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This paper provides an examination of how are prediction of standard quantum mechanic
(QM) affected by introducing a non-commutative (NC) structure into the configuration space
of the considered system (electron in the Coulomb potential in the present case). The param-
eter controlling the extent of the modification is denoted as λ. The coordinates in the NC
space are realized via creation and annihilation operators acting in an auxiliary Fock space,
this one being chosen in such a way that the rotational invariance of the system remains intact
also in NCQM. Analog of the Schrödinger equation for hydrogen atom is found and analyti-
cally solved, both for bound and scattering states. The exact formulas for NC corrections are
given. None of the NC predictions contradicts experimentally verified QM results, since in
the correspondence limit λ→ 0 both QM and NCQM coincide. Highly surprising feature of
the NC version is the existence of bound states for repulsive potential at ultra-high energies.
However, these disappear from the Hilbert space in the mentioned limit. The whole problem
is solved also using a Pauli method. Besides rotational invariance, the dynamical symmetry
related to the conservation of NC analog of Laplace-Runge-Lenz vector is being used and
the results obtained this way are in full agreement with those given by ”Schrödinger-like”
approach.
The presented NC deformation of QM preserves all those mysterious properties of the Coulomb
system that made it a distinguished cornerstone of the modern physics.
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1 Introduction

This paper focuses on the way in which introducing certain non-trivial small-scale structure
into the geometry of the configuration space can modify the predictions of the ”standard” quan-
tum mechanics (QM from now on).

The geometry of a space with ”non-trivial structure on small scales” expressed via nontriv-
ial commutation relations for coordinates that restrict their simultaneous knowledge is said to be
”noncommutative”. There are many models suiting this description, distinguished by the form of
the mentioned commutators of coordinates. The feature they have in common is that the notion
of a single point has to be given up. We will often use the shorthand ”NC” to denote anything
related to such a space; for example we will write ”NCQM” instead of ”quantum mechanics in
a space with noncommutative coordinates”.

1.1 The history and motivation behind NC geometry

The idea of NC coordinates is quite old, it was first suggested by Heisenberg in order to get
rid of the appearing infinities. This task was overtaken by the process of renormalization and NC
coordinates vanished into oblivion for several decades. Despite the initial success, the method of
renormalization had reached its limits and additional tools able to cure the theory were sought.
This is why NC models became popular again during the eighties of the previous century in con-
nection with the following two fundamental issues of modern theoretical physics: 1. existence
of ultraviolet (UV) divergences in quantum field theory, and 2. building a framework for quanti-
zation of gravity.

The basic ideas of non-commutative geometry were developed in [1] and [2] with the spectral
triplet as the main technical tool, and in the form of matrix geometry in [6] and [7].

They were followed by number of papers, and sometimes their goals were anything but hum-
ble - the ambitions involved the aspects mentioned above: the removal of UV- divergences from
quantum field theories, and maybe even building a base for quantum gravity.

Within the spectral triples formalism the Standard Model has been formulated in almost com-
mutative spaces, and even the gravity was included into the models, [3], [4], [5]. However, the
considered minimal noncommutativity did not lead to the desired absence of UV divergences,
but it led to additional restriction among Standard Model parameters.

The investigations within matrix noncommutative geometry started with field theoretical models
in one of the simplest locally Euclidean NC spaces - the fuzzy sphere S2

F . The space S2
F was

first introduced in [8] as the QM phase space emerging from the quantization of the standard
sphere S2 considered as a particular classical phase space, or in the quantum description of two-
dimensional membranes [9]. In [10] and [11] the fuzzy sphere S2

F was described as a simple
model of matrix geometry that was used in [12] for the formulation of NC (or fuzzy) version of
the 2-dimensional field-theoretical model - the Euclidean QED on S2 formulated in [13].
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The construction of matrix fuzzy spaces was extended in [14] to compact Lie group orbits, the
main tool were Perelomov’s generalized coherent states introduced in [15], [16], or alternatively,
using various Lie group representations representations in terms of annihilation and creation op-
erators, [17], [18], [19]. Such fuzzy Euclidean QFT models contained finite number of degrees
of freedom, like in QM, and consequently, the UV divergencies were automatically absent. How-
ever, the generalization to relativistic QFT remained unclear.

So far we have mentioned why are people interested in NC theories (e.g. NC removal of in-
finities) and how have we been trying to define them. However, there is another point of view.
NC theories are not (only) a lust, but a must.

If we try to merge quantum mechanics with general relativity, we inevitably reach the conclu-
sion, that two extremely close points of space cannot be distinguished (for two points separated
by Planck’s length a black hole would be created). Many theories capable of unifying gravity
with (quantum) field theories, string theories being a prominent example, hold NC configuration
space as a certain energetic limit. In addition, the latest research in M-theory shows, that the de-
grees of freedom in nature could be represented by matrices and therefore proper understanding
of NC coordinates is a necessity.

In 1995 two papers [20] and [21] appeared where it was shown that inclusion of gravity into QFT
generates non-observability of space points that can be explained by noncommutative space-time
coordinates satisfying relations

[xµ, xν ] = iθµν ,

where θµν are constant parameters commuting with coordinates. However, the Lorentz invari-
ance is violated here. Later fuzzy QFT emerged as effective low-energy models of particular
string theories, [22], [23]. This incited an enormous activity in the field, but the problems with
the violation of relativistic invariance persisted.

Many different approaches to NC theories have been tried so far, differing not only in the NC
relations, but also in the way they are realized and models they are studying (covering both quan-
tum theories and gravity). Many successes were reached, however they are only partial and we
still lack THE noncommutative quantum field theory which we seek and which would hopefully
allow a peaceful merger of gravity and quantum theory.
Learning the lesson from those attempts, we prefer to start small. Instead of trying to formulate
new consistent fundamental models in fuzzy spaces we decided to test the ideas of NC geometry
in a much simpler area: to test the consequences of the NC space in QM, i.e. within NCQM,
since while QFT is quite problematic on its own, QM is quite well understood. Although the
primary ambition of NCQM has never been the ”improvement” of the precision of standard QM,
one has to begin somewhere; and it is at least safer to introduce the concept of NC space while
dealing with QM problems, to test it there and learn from toy models before handling any of the
QFT issues.
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1.2 Outline

This outline is meant to help to decide about the relative importance of particular sections -
the reader is going to be informed about what can be skipped and missed at what price.

This current chapter 1. (”Introduction”) - is focused mostly on the motives, gives certain his-
torical background and can be skipped without losing the main ”scientific message”. This part
is not designed to please readers interested solely in dense academic reports. (Therefore such a
reader is invited to turn their attention to the next parts, which are less or more marked by the
appearance of the first numbered equations.) However, science is not only about technical details
of solving equations, and we decided to include here a fraction of the other aspects as well. There
is something captivating in exploring of how physics works, and searching for certain balance
regarding the extent to which one has to take models seriously. If some mathematical approach
seems to work, it is often tempting to attribute more ”validity” to it than is its due; on the other
hand, an encounter with some troublesome features following from restrictions of a model may
result in its hasty rejection, when one gets rid of both the problem and, unfortunately, of a possi-
bly instructive experience as well.
The point is, the model we have been working on for the last years is obviously restricted to a
particular class of problems, it is a toy designed for exploring features of certain mathematical
ideas, particularly those which may have something to say about physical space and its quantum
mechanical aspects. However, if anything, we learned that there is nothing disreputable about
toy models, as long as we try to modify them little by little according to how the Nature works
and not the other way round. It seems the best we can do is to (smartly!) guess, look how much
we have erred, and try to hit closer the next time. It would be cocky to expect hitting the nail on
the first attempt, maybe it is more than enough to expect we will ever hit it. (Some people even
doubt there is a nail to be hit; but it is probably hard to get anything done if one pays too much
respect to such ideas.) Anyways, the process seems fascinating - that is, if one avoids starting on
an overly confident level (in which case it tends to get accordingly painful). As to the ”guessing
method”, it seems to be quite an effective one, and it is captivating - and we believe also instruc-
tive - to follow the reasoning of those who were particularly good at it - even if their approaches
are not compatible with each other up to these days. In fact all theories in the present science
have problems, but it does not stop us from building on those which also have some redeeming
virtues. In the strictest sense every part of contemporary physics is a toy theory, even though
relativity or quantum mechanics are probably specimens of the most sophisticated toys we ever
got to play with.
So these ideas are discussed in the introductory section (I.). It can be skipped without any grave
consequences. However, as already has been mentioned, it is recommended to start paying at-
tention when the first numbered equations appear.

In Chapter 2. the non-commutative space is introduced. This is one of the parts that should
be read if the following ones are to give any sense at all. The aim is to get the reader acquainted
with the NC space, to ”show them around”. A parameter that measures the extent to which the
space is ”blurred” is introduced, important features of QM problems and the requirements which
are being put on their NC analogs are being searched for.
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In Chapter 3. there is a brief overview of the known results of QM. Not because there would
be any danger of its being new for anyone, but it is simpler to write the relevant relations down
here, assign them numbers and refer to them when the need arises than to constantly recalling
them fron an outer source. Since one of the goals is comparison of noncommutative quantum
mechanics with the standard one, including some notoriously known facts should not be regarded
as completely out of place.

Chapters 4., 5. and 6. constitute the very core of this story, so skipping them approximately
equals to not reading the paper. Here are a few words about what to expect: One of the first
recognized successes of QM has been the explanation of the discrete energy spectrum labeling
the bound states of electron in hydrogen. In QM, this was done in a twofold way, using both dif-
ferential (Schrödinger) and algebraical (Pauli) approach. Both methods agreed with each other
and the observed values and QM began to be taken seriously. Analogs of both approaches to the
hydrogen atom problem are found also in the NC case. Moreover, the predictions are analytically
worked out and to our pleasure found to be compatible with QM results and experimental data
as well. There are of course NC corrections present and presented - however, their magnitude
is dependent on the one parameter that accounts for the measure of blurring the space - and this
parameter is not fixed within our model. Important thing is, that in the commutative limit (which
corresponds to setting the mentioned parameter equal to zero) all the corrections disappear and
the former quantum mechanical results are restored.
As to the investigation of scattering processes, one simply has to flip the sign of energy in the
previous calculations. Due to the potential approaching zero at the infinity, the energetic spec-
trum is continuous in this case. One curious feature of the Rutherford formula is the fact that
quantum and classical mechanics agree on the angular dependence. The NC version of this prob-
lem does not seem to be willing to break the tradition - there are some modifications, but all of
them vanish in the ”commutative limit”, just like it was the case with the bound states. However,
there are certain points of interest worth dwelling on a little. One of them is appearance of the
energetic cut-off, which is not completely unexpected, since it is a common feature of all theories
concocted with a less or more hidden ambition to deal with energy divergences. Another, and
probably more surprising point is a kind of ”mirror symmetry” with respect to the energy equal
to the half of the maximal possible value. This symmetry goes as far as providing a set of bound
states at the ultra-high energies. More about this in the corresponding sections.
One chapter (number 5) is devoted to examining somewhat more general (not focused solely on
the Coulomb problem) features of NCQM, namely the velocity operator is introduced, together
with many interesting aspects it brings about - e.g. the analogs of Heisenberg uncertainty rela-
tions are derived, kinematic symmetry is studied, etc. The proper formula for velocity operator
is essential for NC generalization of Pauli’s algebraic approach.

The last chapter - Conclusions - is meant to provide a concise overview of results and discussion
thereof, to suggest problems which may be possibly addressed in the future, in short.

There are several appendices included at the very end. People differ in their favorite way of
approaching a paper of this kind, some prefer having all the details derived and written down,
others consider it to stand in the way of a concise account of the physics behind. Trying to take
the best of both worlds, we decided to include relatively detailed calculations, but to store them
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mostly in the separate sections, so as to not overload the main part. These appendices are being
mentioned abundantly throughout the whole paper, but we tried to make it somewhat readable
also for someone who prefers to refrain from taking too close look at the derivations. It seemed
inappropriate to leave more of the computations out completely, since they represent a good deal
of the process. Undoubtedly an idea counts more than the related algebra. However, this alge-
bra is necessary to somehow bring ideas ”down to earth”, not to mention that it is also a tool to
convict the ”bad ones” coming in an appealing disguise. Although those calculations which are
provided here may not be the most efficient and ingenious ones, at least those which led nowhere
or to even worse places are omitted. There were numerous specimens of that kind accompanying
the whole process. Some of them may have been as useful as a mistake can be - as a learning tool
for the present authors, but these authors doubt that potential reader would thoroughly enjoy the
complete account of that ”learning process”. It is being said that physicists and detectives have a
lot of in common, but presumably it is not the way they write their reports. Whilst it may add to
the appeal of a Sherlock Holmes story to watch him go astray for a while, we suspect Sir Arthur
would have lost some readers if hypergeometric functions had been used as a description of his
hero following the wrong hint.

1.3 Why do we ask these questions

This section aims to give some reasons why we have decided to ask the questions presented
in this paper and why it seemed reasonable to choose hydrogen atom as a respondent to fill up
our questionnaire.

Exploring how Nature works is in a way like going to the theater. All the world’s a stage,
according to the play titled As You Like It. Hopefully the reader will at least not mind it if we
make certain use of this parable in the present section. Of course every metaphor has its limits;
however, finding and pointing them out may teach us comparably much as do the features which
our simile manages to catch faithfully.

There are certain peculiarities about the drama that Nature performs. For example the expo-
sition we are given is far from being exhaustive - the information about setting, list of characters
and their back-stories, prior plot events, ... is incomplete. We have the task to fill it in, notwith-
standing our being a few billions of years late for the opening scene. A scientific paper can be
viewed as a kind of report providing some piece of information, or at least speculation, about the
theater, the play, its cast and script. It is appealing to think of it as one shared report mankind is
writing, and everyone is welcomed to add a few lines. A small paragraph written by a playful
mind, left just as a reminder of some curious, amusing idea, may inspire someone else to add a
breakthrough chapter a few decades later.

This seems to be a good time for being such a reporter. There have already been people ex-
tremely skilled in gaining information, so we have worthy models to follow and learn from; on
the other hand, there are so many questions unanswered, even unasked, that there is no danger of
our ending without a job.

So at the beginning, let us try to sum up how did our forerunners proceed with asking ques-
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tions and what did they make out of the play so far. People start really learning when they were
given the opportunity to ”stand and stare” besides caring for the mere survival. This ”watching
the scene” resulted in the basic notions of what is the stage of the theater, which characters are
most common, what is the basic rhythm of changing the acts. As to the stage, it was not paid
enough attention. When watching such radiant actors as stars or atoms playing their part, one is
prone to give only a little thought to the stage which hosts their performance. Of course some
assortment of tools to describe which actor is where and when is needed for every play, and peo-
ple soon became quite efficient in handling such tools. René Descartes brought this efficiency
right to the top as far as the spatial part was concerned. What he did for space, Einstein and
Minkowski did for space-time, and physics seemed to have at least the question of the stage for
its spectacles solved. With some intriguing facts to be admitted and our confidence in own intu-
ition considerably shaken, but still.

However, the feeling about having the issues regarding this aspect of the drama all cleared up did
not last long, and once again people had to realize this is one strange theater we are dealing with,
since the stage not only provides a background with some contra-intuitive features - it seems to
take an active role, too. This part of the report was given name ”general relativity”. So we had
to admit we have this on extra actor to be interviewed when writing about our observations of
the world theater. Curious, but so much more interesting. There are certain issues with making
an interview with the stage, since it is prone to provide the more twisted storylines the more co-
actors are around (and the more they ”matter”), and slightly flat ones when left without company.

A few years later another surprise came, an astounding one. The stage even cannot be left
without company of co-actors and still be interviewed, because there is no way of asking a ques-
tion and not take a role of an actor, too. This part of the report was given name ”quantum theory”.

Those two chapters in the report are telling us that the world theater provides no clear distinction
between stage, cast and spectators. Anyway, it is quite amusing to find the idea of ”a stage where
every man must play a part” already in Merchant of Venice. One almost wonders whether the
division of books in library departments really is such a trivial matter....

The answers to the questions which remained unresolved even after the arrival of relativity and
quantum theory seemed to be obtainable from examining acting of the characters in new scenes,
possibly in waiting for acts requiring more players or different kind of them. So the more parts
of the play were watched, many times a need came to call for repeated performance, so that
we could try some newly designed opera glasses - in the case of this theatre both telescope and
microscope are used, together with any other equipment to look into the things more distant or
more hidden. Indeed, some actors appeared that were unknown up to then- often not because
they would have been absent, but because the spotlights had never been turned on them before.
The list of newly discovered cast grows longer every year, adding particles appearing in the high
energy collisions under the Franco-Swiss border or quasars revealed in a galaxy (far) far away
where ”no man could have looked before”. Undoubtedly every new item on the list is worth a
celebration, but we are still missing some clue. This unsettling fact manifests itself in various
ways - for example, all the efforts to bring the two perhaps most exciting chapters of our report
under one title have been futile. Consistency has always been considered a worthy cause; how-
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ever, pursuing it resulted in suspicious infinities having flooded our calculations.

Revision is necessary, and such a process is usually only as good as are the questions we ask. So
let us try to review what questions are being asked now.

Having seen many scenes - having analyzed many experiments, people naturally start wonder-
ing, which actors are the key ones. Some appear far more often than others, some are difficult to
glimpse, but their lines may be of vital importance. So which character is common for all the acts
and scenes? The stage of course (we know now we have to count it among the actors). After all,
it was here whenever, wherever and whatever happened. This may lead to deep thoughts as well
as to intricate blind alleys, but one certainly cannot help thinking whether the stage should not
be reexamined once again. We have heard this song before...and it was an instructive one at the
time. But notwithstanding that breakthrough from century ago maybe we still underestimated
how much ”different” the stage issues can get without us noticing.

Having presented the status of the report so far, let us proceed to the few lines we would like
to add to it. In comparison to the main chapters mentioned above and written by much skilled in-
vestigators, these few lines can be nothing more than just a footnote written in small font. Luckily
the shared report has place for such items too. Now back to the promise from the beginning of
this section - why did we choose to ask our questions and why to have the hydrogen atom as the
main respondent. Having read the abstract, the reader is acquainted with the topic of this paper -
to investigate how can some nontrivial structure of space have influence on quantum-mechanical
properties of the hydrogen atom. At this phase it should be clear that the bottom line is question-
ing the nature of space and exploring possible modification that could be done in our ideas about
the stage. Hydrogen is here in the role of some guide that would hopefully be willing to make
a tour of the stage for us. Let us explain the selection of this guide. Hydrogen meets criteria of
relevance, simplicity and beauty....which makes it a logical first choice.

As to the relevance, hydrogen is one of the longest-serving actors in the theatre, takes part in
so many acts that it is usually hard to find one where it would be absent. It remembers times
from about three or four hundred thousands of years after the first scene. One may argue it
missed the curtain rise anyway, so it cannot have all the answers. However, common sense keeps
us far from expecting all the answers just now, we do not even have all the questions yet, and will
be glad enough if those we do have prove themselves to be somewhat meaningful. Moreover,
let us remind ourselves of what we are about to do - if we want to explore the stage which we
suspect may considerably differ from the image we have in our minds, we need a reliable guide
we are at least to some extent familiar with, one that is willing to give interviews, is relatively
easy to understand, available under almost any conditions, not inclined to appear only now and
then when by us unpredictable chances are kind to us, and, (not trying to be disrespectful to any
field of physics interest), one not prone to have escaped into some alien dimensions or another
realm of hardly reproducible circumstances. Besides, while it is true that there is much more un-
known than known to us in this universal theater, hydrogen accounts for the staggering majority
of what we do ”know”. (Due to the numerous surprises the Nature provides, the last word of the
preceding sentence should not appear without apostrophes).
Beauty is often spelled ”symmetry” in physics - and indeed, in this case the spherical one is quite
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striking, due to the exclusive radial dependence of the Coulomb potential, and the specific form
thereof provides for an additional ”hidden” symmetry which makes it even more appealing.
Regarding simplicity, honesty is anything but out-of-place when writing a contribution to the
”report on the theater ”. Of course this is the simplest atom around and probably the only one
which allows us to hope for analytical solution for a long time coming. There is nothing wrong
with this...after all, with the puzzling mathematical issues with infinities scattered all over the
place which challenge today’s writers of the report, there seems to be an obvious need to carry
out a revision of basics of the basics. So we hereby declare that if there were simpler atom than
hydrogen, this paper would be dealing with it. And yes, it even is just a toy model (in the sense
that it does not include all the features we think the stage has). However, what provides more
possibilities to learn than a good game?
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2 NC space

In the introduction it has been suggested that there may be something going on about the
”stage ” of the universal theatre - the space-time. The standard way of handling it is the manifold
view - however is this twisted, it is locally isomorphic to Minkowski flat space, with the whole
Poincaré group worth of symmetry. This model given by general relativity is the most efficient
one we have - so far no other has managed to capture so many features of what we see in Nature.
Indeed, we would hardly dream of giving it up if it were not for the fact that it fails to accommo-
date requirements of quantum theory - which is another quite successful enterprise, although in
rather different aspects. So we are looking for some alternatives, using various models. Let us
say something about what kind of modifications do we have in mind first, and then let us look at
the problem of various models.

As to the modifications: All the relativistic machinery works efficiently up until we found our-
selves in the realm of tiny intervals of space-time. So if there is a room for some deforma-
tion of space-time (meaning if there is some model other than a manifold locally isomorphic to
Minkowski space) it should happen on these small scales. There is, however, a fact that the stan-
dard quantum theory does not consider such matters and still succeeds in its predictions. Well,
if the mentioned deformations are subtle enough, it may all fit together in such a way that they
do not alter the predictions of standard QM much - if that were the case, we simply may have
overlooked them.

The basic idea is to try out whether such deformations are worth examining at all. Whether
it is even possible to find such that they would both incorporate some non-trivial structure into
the space-time and at the same time would be compatible with those experimentally well con-
firmed QM predictions. Another wish is to make them capture as much of the symmetries given
by Poincaré group as possible. Needless to say, for the time being it is just a wish to have all this
requirements met. However, as far as the testing of the idea of non-trivial space-time structure
and compatibility with standard QM is concerned, there is still a chance. Even if we do not
manage to capture all of the nice features Poincaré symmetry has, we may still be able to catch
enough of them to sufficiently describe some simple system, solve for it, and compare with the
corresponding QM prediction.

Now to ”choose a model” means to choose which aspects of the observed world do we incorpo-
rate into our approach. Of course it is strongly recommended to do this with regard to the choice
of the ”simple system we are about to describe”. People are working on various approaches, each
of them has undeniable shortcomings (therefore it is called a model), but there seem to be some
sense in doing this anyway - one just has to be careful to not restrict their attention exclusively to
their point of view. It is acceptable to have one’s preferred approach to play with, instructive to
find out what other kind of methods do the others have, and nice to arrange for some exchange
stays in those various toy universes. Hopefully we manage to not forget there is a bigger one
outside.

As to the usefulness of various sensible, although incomplete models that are being examined
and appear to be incompatible sometimes, there is an ancient parable from the Middle East which
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seems to apply here. This may not be the original version, the point is preserved nevertheless. It
tells a story about a group of people who were examining an elephant in a dark room (hopefully
with a rather high ceiling) by touching it. One of them felt the tusk and claimed the creature is
solid and similar to a stake, another one grabbed the ear and concluded the animal is soft and
resembles burdock leaves; the man sitting on the elephant’s back insisted it is comparable to a
big pumpkin, and the man holding the leg was adamant about comparison of the animal to a
tree trunk. A strong disagreement about what an elephant is like arose among the people. The
resolution differs in various versions of the story; the participants of the research end up wiser or
sorer according to what attitude they adopt.

Maybe one day we will be able to see how the Nature really is; in the absence of the evidence to
the contrary let us hope and till then try to touch at least some particular aspects. Although not
all at once - the elephant is too big for us - but we can step by step, model by model examine its
features. Important thing is to not condemn various approaches just because we are yet unable to
make them seamlessly fit together. Models are to be learned from, not to be believed.
This collecting of partial pieces of information is quite tempting by itself, but maybe there is
something even better in the store for us. Perhaps one day, while stumbling in the dark, checking
for a yet unexamined area we manage to hit a light switch, or to find out the walls have windows
in them. Maybe even in that case we will have to wait for the Sun to rise and shine, but it would
be nice to have at least the shutters unfastened by then.

2.1 What is meant by deformed geometry

Now it is the time to talk about models of space(time) with a ”non-trivial structure ” more
specifically. First of all, since we will be testing how do predictions of QM change under such
modification, and since QM is most successful when dealing with stationary problems, the mod-
els oriented this way can afford to forget about time, so that alterations which are being made
are related to the spatial issues only. Certainly a considerable flaw as to relativistic aspects, but
this one is present in the standard QM, too. We are not giving up on tackling also space-time,
but let us try first whether we can reproduce good features of stationary QM. To be honest, if we
are thinking about starting to work on deforming 3+1 dimensional manifold, we should better
collect all the useful hints we can get regarding how to proceed. One substantial source of hints
is considering a simpler case first.

As to the expression ”non-trivial structure of space”, it usually refers to the absence of local iso-
morphism to R3. Perhaps this is not a particularly fitting expression, because it may suggest that
continuous space structure is ”trivial”. Well, imagining a continuous space on the small scales,
with its distinct points infinitesimally close to one another, is difficult comparably to imagining
a space somewhat ”blurred” with no points to visualise whatsoever. The calculus on continuous
manifolds is, however, considerably more developed these days. This is to be expected - the
point in such a space can be described by n-tuples of classical numbers. We do not need to be
very general here, so let us talk about 3 dimensional case. These three classical numbers tell us
what are the three coordinates of the point. If the configuration space can be represented as one
isomorphic to R3, it means there is no limitation as to the simultaneous knowledge of all three
coordinates. On the other hand, if we are considering a ”fuzzy” configuration space, it means
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there is such a fundamental restriction.

2.1.1 How QM deforms phase space

Deforming some space so that the notion of its point is to be abandoned is not a new thing,
we have encountered it when moving from classical to quantum mechanics. Recall there is an
elegant hamiltonian formalism which is strongly connected to the phase space of a system. Its
coordinates are all the positions qi and momenta pi of whatever constitutes the system. States
of the system can be represented by points of this phase space, physical observables as func-
tions defined on it. After letting the Heisenberg uncertainty principle into the play, the restriction
on the simultaneous knowledge of position and momentum (mathematically this ”blurring” is
expressed via non-vanishing commutator of the former coordinates qi, pi ) makes the notion of
points in that space ill-defined. This implies that if we do not want to lose the notion of a physical
state well, we have to reconsider and redefine it. This way the whole new probability-based ap-
proach operating with wave functions came into physics. It is perhaps appropriate to emphasize
some aspect here, namely that the form of the commutator [qi, pi] had a paramount impact on the
whole QM. The Hilbert space of states represented by wave functions, operators given as hermi-
tian operators acting on those etc. are what they are to a great extent because that commutator is
what it is. As to the extent to which QM modifies classical mechanics, it is given by the magni-
tude of the constant appearing there, ~, which gives a measure of how much has the phase space
been blurred by letting Heisenberg uncertainty principle in. According to the correspondence
principle, the limit ~ → 0 is expected to reduce the prediction to those of classical mechanics.

2.1.2 How NC model deforms configuration space

Something similar is happening when we are deforming the configuration space, whose coor-
dinates represent positions of whatever constitutes the system. Some uncertainty principle is
conceivable here too, expressed via non-zero commutator of the coordinates and the concept of
continuum of points has to abandoned.

So blurring our R3 space means to prescribe some nonzero commutation relation [xi, xj ] for
its coordinates. These cannot remain c-numbers anymore; we have to find some mathematical
objects to be the new representatives. In quantum mechanics, the former phase-space coordinates
became operators on some Hilbert space of wave-functions. So in our case the NC coordinates
will be operators acting somewhere; the answer to the question where exactly and how distin-
guishes between particular models of NC spaces. The choices of a model and a system we wish
to examine are to be made with respect to each other, so that we stay out of unnecessary trouble
when doing the actual calculations.

2.2 Our NC model

Finally to our case. The considered system is hydrogen; the Coulomb problem configuration
space is R3

0 = R3 \{0}, the exact solution of QM is known, let us try to do no worse in NCQM.
Now to how our model should be like: We wish to preserve those nice features which made the
problem solvable in standard QM. The Schrödinger equation is exactly solvable in QM thanks
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to the fact that it was separable in spherical coordinates, which was in turn possible due to the
rotational symmetry of the whole model - the system studied and the space it was placed in. As
to the system, hydrogen is simply hydrogen, its rotational invariance is taken as granted - we
just have to make sure that our NC space has that symmetry too. Since we are about to mention
it rather frequently, let us introduce its symbol here: R3

λ stands for ”rotationally invariant NC
space, an analog of the Coulomb problem configuration space R3

0.” That role of the little λ-
accessory will be cleared up shortly. It is our NC parameter having the dimension of length, its
magnitude expresses to what extent is the NC space ”fuzzy”. There is one happy coincidence in
this notation. The 0-subscript in R3

0 is meant to indicate that the origin has to be excluded from
the configuration space for the Coulomb problem - however, since this 0 appears at the same
position as λ-subscript in R3

λ, it is possible to interpret it also this way - that the two spaces are
the more alike the more λ approaches 0, and coincide for λ = 0.

2.2.1 NC coordinates and their realization

What follows are commutation relations for the ”coordinates” in R3
λ. Apostrophes account for

the fact that they are not c-numbers, but we will refrain from stressing this every time we come
to mention them.

[xi, xj ] = 2i λ εijk xk , (2.1)

So the first numbered equation has appeared in this paper, and since these relations have impact
on almost everything that will follow, we hope to have now the attention also of the reader who
has chosen to skip the introductory speeches after skimming the ”Outline”-section. So we hereby
welcome this reader; and let us move on to discuss what is going on in (2.1).

As the notation suggests, xi are analogs of the former Cartesian coordinates. The factor 2 is
here just for convenience, to avoid other factors 2 which would appear elsewhere had we not put
it here.

λ has been introduced a few lines above. It maintains the proper dimension and takes care of
the correspondence principle as well. Zero λ would mean that coordinates do commute; small λ
suggests that space is a little blurred, to the extent small enough to avoid any experimental evi-
dence so far. The magnitude of λ that is not fixed within our model; it is related to the smallest
distance relevant in the given NC space. It may well be even at the Planck’s scale (≈ 10−35 m);
if it is so, then the NC corrections are well hidden beyond the scale of ordinary QM experiments.
To have the correspondence principle satisfied, we hope the limit λ→ 0 to reduce the predictions
of NCQM to those of QM.

As to the the commutator (2.1), it reminds us of so(3) algebra - the generators of rotations in
R3 obey the relations of the same form. Obviously, since the related symmetry of space is just
that which we want to have in our model in the first place.
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2.2.2 Auxiliary Fock space F

Now that we know the key relations our NC coordinates have to obey, we have to find some
way to bring them from the realm of platonic forms ”down to earth” and find some concrete
realization. This will account for how our calculations in NC case will look like.
To examine certain symmetry, we have to find the relevant group, and its representation can be
obtained as linear operators acting in some suitable space. Many times it is useful to choose a
Fock space. Such spaces come with a set of creation and annihilation (c/a) operators which have
many appealing properties when it comes to doing calculations; moreover, any relevant linear
operator can be expressed in their terms. The choice of particular kind of Fock space is given by
the symmetry we want to explore. In our case, the symmetry is given by the rotational invariance
of our R3

λ, so Fock space suitable for our purposes is that one whose c/a operators can be used
to construct xi so that (2.1) holds. It turns out that we need two pairs of c/a operators aα, a

†
α,

α = 1, 2, which satisfy the standard relations

[aα, a
†
β ] = δαβ , [aα, aβ ] = [a†α, a

†
β ] = 0 . (2.2)

The Fock space F related to them is spanned by normalized vectors

|n1, n2〉 =
(a†1)

n1 (a†2)
n2

√
n1!n2!

|0〉 . (2.3)

Here |0〉 ≡ |0, 0〉 denotes the normalized vacuum state: a1 |0〉 = a2 |0〉 = 0. We shall use the
notation Fn = {|n1, n2〉 | n1 + n2 = n}.
Those a+

α , aα are said to ”create” and ”annihilate” some formal particles (not necessarily having
a physical interpretation); from the commutation relation we see that they are two kinds (α =
1, 2) of bosons. Besides a+

α , aα, there is also certain combination of them which deserves special
mention here - the particle number operator

N = a+
αaα ,

N |n1, n2〉 = (n1 + n2)|n1, n2〉 = n|n1, n2〉 .

As we will see shortly, it has a strong connection also to physically relevant issues.

2.2.3 NC coordinates

With this choice of Fock space, xi’s obeying (2.1) are given as

xj = λ a+ σj a ≡ λσj
αβ a

†
α aβ , j = 1, 2, 3 . (2.4)

σj are the Pauli matrices. In case the reader would wish to see the explicit form of each xi, here
it goes:

x1 = λ
(
a†2a1 + a†1a2

)
,

x2 = iλ
(
a†2a1 − a†1a2

)
,
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x3 = λ
(
a†1a1 − a†2a2

)
.

Now to the spherical symmetry. We hope to be able to employ it; clearly having the NC analog
of the Euclidean distance from the origin would help:

r = λ (a†αaα + 1) = λ (N + 1) .

By straightforward calculation it can be proved that

[xi, r] = 0 , r2 − x2
j = λ2 . (2.5)

We will provide a strong argument supporting the exceptional role of r later. For now let us just
point out that while the difference r2−x2

j is of the order λ2, the difference (λN)2−x2
j involves

also the first order contribution, so it would be a choice worse by one order. The definition of r
makes N very important to us. It will appear frequently, after all, it is also its simple action on
the vectors of F which makes the calculations manageable.
It is useful to introduce one more operator,

ρ = λ a†αaα = λN .

Obviously it is so simply related to both r and N that it may seem unnecessary to keep a new
symbol for its sake, but it will prove to be quite convenient to have it.

2.2.4 Hilbert space Hλ of NC wave functions

One hopefully superfluous note: Although F mathematically is a Hilbert space, it is not the
analog of the Hilbert space H of physical states. Similarly to the wave functions in QM being
defined on R3

0, our NC wave-functions are to be defined on R3
λ. The Hilbert space whose ele-

ments they are will be denoted as Hλ.

As to the argument of NC wave functions, we may write Ψ(xi), since xi are the NC coordi-
nates in R3

λ. However, it is often more convenient to express Ψ as Ψ(aα, a
†
α). Of course not

every array of c/a operators can represent a physical state. For example, the number of creation
and annihilation operators should be equal in the expression for Ψ - since it is a feature of all
the xi’s. So let us specify what belongs to Hλ: It is the linear space of normal ordered analytic
functions containing the same number of creation and annihilation operators

Ψ =
∑

Cm1m2n1n2 (a†1)
m1 (a†2)

m2 (a1)n1 (a2)n2 , (2.6)

where the summation is finite over nonnegative integers satisfying m1 +m2 = n1 + n2. ”Nor-
mally ordered” means that all a+’s are gathered to the left and all a’s to the right.

QM is about probabilities, NCQM should be too, so we need some kind of norm in our Hilbert
space - this one is the weighted Hilbert-Schmidt norm defined via finite weighted trace over the
basis of Fock space:

‖Ψ‖2 = 4π λ3 Tr[(N + 1) Ψ†Ψ] = 4π λ2 Tr[Ψ† rΨ] . (2.7)



170 Quantum Mechanics in Noncommutative Space

The rotationally invariant weight w(r) = 4π λ2 r is determined by the requirement that a ball
in R3

λ with radius r should have a standard volume in the limit r → ∞. The projector Pn on
the subspace F0⊕ . . . ⊕Fn, corresponds to the characteristic functions of a ball with the radius
r = λ(N + 1). Therefore, the volume of the ball in question is

Vr = 4π λ3 Tr[(N + 1)Pn] = 4π λ3
n∑

k=0

(k + 1)2 =
4π
3
r3 + o

(
λ

r

)
. (2.8)

Thus, the chosen weight w(r) = 4π λ2 r has the desired property.

2.3 Packing a mathematical toolkit

The previous section contains all the basic information about the mathematics which will
be behind our calculations in NC space. This section is in some way similar to preparing for a
backpacking trip. There is a long journey ahead of us, a few chapters long. Some mathematical
equipment will be required along the way, and this chapter is a fine place to prepare it, get ac-
quainted with it and pack it in some concise form before hitting the road.

We need roughly three things to consider: What are the basic features of NC Schrödinger equa-
tion, what do we expect from its solution (i.e. what ansatz would be sensible), and having those
things, how do we make the comparison of QM and NCQM?
We probably will not be able to prepare three separate packets of mathematical tools, nicely one-
by-one. The issue is, we are not only after solving some given equation. In this case we also
have to find one before solving it. It may be wise to avoid drawing some artificial line between
the equation and the ansatz features. This will probably result into the fact that the tools we are
to prepare and pack with us will be hard to place into a neat row for an one-by-one exposition.
Focusing solely on one item at a time helps to keep a paper nicely structured, but those items
may end up too self-centered to fit together. And we will need them to be compatible. So the
reader may forgive certain mess in the process.

2.3.1 Crash-course in NC calculus

Not that we would go deep into the explicit form of either equation or its solutions here, this is
not the proper chapter for such a discussion. This is just a concise list of what an undergraduate
physics student finds out when the hydrogen atom problem is presented to them - so that this way
we obtain basic guidelines about what we need to learn to handle in the NC case.

• In QM the Schrödinger equation is differential. We should be able to handle the basics of
the NC differential calculus.

• The whole problem, equation + ansatz for hydrogen is separable in spherical coordinates. This
was actually one of the key features that enabled exact solution in QM. If we are to reproduce
such a success in NCQM, our Ψ’s should better have this property too, whatever that means in
our case.

• In the first courses of QM students are said that the angular part has been already done before
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considering hydrogen or any other physical system, and the result can be (with proper gratitude)
simply copied from those mathematically oriented papers. Believe it or not, this is also the case
in NC version. There has been a good deal of work done as to the angular part of the problem;
the NC analogs of spherical harmonics, with some r raised to a suitable power were found and
examined in [18]. So the radial part seems to get considerably more attention in what follows.

• The radial part has a lot to do with power series in the radial coordinate, and those who do
not know how to differentiate them may leave the QM class ... meaning NC power series in r
and their derivatives should be familiar by the time we try to formulate ourselves the problem.

Let us get down to work before the to-do list grows any longer.
First, what do we already have in our NC case? Let us start from the Hilbert space. Right now
we do not know about the coefficients in (2.6); the expression is valid for the whole Hλ. Our
task will be, beside others, to find the subspace of eigenstates related to hydrogen atom.

As to the arrangement of the c/a operators in Ψ in (2.6), all a+
α ,’s are on the left and all aα’s

on the right, in other words, we have here the so-called normal ordering. Sometimes it is called
Wick’s, but it has became a tradition with us to call it ”normal”. There are some objects (reader
will encounter some later) related to various orderings, and referring to one possibility as ”nor-
mal” and to the other one as ”ordinary” (or ”usual”, ”standard”, or whatever synonym one would
normally use, except for ”normal”) has been a source of certain amusement during our discus-
sions about the matter (as well as a supplier of some confusion when we failed to keep on our
toes).

So much for the name, now how do we make calculations with variously ordered arrays of a+
α ,’s

and aα’s. There is no need to be overly general just now - the primary concern will be with the
radial Schrödinger equation, the dependence on the NC coordinates (and consequently on a+

α ,’s
and aα’s) is therefore a very specific here. There is a good reason to expect (besides other things,
and making allowance for the unexpected too) some power series in the radial coordinate.

One of the many reason why power series are so widely used as ansatz in differential equations
is the way they behave under differentiation. We would certainly appreciate having something
similar; so let us try to find such power-expansions and such derivatives that it all plays well.
We have already made acquaintance with the NC analog of radial distance, we know it is closely
related to the particle-number operatorN , we know how this works on the vectors of Fock space,
raising it to the n-th power simply means to apply it n-times in a row, so there seem to be little
need for dwelling on it much further. However, we can hardly hope to guess the complete so-
lution of the yet to be guessed equation. We are looking for an ansatz to insert it in when we
manage to figure it out. In other words, we may write a power series in ordinary powers of ρ, but
it will do us no good without the knowledge of how to differentiate it - the NC way, that is.

This leads us to the question of derivative in NC space. For now let us search for one with
respect to r, or ρ. Derivative of a function defined on the continuous space R3 is usually defined
as the difference between two values of this functions in two infinitesimally close points of this
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space. Clearly such a definition cannot be used in our space, because we do not have ”two in-
finitesimally close points” here. However, since derivative is much more general notion, we are
not at a loss here; we need something linear, obeying Leibniz rule and if possible having some
obvious analogous properties to the continuous case. One of the first candidates we can think of
as linear and Leibniz-respecting is a commutator with one entry fixed; since for now everything
relevant for our purposes is expressible via a+

α ,’s and aα’s, it is not hard to guess that such things
may prove to be also the right choice for occupants of that ”fixed” entry. So NC derivatives will
probably have something to do with objects like [a+

α , . ] and [aα, . ]. Maybe it will prove neces-
sary to multiply these by some additional things. The dot in the second entry indicates the place
where we put whatever is going to be differentiated. Let us try how we are doing so far. How
does our proposed operator act on, say, power series in r? This is one the most basic thing we
can think of to try:

[a+
α , r

k] = λk[a+
α , (a+

β1
aβ1) ... (a

+
βk
aβk

)] = ... .

We will not even bother the reader with the result; suffice it to say, it does not resemble that
simple formula from ”continuous case”: ∂rr

k = krk−1 Actually this is one of the reasons we
will deal with the above mentioned normal ordering. Let us first compare what is meant by the
ordinary Nk and normal powers : Nk : (note that the latter are denoted by colon marks)

Nk = (a+
β1
aβ1) ... (a

+
βk
aβk

) : Nk : = (a+
β1
... a+

βk
) (aβ1 ... aβk

) .

Obviously the ordinary powerNk is simply meant as the particle number operator acting k-times
in a row. Normal power : Nk : means that we let act k annihilation operators first, followed by
k creation ones thereafter. Important thing is, that normal powers show an appealing behavior in
commutators with a+

α or aα.

[aα, : Nk :] = k : Nk−1 : aα [a+
α , : N

k :] = −k a+
α : Nk−1 : .

We can hardly request better analogy with the continuous case. Normal ordering definitely helped
here. However, there are also other issues to consider: At the end of the day, we plan to make
comparison of QM and NCQM So if we even had certain idea about how do NC wave functions
look like, how would we find the connections between them and those from the standard QM?
Where should we actually make that correspondence limit λ→ 0 to find out whether the results
of QM and NCQM are compatible? NC coordinates are not c-numbers, NC wave functions de-
pendent on them are not c-number-valued by themselves either. This is where the traces over
Fock space basis come in to provide for some number-valued expressions comparable to those
from QM. And we know |n1, n2〉 are both elements of orthonormal basis in F and eigenvectors
for ordinary powers Nk. These facts suggest there are c-numbers to be easily gained here. All
this makes us a little reluctant to give up on ordinary powers completely.

This dilemma between normal and ordinary is fortunately solvable without sacrificing either
kind of powers - there is a way to relate them. All one need is certain affection for playing with
combinatorics. However, before disclosing it, let us return to physics for a while. We are primar-
ily interested in power series in radial coordinate r = λ(N + 1). So we need to consider that λ
multiplication and shift as well. As to the λ-shift, if it threatens to cause any annoyance, it is easy
to dispose of the problem by simply considering powers of ρ instead of r. That is what binomial
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theorem is here for. Indeed ρ is more practical for the technical purposes. The multiplicative
issue is more important. So here is the promised relation:

: ρn :=
n∑

k=0

λn−ks(n, k)ρk .

The coefficients s(n, k) are called Stirling numbers of the first kind. The same numbers are used
to express a falling factorial as a power series:

(x)n ≡ x(x− 1)(x− 2).....(x− n+ 1) =
n∑

k=0

s(n, k)xk .

The above relation clearly implies (after realizing that s(n, n) = 1) that normal and ordinary
powers of ρ coincide for λ = 0. It is expected, but welcomed nevertheless.
Putting it all together, a very useful formula is gained:

: (λN)k : |n1, n2〉 = λk n!
(n− k)!

|n1, n2〉, n = n1 + n2 . (2.9)

Note that for k > n we obtain zero. Indeed, in such a case there are too many annihilation
operators acting on |n〉 for it to survive. While we are at it, let us also add the negative power
version (it may come handy sometime in the future):

: (λN)−k : |n1, n2〉 = λ−k n!
(n+ k)!

|n1, n2〉, n = n1 + n2 (2.10)

These simple formulas will have a lot to say in a good deal of our calculations. Here is some
sample; at this phase it may be viewed as a mathematical toy; perhaps later it will be also of
some more serious use.

It has been mentioned that we try to keep track of analogies with QM throughout our NC dealing
with the hydrogen atom problem. All the power series issue was motivated thereby. Let us bear
for a while longer, this time saying a little more about the functions we encounter in QM. They
are expressible via generalized hypergeometric series. This is not exactly a statement which
would deserve the adjective ”specific”, since one can hardly think of any physically relevant
function that could not be described by it. Exponentials, Laguerre, Legendre, etc. polynomials
all belong here. So much the better, since there is some common pattern related to the kind of
powers used. An example may clear up more:
Suppose we had Taylor series corresponding to an exponential function :eβ%:, where β is an arbi-
trary constant and the colon marks tell us that for whatever reason all the powers are the normal
ones. How would we translate it in terms of the ordinary powers? We just have to rewrite : %n :
in terms of %n, which leads to

: eβ% : =
∑∞

k=0
βk

k! : %k : =
∑∞

k=0
(βλ)k

k!
N !

(N−k)! =

= (1 + λβ)N = (1 + λβ)
%
λ .

(2.11)
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Note that the sum is finite due to (2.9). Considering the limit λ → 0, the above equation cor-
responds to the known Euler’s formula. (If the colon marks on the left hand side cause some
doubt, one just needs to keep in mind that the limit tells us to dismiss them due to the fact that
: %n :→ %n if λ→ 0).
Many more formulas for limit relations of hypergeometric functions are known, and some of
them are possible to be re-explored while playing around various NC calculations. Since there is
one whole section coming later dealing with this and related issues, the reader is invited to look
them up there and the above example may be regarded as the conclusion of our preliminary tour
of NC space.

2.3.2 Our NC model as a deformation

NC space is sometimes referred to as ”quantized space”. In this case, it is quite natural. Com-
plex spaces Cn are even dimensional and possess Poisson structure {zi, z̄j} ∝ δij , which can be
easily quantized by replacing Poisson brackets with commutators {., .} → −i[., .]. However, we
want a theory in R3 so we need to connect it with some Cn space. As it turns out, C2 is the right
choice. It seems to have one more degree of freedom, which is however lost in the translation (as
a Hoppf fibration). The points of the standard configuration space of the Coulomb problem can
be parametrized in terms of two complex variables (Caley parameters)

~x = (x1, x2, x3) ∈ R3
0 = {~x ∈ R3|~x 6= 0} 7→ z =

(
z1
z2

)
∈ C2

0 = {z ∈ R3|z 6= 0}.

The parametrization in question reads:

xi = σi
αβ z

∗
αzβ ≡ z+ σi z i = 1, 2, 3, α, β = 1, 2 , (2.12)

where σi, i = 1, 2, 3, denote Pauli matrices.
Cayley parameters can be written using Euler angles as

z1 =
√
r cos

(
θ

2

)
e

i
2 (ϕ+γ) ,

z̄1 =
√
r cos

(
θ

2

)
e−

i
2 (ϕ+γ) ,

z2 =
√
r sin

(
θ

2

)
e

i
2 (−ϕ+γ) ,

z̄2 =
√
r sin

(
θ

2

)
e−

i
2 (−ϕ+γ) . (2.13)

Plugging (2.13) into (2.12) gives us spherical coordinates xi in terms of r, θ, ϕ, with the angle γ
left out.
Let us now consider the second order differential operator ∂zα∂z∗α acting upon functions of the
form f(~x), ~x = z+ ~σ z. Simple calculation gives:

∂zα
∂z∗α f(~x) = ∂zα

(
σi

αβ zβ ∂xif(~x)
)

= σi
αβ σ

j
γα zβ z

∗
γ ∂xi∂xjf(~x)

= z+z ∂xi∂xif(~x) , (2.14)
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where we have used the fact that the trace of Pauli matrices is vanishing σi
αα = 0, and that

z+σj σi z = z+(δji1 + iεjikσk) z .

The first term gives the contribution on the r.h.s. of (2.14), while the second one does not con-
tribute since the derivatives ∂xi , ∂xj commute. Thus we see that the standard Laplace operator
can be expressed in terms of Cayley parameters in the following way:

∆ f(~x) =
1
r
∂zα∂z∗α f(~x) , r = z+z . (2.15)

As was already mentioned C2
0 space allows introduction of elementary Poisson brackets

{zα, z
∗
β} = −i δαβ , {zα, zβ} = {z∗α, z∗β} = 0 (2.16)

It is easy to check that they lead to the following relations for coordinates xi, i = 1, 2, 3:

{xi, xj} = εijk xk , i, j, k = 1, 2, 3 . (2.17)

We point out that the Laplace operator can be expressed also in the following way:

∆ f(~x) =
1
r
{z∗α, {zα, f(~x)}} , r = z+z . (2.18)

Based on what has been given above, the space R3
0 is obviously a Poisson manifold (since it is

possible to introduce the relevant bracket relations there). In [39] it was proved that any Poisson
manifold can be deformed or quantized, i.e., one can introduce an associative non-commutative
star-product for any two functions f(~x) and g(~x):

(f ? g)(~x) = f(~x)g(~x) + iλ ω(f, g)(~x) + O(λ2) , (2.19)

where the first term denotes the point-wise product of f and g, λ is a deformation parameter and
the full expression is a formal power expansion in λ. The symbol ω(f, g) is a bilinear expression
in f and g and their derivatives such that the star-commutator of f and g is given as

[f, g]? ≡ f ? g − g ? f = 2i λ {f, g} + O(λ2) .

This condition and the requirement of associativity allows to (non-uniquely) reconstruct the as-
sociative star-product on any Poisson manifold which defines the deformed manifold R3

∗.
In our particular case the deformed space R3

∗ can be obtained simply by the replacement

zα 7→
√
λ aα , z∗α 7→

√
λ a†α , (2.20)

which is equivalent to the (particular) star-product manifold R3
∗. The star-product approach can

be useful for the investigation of commutative limits λ→ 0. The deformed space R3
∗ is formally

equivalent to the fuzzy space R3
λ (the products of polynomials in xi are isomorphic). However, as

the λ-expansions are only formal, a situation may arise when some issues need to be attended to
in the commutative limit. Therefore, in what follows we have restricted ourselves to the operator
realization of the fuzzy space R3

λ.
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3 Hydrogen atom in standard QM

This chapter is not supposed to provide the reader with something new; the ideas are certainly
familiar to them. However, sometimes details are to be reminded, and the following is written un-
der the assumption that turning a few pages back to this chapter when the need arises disturbs the
comfort of the reader less than searching for albeit notoriously known, but too-long-to-be-kept-
in-memory formulas elsewhere, with the additional tedious task to adjust the notation. If there
is a wish for more detail, then for example the standard books like [24] or [25] are to be consulted.

We will briefly mention some aspects of both ”differential” (Schrödinger’s) and ”algebraic”
(Pauli’s) way of addressing the problem here. Here is in a few lines Schrödinger’s idea:

The ”rules of the game” are described by the equation

− ~2

2me
∆ψ(x) − q

r
ψ(x) = Eψ(x), r = |x| > 0 . (3.1)

This is a game with probabilities; they are connected with wave functions from the Hilbert space
H0 specified by the norm

‖ψ‖20 =
∫

d3x |ψ(x)|2 . (3.2)

Important (for the future reference) note about considered potential: In QM it is just that Coulomb
potential which, in the usual (commutative) setting, is a solution of the Laplace equation vanish-
ing at infinity:

∆U(r) = 0 ⇒ U(r) = − q

r
. (3.3)

In a Gaussian system of units, q is a square of electric charge q = ± e2: q > 0 or q < 0
corresponding to Coulomb attraction or repulsion respectively. There is an obvious rotational in-
variance of this potential and hence the whole Hamiltonian. It seems that Nature likes to reward
(often with analytic solutions) those who pay respects to symmetry when meeting one. So it is
reasonable to write the sought-for wave function in a separable form, notice that angular mo-
mentum operator accounts for a good deal of what the free part of the Hamiltonian does, remind
ourselves that mathematicians had been so kind as to provide us with the related eigenfunctions
long ago, and write

ψ(x) = Rj(r)Hjm(x), Hjm(x) ∼ rj Yjm(ϑ, ϕ) , (3.4)

where j is the quantum number corresponding to the angular momentum, while m does this job
for its third component and Yjm(ϑ, ϕ) is the standard spherical function.
The equation for the radial part is

r R′′j (r) + (2j + 2)R′j(r) + 2αRj(r) = − k2r Rj(r) , (3.5)

where α = meq/~2 and k2 = 2meE/~2 have been used to avoid too much constant clutter.
The parameter α is simply related to the H-atom Bohr radius a0 = ~2/(mee

2) = |α|−1. The
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solutions of (3.5) are given in terms of solutions of the confluent hypergeometric equation (see,
e.g. [24]).

Rj(r) = e±
√
−2Er

1F1

(
j + 1± α√

−2E
, 2j + 2 , ∓2

√
−2Er

)
. (3.6)

(We often putme/~2 = 1 so that we do not have to worry about confusing q with α.) 1F1(a, b, x)
is confluent hypergeometric function, regular at the origin. The features of the solution depend
crucially on the sign of the energy, so there are two main areas to explore in QM: bounded states
labeled by negative discrete energy eigenvalues, and scattering states related to positive continu-
ous spectrum.

Discrete spectrum of hydrogen

Hydrogen accounts for a better part of the ”known” matter in the universe. We know so from
examination of its unique signature (the red H-alpha of Balmer series being probably the most
noticeable character) in spectral lines. These are easy to calculate once one has the solution of
Schrödinger equation and knows how to interpret the fact that energy is negative - the wave func-
tion has to be decently integrable, therefore the 1F1 function in (3.6), which has been looked at
as a power series so far, has to reduce to a polynomial, what happens if the first argument of 1F1

is a non-positive integer. This requirement gives the formula for discrete energy levels:

En = −me e
4

2~2n2
, n = j + 1, j + 2, . . . . (3.7)

There is something peculiar about this spectrum, namely its degeneracy. It is not only degenerate
with respect to quantum number m, what happens whenever we deal with rotationally invariant
potential; in this case the degeneracy is also with respect to j. So there seem to be more symme-
try waiting behind and worth exploring.

Scattering

The information about this process is concisely stored in the S-matrix. It can be gained by
rewriting (3.6) via the fundamental system of solutions of the equation (3.5). These two corre-
spond to in- and out- going spherical waves, and by comparing factors multiplying the two parts
(for each entering momentum separately), one finds the contribution from each of the partial
waves (here labeled by j). Let us see it more closely:
Radial part of solution with the angular momentum j and energy E > 0, regular in r → 0 is
given as

Rj = eikr
1F1

(
j + 1− i

α

k
, 2j + 2, −2ikr

)
, k =

√
2E > 0 . (3.8)

The solution is real and for r → ∞ it can be written as a sum of two complex conjugated parts.
In the following formula a real factor common for both parts is left out, having no influence on
the S-matrix.

Rj ∼
ij+1

Γ(j + 1 + iα
k )
eikr+i α

k ln(2kr) +
i−j−1

Γ(j + 1− iα
k )
e−ikr−i α

k ln(2kr) . (3.9)
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The S-matrix for the j-th partial wave is defined as the ratio of the r-independent factors multi-
plying the exponentials with the kinematical factor (−1)j+1 left out.

Sj(E) =
Γ(j + 1− iα

k )
Γ(j + 1 + iα

k )
, E =

1
2
k2 > 0 . (3.10)

S-matrix has poles just in those points of the complex plane which correspond to the bound
states, so the way this works makes one really appreciate the charm of complex analysis.
In the case of an attractive potential (α > 0) the S-matrix (3.10) has poles in the upper complex
k-plane for

kn = i
α

n
, n = j + 1, j + 2, . . . (3.11)

The wave function (3.8) is integrable for k = kn:

Rnj = e−α r
n 1F1

(
n, 2j + 2, 2α

r

n

)
. (3.12)

It is obvious that the energy levels correspond to the poles of the S-matrix:

En = − α2

2n2
, n = j + 1, j + 2, . . . (3.13)

The fact that the bound states energies appear as poles of the S-matrix on the upper imagi-
nary half-axis in the complex k-plane is a deep consequence of causality principle in QM,
see [24], [25].

More symmetry

The degeneracy mentioned above deserves attention, since it indicates more symmetry and the
penalty for a ”so-what”-attitude about this would be missing some beautiful aspect of the prob-
lem. The following few remarks on the subject have been well known since 1926, when W.
Pauli published his paper on the subject, [26]. He found QM analog of the classical Laplace-
Runge-Lenz (LRL) vector, recognized the ”hidden” dynamical symmetry of the problem, and
consequently arrived at the spectrum of hydrogen, without the knowledge of the explicit solution
of Schrödinger equation. Here is a sketch of the motivation and the method:

It has been known that there are conserved vectors for problems with Newton’s gravitational
force law, accounting for closed orbits. Coulomb and gravitational forces are so much alike that
it was natural to look for deeper analogies, the hydrogen atom being the first thing to begin with.
Of course due to the need of QM treatment it is not appropriate to speak of orbits or perihelia, but
still. The motivation is quite straightforward - there are two three-component vectors (angular
momentum ~L and the LRL vector ~A) conserved for a planet orbiting the Sun, we can try to find
the quantum mechanical analogs for electron ”orbiting” proton.

It turned out that the LRL vector can be found among the hermitian operators acting in the
considered Hilbert space in an almost complete analogy with the classical case. One subtlety oc-
curs (due to the ordering issues one often encounters when dealing with noncommuting objects)
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- the cross product needs to be properly symmetrized, resulting into

Ak =
1
2
εijk(Livj + vjLi) + q

xk

r
, (3.14)

where vj = − i~
me

∂j stands for velocity operator. Vital information is that the operators Li and
Ai commute with the Hamiltonian, i.e. are conserved with respect to the time evolution, and
as to their mutual commutation relations, there would be pretty good views of them forming a
closed algebra, if it were not for the commutator [Ai, Aj ] = −2iεijkHLk. This is not a Lie
algebra relation, due to the presence of H on the r.h.s. . However, restricting ourselves to HE

spanned by eigenvectors of the Hamiltonian corresponding to certain energy, we can replace H
by its eigenvalue E, which is a c-number. For E < 0 we recover the so(4) algebra relation
[Ai, Aj ] = −2iεijkELk, for E > 0 the relevant algebra is so(3, 1). Besides enabling the al-
gebra to close (possibly with Ai being rescaled suitably), the relation between energy and the
symmetry generators has been somewhat clarified. This, together with the theory related to the
relevant Casimir operators generates the energy spectrum.
To sum up, the components of ~L and ~A form a representation of generators of a dynamical group
on the subspace HE . There are many subspaces HE for any admissible eigenvalue H for which
~L and ~A are given as hermitian operators, i.e., HE is a carrier space of unitary representation of
the dynamical group. As to the classification of these representations, the Casimir operators are
of vital importance. Here we will leave out the theory behind, we just provide an example: for
the Coulomb attractive potential and negative energies the symmetry group is SO(4), its Casimir
operators have integer eigenvalues that are related to energy through the generators; a discrete
energy spectrum is to be expected. Pauli worked it out and obtained the correct formulas for the
hydrogen spectrum even before Schrödinger.

This amount of recollection related to the standard QM version of handling the hydrogen atom
is perhaps enough, so we may move on to search for analogies in the NC case.
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4 NC hydrogen atom: Schrödinger-like differential approach

Having the introductory parts behind us, we can finally move on to our task to solve hydro-
gen atom problem in the NC setting and compare the results with those from standard QM. ”NC
setting” means there are modified versions of configuration space (R3

0 → R3
λ) and Hilbert space

of states (H → Hλ) to be considered.

Just to avoid not seeing the forest because of the trees, let us remind that we do this to ex-
plore the possibility that there might be some aspects of space that the model R3

0 fails to catch -
at least to show that the by experiments so well approved quantum theory may be consistent with
such an assumption. This ”bigger picture” will be recalled again and the results discussed over
in the conclusions, but those are long way from here yet.

We are after analogies; so let us try to find those corresponding to all the objects appearing
in the previous chapter (about ordinary QM). Maybe not quite in the same order, the main ideas
remain nevertheless.
This chapter focuses mainly on the ”differential” approach à la Schrödinger, the following one
will be more in Pauli’s algebraic style. Needless to say, the results should better agree ...

4.1 Search for NC Schrödinger equation

First let us talk about physical quantities - after all, whatever the model, it always boils down
to them. In analogy with the ordinary QM case, they will be represented by hermitian operators
acting on Hilbert space of statesHλ. So the next few paragraphs should serve as an introduction
of some of them, maybe together with some features of the related eigenfunctions.
We have got a bit tricky situation here, since the NC coordinates (in R3

λ, on which NC wave
functions Ψ are defined) and the NC wave functions Ψ (elements of Hλ), are composed of
operators acting in the auxiliary Fock space. Now, we want to define operators acting on those
Ψ fromHλ. It has been suggested that the following notation should prevent confusion: to leave
the NC coordinates and the NC wave functions Ψ as they are, and to denote the operators acting
on Ψ with a hat.
Now to the matter at hand - which operators will be needed for treating the hydrogen atom
problem, and what do we expect from their eigenfunctions? Obviously a prominent role will
be played by the Hamiltonian, since it appears directly in the Schrödinger equation; to keep the
analogy as close as possible we expect it to consist of the free part (up to some multiplicative
constant some NC version of Laplacian) and the potential, which should be a solution to the
Laplace equation - in this instance, the NC analog thereof. Since we want to employ the spherical
symmetry, NC representatives of rotation generators will be necessary, and the corresponding
eigenfunctions are needed as well. There will be more operators coming later; for now let us see
what can be done with these mentioned.
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Orbital momentum in Hλ

In Hλ we define orbital momentum operators, the generators of rotations L̂j , j = 1, 2, 3, as
follows

L̂j Ψ =
1
2

[a+ σj a,Ψ] =
1
2λ

(xjΨ−Ψxj), j = 1, 2, 3 . (4.1)

They are hermitian (self-adjoint) operators in Hλ and obey the commutation relations

[L̂i, L̂j ]Ψ ≡ (L̂iL̂j − L̂jL̂i)Ψ = i εijk L̂kΨ . (4.2)

The eigenfunctions Ψjm, j = 0, 1, 2, . . . , m = −j, . . . , +j, satisfying

L̂2
i Ψjm = j(j + 1) Ψjm, L̂3 Ψjm = mΨjm , (4.3)

are given by the formula

Ψjm =
∑
(jm)

(a†1)
m1 (a†2)

m2

m1!m2!
Rj(%)

an1
1 (−a2)n2

n1! n2!
, (4.4)

where % = λa†αaα = λN . The summation goes over all nonnegative integers satisfying m1 +
m2 = n1+n2 = j,m1−m2−n1+n2 = 2m. Thus Ψjm = 0 when restricted to the subspaces
Fn with n < j (what corresponds to the fact that in the standard QM the first j − 1 derivatives
of Ψjm vanish at the origin). For any fixed Rj(%) equation (4.4) defines a representation space
for a unitary irreducible representation with spin j.
It has been mentioned that there is an amusing analogy present in this instance: in the basic
undergraduate courses of quantum mechanics the angular part of the solution is often dealt with
by simply quoting some mathematical ”guide book” and copying the results therefrom. Here
something similar is being done, the angular part of the solution is taken from [18].

Radial part and normalization in Hλ

The two wave functions Ψjm and Ψ̃j′m′ , with (j,m) 6= (j′,m′) and arbitrary factors Rj(%)
and R̃j′(%), are orthogonal in Hλ. Thus, when evaluating the norm of Ψjm, it is sufficient to
calculate ‖Ψjm‖2 = ‖Ψjj‖2 (this equality follows from the rotational invariance of the norm in
question):

‖Ψjm‖2 = 4πλ3
∞∑

n=j

n∑
k=0

(n+ 1) 〈k, n− k|Ψ†jj Ψjj |k, n− k〉 . (4.5)

We benefit from the fact that Ψjj has a simple form

Ψjj =
λj

(j!)2
(a†1)

j Rj(%) (−a2)j . (4.6)

The matrix element we need to calculate is

〈k, n− k| (a†2)j Rj(%) a
j
1 (a†1)

j Rj(%) a
j
2 |k, n− k〉
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=
(k + j)!(n− k)!
k! (n− j − k)!

|Rj(n− j)|2 , (4.7)

where

Rj(n) = 〈k, n− k|Rj(%)|k, n− k〉 (4.8)

(the expression on the r.h.s. is k - independent). Inserting (4.6), (4.7) into (4.5) and using the
identity (see [27])

n−j∑
k=0

(
k + j

j

) (
n− k

j

)
=
(
n+ j + 1
2j + 1

)
,

we obtain

‖Ψjm‖2 =
4πλ3+2j

(j!)2

∞∑
n=0

(n+ j + 1)
(
n+ 2j + 1

2j + 1

)
|Rj(n)|2 . (4.9)

This expression represents, up to an eventual normalization, the square of a norm of the radial
part of the wave function.

NC analog of Laplace operator in Hλ

The NC analog of the usual Laplace operator is

∆̂λ Ψ = − 1
λr

[â+
α , [âα, Ψ]] = − 1

λ2(N + 1)
[â+

α , [âα, Ψ]] . (4.10)

Choosing this NC version of Laplacian is crucial for obtaining a decent Schrödinger equation.
This choice is motivated by the following facts: (i) A double commutator is an analog of a second
order differential operator, (ii) the factor r−1 guarantees that the operator ∆̂λ is self-adjoint in
Hλ, and finally, (iii) the factors λ−1, or λ−2 respectively, guarantee the correct physical dimen-
sion of ∆̂λ and its correct commutative limit.
The mathematical ansatz can be also inferred from (2.18). Anyway, calculating the action of
(4.10) on Ψjm given in (4.4) we can check whether the postulate (4.10) is a reasonable choice.

The operator Rj(%) in (4.4) can be represented as a normal ordered expansion of an analytic
function Rj(%) :

Rj(%) = : Rj(%) :=
∑

k

cjk : %k : =
∑

k

cjkλ
k N !

(N − k)!
. (4.11)

The last equality follows from what has been explained in the chapter devoted to NC space.
Since : Nk : |n1, n2〉 = 0 for k > n1 + n2, the summation in (4.11) is effectively restricted to
k ≤ n on any subspace Fn.
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The following formula follows from commutation relations (A.2); the proof is given in the Ap-
pendix:

[â†α, [âα, Ψ]] = λj
∑
(jm)

(a†1)
m1 (a†2)

m2

m1!m2!

× : [−λ%R′′(%) − 2(j + 1)λR′(%)] :
an1
1 (−a2)n2

n1! n2!
. (4.12)

Here R′(%) denotes the usual derivative defined as:

R(ρ) =
∞∑

k=0

ck ρ
k ⇒ R′(%) =

∞∑
k=1

k ck %
k−1 , (4.13)

andR′′(%) is defined as the derivative ofR′(%). Thus, the prime corresponds exactly to the usual
derivative ∂%. In the commutative limit λ → 0 operator % formally reduces to the usual radial r
variable in R3, and we see that ∆̂λ just reduces to the standard Laplace operator in R3.

The potential term in Hλ

The operator Û corresponding to a central potential is defined simply as the multiplication of the
NC wave function by U(r):

(ÛΨ)(r) = U(r) Ψ = ΨU(r) . (4.14)

Since any term of Ψ ∈ Hλ contains the same number of creation and annihilation operators (any
commutator of such a term with r is zero), the left and right multiplications by U(r) are equal.

In the commutative case the Coulomb potential is a radial solution of the Laplace equation (3.3)
vanishing at infinity. Due to our choice of the NC Laplace operator ∆λ the NC analog of this
equation is

∆̂λ U(r) = 0 ⇔ [ â†α, [ âα , U(N) ] ] = 0 .

Last equation can be rewritten as a simple recurrent relation

(N + 2)U(N + 1) − (N + 1)U(N) = (N + 1)U(N) − N U(N − 1) . (4.15)

Putting (M + 1)U(M) − M U(M − 1) = q0, U(0) = q0 − q
λ and summing up the first

equation over M = 1, . . . N , we obtain the general solution:

U(N) = − q

λ (N + 1)
+ q0 = − q

r
+ q0 , (4.16)

where q and q0 are arbitrary constants (λ is introduced for the future convenience). Thus the NC
analog of the Coulomb potential vanishing at infinity is given by

(ÛΨ)(r) = −q
r

Ψ . (4.17)

We see that the 1
r = 1

λ(N+1) dependence of the NC Coulomb potential is inevitable, and that our
NC analog of radial coordinate has been chosen suitably.
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NC Hamiltonian

Now we can put together the left hand side of the NC version of the stationary Schrödinger
equation:

ĤΨ =
~2

2meλr
[â+

α , [âα, Ψ]] − q

r
Ψ . (4.18)

To make the notation more concise, we often choose the units so that me = 1, ~ = 1.

4.2 Solving NC Schrödinger equation

Based on (4.10) and (4.17) we postulate the NC analog of the Schrödinger equation (3.1)
with the Coulomb potential in R3

λ as

~2

2meλr
[â†α, [âα,Ψ]]− q

r
Ψ = EΨ ⇔ 1

λ
[â†α, [âα,Ψ]]− 2αΨ = k2 rΨ , (4.19)

These two equations are proved in the Appendix (the first one has been mentioned already):

[â†α, [âα, Ψjm]] =
∑
(jm)

. . . : [−%λR′′j − 2(j + 1)λR′j ] : . . . ,

rΨjm =
∑
(jm)

. . . : [(%+ λj + λ)Rj + λ %R′j ] : . . . , (4.20)

where Rj ≡ Rj(%) and similarly for derivatives. The dots on the left and right in (4.20) denote
the products in Ψ containing respectively creation and annihilation operators together with the
factor λj , that represent the angular dependence of Ψ and remain untouched as the operators in
question are invariant under rotations. Inserting (4.20) into (4.19) we obtain the NC analog of
the radial Schrödinger equation:

: %R′′j + [k2λ%+ 2j + 2]R′j + [k2% + k2λ(j + 1) + 2α]Rj : = 0 . (4.21)

(The constants α = meq/~2 and k2 = 2meE/~2 are defined as they have been in QM case, and
as it has been said there, we often put me/~2 = 1, so that confusing q and α does not matter.)

We claim (4.21) to be an NCQM analog of the usual radial Schrödinger equation (3.5) known
from QM. There definitely is a resemblance; in the limit λ → 0 the terms in (4.21) proportional
to λ representing the NC corrections disappear. Considering the same limit we see that presence
of the colon marks denoting the normal ordering should not worry us either; recall that for zero λ
it makes no difference whatsoever whether we care for the ordering or not. This is a good news
to start with, leaving us, however, with the task to solve (4.21) for nonzero λ, which means that
both the extra terms proportional to λ and the normal ordering are to be taken at a face value. If
it was not for the ordering issues, the solution would be quite straightforward - the extra terms
would mean just adding some more work needed to complete the calculation, but it is known
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how to solve the problems of this kind. In fact this is precisely what we are going to do: We as-
sociate the following ordinary differential equation to the mentioned operator radial Schrödinger
equation (4.21):

%R′′j + [k2λ%+ 2j + 2]R′j + [k2% + k2λ(j + 1) + 2α]Rj = 0 , (4.22)

with % being real variable, and we will solve this one. But how come we expect this step to be
of any use to us, when we actually do have to care about the ordering? One should notice the
following: whatever appears in the equations, it can be expressed in terms of powers in % - it is
just that they are normal powers in one case and the usual powers in the other. Next, we have
some operators in both equations; normal derivatives in one case and the usual ones in the other.
The key information is, that the derivative defined in (4.13) acts on the normal powers just like a
carbon copy of usual derivative, see (A.2).
Now bearing this in mind, we expect R = : R :, the solution of (4.21), to be of the same form
as R, the solution of (4.22), except for the nature of the powers involved. So a brief summary
goes like this: The solution of (4.22) with all the usual powers replaced by the normal ones is
the solution of (4.21). However, the form of the solution is not the best one yet. We have already
mentioned the relation between the equation given by QM (3.5) and (4.21), the one supplied by
NCQM. Of course we would like to compare the corresponding solution as well, but this is rather
a difficult task as long as we have normal powers in the first and the usual ones in the latter one.
Fortunately we have the formula (2.9) relating : %n : and %n, it has been mentioned in the chapter
devoted to NC space. All we need is to rewrite : R : using those relations. Then the above
mentioned comparison of QM and NCQM will be obtained.
Perhaps is has been made clear enough what is to be done, so let us get started with the solution
of equations (4.21) and (4.22). Some mathematic theory is to be studied here, useful enough to
deserve a subsection on its own.

4.2.1 Higher transcendental functions

This section is an attempt to provide some pieces from the theory of ”higher transcendental func-
tion”, focusing on (generalized) hypergeometric series. Obviously we cannot contain it all here,
we just cherry-pick some parts needed for that follows.The theory is rich, and exploring it is ex-
tremely instructive when dealing with differential equations in physics. It is also a fine place to
get lost among appealing, useful, but overwhelmingly numerous identities and symmetries (not
to mention subtleties that should be attended to). Fortunately there are guide books written by
mathematicians like [31] and [32], which help a physicist to survive the trip to this pretty math-
ematical wilderness, and to leave with useful tools to handle whatever problem it had been that
motivated the journey therein. (Besides those tools, one may also leave with increased respect
for the authors of the guide books, and with own ego slightly bruised.) Part of the information
provided here is known (at least among mathematicians) for a long time, the person who should
be given the due credit is sometimes indicated by the name of the considered object. The by us
most frequently used source has been [31] or [32].

First of all, let us settle on some notation, which is going to be used frequently. Caution is
recommended, because some authors prefer different conventions.
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(a)m is the Pochhammer symbol: (a)0 = 1 and

(a)m = a(a+ 1) . . . (a+m− 1) =
Γ(a+m)

Γ(a)
, m = 0, 1, 2, . . . .

Generalized hypergeometric series is an object on the right hand side of the below equation.
If it converges, we can call it generalized hypergeometric function, and use the symbol on the
left-hand side

pFq(a1, ..., ap; b1, ..., bq;x) =
∞∑

m=0

(a1)m ... (ap)m

(b1)m ... (bq)m

xm

m!
, (4.23)

Considering the definition of Pochhammer symbol, the series may reduce to a polynomial if
some of the ”upstairs arguments” is a non-positive integer ai = −n, (supposing that any of the
”downstairs arguments” bj does not spoil it by being equal to a non-positive integer −k, k < n;
in such a case the series would diverge.)

The cases 1F1 and 2F1, called confluent and (Gauss) hypergeometric functions respectively,
are the most relevant for our purposes, so let us pay them more attention. We will also mention
Bessel functions below.

Confluent hypergeometric equation

The confluent hypergeometric equation reads

x y′′(x) + (c− x)y′(x) − a y(x) = 0 . (4.24)

Solution of (4.24) regular at the origin is just the 1F1 mentioned above:

1F1(a; c;x) =
∞∑

m=0

(a)m

(c)m

xm

m!
. (4.25)

Sometimes it is called ”Kummer’s confluent hypergeometric function”, and the notation varies
according to the taste of the author and the part of the alphabet yet not appearing in their calcu-
lations. Symbols φ and M are frequently used. The fundamental system of solutions of (4.24)
consists of the following functions:

U(a, c;x) , and exU(c− a, c;−x) , (4.26)

U(a, c;x) is often called ”Tricomi’s confluent hypergeometric function”, and symbol ψ is some-
times used to denote it. The following expression of U is used when asymptotic expansion for
x → ∞ is needed:

U(a, c;x) =
∞∑

m=0

(−1)m (a)m(a− c+ 1)m

m!
x−a−m . (4.27)

Every solution (e.g. also (4.25), the one regular at the origin) can be expressed as a suitable linear
combination of (4.26). This possibility is useful when treating the scattering processes.
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There is a vast number of identities related to the above introduced functions. The following
one, called Kummer identity, is of particular interest to us:

e−x/2
1F1(a, c;x) = ex/2

1F1(c− a, c;−x) . (4.28)

(Gauss) hypergeometric equation

Let us move to 2F1. This one is the solution (regular at the origin) of the hypergeometric equation

x(1− x)y′′(x) + [c− (a+ b+ 1)x] y′(x)− ab y(x) = 0. (4.29)

2F1 is called (Gauss) hypergeometric function. Sometimes the subscripts are left out and the
symbol is thus reduced to just F , and if a function is said to be hypergeometric without any
additional adjectives, this one is probably meant by it:

2F1(a, b; c;x) =
∞∑

m=0

(a)m(b)m

(c)m

xm

m!
. (4.30)

Equation (4.29) has the fundamental system consisting of

(−x)−a
2F1(a, a+ 1− c; a+ 1− b; x−1)

and
(x)a−c(1− x)c−a−b

2F1(c− a, 1− a; c+ 1− a− b; x−1(x− 1)).
(4.31)

There are again many identities, among them for example this one:

2F1(a, b; c;x) = (1− x)−b
2F1(c− a, b; c; x(x− 1)−1) . (4.32)

Confluent and (Gauss) hypergeometric function are related by the following limit formula:

1F1(a; c;x) = lim
b→∞

2F1(a, b; c; b−1x). (4.33)

Bessel equation

Besides those mentioned above, there is another point of interest deserving special attention -
Bessel equation (as usual, in the equation below y = y(x))

x2y′′ν + x y′ν + (x2 − ν2)yν = 0. (4.34)

If we require regularity in the origin, our solution is the Bessel function:

Jν(x) =
∞∑

m=0

(−1)m
(x

2

)2m+ν 1
m!Γ(m+ ν + 1)

. (4.35)
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Solving more general equations

It is all well and good, but we do not encounter equations which would be just exactly in the
form (4.24) or (4.34) on a daily basis. Equations like

(a0x+ b0) y′′(x) + (a1x+ b1) y′(x) + (a2x+ b2) y(x) = 0 (4.36)

are much more common - obviously, since this is much more general case. The good news is,
that in many cases (4.36) has solutions expressible via those of (4.24) and (4.34).

Depending on whether the quantity defined as D2 ≡ a2
1 − 4a0a2 is zero or not, the regular

solutions of (4.36) are given in terms of Bessel or confluent hypergeometric functions respec-
tively. We will restrict ourselves to the case a0 = 1, b0 = 0 at the price of some generality loss
-but generality is not what we are after in the first place.

(i) a0 = 1, b0 = 0, D2 = a2
1 − 4a0a2 6= 0

In this case, the solution of (4.36) is of the form

y(x) = e
D−a1

2 xζ(a, c,−Dx), (4.37)

where a = 1
D

(
D−a1

2 b1 + b2
)

, c = b1, and ζ is some solution of the confluent hypergeometric
equation. Note that D is fixed up to the sign, since the coefficients in the equation determine the
value of D2 only. In fact it does not matter which possibility is preferred in (4.37). Replacing D
with −D makes no difference because of the Kummer identity (4.28).
(ii) a0 = 1, b0 = 0, D2 = a2

1 − 4a0a2 = 0
This time the solution of (4.36) has the following form:

y(x) = e−
a1
2 xx

1−b1
2 C1−b1

(√
(−2a1b1 + 4b2)x

)
, (4.38)

C1−b1 is any solution of the Bessel equation.

Old acquaintances in the hypergeometric frame

Equation (4.36) is of a pretty general form; so considering all that has been said above the fact
that so many decent functions from QM can be written in terms of hypergeometric series should
not take us by surprise. For example ex can be written as 1F1(a; a;x), generalized Laguerre poly-
nomials (appearing as a part of radial solution for hydrogen atom bound states) can be written in
terms of 1F1(−n; b;x), Legendre polynomials (so well known ingredient of spherical harmonics
that are independent of the azimuthal angle) can be expressed via 2F1(−n, n+ 1; 1; (1− x)/2)
etc. (n stands for non-negative integer.)

4.2.2 Solving the radial equation

As to solving our equation (4.22), that mathematical interlude above provides the necessary tools.
Regarding the translation from normal powers to ordinary ones, the equalities appearing below
are to be either believed or verified; consulting the Appendix may prove to be useful in the latter
case.
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For the sake of brevity it is suitable to introduce a new parameter η defined as

η =
kλ

2
=
√

2meEλ

2~
(4.39)

One note regarding the notation: In chapter 6 there will be another η used to shorten formulas.
Hopefully it will not lead to confusion, since they are both used only as auxiliary shorthands,
each in the separate chapter and final formulas at the end of these chapters are not expressed in
terms of either η.

The following connection holds between (4.22) and (4.36):

a0 = 1, a1 = λk2 = 4η2

λ , a2 = k2 = 4η2

λ2 ,
b0 = 0, b1 = 2(j + 1), b2 = λk2(j + 1) + α = 4

λ (j + 1) + 2α. (4.40)

⇒ D = ±(λ2k4 − 4k2)1/2 = ± 4
λ

√
η2 (η2 − 1).

For D 6= 0, or equivalently η 6= 0, η 6= 1 the solution of (4.21) is

Rj± = : Rj± :

= : exp
[(
± 2η

√
η2−1

λ − 2η2

λ

)
%

]
×

× 1F1

(
j + 1± αλ

2η
√

η2−1
; 2j + 2; ∓4η

√
η2 − 1 %

λ

)
:

= ...see Appendix...

=
[
1± 2η

√
η2 − 1− 2η2

]N
×

× 2F1

(
j + 1± αλ

2η
√

η2−1
, −N ; 2j + 2; ± 4η

√
η2−1

1±2η
√

η2−1−2η2

)
.

(4.41)

The calculations needed to get rid of the normal ordering in the above equation are briefly
sketched in Appendix. The± signs that emerged as a lower index inR± spring from the two pos-
sible choices of the sign of D. We have mentioned that the choice of sign is completely arbitrary
due to the Kummer identity which holds for the confluent hypergeometric function. This fact
survives the process of rewriting the normal powers in terms of the usual ones and is reflected in
the analogous identity for the (Gauss) hypergeometric functions.

If η = 0, the solution of (4.21) is

Rj = : Rj :
= : %−j−1/2 J−2j−1(

√
8α%) :

= ...see Appendix...

= − (2α)j+1/2

(2j+1)! 1F1(−N ; 2j + 2; 2αλ).

(4.42)
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And finally for η = 1

Rj = : Rj :
= : e2%/λ%−j−1/2 J−2j−1(

√
8α%) :

= ...see Appendix...

= −(−1)N (2α)j+1/2

(2j+1)! 1F1(−N ; 2j + 2; −2αλ).

(4.43)

To sum up, the solution of (4.21) typically consists of an exponential factor (or its NCQM ana-
log, see Appendix for further explanation) multiplied by certain power series. Depending on the
energy, the exponent may be real or imaginary. We are supposed to investigate the following
cases:

(i) η ∈ iR or E < 0;

(ii) η ∈ (1,+∞) or E > 2~2

mλ2 ;

(iii) η ∈ (0, 1) or 0 < E < 2~2

mλ2 ;

(iv) η = 0 or E = 0;

(v) η = 1 or E = 2~2

mλ2

In (i) and (ii) the arguments in the exponentials are real - bound states may occur for certain
energy values. The (iii) leads to the scattering, the exponential factor involves an imaginary part.
The last two, (iv) and (v), are the border points of the scattering interval (iii).

4.2.3 Bound states

At the very beginning it is suitable to remind us of the QM version, which predicts bound states
to occur under the condition that the potential is attractive (α > 0) and the energy has some
specific negative values mentioned in (3.7). Now to NCQM. In this section, the Rj+ form of the
solution of (4.21) will be suitable for our purposes. The reason is, that in Rj+ the absolute value
of the factor multiplying the hypergeometric function is less than 1 for every N . Consequently,
when looking for bound states, is is sufficient to check whether the power series terminates. In
case of hypergeometric function this happens if the first argument is a negative integer. (Suppos-
ing the third one does not spoil it, as has been mentioned before. This is not the case here.) This
leads to discrete energy values.

Bound states for E < 0 , η = i |η|

The equation (4.41) in this case reads

Rj =
[
1− 2|η|

√
|η|2 + 1 + 2|η|2

]N
×

×2F1

(
j + 1− αλ

2|η|
√
|η|2 + 1

,−N ; 2j + 2;
−4|η|

√
|η|2 + 1

1− 2|η|
√
|η|2 + 1 + 2|η|2

)
.

(4.44)
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Square integrable bound state solutions can be easily seen, since the hypergeometric function
has to reduce to a polynomial. This happens only if α > 0, i.e. in the Coulomb attractive case,
provided that

α > 0 and j + 1− αλ

2|η|
√
|η|2 + 1

= −nr . (4.45)

(We have used nr to denote NC ”radial quantum number”.) This gives the bound state energies
(with Planck constant ~ and mass me explicitly introduced):

EI
λ n =

mee
4

2~2n2

2
1 +

√
1 + (αλ/n)2

=
~2

meλ2

(
1−

√
1 + (αλ/n)2

)
, (4.46)

where n = nr + j + 1. Taking the limit λ→ 0 we recover the QM result.

Bound states for E > 2/λ2 , η = |η| > 1

The equation (4.41) in this case is

Rj =
[
1 + 2|η|

√
|η|2 − 1− 2|η|2

]N
×

×2F1

(
j + 1 +

αλ

2|η|
√
|η|2 − 1

,−N ; 2j + 2;
4|η|

√
|η|2 − 1

1 + 2|η|
√
|η|2 − 1− 2|η|2

)
.

(4.47)

Since the absolute value of the prefactor preceding the hypergeometric function is less than 1,
the whole solution can have a finite norm. There is a possibility for the hypergeometric function
to terminate, since the first argument becomes a negative integer for certain energy values, under
the condition that α < 0 (so the potential has to be repulsive this time).

α < 0 and j + 1 +
α

k
√
|η|2 − 1

= −nr . (4.48)

In this case the bound state energies read:

EII
λ n =

~2

meλ2

(
1 +

√
1 + (αλ/n)2

)
=

2~2

meλ2
− EI

λ n. (4.49)

These are very unexpected bound solutions for Coulomb repulsive force, EII
λ n being a mirror

of EI
λ n with respect to the ”critical energy” Ecrit = 2~2/(meλ

2). However, the states corre-
sponding to the energies E ≥ EII

λ n disappear from the Hilbert space since EII
λ n → ∞ in the

commutative limit λ → 0. For energies E = EII
λ n the solution (4.47) has the same finite norm

as (4.44) for E = EI
λ n.

4.2.4 Scattering

In this case the following intervals are relevant: E ∈ (0, 2/λ2), η ∈ (0, 1). Let us have
a look at the Coulomb scattering in NCQM, considering the j-th partial wave and the energy
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E ∈ (0, 2/λ2). For the future convenience it is suitable to distinguish the following quantity:

p =

√
2E
(

1− λ2E

2

)
. (4.50)

The formula above represents a conformal map from the upper complex E-plane, denoted as
C+, on a right complex p-plane with a branch cut p ∈ (0, 1/λ). For E ∈ C+ we may introduce
another useful complex variable

E ∈ C+ −→ Ω =
p− iλE

p+ iλE
∈ D, (4.51)

mapping C+ onto the unit discD in the complex Ω-plane. The scattering energiesE ∈ (0, 2/λ2)
are mapped onto the unit circle |Ω| = 1 in the Ω-plane, whereas the bound state energies have
their images on the real axis in the Ω-plane, so that EI,II

λ n 7→ ΩI,II
n given below, see (4.59),

(4.63).

The solution regular in the origin is given in terms of the hypergeometric function (4.30):

REj = Ω−N
2F1

(
j + 1− i

α

p
, −N ; 2j + 2; 2iλpΩ

)
. (4.52)

We choose the positive square root (4.50) for E ∈ (0, 2/λ2). The radial dependence of Rj is
present in the hermitian operator N : r = % + λ, % = λN . In analogy with the method used in
standard QM (3.9) we will rewrite also the NC solution as a sum of two terms corresponding to
the in- and out- going spherical wave. Again, leaving out the common hermitian factor which is
irrelevant regarding the S-matrix, we can write (see Appendix):

REj ∼ (−1)j+1eαπ/p

Γ(j + 1 + iα
p )

Ω−N−j−1+i α
p

Γ(2j + 2)Γ(N + 1)
Γ(N + 2 + j − iα/p)

(2λp)−1−j+i α
p

× 2F1

(
j + 1− i

α

p
, −j − i

α

p
; N + 2 + j − i

α

p
;
−i
2λp

Ω−1

)
+

(−1)jeαπ/p

Γ(j + 1− iα
p )

ΩN+j+1+i α
p

Γ(2j + 2)Γ(N + 1)
Γ(N + 2 + j + iα/p)

(2λp)−1−j−i α
p

× 2F1

(
j + 1 + i

α

p
, −j + i

α

p
; N + 2 + j + i

α

p
;

i

2λp
Ω
)
.

(4.53)

To enable better comparison with (3.9) let us rewrite also (4.53) as a sum of two complex conju-
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gated parts. Some sort of sketch of the calculation leading to it is to be found in the Appendix.

REj ∼ (−1)j+1i−j−1e−απ/2p Γ(2j + 2)
Γ(j + 1− iα/p)

e−i α
p ln(2pr)

(2pr)j+1

× exp
[
− (r/λ+ j + iα/p) ln(Ω−1)

]
× exp

[
−

∞∑
n=1

(λ/r)n Bn+1(j + 1 + iα/p) − Bn+1(0)
n(n+ 1)

]

× 2F1

(
j + 1 + i

α

p
, −j + i

α

p
;
r

λ
+ j + 1 + i

α

p
; − 1

2iλp
Ω
)

+ (−1)j+1ij+1e−απ/2p Γ(2j + 2)
Γ(j + 1 + iα/p)

ei α
p ln(2pr)

(2pr)j+1

× exp [− (r/λ+ j − iα/p) ln(Ω) ]

× exp

[
−

∞∑
n=1

(λ/r)n Bn+1(j + 1− iα/p) − Bn+1(0)
n(n+ 1)

]

× 2F1

(
j + 1− i

α

p
, −j − i

α

p
;
r

λ
+ j + 1− i

α

p
;

1
2iλp

Ω−1

)
.

(4.54)

The S-matrix is the ratio of the r-independent factors :

Sλ
j (E) =

Γ(j + 1− iα
p )

Γ(j + 1 + iα
p )

, (4.55)

where

E =
1
λ2

(
1 + i

√
λ2p2 − 1

)
(4.56)

is the conformal map inverse to (4.50), which maps the cut p right-half-plane into the E upper-
half-plane. We take the positive square root in (4.56) for p ∈ (1/λ, +∞).
The physical values of the S-matrix are obtained as Sλ

j (E + iε) in the limit ε → 0+. The
interval corresponding to the scattering E ∈ (0, 2/λ2) is mapped onto the branch cut in the
p-plane as follows:

E ∈ (0, 1/λ2) 7→ upper edge of the branch cut p ∈ (0, 1/λ),
E ∈ (1/λ2, 2/λ2) 7→ lower edge of the branch cut p ∈ (0, 1/λ).

(4.57)

4.2.5 Bound states revisited - poles of the S-matrix

In NCQM there is an analogy with QM, the poles of the S-matrix occur in the case of attractive
potential (α > 0) for some special values of energy below 0. However, poles can be also found
in the case of repulsive potential (α < 0) for particular values of energy above 2/λ2 ).
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Poles of the S-matrix for attractive potential

pλ
n = i

α

n
, α > 0 ⇔ EI

λ n =
1
λ2

(
1 −

√
1 + (λα/n)2

)
< 0,

n = j + 1, j + 2, . . . (4.58)

In the limit λ → 0 this coincides with the standard self-energies of the hydrogen atom (3.13).
Let us denote

κn =
λα

n
, ΩI

n =
κn −

√
1 + κ2

n + 1
κn +

√
1 + κ2

n − 1
. (4.59)

Then the solution (4.52) is

RI
nj = (ΩI

n)N
2F1(−n, −N, 2j + 2; −2κn(ΩI

n)−1) . (4.60)

It is integrable since Ωn ∈ (0, 1) for positive κn and under given conditions the hypergeometric
function is a polynomial. The norm (4.9) of RI

nj is finite and given in terms of a generalized
hypergeometric function. We do not present the corresponding cumbersome formula as it is not
needed for our purpose.

Poles of the S-matrix for repulsive potential

(These disappear from the Hilbert space of the physical states in the limit λ→ 0 )

pλ
n = i

α

n
, α < 0 ⇔ EII

λ n =
1
λ2

(
1 +

√
1 + (λα/n)2

)
> 2/λ2,

n = j + 1, j + 2, . . . (4.61)

Now (4.52) has the form

RII
nj = (−ΩII

n )N
2F1(−n, −N, 2j + 2; 2κn(ΩII

n )−1 ), (4.62)

where

ΩII
n = −

κn +
√

1 + κ2
n + 1

κn −
√

1 + κ2
n − 1

. (4.63)

The definition of κn is the same as in (4.59) (note that it is negative this time). Since ΩII
n =

ΩI
n ∈ (0, 1) the solution (4.52) is integrable because the hypergeometric function terminates like

in the previous case.

Here we are done with the NC version of ”Schrödingerian” treatment of hydrogen atom. Later
we are going to examine solution of the same problem from a slightly different point of view. So
the summary may be postponed until we see things also from that another angle, providing the
possibility to discuss both.
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5 Velocity operator and uncertainty relations

This chapter is some kind of an intermezzo, when we take a break from focusing mainly on
the Coulomb problem. Using what we have learned in the previous chapter, important broader
aspects of NCQM can be shown and further examined, including analogs of Heisenberg’s uncer-
tainty relations; the reader certainly appreciates their role in QM and suspects the NC version
to be equipped with something similar. As long as we were occupied only with Schrödinger’s
approach (finding the equation and solving it), it was not inevitable to deal with the velocity op-
erator explicitly (implicitly it is deeply involved via hamiltonian). However, the velocity operator
will have a lot to say later - it provides insight into the theory, and is a vital part of the algebraic
approach based on the ”hidden” dynamical symmetry, so it deserves a chapter of its own.

5.1 Definition

Let us define the velocity operator using the Heisenberg equation

V̂ jΨ = −i[X̂j , Ĥ]Ψ. (5.1)

Here X̂j is the coordinate operator that acts on Ψ symmetrically as

X̂jΨ =
1
2
(xjΨ + Ψxj). (5.2)

The relation for V̂ jΨ can be simplified, if we consider potentials with radial dependence only:
U = U(r) (in fact building our fuzzy space in a rotationally invariant fashion has been based on
the intention to deal with such potentials). If that is the case, we can write (since [xj , r] = 0)

V̂ jΨ = −i[X̂j , Ĥ0]Ψ (5.3)

= − i

2r
σj

αβ(a+
α [aβ ,Ψ]− aβ [a+

α ,Ψ]) (5.4)

=
i

2r
σi

αβ(a+
α Ψaβ − aβΨa+

α ) (5.5)

=
i

2r
σi

αβŵαβΨ. (5.6)

The quantity ŵαβ has been introduced here just as a shorthand; it will appear again, so we suggest
the reader does not forget its relation to the velocity operator.

5.2 Some basic properties of V̂ j

From its construction it is obvious that V̂ j inherits the hermicity of operators X̂i and Ĥ0.
Now we shall investigate its action upon some basic objects to prove that it really does the job of
a gradient operator.

V̂ ixj = − i

2r
σi

αβ(a+
α [aβ , x

j ]− aβ [a+
α , x

j ]) =

= − i

2r
σi

αβ(a+
α [aβ , λσ

j
γδa

+
γ aδ]− aβ [a+

α , λσ
j
γβa

+
γ aδ]) = (5.7)

= − iλ
2r
σi

αβσ
j
γβ(a+

αaδδβγ + aβa
+
γ δαδ) =
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now using aβa
+
γ = a+

γ aβ + δβγ we get

= − iλ
2r

(a+
αaβ((σiσj)αβ + (σjσi)αβ + Tr(σjσj)) =

and finally using the anticommutation relation of Pauli matrices {σi, σj}αβ = 2δijδαβ and
Tr(σiσj) = 2δij

= − i

2r
(λ(a+

αaα + 1)δij) = −iδij .

Similarly, one can verify, that

V̂ jf(r) = −ix
j

r
f ′λ(r). (5.8)

where

f ′λ(r) =
f(r + λ)− f(r − λ)

2λ
. (5.9)

So iV̂ i makes as fine a gradient operator as the NC deformation allows. There is one crucial
aspect brought by the NC modification - the Lebnitz rule gets the following correction:

V̂ j(AB) = (V̂ jA)B +A(V̂ jB) +Kj(A,B). (5.10)

where the Kj(., .) is the correction term

Ki(A,B) = − i

2r
σi

αβ([a+
α , A][aβ , B]− [aβ , A][a+

α , B]). (5.11)

This correction vanishes in the limit of λ→ 0.
One can ask if the operator defined by (5.3) transforms as a vector (under some rotation generated
by L̂). This may be verified using the commutation relations for aα, a

+
α , definition of L̂ and (5.3),

and turns out to be true

[L̂i, V̂ j ] = iεijkV̂ k. (5.12)

5.3 Uncertainty relations

After examining the basic properties of the velocity/gradient operator V̂ j we can move on
to something more interesting. In the ordinary QM, quite a prominent role is played by the
Heisenberg’s relations [p̂i, X̂j ] = −iδij~. Recalling that ~ = me = 1, this corresponds to
[V̂ i, X̂j ] = −iδij .
In QM this is easily calculated using the fact that ∂ix

j = δij and the Leibnitz rule. The former
claim is true in NC QM as well (see (5.7)), but the latter brings a tiny (but important) modification
(see (5.10)). Combining those two equations, we get

[V̂ i, X̂j ]Ψ = −iδijΨ +
1
2
(Ki(xj ,Ψ) +Ki(Ψ, xj)). (5.13)
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By evaluating the correction terms

Ki(xj ,Ψ) = − i

2r
σi

αβ([a+
α , x

j ][aβ ,Ψ]− [aβ , x
j ][a+

α ,Ψ]), (5.14)

Ki(Ψ, xj) = − i

2r
σi

αβ([a+
α ,Ψ][aβ , x

j ]− [aβ ,Ψ][a+
α , x

j ]),

one finds quite a surprising result, that together they are equal to 2iδijλ2Ĥ0Ψ. Inserting this into
the uncertainty relation in the form (5.13) we obtain

[V̂ i, X̂j ] = −iδij(1− λ2Ĥ0). (5.15)

Let us analyze this result a little. First, it is exact (we have not neglected any terms of higher
orders in λ). Obviously, the correction is small for energies E � λ−2 and vanishes for λ = 0,
3. It also defines two important energy scales: E0 = 1

λ2 , for which the uncertainty vanishes and
E1 = 2

λ2 , for which the principle gets negative sign, with respect to the ordinary version (−iδij).
Both these scales appeared in the study of scattering/bound states of NC QM hydrogen atom.

5.4 Commutator [V̂ i, V̂ j ]

Here we are going to use the notation introduced in (5.6), so that the commutator has the
form

[V̂ i, V̂ j ] Ψ =
(
i

2

)2

σi
αβσ

j
γδ

[
1
r̂
ŵαβ ,

1
r̂
ŵγδ

]
Ψ. (5.16)

Using the rule for [AB,CD] and the obvious fact [r̂, r̂] = 0, this can be split into 3 separate
terms: one of the form 1

r2 [w,w] Ψ and two of the form 1
r [ 1r , w] Ψ. We have evaluated them

separately, the first term showed up to be equal to 2i
λr̂2 ε

ijk(xkΨ−Ψxk), the other two, together,
are equal to 2i

λr̂2 ε
ijk(−xkΨ + Ψxk). Combining those two results, quite a non-trivial zero is

obtained:

[V̂ i, V̂ j ] Ψ = 0. (5.17)

One may ask, if this zero isn’t somehow obvious. To answer this question, we investigated this
commutator for generalized states Ψ containing a different number of c/a operators, yielding
highly non-trivial (and interesting) result. However, presenting it here would be at the cost of
wandering too far away from the main problems this paper is dealing with.

5.5 Relation between Ĥ0 and V̂ 2 = V̂ iV̂ i

Another important relation is the one between the velocity operator (its square) and the free
Hamiltonian. This calculation is a bit tricky, one has to evaluate both

V̂ 2 = V̂ j V̂ j = −1
4
σj

αβσ
j
γδ

1
r̂
ŵαβ

1
r̂
wγδ (5.18)

3If λ is tiny, then 1
λ2 , which corresponds to the energy scale on which the correction term starts being dominant, is

immense. This is probably true for all NC corrections to QM. They become important (or measurable) for energies, for
which QM is not a suitable theory (but instead a relativistic theory is needed). The corrections still might be true for
smaller energies, being relics of the higher theories.
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and (
1
λ

2

− Ĥ0

)2

. (5.19)

These two turn out to be related in the following fashion:(
1
λ2
− Ĥ0

)2

=
1
λ2

(
1
λ2
− V̂ 2

)
, (5.20)

which can be rewritten as

1
2
V̂ 2 = Ĥ0

(
1− 1

2
λ2Ĥ0

)
, (5.21)

Ĥ0 =
1
λ2

(
1−

√
1− λ2V̂ 2

)
. (5.22)

Equation (5.21) implies, that the kinetic energy of a particle may not be infinitely large, instead,
it has a natural cut-off at E1 = 2

λ2 . Alternatively, from (5.21) follows that for E0 = 1
λ2 we

achieve the maximal velocity square V̂ 2 = 1
λ2 .

5.6 Kinematic symmetry in NC QM

Symmetry seems to be a recurring theme throughout this whole paper - quite a heartwarming
fact for a physicist. As to the particular symmetry examined in this section, we suspect there is
more depth to it than we are going to present here. For the time being let us at least mention it as
something to think about.
As has already become a tradition, let us start with reminding ourselves of the standard QM,
where the configuration space is R3

0, and the following kinematic commutation relations among
basic operators corresponding to rotation generators Lk, coordinates xk and momenta pk, k =
1, 2, 3, hold (regardless of the form of potential):

[xi, xj ] = 0, [pi, pj ] = 0, [pi, xj ] = −iδij ,

[Li, Lj ] = −iεijk Lk, [Li, xj ] = −iεijk xk, [Li, pj ] = −iεijk pk. (5.23)

Due to the nature of the problems dealt with in this paper we will consider the case of a central
potential; this assumption is followed by the well-known conservation laws. As to the above
equations, the first line represents the canonical commutation relation in QM; for the sake of
brevity we have set ~ = 1. The second line tells us that the triplets xk and pk are SO(3)-vectors.
Operators Lk, xk, pk form a Lie algebra of the 3D Euclidean group E(3) = SO(3) .H(3) - the
semi-direct product of rotation group SO(3) and 3D Heisenberg-Weyl group.

Now to NC QM. An alternative notation can be of use here:

L̂ij = εijk L̂k, L̂k4 = − L̂4k =
1
λ
X̂k . (5.24)
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The commutation relations among Lk and xk, k = 1, 2, 3, take the explicit SO(4) invariant form

[L̂ab, L̂cd] = i (δac L̂bd − δbd L̂ac) . (5.25)

This relations express the requirements that L̂k, k = 1, 2, 3, are SO(3) and xk, k = 1, 2, 3 are
SO(3) vectors.

The triplet of NC velocity operators V̂k, k = 1, 2, 3, may be joined by one additional com-
ponent, whose form can be inferred from the r.h.s. of the uncertainty relations, so that defining

V̂4 Ψ =
(

1
λ
− λ Ĥ0

)
Ψ =

1
2r
(
a+

α Ψ aα + aα Ψ a+
α

)
, (5.26)

we obtain a remarkable result that the four commuting operators V̂ , c = 1, 2, 3, 4, form an
SO(4)-vector:

[V̂a, V̂b] = 0 , [L̂ab, V̂c] = i (δac V̂b − δbc V̂a) , a, b, c = 1, ... , 4 . (5.27)

The second commutator combines the fact that V̂ , k = 1, 2, 3 is an SO(3)-vector and that the NC
uncertainty relations hold. Equations (5.27) represent Lie algebra commutation relations of the
4D Euclidean group E(4) = SO(4) . T (4) - the semi-direct product of 4D orthogonal group
SO(4) with 4D translations generated by four velocity operators.

Adding now to (5.21) the square of the fourth component of the velocity operator (5.26) we
obtain the quadratic Casimir operator of the E(4) group:

Ĉ2 = V̂ 2
a = V̂ 2

j + V̂ 2
4 = 2 Ĥ0 − λ2 Ĥ2

0 +
(

1
λ
− λ Ĥ0

)2

=
1
λ2

. (5.28)

The second quartic Casimir operator is given as a square of the E(4) Pauli-Lubanski vector

Λ̂d =
1
2
εabcd L̂ab V̂d ⇐⇒ Λ̂i = V̂4 L̂i + εijk V̂j L̂k4, Λ̂4 = L̂j V̂j . (5.29)

Particularly, the action of the fourth component of the Pauli-Lubanski vector is evaluated in the
Appendix, the result is

Λ̂4 Ψ = L̂j V̂j Ψ = 0 . (5.30)

It follows from the SO(4) invariance that all four components of Pauli-Lubanski vector vanish,
and consequently the quartic Casimir operator vanishes too:

Λ̂a = 0, a = 1, ..., 4, =⇒ Ĉ4 = Λ̂2
a = 0 . (5.31)

Thus, the NC QM in question is specified by a scalar E(4) representation specified by the
values of Casimir operators: Ĉ2 = 1/λ2 and Ĉ4 = 0. In such representation the common
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eigenvalues of velocity operators form a 3-sphere S3
ν with radius ν = 1

λ for any central poten-
tial Û(r̂).

Finally, inverting equations (5.24) as

L̂k =
1
2
εijk L̂ij , X̂k = λ L̂k4 , (5.32)

and taking the commutative limit λ → 0 we recover the kinematic symmetry relations (5.23).
Thus the kinematic symmetry in NC QM is a λ-deformation of the kinematic symmetry in the
standard QM, or equivalently, the kinematic symmetry in QM is a λ-contraction of the kinematic
symmetry in NC QM (within the framework of Lie algebra deformations and contractions).

Note: In the commutative limit λ → 0 the fourth component of the velocity V̂4 diverges,
and consequently, the quadratic Casimir operator Ĉ2 diverges too. In this limit we have now no
restrictions on the remaining three components of velocity V̂k, k = 1, 2, 3: the 3-sphere S3 of NC
velocities goes to 3-plane of standard velocities (momenta). In the commutative limit the role of
the Casimir operator overtakes the factor ~ at −i δij on the r.h.s. of the uncertainty relations (we
have chosen ~ = 1). In addition, in the commutative limit just the fourth component of Pauli-
Lubanski vector given in (5.30) persists: the condition L̂j V̂j = 0 is the well-known condition
valid for scalar particles in standard QM.

5.7 Ehrenfest theorem

In Newtonian mechanics the change of particle’s momentum is governed by the equation
~̇p = −~∇U(~x, t). In QM, this is replaced with the Ehrenfest theorem d

dt 〈~p〉 = 〈−~∇U(~x, t)〉. One
may ask how this changes in NC QM. The result for U = U(r) is easily calculated using the
previous results ((5.22) combined with (5.17) tells us that [V̂ i, Ĥ0] = 0), so

˙̂
V i = −i[V̂ i, Ĥ] = −i[V̂ i, Ĥ0 + Û(r̂)] = −i[V̂ i, Û(r̂)], (5.33)

which, due to the modified Leibnitz rule (5.10), equals to

˙̂
V i = −i(V̂iÛ(r̂)) + Û ′λ(r̂)

(
λ

r̂
L̂i + λ2Ŵ i

)
+
λ2

2
Û ′′λ (r̂)V̂ i, (5.34)

where Û ′λ(r̂) is defined in (5.9) and

Û ′′λ (r̂) =
1
λ2

(Û(r̂ + λ)− 2Û(r̂) + Û(r̂ − λ)), (5.35)

Ŵ iΨ =
1
2r
σi

αβ [aβ , [a+
α ,Ψ]]. (5.36)

The NC Ehrenfest theorem contains new terms, which vanish in the commutative limit λ → 0.
The vector Ŵ i has not been introduced yet, but it turns out to be closely related to the Laplace -
Runge - Lenz vector and we shall meet it again later, (6.12).
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6 NC hydrogen atom: Pauli-like approach via dynamical symmetry

Now we are going to investigate the existence of dynamical symmetry connected with the
conservation of Laplace-Runge-Lenz vector (LRL) of the Coulomb-Kepler problem in NCQM
and possibly to try to find the NC version it.
This chapter is going to deal with the same problem as that Schrödinger-like one; it is just a
different approach. Symmetry was very important in the previous discussion, now it is about to
be twice as important. ”Twice” is not just a figure of speech; the symmetry group that is going to
be exposed has twice as much generators as SO(3) employed before. Of course, since we plan to
spend this chapter with the same hydrogen that has been our companion so far, the SO(3) group
is not leaving; and the same holds the other way round, the ”new” symmetry has not arrived
just now; only it has been at work in an inconspicuous manner. (Its footprints were visible - the
spectrum has showed more degeneracy that could be accounted for by only SO(3).)
One note at the beginning: To live up to our plan (”to examine a hidden symmetry in the hydrogen
atom problem solved by means of NCQM”), this chapter could be a little shorter than it is.
However, a few notes have been inserted which aim to show the problem in a bigger picture. A
comparison of this few chapters to a hiking trip has been mentioned. One usually does not mind
doing some sightseeing for its own sake and enjoying views also of the more distant peaks which
may be a little out of the set-out track.
In this case there is conserved LRL vector to be examined, the related law being important
comparably to the conservation of angular momentum. This quantity does not enter physics
exclusively in the realm of quantum mechanics; on the contrary, the huge systems accessible to
bare-eye-observations have a strong connection with it. It is appealing to see patterns in Nature
play in such a harmony, notwithstanding our present disability to find a description that would
have the same quality.

6.1 Laplace-Runge-Lenz vector enters

Coulomb-Kepler problem corresponding to the motion of a particle in a field of a central
force proportional to r−2, was one of the main issues which stood in the centre of attention at the
very beginning of the modern physics. Newton equation of motion for a particle of mass m is

m~̇v = − q
~r

r3
. (6.1)

Here q is just a constant which has to do with the magnitude of the force applied. The system
with a central force definitely is symmetric, at least the rotational invariance is striking; and the
orbital momentum

~L = m~r × ~v (6.2)

is conserved in any central field. However, we are on lookout for all possible symmetries; and
there are indeed more of them, because the force is not only central, but also falls off with distance
as r−2. It turns out that such system is in a certain way equivalent to a harmonic oscillator moving
in the four dimensional space R4 ' C2, which possesses eight integrals of motion. By fixing
two of them one obtains system equivalent to Coulomb-Kepler problem (6.1). Thus, we should
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be able to find six integrals of motion. Three of them have been introduced already, namely the
components of ~L, the remaining three form the constant vector

~A = ~L × ~v + q
~r

r
, (6.3)

which is defined only up to an inessential multiplicative constant. Below we will use its normal-

ization as indicated above. That ~̇A = 0 follows directly from (6.1) and (6.2).

Since gravity was the first interaction people dealt with in modern physics, and because ac-
cording to Newton the force keeping the solar system together goes as r−2, it is natural that the
first interpretation of the conserved quantity was provided by astronomy. Just briefly: The vec-
tor pointing towards the perihelion of the orbit is conserved; the fixed direction tells us that the
perihelion does not precess, while the constant magnitude means that the eccentricity does not
change. We know it is not quite like that in our solar system; but that is due to the fact that the
force does not exactly meet the requirement of the r−2 dependence, mainly due to the influence
of other planets. This corrections have been estimated, and a tiny difference with the observed
precession of Mercury’s perihelion was explained by general relativity.

A little historical note should be put here. We call the mentioned quantity Laplace-Runge-Lenz
vector, as it is commonly done nowadays. This is, however, more for the sake of convention than
a historical correctness. The vector had been forgotten and brought to light again several times
and neither of the three gentlemen was the first one to think of it. We have to go back into the
earlier days of physics.
No such quantity was found among Newton’s publications, so he might really not have been
aware of the related conservation law. As far as we know, the first ones to make a mention of it
were Jakob Hermann and Johann Bernoulli in the letters they exchanged in 1710, see [34], [35].
So the name ”Hermann-Bernoulli vector” would probably be far more just. It was much later
in 1799 that the vector was rediscovered by Laplace in his Celestial mechanics [36]. Then it
appeared as an example in a popular German textbook on vectors by C. Runge [37], which was
referenced by W. Lenz in his paper on the (old) quantum mechanical treatment of the Kepler
problem or hydrogen atom [38]. After Pauli’s publication [26], it became known mainly as the
Runge-Lenz vector, nowadays this vector usually carries the name which we use - with certain
objections - also here.

As to the QM version of the story, it has been summed up already in the related chapter how
Pauli found a QM analog of LRL vector and how this lead him along a beautiful way to derive
the hydrogen spectrum. Now we would like to examine whether, and if so, then how, is this
affected by the noncommutativity of the space.

6.2 Dynamical symmetry in NCQM

Let us move on to the NCQM version of the Coulomb-Kepler problem. The question is,
whether we can find sensible analogs of the three components Ai of the LRL vector in such
a way, that all the requirements regarding commutation relations are satisfied (the commutator
with the Hamiltonian has to be zero because of the conservation law and relations among all
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components of ~A and ~L are supposed to correspond to the relevant symmetry).
We are going to answer this question by actually finding the NC version of Ai. There is no pre-
scribed way to launch the search for it - in this case it was done by a combination of an educated
guess and a piece of good luck. The ”educated” part involves trying to keep the procedure as
close to the classical case as possible. To build up the ”original” classical LRL vector one just
has to suitably combine the components of velocity, angular momentum and position vectors (it
is no big deal to replace momentum by velocity multiplied by mass in the classical mechanics,
but an important step to introduce the idea that we actually have the NC analogs of all that is
needed and the task reduces to finding the proper way of combining it together).

Recall the lesson taken from QM: When constructing the QM version of LRL vector, the cross
product of momentum and angular momentum needed to be symmetrized due to their non-
vanishing commutator. The NC operators we are going to use when constructing the analog
of the cross product part, i.e. V̂i, L̂i do not commute either, so some symmetrization of the
mentioned sort is supposed to take place as well. Yet this is not all, an additional subtlety is
to be taken into account: there is another, ”potential” part of the LRL vector, in both classical
and quantum mechanics proportional to ~r/r. In QM xi/r was supposed just to multiply the
wave function, but since the corresponding NC analogs of xi and Ψ do not commute, as well
the ordering in the product makes a difference and there is no reason to prefer either of the two
possibilities. We resolve this the same way we did in the cross product case - we choose both
and take the average:

Âk =
1
2
εijk (L̂iV̂j + V̂jL̂i) + q

X̂k

r
, (6.4)

where X̂k acts as X̂kΨ = (1/2) (xkΨ + Ψxk).

Now comes the ”lucky” part of the story - besides coping with the ordering dilemma, nothing
more needs to be done, except for actually working out the calculations to justify our definition
of ~A. That requires more work than the previous sentence may suggest, and the better part of this
chapter deals with it.
So now we are going to take the NC analogs of the Hamiltonian, velocity, angular momentum
and position operators, mix them together according to the recipe similar to that known from the
QM case, and symmetrize what should be symmetrized.

Then the main work will follow - evaluating the commutator [Âi, Ĥ], examining the commu-
tation relations between ~A and ~L, rescaling ~A by a suitable numerical factor if needed... all in
all, searching for the signs of a higher dynamical symmetry. Once the symmetry group is known
to be present, we can construct the corresponding Casimir operators. We know how Casimirs
for so(4) look like, and their prescribed eigenvalues are ”responsible” for the discrete energy
spectrum.
All those that play important roles: the Hamiltonian, velocity, angular momentum and position
operators, have been defined already in terms of creation and annihilation operators a+

α , aα; we
know commutation relations for these, so we should be able to calculate all that is needed. How-
ever, after writing it all down and trying to make heads and tails of it, one quickly comes to the
conclusion that the problem is not assigned in the most friendly way. It is better to think twice
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before introducing any new symbols, but this is definitely the case when it helps. There are cer-
tain combinations of a+

α , aα that our expressions have in common, so separating them the right
way makes the calculations easier.

6.2.1 Auxiliary operators

We are interested in the way in which the considered operators act on the wave functions Ψ.
They are expressed in terms of a+

α , aα. Generally it matters whether the creation and annihilation
operators act from the right or the left and the following notation will turn out to be useful.

âα Ψ = aα Ψ , b̂α Ψ = Ψ aα , (6.5)
â+

α Ψ = a+
α Ψ , b̂+α Ψ = Ψ a+

α . (6.6)

One obvious virtue of this notation is the fact that from now on we do not have to drag Ψ into
the formulas just to make clear which side do the operators act from. The relevant commutation
relations are

[âα, â
+
β ] = δαβ , [b̂α, b̂+β ] = − δαβ . (6.7)

The other commutators are zero. Having this last sentence in mind spares a lot of paper while
doing the calculations.
As already mentioned, we will use the position operator in the form

X̂i Ψ =
1
2

(xi Ψ + Ψxi) =
λ

2
σi

αβ (â+
α âβ + b̂β b̂

+
α ) Ψ ,

r̂Ψ =
1
2

(rΨ + Ψ r) =
λ

2
((â+

α âα + 1) + (b̂α b̂+α + 1))Ψ . (6.8)

Since our wavefunction Ψ commutes with r we have r̂Ψ = rΨ = Ψr. Similarly f̂(r)Ψ =
f(r)Ψ = Ψf(r) for any (reasonable) function, e.g. f(r) = 1

r .
The following sequences of operators will occur so often and their role is going to be so important
that they deserve to have notation on their own:

ŵαβ = â+
α b̂β − âβ b̂

+
α , ζ̂αβ = â+

α b̂β + âβ b̂
+
α ,

ŵ = ŵαα , ζ̂ = ζ̂αα ,

ŵk = σk
αβŵαβ , ζ̂k = σk

αβ ζ̂αβ .

Ŵk =
2X̂k

λ
− ζ̂k = σk

αβ(â+
α âβ − â+

α b̂β − âβ b̂
+
α + b̂+α b̂β) , (6.9)

Ŵ =
2r̂
λ
− ζ̂ = â+

α âα − â+
α b̂α − b̂+α âα + b̂+α b̂α ,

Ŵ ′
k = Ŵk + ωX̂k = ηX̂k − ζ̂k ,

Ŵ ′ = Ŵ + ωr̂ = ηr̂ − ζ̂ .

σk
αβ denotes the Pauli matrices and the new letters which appeared in the last two lines are just

shorthands:
ω = −2λE , η = ( 2

λ + ω) .
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The reader perhaps remembers the note about another auxiliary η which appeared in the Schrödin-
ger-like chapter. Hopefully just the first half of the rule ”forgive and forget” is being followed in
this case. E is energy and λ is the NC parameter mentioned in the introduction. Note that the
only difference between Ŵ ′

k and Ŵk is the constant multiplying one of their terms, Ŵ ′ and Ŵ
are related in the same way.

6.2.2 NC operators revisited

We have introduced new auxiliary operators which should make the calculations more man-
ageable, now we will rewrite everything relevant in their terms - the Hamiltonian, the velocity
operator and the NC LRL vector.

Ĥ =
1

2λr̂
(â+

α âα + b̂+α b̂α − â+
α b̂α − âαb̂

+
α )− q

r̂

=
1

2λr̂
(
2r̂
λ
− ζ̂)− q

r̂
=

1
2λr̂

Ŵ − q

r̂
, (6.10)

V̂i = −i
[
X̂i, Ĥ

]
=

i

2r̂
ŵi , (6.11)

Âk =
1
2
εijk(L̂iV̂j + V̂jL̂i) + q

X̂k

r̂
= − 1

2λr̂
(r̂ζ̂k − X̂k ζ̂) + q

X̂k

r̂

=
1

2r̂λ
(r̂Ŵk − X̂kŴ ) + q

X̂k

r̂
=

1
2r̂λ

(r̂Ŵ ′
k − X̂kŴ

′) + q
X̂k

r̂
(6.12)

=
1

2r̂λ
(r̂Ŵ ′

k − X̂k(Ŵ ′ − 2λq)) .

Deriving equations (6.11) and (6.12) involves somewhat laborious calculations, many steps have
been skipped here. However, all of them can be reconstructed from the definitions given in the
preceding paragraphs. Some more details are given in the Appendix. In the second line of (6.12)
we have used the equality of (r̂Ŵk − X̂kŴ ) = (r̂Ŵ ′

k − X̂kŴ
′).

Now let us rewrite the NC Schrödinger equation in the following way:(
1

2λr̂
Ŵ − q

r̂
− E

)
ΨE =

1
2λr̂

(Ŵ ′ − 2λq)ΨE = 0 . (6.13)

ΨE belongs to HE
λ , i.e. to the subspace spanned by the eigenvectors of the Hamiltonian.

It makes things easier if we recognize a zero when stumbling across one. As for (6.13), it
provides a funny form of zero - the calculations, however, may get less amusing if this point is
overlooked.
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Here is how does it pay off: Let us examine Âk|HE
λ

, that is, the LRL vector as it works on the so-
lutions of the Schrödinger equation. (And once again: we do not have to know the ΨE explicitly,
they are just supposed to exist and form a basis for the subspace HE

λ .)

Âk|HE
λ

=
1

2r̂λ
(r̂Ŵ ′

k − X̂k (Ŵ ′ − 2λq)︸ ︷︷ ︸
see Eq. (6.13)

) =
1
2λ
Ŵ ′

k . (6.14)

It is nice to know the ”full form” of Âk, but if we are interested in the actual physical bound states,
we do not need to take care of the whole abstract Hilbert space. We did not expect the SO(4)
symmetry to show elsewhere thanHE

λ . So when dealing with calculations related to conservation
ofAk, we just need to find out whether the following commutator with the Hamiltonian vanishes.

˙̂
W ′

k = i
[
Ĥ0 −

q

r̂
, Ŵ ′

k

]
= i

[
1

2r̂λ
Ŵ − q

r̂
, Ŵ ′

k

]
= i

[
1

2r̂λ
Ŵ ′ − q

r̂
, Ŵ ′

k

]
= i

[
1

2r̂λ
Ŵ ′, Ŵ ′

k

]
− iq

[
1
r̂
, Ŵ ′

k

]
(6.15)

=
i

2r̂λ

[
Ŵ ′, Ŵ ′

k

]
+ i

[
1
r̂
, Ŵ ′

k

](
Ŵ ′

2λ
− q

)
= 0 .

In the second line, Ŵ ′ appears instead of Ŵ . It is a legal step to do, since it does not change the
commutator, and it is a sensible step too, since we obtained the (6.13)-style zero in the second
term in the last line (it vanishes when acting on vectors from HE

λ and we are not interested in
the rest of Hλ). To prove that the first term proportional to [Ŵ ′, Ŵ ′

k] also does not contribute
requires calculations lengthy enough to be placed in the Appendix.
The equation above apparently conveys an encouragement to search for the underlying SO(4)
symmetry, since the LRL vector conservation makes its components suitable candidates for a half
of its generators, the remaining three consisting of the components of the angular momentum.
So let us check it (for detailed derivation see (E.9) in the Appendix)

[Âi, Âj ] =
1

4λ2
[Ŵ ′

i , Ŵ
′
j ] = i

ω

λ

(
1 +

ωλ

4

)
εijkL̂k, (6.16)

or to see explicitly the energy dependence (ω = −2Eλ):

[Âi, Âj ] = iεijk

(
−2E + λ2E2

)
L̂k. (6.17)

There is nothing but a constant in the way, as long as we let the operator [Âi, Âj ] act upon the
states from HE

λ with the energy fixed. Eq. (6.16) and

[L̂i, L̂j ] = iεijkL̂k, [L̂i, Âj ] = iεijkÂk, (6.18)

define Lie algebra relations corresponding to a particular symmetry group which actual form de-
pends on the sign of the E dependent factor in (6.16). The relevant relations for L̂i have been
already mentioned, so we just need to check the mixed commutator [L̂i, Âj ]. This is a long pro-
cess again, so to not distract our attention from what is going on (besides reshuffling operators
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here and there), we relocated the calculation to the Appendix, see eq. (E.12) and the related ones.

There are three independent cases
• SO(4) symmetry: −2E + λ2E2 > 0 ⇐⇒ E < 0 or E > 2/λ2,
• SO(3, 1) symmetry: −2E + λ2E2 < 0 ⇐⇒ 0 < E < 2/λ2,
• E(3) Euclidean group: −2E + λ2E2 = 0 ⇐⇒ E = 0 or E = 2/λ2.

The last boundary case is simply given by limits E → 0 and E → 2/λ2 of both preceding cases.
The admissible values of E should correspond to the unitary representations of the symmetry
in question. This requirement guarantees that the generators L̂j an Âj are realized as hermitian
operators, and consequently correspond to physical observables. The Casimir operators in all
mentioned cases are

Ĉ ′1 = L̂jÂj ,

Ĉ ′2 = ÂiÂi + (−2E + λ2E2)(L̂iL̂i + 1) (6.19)

=
1

4λ2

(
Ŵ ′

iŴ
′
i + (η2λ2 − 4)(L̂iL̂i + 1)

)
.

The prime indicates that we are not using the standard normalization of Casimir operators.

Now, we need to calculate their values inHE
λ . The first Casimir is vanishing in all cases due to the

fact that Ĉ ′1ΨE ∼ rΨE −ΨEr = 0. (See (E.14), (E.15) in the Appendix.) The second Casimir
operator is somewhat more demanding, and either believe it or convince yourself (consulting the
part of the Appendix beginning with (E.17) may help in the latter case), the terms in the bracket
add up exactly to (Ŵ ′)2. According to the Schrödinger equation, (Ŵ ′)2ΨE = 4λ2q2ΨE , and
we are left with

Ĉ ′2 ΨE =
(
ÂiÂi + (−2E + λ2E2) (L̂iL̂i + 1)

)
ΨE = q2 ΨE . (6.20)

Since both Casimir operators take constant values Ĉ ′1 = 0 and Ĉ ′2 = q2 in HE
λ , we are deal-

ing with irreducible representations of the dynamical symmetry group G that are unitary for
particular values of energy. In all considered cases, G = SO(4), SO(3, 1), E(3), the unitary
irreducible representations are well known. The corresponding systems of eigenfunctions that
span the representation space have been found in chapter 4. Here we shall restrict ourselves to
brief comments pointing out some interesting aspects.

6.2.3 SO(4) symmetry & bound states

Bound states - SO(4) symmetry: −2E + λ2E2 > 0. In this case we rescale the LRL vector
as

K̂j =
Âj√

−2E + λ2E2
=

Ŵ ′
j√

η2λ2 − 4
. (6.21)

After this step Eqs. (6.16), (6.18) turn into the following relations:

[L̂i, L̂j ] = iεijkL̂k , [L̂i, K̂j ] = iεijkK̂k , [K̂i, K̂j ] = iεijkL̂k . (6.22)
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Thus we have got the representation of the so(4) algebra. The relevant normalized Casimir
operators read

Ĉ1 = L̂i K̂i , Ĉ2 = K̂i K̂i + L̂iL̂i + 1 . (6.23)

As we have stated already, the Ĉ1 acting on an eigenfunction of the Hamiltonian returns zero.
As to Ĉ2, we know that for so(4), under the condition that the first Casimir is zero, the second
one has to equal to (2j + 1)2 for some integer or half-integer j. At the same time, according to
(6.20) it is related to the energy:

K̂i K̂i + L̂i L̂i + 1 =
4λ2q2

η2λ2 − 4
=

q2

λ2E2 − 2E
,

(2j + 1)2 =
q2

λ2E2 − 2E
. (6.24)

We will write n2, n = 1, 2, ... instead of (2j + 1)2. Now solving the quadratic equation for
energy we obtain two discrete sets of solutions depending on n:

E =
1
λ2

∓ 1
λ2

√
1 + κ2

n , κn =
qλ

n
. (6.25)

Now let us show the connection between the present chapter and that one dealing with the prob-
lem in Schrödinger’s style. The first set of eigenfunctions of the Hamiltonian for energies E < 0
(i.e. negative sign in front of the square root in (6.25)) has been found for Coulomb attractive
potential, i.e. q > 0. The eigenvalues possess smooth standard limit for λ→ 0.

EI
λn =

1
λ2

− 1
λ2

√
1 + κ2

n =
1
λ2

− 1
λ2

(
1 +

1
2
κ2

n −
1
24
κ4

n + ...

)

= − q2

2n2
+ λ2 q4

24n4
+ ...

Recall that we usually haveme = 1, ~ = 1 so as to not care whether we write q or α = meq~−2.
If we give up those units, we have

EI
λn = − q2me

2n2~2
+ λ2 q4m3

e

24n4~6
+ ... (6.26)

The ”...” stands for the terms proportional to higher (even) powers of λ. The first term cor-
responds to the energy spectrum of H-atom in the ordinary QM, remaining are λ-dependent
corrections.
The full set of eigenfunctions of Hamiltonian for energiesE < 0 has been constructed in Chapter
4. by explicitly solving the NC Schrödinger equation. The radial NC wave functions are

RI
λn = (Ωn)N F (−n, −N, 2j + 2, −2κn Ω−1

n ) ,

Ωn =
κn −

√
1 + κ2

n + 1
κn +

√
1 + κ2

n − 1
, (6.27)
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The second set of very unexpected solutions corresponds to energies (6.25) with positive sign

EII
λn =

1
λ2

+
1
λ2

√
1 + κ2

n >
2
λ2

. (6.28)

The corresponding radial NC wave functions has been found in Chapter 4. solving NC Schrödinger
equation for a Coulomb repulsive potential, q < 0. These radial NC wave functions are closely
related to those given above

RII
λn = (−Ωn)N F (−n, −N, 2j + 2, 2κn Ω−1

n ) . (6.29)

Let us denote the first set of eigenfunctions for the Coulomb attractive potential with radial
part RI

λn as ΨI
nlm, and similarly, the second set of solutions with radial part RII

λn for Coulomb
repulsive potential by ΨII

nlm. The mapping

ΨI
nlm 7−→ ΨII

nlm

is obviously a unitary transformation in Hλ. Thus both SO(4) representations, the one for
Coulomb attractive potential with EI

λn < 0 and that for ultra-high energies EII
λn > 2/λ2 for

Coulomb repulsive potential, are unitary equivalent. That is natural, since in both representations
the Casimir operators take the same values, 0 and n2. However, in the commutative limit λ→ 0
the extraordinary bound states at ultra-high energies disappear from the Hilbert space.

6.2.4 SO(3,1) symmetry & scattering

Coulomb scattering: 2E − λ2E2 > 0 ⇐⇒ 0 < E < 2/λ2. In this case we rescale the
LRL vector as

K̂j =
Âj√

2E − λ2E2
=

Ŵ ′
j√

4− η2λ2
, (6.30)

After this step we obtain equations

[L̂i, L̂j ] = i εijk L̂k , [L̂i, K̂j ] = i εijk K̂k , [K̂i, K̂j ] = −i εijk L̂k . (6.31)

So this time we have got the representation of the so(3, 1) algebra. The relevant normalized
Casimir operators read

Ĉ1 = L̂i K̂i , Ĉ2 = K̂i K̂i − L̂i L̂i . (6.32)

In our case Ĉ1 = 0, so we are dealing with SO(3, 1) unitary representations that are labeled by
the value of second Casimir operator Ĉ2 = τ , see e.g [41]:

• Spherical principal series for τ > 1;
• Complementary series for 0 < τ < 1.

Let us point out that for integer Ĉ1 6= 0 and arbitrary real Ĉ2 a (non-spherical) remainder of
principal series appears that completes the set of unitary representations of SO(3, 1) group.
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Rewriting (6.20) in terms of K̂j we obtain relation between energy E and the parameter τ :

K̂i K̂i − L̂i L̂i = 1 +
q2

2E − λ2E2
= τ > 1 . (6.33)

Thus we are dealing with the principal series SO(3, 1) unitary representations. The scattering NC
wave functions have been constructed in Chapter 4. For any admissible energy E ∈ (0, 2/λ2),
and from their asymptotic behavior the partial wave S-matrix has been derived

Sλ
j (E) =

Γ(j + 1− i q
p )

Γ(j + 1 + i q
p )
, p =

√
2E − λ2E2 . (6.34)

(Again, in our favourite units me = 1, ~ = 1 we have α = meq~−2 = q). It can be easily seen
that such S-matrix possesses poles at energies E = EI

λn for Coulomb attractive potential and
poles at energies E = EII

λn for Coulomb repulsive potential, where both EI
λn and EII

λn coincide
with (6.26) and (6.28) given above. As for energies

E∓ =
1
λ2

(
1 ∓

√
1− λ2q2

τ − 1

)
, (6.35)

the values of Casimir operators coincide, the corresponding representations are unitary equiva-
lent. This relates the scattering for energies 0 < E < 1/λ2 to that at high energies 1/λ2 < E <
2/λ2.

We skip the limiting cases of the scattering at the edges E = 0 and E = 2/λ2 of the admissible
interval of energies, where the SO(3, 1) group contracts to the group E(3) = SO(3) . T (3) of
isometries of 3D space with generators L̂j and Âj satisfying commutation relations (see [41]):

[L̂i, L̂j ] = i εijk L̂k , [L̂i, Âj ] = i εijk Âk , [Âi, Âj ] = 0 . (6.36)

The corresponding NC hamiltonian eigenstates are given in Chapter 4.

We are done also with the NC version of Pauli’s approach to hydrogen atom. It is time to discuss
the results.
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7 Conclusions

If we stick with our parable of a backpacking trip, this chapter probably corresponds to taking
a rest and maybe going through the most memorable entries in the travel diary or photographs
taken along the way. So let us review them; sum up what has been done in the matter of hydrogen
atom problem in NC setting.
The problem has been dealt with in a twofold way; however, the beginning was common to
both: The NC rotationally invariant analog of the QM configuration space and the Hilbert space
of operator wave functions have been introduced. The central point of the construction was
the definition of ∆̂λ, the NC analog of Laplacian, supplemented by a consequent definition of
the weighted Hilbert-Schmidt norm and the definition of the Coulomb potential satisfying NC
Laplace equation.
Then the road was split up, offering two main directions - differential Schrödinger approach
and the higher-symmetry-based Pauli’s method. There was an interesting intermezzo, however,
related to the examining of the velocity operator - while the above mentioned objects were in-
cluded in the process, and the whole issue was to be deeply involved in what was about to follow,
the velocity operator provided a way to explore also some more general aspects of NCQM, not
focusing solely on the hydrogen atom problem.

7.1 Comments on NC version of Schrödinger’s approach

The NC analog of the Schrödinger equation was built, taking advantage of the spherical
symmetry of the problem when separating the radial part. The knowledge of how are normally
ordered powers of the ”NC radial variable” correlated with the ”usual” powers enabled us to
solve the NC problem using the associated ordinary differential equation. Let us see how NCQM
matches the ordinary QM in this instance.

The quantity labeling the solutions of Schrödinger equation is energy. Some of the labels are
excluded in the sense that they cannot be attributed to a physical state. In standard QM, the
solutions with negative energy were dismissed as lacking the physical interpretation, except for
those with some special energy values for which the wave function was normalizable.
The state of affairs seems to be a bit different in NCQM. Although the energy spectrum for an
electron trapped in the atom is predicted in agreement with QM with small correction of order
λ2 , there are two special values of energy, E = 0 and Ecrit = 2~2/(meλ

2) with the following
feature: certain energy values below E = 0 for an attractive Coulomb potential and certain val-
ues above Ecrit for repulsive potential provide normalizable states.
There is a remarkable symmetry between normalizable states corresponding toEI

n < 0 and those
corresponding to EII

n > Ecrit:
The bound state energies are symmetric with respect to the energy 1

2Ecrit = ~2/(meλ
2),

EI, II
λ n =

1
2
Ecrit

(
1 ∓

√
1 + (λα/n)2

)
.

Moreover, the corresponding radial wave functions are equal up to the change α → −α (which
is equivalent to swapping attraction and repulsion) and the sign changing factor at each step λ in
the radial direction,

RII
nj(−α) = (−1)N RI

nj(α) .
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The same symmetry can be seen for scattering states for energies:

EI =
1
2
Ecrit − ε , pI = +

√
1
2
Ecrit − λ2 ,

EII =
1
2
Ecrit + ε , pII = −

√
1
2
Ecrit − λ2 ,

with ε ∈ (0, 1
2Ecrit). Namely,

RII
εj (−α) = (−1)N RI

εj(α) .

It would be highly desirable to see the background of this almost perfect reflection symmetry
with respect to 1

2Ecrit.

The magnitude of the NC corrections to the H-atom energy levels given in this paper depends
on the magnitude of λ, and this can be small enough to produce effects which are out of reach of
experiments at the moment. However, in the earliest stages of the Universe - this symmetry could
have mattered (but for such hight energies NC QM has to be replaced with (general) relativistic
theory).

Our investigation indicates that the non - commutativity of the configuration space is fully consis-
tent with the general QM axioms, since in the correspondence limit λ→ 0 NCQM and QM agree
- at least as far as the hydrogen atom problem solved in Schrödinger-like approach is considered.

7.2 Comments on NC version of Pauli’s approach

That chapter has been focused on the Coulomb-Kepler problem in NC space. We have found
the NC analog of the LRL vector; its components, together with those of the NC angular mo-
mentum operator, supply the algebra of generators of the symmetry group. It is remarkable that
the formula for the NC generalization of LRL vector looks like a mirror image of the standard
formula when written in terms of the proper NC observables: NC angular momentum, NC ve-
locity, symmetrized NC coordinate and NC radial distance.

The group SO(4) has appeared twice: Firstly, we have been dealing with bound states for nega-
tive energies in the case of the attractive Coulomb potential, which have an analog in the standard
quantum mechanics; and secondly, we have found an unexpected set of bound states for positive
energies above certain ultra-high value in the case the potential is repulsive.

SO(3, 1) is the symmetry group to be considered when examining the scattering (relevant for
the interval of energies between zero and the mentioned critical ultra-high value).

The conservation of our NC LRL vector has been shown, as well as the commutation relations
related to so(4) and so(3, 1) algebra. In case of the bound states (of both kinds), the calcula-
tions of the relevant Casimir operators have revealed the specific values that the energy can take.
The result for negative energy bound states coincides with the well known QM prediction in the
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”commutative” limit λ → 0. Besides that, the NC corrections proportional to λ2 and higher
(even) powers occur. As to the unexpected ultra-high energy bound states, they disappear from
the Hilbert space providing that λ→ 0.

So now we have NCQM predictions for the hydrogen atom energy spectrum obtained in two
ways:
• the results we got using the dynamical symmetry in analogy with Pauli’s method (without ex-
plicitly solving the NC Schrödinger equation for eigenstates of the Hamiltonian)
• result acquired by explicitly solving the NC analog of the Schrödinger equation (without using
those dynamical symmetry arguments).

We are glad to find out that these outcomes do agree.

Now it is time to ”step back” and conclude our trip with a look at the ”bigger picture”:

7.3 What was it all about?

If the answer to this question should be inferred from the expressions that occurred most
frequently, one would hesitate whether it is hydrogen, noncommutative geometry, quantum me-
chanics... So let us put things into perspective. What kind of a trip has all this been?

Does our reader still recall the metaphor about the world theatre from the introduction? There are
certain peculiarities about the drama that Nature performs... this is one strange theatre we are
dealing with, that was roughly the (rather indistinct) introductory statement. Could it be the stage
- space-time - that we understand so poorly? Could it be ”different” in ways that avoided detec-
tion carried out by theories so successful as quantum mechanics or general relativity? Could this
theories have blind spots in just those respects in which this otherness of space-time can manifest
itself? Those were the (still somewhat vague) questions. And finally, there was a resolution to try
it - using a toy model that is clearly missing some features of the ”real stage”, but chosen so that
its saving graces may be enough to make the play meaningful. It is quite an irony that we have
moved from a vague statements to a concrete model, which, however, is by its own definition a
bit blurred. It would seem like we are destined for certain haziness.

Have we proved the stage structure is what makes the theatre so peculiar? No. It has not been
our ambition anyway. However, we have been playing on a toy stage for a few years, and this
seems (to us at least, for what it is worth) to resemble the real one in certain aspects. The rather
surprising results was, that after we spoilt the stage (quite dramatically), QM survived with an
elegance. There may be some sense in games of this kind after all.

This trip has been a tour of the stage, with hydrogen providing guidance during the excursion.
Being itself an actor, our guide showed the expected flair for answering ”what if” questions:
”Supposing you would have to play your part once on the stage being this way, and then on the
stage being different; how like or unlike would your performances be? How would your lines
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change? Could that alteration be so subtle that we might hardly even notice?”

In fact our excursion covered only of a fraction of the stage; only that area in which we were
able to follow our guide. There are parts which we may hope to try exploring in the future - for
example, the stage is space-time, and we have been dealing only with the stationary aspect here.
Maybe Dirac equation could serve similarly as Schrödinger one. That is just one of many paths
we can choose. It may prove to be impassable or not. In any case, we have been told fractions of
how the stage might be - our guide has probably been telling much more than we have heard, and
presumably also things we never thought of asking about. Assuming from the appealing nature
of those fractions that we were able to catch, told by spectral lines and symmetries, the rest is in
all likelihood worth hearing as well. Maybe it will require learning some new vocabulary, set of
notions or a completely new language to be able to even ask about those things and be able to
understand the answer.

It is time to say farewell. Does the reader know that old saying, often referred to as ”Chinese
curse”? Under certain interpretation it can be considered to be more of a blessing. ”May you live
in interesting times.” Hopefully they will be interesting because of the yet unexplored ways to
wander and wonder about the Nature’s theatre. Why use the future tense, anyway. Supposedly
there really is no time like the present. Photons even claim to have no other time at all and that
attitude seems to pay off, since their lot surely is light and bright. So may the reader live in
interesting and light bulb moments ... all the time there is.
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Some more detailed calculations follow that have been skipped in order to avoid overloading the
previous chapters with profusion of technical details.

A Appendix

Here we prove two formulas (4.20) we need for the calculation of the NC Coulomb Hamil-
tonian. (Indices j and m are skipped here.) Let us begin with the first formula:

[a†α, [aα,Ψjm]] = λj [a†α, [aα,
∑
(jm)

(a†1)
m1 (a†2)

m2

m1!m2!
: R :

an1
1 (−a2)n2

n1! n2!
]]

= λj
∑
(jm)

[aα,
(a†1)

m1(a†2)
m2

m1!m2!
] [a†α, : R :]

an1
1 (−a2)n2

n1! n2!

+ λj
∑
(jm)

[aα,
(a†1)

m1 (a†2)
m2

m1!m2!
] : R : [a†α,

an1
1 (−a2)n2

n1! n2!
] (A.1)

+ λj
∑
(jm)

(a†1)
m1 (a†2)

m2

m1!m2!
[a†α, [aα, : R :]]

an1
1 (−a2)n2

n1! n2!

+ λj
∑
(jm)

(a†1)
m1 (a†2)

m2

m1! m2!
[aα, : R :] [a†α,

an1
1 (−a2)n2

n1! n2!
],

where R =
∑∞

k=0 ck%
k =

∑∞
k=0 ckλ

kNk. The second sum after the last = vanishes. Now
we shall use the following commutation relations

[a†α, : N
k :] = − k a†α : Nk−1 : ⇒ [a†α, : R :] = −λa†α : ∂%R : ,

[aα, : Nk :] = k : Nk−1 : aα ⇒ [aα, : R :] = λ : ∂%R : aα ,

(A.2)

where ∂% denotes the standard derivatives of R %: ∂%R =
∑∞

k=1 k ck %
k−1.

The the first and third line give the same contribution∑
(jm)

(a†1)
m1 (a†2)

m2

m1!m2!
(−λ j : ∂%R :)

an1
1 (−a2)n2

n1! n2!
. (A.3)

From (A.2) the double commutator [a†α, [aα, : R :]] follows directly, and this gives the value of
the third line in (A.1)∑

(jm)

(a†1)
m1 (a†2)

m2

m1!m2!
(−λ : % ∂2

%R : + 2λ : ∂%R :)
an1
1 (−a2)n2

n1! n2!
. (A.4)

The last two equations yields the first formula in (4.20). Let us move to another relation. From
equation (2.9) it follows easily

N : Nk : = : Nk+1 : + k : Nk : ⇒ % : R : = : %R : +λ : % ∂%R : . (A.5)
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This relation directly gives the second formula in (4.20) :

(N + 1)
∑
(jm)

(a†1)
m1 (a†2)

m2

m1!m2!
: R :

an1
1 (−a2)n2

n1! n2!

=
∑
(jm)

. . . [(N + j + 1) : R :] . . . (A.6)

=
∑
(jm)

. . . : [(N + j + 1)R + % ∂%R] : . . . ,

where we have replaced both untouched factors containing annihilation and creation operators
by dots.
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B Appendix

This part of the Appendix deals with how are normal and usual powers of % related, and how can
this information be used to rewrite various kinds of power series. Recall that

: %k : = λk N !
(N−k)! = (−λ)k(−N)k, : %−k : = λ−k N !

(N+k)! = λ−k 1
(N)k

. (B.1)

(N)k stands for Pochhammer symbol. Since % = λN , there really are powers of % on the right-
hand sides.
Now to the above mentioned power series. Let us start with finding out how does the function
: eβ% : modify when we rewrite : %n : in terms of %n in the corresponding Taylor series (β
denotes some arbitrary constant here):

: eβ% : =
∑∞

k=0
βk

k! : %k : =
∑∞

k=0
(βλ)k

k!
N !

(N−k)! =

= (1 + λβ)N = (1 + λβ)
%
λ .

(B.2)

Considering the limit λ → 0 the above equation corresponds to the knowm Euler’s formula. A
potential doubt arising from the colon marks on the left hand side ought to be dismissed due to
the fact that : %n :→ %n if λ→ 0. There is no way to distinguish between the normal and usual
ordering in λ = 0 world.

We can move to a more complex tasks now. In the course of many calculations we need to
handle expressions of the kind : %neβ% :

: %neβ% : =
∑∞

k=0
βk:%n+k:

k! =
∑∞

k=0
βkλn+k

k!
N !

(N−(n+k))! =

= λn N !
(N−n)!

∑∞
k=0

βkλk

k!
(N−n)!

(N−n−k)! =

= λn N !
(N−n)! (1 + βλ)N−n

.

And in the case of negative powers:

: %−neβ% : =
∑∞

k=0
βk:%k−n:

k! =
∑∞

k=0
βkλk−n

k!
N !

(N−(k−n))!

= λ−n N !
(N+n)!

∑∞
k=0

βkλk

k!
(N+n)!

(N+n−k)!

= λ−n N !
(N+n)! (1 + βλ)N+n

.

That is almost all that is needed to get rid of the normal powers in the solutions of the NCQM
equations. Since hypergeometric functions are often written in the form of power series with
coefficients expressed in terms of the Pochhammer symbols, it is useful to take notice of the
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following identities when it comes to handling factorials:

(a)n = a(a+ 1)...(a+ n− 1) = (a+n−1)!
(a−1)! ,

N !
(N+n)! = N !

(N+n)(N+n−1)...(N+1)N ! = 1
(N+1)n

,

N !
(N−n)! = N(N−1)...(N−n+1)(N−n)!

(N−n)! = (−1)n(−N)(−N + 1)...(−N + n− 1)
= (−1)n(−N)n.

Now we are going to supply the reader with some of the calculations which were skipped in
the previous sections. To keep reasonable length of the formulas, we will replace the long ex-
pressions with a, c, β, Q... substituting the ”right arguments” instead of our abbreviations and
completing the calculation is straightforward...yet not so tempting.

The following derivation was left out in (4.41):

: eβ%
1F1 (a; c;Q%) : = : eβ%

∑∞
m=0

(a)m

(c)m

(Q%)m

m! :

=
∑∞

m=0 [1 + λβ]N−m (a)m

(c)m
(Qλ)m N !

(N−m)!m!

= [1 + λβ]N
∑∞

m=0

[
Qλ

1+λβ

]m
(a)m

(c)m

1
m! (−1)m(−N)m

= [1 + λβ]N
∑∞

m=0

[
−Qλ
1+λβ

]m
(a)m(−N)m

(c)m

1
m!

= [1 + λβ]N 2F1

(
a,−N ; c; −Qλ

1+λβ .
)

(B.3)

This is to be done and suitably used if one wishes to rewrite (4.41) in terms of the fundamental
system (4.26) and to get rid of the normal ordering only thereafter:

: eβ%
1F1 (a; c;Q%) : = : eβ%×

×
∑∞

m=0
(−1)m(a)m(a−c+1)m(Q%)−a−m

m! :

= [1 + λβ]N
[

1+λβ
λQ

]a
N !

(N+a)!×

×
∑∞

m=0
(a)m(a−c+1)m

m!

[
1+λβ
−λQ

]m
(N+a)!

(N+m+a)!

= [1 + λβ]N
[

1+λβ
λQ

]a
N !

(N+a)!×

×
∑∞

m=0
(a)m(a−c+1)m

(N+a+1)mm!

[
1+λβ
−λQ

]m
= [1 + λβ]N

[
1+λβ
λQ

]a
N !

(N+a)!

× 2F1

(
a, a− c+ 1; N + a+ 1; 1+λβ

−λQ

)
.

(B.4)

To complete (4.42), this was needed:

: %−j−1/2J−2j−1(
√

8α%) : =
∑∞

m=0
(−1)m+1(2α)m+j+1/2

(2j+1+m)!m! : %m :

= − (2α)j+1/2

(2j+1)!

∑∞
m=0

(−1)m+1(2αλ)m(2j+1)!N !
(2j+1+m)!m!(N−m)!

= − (2α)j+1/2

(2j+1)!

∑∞
m=0

(−N)m(2αλ)m

(2j+2)mm!

= − (2α)j+1/2

(2j+1)! 1F1(−N ; 2j + 2; 2αλ).

(B.5)
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The equation (4.43) required:

: e−2%/λ%−j−1/2J−2j−1(
√

8α%) : =
∑∞

m=0
(−1)m+1(2α)m+j+1/2

(2j+1+m)!m! : e−2%/λ%m :

= − (2α)j+1/2

(2j+1)!

∑∞
m=0

(−1)m(1−2)N (2αλ)m(2j+1)!N !
(1−2)m(2j+1+m)!m!(N−m)!

= (2α)j+1/2(−1)N+1

(2j+1)!

∑∞
m=0

(−N)m(−2αλ)m

(2j+2)mm!

= (−1)N+1(2α)j+1/2

(2j+1)! 1F1(−N ; 2j + 2; −2αλ).

(B.6)
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C Appendix

In this section we are going to look on the scattering case more closely, namely the part dealing
with decomposition of the solution (4.52) into two parts corresponding to the in- and out- going
spherical waves. Firstly let us remind the form in which we got (4.52):

REj = Ω−N
2F1

(
j + 1− i

α

p
, −N ; 2j + 2; 2iλpΩ

)
.

If we, for the sake of brevity, denote

a = j + 1− iα
p , b = −N , c = 2j + 2 , z = 2iλpΩ, (C.1)

then REj can be written as

REj = (1− z)b/2
2F1 (a, b; c; z) . (C.2)

According to Kummer identities (see [31]), 2F1(a, b; c; z) can be written as a linear combination
of two other solutions of the hypergeometric equation (4.29), namely

(−z)−a
2F1(a, a+ 1− c; a+ 1− b; z−1)

and
(z)a−c(1− z)c−a−b

2F1(c− a, 1− a; c+ 1− a− b; z−1(z − 1)).

Take notice of the fact that if we decompose our radial solution (4.41) before handling the normal
ordering, i.e. if we write the confluent hypergeometric function (4.25) in terms of the fundamen-
tal system (4.26) of confluent hypergeometric equation (4.24), and deal with the normal ordering
only thereafter (see Appendix B, eq. (B.4)), we will end up with (C.3) again. So after using one
of the numerous Kummer relations listed in [31], we have

REj = (1− z)b/2
2F1 (a, b; c; z) =

= eiπ(c−a) Γ(c)Γ(1−b)
Γ(a)Γ(c+1−a−b) (z)a−c(1− z)c−a−b/2

× 2F1(c− a, 1− a; c+ 1− a− b; z−1(z − 1))

+ eiπ(1−a) Γ(c)Γ(1−b)
Γ(c−a)Γ(a+1−b) (−z)−a (1− z)b/2

× 2F1(a, a+ 1− c; a+ 1− b; z−1).

(C.3)

Substituting back (C.1) leads to

REj = Ω−N
2F1

(
j + 1− iα

p , −N ; 2j + 2; 2iλpΩ
)

= eiπ(j+1+i α
p ) Γ(2j+2)Γ(N+1)

Γ(j+1−i α
p )Γ(j+2+i α

p +N)

[
2iλpΩ−1

]−j−1−i α
p ΩN

× 2F1

(
j + 1 + iα

p , −j + iα
p ; r

λ + j + 2 + iα
p ; − 1

2iλp Ω
)

+ eiπ(−j−1+i α
p ) Γ(2j+2)Γ(N+1)

Γ(j+1+i α
p )Γ(j+2−i α

p +N) [−2iλpΩ]−j−1+i α
p ΩN

× 2F1

(
j + 1− iα

p , −j − iα
p ; r

λ + j + 2− iα
p ; 1

2iλp Ω−1
)
.

(C.4)
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Keep in mind that our endeavour is to compare the NCQM result with the QM one. It is therefore
suitable to rewrite the prefactors in front of the hypergeometric functions as exponentials. This
way we obtain, besides other factors, also logarithms of Γ-functions, which can be rewritten
using the following formula (see [31]):

ln (Γ(z + a)) =
(
z + a− 1

2

)
ln(z)− z +

1
2

ln(2π) +
∞∑

n=1

Bn+1(a)
n(n+ 1)

z−n. (C.5)

Here Bn(a) is a Bernoulli polynomial. After certain rearrangements we finally acquire the result
(4.54).
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D Appendix

This part of the Appendix contains various calculations related to the velocity operator. For the
computations it is useful to define two sets of auxiliary operators, which act as follows:

âαΨ = aαΨ, â+
α Ψ = a+

α Ψ,

b̂αΨ = Ψaα, b̂+α Ψ = Ψa+
α . (D.1)

Derivation of operator V̂ j

Here we will derive the velocity operator in the form (5.5). Note that for states with equal number
of c/a operators it is true that

Ĥ0 =
1

2λr̂

(
2r̂
λ
− â+

α b̂α − b̂+α âα

)
, (D.2)

insterting (D.2) into (5.3) we obtain (recall that [xi, r] = 0)

V̂ i = − i

2λr̂

[
X̂j ,

2r̂
λ
− â+

α b̂α − b̂+α âα

]
=

i

2λr̂
[X̂j , â+

α b̂α + b̂+α âα]. (D.3)

Using (D.1) we may write the coordinate operator as X̂j = λ
2σ

j
αβ(â+

α âβ + b̂+α b̂β). While ’a’ and
’b’ operators obviously commutate, for the ’b’ operators we have [b̂α, b̂+β ] = −δαβ . Using those
we easily obtain the final result

V̂ i =
i

2r
σi

αβ(â+
α b̂β − âβ b̂

+
α ) =

i

2r
σi

αβŵαβ . (D.4)

Evaluation of the correction terms in the uncertainty relation
We need to evaluate two correction terms

Ki(xj ,Ψ) = − i

2r
σi

αβ([a+
α , x

j ][aβ ,Ψ]− [aβ , x
j ][a+

α ,Ψ]),

Ki(Ψ, xj) = − i

2r
σi

αβ([a+
α ,Ψ][aβ , x

j ]− [aβ ,Ψ][a+
α , x

j ]), (D.5)

using the commutation relations for c/a operators, definition of xj and properties of Pauli matri-
ces we get

Ki(xj ,Ψ) = − i

2r
σi

αβ(

−λσj
γδa+

γ︷ ︸︸ ︷
[a+

α , x
j ] [aβ ,Ψ]−

λσj
γδaδ︷ ︸︸ ︷

[aβ , x
j ][a+

α ,Ψ])) (D.6)

=
iλ

2r
( σi

αβσ
j
γα︸ ︷︷ ︸

δijδγβ+iεjikσk
γβ

a+
γ (aβΨ−Ψaβ) + σi

αβσ
j
βδ︸ ︷︷ ︸

δijδαδ+iεijkσk
αδ

aδ(a+
α Ψ−Ψa+

α ))

and similarly for Ki(Ψ, xj)

Ki(Ψ, xj) = − iλ
2r

((a+
α Ψ−Ψa+

α )σi
αβσ

j
βγaδ + (aβΨ−Ψaβ)σi

αβσ
j
γδa

+
γ ).

(D.7)
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Combing those two results we have

Ki(xj ,Ψ) +Ki(Ψ, xj) = (δij((a+
αaαΨ− a+

α Ψaα + aαa
+
α Ψ− aαΨa+

α )
+ (−aαΨa+

α + Ψa+
αaα − a+

α Ψaα + Ψa+
αaα)) (D.8)

+ iεijkσk
αβ((−a+

αaβΨ + a+
α Ψaβ + aβa

+
α Ψ− aβΨa+

α )

− (a+
α Ψaβ −Ψa+

αaβ − aβΨa+
α + Ψaβa

+
α ))),

using the commutation relations for c/a operators and the the tracelessness of σ it is evident that
terms in third and fourth line add up to zero. On the other hand, by looking at the equation (D.2)
it is obvious that

1
2
(Ki(xj ,Ψ) +Ki(Ψ, xj)) = iδijλ2H0Ψ. (D.9)

Commutator [V̂ i, V̂ j ]
Since this calculation includes many steps, we will just outline it here. Thanks to [V̂ i, V̂ j ] being
antisymmetric, we can calculate εijk[V̂ i, V̂ j ] instead; we will do so in fact, because of the vector
Fierz identity εijkσi

αβσ
j
γδ = i(σk

αδδγβ−σk
γβδαδ) which we want to use. Using the notation (5.5)

we have

εijk[V̂ i, V̂ j ] =
(
i

2

)2

εijkσi
αβσ

j
γδ

[
1
r̂
ŵαβ ,

1
r̂
ŵγδ

]
(D.10)

=
(
i

2

)2

i(σk
αδδγβ − σk

γβδαδ)
(

1
r̂2

[ŵαβ , ŵγδ] +
1
r̂

[
ŵαβ ,

1
r̂

]
1
r̂

+
1
r̂

[
1
r̂
, ŵγδ

]
ŵαβ

)
.

The first term is easily evaluated using (5.5) and (D.1), yielding

εijkσi
αβσ

j
γδ

1
r̂2

[ŵαβ , ŵγδ] =
8i
r̂2
L̂k. (D.11)

The other two terms are a bit more demanding. Let us begin with (following from [aα, r] = λaα,
[a+

α , r] = −λa+
α )

aαr
N = aα r...r︸︷︷︸

N

= r(aα + λ) r...r︸︷︷︸
N−1

= ... = (r + λ)Naα , (D.12)

a+
α r

N = (r − λ)Na+
α .

Using those relations we get

εijkσi
αβσ

j
γδ

(
1
r̂

[
ŵαβ ,

1
r̂

]
1
r̂

+
1
r̂

[
1
r̂
, ŵγδ

]
ŵαβ

)
= ... = − 8i

r̂2
L̂k, (D.13)

adding together results (D.11) and (D.13) implies εijk[V̂ i, V̂ j ] = 0 and therefore [V̂ i, V̂ j ] = 0.

Relation between the velocity operator and the free Hamiltonian
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Finding this relation consist of a huge number of trivial steps and a tricky one. We will omit the
trivial ones here, showing only the important part. Writing down the velocity operator(s) using
(5.5) we have

V̂ 2 =
i

2r̂
σi

αβ(â+
α b̂β − âβ b̂

+
α )σj

γδ

i

2r̂
(â+

γ b̂δ − âδ b̂
+
γ ) (D.14)

= ...a lot of trivial modifications... =

=
1
λ2
− 1

4r̂(r̂ − λ)
((â+b̂)2 + (â+b̂)(âb̂+)))− 1

4r̂(r̂ + λ)
((âb̂+)2 + (âb̂+)(â+b̂)),

where (â+b̂) = â+
α b̂α and similarly for other combinations. From (D.2) it is evident that

Ĥ0 −
1
λ2

= − 1
2λr̂

((â+b̂) + (b̂+â)). (D.15)

While in (D.14) there are four c/a operators in each term, there are only two of them in (D.15),
so we need to square it:(

1
λ2
− Ĥ0

)2

=
1
λ2r̂

((â+b̂) + (b̂+â))
1
r̂
((â+b̂) + (b̂+â))

=
1

4λ2r̂(r̂ − λ)
((â+b̂)2 + (â+b̂)(âb̂+)) (D.16)

+
1

4λ2r̂(r̂ + λ)
((âb̂+)2 + (âb̂+)(â+b̂)).

In the last step we have used (D.12). Now comparing this result with (D.14) it is obvious that(
1
λ2
− Ĥ0

)2

=
1
λ2

(
1
λ2
− V̂ 2

)
. (D.17)

The Ehrenfest theorem
The idea of this calculation is to evaluate the correction term (5.11) for (5.33), which with the
use of (D.12) turns to

Ki(U(r),Ψ) = − i

2r
σi

αβ([a+
α , U(r)][aβ ,Ψ]− [aβ , U(r)][a+

α ,Ψ]) =

= − i

2r
σi

αβ((U(r − λ)− U(r)) a+
α [aβ ,Ψ]︸ ︷︷ ︸
ÂαβΨ

−(U(r + λ)− U(r)) aβ [a+
α ,Ψ])︸ ︷︷ ︸

B̂αβΨ

(D.18)

Now we need to evaluate the under-braced terms. As one can easily check, they are equal to

Âαβ =
1
2
(Ŵαβ + Lαβ − ŵαβ),

B̂αβ =
1
2
(Ŵαβ + Lαβ + ŵαβ), (D.19)
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where Ŵαβ = â+
α âβ + b̂+α b̂α − â+

α b̂β − âβ b̂
+
α ,

σi
αβ

2 Lαβ = L̂i and ŵαβ is defined by (5.5). Such
decomposition might seem a bit artificial, but will become more transparent in chapter 6. By
noting the definition of Ŵ i in (6.9) we obtain the result

−iKi(U(r),Ψ) =
(
Û ′λ(r̂)

(
λ

r̂
L̂i + λ2Ŵ i

)
+
λ2

2
Û ′′λ (r̂)V̂ i

)
Ψ, (D.20)

where we have denoted Û ′′λ (r̂) = 1
λ2 (Û(r̂ + λ)− 2Û(r̂) + Û(r̂ − λ)).
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E Appendix

In the chapter about the LRL vector many detailed calculations have been skipped. Here we
provide at least some sketches thereof. We are not about to write down every single step; if any
interest in tiny details arises, we suppose it will be easier for the reader to calculate something on
their own now and then, than to try to keep track of all the signs and many times renamed indices
in this paper. As in Appendix D we provide the main tricks which make the calculations more
manageable, and then we write down the sketches of the particular derivations.

We can almost say that everything one needs to do is to calculate commutators of various strings
of creation and annihilation operators acting from the left or from the right, that is, using the
commutation relations for â+

α , âβ , b̂
+
α , b̂β in a suitable way. As we know already, the b- opera-

tors are simply the a-ones acting from the right; the fact that those acting from the opposite sides
commute saves us a good deal of work.
So the following should be borne in mind before digging into the calculations:

[âα, â
+
β ] = δαβ , [b̂α, b̂+β ] = −δαβ ,

the other commutators are zero.
Below we shall use frequently the identities for Pauli matrices a the identities for NC coordinates
that follow directly, let us sum them up:

[σi, σj ] = 2iεijkσ
k, εijkσ

i
αβσ

j
γδ = i(σk

αδδγβ − σk
γβδαδ),

{σi, σj} = 2δij1, σi
αβσ

i
γδ = 2δαδδγβ − δαβδγδ,

σiσj = δij1 + iεijkσ
k, T rσi = σi

αα = 0,

[X̂i, r̂] = 0, [X̂L
i , X̂

R
j ] = 0,

[X̂L
i , X̂

L
j ] = 2iλεijkX̂

L
k , [X̂R

i , X̂
R
j ] = − 2iλεijkX̂

R
k ,

where

X̂L
i Ψ = xi Ψ , X̂R

i Ψ = Ψxi , X̂i = 1
2 (X̂L

i + X̂R
i ) ,

r̂L Ψ = rΨ , r̂R Ψ = Ψ r , r̂ = 1
2 (rL + r̂R) .

Make sure you have noticed the minus sign in the commutator [X̂R
i , X̂

R
j ]. One should be in

general careful about the ordering when dealing with operators acting from the right.

The reader may be tired by now of getting so much advice - so to give it a chance to be ap-
preciated, let us start. Calculations related to various forms in which Ak can be written (the
derivation of the equation (6.12)) involve:

Âk =
1
2
εijk(L̂iV̂j + V̂jL̂i) + q

X̂k

r̂
= Â0

k + q
X̂k

r̂
, (E.1)
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Â0
k = εijk

i

8r̂
σi

αβσ
j
γδ

×((â+
α âβ − b̂β b̂

+
α )(â+

γ b̂δ − âδ b̂
+
γ ) + (â+

γ b̂δ − âδ b̂
+
γ )(â+

α âβ − b̂β b̂
+
α ))

= − 1
8r̂

(σk
αδδγβ − σk

γβδαδ)

×((â+
α âβ − b̂β b̂

+
α )(â+

γ b̂δ − âδ b̂
+
γ ) + (â+

γ b̂δ − âδ b̂
+
γ )(â+

α âβ − b̂β b̂
+
α ))

= −σ
k
αδ

8r̂
((â+

α âβ − b̂β b̂
+
α )(â+

β b̂δ − âδ b̂
+
β ) + (â+

β b̂δ − âδ b̂
+
β )(â+

α âβ − b̂β b̂
+
α ))

+
σk

γβ

8r̂
((â+

α âβ − b̂β b̂
+
α )(â+

γ b̂α − âαb̂
+
γ ) + (â+

γ b̂α − âαb̂
+
γ )(â+

α âβ − b̂β b̂
+
α ))

= −σ
k
αδ

8r̂
(âβ â

+
β â

+
α b̂δ − â+

α b̂δ − â+
α âδâβ b̂

+
β − b̂+α b̂δ b̂β â

+
β + â+

α b̂δ + b̂β b̂
+
β b̂

+
α âδ)

−σ
k
αδ

8r̂
(â+

β âβ b̂δâ
+
α − â+

α b̂δ − b̂δ b̂
+
α â

+
β b̂β + â+

α b̂δ − âδâ
+
α b̂

+
β âβ + b̂+β b̂β âδ b̂

+
α )

+
σk

γβ

8r̂
(âβ â

+
γ â

+
α b̂α − â+

γ b̂β − â+
α âαâβ b̂

+
γ − b̂+α b̂αb̂β â

+
γ + â+

γ b̂β + b̂β b̂
+
γ b̂

+
α âα)

+
σk

γβ

8r̂
(â+

γ âβ b̂αâ
+
α − â+

γ b̂β − b̂αb̂
+
α â

+
γ b̂β + â+

γ b̂β − âαâ
+
α b̂

+
γ âβ + b̂+γ b̂β âαb̂

+
α )

= −σ
k
αδ

8λr̂
((2r̂L + 2r̂R)â+

α b̂δ + (2r̂R + 2r̂L)b̂+α âδ)

+
1

8λr̂
((2X̂L

k + 2X̂R
k )âβ b̂

+
β + (2X̂R

k + 2X̂L
k )â+

β b̂β)

= − 1
2λr̂

r̂σk
αδ(â

+
α b̂δ + b̂+α âδ) +

1
2λr̂

X̂k(âβ b̂
+
β + â+

β b̂β)

= − 1
2λr̂

(r̂ζ̂k − X̂k ζ̂). (E.2)

Now we are going to derive a few interesting identities which will come in handy when dealing
with calculations related to the vanishing commutator [Ŵ ′, Ŵ ′

k] in (6.16) (recall that for states
with equal number of c/a operators r̂ = r̂L = r̂R).

[ζ̂k, r̂L] = λσk
αβ [â+

α b̂β + âβ b̂
+
α , â

+
δ âδ + 1] = λσk

αβ(â+
δ b̂β(−δαδ) + δβδ âδ b̂

+
α )

= −λσk
αβ(â+

α b̂β − âβ b̂
+
α ) = −λŵk = i2λr̂V̂k.

For the sake of completion and next calculations let us calculate as well

[ζ̂, X̂k] =
λ

2
σk

αβ [â+
δ b̂δ + âδ b̂

+
δ , â

+
α âβ + b̂β b̂

+
α ]

=
λ

2
σk

αβ(â+
α (−δδβ)b̂δ + â+

δ (−δδα)b̂β + b̂+δ (δδα)âβ + âδ b̂
+
α (δδβ))

= −λσk
αβ(â+

α b̂β − âβ b̂
+
α ) = −λŵk = i2λr̂V̂k,
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[ζ̂, X̂k] = [ζ̂k, r̂] = i2λr̂V̂k, (E.3)

[ζ̂, ζ̂αβ ] = [â+
γ b̂γ + âγ b̂

+
γ , â

+
α b̂β + âβ b̂

+
α ]

= −δγβ b̂γ b̂
+
α − δγα âβ â

+
γ + δγα b̂

+
γ b̂β + δγβ â

+
α âγ

= −b̂β b̂+α − âβ â
+
α + b̂+α b̂β + â+

α âβ = δαβ − δαβ = 0,

[ζ̂, ζ̂k] = 0. (E.4)

At this point we have all that is needed to prove (6.16):

[Ŵ ′, Ŵ ′
k] = [Ŵ + ωr̂, Ŵk + ωX̂k]

=
[
2r̂λ−1 − ζ̂ + ωr̂, 2X̂kλ

−1 − ζ̂k + ωX̂k

]
= η2[r̂, X̂k]− η[r̂, ζ̂k]− η[ζ̂, X̂k] + [ζ̂, ζ̂k] (E.5)
= 0 + η2ir̂λV̂k − η2ir̂λV̂k + 0 = 0.

When checking the so(4) algebra relations in (6.16), the knowledge of the commutator [Ŵ ′
i , Ŵ

′
j ]

is necessary. In order to work it out, we need to derive [ζ̂i, ζ̂j ], [X̂i, ζ̂j ], [X̂i, X̂j ] as well. As to
the following few calculations, recall that X̂i is composed of xi acting from the left and the right
side: X̂i = (X̂L

i + X̂R
i )/2.

[ζ̂i, ζ̂j ] = σi
αβσ

j
γδ[ζ̂αβ , ζ̂γδ] = σi

αβσ
j
γδ[â

+
α b̂β + âβ b̂

+
α , â

+
γ b̂δ + âδ b̂

+
γ ]

= −(σjσi)γβ b̂β b̂
+
γ − (σiσj)αδâδâ

+
α + (σiσj)αδ b̂

+
α b̂δ + (σjσi)γβ â

+
γ âβ

= δij(b̂+α b̂α − b̂αb̂
+
α + â+

α âα − âαâ
+
α )

+iεijkσ
k
αβ(b̂β b̂+α + b̂+α b̂β − âβ â

+
α − â+

α âβ) (E.6)

= δij(δαα − δαα) + 2iεijkσ
k
αβ(b̂β b̂+α − â+

α âβ)

= 2iλ−1εijk(X̂R
k − X̂L

k ) = −4iεijkL̂k.

[X̂L
i , ζ̂j ] = λσi

αβσ
j
γδ[â

+
α âβ , â

+
γ b̂δ + âδ b̂

+
γ ]

= λσi
αβσ

j
γδ(â

+
α b̂δδβγ − âβ b̂

+
γ δαδ

= λ((σiσj)αβ â
+
α b̂β − (σjσi)αβ âβ b̂

+
α ),

[X̂R
i , ζ̂j ] = λσi

αβσ
j
γδ[b̂β b̂

+
α , â

+
γ b̂δ + âδ b̂

+
γ ]

= λσi
αβσ

j
γδ(b̂β â

+
γ δαδ − âδ b̂

+
α δβγ)

= λ(−(σiσj)αβ âβ b̂
+
α + (σjσi)αβ â

+
α b̂β),

[X̂i, ζ̂j ] =
λ

2
(σiσj + σjσi)αβ(â+

α b̂β − âβ b̂
+
α )

=
λ

2
{σi, σj}αβŵαβ = λδijŵ. (E.7)
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The following calculation takes use of the fact that X̂L
i commutes with X̂R

i . It is also useful to
have in mind [X̂L

i , X̂
L
j ] = 2iλεijkX̂

L
k and [X̂R

i , X̂
R
j ] = −2iλεijkX̂

R
k

[X̂i, X̂j ] =
1
4
[X̂L

i + X̂R
i , X̂

L
j + X̂R

j ] =
1
4
([X̂L

i , X̂
L
j ] + [X̂R

i , X̂
R
j ])

=
1
4
(2iεijkλX̂

L
k + 2iεjikλX̂

R
k ) =

i

2
εijk(X̂L

k − X̂R
k ) = iλ2εijkL̂k. (E.8)

So for the commutators involved in (6.16) we can write:

[Ŵ ′
i , Ŵ

′
j ] = [ηX̂i − ζ̂i, ηX̂j − ζ̂j ]

= η2[X̂i, X̂j ]− η([X̂i, ζ̂j ]− [X̂j , ζ̂i]) + [ζ̂i, ζ̂j ]

= η2iεijkλ
2L̂k − η((δij − δji)λw)− i4εijkL̂k (E.9)

= 4iλω
(

1 +
(
λω

4

))
εijkL̂k.

To compute the commutator [L̂i, Âj ] acting on the vectors from HEλ , we actually need to find
[L̂i, Ŵ

′
j ] and multiply it with certain constants. To manage this, let us begin with

[L̂i, X̂j ] =
1
4λ

[X̂L
i − X̂R

i , X̂
L
j + X̂R

j ] =
1
4λ

([X̂L
i , X̂

L
j ]− [X̂R

i , X̂
R
j ])

=
1
4λ

(2iεijkλX̂
L
k − 2iεjikλX̂

R
k ) =

i

2
εijk(X̂L

k + X̂R
k ) = iεijkX̂k. (E.10)

Somewhere above we have already computed [X̂L
i , ζ̂j ] and [X̂R

i , ζ̂j ], we can use it also now:

[L̂i, ζ̂j ] =
1
2λ

[X̂L
i − X̂R

i , ζ̂j ] =
1
2λ

([X̂L
i , ζ̂j ]− [X̂R

i , ζ̂j ])

=
1
2λ
λ((σiσj)αβ(â+

α b̂β + âβ b̂
+
α )− (σjσi)αβ(â+

α b̂β + âβ b̂
+
α )) (E.11)

=
1
2
[σi, σj ]αβ(â+

α b̂β + âβ b̂
+
α ) = iεijkσ

k
αβ(â+

α b̂β + âβ b̂
+
α ) = iεijk ζ̂k,

[L̂i, Ŵ
′
j ] = [L̂i, ηX̂j − ζ̂j ] = −iεijk(ηX̂k − ζ̂k)

= iεijkŴ
′
k. (E.12)

At this point to obtain the commutator [L̂i, Âj ] in (6.18) we just need to recall that
Ŵ ′

j

2λ = Âj ,
and therefore

[L̂i, Âj ] = iεijkÂk. (E.13)

We shall now provide some details related to the first Casimir operator in (6.20). We are going

to prove that L̂jÂj ∝ L̂j(ηX̂k − ζ̂j) = 0 when restricted to the subspace HE
λ . In the very

next calculation a lot of renaming of the dummy indices appears and the reader will probably
appreciate having a piece of paper and a pencil at hand in order to keep track of the procedure.
The final zero in the last line is obtained after realizing that there is no difference between r̂L
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and r̂R if they act on anything which has the same number of creation and annihilation operators.
Our considered operator wave functions Ψ have this property and the same holds for â+

α b̂αΨ and
âαb̂

+
α Ψ.

2L̂j ζ̂j = σj
αβσ

j
γδ(â

+
α âβ − b̂β b̂

+
α )(â+

γ b̂δ + âδ b̂
+
γ )

= (2δαδδβγ − δαβδγδ)(â+
α âβ − b̂β b̂

+
α )(â+

γ b̂δ + âδ b̂
+
γ )

= 2(â+
α âβ â

+
β b̂α + â+

α âβ âαb̂
+
β − b̂β b̂

+
α â

+
β b̂α − b̂β b̂

+
α âαb̂

+
β )

−(â+
α âαâ

+
β b̂β + â+

α âαâβ b̂
+
β − b̂αb̂

+
α â

+
β b̂β − b̂αb̂

+
α âβ b̂

+
β )

= 2(âβ â
+
β â

+
α b̂α − â+

α b̂α + â+
α âαâβ b̂

+
β − b̂+α b̂αb̂β â

+
β + â+

α b̂α − b̂β b̂
+
β b̂

+
α âα)

−âβ â
+
β â

+
α b̂α + 2â+

α b̂α − â+
α âαâβ b̂

+
β + b̂+α b̂αb̂β â

+
β − 2â+

α b̂α

+b̂β b̂+β b̂
+
α âα

= âβ â
+
β â

+
α b̂α + â+

β âβ âαb̂
+
α − b̂+β b̂β â

+
α b̂α − b̂β b̂

+
β âαb̂

+
α

= λ−1
(
(r̂L + λ)− (r̂R + λ)

)
â+

α b̂α + λ−1
(
(r̂L − λ)− (r̂R − λ)

)
âαb̂

+
α

= 0, (E.14)

L̂jX̂j =
1
4λ

(X̂L
j − X̂R

j )(X̂L
j + X̂R

j ) =
1
4λ

(X̂L
j X̂

L
j + X̂L

j X̂
R
j − X̂R

j X̂
L
j − X̂R

j X̂
R
j )

=
1
4λ

(X̂L
j X̂

L
j − X̂R

j X̂
R
j ) =

1
2λ

(((r̂L)2 − λ2)− ((r̂2)R − λ2)) = 0. (E.15)

Putting the previous two calculations together we can claim

L̂jÂj =
L̂jŴ

′
j

2λ
=
L̂j(ηX̂j − ζ̂j)

2λ
= 0. (E.16)

Now let us move to the second Casimir operator in (6.20). We have mentioned already that the

relevant calculation is based on the fact which we are about to prove now:

Ŵ ′
iŴ

′
i + (η2λ2 − 4)(L̂iL̂i + 1) = (Ŵ ′)2. (E.17)

Undoubtedly it is a useful identity, but the reader may be slightly uncertain about where did the
very idea come from. Perhaps the following few words will fail to give a satisfactory motiva-
tion, but it will have to suffice: There are not too many equations which relate operators and
c-numbers, so we naturally try to use them whenever possible. If we encounter a term which
seems someway related to the Schrödinger equation, we are only glad to work towards rewriting
that expression in terms of Ŵ ′. (Just to refresh the reader’s memory, one form of the Schrödinger
equation reads (Ŵ ′ − 2λq)ΨE = 0.)
So let us start, calculations of many identities follow. The motivation for some of them may not
be straightforward, but all should be clear by the end of the appendix at the latest.

(Ŵ ′)2 = (ηr̂ − ζ̂)2 = η2r̂2 − η{r̂, ζ̂}+ (ζ̂)2,

Ŵ ′
iŴ

′
i = (ηX̂i − ζ̂i)2 = η2X̂iX̂i − η{X̂i, ζ̂i}+ ζ̂iζ̂i, (E.18)
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L̂iL̂i =
1

4λ2
(X̂L

i − X̂R
i )2 =

1
4λ2

((rL)2 + (r̂R)2 − 2X̂L
i X̂

R
i − 2λ2), (E.19)

X̂iX̂i =
1
4
(X̂L

i + X̂R
i )2 =

1
4
((r̂L)2 + (r̂R)2 + 2X̂L

i X̂
R
i − 2λ2), (E.20)

λ−2X̂L
i X̂

R
i = σi

αβσ
i
γδ(â

+
α âβ b̂δ b̂

+
γ ) = (2δαδδγβ − δαβδγδ)(â+

α âβ b̂δ b̂
+
γ ) (E.21)

= 2â+
α âβ b̂αb̂

+
β − â+

α âαb̂β b̂
+
β = 2â+

α âβ b̂αb̂
+
β − λ−2(r̂L − λ)(r̂R − λ).

The last result is to be used to rewrite the 2â+
α âβ b̂αb̂

+
β term in the following calculation:

(ζ̂)2 = (â+
α b̂α + âαb̂

+
α )(â+

β b̂β + âβ b̂
+
β )

= â+
α â

+
β b̂αb̂β + âαâβ b̂

+
α b̂

+
β + â+

α âβ b̂αb̂
+
β + (â+

β âα + δαβ)(b̂β b̂+α + δαβ)

= â+
α â

+
β b̂αb̂β + âαâβ b̂

+
α b̂

+
β + 2â+

α âβ b̂αb̂
+
β + 2λ−1r̂ (E.22)

= â+
α â

+
β b̂αb̂β + âαâβ b̂

+
α b̂

+
β + λ−2(X̂L

i X̂
R
i + r̂2 + λ2).

The above equation will be used to rewrite the terms â+
α â

+
β b̂αb̂β + âαâβ b̂

+
α b̂

+
β in the following

one:

ζ̂iζ̂i = σi
αβσ

i
γδ ζ̂αβ ζ̂γδ = (2δαδδγβ − δαβδγδ)(â+

α b̂β + âβ b̂
+
α )(â+

γ b̂δ + âδ b̂
+
γ )

= 2(â+
α â

+
β b̂αb̂β + â+

α âαb̂β b̂
+
β + âβ â

+
β b̂

+
α b̂α + âαâβ b̂

+
α b̂

+
β )− (ζ̂0)2 (E.23)

= 2(â+
α â

+
β b̂αb̂β + âαâβ b̂

+
α b̂

+
β ) + 4λ−2(r̂2 + λ2)− (ζ̂)2

= (ζ̂)2 + 2λ−2(r̂2 − X̂L
i X̂

R
i + λ2),

[r̂, ζ̂] =
λ

2
[â+

α âα + b̂αb̂
+
α + 2, â+

β b̂β + âβ b̂
+
β ]

= λ(â+
α b̂α − âαb̂

+
α ) = λŵ, (E.24)

{r̂, ζ̂} = [r̂, ζ̂] + 2ζ̂ r̂ = λŵ + 2ζ̂ r̂, (E.25)

ζ̂iX̂i =
λ

2
σi

αβσ
i
γδ(â

+
α b̂β + âβ b̂

+
α )(â+

γ âδ + b̂δ b̂
+
γ )

=
λ

2
(2δαδδγβ − δαβδγδ)(â+

α b̂β + âβ b̂
+
α )(â+

γ âδ + b̂δ b̂
+
γ )

= λ(â+
α âαâ

+
β b̂β − â+

α b̂α + b̂β b̂
+
β â

+
α b̂α − â+

α b̂α + âβ â
+
β âαb̂

+
α + b̂+α b̂αâβ b̂

+
β )

−1
2
ζ̂(r̂L + r̂R − 2λ)

= (r̂L + r̂R − 2λ)â+
α b̂α + (r̂L + r̂R + 2λ)âαb̂

+
α − 2λâ+

α b̂α − ζ̂ r̂ + λζ̂

= r̂ζ̂ + [r̂, ζ̂]− 3λŵ = r̂ζ̂ − 2λŵ,
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X̂iζ̂i =
λ

2
σi

αβσ
i
γδ(â

+
α âβ + b̂β b̂

+
α )(â+

γ b̂δ + âδ b̂
+
γ )

=
λ

2
(2δαδδγβ − δαβδγδ)(â+

α âβ + b̂β b̂
+
α )(â+

γ b̂δ + âδ b̂
+
γ )

= λ(âβ â
+
β â

+
α b̂α − â+

α b̂α + â+
α âαâβ b̂

+
β + b̂+α b̂αâ

+
β b̂β − â+

α b̂α + b̂β b̂
+
β âαb̂

+
α )

−1
2
(r̂L + r̂R − 2λ)ζ̂

= (r̂L + r̂R + 2λ)â+
α b̂α + (r̂L + r̂R − 2λ)âαb̂

+
α − 2λâ+

α b̂α − r̂ζ̂ + λζ̂

= r̂ζ̂ + λŵ,

[X̂i, ζ̂i] = 3λŵ, {X̂i, ζ̂i} = 2r̂ζ̂ − λŵ. (E.26)

Now we can use all the derived stuff to prove (E.17):

(Ŵ ′)2 = η2r̂2 − η{r̂, ζ̂}+ (ζ̂)2 = η2r̂2 − η(λŵ + 2ζ̂ r̂) + (ζ̂)2,
(Ŵ ′

i )
2 + (η2λ2 − 4)((L̂i)2 + 1) =

=
η2

2
(r̂2 + X̂L

i X̂
R
i − λ2)− η(2r̂ζ̂ − λw) + (ζ̂)2 +

2
λ2

(r̂2 − X̂L
i X̂

R
i + λ2)

+
η2

2
(r̂2 − xL

i x
R
i − λ2)− 2

λ2
(r2 − xL

i x
R
i − λ2) + η2λ2 − 4

= η2r̂2 − η(2r̂ζ̂ − λŵ) + (ζ̂)2

= (Ŵ ′)2.

In the last line we have used [r̂, ζ̂] = λŵ and consequently

λŵ + 2ζ̂ r̂ = 2r̂ζ̂ − λŵ. (E.27)

The proof of (E.17) is finished, and (6.20) follows immediately.

Although the attention and patience of the reader may have been taxed just enough by this Ap-
pendix, hopefully they have kept sufficiently positive attitude to at least appreciate the absence
of further details.
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[18] H. Grosse, C. Klimčı́k, P. Prešnajder, Towards finite quantum field theory in noncommutative geome-

try, Int. J. Theor. Phys. 35 (1996) 231.
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