=

1
4

tanh2

(
βJ

4

)
. (3.118)

Substituting Eqs. (3.103)-(3.105) into Eq. (3.117) and taking the limit of h → 0 one easily
derives the following relation:

(
∂m

∂h

)
β

=
β

{
1 + sech2

(
βJ

2

)
+ tanh2

(
βJ

4

)[
sech2

(
βJ

2

)
− 1
]}

8
[
1− tanh2

(
βJ

2

)] , (3.119)

which can be further simplified to:

χ(T ) =
Ng2µ2

B

kBT
exp
(

J

2kBT

)
. (3.120)

To summarize, the single-spin cluster formulation of the effective-field theory gives exact results
for all thermodynamic quantities of the spin-1/2 Ising chain.

3.6 Spin-1/2 Ising model in a transverse field within a single-spin cluster approach

The transverse Ising model is one of the simplest possible quantum models describing cooper-
ative phenomena in the solid-state physics. The model includes the effect of external magnetic
field applied both along the z and x directions. It has been originally introduced by Kirkwood
in 1933, who has clearly demonstrated the existence of long-range order and phase transitions in
the system with nonzero perpendicular component of the external magnetic field [128].

Later on, the transverse Ising model has been applied to investigate physical properties in
various physical systems, such as hydrogen bonded ferro- and antiferroelectrics [129, 130], fer-
romagnets with induced magnetic moments or cooperative Jahn-Teller systems [131]. The most
natural usage of this model is, of course, its application in description of various magnetic sys-
tems in an external transverse magnetic field (see for example [132–134]). The transverse Ising
model has been theoretically investigated by means of the standard mean-field theory [132],
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pair approximation [135], high-temperature series expansions [136], transfer-matrix method and
Monte Carlo simulations [137] and rarely it was also treated exactly [138].

Our main aim in this part is to explain how the single-spin cluster formulation of the effective-
field theory based on the differential operator technique can be extended to the spin-1/2 Ising
model in a transverse magnetic field. For this purpose, we will study the model defined by the
Hamiltonian:

Ĥ = −J
∑
〈ij〉

Ŝz
i Ŝz

j − h

N∑
i=1

Ŝz
i − Ω

N∑
i=1

Ŝx
i , (3.121)

where the constant J denotes the nearest-neighbor exchange interaction, h and Ω represent the
longitudinal and transverse components of external magnetic field along the z and x direction,
respectively. The spin-1/2 operators Ŝx

i and Ŝz
i (i = 1, . . . , N ) take the following standard

matrix form:

Ŝx
i =

1
2

(
0 1
1 0

)
i

, Ŝz
i =

1
2

(
1 0
0 −1

)
i

. (3.122)

Similarly as in previous calculations, we again separate the total Hamiltonian (3.121) into two
parts:

Ĥ = Ĥi + Ĥ
′
, (3.123)

whereas the single-spin cluster Hamiltonian Ĥi is given by:

Ĥi = −Ŝz
i

(
J

q∑
j=1

Ŝz
j + h

)
− ΩŜx

i . (3.124)

The single-spin cluster Hamiltonian (3.124) includes all interactions of the central ith spin with
its nearest neighbors and external magnetic field, while the Hamiltonian Ĥ′

accounts for all
remaining interactions in the system under investigation.

The starting point for the formulation of the single-spin cluster effective-field theory will be
again the Callen-Suzuki identity (3.15), which after setting Ôi = Ŝα

i takes the form:

〈
Ŝα

i

〉
=
〈

Tri Ŝα
i exp

(
−βĤi

)
Tri exp

(
−βĤi

) 〉
, (3.125)

where α = x, z and Ĥi is given by equation (3.124). It is wortwhile to recall here that the previ-
ous identity is only approximate expression due to a non-commutative nature of the Hamiltonians
Ĥi and Ĥ′

, i.e. [Ĥi, Ĥ
′
] 6= 0. Despite of this fact, such a theory will be in several regards still

superior to the standard mean-field theory.
The matrix representation of the single-spin cluster Hamiltonian Ĥi takes the following ex-

plicit form:

Ĥi = −1
2

(
Ei + h Ω

Ω −Ei − h

)
i

, (3.126)
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where we have introduced the new parameter:

Ei = J

q∑
j=1

Ŝz
j . (3.127)

In order to proceed further with a calculation, one has to evaluate the exponential function in
(3.125). The most elegant way to perform this calculation is the diagonalization of Hamiltonian
(3.124) by applying the following unitary rotation transformation:

Ŝz
i = Ŝz′

i cos ϕi − Ŝx′

i sinϕi, (3.128)

Ŝx
i = Ŝz′

i sinϕi + Ŝx′

i cos ϕi, (3.129)

where

cos ϕi =
Ei + h√

Ω2 +
(
Ei + h

)2 , sinϕi =
Ω√

Ω2 +
(
Ei + h

)2 . (3.130)

Using the relations (3.128) and (3.129), we respectively express the operators Ŝz
i , Ŝx

i and Ĥi in
the following matrix form:

Ŝz
i = −1

2


Ei + h√

Ω2 +
(
Ei + h

)2 − Ω√
Ω2 +

(
Ei + h

)2
− Ω√

Ω2 +
(
Ei + h

)2 − Ei + h√
Ω2 +

(
Ei + h

)2


i

, (3.131)

Ŝx
i = −1

2


Ω√

Ω2 +
(
Ei + h

)2 Ei + h√
Ω2 +

(
Ei + h

)2
Ei + h√

Ω2 +
(
Ei + h

)2 − Ω√
Ω2 +

(
Ei + h

)2


i

(3.132)

and

Ĥi = −1
2

√Ω2 +
(
Ei + h

)2 0

0 −
√

Ω2 +
(
Ei + h

)2


i

, (3.133)

After substituting Eqs. (3.131) and (3.133) into Eq. (3.125), we simply evaluate relevant traces
and obtain the following expression for the longitudinal component of magnetization:

mz ≡
〈
Ŝz

i

〉
=

〈
1
2

Ei + h√
Ω2 +

(
Ei + h

)2 tanh
[
β

2

√
Ω2 +

(
Ei + h

)2]〉
. (3.134)

The same procedures can be routinely repeated in order to find the following relation for the
transverse component of magnetization:

mx ≡
〈
Ŝx

i

〉
=

〈
1
2

Ω√
Ω2 +

(
Ei + h

)2 tanh
[
β

2

√
Ω2 +

(
Ei + h

)2]〉
. (3.135)
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Before proceeding further, one can notice that the least accurate approximation one gets by sim-
ple averaging the quantity Ei in Eqs. (3.134) and (3.135). In this way one obtains the results:

mz =
1
2

qJmz + h√
Ω2 + (qJmz + h)2

tanh
[
β

2

√
Ω2 +

(
qJmz + h

)2]
(3.136)

and

mx =
1
2

Ω√
Ω2 + (qJmz + h)2

tanh
[
β

2

√
Ω2 +

(
qJmz + h

)2]
, (3.137)

which are identical with the expressions (2.63) obtained within the mean-field theory presented
in the subsection 2.4 for the particular case with h = 0 and S = 1/2.

In order to obtain more accurate results, we now develop the effective-field theory using the
exact van der Waerden identity (3.24) and differential operator technique (3.27). In doing so, we
rewrite Eqs. (3.134) and (3.135) in the form:

mz =
〈 q∏

j=1

[
cosh

(J

2
∇x

)
+ 2Ŝz

j sinh
(J

2
∇x

)]〉
f(x)

∣∣∣
x=0

. (3.138)

mx =
〈 q∏

j=1

[
cosh

(J

2
∇x

)
+ 2Ŝz

j sinh
(J

2
∇x

)]〉
g(x)

∣∣∣
x=0

, (3.139)

where we have introduced the functions f(x) and g(x) as:

f
(
x
)

=
x + h

2
√

Ω2 + (x + h)2
tanh

(
β

2

√
Ω2 + (x + h)2

)
, (3.140)

and

g
(
x
)

=
Ω

2
√

Ω2 + (x + h)2
tanh

(
β

2

√
Ω2 + (x + h)2

)
. (3.141)

Neglecting all multispin correlations on the r.h.s. of (3.138) and (3.139), we obtain the single-
spin cluster effective-field theory for the spin-1/2 transverse Ising model. Within this approxi-
mation the longitudinal and transverse components of magnetization are respectively given by:

mz =
[
cosh

(J

2
∇x

)
+ 2mz sinh

(J

2
∇x

)]q
f
(
x
)∣∣∣

x=0
, (3.142)

mx =
[
cosh

(J

2
∇x

)
+ 2mz sinh

(J

2
∇x

)]q
g
(
x
)∣∣∣

x=0
. (3.143)

In order to complete the calculation, we follow the same steps as in section 3.2 and get the
following expressions for the longitudinal and transverse magnetizations mz and mx:

mz =
q∑

k=0

(
q

k

)
mk

zA
(q)
k , (3.144)
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Fig. 3.2. The zero-temperature magnetization curve of the spin-1/2 Ising model in a transverse magnetic
field: (a) longitudinal magnetization; (b) transverse magnetization. The red and blue curves represent the
results obtained within the mean-field approximation (MFA) and the single-spin cluster formulation of the
effective-field approximation (EFA), respectively.

mx =
q∑

k=0

(
q

k

)
mk

zB
(q)
k , (3.145)

As one can see, these equations have formally the same form as Eq. (3.27), however, the coeffi-
cients A

(q)
k a B

(q)
k are now defined by the relations:

A
(q)
k = 2k

[
cosh

(J

2
∇x

)]q−k[
sinh

(J

2
∇x

)]k
f
(
x
)∣∣∣

x=0
(3.146)

and

B
(q)
k = 2k

[
cosh

(J
2
∇x

)]q−k[
sinh

(J
2
∇x

)]k
g
(
x
)∣∣∣

x=0
, (3.147)

where the functions f(x) a g(x) are given by (3.140) a (3.141).
At first, let us verify the accuracy of the present theory at zero temperature T = 0. For this

purpose, we have depicted in Fig. 3.2 the transverse-field dependences of the longitudinal and
transverse magnetizations for the spin-1/2 Ising model on a square lattice within the mean-field
and single-spin cluster effective-field approximations. As one can see, the effective-field theory
remarkably improves the standard mean-field theory. In particular, the region of the existence
of ferromagnetically ordered phase is significantly reduced, since the critical values of the trans-
verse field are respectively given by ΩEFA

c /4J = 0.343 and ΩMFA
c /4J = 0.5. One can also

notice that the effective-field approximation predicts more realistic and accurate result (see Fig.
3.2(b)) when the transverse magnetization does not reach the saturation value right at the critical
field.

Now, let us investigate the numerical accuracy of the single-spin cluster formulation of the
effective-field theory also at finite temperatures. In order to illustrate finite-temperature predic-
tions we have shown in Fig. 3.3 the phase diagram in the Ω−Tc space and also temperature vari-
ations of the longitudinal and transverse magnetizations. The blue curves in the figures represent
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Fig. 3.3. (a) The critical temperature of the spin-1/2 Ising model on a square lattice (q = 4) as a function of
the reduced transverse magnetic field. The red curve (labeled MFA) represents the result of the mean-field
approximation and the blue one (labeled EFA) is the result of the single-spin cluster approach within the
effective-field approximation; (b) Typical temperature dependences of the longitudinal magnetization (bro-
ken line) and transverse magnetization (solid lines) of the spin-1/2 Ising model for two different transverse
fields selected below and above the critical fields. Different colors have the same meaning as in case (a).

the results of the effective-field approximation (EFA) and the red ones those of the mean-field
approximation (MFA). As one can see, the effective-field approach is superior to the mean-field
calculation and provides a notable numerical improvement and physically more realistic depen-
dences of relevant quantities than the standard mean-field theory.

The effective-field theory has been of course also applied to the system with higher spin
values despite of growing complexity of mathematical formulation [139]. In this work we will
show extension of simplified version of this theory to the system with arbitrary spin in the next
section. One should again recall that the effective-field theory based on the differential operator
technique has been successfully applied to study many other transverse Ising models including
the amorphous systems, magnetically diluted systems, the systems with random exchange inter-
actions and/or random single-ion anisotropy, semi infinite system, thin magnetic films, magnetic
multilayers an so on (see the subsequent part 3.12 and references cited therein).

The relevant discussion of these complex systems is clearly beyond the scope of this pa-
per and it requires a separate work. Nevertheless, one should emphasize here that applications
of the effective-field theory with the differential operator technique in all cases have signifi-
cantly improved the standard mean-field results for the same systems. Moreover, in many cases
the effective-field theories also rule out non-physical predictions of simpler approaches such as
mean-field or Oguchi approximation [140] .

3.7 Spin-1 Blume-Capel model within a single-spin cluster approach

In this part we will show how the differential operator technique can be adapted to the Ising-
like systems with higher spin value. For this purpose, we will choose the well-known spin-1
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Blume-Capel model in a longitudinal magnetic field described by the Hamiltonian:

H = −J
∑
〈ij〉

SiSj −D

N∑
i=1

S2
i − h

N∑
i=1

Si, (3.148)

where Si = 0,±1, the coupling constant J describes the exchange interaction between the
nearest-neighbor spin pairs, the parameter D represents the single-ion anisotropy and h is the
external magnetic field.

It immediately follows from Eq. (3.148) that all spins will prefer at T = 0, h = 0 two mag-
netic states Si = ±1 for strong positive values of D, while they should reside the non-magnetic
state Si = 0 for strong negative values of D. Consequently, the spin-1 Blume-Capel model
exhibits a zero-temperature phase transition between the ferromagnetically ordered and disor-
dered paramagnetic phases. Indeed, a simple comparison of the relevant ground-state energies
indicates that such a discontinuous phase transition takes place at Dc/J = −q/2.

Let us separate the Hamiltonian (3.148) into two parts in order to develop the effective-field
theory:

H = Hi +H
′
. (3.149)

The single-spin cluster Hamiltonian, which includes all interaction terms depending on the cen-
tral ith spin of the cluster, is given by:

Hi = −Si

(
Ei + h

)
−DS2

i , (3.150)

whereas the parameter Ei is used to denote the internal exchange field coming from the nearest-
neighbor coupling of the central ith spin with all its nearest neighbors:

Ei = J

q∑
j=1

Sj . (3.151)

Similarly as for the spin-1/2 Ising model, one may also obtain the Callen-Suzuki identities
for the quantities

〈
Si

{
fi

}〉
and

〈
S2

i

{
fi

}〉
within the spin-1 Blume-Capel model:

〈
Si

{
fi

}〉
=

〈{
fi

}
∑

Si=0,±1

Si exp
(
−βHi

)
∑

Si=0,±1

exp
(
−βHi

) 〉 (3.152)

and

〈
S2

i

{
fi

}〉
=

〈{
fi

}
∑

Si=0,±1

S2
i exp

(
−βHi

)
∑

Si=0,±1

exp
(
−βHi

) 〉
, (3.153)

where
{
fi

}
stands for any function of arbitrary spin with exception of Si.
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Now, performing the summation over the central spin one gets exact relations:

〈
Si

{
fi

}〉
=

〈{
fi

} 2 sinh
[
β(Ei + h)

]
2 cosh

[
β(Ei + h)

]
+ e−βD

〉
(3.154)

and 〈
S2

i

{
fi

}〉
=

〈{
fi

} 2 cosh
[
β(Ei + h)

]
2 cosh

[
β(Ei + h)

]
+ e−βD

〉
, (3.155)

where we are again faced with the problem of averaging the r.h.s of these equations. If one sets{
fi

}
= 1 and applies the simplest possible way of averaging, i.e. the averaging of arguments of

all functions, then one obtains the following simple expressions for the magnetization m =
〈
Si

〉
and quadrupolar moment qD =

〈
S2

i

〉
:

m =
2 sinh

[
β(qJm + h)

]
2 cosh

[
β(qJm + h)

]
+ e−βD

, (3.156)

qD =
2 cosh

[
β(qJm + h)

]
2 cosh

[
β(qJm + h)

]
+ e−βD

. (3.157)

These relations are of course nothing but the expected mean-field results derived alternatively in
the subsection 2.2 using the Gibbs-Bogoliubov inequality (c.f. with Eq. (2.25)).

However, the main goal of this part is to show how the differential operator technique can
be employed to obtain more accurate results within the effective-field theory, which will provide
superior results with respect the mean-field and Oguchi approximations [140]. As a first step
towards developing such a theory for the model under investigation, we set

{
fi

}
= 1 and then

apply Eq. (3.24) to rewrite Eqs. (3.154) and (3.155) into form:

m =
〈
exp
(
Ei∇x

)〉
f(x)

∣∣∣∣
x=0

(3.158)

qD =
〈
exp
(
Ei∇x

)〉
g(x)

∣∣∣∣
x=0

, (3.159)

where for the sake of simplicity we have introduced the functions:

f(x) =
2 sinh

[
β(x + h)

]
2 sinh

[
β(x + h)

]
+ e−βD

(3.160)

and

g(x) =
2 cosh

[
β(x + h)

]
2 sinh

[
β(x + h)

]
+ e−βD

. (3.161)

In order to proceed further with a calculation, we have to use the generalized van der Waerden
identity for the spin 1, which takes the following explicit form:

exp
(
αSj

)
= S2

j cosh(α) + Sj sinh(α) + 1− S2
j , Sj = 0,±1. (3.162)
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The application of this identity enables one to recast Eqs. (3.158) and (3.159) into the following
exact form:

m =
〈 q∏

j=1

[
S2

j cosh
(
J∇x

)
+ Sj sinh

(
J∇x

)
+ 1− S2

j

]〉
f
(
x
)∣∣∣

x=0
(3.163)

qD =
〈 q∏

j=1

[
S2

j cosh
(
J∇x

)
+ Sj sinh

(
J∇x

)
+ 1− S2

j

]〉
g
(
x
)∣∣∣

x=0
. (3.164)

It is clear that after expanding of the r.h.s. of (3.163) and (3.164) there appear various multispin
correlations that cannot be further treated exactly and must be approximated. In fact, the simplest
rational approximation is based on the following splitting scheme of multispin correlations:〈

SjS
2
k . . . S`

〉
≈
〈
Sj

〉〈
S2

k

〉
. . .
〈
S`

〉
. (3.165)

The resulting theory is again called as a single-spin cluster effective-field theory of the spin-
1 Blume-Capel model, whereas arbitrary complex correlations among different spins can be
expressed as powers of magnetization and quadrupolar moment within this theory. This splitting
procedure is mathematically equivalent to the approximation 〈

∏q
j=1[. . . ]〉 ≈ 〈[. . . ]〉q on the

r.h.s in Eqs. (3.163) and (3.164), which enables to obtain a closed system of two polynomial
equations:

m =
[
qD cosh

(
J∇x

)
+ m sinh

(
J∇x

)
+ 1− qD

]q
f
(
x
)∣∣∣

x=0
(3.166)

qD =
[
qD cosh

(
J∇x

)
+ m sinh

(
J∇x

)
+ 1− qD

]q
g
(
x
)∣∣∣

x=0
. (3.167)

As one can see, the application of differential operator technique to the spin-1 Blume-Capel
model leads to more complex equations than that obtained for the spin-1/2 Ising model. More-
over, one can also notice here that a unified mathematical approach for all crystalline structures
based on the application of binomial expansion would be in this case much more involved, thus
we will not continue to develop our calculations along this direction. Nonetheless, in the fol-
lowing subsection, we will develop some alternative mathematical procedures that enable the
derivation of relatively simple closed-form effective-field equations for the phase boundaries and
tricritical point of the spin-1 Blume Capel model on arbitrary crystal lattice.

3.7.1 Continuous phase transitions and tricritical point

It has been already noted earlier that the spin-1 Blume-Capel model can exist either in the fer-
romagnetically ordered or disordered paramagnetic phase at T = 0 and h = 0 depending on
the value of the single-ion anisotropy D. It is therefore natural to expect that these phases may
also exists at finite temperatures under condition of zero external field. The finite-temperature
phase transition between the ferromagnetic ordered and disordered paramagnetic phase can be
either continuous or discontinuous as exemplified by our previous mean-field calculations. For
that reason, the calculation of the phase boundary requires separate mathematical procedures for
each particular case.
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At first, let us derive explicit equations for the continuous phase transitions in the system
under investigation. For this purpose, we use the fact that the spontaneous magnetization can
take arbitrarily small values when the temperature approaches the Curie point from below. Con-
sequently, in the neighborhood of the phase boundary it is always possible to express the magne-
tization in the form:

m = am + bm3, (3.168)

where

a = q sinh
(
J∇x

)[
q0 cosh

(
J∇x

)
+ 1− q0

]q−1

f
(
x
)∣∣∣

x=0
, (3.169)

and

b =
q!

2!(q − 2)!
q2

[
q0 cosh

(
J∇x

)
+ 1− q0

]q−2

× sinh
(
J∇x

)[
cosh

(
J∇x

)
− 1
]
f
(
x
)∣∣∣

x=0

+
q!

3!(q − 3)!
[
q0 cosh

(
J∇x

)
+ 1− q0

]q−3 sinh3
(
J∇x

)
f
(
x
)∣∣∣

x=0
. (3.170)

The parameter q0 ≡ qD(m = 0) is the solution of the equation:

q0 =
[
q0 cosh

(
J∇x

)
+ 1− q0

]q
g
(
x
)∣∣∣

x=0
. (3.171)

The derivation of the equations above requires to analyze the behavior of the system near the
critical boundary. For this purpose we utilize the fact that the spontaneous magnetization contin-
uously decreases near a critical point, so that one can express the quadrupolar moment as:

qD = q0 + q2m
2 (3.172)

where q0 ≡ qD0 is given by (3.171). If we now substitute this expression into Eq. (3.167) and
retain on the r.h.s. only the terms up to m2, then, we obtain the coefficient q2 in the form:

q2 =
f

1− e
, (3.173)

with

e = q
[
q0 cosh

(
J∇x

)
+ 1− q0

]q−1[cosh
(
J∇x

)
− 1
]
g
(
x
)∣∣∣

x=0
, (3.174)

f =
q!

2!(q − 2)!
[
q0 cosh

(
J∇x

)
+ 1− q0

]q−2 sinh2
(
J∇x

)
g
(
x
)∣∣∣

x=0
. (3.175)

By putting Eq. (3.172) into Eq. (3.166) and retaining on the r.h.s. only the terms up to m3, one
confirms that the coefficient a is given by Eq. (3.169).

Now, one easily finds from Eq. (3.168) that the spontaneous magnetization is governed by
the following expression in a vicinity of critical point:

m =


√

1− a

b
if T < Tc,

0 if T ≥ Tc.
(3.176)
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Moreover, one can also verify that a > 1 in the whole parameter space and hence, the inequality
b < 0 must be satisfied to ensure the existence of real continuous solutions of Eq. (3.176) near the
critical temperature. Consequently, the second-order critical boundary (i.e. Curie temperatures)
can be numerically calculated from the relations:

a = 1, b < 0 (3.177)

It is also clear that if the parameter b becomes positive in a certain region of the parameter space,
then, the spontaneous magnetization must jump from nonzero to zero values, what indicates
the first-order phase transition. This behavior takes place below the tricritical point, which is a
special critical point on a phase boundary that separates the first-order phase transitions from the
second-order ones. The tricritical point can be calculated within the present formalism from the
relations:

a = 1, b = 0. (3.178)

3.7.2 Discontinuous phase transitions

It was already mentioned in the previous part that the spin-1 Blume-Capel model may exhibit the
discontinuous (first-order) phase transition between the ferromagnetically ordered phase and the
disordered paramagnetic phase in a relatively narrow parameter region around D/J ≈ −q/2. It
is also well known that the best way to locate the curve of first-order phase transitions is based
on the comparison of the Helmholtz free energies of the relevant phases. These phases coexist at
all points along the first-order phase transition line, so that within the effective-field theory this
boundary can be mathematically found from the condition:

Fferro(βc) = Fpara(βc), (3.179)

where βc = 1/kBTc, Fferro and Fpara are respectively given by (see Eq. (3.84)):

Fferro(βc) = −N

βc
ln(2S + 1) +

1
βc

∫ βc

0

Uferro(β′)dβ′. (3.180)

and

Fpara(βc) = −N

βc
ln(2S + 1) +

1
βc

∫ βc

0

Upara(β′)dβ′. (3.181)

The internal energies Uferro and Upara are easily evaluated within the effective-field theories
based on the differential operator technique.

3.8 Exact van der Waerden identities for higher-spin Ising models

In the previous section we have used the differential operator technique to formulate the effective-
field theory for the spin-1 Blume-Capel model. We have found that this theory is superior to the
standard mean-field theory, although it is mathematically a bit more complex than that one of the
spin-1/2 Ising model. These mathematical complications arise out from the generalized van der
Waerden identity and it is therefore of principal importance to investigate the precise form of this
identity for higher spin values S ≥ 1.
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It is well known that the following general expansion is valid for arbitrary spin value S:

exp
(
αSj

)
=

2S∑
k=0

Ak(α)Sk
j , (3.182)

where α is an arbitrary parameter, Sj = −S,−S + 1, ...., S− 1, S represents 2S + 1 projections
of a spin towards the z axis and Ak(α) are unknown expansion coefficients depending on a spin
magnitude. Now, one gets the explicit form of van der Waerden identity by setting all available
values of spin into Eq. (3.182) and finding all relevant coefficients Ak from the resulting set of
equations. In this way, one of course obtains for the spin 1/2 the exact spin identity given by Eq.
(3.27) and for the spin 1 the exact spin identity given by Eq. (3.162).

Following this approach one may also obtain the explicit form of van der Waerden identities
for larger spin values like for instance for S = 3/2:

exp
(
αSj

)
= A0 + A1Sj + A2S

2
j + A3S

3
j ,

with the expansion coefficients:

A0(α) =
1
8

[
9 cosh

(α

2

)
− cosh

(3α

2

)]
(3.183)

A1(α) =
1
12

[
27 sinh

(α

2

)
− sinh

(3α

2

)]
(3.184)

A2(α) =
1
2

[
cosh

(3α

2

)
− cosh

(α

2

)]
(3.185)

A3(α) =
1
3

[
sinh

(3α

2

)
− 3 sinh

(α

2

)]
. (3.186)

or for S = 2:

exp
(
αSj

)
= A0 + A1Sj + A2S

2
j + A3S

3
j + A4S

4
j ,

with the expansion coefficients:

A0(α) = 1 (3.187)

A1(α) =
1
6

[
8 sinh(α)− sinh(2α)

]
(3.188)

A2(α) =
1
12

[
16 cosh(α)− cosh(2α)− 15

]
(3.189)

A3(α) =
1
6

[
8 sinh(2α)− 2 sinh(α)

]
(3.190)

A4(α) =
1
12

[
cosh(2α)− 4 cosh(α) + 3

]
. (3.191)

It is clear from the aforementioned examples that the complexity of van der Waerden identity
rapidly increases with increasing of the spin value. Moreover, one can also see that a consistent
application of the differential operator technique requires for an arbitrary value of S to account
for 2S expectations 〈Sn

j 〉, n = 1, . . . , 2S, that naturally bring additional complexity into formu-
lation of the effective-field theory. Nonetheless, the effective-field theory based on the differential
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operator technique has been successfully applied to investigate many higher-spin systems under
very diverse physical conditions.

To complete our discussion, one should notice that the problems mentioned above can be
avoided using some clever approximations for the van der Waerden identity. One possible ap-
proach to such a formulation of the effective-field theory, which is also based on the differential
operator technique, will be the subject matter of the subsequent part.

3.9 Approximate van der Waerden identities for higher-spin Ising models

The increasing mathematical complexity of the effective-field formulation makes analysis of
many physical systems with higher spins too much intricate and time-consuming. For that rea-
son it would be extremely useful somehow to simplify and/or approximate the exact van der
Waerden identities for higher spin values. Of course, one is limited by the requirement of ob-
taining numerical results that will be accurate enough for a wide class of complex spin systems
when looking for such a simplification.

A possible way how to avoid annoying complexity of effective-field theory for the higher-spin
problems has been found by Kaneyoshi, Tucker and Jaščur [139] by proposing a mathematical
procedure simplifying the exact van der Waerden identity. This approach is based on approxi-
mating some terms in Taylor series of the exponential function entering the general expansion
(3.182). Following the reference [139], we at first formally separate the Taylor series of exp(αSi)
into even and odd powers to obtain:

exp
(
αSi

)
=

∞∑
n=0

α2n

(2n)!
S2n

i +
∞∑

n=0

α2n+1

(2n + 1)!
S2n+1

i . (3.192)

Now, after introducing the following approximations S2n
i ≈

〈
S2

i

〉n
, S2n+1

i ≈ Si

〈
S2

i

〉n
and

defining η2 =
〈
S2

i

〉
one may rewrite the previous equation to the form:

exp
(
αSi

)
= cosh

(
αη
)

+
Si

η
sinh

(
αη
)
, (3.193)

which represents the generalized but approximate van der Waerden identity. One should notice

here that in the special case of S = 1/2 we have η =
√〈

S2
i

〉
= 1/2, thus, Eq. (3.193) reduces

to the exact relation (3.27). On the other hand, the relation (3.193) is always approximate for
∀S ≥ 1, nonetheless providing numerical results that are accurate enough in comparison with
those obtained using the exact van der Waerden identity.

It is apparent from Eq. (3.193) that the complexity of effective-field theory for higher-spin
Ising models will be significantly reduced if we use the approximate instead of the exact van der
Waerden identity (3.182). Now, let us illustrate the applications of approximate van der Waerden
identity in developing of the single-spin cluster effective-field theory for the spin-S Blume-Capel
model with an arbitrary spin value S ≥ 1.

The Hamiltonian of the spin-S Blume-Capel model takes formally the same form as that one
given by Eq. (3.148):

H = −J
∑
〈ij〉

SiSj −D

N∑
i=1

S2
i − h

N∑
i=1

Si, (3.194)
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For an arbitrary but fixed value of spin, the spin variables Si are allowed to take (2S + 1) pos-
sible values ranging from −S,−S + 1 up to S. The meaning of other parameters is the same
as described earlier for the Hamiltonian (3.148). One should emphasize here that the general-
ization of the spin-S Blume-Capel model for arbitrary spin values does not bring any significant
modification in deriving a single-spin cluster effective-field theory. Therefore, starting from the
generalized Hamiltonian (3.194) and repeating the same steps as in the subsection 3.7 one simply
arrives at the following exact Callen-Suzuki identities:〈

Si

{
fi

}〉
=
〈{

fi

}
FS(Ei)

〉
, (3.195)

〈
S2

i

{
fi

}〉
=
〈{

fi

}
GS(Ei)

〉
, (3.196)

where Ei = J
∑q

j=1 Sj and the functions FS(x) and GS(x) are defined as:

FS(x) =

S∑
k=−S

k exp
(
βDk2

)
sinh

[
βk(x + h)

]
S∑

k=−S

exp
(
βDk2

)
cosh

[
βk(x + h)

] , (3.197)

GS(x) =

S∑
k=−S

k2 exp
(
βDk2

)
cosh

[
βk(x + h)

]
S∑

k=−S

exp
(
βDk2

)
cosh

[
βk(x + h)

] . (3.198)

Similarly as in the previous text, the symbol
{
fi

}
represents an arbitrary functions of spin vari-

ables with exception of those involving the central spin Si.
Now, one may rewrite the relations (3.195) and (3.196) using Eqs. (3.27), (3.193) by setting{

fi

}
= 1:

m =
〈
Si

〉
=
〈 q∏

j=1

[
cosh

(
Jη∇x

)
+

Sj

η
sinh

(
Jη∇x

)]〉
FS

(
x
)∣∣∣

x=0
, (3.199)

η2 =
〈
S2

i

〉
=
〈 q∏

j=1

[
cosh

(
Jη∇x

)
+

Sj

η
sinh

(
Jη∇x

)]〉
GS

(
x
)∣∣∣

x=0
. (3.200)

Here, one should notice that Eqs. (3.199) and (3.200) are not exact unlike of those ones ob-
tained using the exact van der Waerden identity (c.f. Eqs. (3.166) and (3.167)), nevertheless, the
resulting loss of the numerical accuracy is negligible.

In order to obtain the single-spin cluster effective-field theory based on the approximate van
der Waerden identity we again use the approximation scheme (3.165) to split the multispin cor-
relations on the r.h.s. of Eqs. (3.199) and (3.200). In this way one obtains the following coupled
equations for the spontaneous magnetization m and the quadrupolar moment qD = η2:

m =
[
cosh

(
Jη∇x

)
+

m

η
sinh

(
Jη∇x

)]q
FS

(
x
)∣∣∣

x=0
, (3.201)
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η2 =
[
cosh

(
Jη∇x

)
+

m

η
sinh

(
Jη∇x

)]q
GS

(
x
)∣∣∣

x=0
. (3.202)

It should be emphasized that changing the spin value in the Hamiltonian of the system under in-
vestigation modifies only the functions FS(x) and GS(x), while Eqs. (3.201) and (3.202) remain
untouched, which is the principal advantage of this approach. Moreover, these equations possess
only the mathematical complexity of the simplest spin-1 Blume-Capel model independently of a
spin value. This huge simplification is very clear manifestation of the power of approximate van
der Waerden identity.

Owing to the aforementioned simplicity, one can again apply the binomial theorem and
rewrite previous relations as:

m =
q∑

k=0

(
q

k

)
mk

ηk
A

(q)
k , (3.203)

q = η2 =
q∑

`=0

(
q

`

)
m`

η`
B

(q)
` , (3.204)

where using the same mathematical procedures as in section 3.2 we obtain the corresponding
coefficients in the form:

A
(q)
k = A

(q)
k (βJ, η, h) =

1
2q

q−k∑
i=0

k∑
j=0

(
−1
)j(q − k

i

)(
k

j

)
FS

[
ηβJ

(
q − 2i− 2j + h̃

)]
(3.205)

and

B
(q)
` = B

(q)
` (βJ, η, h) =

1
2q

q−∑̀
i=0

∑̀
j=0

(
−1
)j(q − `

i

)(
`

j

)
GS

[
ηβJ

(
q − 2i− 2j + h̃

)]
.

(3.206)

Thus, we have obtained a closed systems of equations that are valid for arbitrary crystalline
lattice with the coordination number q and arbitrary spin values. It is useful to emphasize here
that the mathematical complexity of these equations is of nearly the same level as those of the
simple spin-1/2 Ising model (c.f. Eqs. (3.31) and (3.32)). This is an extremely pleasant conse-
quence of the approximate van der Waerden identity, the application of which is the keystone in
developing a powerful effective-field theories for various physical systems.

The previous part 3.7.1 was devoted to a comprehensive analysis of phase boundaries of
the spin-1 Blume Capel model within the single-spin cluster formulation of the effective-field
theory. Since the physical arguments remain the same also for phase boundaries of the spin-S
Blume-Capel model, we will not repeat them again here. Instead, let us directly proceed to a
derivation of relevant phase boundaries and tricritical point for the more general spin-S Blume-
Capel model with an arbitrary spin value. If we set h = 0 in Eqs. (3.197) and (3.198) and make
relevant expansions of Eqs. (3.201) and (3.202) for small values of the magnetization, then, one
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obtains formally the same equations for the continuous phase transitions and tricritical point as
in subsection 3.7.1, i.e.,

a = 1, b < 0 (3.207)

and

a = 1, b = 0. (3.208)

However, the coefficients a and b are now respectively given by:

a =
q

η0
sinh

(
Jη0∇x

)[
cosh

(
Jη0∇x

)]q−1

FS

(
x
)∣∣∣

x=0
, (3.209)

and

b =
1
η3
0

q!
3!(q − 3)!

[
cosh

(
Jη0∇x

)]q−3 sinh3
(
Jη0∇x

)
FS

(
x
)∣∣∣

x=0

− q1

η3
0

q

2
[
cosh

(
Jη0∇x

)]q−1 sinh
(
Jη0∇x

)
FS

(
x
)∣∣∣

x=0

+
q1

η2
0

βJ
q(q − 1)

2
[
cosh

(
Jη0∇x

)]q sinh2
(
Jη0∇x

)
F̃S

(
x
)∣∣∣

x=0

+
q1

η2
0

βJ
[
cosh

(
Jη0∇x

)]q
F̃S

(
x
)∣∣∣

x=0
, (3.210)

where the quantity η0 can be evaluated from the relation:

q0 = η2
0 =

[
cosh

(
Jη0∇x

)]q
GS

(
x
)∣∣∣

x=0
. (3.211)

The quantity q1 can be explicitly obtained substituting the expansion η2 = η2
0 + q1m

2 into Eq.
(3.202) and performing once more the Taylor expansion and retaining only the terms up to m2.
Completing this calculations one obtains q1 in the form:

q1 =
e

1− f
, (3.212)

where the coefficients e a f are respectively given by the relations:

e =
1
η2
0

q!
2!(q − 2)!

sinh2
(
Jη0∇x

)[
cosh

(
Jη0∇x

)]q−2

GS

(
x
)∣∣∣

x=0
, (3.213)

and

f =
1
η0

q

2
βJ sinh

(
Jη0∇x

)[
cosh

(
Jη0∇x

)]q−1

G̃S

(
x
)∣∣∣

x=0
, (3.214)

while the function F̃S a G̃S are defined as:

F̃S(x) = ∇xFS(x), G̃S(x) = ∇xGS(x). (3.215)



Effective-field theory 295

MFA MFA SEFA SEFA
q kBTt/J Dt/J kBTt/J Dt/J

3 1.0000 -1.3863 0.7137 -1.4412
4 1.3333 -1.8484 1.0884 -1.8848
6 2.0000 -2.7726 1.7382 -2.8068

Tab. 3.2. The locus of the tricritical points for the spin-1 Blume-Capel on lattices with different values of
the coordination number q within the mean-field (MFA) and the single-spin cluster effective-field (SEFA)
approximation (see Ref. [141]).

The numerical accuracy of the single-spin cluster effective-field theory is illustrated in Tables
3.2 and 3.3, where we have listed the coordinates of tricritical points for the spin-1 and spin-2
Blume-Capel model on several crystal lattices. These results again confirm notable improvement
over the mean-field estimate for the tricritical point and moreover, the significant improvement
concerns also other physical quantities of the spin-S Blume-Capel systems when they are treated
within the effective-field theories.

To conclude, the single-spin cluster effective-field theory has successfully been applied to
investigate diverse Ising spin systems of rather complex nature. Among the most important
applications one must point out the work of Kaneyoshi et al. [141], in which the authors have
utilized the approximate effective-field theory to calculate the phase diagrams, magnetization,
internal energy and specific heat of the spin-S transverse Ising model on arbitrary crystalline
lattice. Another very important application represents the extension of the method to the two-
spin cluster approximation, which has been done by Jurčišin et al. [142]. Numerical results
obtained in all these applications have confirmed very good numerical accuracy of the method
and revealed a huge application potential to further complex systems.

3.10 Spin-S Ising model in a transverse field within a single-spin cluster approach

Now, let us briefly sketch the application of the effective-field theory developed in the previous
part to the transverse Ising model with an arbitrary spin. The spin-S Ising model in a longitudinal
as well as transverse magnetic field is described by the Hamiltonian:

Ĥ = −J
∑
〈ij〉

Ŝz
i Ŝz

j − h

N∑
i=1

Ŝz
i − Ω

N∑
i=1

Ŝx
i , (3.216)

Tab. 3.3. The same as in Table 3.2, but for the spin-2 Blume-Capel model (see Ref. [141]).

MFA MFA SEFA SEFA
q kBTt/J Dt/J kBTt/J Dt/J

3 1.5229 -1.4931 0.8340 -1.4955
4 2.0306 -1.9911 1.6456 -1.9940
6 3.0459 -2.9866 2.6436 -2.9892
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For each spin value, the operators Ŝx
i and Ŝz

i (i = 1, . . . , N ) can be expressed as (2S + 1) ×
(2S + 1) symmetric matrices with the following elements:〈

σ|Ŝx
i |σ′

〉
=
〈
σ′|Ŝx

i |σ
〉

=
1
2
δσ′,σ−1

√
(S + σ)(S − σ + 1), (3.217)〈

σ|Ŝz
i |σ′

〉
=
〈
σ′|Ŝz

i |σ
〉

= σδσ,σ′ , (3.218)

where δ is the usual Kronecker delta symbol, σ and σ′ take (2S + 1) possible values, namely,
−S,−S + 1, . . . , S − 1, S. The other parameters in the Hamiltonian have the same meaning
as those in Eq. (3.121). The partial Hamiltonian Ĥi entering the Callen-Suzuki identity takes
formally the form as that one in section 3.6, i.e.

Ĥi = −Ŝz
i

(
J

q∑
j=1

Ŝz
j + h

)
− ΩŜx

i . (3.219)

Applying the rotation transformation (3.128) one may rewrite the Hamiltonian Ĥi into the fol-
lowing diagonal form:

Ĥi = −Ŝz′

i

√
Ω2 + E2

i , with Ei = J

q∑
j=1

Sz′

j . (3.220)

Following the same steps as in previous sections, we obtain three approximate Callen-Suzuki
identities:〈

Ŝx
i

{
fi

}〉
=
〈{

fi

}
F x

S (Ei)
〉
, (3.221)

〈
Ŝz

i

{
fi

}〉
=
〈{

fi

}
F z

S(Ei)
〉
, (3.222)

and 〈
(Ŝz

i )2
{
fi

}〉
=
〈{

fi

}
Gz

S(Ei)
〉
. (3.223)

The functions F x
S (x) and F z

S(x) can be expressed as:

F x
S (x) =

Ω√
Ω2 + (x + h)2

S∑
k=−S

k sinh
[
βk
√

Ω2 + (x + h)2
]

S∑
k=−S

cosh
[
βk
√

Ω2 + (x + h)2
] (3.224)

and

F z
S(x) =

x + h√
Ω2 + (x + h)2

S∑
k=−S

k sinh
[
βk
√

Ω2 + (x + h)2
]

S∑
k=−S

cosh
[
βk
√

Ω2 + (x + h)2
] . (3.225)
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Fig. 3.4. Critical temperature as a function of the transverse magnetic field for the spin-S Ising model on a
square lattice (q = 4).

On the other hand, the function Gz
S(x) must be calculated for each particular value of spin

separately and for instance for S = 1 it is given by

Gz
1(x) =

Ω2 +
[
2Ω2 + (x + h)2

]
cosh

[
β
√

Ω2 + (x + h)2
](

Ω2 + (x + h)2
)(

1 + cosh
[
β
√

Ω2 + (x + h)2
]) . (3.226)

After putting fi = 1 to the approximate Callen-Suzuki identities (3.221)-(3.223) and utilizing the
approximate van der Waerden identity (3.193) and decoupling approximation (3.165) one obtains
from Eqs. (3.224)-(3.226) three inter-connected relations for the magnetizations and quadrupolar
moment mx, mz and η2, which can be written in the following compact form:mx

mz

η2

 =
[
cosh

(
Jη∇x

)
+

m

η
sinh

(
Jη∇x

)]qF x
S

(
x
)

F z
S

(
x
)

Gz
S

(
x
)


x=0

. (3.227)

At this stage, it is clear that all relevant physical quantities can be calculated using the procedures
described in previous section, so that we will not repeat details here. Instead of reproducing
these calculations, we have shown in Fig. 3.4 the finite-temperature phase diagrams for the
transverse Ising model with spin 1/2, 1, 3/2 and 2 on the square lattice. The results indicate that
the behavior of the systems with different spins is very similar, however, the results indicate that
both the values of Curie temperature as well as the critical value of transverse field increase with
the increasing spin of the system. The accuracy of the effective-field results is satisfactory as
it is shown in Table 3.4, in which we compare the estimations of Ωc obtained for coordination
numbers within different theoretical methods.

3.11 Spin-1/2 Ising model within a two-spin cluster approach

In the previous sections we have shown how the effective-field theory based on the differential
operator technique can be developed for various Ising-like spin systems. The common feature of
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Ωc/J
MFA PA SEFA MFA PA SEFA SE

q S = 3/2 S = 3/2 S = 3/2 S = 2 S = 2 S = 2 S = 2
3 4.50 3.00 3.74 6.00 4.00 5.21
4 6.00 4.50 5.25 8.00 6.00 7.23
6 9.00 7.50 8.26 12.00 10.00 11.25 11.60
8 12.00 10.50 11.26 16.00 14.00 15.25 15.60
12 18.00 16.50 17.26 24.00 22.00 23.25 23.35

Tab. 3.4. Critical values of the transverse field Ωc/J for the spin-3/2 and spin-2 Ising models on various
crystal lattices obtained within the mean-field approximation (MFA), the pair approximation (PA) [135],
single-spin cluster approximation (SEFA), and series expansion (SE) [136].

all these applications is the usage of the single-spin Callen-Suzuki identity, which always serves
as a starting point for calculation of relevant physical quantities. On the other hand, it is evident
from Eq. (3.17) that the Callen-Suzuki identity can be very simply extended for more than one
spin, which opens a possibility to develop more accurate and complex effective-field theories.

The first generalization along this direction has been done by Bobák and Jaščur [143], who
have proposed to use as a starting point the Callen-Suzuki identity for two nearest-neighbor
spins. Using the differential operator technique the authors have subsequently developed a more
accurate theory, which is usually called in the literature as two-spin cluster effective-field theory.
This generalized effective-field theory exactly accounts for all single-site kinematic relations
and additionally all interactions of a central pair of spins are also treated exactly. Except of
further improvement of numerical accuracy the generalized effective-field theory brings also
further crucial benefits in comparison with the single-spin cluster counterpart of the effective-
field theory. The most remarkable improvement represents the possibility to take into account
different topology of lattices with the same coordination number. In fact, the two-spin cluster
effective-field theory is able to discern for example between the magnetic behavior of the Ising
model on square and kagomé lattices with the same coordination number q = 4, or that one of the
Ising model on triangular and simple cubic lattices with the coordination number q = 6 [144].
Moreover, the two-spin cluster effective-field theory in combination with the single-spin version
serves as a basis for developing the effective-field renormalization-group theory, which works
well in the critical region of various Ising models [145].

Now, let us formulate the two-spin cluster approximation for the simplest possible case of
the spin-1/2 Ising model defined by the Hamiltonian (3.18). Similarly as in the section 3.2, we at
first separate total Hamiltonian into two parts:

H = Hij +H
′
, (3.228)

where two-spin cluster Hamiltonian

Hij = −Jσiσj − σi

(
J

q−1∑
k=1

σk + h
)
− σj

(
J

q−1∑
`=1

σ` + h
)

(3.229)

accounts for all interaction terms of the central two-spin cluster with its nearest neighbors and
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external magnetic field. All remaining interaction terms of the total Hamiltonian are included in
the Hamiltonian H′

.
Now, we substitute Ôij...n = (σi + σj)/2 and {fij...n} = 1 into Eq. (3.17) and obtain the

generalized Callen-Suzuki identity in the form:

m ≡
〈1
2
(σi + σj)

〉
=
〈 ∑

σi,σj=± 1
2

1
2
(
σi + σj

)
exp
(
−βHij

)
∑

σi,σj=± 1
2

exp
(
−βHij

) 〉
. (3.230)

Let us denote the local fields in Eq. (3.229) as:

Ei = J

q−1∑
k=1

σk and Ej = J

q−1∑
`=1

σ`. (3.231)

After performing the summation over the central two-spin cluster in Eq. (3.230) one gets the
following explicit form of the two-spin Callen-Suzuki identity:

m ≡
〈1
2
(σi + σj)

〉
=

〈
sinh

[
β
2 (Ei + Ej) + βh

]
2 cosh

[
β
2 (Ei + Ej) + βh

]
+ 2e−

βJ
2 cosh

[
β
2 (Ei − Ej)

]〉.

(3.232)

As we have already noted, this exact equation can be used as a starting point for developing
various approximate theories for the spin-1/2 Ising model.

Similarly as in the case of the single-spin Callen-Suzuki identity (see (3.22)) by averaging
arguments of hyperbolic functions in Eq. (3.232) one obtains the following simple equation for
the reduced magnetization:

m =
sinh

[
βJ(q − 1)m + βh

]
cosh

[
βJ(q − 1)m + βh

]
+ e−

βJ
2

, (3.233)

which is identical with that obtained within the standard Oguchi approximation [140]. The
Oguchi approximation is numerically more accurate than the standard mean-field theory, nev-
ertheless, it still fails to discern between the magnetic properties of the Ising model on lattices
with the same coordination numbers but different geometry.

In order to evaluate the average on the r.h.s of Eq. (3.232) more accurately than within the
Oguchi approximation, we may utilize the following relation:

eλx∇x+λy∇yf(x, y) = f(x + λx, y + λy), (3.234)

where ∇x = ∂/∂x, ∇y = ∂/∂y and λx, λy are arbitrary parameters. Using the relation (3.234)
we may rewrite Eq. (3.232) into the form:

m =
1
2
〈
σi + σj

〉
=
〈

e(Ei+Ej)∇x+(Ei−Ej)∇y

〉
F (x, y)

∣∣∣
x=0
y=0

. (3.235)
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where for the sake of simplicity we have defined the function F (x, y) as:

F (x, y) =
sinh

[
β
2 (x + 2h)

]
2 cosh

[
β
2 (x + 2h)

]
+ 2e−

βJ
2 cosh

(
β
2 y
) . (3.236)

In order to proceed further, we at first rearrange (3.235) in the form:

m =
1
2
〈
σi + σj

〉
=
〈

eEi(∇x+∇y)eEj(∇x−∇y)
〉
F (x, y)

∣∣∣
x=0
y=0

, (3.237)

and then we apply the exact van der Waerden identity (3.27) to obtain the exact equation:

m =
〈q−1∏

k=1

{
cosh

[J
2

(∇x +∇y)
]

+ 2σk sinh
[J

2
(∇x +∇y)

]}
×

q−1∏
`=1

{
cosh

[J
2

(∇x −∇y)
]

+ 2σ` sinh
[J

2
(∇x −∇y)

]}〉
× F (x, y)

∣∣∣
x=0
y=0

. (3.238)

It is quite evident that after expanding the r.h.s of previous equation there again appear various
multispin correlations that cannot be further treated exactly and must be split into simpler expres-
sions. If we use the decoupling scheme (3.30), then, we will of course obtain the aforementioned
two-spin cluster effective-field theory.

Applying such an approximation, one gets the equation for magnetization in the form:

m =
{

cosh
[J
2

(∇x +∇y)
]
+ 2m sinh

[J
2

(∇x +∇y)
]}q−1

×
{

cosh
[J
2

(∇x −∇y)
]
+ 2m sinh

[J
2

(∇x −∇y)
]}q−1

× F (x, y)
∣∣∣

x=0
y=0

, (3.239)

which can be rewritten using the binomial theorem as:

m =
q−1∑
k=0

(
q − 1

k

)
2kmk

{
cosh

[J
2

(∇x +∇y)
]}q−k−1{

sinh
[J

2
(∇x +∇y)

]}k

×
q−1∑
`=0

(
q − 1

`

)
2`m`

{
cosh

[J
2

(∇x −∇y)
]}q−`−1{

sinh
[J

2
(∇x −∇y)

]}`

× F (x, y)
∣∣∣

x=0
y=0

. (3.240)
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If one introduces the coefficients A
(q)
k` as follows:

A
(q)
k` = A

(q)
k` (βJ, h) =

{
cosh

[J
2

(∇x +∇y)
]}q−k−1{

sinh
[J

2
(∇x +∇y)

]}k

×
{

cosh
[J

2
(∇x −∇y)

]}q−`−1{
sinh

[J
2

(∇x −∇y)
]}`

× F (x, y)
∣∣∣

x=0
y=0

, (3.241)

then, the equation (3.240) can be expressed in the following abbreviated form:

m =
q−1∑
k=0

q−1∑
`=0

(
q − 1

k

)(
q − 1

`

)
2k+`mk+`A

(q)
k` . (3.242)

Similarly as in the case of the single-spin cluster effective-field theory, we can now straightfor-
wardly evaluate the coefficients A

(q)
k` using the binomial theorem and Eq. (3.234). In this way

one obtains the following expression for h = 0:

A
(q)
k` =

q−k−1∑
i=0

k∑
j=0

q−`−1∑
n=0

∑̀
p=0

(
−1
)j+p

(
q − k − 1

i

)(
q − `− 1

n

)(
q

j

)(
q

p

)

×
sinh

[
βJ
2 (q − 1− i− j − n− p)

]
cosh

[
βJ
2 (q − 1− i− j − n− p)

]
+ e−

βJ
2 cosh

[
βJ
2 (n + p− i− j)

] .
(3.243)

The relations (3.242) and (3.243) completely determine the equation of state of the spin-1/2
Ising model within the two-spin cluster effective-field theory and solving them numerically one
can investigate the critical behavior of the model as well as the thermal dependencies of the
magnetization. Despite of increasing complexity of Eqs. (3.242) and (3.243), the numerical
calculations do not bring significant complications in comparison with the ones following from
the single-spin cluster effective-field theory (c.f. (3.33) and (3.36)).

Now, let us continue with the discussion of some new topological aspects of the two-spin
cluster effective-field theory. As one can see, the structure of the lattice is again taken into
account in this formulation by coordination number q, however, one must be now very careful
when applying the decoupling scheme. Looking more closely on the Eq. (3.242) , one finds that
this equation is valid for the square and simple cubic lattice in the case of q = 4 and q = 6,
respectively. This statement follows directly from the fact that in both cases all nearest neighbors
of the ith central spin differ from those of the jth central spin. On the other hand, when applying
the two-spin cluster effective-field theory, for instance, to the kagomé or triangular lattice, we
have to take into account that some of the spins are the common nearest neighbors for both
central spins σi and σj . In order to clarify this situation, we have depicted in Fig. 3.5 two-spin
clusters including its nearest neighbors for the case of triangular and simple cubic lattice with
q = 6. It is seen from this figure that the central sites of the cluster (i, j) have two common
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Fig. 3.5. The central two-spin cluster composed of the Ising spins σi, σj and its nearest neighbor for: a)
plane triangular lattice (q = 6), b) simple cubic lattice (q = 6).

nearest neighbors (denoted as σ1 and σ5) in the case of a triangular lattice, while no common
nearest-neighbors exist in the case of the cubic lattice.

Taking into account this fact, one obtains for the spin-1/2 Ising model on a triangular lattice
from Eq. (3.238) the following expression:

m =
{

cosh
[J

2
(
∇x +∇y

)]
+ 2m sinh

[J
2
(
∇x +∇y

)]}3

×
{

cosh
[J

2
(
∇x −∇y

)]
+ 2m sinh

[J
2
(
∇x −∇y

)]}3

×
{

cosh
(
J∇x

)
+ 2m sinh

(
J∇x

)}2

× F (x, y)
∣∣∣

x=0
y=0

. (3.244)

On the other hand, one gets for the spin-1/2 Ising model on a simple cubic lattice from Eq. (3.12)
the relation:

m =
{

cosh
[J

2
(
∇x +∇y

)]
+ 2m sinh

[J
2
(
∇x +∇y

)]}5

×
{

cosh
[J

2
(
∇x −∇y

)]
+ 2m sinh

[J
2
(
∇x −∇y

)]}5

× F (x, y)
∣∣∣

x=0
y=0

. (3.245)

Since previous two equations are different, then one can conclude that unlike other approximate
theories, the two-spin cluster effective-field theory is really able to take into account the topology
of lattice and to distinguish lattices with the same coordination number but different crystalline
structure. In order to illustrate this fact numerically we have listed in Table 3.5 numerical values
of the critical temperatures for the spin-1/2 Ising model on lattices with different topological
structure.

Finally, let us conclude this part by emphasizing that other physical quantities, for example,
the internal energy, initial magnetic susceptibility, specific heat and many others, can be cal-
culated within the two-spin cluster effective-field theory by reproducing the same mathematical
procedures as those described in the section 3.2. In obtaining the aforementioned quantities there
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Tab. 3.5. A comparison of the Curie temperatures for the spin-1/2 Ising model on different lattices within
several approximate and exact methods (see Refs. [125, 142]). The abbrevations used: MFA - mean-field
approximation, OA - Oguchi approximation, BPA - Bethe-Peierls approximation, SEFA - single-spin cluster
effective-field approximation, TEFA - two-spin cluster effective-field approximation, Exact/HTSE - exact
results/high-temperature series expansion.

MFA OA BPA SEFA TEFA Exact/HTSE
lattice kBTc/J kBTc/J kBTc/J kBTc/J kBTc/J kBTc/J

linear 0.500 0.391 0.000 0.000 0.000 0.000
honeycomb 0.750 0.677 0.455 0.526 0.497 0.380
square 1.000 0.944 0.721 0.773 0.756 0.567
kagomé 1.000 0.944 0.721 0.773 0.731 0.536
triangular 1.500 1.462 1.233 1.268 1.238 0.910
simple cubic 1.500 1.462 1.233 1.268 1.260 1.128

are no additional tricks to be explained, however, the calculations are rather tedious and time-
consuming, therefore we will not present all this stuff in this work. Of course, the interested
reader can find all details in the relevant references.

3.12 Historical survey and future perspectives

Over the last few decades, the effective-field theory formulated on the basis of differential opera-
tor technique has become quite popular what can be convincingly evidenced by a rather extensive
list of existing literature dealing with magnetic properties of various Ising-like spin systems ob-
tained within this approximate theory. From the theoretical and experimental point of view, the
most important applications of the effective-field theory based on differential operator can be
divided into following groups:

A) Studies of crystalline magnetic systems:

1. Ising [116,117], [146] - [151], Blume-Capel [152] - [158], Blume-Emery-Griffiths models
with arbitrary spins [159] - [163] and mixed-spin Ising models [164] - [172] including
decorated structures [173] - [175].

2. Semi-infinite Ising models and surface magnetism [176] - [181], thin magnetic films [182]
- [189], magnetic bilayers and multilayers [190] - [197].

3. Transverse Ising models [198] - [200].

B) Studies of disordered magnetic systems:

1. Ising, Blume-Capel, Blume-Emery-Griffiths models and mixed-spin Ising models, includ-
ing the semi-infinite models, thin magnetic films, magnetic bilayers and multilayers in a
random longitudinal and/or transverse external magnetic field [201] - [210].

2. Amorphous spin systems [211] - [224], Ising models with a random crystal-field or random
exchange interactions [225] - [236], site- or bond diluted magnetic systems [237] - [281].

3. Magnetic binary and ternary alloys [282] - [291].
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Having sketched the historical and recent development of the effective-field theory, it is now
clear that one cannot even very briefly review so many papers in so diverse research areas. How-
ever, it should be noticed here that in all aforementioned applications of the effective-field theory
based on the differential operator technique has provided the results that are both numerically
and physically superior with respect to the standard mean-field theory. This statement concerns
with the behavior of all physical quantities outside of the critical region. On the other hand, the
effective-field theory usually significantly improves also determination of critical boundaries,
while it does not overcome the standard mean-field approaches in determining the values of crit-
ical exponents. Nevertheless, this fault of the effective-field theory can removed by developing
a phenomenological effective-field renormalization group theory combining the results of the
effective-field theories for central clusters of different sizes (see Ref. [145]).

After almost four decades from the beginning of this story, it is very pleasant to find out that
the effective-field theories based on differential operator technique are still alive when being ac-
tively engaged in solving new lattice-statistical spin systems of current research interest. Among
the most important recent developments and applications of the effective-field theories based on
the differential operator technique one could mention recent works by Polat, Akinci, Yuksel and
others [158,172,189,200,208–210,263,266,291]. Thus, despite of huge number of applications
done until now, the potential of the differential operator method seems to be far from being ex-
hausted and we surely may expect many new interesting applications of this theoretical approach
in a near future.



Exact results 305

4 Exact results

The present section will be devoted to the exact solutions of the Ising models. It is worthy to
recall that the Ising models are exactly tractable in one and two dimensions only, so our attention
will be henceforth focused just on 1D Ising chains and 2D Ising lattices. In particular, we will
examine a magnetic behavior of the spin-1/2 Ising models, the spin-1 Blume-Capel models and
the mixed-spin Ising models either in a presence or absence of the magnetic field.

4.1 One-dimensional Ising models

The main advantage of 1D Ising chains lies in that they can be exactly treated with the help of
the transfer-matrix method even in a presence of the external magnetic field [292,293]. It should
be nevertheless pointed out that 1D Ising models cannot exhibit a non-trivial criticality at finite
temperatures in contrast with their 2D counterparts.

4.1.1 Spin-1/2 Ising chain in a longitudinal field

Let us consider first the spin-1/2 Ising chain in a longitudinal magnetic field, which can be defined
through the Hamiltonian:

H = −J

N∑
i=1

σiσi+1 − h

N∑
i=1

σi. (4.1)

Here, σi = ±1/2 denotes the Ising spin placed at the i-th lattice point, the parameter J labels
the nearest-neighbor Ising coupling and the parameter h relates to the magnetostatic Zeeman’s
energy. For simplicity, we will further assume a periodic boundary condition imposed by the
constraint σN+1 ≡ σ1, because the overall magnetic behavior does not depend in the thermody-
namic limit N → ∞ on a particular choice of the boundary condition. It is worth mentioning,
however, that the periodic boundary condition σN+1 ≡ σ1 ensures a translational invariance of
the Ising chain defined by the Hamiltonian (4.1), which considerably simplifies further treatment.
The exact solution of the spin-1/2 Ising chain in a magnetic field can be most easily found by the
transfer-matrix method originally introduced by Kramers and Wannier [292]. This rather pow-
erful technique is of particular importance, since it formulates the exact solution in a relatively
tractable matrix form that can be straightforwardly adapted to more complicated 1D and 2D Ising
spin systems.

First, it is very advisable to rewrite the total Hamiltonian (4.1) into the most symmetric form:

H =
N∑

i=1

Hi, Hi = −Jσiσi+1 −
h

2
(σi + σi+1) , (4.2)

which can be used for a simple factorization of the partition function into a product of several
terms each involving just two adjacent Ising spins:

Z =
∑
{σi}

N∏
i=1

exp(−βHi) =
∑
{σi}

N∏
i=1

exp
[
βJσiσi+1 +

βh

2
(σi + σi+1)

]
. (4.3)
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Next, let us formally substitute each factor in the product (4.3) by the function T (σi, σi+1)
depending just on the two nearest-neighboring spins σi and σi+1:

Z =
∑

σ1=± 1
2

∑
σ2=± 1

2

· · ·
∑

σN=± 1
2

T (σ1, σ2)T (σ2, σ3) . . . T (σi, σi+1) . . . T (σN , σ1), (4.4)

whereas the definition of the function T (σi, σi+1) is obvious:

T (σi, σi+1) = exp
[
βJσiσi+1 +

βh

2
(σi + σi+1)

]
. (4.5)

It should be mentioned that the function (4.5) is not the only possible choice for T (σi, σi+1), it
can be multiplied for instance by any factor exp[a(σi − σi+1)] (a is arbitrary constant) without
loosing a validity of the overall product (4.3). However, this choice is the only one that preserves
a complete symmetry with respect to the interchange:

T (σi, σi+1) = T (σi+1, σi), (4.6)

which is in accord with a translational symmetry ensured by the periodic boundary condition.
Now, let us perform a small calculation that reveals an essence of the expression (4.5). It is

worthy to recall that the Ising spin σ2, for example, enters in Eq. (4.4) just to two side-by-side
standing expressions T (σ1, σ2) and T (σ2, σ3) and hence, one may perform the summation over
two available states of the Ising spin σ2 independently of other expressions appearing within this
product. After summing over two available states of the Ising spin σ2 one consequently obtains
the following Boltzmann’s weight:∑

σ2=± 1
2

T (σ1, σ2)T (σ2, σ3) =
∑

σ2=± 1
2

exp
[
βJσ2(σ1 + σ3) +

βh

2
(σ1 + 2σ2 + σ3)

]
(4.7)

=exp
[
βh

2
(σ1 + σ3)

]{
exp
[
βJ

2
(σ1 + σ3) +

βh

2

]
+ exp

[
−βJ

2
(σ1 + σ3)−

βh

2

]}
.

It is worthwhile to remark that one arrives to the same result when the expression T (σi, σi+1) is
alternatively viewed as a two-by-two matrix with appropriately chosen matrix elements:

T (σi, σi+1)=
(

T (+,+) T (+,−)
T (−,+) T (−,−)

)
=

 exp
(

βJ
4 + βh

2

)
exp
(
−βJ

4

)
exp
(
−βJ

4

)
exp
(

βJ
4 − βh

2

), (4.8)

which are related to four possible spin configurations of two adjacent Ising spins σi and σi+1.
The matrix element T (+,−) marks for instance the Boltzmann’s factor to be obtained from
Eq. (4.5) by considering the particular spin configuration σi = +1/2 and σi+1 = −1/2. Each
row in the matrix T (σi, σi+1) thus accounts for the spin states of the former spin σi (in other
words, by changing a row one changes a spin state of the former spin σi), while each column
determines the spin states of the latter spin σi+1 (by changing a column one changes a spin
state of the latter spin σi+1). It should be noted that the spin variable σ2 enters in the first
expression T (σ1, σ2) as the latter spin, while in the second expression T (σ2, σ3) it acts as the
former spin. Taking into account the spin states of the spin σ2 changes the first expression
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T (σ1, σ2) to the one-by-two (row) matrix and the second expression T (σ2, σ3) to the two-by-
one (column) matrix. As a result, the summation over the spin configurations of the Ising spin
σ2 turns out to be equivalent with a matrix multiplication between the row matrix T (σ1, σ2) and
the column matrix T (σ2, σ3):∑

σ2=± 1
2

T (σ1, σ2)T (σ2, σ3) =

(
exp
[

βJ
2 σ1 + βh

2 (σ1 + 1
2 )
]

exp
[
−βJ

2 σ1 + βh
2 (σ1 − 1

2 )
] )

 exp
[

βJ
2 σ3 + βh

2 (σ3 + 1
2 )
]

exp
[
−βJ

2 σ3 + βh
2 (σ3 − 1

2 )
] 

=exp
[βh

2
(σ1 + σ3)

]{
exp
[
βJ

2
(σ1 + σ3) +

βh

2

]
+ exp

[
−βJ

2
(σ1 + σ3)−

βh

2

]}
.

(4.9)

As a matter of fact, the expression (4.9) obtained from the matrix product is indeed completely
identical with the result (4.7), which has been previously acquired by a straightforward summa-
tion over the spin states of the spin variable σ2. In addition, the final expression obtained after
the respective matrix multiplication might be considered as some two-by-two matrix T 2(σ1, σ3),
the elements of which depend on the Ising spins σ1 and σ3 according to the definition (4.9):∑

σ2=± 1
2

T (σ1, σ2)T (σ2, σ3) = T 2(σ1, σ3). (4.10)

The summations over the spin states of a set of the Ising spins {σ2, σ3, . . . , σN} can in turn be
regarded as successive matrix multiplications yielding:

Z =
∑

σ1=± 1
2

∑
σ2=± 1

2

. . .
∑

σN=± 1
2

T (σ1, σ2)T (σ2, σ3) . . . T (σi, σi+1) . . . T (σN , σ1)

=
∑

σ1=± 1
2

∑
σ3=± 1

2

. . .
∑

σN=± 1
2

T 2(σ1, σ3) . . . T (σi, σi+1) . . . T (σN , σ1)

=
∑

σ1=± 1
2

TN (σ1, σ1) = TN (+,+) + TN (−,−) = Tr TN . (4.11)

At each step of this procedure, the matrix multiplication by T corresponds to the summation
over the spin configurations of one more Ising spin. That is why the matrix T is referred to
as the transfer matrix, namely, it transfers the dependence from the one spin to its neighboring
spin. Besides, it can be also easily understood from Eq. (4.11) that the last summation, which
is carried out over the spin states of the first Ising spin σ1, is equivalent to taking a trace of the
matrix TN , i.e. to performing a summation over elements of the matrix TN on its main diagonal.
The problem of finding the exact solution for the spin-1/2 Ising chain in a longitudinal magnetic
field thus reduces to the calculation of a trace of so far unknown matrix TN when assuming the
periodic boundary condition.
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At this stage, it is very convenient to use an invariance of the trace with respect to a cyclic
permutation of the product in order to calculate a trace of the matrix TN (the product of three
square matrices A, B and C has for instance the same trace upon following cyclic permutations
Tr(ABC)=Tr(BCA)=Tr(CAB)). With this in mind, the unitary matrix U and its inverse U−1

(U−1U = UU−1 = 1) can be employed to convert the transfer matrix T into a diagonal form:

U−1TU = Λ =
(

λ+ 0
0 λ−

)
. (4.12)

After inserting their products into the relation (4.11) one obtains:

Z = Tr TN = Tr(TT . . . T ) = Tr(UU−1TUU−1TU . . . U−1T )
= Tr(U−1TUU−1TU . . . U−1TU) = Tr(ΛΛ . . .Λ) = Tr ΛN . (4.13)

The above result is nothing but a similarity invariance, which means that TN and ΛN matrices
have the same trace (the trace does not depend on a particular choice of basis). The matrix ΛN is
N th power of the diagonal matrix (4.12) and hence, its diagonal elements are simply N th power
of diagonal elements of the matrix Λ:

ΛN =
(

λN
+ 0
0 λN

−

)
. (4.14)

It is therefore sufficient to find elements of the diagonal matrix Λ in order to calculate the desired
trace Tr TN = Tr ΛN = λN

+ + λN
− . This eigenvalue problem can be attacked with the help of

unitary transformation TU = UΛ, which can be written in the matrix representation:(
T (+,+) T (+,−)
T (−,+) T (−,−)

)(
a+ a−
b+ b−

)
=
(

a+ a−
b+ b−

)(
λ+ 0
0 λ−

)
(4.15)

and is equivalent to solving the so-called characteristic (secular) equation:

TV± = λ±V± ⇐⇒
(

T (+,+) T (+,−)
T (−,+) T (−,−)

)(
a±
b±

)
= λ±

(
a±
b±

)
. (4.16)

Here, V± denote eigenvectors of the transfer matrix T and λ± are their corresponding eigenval-
ues. Both secular equations are in fact a homogeneous system of linear equations, which has a
non-trivial solution if and only if its determinant equals zero:

|T − λiI| = 0. (i ∈ {±}) (4.17)

Here, I is used for labeling the unit matrix of appropriate size. In this way, the eigenvalues
of the transfer matrix T can be calculated without knowing explicit form of the corresponding
eigenvectors V±. As a matter of fact, both eigenvalues can readily be calculated by solving the
determinant:∣∣∣∣∣∣ exp

(
βJ
4 + βh

2

)
− λi exp

(
−βJ

4

)
exp
(
−βJ

4

)
exp
(

βJ
4 − βh

2

)
− λi

∣∣∣∣∣∣ = 0, (4.18)
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which gives after straightforward calculation two eigenvalues:

λ± = exp
(

βJ

4

)[
cosh

(
βh

2

)
±

√
sinh2

(
βh

2

)
+ exp(−βJ)

]
. (4.19)

The final expression for the partition function of the spin-1/2 Ising chain in a presence of the
longitudinal magnetic field is subsequently given by:

Z = Tr TN = Tr ΛN = λN
+ + λN

− . (4.20)

The equation (4.20) represents a central result of our calculation, since the whole thermodynam-
ics is afterwards accessible from the partition function. In the thermodynamic limit N →∞, the
final expression for the Gibbs free energy per one spin considerably simplifies by realizing that
the ratio between two transfer-matrix eigenvalues is always less than unity (λ−/λ+ < 1):

G = −kBT
1
N

lim
N→∞

lnZ = −kBT
1
N

lim
N→∞

ln(λN
+ + λN

− )

= −kBT
1
N

lim
N→∞

ln

{
λN

+

[
1 +

(
λ−
λ+

)N
]}

= −kBT lnλ+. (4.21)

According to Eq. (4.21), the Gibbs free energy (and also all other important thermodynamic
quantities) depend exclusively on the greatest eigenvalue λ+ of the transfer matrix. It is note-
worthy that this is even true for any other interacting many-particle system, which can be treated
within the transfer-matrix method. Thus, the problem of finding the exact solution within the
transfer-matrix approach is essentially equivalent to the problem of finding the greatest eigen-
value of the relevant transfer matrix.

Now, let us perform a more comprehensive analysis of the obtained results. It can be read-
ily understood from Eq. (4.21) that the Gibbs free energy is a smooth analytic function of the
temperature for all non-zero temperatures and thus, the exact solution admits no phase transi-
tion. The absence of phase transition in 1D Ising chain is consistent with the fact that this model
cannot sustain a spontaneous magnetization at any finite temperature. To clarify this issue in
detail, let us derive the exact expression for the magnetization as a function of the temperature
and magnetic field. One possible route how to obtain the magnetization is to differentiate the
Gibbs free energy with respect to the external magnetic field:

m = 〈σi〉 = −∂G

∂h
=

1
2

sinh
(

βh
2

)
√

sinh2
(

βh
2

)
+ exp(−βJ)

. (4.22)

It is easy to prove that the magnetization equals zero (m = 0) on assumption that the zero
magnetic field (h = 0) is set to Eq. (4.22) at any finite (non-zero) temperature. This result gives a
rigorous proof for the absence of a spontaneous long-range ordering (spontaneous magnetization)
at any finite temperature. There is nevertheless still possibility that the absolute zero temperature
(T = 0 K) by itself is a critical point at which the spontaneous long-range order might appear.
Under the assumption of the ferromagnetic interaction (J > 0), it can be readily verified that the
spontaneous magnetization takes its saturation values in the zero-temperature limit:

lim
h→0

lim
T→0+

m(T, h) = ±1
2
. (4.23)
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and the conjecture about the critical point at absolute zero temperature is indeed verified.
To provide a deeper insight into this rather intricate critical behavior, it is necessary to study

the pair correlation function between two spins and its dependence on a lattice spacing between
them. For this purpose, we will need an explicit expression for both the eigenvectors V± de-
termining the matrices of unitary transformation. According to Eq. (4.16), the coefficients that
determine both eigenvectors V± must obey following conditions:

a± = b±
T (+,−)

λ± − T (+,+)
and a± = b±

λ± − T (−,−)
T (−,+)

, (4.24)

which can be symmetrized upon their multiplication to:

a2
± = b2

±
λ± − T (−,−)
λ± − T (+,+)

. (4.25)

The relationship between these coefficients can be rewritten in a more useful form by substituting
the eigenvalues (4.19) and the elements of transfer matrix (4.8) into Eq. (4.25):

a2
± = b2

±

sinh
(

βh
2

)
±
√

sinh2
(

βh
2

)
+ exp(−βJ)

− sinh
(

βh
2

)
±
√

sinh2
(

βh
2

)
+ exp(−βJ)

. (4.26)

For further convenience, let us introduce a new variable that is connected to the temperature T ,
the exchange constant J and the magnetic field h by means of the relation cotg2φ = exp(βJ/2)
× sinh(βh/2), which will significantly simplify further steps in the calculation. Within the new
notation, the coefficients a± and b± satisfy the relation:

a2
± = −b2

±
cos 2φ± 1
cos 2φ∓ 1

, (4.27)

which together with the normalization condition a2
± + b2

± = 1 unambiguously determines both
the eigenvectors V±. After straightforward calculation, it is possible to derive explicit expressions
for the coefficients a± and b±:

a+ = cos φ, b+ = sinφ, and a− = − sinφ, b− = cos φ. (4.28)

With the help of the coefficients (4.28), the explicit expression of the unitary matrix U and its
inverse matrix U−1 can be found following the standard algebraic procedures:

U =
(

cos φ − sinφ
sinφ cos φ

)
and U−1 =

(
cos φ sinφ
− sinφ cos φ

)
. (4.29)

Now, the pairwise correlation 〈σiσj〉 between the two spins that reside some general ith and jth
position within the closed Ising chain can be immediately calculated. The statistical definition of
the canonical ensemble average allows us to calculate the correlation 〈σiσj〉 in terms of transfer
matrices:

〈σiσj〉 =
1
Z

∑
{σi}

σiσj exp(−βH) =
1
Z

∑
{σi}

[
T (σ1, σ2)T (σ2, σ3) . . . (4.30)

T (σi−1, σi)σiT (σi, σi+1) . . . T (σj−1, σj)σjT (σj , σj+1) . . . T (σN , σ1)
]
,
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where j > i is assumed without loss of the generality. If the product of the unitary and its inverse
matrix is inserted to each term of the matrix product (4.31), then, the two-spin correlation (4.31)
can be rearranged to a more appropriate form using the cyclic permutation of matrices behind
the relevant trace:

〈σiσj〉 =
1
Z

Tr
[
ST j−iSTN+i−j

]
=

1
Z

Tr
[
U−1SUΛj−iU−1SUΛN+i−j

]
. (4.31)

In above, the diagonal matrix S with elements S(σi, σj) = σiδij (δij is Kronecker symbol)
should account for possible spin states of σi and σj spins. An elementary calculation gives from
Eq. (4.29):

U−1SU =
1
2

(
cos 2φ − sin 2φ
− sin 2φ − cos 2φ

)
. (4.32)

The matrix (4.32) together with the explicit expression (4.12) of the matrix Λ yields after straight-
forward but bit tedious modification the following result for the two-spin correlation:

〈σiσi+r〉 =
1
4

λN
+ cos2 2φ + λN−r

+ λr
− sin2 2φ + λr

+λN−r
− sin2 2φ + λN

− cos2 2φ

λN
+ + λN

−
, (4.33)

where r = i− j is used to measure a distance in between the ith and jth spins. In the thermody-
namic limit, the derived result (4.33) for the pair correlation largely simplifies to:

〈σiσi+r〉 =
1
4

[
cos2 2φ +

(
λ−
λ+

)r

sin2 2φ

]
. (4.34)

It should be mentioned that the expression (4.34) represents the most general result for the two-
spin correlation, which depends on a distance r between spins, the ratio between the smaller and
the larger eigenvalue of the transfer matrix and the two expressions directly connected to the
relation cotg2φ = exp(βJ/2) sinh(βh/2) via terms:

cos 2φ =
sinh

(
βh
2

)
√

sinh2
(

βh
2

)
+ exp(−βJ)

, sin 2φ =
exp
(
−βJ

2

)
√

sinh2
(

βh
2

)
+ exp(−βJ)

. (4.35)

In an absence of the longitudinal magnetic field (h = 0), the expression (4.34) for the two-spin
correlation further reduces, because of the validity of cos 2φ = 0 and sin 2φ = 1, to the famous
result:

〈σiσi+r〉 =
1
4

(
λ−
λ+

)r

=
1
4

[
tanh

(
βJ

4

)]r

. (4.36)

It can be easily understood from Eq. (4.36) that the two-spin correlation is determined by rth
power of the ratio between the smaller and larger eigenvalue of the transfer matrix. With regard
to this, the correlation between two spins exhibits a peculiar power-law decay with the distance
r in between them. In other words, the correlation between distant spins is simply rth power
of the correlation between the nearest-neighbor spins. It should be realized that the expression
tanh(βJ/4) is at any finite temperature always less than unity and thus, the two-spin correlation
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gradually tends to zero with increasing the lattice spacing r between two spins. One may easily
prove the following asymptotic behavior of the pair correlation in the limiting case of infinite
distance r →∞:

lim
r→∞

〈σiσi+r〉 = 0 for any T 6= 0. (4.37)

The expression (4.37) furnishes proof for an absence of the spontaneous long-range order at any
finite temperature, which may consequently emerge only at zero temperature. One actually finds
different asymptotic behavior of the pair correlation in the zero-temperature limit:

lim
r→∞

lim
T→0

〈σiσi+r〉 =
1
4
, (4.38)

which serves in evidence of a perfect correlation between distant spins and an existence of the
spontaneous long-range order. The zero temperature can be accordingly considered as a very
special critical point, at which an onset of spontaneous ordering appears.

4.1.2 Spin-1 Blume-Capel chain in a longitudinal field

Next, we will demonstrate versatility of the transfer-matrix approach by considering the Hamil-
tonian of the spin-1 Blume-Capel chain in a longitudinal magnetic field:

H = −J

N∑
i=1

SiSi+1 −D

N∑
i=1

S2
i − h

N∑
i=1

Si, (4.39)

which includes at the ith lattice point the three-valued Ising spin variable Si = ±1, 0. The
interaction terms in the Hamiltonian (4.39) have apparent meaning: J is the bilinear nearest-
neighbor interaction, D is the single-ion anisotropy, h is the longitudinal magnetic field and the
cyclic boundary condition SN+1 ≡ S1 is imposed for simplicity.

The exact solution for the partition function of the spin-1 Blume-Capel chain closely follows
the procedure thoroughly described for the spin-1/2 Ising chain and thus, let us merely quote
a few most important steps of this rigorous calculation. The Hamiltonian (4.39) can be at first
rewritten into the symmetric form:

H =
N∑

i=1

Hi, Hi = −JSiSi+1 −D(S2
i + S2

i+1)−
h

2
(Si + Si+1) (4.40)

and afterwards, the partition function of the spin-1 Blume-Capel chain can be factorized to the
following product:

Z =
∑

S1=±1,0

∑
S2=±1,0

· · ·
∑

SN=±1,0

N∏
i=1

T (Si, Si+1), (4.41)

where the expression T (Si, Si+1) is defined as:

T (Si, Si+1) = exp(−βHi) = exp
[
βJSiSi+1 +

βD

2
(
S2

i + S2
i+1

)
+

βh

2
(Si + Si+1)

]
.

(4.42)
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Apparently, the relevant expression (4.42) can be identified as the three-by-three transfer matrix:

T (Si, Si+1) =

 T (1, 1) T (1, 0) T (1,−1)
T (0, 1) T (0, 0) T (0,−1)

T (−1, 1) T (−1, 0) T (−1,−1)

 , (4.43)

whose rows (columns) determine the spin state of the former (latter) spin. It is quite evident
that a sequential summation over the spin states in the derived formula (4.41) for the partition
function of the spin-1 Blume-Capel chain will correspond to a multiplication of the relevant
transfer matrices. Owing to this fact, the partition function can easily be calculated from the
eigenvalues λi of the transfer matrix (4.42)-(4.43) according to:

Z =
∑

S1=±1,0

TN (S1, S1) = Tr TN =
3∑

i=1

λN
i . (4.44)

For completeness, let us quote the final expressions for three eigenvalues of the transfer matrix
defined by Eqs. (4.42)-(4.43):

λi = r + 2 sgn(q)
√

p cos
[
φ + (i− 1)

2π

3

]
, (4.45)

where

sgn(q) =

{
−1, q < 0

1, q ≥ 0
,

and the parameters r, p and q are defined as follows:

r =
1
3

[1 + 2 exp(βJ + βD) cosh (βh)] ,

p =
1
4
(r − 1)2 +

1
3

exp(2βJ + 2βD) sinh2 (βh)

+
1
3

exp(−2βJ + 2βD) +
2
3

exp(βD) cosh (βh) ,

q = r3 − exp(βJ + 2βD) + exp(−βJ + 2βD)
+r exp(βD) cosh (βh) + (1− r) exp(2βD) sinh(2βJ)
−r exp(βJ + βD) cosh(βh),

φ =
1
3

arctan

(√
p3 − q2

q

)
. (4.46)

In the thermodynamic limit N → ∞, the partition function as well as the associated Gibbs free
energy per site of the spin-1 Blume-Capel chain is simply given by the largest transfer-matrix
eigenvalue λmax = max{λ1, λ2, λ3}:

G = −kBT lim
N→∞

1
N

lnZ = −kBT lnλmax. (4.47)
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In an absence of the external field (h = 0), the analytic formula for the largest transfer-matrix
eigenvalue reduces to much simpler form:

λmax =
1
2

{
1 + 2 exp(βD) cosh(βJ) +

√
[1− 2 exp(βD) cosh(βJ)]2 + 8 exp(βD)

}
.

(4.48)

Obviously, the largest transfer-matrix eigenvalue (4.48) and also any of its derivative is relatively
simple analytic function of temperature and so is the associated Gibbs free energy (and any of
its derivatives). This result furnishes a rigorous proof about a non-existence of finite-temperature
phase transition in the spin-1 Blume-Capel chain quite similarly as we have previously evidenced
(in somewhat more detail) for the spin-1/2 Ising chain.

4.1.3 Mixed-spin Ising chain in a longitudinal field

We will consider the mixed spin-1/2 and spin-1 Ising chain as the last example of one-dimensional
spin model, which is exactly tractable through the general scheme offered by the transfer-matrix
method. The mixed spin-1/2 and spin-1 Ising chain accounting for the uniaxial single-ion aniso-
tropy and the longitudinal magnetic field can be defined by means of the Hamiltonian:

H = −J

N∑
i=1

Si(σi + σi+1)−D

N∑
j=1

S2
j − hA

N∑
i=1

σi − hB

N∑
j=1

Sj , (4.49)

where σi = ±1/2 and Sj = ±1, 0 are the spin-1/2 and spin-1 Ising variables located at the
ith and jth lattice point, respectively. The first summation accounts for the Ising interaction
J between the nearest-neighbor spin-1/2 and spin-1 particles, the second summation takes into
consideration the uniaxial single-ion anisotropy D acting on the spin-1 particles, while the third
and fourth summations account for the Zeeman’s energy of the spin-1/2 and spin-1 particles in
longitudinal magnetic fields hA and hB , respectively. Note furthermore that the primitive unit
cell of the mixed-spin Ising chain defined through the Hamiltonian (4.49) contains two different
spins (one spin-1/2 particle and one spin-1 particle) regularly alternating along the chain axis,
whereas the periodic boundary condition is imposed by the constraint σN+1 ≡ σ1.

Now, let us decompose the total Hamiltonian (4.49) into the symmetric parts:

H =
N∑

i=1

Hi, Hi = −JSi(σi +σi+1)−D(S2
i +S2

i+1)−
hA

2
(σi +σi+1)−hBSi, (4.50)

which allows us to write the partition function of the mixed spin-1/2 and spin-1 Ising chain in
the factorized form:

Z =
∑

σ1=± 1
2

∑
σ2=± 1

2

· · ·
∑

σN=± 1
2

N∏
i=1

∑
Si=±1,0

exp(−βHi)

=
∑

σ1=± 1
2

∑
σ2=± 1

2

· · ·
∑

σN=± 1
2

N∏
i=1

T (σi, σi+1). (4.51)
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In above, we took advantage of the fact that spin degrees of freedom of the spin-1 particles can be
accounted for independently of each other and before performing a summation over spin degrees
of freedom of the spin-1/2 particles. Consequently, the straightforward summation over the spin
states of the spin-1 variable leads to the effective Boltzmann’s weight with a physical meaning
of two-by-two transfer matrix:

T (σi, σi+1) =
∑

Si=±1,0

exp(−βHi)

= exp
[
βhA

2
(σi + σi+1)

]
{1 + 2 exp(βD) cosh[βJ(σi + σi+1)]} . (4.52)

Owing to the left-right symmetry, the transfer matrix (4.52) includes just three different matrix
elements:

T (σi, σi+1) =
(

T (+,+) T (+,−)
T (−,+) T (−,−)

)
=
(

V1 V3

V3 V2

)
, (4.53)

whose explicit form is given by:

V1 = T (+,+) = exp
(

βhA

2

)
[1 + 2 exp(βD) cosh(βJ)] ,

V2 = T (−,−) = exp
(
−βhA

2

)
[1 + 2 exp(βD) cosh(βJ)] ,

V3 = T (+,−) = T (−,+) = 1 + 2 exp(βD). (4.54)

Now, let us proceed in Eq. (4.51) to subsequent summation over spin degrees of freedom of the
spin-1/2 particles, which enables one to express the partition function in terms of two eigenvalues
of the transfer matrix (4.53) when taking advantage the transfer-matrix formalism:

Z =
∑

σ1=± 1
2

∑
σ2=± 1

2

· · ·
∑

σN=± 1
2

N∏
i=1

T (σi, σi+1) =
∑

σ1=± 1
2

TN (σ1, σ1) = Tr TN = λN
+ + λN

− .

(4.55)

Two eigenvalues λ± entering into the partition function (4.55) can in turn be calculated by solv-
ing the eigenvalue problem for the transfer matrix (4.53):

λ± =
1
2

[
V1 + V2 ±

√
(V1 − V2)2 + 4V 2

3

]
. (4.56)

In the thermodynamic limit N →∞, the Gibbs free energy per elementary unit can be expressed
solely in terms of the largest transfer-matrix eigenvalue:

G = −kBT
1
N

lim
N→∞

lnZ = −kBT lnλ+, (4.57)

which repeatedly points to an absence of the phase transition as neither the exact expression
(4.57) for the Gibbs free energy nor any of its temperature derivative cannot exhibit singularity
at finite temperature.
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4.2 Two-dimensional Ising models

2D Ising model in a zero magnetic field is still an exactly soluble model within the framework
of the transfer-matrix method, but this relatively simple lattice-statistical model may additionally
display non-trivial phase transitions and critical phenomena at finite temperature in contrast to its
1D counterpart. It should be nevertheless mentioned that it took almost two decades of intense
efforts since the pioneering exact solution of 1D Ising model [2] until the exact closed-form so-
lution was found for 2D Ising model by Onsager [3]. It is worthwhile to remark, moreover, that
Ising conjectured in his seminal work [2] an absence of phase transitions at non-zero tempera-
ture for any (even higher-dimensional) Ising model. This erroneous result was firstly questioned
by Peierls [294, 295] who argued that 2D Ising model must necessarily exhibit a phase tran-
sition towards the spontaneously ordered phase at sufficiently low but non-zero temperature.
Kramers and Wannier were the first who have exactly confirmed Peierls’ conjecture by making
the fundamental discovery of a duality in low- and high-temperature expansions of the partition
function [292]. In addition, the self-dual property of the Ising model on a square lattice has
enabled them to exactly locate a critical temperature of the order-disorder phase transition. The
subsequent Onsager’s exact solution was an additional breakthrough by virtue of which 2D Ising
model became the most famous exactly solved model in statistical mechanics with a non-trivial
phase transition at non-zero temperature. Up to the present time, phase transitions and associated
critical phenomena belong to the most attracting issues to deal with in 2D Ising models. In this
part we will provide exact results for several 2D Ising models available after modest calculation.

4.2.1 Dual lattice and dual transformation

Let us consider the spin-1/2 Ising model on arbitrary 2D lattice in an absence of the external
magnetic field, which is given by the following simple Hamiltonian:

H = −J

NB∑
〈ij〉

σiσj . (4.58)

Above, σi = ±1/2 represents the Ising spin located at the ith lattice point and the summation
is carried out over all nearest-neighbor spin pairs on some 2D lattice. Assuming that N is a
total number of lattice sites and q is its coordination number (number of nearest neighbors), then,
there is in total NB = Nq/2 pairs of nearest-neighbor spins as along as boundary effects are
neglected (i.e. in thermodynamic limit). Each line (bond), which connects two adjacent spins
on a lattice, can be thus regarded as a schematic representation of the exchange interaction J
between the nearest-neighbor spins. As usual, the central issue is to calculate the canonical
partition function:

Z =
∑
{σi}

exp(−βH), (4.59)

where the suffix {σi} denotes a summation over all possible configurations of a full set of the
Ising spins situated on sites of a given lattice. It is worth noticing that there is in total 2N distinct
spin configurations, whereas the summation over vast number of spin configurations represents
the most important computational difficulty as the number of spins N tends to infinity in the
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thermodynamic limit. To overcome this problem, let us rewrite at first the Hamiltonian (4.58) to
the following form:

H = −NBJ

4
+ J

NB∑
〈ij〉

(
1
4
− σiσj

)
. (4.60)

Since the canonical ensemble average of Hamiltonian readily represents the internal energy (U =
〈H〉), it is easy to find the following physical interpretation of the Hamiltonian (4.60). Each
couple of unlike oriented adjacent spins contributes to the sum that appears on the right-hand-
side of Eq. (4.60) by the energy gain J/2, while each couple of equally aligned adjacent spins
does not contribute to this sum at all. In this respect, the internal energy acquires its minimum
value U = −NBJ/4 just for two fully aligned spin configurations with all spins pointing either
’up’ or ’down’ when assuming the ferromagnetic coupling constant J > 0. By substituting the
Hamiltonian (4.60) into Eq. (4.59), one gets the following expression for the partition function:

Z = exp
(

βJNB

4

)∑
{σi}

exp
(
−n

βJ

2

)
, (4.61)

where n denotes the total number of unequally aligned adjacent spin pairs within each spin
configuration. Evidently, the summation on the right-hand-side of Eq. (4.61) may in principle
contain just different powers of the expression exp(−βJ/2). In the limit of zero temperature
(T → 0), the expression exp(−βJ/2) tends to zero and hence, the expansion into a power
series

∑
n an exp(−nβJ/2) gives very valuable estimate of the partition function in the limit of

sufficiently low temperatures and is therefore termed as the low-temperature series expansion.
It is possible to find a simple geometric interpretation of each term emerging in the aforemen-

tioned power series by introducing the idea of a dual lattice. For this purpose, let us introduce
a basic terminology of the graph theory, where each site of a lattice is called as a vertex and
each bond (line) connecting the nearest-neighbor sites (vertices) is called an edge. An interior
of elementary polygon delimited by edges is denoted as a face, while an ensemble of all ver-
tices and edges is called a full lattice graph. A dual lattice graph can be constructed as follows.
Vertices of a dual lattice are simply obtained by situating them into a middle of each face of the
original lattice. The vertices situated at adjacent faces, i.e. the faces sharing a common edge on
the original lattice, then represent the nearest-neighbor vertices of the dual lattice. Edges of the
dual lattice are obtained by connecting all couples of adjacent vertices of the dual lattice.

For illustration, Fig. 4.1 shows two original lattices – square and hexagonal – and their cor-
responding dual lattices. The bonds of original lattices are displayed by solid lines, while the
bonds of their dual lattices are depicted by broken lines. As one can see, the square lattice is a
self-dual, i.e. the dual lattice to a square lattice is again a square lattice. Contrary to this, the
triangular lattice is a dual lattice to the hexagonal lattice and vice versa. Remembering that N
and NB is the total number of vertices and edges of the original lattice, respectively, it is quite
clear that NB is at the same time the total number of edges of the dual lattice as well (each bond
of the dual lattice intersects one and just one bond of the original lattice). If ND denotes the total
number of vertices of the dual lattice, ND is in turn also the total number of faces of the origi-
nal lattice (each face of the original lattice involves one and just one vertex of the dual lattice).
Euler’s relation for planar graphs3 then relates the total number of sites of the original and dual

3The planar graph is a graph, which can be embedded in the plane so that no edges intersect.
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a)                                                      b)

Fig. 4.1. Two pairs of dual lattices: a) self-dual square lattices; b) mutually dual hexagonal and triangular
lattices. Solid lines and solid circles label edges and vertices of original lattices, while broken lines and
empty circles stand for edges and vertices of dual lattices, respectively.
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Fig. 4.2. A particular spin configuration on a square lattice, whose vertices and edges are not drawn for
clarity. The plus (minus) sign at the ith lattice point corresponds to the spin state σi = +1/2 (σi = −1/2).
The system of solid and broken lines unambiguously determines the corresponding polygon line graph at
the dual square lattice (for details see the text).

lattices with the total number of edges:4

N + ND = NB. (4.62)

Suppose now some random arrangement of ’up’ and ’down’ spins on the original lattice,
i.e. some particular spin configuration as displayed in Fig. 4.2 for some fragment of the whole
original lattice (the bonds connecting adjacent spins on the original lattice are not drawn for
clarity). If some pair of adjacent spins is not equally aligned, then, let us draw a solid line
on a respective edge of a dual lattice situated in between two unequally oriented spins. On the
contrary, broken lines will be just drawn on edges of a dual lattice separating equally aligned pairs
of adjacent spins. The set of vertices connected on the dual lattice by solid lines then creates a
configurational graph, which is a subgraph of the full dual lattice graph (the sets of vertices and

4The right-hand-side of Eq. (4.62) is in fact either NB + 2 or NB + 1 for any planar graph, however, in the thermo-
dynamic limit one can use NB instead of them.
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edges of a configurational graph are subsets of vertex set and edge set of a full dual lattice graph).
The most fundamental property of the configurational graph is that a mutual interchange of any
two adjacent spins will not cause any change in the configurational graph, or it will cause an
even number of changes. The total number of solid and broken lines incident at each vertex of
the dual lattice must be therefore either even or zero. This implies that solid (broken) lines of
each configurational graph should consists of closed polygons. So, the configurational graph
must form a certain kind of polygon line graph. Another important property of the polygon line
graph is that the reversal of all spins does not change the configurational graph. It means that
two different spin configurations (one is being obtained from the other by reversing all spins)
correspond just to one configurational polygon line graph due to invariance σi → −σi (∀i). The
partition function of the planar Ising model can be therefore expressed as:

Z = 2 exp
(

βJNB

4

)∑
p.g.

exp
(
−n

βJ

2

)
, (4.63)

where the summation is now performed over all possible polygon subgraphs on a dual lattice,
n denotes the total number of solid lines within each polygon subgraph and the factor 2 comes
from the two-to-one mapping between spin and polygon configurations.

Another interesting property of the partition function of the spin-1/2 Ising model directly
follows from its definition (4.59). By adopting the exact van der Waerden identity [124]:

exp(βJσiσj) = cosh
(

βJ

4

)
+ 4σiσj sinh

(
βJ

4

)
= cosh

(
βJ

4

)[
1 + 4σiσj tanh

(
βJ

4

)]
(4.64)

and substituting it into Eq. (4.59) one obtains:

Z =
[
cosh

(
βJ

4

)]NB ∑
{σi}

∏
〈ij〉

[
1 + 4σiσj tanh

(
βJ

4

)]
. (4.65)

The product on the right-hand-side of Eq. (4.65) involves in total NB terms (one for each bond),
which give after formal multiplication a sum of in total 2NB terms. However, many terms even-
tually vanish after a summation over all available spin configurations

∑
{σi} is explicitly carried

out. For instance, it can be readily proved that all linear terms of the type 4σiσj tanh(βJ/4) will
finally disappear when summing over spin states of the spin σi or σj . The condition, which en-
sures that the relevant term makes a non-zero contribution to the partition function, can be simply
guessed from the validity of the trivial spin identity σ2

i = 1/4. According to this, all non-zero
terms must necessarily consist of spin variables, which enter into these expressions either even
number of times or do not enter into these terms at all. The simplest non-vanishing term for the
Ising square lattice apparently is:

44(σiσj)(σjσk)(σkσl)(σlσi) tanh4

(
βJ

4

)
= 44σ2

i σ2
j σ2

kσ2
l tanh4

(
βJ

4

)
= tanh4

(
βJ

4

)
,

which is constituted by the product of four nearest-neighbor interactions (edges) forming an el-
ementary square face as the simplest closed polygon on this lattice. The summation over spin
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configurations of four spins included in this term consequently gives the factor 24 tanh4(βJ/4),
while the summation over spin states of all other spins yields an additional factor 2N−4, so that
the Boltzmann’s factor 2N tanh4(βJ/4) is finally obtained as the contribution to the partition
function stemming from a single square line graph. It is therefore not difficult to construct the
following geometric interpretation of the non-vanishing terms: edges corresponding to interac-
tions present in these terms must create closed polygons so that either no lines or even number
of lines meet at each vertex of the lattice. From this point of view, polygon line graphs very
similar to those described by the low-temperature series expansion give a non-zero contribution
to the partition function. With regard to this, the expression (4.65) for the partition function can
be replaced by:

Z = 2N

[
cosh

(
βJ

4

)]NB ∑
p.g.

[
tanh

(
βJ

4

)]n

, (4.66)

where n denotes the total number of full lines constituting the particular polygon line graph. It
is quite apparent that the summation on the right-hand-side of Eq. (4.66) contains just different
powers of the expression tanh(βJ/4). In the limit of high temperatures (T →∞), the expression
tanh(βJ/4) tends to zero and thus, the expansion into a power series

∑
n an[tanh(βJ/4)]n

gives very valuable estimate of the partition function in the limit of sufficiently high temperatures
termed as the high-temperature series expansion.

There is an interesting correspondence between summations to emerge in Eqs. (4.63) and
(4.66), since both of them are performed over certain sets of polygon line graphs. The most
essential difference between them consists in the fact that the summation in Eq. (4.63) is carried
out over polygon line graphs on the dual lattice, while the summation in Eq. (4.66) is performed
over polygon line graphs directly on the original lattice. It should be stressed, however, that both
the final expressions (4.61) and (4.66) for the partition function are exact when the relevant series
is performed up to an infinite order and therefore, they must basically give the same result for
the partition function. In the thermodynamic limit N → ∞, the summations in Eqs. (4.63) and
(4.66) yield the same partition function provided that:

exp
(
−βDJ

2

)
= tanh

(
βJ

4

)
, (4.67)

Z(ND, βDJ)

exp
(

βDJNB
4

) =
Z(N, βJ)

2N
[
cosh

(
βJ
4

)]NB
, (4.68)

where we have introduced some reciprocal temperature βD = 1/(kBTD) for the dual lattice
and the factor 2 was omitted from the denominator on the left-hand-side of Eq. (4.68) due to its
negligible effect in the thermodynamic limit. The connection between two mutually dual lattices
(4.67) and (4.68) can also be inverted because of a symmetry in the duality (each from a couple
of the mutually dual lattices is dual one to another):

exp
(
−βJ

2

)
= tanh

(
βDJ

4

)
, (4.69)

Z(N, βJ)

exp
(

βJNB
4

) =
Z(ND, βDJ)

2ND

[
cosh

(
βDJ

4

)]NB
. (4.70)
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With the help of Eqs. (4.67) and (4.68) [or equivalently Eqs. (4.69) and (4.70)], it is also possible
to write this so-called dual transformation even in a symmetric form as would be expected from
the symmetrical nature of the duality. The relation (4.67) gives after straightforward calculation:

sinh
(

βJ

2

)
sinh

(
βDJ

2

)
= 1, (4.71)

while the expression (4.68) can be modified by regarding the equality of partition functions,
Eqs. (4.67), (4.71) and Euler’s relation (4.62) to:

2N

[
cosh

(
βJ

4

)]NB

exp
(
−βDJ

4
NB

)
= 2N

[
cosh

(
βJ

4

)]NB
[
tanh

(
βJ

4

)]NB
2

= 2N

[
sinh

(
βJ

4

)]NB
2
[
cosh

(
βJ

4

)]NB
2

= 2N−NB
2

[
sinh

(
βJ

2

)]NB
2

= 2
N−ND

2

[
sinh

(
βJ

2

)]N+ND
2

=

[
2 sinh

(
βJ
2

)]N
2

[
2 sinh

(
βDJ

2

)]ND
2

. (4.72)

By combining Eq. (4.72) with the relation (4.68), one readily gains another symmetric relation-
ship between the partition functions expressed in terms of the high-temperature series expansion
on the original lattice and the low-temperature series expansion on its dual lattice:

Z(N, βJ)[
2 sinh

(
βJ
2

)]N
2

=
Z(ND, βDJ)[

2 sinh
(

βDJ
2

)]ND
2

. (4.73)

The existence of an equivalence between the low- and high-temperature series expansions re-
flects the fundamental property of the partition function of the spin-1/2 Ising model, namely,
its symmetry with respect to the low and high temperatures. This symmetry means, among
other matters, that the partition function at some lower temperature can always be mapped on
the equivalent partition function at certain higher temperature. This mapping is called as the
dual transformation and the dual lattices are actually connected one to another by means of the
dual transformation. In this respect, the dual lattices are topological representations of the dual
transformation and consequently, one says that the dual transformation has a character of the
topological transformation.

The mathematical formulation of the dual transformation connecting effective temperatures
of the original and its dual lattice is represented (independently of the lattice topology) either by
the couple of equivalent Eqs. (4.67) and (4.69), or, respectively, by a single symmetrized relation
(4.71). The latter relationship is especially useful for a better understanding of the symmetry of



322 A brief account of the Ising and Ising-like models

the partition function with respect to low and high temperatures. It is sufficient to realize that
the argument of the function sinh(βJ/2) must unavoidably decrease when the argument of the
other function sinh(βDJ/2) increases in order to maintain their constant product as required by
the dual transformation (4.71). This means that the partition function at some lower temperature,
which is obtained for instance from the low-temperature expansion on the dual lattice, is equiva-
lent to the partition function at a certain higher temperature obtained from the high-temperature
expansion on the original lattice. It is noteworthy that the dual transformation markedly sim-
plifies the exact enumeration of thermodynamic quantities on different lattices, since it permits
to obtain the exact solution of some quantity on arbitrary lattice merely from the corresponding
exact result for this quantity on its dual lattice. For instance, the critical point is always accom-
panied by some singularity in the thermodynamic quantities and this non-analyticity is always
reflected in the partition function as well. The mapping relation (4.73) clearly shows that the par-
tition function of the original lattice exhibits a non-analyticity if and only if the partition function
of the dual lattice also has a similar non-analyticity at some corresponding temperature satisfying
the duality relation (4.71). Besides, the expression (4.73) allows to calculate the partition func-
tion of the one of mutually dual lattices merely by substituting the corresponding exact result for
the partition function of its dual lattice.

It is worthwhile to remark that the square lattice has an extraordinary position among all 2D
lattices because of its self-duality. The self-dual property together with the symmetry of the par-
tition function with respect to the low and high temperatures is just enough for determining the
critical temperature and other thermodynamic quantities precisely at a critical point. Under the
assumption of a single critical point, the same lattice topology ensures that critical parameters
must be equal one to another on both mutually dual square lattices. According to the dual trans-
formation (4.71), the critical temperature of the spin-1/2 Ising model on the square lattice must
obey the condition:

sinh2

(
βcJ

2

)
= 1, (4.74)

which is consistent with this value of the critical temperature:

kBTc

|J |
=

1
2 ln(1 +

√
2)
≈ 0.567296. (4.75)

It should be pointed out that the critical condition (4.74) in fact gives two different solutions
for the critical temperature, which are of equal magnitude but of opposite sign. The relevant
solutions obviously correspond to the spin-1/2 Ising model with the ferromagnetic J > 0 or
antiferromagnetic J < 0 coupling constant. Note furthermore that the temperature symmetry of
the partition function does not suffice for determining critical parameters of the spin-1/2 Ising
model on other 2D lattices (like honeycomb or triangular), which are not self-dual.

4.2.2 Star-Triangle Transformation

The dual transformation (4.71) maps the partition function of the spin-1/2 Ising model on a hon-
eycomb lattice into that one of the spin-1/2 Ising model on a triangular lattice (or vice versa)
and thus, it does not establish the symmetry relationship between the low- and high-temperature
partition function on the same lattice. However, it is worth noticing that such a relation can be
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Fig. 4.3. The spin-1/2 Ising model on a hexagonal lattice and its relation to the equivalent spin-1/2 Ising
model on a triangular lattice. The equivalence between both models can be established by applying the
star-triangle transformation (STT) to a half of spins of hexagonal lattice.

established even for other (not self-dual) lattices by combining the dual transformation (4.71)
with some another transformation. The star-triangle transformation invented originally by On-
sager [3] establishes this useful mapping relationship for example for a couple of dual lattices
like hexagonal–triangular or kagomé–diced.

Let us consider the spin-1/2 Ising model on the hexagonal lattice, which can be further di-
vided into two equivalent interpenetrating triangular sublattices A and B schematically repre-
sented in Fig. 4.3 by full and empty circles, respectively. The division is made in a such way that
all nearest neighbors of a site from one sublattice (say A) belong to the other sublattice (B) and
vice versa. Owing to this fact, one may perform a summation over spin degrees of freedom of
spins from the same sublattice independently of each other, because there is no direct interaction
between the spins from the same sublattice. In this respect, it is very appropriate to write the
total Hamiltonian as a sum of site Hamiltonians:

H =
N∑

i∈B

Hi, (4.76)

where each site Hamiltonian Hi involves all the interaction terms associated with the ith spin
from the sublattice B:

Hi = −JhσB
i (σA

j + σA
k + σA

l ). (4.77)

In above, the upper index of spin variable specifies the sublattice to which the relevant spin
belongs. By the use of Eqs. (4.76) and (4.77), the partition function of the spin-1/2 Ising model
on the hexagonal lattice can be partially factorized to the form:

Zh =
∑
{σA

j }

N∏
i=1

∑
σB

i =± 1
2

exp[βJhσB
i (σA

j + σA
k + σA

l )], (4.78)

where the former summation is carried out over all available spin configurations on the sublattice
A, the product runs over all sites of the sublattice B and the latter summation accounts for the spin
states of one particular spin from the sublattice B. In the consequence of that, it is adequate to
consider just one particular spin from the sublattice B and to sum up over spin degrees of freedom
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of this spin. Each spin from the sublattice B merely interacts with its three nearest-neighbor spins
from the sublattice A and hence, this summation gives the Boltzmann’s factor:∑

σB
i =± 1

2

exp[βJhσB
i (σA

j + σA
k + σA

l )] = 2 cosh
[
βJh

2
(σA

j + σA
k + σA

l )
]

= A exp[βJt(σA
j σA

k + σA
k σA

l + σA
l σA

j )], (4.79)

which can be substituted by the equivalent expression provided by the star-triangle transfor-
mation. The physical meaning of the transformation (4.79) lies in removing all the interactions
associated with a central spin σB

i of the star and replacing them by new effective interactions
between three outer spins σA

j , σA
k and σA

l forming the equilateral triangle. It is noteworthy that
the star-triangle transformation is actually a set of eight equations, which can be obtained from
the mapping relation (4.79) by considering all eight spin configurations available to three outer
spins from the sublattice A. However, the consideration of all available spin configurations leads
just to two independent equations, which unambiguously determine two yet unknown mapping
parameters A and Jt:

A = 2
[
cosh

(
3βJh

4

)] 1
4
[
cosh

(
βJh

4

)] 3
4

, (4.80)

βJt = ln

cosh
(

3βJh
4

)
cosh

(
βJh
4

)
 . (4.81)

The backward substitution of the transformation (4.79) into the partition function (4.78), which
is equivalent to performing the star-triangle transformation for all spins from the sublattice B,
yields an exact mapping relationship between the partition functions of the spin-1/2 Ising model
on the hexagonal and triangular lattices:

Zh(2N, βJh) = ANZt(N, βJt). (4.82)

Notice that the effective couplings (temperatures) of the equivalent spin-1/2 Ising model on the
hexagonal and triangular lattices are related through the star-triangle mapping relationship (4.81).
As a result, the relation (4.81) established by the use of the star-triangle transformation connects
the partition functions of the hexagonal and triangular lattices at two different effective temper-
atures in a quite similar way as it does the relation (4.71) provided by the dual transformation.
The most crucial difference consists in a profound essence of both mapping relations; the dual
transformation is evidently of the topological origin, whereas the star-triangle mapping is the
algebraic transformation in its character.

At this stage, let us combine the dual and star-triangle transformations in order to bring
insight into the criticality of the spin-1/2 Ising model on the hexagonal and triangular lattices.
By employing a set of trivial identities5, the star-triangle transformation (4.81) should be firstly

5cosh(a± b) = cosh a cosh b± sinh a sinh b,
cosh 2a = cosh2 a + sinh2 a,
sinh 2a = 2 sinh a cosh a,
cosh2 a− sinh2 a = 1,
cosh2 a = 1+cosh 2a

2
,

sinh2 a = −1+cosh 2a
2

.
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rewritten as follows:

exp(βJt) =
cosh

(
3βJh

4

)
cosh

(
βJh
4

) =
cosh

(
βJh
2

)
cosh

(
βJh
4

)
+ sinh

(
βJh
2

)
sinh

(
βJh
4

)
cosh

(
βJh
4

)
= cosh

(
βJh

2

)
+ tanh

(
βJh

4

)
sinh

(
βJh

2

)
= cosh

(
βJh

2

)
+ 2 sinh2

(
βJh

4

)
= 2 cosh

(
βJh

2

)
− 1. (4.83)

Furthermore, it is appropriate to combine Eq. (4.83) with one of possible representations of the
dual transformation (4.67):

exp
(
−β′Jt

2

)
= tanh

(
β′Jh

4

)
(4.84)

with the aim to eliminate the effective temperature of the one of lattices with equivalent partition
functions. For instance, the procedure that eliminates from Eqs. (4.83) and (4.84) the effective
temperature of the triangular lattice allows to obtain the symmetrized relationship, which con-
nects the partition function of the spin-1/2 Ising model on the hexagonal lattice at two different
temperatures: [

coth
(

β′Jh

4

)]2
= 2 cosh

(
βJh

2

)
− 1

cosh
(

β′Jh
2

)
+ 1

cosh
(

β′Jh
2

)
− 1

= 2 cosh
(

βJh

2

)
− 1

cosh
(

β′Jh

2

)
+ 1 =

[
2 cosh

(
βJh

2

)
− 1
] [

cosh
(

β′Jh

2

)
− 1
]

cosh
(

βJh

2

)
cosh

(
β′Jh

2

)
− cosh

(
βJh

2

)
− cosh

(
β′Jh

2

)
= 0[

cosh
(

βJh

2

)
− 1

] [
cosh

(
β′Jh

2

)
− 1
]

= 1. (4.85)

From the physical point of view, the relationship (4.85) establishes analogous temperature sym-
metry of the partition function of the spin-1/2 Ising model on the hexagonal lattice as the dual
transformation does for the spin-1/2 Ising model on the self-dual square lattice through the re-
lation (4.71). If there exists just a unique critical point, both temperatures connected via the
mapping relation (4.85) must necessarily meet at a critical point due to the same reasons as given
for the spin-1/2 Ising model on a self-dual square lattice. So, the critical temperature of the
spin-1/2 Ising model on the hexagonal lattice should obey the condition:[

cosh
(

βcJh

2

)
− 1
]2

= 1, (4.86)
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which is consistent with the following double value of the critical temperature:

kBTc

|Jh|
=

1
2 ln(2 +

√
3)
≈ 0.379663. (4.87)

Apparently, the positive (negative) solution corresponds to the spin-1/2 Ising model on the hexag-
onal lattice with the ferromagnetic (antiferromagnetic) coupling constant Jh > 0 (Jh < 0).

The same procedure can be repeated in order to obtain the critical parameters of the spin-
1/2 Ising model on a triangular lattice. An elimination of the effective temperature of spin-1/2
Ising model on the hexagonal lattice from Eqs. (4.83) and (4.84) yields the following symmetric
mapping:

[exp(βJt)− 1][exp(β′Jt)− 1] = 4, (4.88)

which relates the partition function of the spin-1/2 Ising model on the triangular lattice at two
different temperatures. The equation (4.88) unambiguously determines the critical condition for
the spin-1/2 Ising model on the triangular lattice:

[exp(βcJt)− 1]2 = 4, (4.89)

which affords the following unique value of the critical temperature:

kBTc

Jt
=

1
ln 3

≈ 0.910239. (4.90)

It is noteworthy that the critical temperature (4.90) solely corresponds to the spin-1/2 Ising model
on the triangular lattice with the ferromagnetic interaction Jt > 0, because the analogous model
with the antiferromagnetic coupling Jt < 0 cannot exhibit a spontaneous antiferromagnetism
at finite temperature due to a geometric spin frustration inherent to the non-bipartite character
of a triangular lattice. It should be also pointed out that the critical temperature of the spin-1/2
Ising model on the triangular lattice (4.90) can be alternatively found by substituting the critical
condition of the spin-1/2 Ising model on the hexagonal lattice (4.86) to the modified star-triangle
transformation (4.83). In this way one recovers the same critical temperature as given by Eq.
(4.90).

4.2.3 Decoration-Iteration Transformation

Another important mapping transformation, which is purely of algebraic character, represents
the decoration-iteration transformation that was invented by Syozi in an attempt to exactly solve
the spin-1/2 Ising model on the kagomé lattice [296]. In principle, the approach based on
the decoration-iteration transformation enables to obtain an exact solution of the spin-1/2 Ising
model on an arbitrary bond-decorated lattice from the exact solution of the spin-1/2 Ising model
on the corresponding undecorated lattice. The term bond-decorated lattice marks such a lattice,
which can be obtained from a simple original lattice (like square, hexagonal or triangular) by
placing an additional spin (or eventually a finite cluster of spins) on the bonds of this simpler
lattice. The primary sites of the original lattice are then called as nodal sites, while the secondary
sites arising out from the decoration procedure are called as decorating sites. For illustration,
Fig. 4.4 shows the planar topology of the hexagonal lattice, the simply decorated hexagonal
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Fig. 4.4. The spin-1/2 Ising model on the hexagonal lattice (left), decorated hexagonal lattice (middle) and
kagomé lattice (right). The equivalence between all three lattice models can be established by employing
the decoration-iteration (DIT) and star-triangle (STT) transformations, respectively.

lattice and the kagomé lattice together with the mapping relations, which can be established
between them by employing algebraic transformations.

Let us consider initially the spin-1/2 Ising model on the decorated hexagonal lattice, which
is shown in the middle of Fig. 4.4 and is defined through the Hamiltonian:

Hd = −Jd

3N∑
〈ij〉

σiµj . (4.91)

Above, σi = ±1/2 and µj = ±1/2 label Ising spin variables placed at the nodal and decorat-
ing sites of the decorated hexagonal lattice, respectively, the summation runs over all nearest-
neighbor spin pairs of the lattice and the total number of nodal sites equals N . It is convenient to
rewrite the total Hamiltonian (4.91) as a sum of bond Hamiltonians:

Hd =
3N/2∑
j=1

Hj , (4.92)

where each bond Hamiltonian Hj involves all the interaction terms that include one particular
decorating spin µj :

Hj = −Jdµj(σk + σl). (4.93)

By the use of Eqs. (4.92) and (4.93), the partition function of the spin-1/2 Ising model on the
decorated hexagonal lattice can be partially factorized to the form:

Zd =
∑
{σi}

3N/2∏
j=1

∑
µj=± 1

2

exp[βJdµj(σk + σl)]. (4.94)

In the above expression, the former summation is carried out over all available configurations of
the nodal spins, the product runs over all decorating sites and the latter summation accounts for
spin states of one decorating spin from the jth bond of the decorated hexagonal lattice. According
to Eq. (4.94), the summation over spin degrees of freedom of the decorating spins can be per-
formed independently of each other and this summation gives the effective Boltzmann’s factor,
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which can be successively replaced by the equivalent expression provided by the decoration-
iteration transformation:∑

µj=± 1
2

exp[βJdµj(σk + σl)] = 2 cosh
[
βJd

2
(σk + σl)

]
= B exp(βJhσkσl). (4.95)

The physical meaning of the transformation (4.95) consists in removing both interactions asso-
ciated with the decorating spin µj and substituting them through a single effective interaction
Jh between two nodal spins σk and σl, which are being its two nearest neighbors. It should be
emphasized that the decoration-iteration transformation (4.95) has to satisfy the self-consistency
condition, i.e. it must hold for all available spin states of two nodal spins σk and σl. In this
respect, the mapping relation (4.95) is in fact a set of four equations, which can be explicitly
obtained by considering all possible spin configurations available to the two nodal spins. It can
be readily proved that a substitution of four possible spin configurations yields from the formula
(4.95) merely two independent equations, which determine the mapping parameters B and βJh:

B = 2

√
cosh

(
βJd

2

)
, (4.96)

βJh = 2 ln
[
cosh

(
βJd

2

)]
. (4.97)

By applying the decoration-iteration transformation to all the decorating spins, i.e. substituting
the mapping transformation (4.95) into the partition function (4.94), one acquires an exact map-
ping correspondence between the partition functions of the spin-1/2 Ising model on the decorated
hexagonal lattice and simple hexagonal lattice:

Zd(5N/2, βJd) = B
3N
2 Zh(N, βJh), (4.98)

whose effective temperatures are connected by means of the mapping relation (4.97). It is quite
obvious from Eq. (4.98) that the spin-1/2 Ising model on the decorated hexagonal lattice becomes
critical if and only if its corresponding model on the hexagonal lattice becomes critical as well.
With regard to this, it is sufficient to substitute the exact critical temperature of the hexagonal
lattice (4.87) into Eq. (4.97) in order to locate the exact critical temperature of the spin-1/2 Ising
model on the decorated hexagonal lattice:

kBTc

|Jd|
=

1

2 ln(2 +
√

3 +
√

6 + 4
√

3)
≈ 0.251048. (4.99)

It is worthwhile to remark that the decoration-iteration transformation (4.95) is restricted neither
by the lattice topology nor by its spatial dimensionality and thus, it can be utilized for obtaining
the exact results for the spin-1/2 Ising model on arbitrary simply decorated lattice if the exact
solution is known for the spin-1/2 Ising model on the corresponding undecorated lattice.

Now, it is possible to make another vital observation. The total Hamiltonian (4.91) of the
spin-1/2 Ising model on the decorated hexagonal lattice can be also formally written as a sum of
site Hamiltonians:

Hd =
N∑

i=1

Hi, (4.100)



Exact results 329

whereas each site Hamiltonian involves all the interaction terms of the one particular nodal spin:

Hi = −Jdσi(µj + µk + µl). (4.101)

Substituting Eqs. (4.100) and (4.101) into a statistical definition of the partition function allows us
to partially factorize the partition function of the spin-1/2 Ising model on the decorated hexagonal
lattice and write it in the form:

Zdec =
∑
{µj}

N∏
i=1

∑
σi=± 1

2

exp[βJdσi(µj + µk + µl)]. (4.102)

Above, the former summation runs over all available configurations of the decorating spins, the
product runs over all nodal sites and the latter summation is carried out over spin states of one
particular nodal spin from the decorated hexagonal lattice. The structure of the partition function
(4.102) immediately justifies an application of the familiar star-triangle mapping transformation:∑

σi=± 1
2

exp[βJdσi(µj + µk + µl)] = 2 cosh
[
βJd

2
(µj + µk + µl)

]
= C exp[βJk(µjµk + µkµl + µlµj)], (4.103)

which satisfies the self-consistency condition on assumption that:

C = 2
[
cosh

(
3βJd

4

)] 1
4
[
cosh

(
βJd

4

)] 3
4

, (4.104)

βJk = ln

cosh
(

3βJd
4

)
cosh

(
βJd
4

)
 = ln

[
2 cosh

(
βJd

2

)
− 1
]

. (4.105)

The star-triangle transformation maps the spin-1/2 Ising model on the decorated hexagonal lattice
into the spin-1/2 Ising model on the kagomé lattice once it is performed for all nodal spins. As
a matter of fact, one easily derives the following exact mapping correspondence between the
partition functions of both these models by a direct substitution of the star-triangle mapping
transformation (4.103) into the relation (4.102):

Zd(5N/2, βJd) = CNZk(3N/2, βJk). (4.106)

At this stage, it is possible to combine the decoration-iteration mapping with the star-triangle
transformation in order to express the partition function of the spin-1/2 Ising model on the
kagomé lattice in terms of the corresponding partition function of the spin-1/2 Ising model on
the hexagonal lattice. The mapping relations (4.98) and (4.106) provide this useful connection
between the partition functions of the spin-1/2 Ising model on the hexagonal and kagomé lattices:

Zk(3N/2, βJk) =

(
B

3
2

C

)N

Zh(N, βJh)

= 2N


exp

(
3βJh

2

) [
exp

(
βJh
2

)
+ 1
]

[
2 exp (βJh) + exp

(
βJh
2

)
− 1
]3


1
4

Zh(N, βJh), (4.107)
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whereas Eqs. (4.97) and (4.105) relate the effective temperatures of the spin-1/2 Ising model on
the hexagonal and kagomé lattices with equivalent partition functions:

βJk = ln
[
2 exp

(
βJh

2

)
− 1
]

. (4.108)

Substituting the exact critical temperature of the spin-1/2 Ising model on the hexagonal lattice
(4.87) to the mapping relation (4.108) one simply gets the exact critical temperature of the spin-
1/2 Ising model on the kagomé lattice:

kBTc

Jk
=

1
ln(3 + 2

√
3)
≈ 0.535830. (4.109)

It is quite evident that the exact critical temperature (4.109) of the spin-1/2 Ising model on the
kagomé lattice is slightly lower than that (4.75) of the spin-1/2 Ising model on the square lattice
with the same coordination number.

4.2.4 Critical points of spin-1/2 Ising archimedean lattices

In the previous parts we have derived exact critical temperatures of the ferromagnetic spin-1/2
Ising model on all three regular planar lattices - honeycomb, square and triangular, which en-
tirely cover the plane by a periodic repetition of the same regular polygon - hexagon, square and
triangle, respectively. In addition, we have also exactly calculated the critical point of the ferro-
magnetic spin-1/2 Ising model on the semi-regular kagomé lattice, which consists of two kinds
of periodically alternating regular polygons - hexagons and triangles (see Fig. 4.5). This 2D
lattice is particularly interesting from the academic point of view, because it represents the only
semi-regular (archimedean) tiling that is both vertex-transitive as well as edge-transitive quite
similarly as a triad of the three aforementioned regular lattices (c.f. the lattices in the upper row
of Fig. 4.5 with the semi-regular lattices from other rows). To date, the exact critical temperatures
corresponding to the order-disorder phase transition of the ferromagnetic spin-1/2 Ising model
are known for all archimedean lattices and they are compiled in Tab. 4.1 according to Ref. [301]
and references cited therein. The term archimedean lattice denotes such a uniform tiling of the
plane by regular polygons, which is vertex-transitive but is not necessarily edge-transitive. There
are in total 11 archimedean (semi-regular) lattices, which are schematically illustrated in Fig.
4.5. Due to vertex-transitivity each archimedean lattice can be unambiguously given by a set of
numbers determining the number of sides of regular polygons enclosing a given vertex, whereas
by convention one starts from a regular polygon with smallest number of sides and proceeds ei-
ther clockwise or counterclockwise according to the Grünbaum-Sheppard notation (for example
3.6.3.6 for the kagomé lattice) [302].

It can be understood from Curie temperatures listed in Tab. 4.1 that the greater the coordi-
nation number of the planar lattice is, the higher is the critical temperature of its order-disorder
transition. Accordingly, the cooperativity of spontaneous ferromagnetic ordering seems to be
very closely connected to such a topological feature as being the lattice coordination number.
However, the coordination number by itself does not entirely determine the critical temperature
as it can be clearly seen from a comparison of critical temperatures of the spin-1/2 Ising model
on archimedean lattices with the same coordination number q (e.g. hexagonal, star, bathroom-
tile, square-hexagon-dodecagon lattices with q = 3; square, kagomé and bounce lattices with
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honeycomb é(6 )                   square
3

(4 )                  triangular (3 )            kagom (3.6.3.6)
4 6

star (3.12 )                    bathroom-tile
2

(4.8 )           SHD (4.6.12)               bounce (3.4.6.4)
2

Shastry-Sutherland (3 .4.3.4)          trellis (3 .4 )                         maple leaf (3 .6)
2 3 2 4

Fig. 4.5. A schematic illustration of all archimedean (semi-regular) lattices, which are the only vertex-
transitive 2D lattices being composed solely of regular polygons. The first row contains besides three
regular (hexagonal, square and triangular) lattices also a kagomé lattice, which is the only semi-regular
lattice that is edge-transitive quite similarly as a triad of regular lattices. The numbers in round brackets
denote the number of sides of regular polygons enclosing each vertex within a given vertex-transitive lattice
graphs according to the Grünbaum-Sheppard notation [302].

q = 4; or Shastry-Sutherland, trellis and maple-leaf lattices with q = 5). It turns out that semi-
regular lattices being composed of more kinds of regular polygons generally have lower critical
temperature than its regular counterpart with the same coordination number. Thus, it might be
concluded that the cooperative nature of a spontaneous long-range order is strongly influenced
also by other topological features of 2D lattices such as for instance an inhomogeinety of regular
polygons within the semi-regular tiling, which apparently affords a greater versatility for low-
energy excitations facilitating a breakdown of spontaneous ordering. It should be emphasized
that such an information cannot be elucidated from relatively rough approximate approaches
such as the mean-field approximation or the single-spin cluster formulation of the effective-field
theory, which predict the same critical temperature for the spin-1/2 Ising model on all lattices
with the same coordination number regardless of the lattice geometry. From this perspective, ex-
act solutions of the spin-1/2 Ising model on 2D lattices are indispensable for providing in-depth
understanding of critical phenomena closely related to a cooperative nature of spontaneous long-
range ordering. In spite of a substantial progress achieved in this research field, there are still a
few puzzling features such as the identical Curie temperatures of the ferromagnetic spin-1/2 Ising
model on kagomé and bounce lattices (see Tab. 4.1) that persist comprehensive understanding.
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Tab. 4.1. Exact critical temperatures of the ferromagnetic spin-1/2 Ising model on archimedean lattices.
The second column determines the coordination number q and the third column specifies a sequence of the
regular polygons around each vertex according to the Grünbaum-Sheppard notation [302]. The abbrevia-
tions SHD and SSL are used for the square-hexagon-dodecagon lattice and the Shastry-Sutherland lattice,
respectively (see Fig. 4.5).

lattice q notation βcJ kBTc/J

honeycomb 3 63 2 ln(2 +
√

3) 0.3797...
square 4 44 2 ln(1 +

√
2) 0.5673...

triangular 6 36 ln(3) 0.9102...
kagomé 4 3.6.3.6 ln(3 + 2

√
3) 0.5358...

star 3 3.122 2 ln
[

1
2 (3 +

√
3 +

√
12 + 10

√
3)
]

0.3079...

bathroom-tile 3 4.82 2 ln
[

1
2 (2 +

√
2 +

√
10 + 8

√
2)
]

0.3597...

SHD 3 4.6.12 2 ln
[√

2+

q
5+3

√
3−
√

44+26
√

3
√

2−
q

5+3
√

3−
√

44+26
√

3

]
0.3475...

bounce 4 3.4.6.4 ln(3 + 2
√

3) 0.5358...
SSL 5 32.4.3.4 root of higher-order polynomial 0.7316...

trellis 5 33.42 ln(4) 0.7213...
maple leaf 5 34.6 root of higher-order polynomial 0.6965...

4.2.5 Transfer-Matrix Approach

Although the dual, star-triangle and decoration-iteration mapping transformations afford several
rigorous results for the spin-1/2 Ising model on the planar lattices, they do not solve this problem
completely as they afford exact results precisely at a critical point only. In this regard, sophisti-
cated mathematical methods are needed in order to obtain a complete closed-form exact solution
of the spin-1/2 Ising model on some 2D lattice in a whole temperature range. Here, we will show
some crucial points of the transfer-matrix approach when applying it to the spin-1/2 Ising model
on a square lattice. It should be nevertheless mentioned that the procedure to be explained in
what follows can be used to obtain the exact solution of the spin-1/2 Ising model on an arbitrary
planar lattice without crossing bonds in the qualitatively same manner as explained below for the
special case of square lattice.

Let us consider the spin-1/2 Ising model on the square lattice, which consists of r rows and c
columns and is defined through the Hamiltonian:

H = −J

 r∑
i=1

c∑
j=1

σi,jσi+1,j +
r∑

i=1

c∑
j=1

σi,jσi,j+1

 , (4.110)

where σi,j = ±1/2 labels the Ising spin situated at the ith row and jth column of a square
lattice. Apparently, the total Hamiltonian (4.110) is constituted by two kinds of summations.
The former summation is carried out over all interactions between the nearest-neighbor spins
from adjacent rows of the square lattice, while the latter one takes into account all interactions
between the nearest-neighbor spins from adjacent columns. As usual, the periodic boundary
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Fig. 4.6. The square lattice wrapped on a torus ensures periodic (cyclic) boundary conditions in both
horizontal as well as vertical directions.

conditions simplifying further treatment are imposed by the constraints:

σr+1,j = σ1,j , where j = 1, 2, . . . , c; (4.111)
σi,c+1 = σi,1, where i = 1, 2, . . . , r. (4.112)

It is noteworthy that the periodicity of the square lattice, which is ensured by the conditions
(4.111) and (4.112), is equivalent to wrapping the square lattice on a torus in such a way that the
cth column is coupled to the first column and the rth row is coupled to the first row (Fig. 4.6).
This is the statistical-mechanical definition of the spin-1/2 Ising model on the square lattice with
periodic boundary conditions in both horizontal and vertical directions, which do not affect the
behavior of thermodynamic quantities in the thermodynamic limit r → ∞ and c → ∞. It
should be noted, however, that the accurate evaluation of the partition function of any 2D Ising
model is an extremely difficult task, since it demands a considerable knowledge of sophisticated
mathematics required for understanding of the exact solution in its full details. Therefore, we
will draw just the main points of this cumbersome derivation.

First, let us denote the overall spin configuration of the jth column of spins by:

µj = {σ1,j , σ2,j , . . . , σr,j}, (4.113)

which includes in total 2r possible spin configurations. The variable µj can be viewed as one
’column’ macrospin with 2r possible microstates. The total Hamiltonian (4.110) can be then
written as a sum of two terms, namely, the interaction energy of individual columns and the
interaction energy between adjacent columns. The interaction energy pertain to the jth column
of spins is given by:

H1(µj) = −J

r∑
i=1

σi,jσi+1,j , (4.114)
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while the interaction energy between the jth and (j + 1)st column reads:

H2(µj , µj+1) = −J

r∑
i=1

σi,jσi,j+1. (4.115)

With all this in mind, the total Hamiltonian (4.110) can be rewritten as a sum of both these
contributions:

H =
c∑

j=1

[H1(µj) +H2(µj , µj+1)] , (4.116)

or it can be alternatively rewritten into the following most symmetric form:

H =
c∑

j=1

{
1
2

[H1(µj) +H1(µj+1)] +H2(µj , µj+1)
}

. (4.117)

Furthermore, it is very appropriate to substitute Eq. (4.117) to a statistical definition of the parti-
tion function in order to gain the relation:

Z =
∑
µ1

∑
µ2

· · ·
∑
µc

exp

 c∑
j=1

{
−β

2
[H1(µj) +H1(µj+1)]− βH2(µj , µj+1)

}
=
∑
µ1

∑
µ2

. . .
∑
µc

c∏
j=1

exp
{
−β

2
[H1(µj) +H1(µj+1)]− βH2(µj , µj+1)

}
. (4.118)

Here, the symbol
∑

µj
marks a summation over all available configurations of spins belonging to

the jth column. The structure of the relation (4.118) already implies that the partition function of
the spin-1/2 Ising model on the square lattice can be formally calculated following the standard
procedure based on the transfer-matrix method after performing a subsequent summation over
individual macrospins:

Z =
∑
µ1

∑
µ2

· · ·
∑
µc

T (µ1, µ2)T (µ2, µ3) · · ·T (µc, µ1) =
∑
µ1

T c(µ1, µ1) = Tr(T c),(4.119)

whereas the relevant transfer matrix T (µj , µj+1) depends on two nearest-neighbor ’column’
macrospins µj and µj+1:

T (µj , µj+1) = exp
{
−β

2
[H1(µj) +H1(µj+1)]− βH2(µj , µj+1)

}
(4.120)

= exp

[
βJ

2

(
r∑

i=1

σi,jσi+1,j +
r∑

i=1

σi,j+1σi+1,j+1

)
+ βJ

r∑
i=1

σi,jσi,j+1

]
.

The final result (4.119) indicates that the partition function of the spin-1/2 Ising model on the
square lattice can be calculated as a trace of the matrix T c, which is eventually equal to a sum
over all eigenvalues of the 2r × 2r transfer matrix T (µj , µj+1) raised to the cth power

Z = Tr(T c) =
2r∑

j=1

λc
j . (4.121)
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In the thermodynamic limit, the Helmholtz free energy normalized per one spin can be largely
simplified by sorting the eigenvalues of the transfer matrix T (µj , µj+1) in descending order
λ1 > λ2 ≥ . . . ≥ λ2r , actually,

F = −kBT lim
r→∞

lim
c→∞

1
rc

lnZ = −kBT lim
r→∞

lim
c→∞

1
rc

ln (λc
1 + λc

2 + . . . + λc
2r )

= −kBT lim
r→∞

1
r

lnλ1 − kBT lim
r→∞

lim
c→∞

1
rc

ln

[
1 +

2r∑
k=1

(
λk

λ1

)c
]

= −kBT lim
r→∞

1
r

lnλ1. (4.122)

In this way, the finding of the exact solution of the spin-1/2 Ising model on the square lattice
essentially reduces to the finding of the largest eigenvalue of the transfer matrix T (µj , µj+1) de-
fined by Eq. (4.120). It should be stressed, nevertheless, that the finding of the largest eigenvalue
of the 2r × 2r transfer matrix for the spin-1/2 Ising model on the square lattice by letting r tend
to infinity is highly non-trivial task unlike the finding of the largest eigenvalue of the simple 2×2
transfer matrix corresponding to the spin-1/2 Ising chain. This is an origin of major difficulties
to be present by solving any planar Ising model.

The largest eigenvalue of the transfer matrix, which corresponds to the spin-1/2 Ising model
on the square lattice, was firstly derived in the highly celebrated Onsager’s paper by the use of
Lie algebra and group representation [3]. It is worthy to notice that the original Onsager’s work
as well as its subsequent simplifications are still too intricate to be thoroughly described within
this brief review. Therefore, we will henceforth restrict ourselves merely to stating the final result
of this rather cumbersome derivation. The largest eigenvalue of the transfer matrix (4.120) is:

λ1 =
[
2 sinh

(
βJ

2

)] r
2

exp
[
1
2
(α1 + α3 + . . . + α2r−1)

]
, (4.123)

where αk is defined by

cosh(αk) = coth
(

βJ

2

)
cosh

(
βJ

2

)
− cos

(
πk

r

)
. (4.124)

By adopting Eq. (4.123), the Helmholtz free energy (4.122) per spin can be modified to:

F = −kBT

2
ln
[
2 sinh

(
βJ

2

)]
− kBT lim

r→∞

1
2r

r∑
k=1

α2k−1. (4.125)

In the thermodynamic limit (r →∞), the sum appearing in Eq. (4.125) can be substituted by the
integral so that:

F = −kBT

2
ln
[
2 sinh

(
βJ

2

)]
− kBT

2π

π∫
0

arccosh
[
coth

(
βJ

2

)
cosh

(
βJ

2

)
− cos θ

]
dθ.

(4.126)



336 A brief account of the Ising and Ising-like models

The expression (4.126) can be further simplified by the use of identity:

arccosh|x| = 1
π

π∫
0

ln[2(x− cos φ)]dφ, (4.127)

which consecutively yields from Eq. (4.126) the formula:

F = − kBT

2
ln
[
2 sinh

(
βJ

2

)]
− kBT

2
ln 2

− kBT

2π2

π∫
0

π∫
0

ln
[
coth

(
βJ

2

)
cosh

(
βJ

2

)
− cos θ − cos φ

]
dθdφ. (4.128)

The formula (4.128) can finally be symmetrized to:

F = − kBT ln 2

− kBT

2π2

π∫
0

π∫
0

ln
{

cosh2

(
βJ

2

)
− sinh

(
βJ

2

)
[cos θ + cos φ]

}
dθdφ. (4.129)

The above equation represents the famous Onsager’s result for the Helmholtz free energy of the
spin-1/2 Ising model on a square lattice. It should be remarked that exact results for other ther-
modynamic quantities like entropy or specific heat can be obtained from Eq. (4.129) by making
use of standard relations from thermodynamics and statistical physics. By contrast, the derivation
of exact expression for the spontaneous magnetization of the ferromagnetic spin-1/2 Ising model
on a square lattice is much more complex, because one cannot straightforwardly differentiate
the Gibbs free energy with respect to the magnetic field and subsequently take asymptotic limit
of vanishing magnetic field as the exact expression for the free energy in a non-zero magnetic
field is not known. In this regard, some indirect method must be employed for calculating of
the spontaneous magnetization, whereas the overall derivation is regrettably complex in spite of
surprisingly simple form of the final expression [126]. For simplicity, let us therefore merely
quote the final exact result for the spontaneous magnetization of the ferromagnetic spin-1/2 Ising
model on a square lattice obtained by Yang [126]:

m =


1
2

1− 1

sinh4
(

βJ
2

)
 1

8

if T < Tc,

0 if T ≥ Tc,

(4.130)

which simultaneously represents the relevant order parameter inherent to the continuous order-
disorder phase transition. It can be easily understood from Eq. (4.130) that the spontaneous
magnetization is zero precisely at and above the critical temperature (4.75), while it monoton-
ically increases by decreasing temperature until its saturation value is reached at the absolute
zero temperature. In addition, the spontaneous magnetization of the ferromagnetic spin-1/2 Ising
model on a square lattice disappears at a critical temperature according to the power law:

m ∼= (1− T/Tc)
1
8 , (4.131)
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Fig. 4.7. (a) The spontaneous magnetization of the spin-1/2 Ising model on a square lattice as a function of
the reduced temperature; (b) Temperature dependence of the specific heat of the spin-1/2 Ising model on a
square lattice. The logarithmic divergence is detected at the critical temperature.

which implies the magnitude of the critical exponent βm = 1/8 for the spontaneous magneti-
zation as temperature tends to its critical value (4.75) from below. It should be stressed that the
same conclusion would be reached for a disappearance of the spontaneous magnetization of the
ferromagnetic spin-1/2 Ising model on any 2D lattice. Fig. 4.7(a) therefore only illustrates tem-
perature variations of the spontaneous magnetization of the ferromagnetic spin-1/2 Ising model
on a square lattice. The non-zero spontaneous magnetization below the critical temperature
means that there is an excess of spins at low enough temperatures, which are spontaneously
pointing into the same spatial direction. In other words, the spins have a tendency to align them-
selves in the same spatial direction and if we randomly choose one spin from the lattice, then, it
is more likely that the spin is pointing in the direction of the spontaneous magnetization rather
than in the opposite direction. It is noteworthy that this peculiar long-range correlation occurs
spontaneously without being enforced by some external field of force (such as the magnetic field)
and notwithstanding of extremely short-range character of the considered interaction potential.

Interestingly, the specific heat of the spin-1/2 Ising model on a square lattice displays even
a more striking temperature dependence with a marked singularity at the critical temperature
(4.75) as depicted in Fig. 4.7(b). It can be proved that the specific heat diverges logarithmically
according to the asymptotic law:

C/NkB
∼= −const. ln |T − Tc|, (4.132)

as long as temperature approaches its critical value (4.75) either from below or from above.
Although the positive constant of proportionality in the asymptotic law (4.132) varies with the
lattice geometry, the logarithmic divergence of specific heat nearby a critical point represents a
generic feature of the ferromagnetic spin-1/2 Ising model on arbitrary 2D lattice. Thus, it could
be concluded that the ferromagnetic spin-1/2 Ising model on all 2D lattices exhibits strongly uni-
versal critical behavior, which can be all characterized by the same asymptotic laws and the same
set of critical indices governing the dependences of all important magnetic and thermodynamic
response functions (e.g. magnetization, susceptibility or specific heat). The aforedescribed criti-
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DIT

sj = ½ = 1Sk

J     J R

Fig. 4.8. The mixed spin-1/2 and spin-1 Ising model on a decorated square lattice (figure on the left) and
its exact mapping relationship to the corresponding spin-1/2 Ising model on a simple (undecorated) square
lattice (figure on the right) established by means of the decoration-iteration transformation (DIT). The full
(empty) circles denote lattice positions of the spin-1/2 (spin-1) Ising spins and the ellipse demarcates the
interaction terms belonging to the kth bond Hamiltonian.

cal behavior is apparently in a sharp contrast with theoretical predictions of approximate methods
such as the mean-field or effective-field theories, because the less accurate methods do not take
into account long-range correlations that become relevant in a vicinity of the critical temperature
where the correlation length diverges.

4.2.6 Mixed-spin Ising model on decorated planar lattices

Next, let us consider the mixed spin-1/2 and spin-1 Ising model on singly decorated planar lattices
[303,304] as schematically illustrated in Fig. 4.8 on the particular example of a decorated square
lattice with the coordination number q = 4. The magnetic structure of the investigated model
system constitute the Ising spins σ = 1/2 placed on nodal sites of some planar lattice and the
Ising spins S = 1 situated on each its bond. The total Hamiltonian of the mixed spin-1/2 and
spin-1 Ising model on the decorated planar lattices then reads:

H = −J

Nq∑
〈kj〉

Skσj −D

Nq/2∑
k=1

S2
k, (4.133)

where σj = ±1/2 and Sk = ±1, 0, the relevant subscript specifies the lattice position, the
coupling constant J represents the exchange interaction between the nearest-neighbor spin-1/2
and spin-1 atoms, the parameter D stands for the uniaxial single-ion anisotropy acting on the
spin-1 atoms only.

Now, we will turn our attention to main points of the transformation method, which pro-
vides a rigorous mapping equivalence between the investigated spin model and its corresponding
spin-1/2 Ising model on undecorated planar lattice. First, it is quite useful to rewrite the total
Hamiltonian (4.133) as a sum over the bond Hamiltonians, i.e. H =

∑Nq/2
k=1 Hk, where N de-

notes the total number of the spin-1/2 atoms, q is their coordination number (i.e. the number of
nearest neighbors) and the summation runs over all bonds of the decorated planar lattice. Each
bond Hamiltonian Hk thus involves all the interaction terms including the decorating Ising spin



Exact results 339

Sk (see the spin cluster enclosed by ellipse in Fig. 4.8):

Hk = −JSk(σk1 + σk2)−DS2
k. (4.134)

The partition function of the model under consideration can be rewritten into the following useful
form:

Z =
∑
{σi}

Nq/2∏
k=1

∑
Sk=±1,0

exp(−βHk), (4.135)

where the symbol
∑

Sk=±1,0 denotes a summation over three available spin states of the deco-
rating Ising spin Sk, while the symbol

∑
{σi} marks a summation over all available spin config-

urations of the complete set of the spin-1/2 Ising atoms. It is noteworthy that the summation over
spin states of the decorating spin-1 atoms can be performed independently of each other because
of the lack of any direct interaction in between them. After performing the summation over the
spin states of the decorating Ising spin Sk, one gets the effective Boltzmann’s weight that implies
a possibility of applying the generalized decoration-iteration transformation:∑

Sk=±1,0

exp(−βHk) = 1 + 2 exp(βD) cosh[βJ(σk1 + σk2)] = A exp(βRσk1σk2).

(4.136)

The physical meaning of the mapping transformation (4.136) lies in removing all the interaction
parameters associated with the decorating spin Sk and replacing them by a new unique effective
interaction R between its two nearest-neighbor Ising spins σk1 and σk2. It is worthwhile to
mention that the both mapping parameters A and R are ’self-consistently’ given directly by
the transformation formula (4.136), which must hold for all four possible spin combinations
of two Ising spins σk1 and σk2 that provide just two independent equations from the mapping
transformation (4.136). In the consequence of that, two yet unknown mapping parameters A and
R can be unambiguously determined by the following formulas:

A = (V1V2)
1
2 , βR = 2 ln

(
V1

V2

)
, (4.137)

which contain two newly defined functions:

V1 = 1 + 2 exp(βD) cosh(βJ), V2 = 1 + 2 exp(βD). (4.138)

After a straightforward substitution of the mapping transformation (4.136) into the formula
(4.135), one easily obtains an exact relation between the partition function of the mixed-spin
Ising model on the decorated planar lattice and respectively, the partition function of the spin-1/2
Ising model on the simple (undecorated) planar lattice with the temperature-dependent effective
interaction R:

Z = ANq/2ZIM(βR). (4.139)

The mapping relation (4.139) between both partition functions represents a central result of our
calculation, because this relationship can in turn be employed for a rigorous calculation of some
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important quantities such as sublattice magnetizations and free energy. It is worthwhile to recall
that this mapping correspondence is valid independently of the lattice coordination number q.

Exact mapping theorems developed by Barry et al. [297–300] in combination with Eq. (4.139)
yield a straightforward relation between the spontaneous magnetization of the sublattice A of the
mixed-spin Ising model on the decorated planar lattice and respectively, the spontaneous magne-
tization of the corresponding spin-1/2 Ising model on the undecorated planar lattice:

mA ≡
1
2

(〈σk1〉+ 〈σk2〉) =
1
2

(〈σk1〉+ 〈σk2〉)IM ≡ mIM(βR). (4.140)

Here, the symbols 〈· · · 〉 and 〈· · · 〉IM denote the standard canonical ensemble average performed
in the mixed-spin Ising model on the decorated planar lattice defined through the Hamiltonian
(4.133) and respectively, its corresponding spin-1/2 Ising model on the undecorated planar lat-
tice. According to Eq. (4.140), the sublattice magnetization mA directly equals to the sponta-
neous magnetization mIM of the corresponding spin-1/2 Ising model on the simple planar lattice.
The other spontaneous sublattice magnetization of the mixed-spin Ising model on the decorated
planar lattice can be descended from the generalized Callen-Suzuki identity [120–122], which
enables to relate it to the previously derived spontaneous sublattice magnetization mA:

mB ≡ 〈Sk〉 = 2mA
2 exp(βD) sinh(βJ)

1 + 2 exp(βD) cosh(βJ)
. (4.141)

In this way, the exact calculation of both spontaneous sublattice magnetizations of the mixed-spin
Ising model on the decorated planar lattice is completed, because it is now sufficient to substitute
the exact expression for the spontaneous magnetization of the corresponding spin-1/2 Ising model
on undecorated planar lattice into the formerly derived expressions (4.140) and (4.141) for the
sublattice magnetizations mA and mB . In doing so, one should bear in mind that the effective
coupling βR given by Eqs. (4.137)-(4.138) must enter into exact expressions for the spontaneous
magnetization of the corresponding spin-1/2 Ising model on the undecorated planar lattice. For
completeness, it is worthy to note that the exact formulas for the spontaneous magnetization of
the spin-1/2 Ising model on various planar lattices can be found in Refs. [305, 306] .

Finally, let us examine in detail the critical behavior of the model under investigation. It can
be readily understood from the mapping relation (4.139) between both partition functions that
the mixed-spin Ising model on the decorated planar lattice may exhibit a critical point only if
the corresponding spin-1/2 Ising model on the undecorated planar lattice is at a critical point as
well. This result is taken to mean that the critical temperature of the mixed-spin Ising model on
the decorated planar lattice can easily be obtained by comparing the effective nearest-neighbor
coupling of the corresponding spin-1/2 Ising model on the simple (undecorated) planar lattice
with its critical value βcR. The critical condition for the the mixed-spin Ising model on the
decorated planar lattice then reads:

βcR = 2 ln
[
1 + 2 exp(βcD) cosh(βcJ)

1 + 2 exp(βcD)

]
=


2 ln(2 +

√
3) (honeycomb),

ln(3 + 2
√

3) (kagome),
2 ln(1 +

√
2) (square),

ln(3) (triangular),

(4.142)

where βc = 1/(kBTc) and Tc is the critical temperature. Fig. 4.9(a) illustrates typical depen-
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Fig. 4.9. (a) The critical temperature of the mixed spin-1/2 and spin-1 Ising model on a few different
decorated planar lattices as a function of the uniaxial single-ion anisotropy; (b) Thermal variations of the
sublattice magnetizations mA (broken lines) and mB (solid lines) of the mixed spin-1/2 and spin-1 Ising
model on a decorated triangular lattice for a few different values of the uniaxial single-ion anisotropy.

dences of the critical temperature on the uniaxial single-ion anisotropy for the mixed spin-1/2
and spin-1 Ising model on several decorated planar lattices. As one can see, the same general
trends can be detected in the critical temperature versus the uniaxial single-ion anisotropy plot
irrespective of the underlying lattice geometry. As a matter of fact, the critical temperature is in
general suppressed by the easy-plane (negative) single-ion anisotropy, which energetically favors
the non-magnetic spin state Sk = 0 of the decorating atoms before the magnetic ones Sk = ±1.
If one compares the critical temperatures of the mixed-spin Ising model on decorated kagomé
and square lattices with the equal lattice coordination number q = 4, then, one may conclude
that the critical temperature of the mixed-spin Ising model on the decorated kagomé lattice is
always slightly below that one of the decorated square lattice. Another interesting observation is
that the mixed spin-1/2 and spin-1 Ising model on the decorated triangular lattice displays reen-
trant phase transition on assumption that the uniaxial single-ion anisotropy is selected slightly
below the ground-state boundary between the ferromagnetically ordered and disordered phases
D/J . −1. To support this statement, temperature dependences of both spontaneous sublat-
tice magnetizations of the mixed spin-1/2 and spin-1 Ising model on the decorated triangular
lattice are plotted in Fig. 4.9(b) for several values of the uniaxial single-ion anisotropy. Ap-
parently, both spontaneous sublattice magnetizations start from their saturated values just when
the uniaxial single-ion anisotropy is greater than the boundary value Db/J = −1.0. If the uni-
axial single-ion anisotropy is selected sufficiently close but slightly below this boundary value,
i.e. D/J . −1, then, the spontaneous magnetizations emerge just at a lower critical temper-
ature and disappear at an upper critical temperature. Finally, it is worth mentioning that the
zero-temperature asymptotic limit of both spontaneous sublattice magnetization acquires for the
particular case Db/J = −1.0 highly non-trivial value mA = mB = 1

2 ( 125
189 )1/8 = 0.47482 . . ..
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Fig. 4.10. The mixed spin-1/2 and spin-1 Ising model on three-coordinated planar lattices (figures on
the left) and its exact mapping relationship to the spin-1/2 Ising model on corresponding archimedean
lattices (figures on the right) established by means of the star-triangle transformation (STT): (a) honeycomb
and triangular lattice; (b) bathroom-tile and Shastry-Sutherland lattice; (c) square-hexagon-dodecagon and
maple leaf lattice. The full (empty) circles denote lattice positions of the spin-1/2 (spin-1) atoms and the
triangle demarcates the interaction terms belonging to the kth site Hamiltonian. Thin (thick) solid lines
stand for the effective coupling R (2R) of the corresponding spin-1/2 Ising model on the archimedean
lattice.

4.2.7 Mixed-spin Ising model on three-coordinated planar lattices

Another exactly soluble model represents the mixed spin-1/2 and spin-1 Ising model on three-
coordinated planar lattices such as for instance the honeycomb lattice [307], bathroom-tile lat-
tice [308] or square-hexagon-dodecagon lattice schematically depicted in Fig. 4.10. To ensure
an exact solvability of the model under investigation, we will further suppose that the sites of
sublattice A are occupied by the spin-1/2 atoms (full circles) while the sites of sublattice B are
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occupied by the spin-1 atoms (open circles). The total Hamiltonian of the mixed-spin Ising model
on the three-coordinated planar lattices takes the following form:

H = −J

3N∑
〈kj〉

Skσj −D

N∑
k∈B

S2
k. (4.143)

Here, the Ising spin variables σj = ±1/2 and Sk = ±1, 0 are situated at the sites of the sublattice
A and B, respectively, N denotes the total number of lattice sites of each sublattice. The first
summation in Eq. (4.143) accounts for the Ising interaction J between the nearest-neighbor
spin-1/2 and spin-1 atoms, while the second summation involving the parameter D takes into
consideration the uniaxial single-ion anisotropy acting on the spin-1 atoms only.

The model defined through the Hamiltonian (4.143) is exactly tractable within the framework
of the generalized star-triangle transformation. First, it is very convenient to write the total
Hamiltonian (4.143) as a sum over the site Hamiltonians Hk:

H =
N∑

k=1

Hk, (4.144)

where each site Hamiltonian Hk involves all interaction terms associated with the spin-1 atom
residing on the kth lattice site of the sublattice B:

Hk = −JSk(σk1 + σk2 + σk3)−DS2
k. (4.145)

The partition function of the mixed spin-1/2 and spin-1 Ising model on three-coordinated planar
lattices can be partially factorized and subsequently rewritten in the form:

Z =
∑
{σj}

N∏
k=1

∑
Sk=±1,0

exp(−βHk). (4.146)

In above, the symbol
∑
{σj} means a summation over all possible spin configurations of the

spin-1/2 atoms from the sublattice A, while the summation symbol
∑

Sk=±1,0 accounts for the
spin states of kth spin from sublattice B. After the latter summation is explicitly carried out
one obtains the effective Boltzmann’s factor, which can be immediately replaced through the
generalized star-triangle transformation:∑

Sk=±1,0

exp(−βHk) = 1 + 2 exp(βD) cosh[βJ(σk1 + σk2 + σk3)]

= A exp[βR(σk1σk2 + σk2σk3 + σk3σk1)]. (4.147)

Obviously, the mapping transformation (4.147) replaces the interaction terms of a spin star, i.e.
a four-spin cluster consisting of one central spin-1 atom and its three nearest-neighbor spin-
1/2 atoms, by the effective interactions of three spin-1/2 atoms forming an equilateral triangle.
As usual, both mapping parameters A and R are ’self-consistently’ given by the transformation
equation (4.147), which must be valid for any combination of spin states of three spin-1/2 atoms.
In a consequence of that one obtains:

A =
(
V1V

3
2

) 1
4 , βR = ln

(
V1

V2

)
, (4.148)
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where we have introduced the functions V1 and V2 defined as follows:

V1 = 1 + 2 exp(βD) cosh
(

3
2
βJ

)
,

V2 = 1 + 2 exp(βD) cosh
(

1
2
βJ

)
. (4.149)

When the star-triangle mapping transformation (4.147) is applied to all spin-1 atoms from the
sublattice B, the mixed-spin Ising model on three-coordinated planar lattices is exactly mapped
onto the spin-1/2 Ising model on corresponding archimedean lattices (see Fig. 4.10):

Z = ANZIM(β, R), (4.150)

whereas the effective interaction R is given by the ’self-consistency’ condition (4.148)-(4.149).
The only essential difference between the mapping equivalence of the mixed-spin Ising model
on three-coordinated planar lattices and the spin-1/2 Ising model on corresponding archimedean
lattices lies in an essence of the effective couplings. While the mixed-spin Ising model on a
honeycomb lattice is mapped onto the spin-1/2 Ising model on a triangular lattice with the uni-
form nearest-neighbor coupling R [Fig. 4.10(a)], the mixed-spin Ising model on bathroom-
tile and square-hexagon-dodecagon lattices is rigorously mapped onto the spin-1/2 Ising model
on Shastry-Sutherland and maple leaf lattices with two different effective couplings R and 2R
schematically illustrated in Fig. 4.10(b)-(c) by thin and thick solid lines, respectively.

Exact mapping theorems developed by Barry et al. [297–300] in combination with Eq. (4.150)
yield a straightforward relation between the spontaneous magnetization of the sublattice A of the
mixed-spin Ising model on the three-coordinated planar lattices and respectively, the spontaneous
magnetization of the spin-1/2 Ising model on the corresponding archimedean lattice:

mA ≡
1
3

(〈σk1〉+ 〈σk2〉+ 〈σk3〉) =
1
3

(〈σk1〉IM + 〈σk2〉IM + 〈σk3〉IM) ≡ mIM, (4.151)

Here, the symbols 〈· · · 〉 and 〈· · · 〉IM denote the standard canonical ensemble average performed
in the mixed-spin Ising model on a three-coordinated planar lattice defined through the Hamil-
tonian (4.143) and respectively, the spin-1/2 Ising model on a corresponding archimedean lat-
tice. According to Eq. (4.151), the sublattice magnetization mA of the spin-1/2 atoms directly
equals to the spontaneous magnetization mIM of the spin-1/2 Ising model on the correspond-
ing archimedean lattice. The other spontaneous sublattice magnetization of the mixed-spin Ising
model on the three-coordinated planar lattices can be derived with the help of the generalized
Callen-Suzuki identity [120–122], which enables to relate it to the spontaneous sublattice mag-
netization mA and triplet correlation function tA ≡ 〈σk1σk2σk3〉IM:

mB ≡ 〈Sk〉 =
3
2
mA

(
W1

V1
+

W2

V2

)
+ 2tA

(
W1

V1
− 3

W2

V2

)
. (4.152)

The coefficients W1 and W2 are defined as follows:

W1 = 2 exp(βD) sinh
(

3
2
βJ

)
,

W2 = 2 exp(βD) sinh
(

1
2
βJ

)
. (4.153)
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In this way, the exact calculation of both spontaneous sublattice magnetizations of the mixed-
spin Ising model on the three-coordinated planar lattices is formally completed, because it is
now sufficient to substitute exact expressions [305, 306] for the spontaneous magnetization and
triplet correlation function of the spin-1/2 Ising model on the corresponding archimedean lattice
into the formerly derived expressions (4.151) and (4.152) for the sublattice magnetizations mA

and mB . In doing so, one should bear in mind that the effective coupling βR given by Eqs.
(4.148)-(4.149) must enter into the exact expression for the spontaneous magnetization of the
spin-1/2 Ising model on the corresponding archimedean lattice.

The critical points of the mixed-spin Ising model on three-coordinated planar lattices readily
follow from the exact mapping correspondence (4.150) between partition functions. According
to this mapping equivalence, the mixed-spin Ising model on a three-coordinated planar lattice
may exhibit a critical point only if the spin-1/2 Ising model on a corresponding archimedean
lattice is precisely at a critical point. The critical temperature of the mixed-spin Ising model
on the three-coordinated planar lattices can be therefore obtained by comparing the effective
nearest-neighbor coupling of the spin-1/2 Ising model on the corresponding archimedean lattice
with its critical value. The critical temperature of the spin-1/2 Ising model on a triangular lattice
with the unique nearest-neighbor interaction R follows from the condition βcR = ln 3 according
to Eq. (4.90), while the (inverse) critical temperatures of the spin-1/2 Ising model on Shastry-
Sutherland and maple leaf lattices with two different nearest-neighbor interactions R and 2R
follow from [309]:

βcR = ln

[
8 + 5

√
2−

√
10 + 8

√
2 + 2

√
5 + 4

√
2

2 +
√

2 +
√

10 + 8
√

2

]
, (Shastry-Sutherland)

βcR = ln

[
17 + 9

√
3− 3

√
44 + 26

√
3√

44 + 26
√

3− 3(1 +
√

3)

]
. (maple leaf) (4.154)

Comparing the effective nearest-neighbor coupling (4.148)-(4.149) with the previously derived
critical values one in turn obtains the critical condition for the mixed-spin Ising model on all
three considered three-coordinated planar lattices:

1 + 2 exp(βcD) cosh
(

3
2βcJ

)
1 + 2 exp(βcD) cosh

(
1
2βcJ

) =


3 (honeycomb),
8+5

√
2−
√

10+8
√

2+2
√

5+4
√

2

2+
√

2+
√

10+8
√

2
(bathroom-tile),

17+9
√

3−3
√

44+26
√

3√
44+26

√
3−3(1+

√
3)

(square-hexagon-dodecagon).

(4.155)

The numerical solution of the critical conditions (4.155) is plotted in Fig. 4.11(a) in the
form of the critical temperature versus the uniaxial single-ion anisotropy dependence. In agree-
ment with common expectations, the critical temperature of the mixed-spin Ising model on
the three-coordinated planar lattices monotonically decreases upon strengthening of the easy-
plane (negative) single-ion anisotropy until it completely vanishes at the ground-state boundary
Db/J = −3/2 between the ferromagnetically ordered phase and the disordered paramagnetic
phase. It is quite evident that this generic feature holds irrespective of the lattice topology,
whereas the critical temperature of the mixed-spin Ising model on a regular hexagonal lattice
slightly exceeds that ones of the same mixed-spin Ising model on semi-regular bathroom-tile and
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Fig. 4.11. (a) The critical temperature of the mixed spin-1/2 and spin-1 Ising model on honeycomb,
bathroom-tile and square-hexagon-dodecagon lattices as a function of the uniaxial single-ion anisotropy;
(b) Thermal variations of the sublattice magnetizations mA (broken lines) and mB (solid lines) of the
mixed spin-1/2 and spin-1 Ising model on a honeycomb lattice for a few different values of the uniaxial
single-ion anisotropy.

square-hexagon-dodecagon lattices. A gradual decline of the critical temperature with the easy-
plane single-ion anisotropy can be explained in terms of energetic favoring of the non-magnetic
spin state Sk = 0 of the spin-1 atoms from the sublattice B before two magnetic ones Sk = ±1.
It should be remarked that our exact solution gave evidence of only continuous phase transitions
in contrast to a more diverse critical behavior including tricritical point and discontinuous phase
transitions predicted by approximate methods (c.f. Fig. 4.11(a) with Fig. 2.2(a)).

The finite-temperature phase diagram shown in Fig. 4.11(a) for the mixed-spin Ising model
on a honeycomb lattice is also corroborated by temperature dependences of both sublattice mag-
netizations plotted in Fig. 4.11(b). While the spontaneous magnetization of the spin-1/2 atoms
from the sublattice A retains the standard Q-type dependence according to Néel nomencla-
ture [310] regardless of a relative strength of the uniaxial single-ion anisotropy, the spontaneous
magnetization of the spin-1 atoms from the sublattice B may display a more interesting R-type
dependence owing to predominant thermal excitations from the magnetic state Sk = 1 towards
the non-magnetic spin state Sk = 0 on assumption that the uniaxial single-ion anisotropy is suffi-
ciently close but slightly above the ground-state boundary between the ferromagnetically ordered
and disordered paramagnetic phases D/J & −3/2.

4.2.8 Selectively diluted mixed-spin Ising model

To illustrate versatility of the approach based on exact mapping transformations, we will consider
in the following the generalized version of the mixed spin-1/2 and spin-1 Ising model on the
honeycomb lattice that accounts also for a selective site dilution of the spin-1 atoms on the
sublattice B by non-magnetic impurities [Fig. 4.10(a)]. The sites of the sublattice B will be
occupied with the probability ρ by the magnetic spin-1 atom, while they will be either vacant
or occupied by the non-magnetic atom with the probability 1 − ρ. The total Hamiltonian of the



Exact results 347

selectively diluted mixed-spin Ising model on the honeycomb lattice is given by:

H = −J

3N∑
〈kj〉

nkSkσj −D

N∑
k∈B

nkS2
k, (4.156)

where the occupation number nk = 0, 1 determines whether the kth lattice site from the sublat-
tice B is occupied by the magnetic spin-1 atom (nk = 1) or the non-magnetic impurity nk = 0.
The physical meaning of the other interaction parameters involved in the Hamiltonian (4.156) is
the same as described in the previous section.

The model defined through the Hamiltonian (4.156) can be rigorously solved in the an-
nealed limit by making use of the generalized star-triangle transformation. The total Hamiltonian
(4.156) will be at first rewritten as a sum over the site Hamiltonians Hk:

H =
N∑

k=1

Hk, (4.157)

where each site Hamiltonian Ĥk involves all interaction terms closely connected to the kth lattice
site of sublattice B:

Hk = −JnkSk(σk1 + σk2 + σk3)−DnkS2
k. (4.158)

The grand-canonical partition function of the mixed spin-1/2 and spin-1 Ising model on the hon-
eycomb lattice can be recasted into the following form:

Ξ =
∑
{σi}

N∏
k=1

∑
Sk=±1,0

∑
nk=1,0

exp(−βHk + βµnk), (4.159)

where µ is the chemical potential of the magnetic spin-1 atoms and the other symbols have the
usual meaning. The effective Boltzmann’s weight, which is obtained after carrying out summa-
tion over all available microstates of the kth site from the sublattice B, can be substituted by the
generalized star-triangle transformation:∑

Sk=±1,0

∑
nk=1,0

exp(−βHk + βµnk) = 1 + z + 2z exp(βD) cosh[βJ(σk1 + σk2 + σk3)]

= A exp[βR(σk1σk2 + σk2σk3 + σk3σk1)]. (4.160)

Here, the parameter z = exp(βµ) denotes the fugacity of the spin-1 atoms and the mapping
parameters A, R are given by the ”self-consistency” condition of the transformation equation
(4.160), which should hold irrespective of spin states of three spin-1/2 atoms involved therein.
The yet undetermined mapping parameters A and R are then explicitly given by:

A =
[
(1 + zV1)(1 + zV2)3

] 1
4 , βR = ln

(
1 + zV1

1 + zV2

)
, (4.161)

where the functions V1 and V2 are defined as follows:

V1 = 1 + 2 exp(βD) cosh
(

3
2
βJ

)
,

V2 = 1 + 2 exp(βD) cosh
(

1
2
βJ

)
. (4.162)
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At this level, the star-triangle mapping transformation (4.160) can be substituted into Eq. (4.159)
in order to get the exact mapping equivalence between the grand-canonical partition function of
the mixed-spin Ising model on the honeycomb lattice and the canonical partition function of the
corresponding spin-1/2 Ising model on a triangular lattice:

Ξ = ANZt(β, R), (4.163)

whereas the effective interaction R should satisfy the self-consistency condition given by Eqs.
(4.161)-(4.162). The grand-canonical partition function (4.163) can be straightforwardly used to
calculate the grand potential of the selectively diluted mixed spin-1/2 and spin-1 Ising model on
the honeycomb lattice from the well-known relation:

Ω = −kBT ln Ξ. (4.164)

The concentration of the spin-1 atoms can be now readily calculated from the grand potential:

ρ = − 1
N

∂Ω
∂µ

=
z

N

∂ ln Ξ
∂z

=
zV1

1 + zV1

(
1
4

+ 3ε

)
+

3zV2

1 + zV2

(
1
4
− ε

)
, (4.165)

which relates it to the nearest-neighbor pair correlation ε = 〈σiσj〉t of the corresponding spin-
1/2 Ising model on a triangular lattice [305]. After eliminating the fugacity z of the magnetic
spin-1 atoms with the help of Eq. (4.161) one obtains from Eq. (4.165) the relation:

ρ = [1− exp(−βR)]
V1

V1 − V2

(
1
4

+ 3ε

)
+ 3 [exp(βR)− 1]

V2

V1 − V2

(
1
4
− ε

)
.(4.166)

The critical temperature of the selectively diluted mixed spin-1/2 and spin-1 Ising model on the
honeycomb lattice can in turn be obtained from Eq. (4.166) after substituting there the inverse
critical temperature βcR = ln 3 and the critical value εc = 1/6 of the nearest-neighbor pair
correlation function of the effective spin-1/2 Ising model on a triangular lattice [305]:

ρ =
1
2

V c
1 + V c

2

V c
1 − V c

2

. (4.167)

Note that the upper index c in the critical condition (4.167) means that the inverse critical tem-
perature βc = 1/(kBTc) enters into Eq. (4.162) determining the functions V1 and V2 instead
of the inverse temperature β = 1/(kBT ). Moreover, it can be easily verified that the critical
condition (4.167) of the selectively site diluted mixed-spin Ising model on the honeycomb lattice
exactly coincides with the critical condition (4.155) of the undiluted mixed-spin Ising model on
the honeycomb lattice on assumption that no impurities are present, i.e. the concentration of the
spin-1 atoms is set to ρ = 1.

The numerical solution of the critical condition (4.167) of the selectively diluted mixed spin-
1/2 and spin-1 Ising model on the honeycomb lattice is presented in Fig. 4.12. The critical
temperature is plotted in Fig. 4.12(a) against the concentration of the magnetic spin-1 atoms
for several values of the uniaxial single-ion anisotropy. As one can see, the critical temperature
monotonically decreases upon decreasing the concentration of the magnetic spin-1 atoms until it
completely tends to zero at the critical concentration ρc = 0.5. This general trend remains valid
independently of the uniaxial single-ion anisotropy, which has tendency to lower the critical
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Fig. 4.12. (a) The critical temperature of the selectively diluted mixed spin-1/2 and spin-1 Ising model
on a honeycomb lattice as a function of the concentration for several values of the uniaxial single-ion
anisotropy; (b) The critical temperature of the selectively diluted mixed spin-1/2 and spin-1 Ising model on a
honeycomb lattice as a function of the uniaxial single-ion anisotropy for several values of the concentration.

temperature as the easy-plane (negative) single-ion anisotropy strengthens. To gain an overall
insight, the critical temperature is displayed in Fig. 4.12(b) as a function of the uniaxial single-ion
anisotropy for several values of the concentration of the magnetic spin-1 atoms. It is quite evident
from this figure that the critical temperature monotonically decreases with the easy-plane single-
ion anisotropy until it completely vanishes at the ground-state phase boundary Db/J = −1.5
between the ferromagnetically ordered phase and the disordered paramagnetic phase. In addition,
it can be also concluded that the selective site dilution of the magnetic spin-1 atoms is responsible
for a gradual reduction of the critical temperature quite similarly as the effect of the easy-plane
single-ion anisotropy.

4.3 Historical survey and future perspectives

A great deal of research interest aimed at exactly solvable Ising models has resulted in a rather
impressive list of existing literature. It is therefore beyond the scope of this work to provide a
comprehensive list of all exactly solved Ising models and the selected examples are mentioned
just to illustrate diversity of rigorous approaches and/or various physical motivations of for their
study. It is quite clear from previous argumentations that a change of spatial dimensionality
of a magnetic lattice from 1D to 2D has a dramatic effect upon phase transitions and critical
phenomena. Namely, 1D Ising model cannot capture a spontaneous long-range order at any
non-zero temperature in contrast to 2D Ising model, which displays an intriguing order-disorder
phase transition at a finite-temperature critical point. Although the model by itself seems to
be extraordinary simple, the general exact solution of the spin-1/2 Ising model on 2D lattices
in a presence of the magnetic field represents unresolved problem yet. Note furthermore that
this exact solution would be of fundamental importance as it would clarify dependence of the
magnetization on the magnetic field and it would simultaneously enable derivation of the exact
closed-form expression for the susceptibility. It has been pointed out by Istrail [311] and Cipra
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[312] that the exact solution of any non-planar Ising model is essentially NP-complete problem,
which implies that any 3D Ising model is possibly analytically intractable. In this respect, the
subsequent list of fully exactly solved Ising models essentially contains only 1D and 2D lattice-
statistical models.

It is worthy to recall that the spin-1/2 Ising chain has been exactly solved in the pioneering
work by Ising [2] with the help of combinatorial approach. Afterwards, the Ising’s exact results
have been re-derived by a variety of other mathematical techniques as for example the transfer-
matrix method due to Kramers and Wannier [292]. To a relatively extended class of the rigor-
ously solved 1D Ising models belong the spin-S Ising chain [313–317], the spin-1/2 Ising chain
accounting for further-neighbor interactions [318–321], the spin-1/2 Ising model composed of
two, three or four coupled chains [322–326], the spin-1/2 Ising chains with periodically alternat-
ing interactions [327] as well as the mixed-spin Ising chains [328–337] and ladders [338, 339].
It is worthy to note that Minami [340–342] has obtained the exact solution for a rather exten-
sive class of 1D Ising models, which involve the most of aforelisted exactly solved Ising models
(including the ones with the mixed spins or alternating interactions) as a special case.

The first complete closed-form solution for 2D Ising model has been found by Onsager when
formulating the spin-1/2 Ising model on a square lattice within the transfer-matrix method and
Lie algebra [3]. Onsager’s exact solution represents one of the most significant achievements in
the statistical mechanics, because it brought an important revision in the understanding of phase
transitions and critical phenomena. Indeed, Onsager’s exact solution has delimited a modern era
of the equilibrium statistical mechanics [343], since it has convincingly evidenced an outstanding
phase transition accompanied with a singular behavior of thermodynamic quantities in a vicinity
of the critical point. Exact results for 2D Ising model also shed light on deficiencies of approx-
imative theories such as mean-field and effective-field methods, which mostly fail in predicting
a correct behavior near a critical region. One of the most essential questions to deal with in the
statistical mechanics of exactly solvable models is thus closely connected to a precise nature of
singularities accompanying each phase transition.

The main deficiency of Onsager’s exact solution lies in a considerable formidability of the
applied mathematical methods, which initiated intensive search for an alternative way admit-
ting a more straightforward exact treatment of 2D Ising models. The original Onsager’s so-
lution has been slightly simplified by Kaufmann and Onsager himself by employing the the-
ory of spinors [344, 345]. A more substantial simplification has been later achieved by taking
advantage of combinatorial approaches developed by Kac, Ward and Potts [346, 347], Hurst
and Green [348], Vdovichenko [349], Jordan-Wigner fermionization by Schultz, Lieb and Mat-
tis [350], the star-triangle transformation by Baxter and Enting [351] or more recent theories
based on Grassmann variables [352–356] and Clifford-Dirac algebra [357]. Among all rigor-
ous methods, the Pfaffian technique seems to be the most versatile method that enables an exact
treatment of the spin-1/2 Ising model on any planar lattice [358–361]. Within this approach, the
problem of solving 2D Ising model is at first reformulated as the dimer covering problem on a
corresponding decorated lattice [362] and subsequently, the relevant dimer statistics is solved by
Pfaffian technique elaborated by Kasteleyn [363], Temperley and Fisher [364, 365].

Exact critical points of the ferromagnetic spin-1/2 Ising model on all archimedean lattices
(Fig. 4.5) have been recently compiled by Codello [301], whereas the relevant exact solutions
were formerly derived for square [3], hexagonal and triangular [366–370], kagomé [296, 371],
star [372, 373], bathroom-tile [374–378], trellis [379], Shastry-Sutherland [379, 380], bounce
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(ruby) [381] and square-hexagon-dodecagon [382] lattice. In addition, the ferromagnetic spin-
1/2 Ising model has been rigorously examined for a variety of more complex irregular lattices
such as union jack [383–389], pentagonal [390], square-kagomé [391], bow-tie [392], two topo-
logically different square-hexagon [393, 394] and the vast number of 2D decorated lattices (see
Ref. [395] and references cited therein). All those exact results have furnished a rigorous proof
for a strong universality in a critical behavior of the ferromagnetic spin-1/2 Ising model on 2D
lattices, which is characterized through a unique set of the critical exponents.

The antiferromagnetic spin-1/2 Ising model on 2D bipartite lattices shows the essentially
same critical behavior than its ferromagnetic counterpart (e.g. see foregoing discussion con-
cerned with the critical points of the Ising square and honeycomb lattices), but the situation
dramatically changes for the antiferromagnetic spin-1/2 Ising model defined on 2D non-bipartite
lattices6 when a geometric spin frustration comes into play [396, 397]. Quite generally, the term
geometric spin frustration is ascribed to an incapability of spins to simultaneously satisfy all
pair interactions, which is always the case when product of signs of all coupling constants along
an elementary plaquette becomes negative [398]. It is worthwhile to remark that the geometric
spin frustration of 2D Ising models is at heart of many outstanding phenomena like highly de-
generate ground-state manifold with a non-zero residual entropy contradicting the third law of
thermodynamics [396] or multiply reentrant phase transitions associated with an existence of a
few successive critical points [397]. The antiferromagnetic spin-1/2 Ising model on a triangular
lattice is presumably the first exactly solved model with the macroscopically degenerate ground
state that manifest itself through a non-zero residual (zero-point) entropy [399], while the spin-
1/2 Ising model on the union jack lattice with the competing (antiferromagnetic) next-nearest-
neighbor interaction is likely the first exactly solved model displaying reentrant phase transi-
tions [383–385]. An absence of finite-temperature phase transition above the highly degenerate
ground-state manifold has been also rigorously proved for the spin-1/2 Ising model on a kagomé
lattice [400, 401], fully frustrated square, triangular and honeycomb lattices [402, 403], brick-
work lattice [404], chessboard lattice [405], two different kinds of pentagonal lattice [406–408]
and triangular kagomé lattice [409, 410].

Although it could be naively expected that the macroscopic degeneracy of the ground state ul-
timately inhibits a spontaneous long-range order, some geometrically frustrated 2D Ising models
with the highly (but not too highly) degenerate ground state may exhibit a peculiar coexistence
of spontaneous long-range order with a partial disorder. In fact, the exact solutions for the spin-
1/2 Ising model on union jack lattice [383–385], piled-up and zig-zag domino lattices [411],
centered honeycomb lattice [412, 413] and generalized kagomé lattice [413–415] have convinc-
ingly evidenced an imperfect spontaneous order accompanied with a non-zero residual entropy.
It is worth mentioning that the reentrance with a few successive critical points is also observed
in most of the aforementioned exactly solved Ising models. Apart from this fact, the spin-1/2
Ising model on a domino lattice displays a spectacular phenomenon commonly referred to as
order-by-disorder effect [416–418], which occurs whenever an incomplete spontaneous order is
thermally induced above a disordered ground state. The fact that thermal fluctuations produce a
spontaneous order above a disordered ground state by selecting the ordered state with the largest
degeneracy (entropy) obviously represents a highly contra-intuitive cooperative phenomenon.

6The term bipartite lattice denotes a lattice, which can be divided into two equivalent sublattices A and B in a such way
that all nearest-neighbor sites of a site from the sublattice A belong to the sublattice B and vice versa. The non-bipartite
lattices are all other lattices, which cannot be divided into two equivalent sublattices under the same constraint.
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A special mention also deserves the mixed spin-1/2 and spin-S (S > 1/2) Ising model on
2D lattices, because this lattice-statistical model might be regarded as one of the most natural but
still exactly soluble extensions of the simple spin-1/2 Ising model. The foremost reason for a
theoretical investigation of the mixed-spin Ising models on 2D lattices is closely connected to an
expectation of a more diverse critical behavior. Using the generalized decoration-iteration and
star-triangle mapping transformations, the mixed-spin Ising model on hexagonal, diced and sev-
eral decorated 2D lattices have been rigorously solved by Fisher [419] and Yamada [420] many
years ago. In addition, the exact mapping method based on generalized algebraic transforma-
tions [419–421] can be rather straightforwardly adapted in order to account for the single-ion
anisotropy and/or further-neighbor interaction. The effect of uniaxial single-ion anisotropy upon
a critical behavior has been thoroughly examined for the mixed-spin Ising model on honey-
comb [307], bathroom-tile [308], square-hexagon-dodecagon (the present work), two geomet-
rically related triangles-in-triangles [422] and several decorated 2D lattices [423–428]. Among
other matters, the exact solution for the mixed spin-1/2 and spin-1 Ising model on the triangles-in-
triangles lattices [422] has convincingly evidenced the order-by-disorder effect when an incom-
plete spontaneous long-range order was invoked by thermal fluctuations just above a disordered
ground state. A possible existence of reentrant phase transitions, which result from a mutual
competition between the nearest-neighbor and (antiferromagnetic) further-neighbor interactions,
has been examined in detail within the mixed-spin Ising model on the honeycomb [429, 430],
decorated planar [431] and union jack (centered square) [432–434] lattices. It has been rigor-
ously demonstrated that the latter mixed-spin Ising model on the union jack lattice [432–434]
represents a valuable example of the lattice-statistical model, which exhibits a remarkable line
of bicritical points with continuously varying critical exponents along with another critical line
of discontinuous (first-order) phase transitions. The quantum effects introduced by the biaxial
single-ion anisotropy or transverse magnetic field have also been studied within the mixed-spin
Ising model on the honeycomb [435–437], diced [438] and some decorated 2D [439,440] lattices.
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5 Conclusion

The present article provides a brief tutorial review on applicability of the mean-field, effective-
field and exact methods to the Ising and Ising-like models. To this end, the aforementioned
approximate and exact theories were applied to a few selected textbook examples of lattice-
statistical models such as the spin-1/2 Ising model in a longitudinal field, the spin-S Blume-
Capel model in a longitudinal field, the mixed-spin Ising model in a longitudinal field and the
spin-S Ising model in a transverse field. In spite of their conceptual simplicity the Ising and
Ising-like models are exactly tractable just on 1D or 2D lattices in a presence or absence of the
external magnetic field, respectively. Besides, there exist a strong evidence that the full exact
solution of the simplest spin-1/2 Ising model on non-planar lattices is presumably analytically
intractable problem and hence, the approximate methods like the mean-field and effective-field
theories often represent the only analytical tools to grasp qualitative features of more complex
Ising-like spin systems aimed at a theoretical modeling of amorphous and disordered systems,
thin films, superlattices, alloys, diluted systems and so on. However, the word of caution should
be made because a danger of over-interpretation is hidden in any approximation. To overcome
this possible problem, the presented exactly solved Ising models can be utilized as a useful
benchmark to test accuracy and reliability of the approximate methods before applying them
to more complex Ising-like spin systems for which rigorous treatment is naturally inapplicable.

The mean-field theory traditionally represents the simplest but at the same time also crudest
approximate method, which provides plausible results for the Ising-like models whenever spin
fluctuations become negligible. This means that the mean-field approach is justified for the
Ising-like models on 2D and 3D lattices with sufficiently high coordination numbers, but this
theory may totally fail in predicting a correct magnetic behavior of the low-dimensional Ising
models with much stronger role of spin fluctuations and short-range correlations. The non-
zero critical temperature of the spin-1/2 Ising chain and the tricritical behavior of the mixed
spin-1/2 and spin-1 Ising model on a honeycomb lattice thus represent obvious artifacts of the
mean-field treatment (c.f. the mean-field results with the respective exact results proving an
absence of spontaneous long-range order in the spin-1/2 Ising chain and an absence of tricritical
phenomenon in the mixed spin-1/2 and spin-1 Ising model on a honeycomb lattice). To compare
with, the effective-field theories afford superior results with respect to the standard mean-field
theory as they correctly account at least for short-range correlations. The added value of the
present work lies in that it brings an insight into how to avoid the long-standing problem of
this approximate method concerned with a self-consistent determination of the Helmholtz free
energy, which has until now precluded a comprehensive analysis of interesting phenomena as
for instance discontinuous (first-order) phase transitions accompanied with a presence of the
metastable states. The foremost advantage of the effective-field method with respect to the mean-
field method lies in an improved accuracy of the obtained results when keeping the computational
difficulty at almost the same level (e.g. the effective-field theory correctly reproduces an absence
of spontaneous long-range order in the spin-1/2 Ising chain even though it would fail to reproduce
this feature for more complex 1D Ising models with greater coordination number q > 2 like a
two-leg ladder). On the other hand, the effective-field theory fails in reproducing a magnetic
behavior in a vicinity of critical points quite similarly as does the mean-field theory, because it
affords the same set of mean-field-like critical exponents.

The exactly solved Ising and Ising-like models are certainly active research field in its own
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right, because they can be regarded as cornerstones of modern equilibrium statistical mechanics
on which up-to-date theory of phase transitions and critical phenomena was built. As a matter
of fact, the identical critical exponents of the ferromagnetic spin-1/2 Ising model on 2D lattices
have provided a firm ground for postulating scaling and universality hypotheses. Although a
substantial progress has been achieved in the area of exactly solvable Ising-like models there
are still a lot of unresolved and open problems for future studies. For instance, the full exact
solution of the spin-1/2 Ising model on 2D lattices taking into consideration a non-zero mag-
netic field would be of fundamental importance, since it would provide an exact closed-form
expression for the susceptibility and it would simultaneously enable a comprehensive analysis of
magnetization processes presumably accompanied with a non-trivial criticality. Similarly, there
is a controversy whether or not a tricritical phenomenon may occur in the spin-S Blume-Capel
model on some 2D lattices, but unfortunately this model has not been exactly solved yet for
any 2D lattice. While the exact solutions of the mixed-spin Ising model on three-coordinated
archimedean (honeycomb, bathroom-tile, square-hexagon-dodecagon) lattices point to absence
of discontinuous phase transitions, one cannot definitely rule out that the tricritical phenomenon
and discontinuous phase transitions do occur in the mixed-spin Ising models on 2D lattices with
a greater coordination number such as a square lattice (another yet unsolved lattice-statistical
model). Bearing this in mind, one may in confidence conclude that the exactly solved Ising-like
models will certainly remain topical issue in a future, because all aforementioned open prob-
lems along with many other challenging topics from this demanding but surely highly exciting
research field nowadays attract considerable research interest.
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Appendix: Gibbs-Bogoliubov inequality

Let us prove a validity of the Gibbs-Bogoliubov inequality [43–45]:

G ≤ Φ ≡ G0 + 〈H −H0〉0, (A.1)

which can serve for an approximate calculation of the Gibbs free energy G of a lattice-statistical
model defined through the Hamiltonian H. The upper bound for the exact Gibbs free energy
G is afforded by the variational estimate Φ calculated from a simpler lattice-statistical model
given by the trial Hamiltonian H0 that yields the corresponding trial Gibbs free energy G0. The
symbol 〈O〉0 denotes canonical ensemble average of the physical quantity O calculated within
the simplified lattice-statistical model:

〈O〉0 =
1
Z0

Tr [O exp(−βH0)] , Z0 = Tr exp(−βH0). (A.2)

Here, the symbol Tr denotes a trace over degrees of freedom of the full lattice-statistical model,
whereas the relevant partition function Z0 of the simplified lattice-statistical model should be
calculated exactly. The validity of the relation (A.1) can be proved by following an elegant
proof due to Feynman [44]. The partition function of the original lattice-statistical model is by
definition given by:

Z = Tr exp(−βH). (A.3)

Now, it is advisable to decompose the total Hamiltonian of the original lattice-statistical model
into a sum of two parts:

H = H0 +H1, (A.4)

whereas the former (unperturbed) part H0 corresponds to the simplified lattice-statistical model
for which the relevant calculations can be performed exactly and the latter (perturbed) part H1

involves all other (problematic) interaction terms. The ratio between the true partition function
Z and the trial partition function Z0 can be subsequently related to a canonical ensemble average
of the perturbed part of the Hamiltonian H1:

Z

Z0
=

Tr exp(−βH)
Tr exp(−βH0)

=
Tr exp[−β(H0 +H1)]

Tr exp(−βH0)
= 〈exp(−βH1)〉0, (A.5)

which should be however calculated within the simplified lattice-statistical model. At this stage,
one may take advantage of the convexity of the exponential function:

〈exp[f(x)]〉 ≥ exp[〈f(x)〉], (A.6)

which holds for any real function f(x) because first and second derivatives of the exponential
function are always positive (see Fig. A.1). Applying the convexity relation (A.6) to Eq. (A.5)
one obtains the inequality:

Z

Z0
≥ exp(−β〈H1〉0), (A.7)
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Fig. A.1. The convexity of the exponential function is essential for a rigorous proof of the Gibbs-Bogoliubov
inequality.

which in turn gives the following relation when taking logarithm from both sides of Eq. (A.7):

lnZ − lnZ0 ≥ −β〈H1〉0. (A.8)

After a straightforward rearrangement of terms and substitution H1 = H − H0 into Eq. (A.8)
one directly arrives at the Gibbs-Bogoliubov inequality (A.1). The Gibbs-Bogoliubov inequality
is of huge practical importance, because if one chooses the trial Hamiltonian H0 to be a simple
approximation for the true Hamiltonian H of some lattice-statistical model, then it affords a
rigorous upper bound for the true Gibbs free energy. Of course, it is quite natural to include
into the trial Hamiltonian H0 as much interaction terms as possible from the true Hamiltonian
H in order to obtain the reliable approximation of the original lattice-statistical model but still
leaving the relevant calculation tractable. The simplest approximation elaborated within the
Gibbs-Bogoliubov variational principle (A.1) lies in considering the Hamiltonian of a system
of non-interacting particles as the trial Hamiltonian H0, which always provides the mean-field
approximation for some interacting many-particle system. The actual interaction between the
constituent particles are accordingly replaced within this approach by a fictitious external field
or potential, whereas the exact Gibbs free energy G represents a lower bound with respect to the
right-hand-side of the Gibbs-Bogoliubov inequality (A.1), which may be alternatively viewed as
the variational Gibbs free energy Φ.
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