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This tutorial review discusses some of the work that preceded development, twenty-five years
ago, of the stimulated Raman adiabatic passage (STIRAP) technique, now widely used in the
controlled coherent dynamics of three-state systems, noting how the use of time-dependent
adiabatically-evolving population-trapping dark states made possible the robust and highly-
efficient population transfer between quantum states that first popularized STIRAP. Preceding
the history discussion is a tutorial definition of STIRAP and its necessary and sufficient ingre-
dients — understanding that has led to applications well beyond those of the original quan-
tum systems. This review also discusses the relationship between STIRAP and two related
procedures: chirped Raman adiabatic passage (RCAP or CHIRAP) and electromagnetically
induced transparency (EIT) with slow and captured light. It concludes with a brief discus-
sion of ways in which contemporary STIRAP has extended the original concept and enlarged
the definition, beyond that of simple quantum systems to classical macroscopic devices. Ap-
pendices offer further details. The presentation emphasizes theory but with illustrations of
experimental results.
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Introduction: STIRAP defined 365

1 Introduction: STIRAP defined

The technique of coherent manipulation of quantum states known as stimulated Raman adia-
batic passage (STIRAP), originally developed as a procedure for efficiently producing popula-
tion transfer between vibrational levels of molecules in beams [Gau88,Kuk89,Gau90], has been
broadly extended in a variety of ways in the subsequent years to systems and applications differ-
ing substantially from those of the initial interest. Several reviews [Ber95,Sho95b,Ber98,Vit01a,
Vit01b] and monograph sections [Sho08, Sho11] have, from time to time, provided detailed de-
scription of the underlying concepts and overviews of its many applications and experimental
demonstrations.

This present article helps celebrate the quarter century of STIRAP existence by looking back
upon earlier works, preceding but related to aspects of STIRAP, pointing out both what they did
and what they did not do. Here is an outline of the contents:

Section 1.1 describes the underlying Raman and stimulated-Raman scattering (SRS)
processes.

Section 1.2 provides a working definition of the STIRAP procedure and the equa-
tions associated with it.

Section 1.3 discusses the several identifying characteristics associated with the STI-
RAP process.

Section 2 reviews a number of earlier works, ordered roughly by topic and date of
publication, whose results form parts of the overall procedure that is here called
STIRAP. Many of these made some notable contribution to the theory2, but none
were a complete example of STIRAP.

Section 3 continues the historical record to summarize the first development of STI-
RAP .

Section 4 discusses the relationship of STIRAP to an earlier procedure, known as
RCAP or CHIRAP, for accomplishing adiabatic transfer of population using fre-
quency sweeping (chirping) in a stimulated-Raman linkage.

Section 5 discusses some procedures developed at the time of STIRAP dealing with
manipulations of fields, rather than quantum states, and that have close connec-
tions with STIRAP: Electromagnetically induced transparency (EIT), slow light
and the trapping and retrieval of light pulses.

Section 6 summarizes some of the extensions to the original paper on STIRAP that
currently provide a somewhat enlarged definition of STIRAP, extending beyond
the stimulated Raman process of molecular excitation to find application in many
research areas, including macroscopic classical systems.

Section 7 presents a brief general summary.

Appendices present comments on notation and nomenclature and supplementary
matters related to coherent excitation, dark states and EIT.

2The story of earlier experiments must be told elsewhere.
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others. From steady-state solutions to density-matrix equations they noted that trans-

parency would occur under suitable “hole-burning” conditions. described by Bennett [?]

and originating with saturation in the strong-field transition, but they also wrote of a

“non-linear interference e↵ect . . . related to Raman scattering”. This is not visible in their

illustrations.

spectroscopy has been known for Some time Feld M S and Javan A 1969 Phys. Ret..

177 540-62 Hansch Th and Toschek P 1970 2.Phys. 236 21344

Liao P F and Bjorkholm J E 1975 Phys. Rev . Lett. 34 1-4

bright state Vit97c,Vit97d,Fle96,Fle99,Pas99,Kis02

SEP Ham86

two-photon Goe31, Gol65

multiphoton Gol65, Beb66, Gon68, Gon71, Fai87, Del94

no sum Dal55,Mav91

H. B. Bebb and A. Gold, Phys. Rev. 143, 1 (1966) H. B. Bebb, ibid. 149, 25 (1966)

ibid.153, 23 (1967) A. Dalgarno and J. T. Lewis, Proc. Roy. Soc. (London) A233, 70

(1955) Y. Gontier and M. Trahin, Phys. Rev. 172, 83 (1968)

|E3 � E1| = ~|!P � !S | lambda

= ~(!P + !S) ladder

(2) |E3 � E1| = ~
⇢

|!P � !S | lambda

(!P + !S) ladder

(3)

%
%

1

Fig. 1.1. (a) The two-photon Raman process: a primary (pump) field P is accompanied by a set of
spontaneously-emitted secondary S fields (dashed lines). Often selection rules make a single spontaneous-
emission field dominant. (b) The resonance Raman process: a field P links the ground state 1 with an
excited state 2 which decays by spontaneous emission (dashed lines) to state 3 as well as other states. The
frequencies satisfy the two-photon resonance condition (1.3). (c) The stimulated Raman scattering (SRS)
process: a specific S field links intermediate state 2 with a specific final state 3. Spontaneous emission
occurs as well. In each frame the heavy horizontal line for state 1 emphasizes that this is initially populated.

1.1 Raman and stimulated Raman processes; Double optical resonance

The basic traditional Raman process [Ram28a,Ram28b,Ram28c,Ram28d,Bor28b], long used in
molecular spectroscopy [Her50, Col90, Fer03, Smi05], is an inelastic light-scattering process in
which a photon from a primary (or pump) field P field is scattered into a secondary (or Stokes)
field S, with the difference in photon energies going to an energy change of a molecule, most
commonly rotational or vibrational excitation. A single P field of given frequency will produce
a set of S fields, whose measured frequencies allow determination of the excitation energies of
the material. Frame (a) of Fig. 1.1 illustrates this two-photon process.

Resonance Raman. In the more specialized resonance Raman scattering (RRS) processes,
shown in frame (b) of Fig. 1.1, the excitation step uses a P field that brings population from
an initially populated state 1, of energy E1, into a specific excited electronic state 2, of energy
E2, by having a carrier frequency ωP that is very close to satisfying the single-photon resonance
condition with the 1-2 transition,

~ωP = |E2 − E1|. (1.1)

There follows population transfer into stable or metastable states by spontaneous emission of
S-field photons. For a given final state 3, of energy E3, the S-field frequency ωS is set by the
2-3 transition energy,

~ωS = |E2 − E3|. (1.2)

In the present article “Raman” will generally refer to the resonance (or near-resonant) Raman pro-
cess, via a single intermediate state. The (non-resonant) Raman process of Fig. 1.1(a) proceeds
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through numerous virtual intermediate states which are all far from single-photon resonance.

Stimulated Raman. The stimulated Raman process (or stimulated Raman scattering, SRS)
[Eck62,Hel63,Zub64,She65,Blo67,Wan69,Cou77,Ray79,Ray81,Ray90] shown in Fig. 1.1(c),
replaces the spontaneously emitted S fields by a controlled radiation field: the 2-3 transition is, in
the Einstein view (see App. D), a stimulated emission. In general for SRS the intermediate state
2 need not be resonant with either P or S alone (as is shown here), but the difference of those
two frequencies must equal the 1-3 transition frequency: they satisfy the two-photon resonance
condition (see Fig. 1.2 for linkage display):

|E3 − E1| =
{

~|ωP − ωS |, E1, E3 < E2, lambda linkage,
~(ωP + ωS), E1, < E2 < E3, ladder linkage. (1.3)

The spontaneous-emission fields will always accompany the S field, being generated at a fixed
rate, the inverse of the spontaneous-emission lifetime. Their presence can be ignored during the
excitation stage when the S field is sufficiently brief and strong. They are detectable as scattering
or fluorescence.

Stokes and anti-Stokes. When E3 > E1 (and hence ωP > ωS), as shown in Fig. 1.1, state 3
is an excited state and the secondary S-radiation is termed Stokes radiation. WhenE1 > E3 (and
hence ωP < ωS), state 1 is an excited state — the SRS takes energy away from the molecule
— and the S radiation is historically termed anti-Stokes radiation, a distinction that will not be
followed in the present article: the SRS and STIRAP processes do not depend on the relative
values of E1 and E3.

1.2 Stimulated Raman adiabatic passage (STIRAP)

The linkage. STIRAP is one of many procedures that use pulses of coherent radiation to in-
duce population transfer between two quantum states [Sho90,Sho11]. The prototypical quantum
system in which STIRAP occurs comprises three quantum states, 1,2,3, linked in a chain by two
monochromatic radiation fields P and S (the double-headed arrows signify that the interactions
are coherent, moving probabilities both ways):

1 ←→
P

2 ←→
S

3. (1.4)

The three-state chain is common to many physical systems, some of which will be discussed here.
The linkage pattern of the Hamiltonian energy matrix, viewed as a graph [Ein76, Ein79], has
three nodes (quantum states or Zeeman sublevels, 1,2,3) and two links (fields or Rabi frequencies
P, S). Linkage patterns are also known as configurations.

1.2.1 The equations of motion

The statevector. Descriptions of coherent manipulation of discrete quantum states rely on a
time-dependent statevector Ψ(t) defined in an N -dimensional Hilbert space whose coordinate
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unit-vectors ψψn are associated with the N basic distinguishable quantum states of interest; cf.
App. B.1. The general statevector construction reads:

Ψ(t) =
∑

n=1,N

Cn(t) exp[−iζn(t)]ψψn. (1.5)

Mathematically the coefficients Cn(t) are expansion coefficients in a system of coordinates
ψψ′n(t) that rotate with the phases ζn(t), see App. C:

ψψ′n(t) ≡ exp[−iζn(t)]ψψn. (1.6)

It is these (rotating) vectors that serve as the unit column-vectors in the present discussion (and,
implicitly, in almost all other papers discussed here): 1

0
0

 = ψψ′1(t),

 0
1
0

 = ψψ′2(t),

 0
0
1

 = ψψ′3(t). (1.7)

Physically the Cn(t) are probability amplitudes for the probability

Pn(t) = |Cn(t)|2 (1.8)

of finding the system to be in state n at time t — the instantaneous population of state n.

The TDSE. The construction (1.5) is used with the time-dependent Schrödinger equation (TDSE)
and Hamiltonian operator H(t),

i~
∂

∂t
Ψ(t) = H(t)Ψ(t), (1.9)

to produce a set of coupled ordinary differential equations (ODEs), as implementation of the
TDSE:

i
d

dt
C(t) = W(t)C(t), (1.10)

where C(t) is a column-vector having probability amplitudesCn(t) as elements and the elements
of the matrix W(t) have units of angular frequency, i.e. radians per unit time.

Whereas the Hamiltonian H(t) typically contains terms that oscillate at optical frequen-
cies, the population changes of interest occur more slowly (an example of multiple time-scale
perturbation-theory [Won76, Won77]). The appropriate choice of phases ζn(t), together with
neglect of rapidly varying terms — the rotating-wave approximation (RWA), cf. Sec. 1.3.2
and [Sho90, Sho11] — typically makes the coefficient matrix W(t) only slowly varying or con-
stant.

The Hamiltonian matrix3 W(t) for STIRAP is customarily presented in the rotating-wave
picture (see App. C) using the rotating-wave approximation. In the present article I generally

3Some authors use units such that ~ = 1, blurring the distinction between angular frequency and energy, and making
more obvious the referral to both W(t) and H(t) as Hamiltonian matrices.
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choose the phases ζn(t) and the state orderings such that the 1,1 element of W(t) is zero [using
eqn. (C.4a) of App. C]. With two-photon resonance as required for STIRAP [cf. eqns. (1.3) and
(1.18)] and appropriately chosen phases the constructions read :

W(t) ≡ 1
2

 0 ΩP (t) 0
ΩP (t) 2∆ ΩS(t)

0 ΩS(t) 0

 , C(t) ≡

 C1(t)
C2(t)
C3(t)

 . (1.11)

These three coupled ordinary differential equations (ODEs) for the three complex-valued proba-
bility amplitudes Cn(t) are the fundamental equations of STIRAP (see Sec. 6.8). They involve
three parameters defined in the paragraphs below: two time-varying Rabi frequencies ΩP (t) and
ΩS(t) and a constant detuning ∆, possibly null.

Rabi frequencies. The two off-diagonal elements of 2W(t), denoted ΩP (t) and ΩS(t) and
responsible for transitions 1-2 and 2-3 respectively, are (time-dependent) Rabi frequencies4

[Rab54, Kni80, Sho90]. This article takes them to be real-valued and slowly varying. They
parametrize interaction energies, and may have as their origin an electric-dipole interaction, as is
common in quantum optics, or a magnetic-dipole interaction, as is used in magnetic resonance
work. They may also express induced-dipole multiphoton transitions, as in hyper-Raman adi-
abatic passage [Yat98b]; see Sec. 2.10.1. But, as noted in Sec. 6.8, they may also have a very
different, quasi-static origin.

The interaction and fields. The portion of the Hamiltonian responsible for most optical transi-
tions, including stimulated Raman scattering, is that of an electric dipole moment d in an electric
field E(t), evaluated at the center of mass for the system,

Hint(t) = −d ·E(t), (1.12)

but other interactions have interest [Sho90, Sho11] and this form is not essential for discussions
of coherent excitation. In the original STIRAP procedure the two pulsed fields have constant
carrier frequencies ωP and ωS . That is, the electric field producing the interaction (1.12) has the
form

E(t) = Re
[
eP (t) EP (t) exp(−iωP t+ iϕP ) + eS(t) ES(t) exp(−iωSt+ iϕS)

]
, (1.13)

where eP (t) and eS(t) are unit vectors, either time independent or slowly varying, EP (t) and
ES(t) are slowly-varying pulse envelopes5, and ϕP and ϕS are constant phases. Thus the ba-
sic STIRAP differs from other procedures that involve only two quantum states altogether or
which involve only a single pulsed field or which employ fields with variable carrier frequencies
(obtainable from time-varying phases ϕ).

In writing the field in this way one assumes that the field is classical, i.e. sufficiently strong
that alteration by one photon has negligible effect on the field and the formalism of quantized

4Some authors refer to what is here written Ω/2 as “Rabi frequency”, often using the symbol Ω. Some authors
express “Rabi frequency” in Hz = 2π rad/sec.

5The magnitude of the electric-field amplitude E(t) in SI units obtains from the radiation intensity I(t) as |E(t)| =p
2I(t)/(cε0), where c is the vacuum speed of light and ε0 is the permittivity of free space.
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electromagnetic fields [Dir27, Hei54, Lou73] is not needed. This is a satisfactory approximation
for excitation by laser beams, but not for interaction with cavity fields, whose description requires
quantized fields; see Sec. 1.3.12.

With electric-dipole interaction of eqn. (1.12) and the field of eqn. (1.13) the Rabi frequen-
cies are evaluated from the formulas

~ΩP (t) = −d12 · eP (t)EP (t), ~ΩS(t) = −d23 · eS(t)ES(t), (1.14)

where dnm = 〈ψn|d|ψm〉 is the electric-dipole transition moment between states n and m.
Numerical values for given pulse intensity I(t) obtain from the formula [Sho90]

|Ω| = 2.2068× 109 sec−1
√
I[W cm−2] × |d·e|

ea0
, (1.15)

where ea0 = 2.54176 debye is the atomic unit of dipole moment. That is, the Rabi frequencies
depend explicitly on the relative orientations of the atom or molecule and the electric-field di-
rection. For other multipole transitions (e.g. magnetic dipole or electric quadrupole) the Rabi
frequency is proportional to the product of a multipole moment and a field amplitude. For an
n-photon transition the Rabi frequency is proportional to a polarizability and the product of n
field amplitudes.

Energy ranking. It is important to note that by using the rotating-wave picture the original
ranking of the quantum-state energies En becomes immaterial: the basic equations (1.10)-(1.11)
apply equally well to any ordering of undisturbed energies En, as does the STIRAP mechanism
so long as the system starts in a state at the end of the chain, traditionally taken to be state 1 (see
Fig. 1.2):

• a ladder ( or Ξ or cascade ): E1 < E2 < E3 ,

• a lambda (or Λ or folded): E1, E3 < E2,

• a letter-V: E1, E3 > E2 .

In the classification of lambda and letter-V linkages the energy-ordering of states 1 and 3 does
not matter: E1 < E3, E1 = E3 or E1 > E3 are all possible with the same W(t).

Selectivity. In writing eqn. (1.11) it is assumed that because of frequency selectivity and
polarization-based selection rules [Sho90, Sho11] each field acts only on a single transition,
as indicated in eqn. (1.4) and Fig. 1.1. (Breakdown of this rule is discussed in [Una00a].) The
two transitions are characterized, in part, by the single-photon detunings ∆P and ∆S , defined by
their frequency mismatch with the appropriate Bohr transition frequency ωnm,

∆P = ω12 − ωP , ∆S = ω23 − ωS , ~ωnm ≡ |En − Em|. (1.16)

These detunings are assumed to be much smaller than the carrier frequencies; they vanish for
resonant transitions.
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Fig. 1.2. The linkage patterns of (a) Ladder, (b) Lambda and (c) Letter-V, showing P and S linkages.
The relative ordering of energies E1 and E3 does not matter when using the RWA. In the letter-V linkage
initial population is in the middle of the chain, state 2, whereas in the other patterns state 1 has the initial
population.

Detuning. When used with pulsed electromagnetic fields the ∆ of eqn. (1.11) is the (constant)
single-photon detuning

∆ = ∆P . (1.17)

A characteristic of STIRAP, as defined here, is that ∆ does not vary with time. Some other
coherent-excitation schemes require time-varying detuning, typically a linear sweep, cf. Sec. 4.

Two-photon resonance. The condition for two-photon resonance, eqn. (1.3), needed for STI-
RAP and assumed for the W(t) of eqn. (1.11), implies that the S-field detuning for a given P
field detuning be

∆S =
{

∆P , E1, E3 < E2, lambda linkage,
−∆P , E1, < E2 < E3, ladder linkage. (1.18)

Population loss. As noted in Sec. 1.3.9, the real-valued ∆ is often replaced by a complex
number,

∆→ ∆− iΓ/2, (1.19)

to model spontaneous emission from the excited state 2 and subsequent probability loss−dP2/dt
at the rate ΓP2. The population loss may also come from photoionization (or photodissociation)
that takes the system into a continuum of kinetic energy states. In that situation Γ may be time
dependent. In all such cases the irreversible loss from a discrete state is into a continuum of
states; the discrete excited state is “embedded” into a continuum, see Sec. 2.5. By setting Γ = 0
we are assuming that the times of interest are appreciably shorter than the radiative lifetime of
the excited state.
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Degeneracy. The spectroscopic applications of Raman scattering dealt with degenerate quan-
tum states (i.e. states sharing a common energy but distinguishable by orientation) treated col-
lectively as energy levels subject to rate equations for populations (see App. D and [Ack77]).
Descriptions of coherent excitation, as in the present discussion, must treat each energy state
separately; see Sec. 1.3.14.

1.2.2 Pulse ordering

Labels. Section 1.1 gives the original motive for the P and S terminology in the context of
Raman processes. More generally the labeling of states 1 and 3 and of pulses S and P has the
following meaning: by definition state 1 holds the initial population and state 3 is the target state
for population transfer. The P field is primary, in the sense of coupling the initially populated
state to the excited state. The S field is then secondary, meaning it has no connection to the
initially populated state. In EIT the P field is a probe altered by the strong S field, see Sec. 5.1.
In stimulated-emission pumping (SEP) the S field is referred to as the dump field [Kit81,Ham86].

Simultaneous pulses. When simultaneous resonant pulses occur in a multi-state system (i.e.
a linkage pattern with all detunings null, ∆n = 0), all with a common time variation f(t), it is
possible to introduce a scaled temporal variable τ(t) that incorporates all of the pulse shape, via
the definition dτ = f(t)dt. The dynamics is then described by a constant RWA Hamiltonian
[Sho90, Sho11]. Under such conditions the time evolution exhibits Rabi oscillations rather than
monotonic population transfer; see Sec. 2.9.2.

Delayed pulses. When the pulses are not simultaneous it is necessary to distinguish two order-
ings of the individual pulses. Intuitive pulse-ordering means that the primary field P acts first,
to move population from populated state 1 into excited state 2. Counter-intuitive ordering means
that the secondary field S precedes the primary field P ; The earliest pulse, prior to the arrival
of the P pulse, has no direct effect on the initial population in state 1. The terminology of “in-
tuitive” and “counter-intuitive” originated with understanding of incoherent radiative procedures
that first move population into state 2 and then into state 3, [Sho95b]. The STIRAP process
requires coherent radiation and relies on a counter-intuitive pulse sequence, with S before P .

1.2.3 Two views of STIRAP

The RWA Hamiltonian matrix W(t), supplemented with initial conditions, provides only part of
the definition of STIRAP. There are two complementary (in the Bohr sense) ways of viewing the
remaining definition of STIRAP, related to the required pulse sequence.

View 1. One approach is a pragmatic, experimental viewpoint: there are two pulses, with
carrier frequencies ωP and ωS adjusted for two-photon resonance, eqn. (1.18), to produce the
diagonal elements of the matrix W(t) of eqn. (1.11). Population initially resides in state 1. The S
pulse, linking states 2-3, precedes and overlaps the P pulse, which links states 1-2. The result of
this pulse sequence will be complete population transfer 1→ 3 with never any appreciable exci-
tation of state 2, if the variation of W(t) is sufficiently slow (i.e. the time evolution is adiabatic,
cf. App. G). Figure 1.3 illustrates a simulation of this process.
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0.5 Pulses Populations Pn S P time �!

0.0.1 The dark state

In the traditional Raman or stimulated Raman processes the middle state of the three-state chain is an

excited state, and thus it can undergo spontaneous emission, visible as fluorescence. Often such an emission

will lead to a state other than states 1 or 3: the system will no longer be describable by a statevector in a

closed three-dimensional Hilbert space. It is customary to treat such probability loss by making the energy

E2 complex; the detuning � of eqn. (??) then becomes � � i�/2, and any population arriving in state 2

will produce a fluorescence signal.

Because the eigenvector �0(t) is always a coherent superposition of states 1 and 3 it never has any

component of lossy state 2, and its components never produces fluorescence: it is a dark state [?]. That is,

the STIRAP process relies on a time-varying dark state to produce population transfer. Figure 1 shows the

Hilbert-space motion associated with STIRAP.

��

�+

�0 �

(b)(a)

Figure 1: Examples of Hilbert-space rotations into final locations, associated with STIRAP. (a) The three

adiabatic eigenvectors rotate as shown: The eigenvectors �+ and �� rotate onto the equatorial plane, the

eigenvector �0 rotates in the 1,3 plane from the 1 axis to the 3 axis. (b) The statevector  , aligned with

�0, rotates from the 1 axis to the 3 axis.

With the traditional (but arbitrary) choice of phases and energy zeros, the dark state has zero eigenvalue,

but that choice is by no means necessary; cf. Fig. ?? in Sec. ?? and App. ??.
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0.0.1 The dark state

In the traditional Raman or stimulated Raman processes the middle state of the three-state chain is an

excited state, and thus it can undergo spontaneous emission, visible as fluorescence. Often such an emission

will lead to a state other than states 1 or 3: the system will no longer be describable by a statevector in a

closed three-dimensional Hilbert space. It is customary to treat such probability loss by making the energy

E2 complex; the detuning � of eqn. (??) then becomes � � i�/2, and any population arriving in state 2

will produce a fluorescence signal.

Because the eigenvector �0(t) is always a coherent superposition of states 1 and 3 it never has any

component of lossy state 2, and its components never produces fluorescence: it is a dark state [?]. That is,

the STIRAP process relies on a time-varying dark state to produce population transfer. Figure 1 shows the

Hilbert-space motion associated with STIRAP.

��

�+

�0 �

(b)(a)

Figure 1: Examples of Hilbert-space rotations into final locations, associated with STIRAP. (a) The three

adiabatic eigenvectors rotate as shown: The eigenvectors �+ and �� rotate onto the equatorial plane, the

eigenvector �0 rotates in the 1,3 plane from the 1 axis to the 3 axis. (b) The statevector  , aligned with

�0, rotates from the 1 axis to the 3 axis.

With the traditional (but arbitrary) choice of phases and energy zeros, the dark state has zero eigenvalue,

but that choice is by no means necessary; cf. Fig. ?? in Sec. ?? and App. ??.
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With the traditional (but arbitrary) choice of phases and energy zeros, the dark state has zero eigenvalue,

but that choice is by no means necessary; cf. Fig. ?? in Sec. ?? and App. ??.
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1

Figure 1: Example of STIRAP.

1

Fig. 1.3. Example of STIRAP dynamics for fully resonant Raman linkages, ∆ = 0. (a) The pulsed
Rabi frequencies ΩS(t) and ΩP (t), normalized to unit peak value. (b) The populations Pn(t). When
the time evolution is adiabatic, as in this simulation, there is complete population transfer from state 1 to
state 3 and negligible population in state 2, a signature of STIRAP. Times are in units of the pulse-width
τ . Theoretically, in the limit of perfect adiabatic evolution, state 2 would always remain unpopulated; but
see App. G. Similar plots first appeared in [He90, Kuh92, Sho92b]; see also [Ber98, Vit01a, Vit01b, Sho08,
Sho11].

View 2. The other approach is from a theoretical viewpoint, of Hilbert space and the three
time-dependent eigenvectors6 Φµ(t) ≡ |µ〉 of the instantaneous RWA Hamiltonian matrix W(t),

W(t)Φµ(t) = εµ(t)Φµ(t), (1.20)

known variously as adiabatic states or dressed states, with adiabatic eigenvalues (also known
as quasi-energies) εµ(t). These contrast with the original undisturbed bare states associated
with basis vectors ψψn and ψψ′n(t); their eigenvalues are the diagonal elements of W(t), known
as diabatic eigenvalues. The adiabatic eigenvectors do not individually obey the TDSE, but
they can be used to construct superpositions that do. The STIRAP process relies on a particular
eigenvector of the W(t) of eqn. (1.11) (the population-trapping dark state, cf. Secs. 1.3.9-1.3.10
and 2.3):

Φ0(t) =
1

Ωrms(t)

 ΩS(t)
0

−ΩP (t)

 , Ωrms(t) =
√

ΩP (t)2 + ΩS(t)2, (1.21)

which, for the RWA Hamiltonian of eqn. (1.11), has a constant null eigenvalue, ε0(t) = 0 (but
see App. E.1). To produce the STIRAP process we adjust the Rabi frequencies such that initially,

6The boldface greek-letter notation Φµ emphasizes the mathematical similarity with Hilbert-space vectors Ψ and
ψψn. The Dirac notation |µ〉 is better suited to labels on curves, where the ket notation | · · · 〉 makes clear the meaning of
plus and minus signs.
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at time t = 0, the statevector Ψ(0) coincides with Φ0(0) and with the initially populated bare
state 1,

Ψ(0) ≈ Φ0(0) ≈ ψψ′1(0), for |ΩS(0)| � |ΩP (0)|. (1.22)

Then we control changes to the two Rabi frequencies such that, at the conclusion of the pulse
sequence, Φ0(T ) lies along the 3 axis, coinciding (apart from phase) with bare state 3:

Ψ(T ) ≈ Φ0(T ) ≈ −ψψ′3(T ), for |ΩP (T )| � |ΩS(T )|. (1.23)

We make the changes sufficiently slowly (adiabatically) that the statevector Ψ(t) remains always
aligned with Φ0(t); see App. G. The result of this controlled Hilbert-space rotation of the adia-
batic eigenvector is complete population transfer, 1 → 3. Because Φ0(t) has no component of
state 2, there will never be appreciable population in this intermediate state.

The variation in the Hilbert-space structure of Φ0(t) during the course of a STIRAP process is
most readily tracked by means of the mixing angle θ(t), defined by the ratio of Rabi frequencies7:

Φ0(t) =

 cos θ(t)
0

− sin θ(t)

 , sin θ(t) =
ΩP (t)

Ωrms(t)
, cos θ(t) =

ΩS(t)
Ωrms(t)

. (1.24)

By controlling the P and S fields the experimenter rotates the mixing angle from 0 to π/2,
thereby shifting the dominant component of Φ0(t) from state 1 to state 3. Figure 1.4 shows
the Hilbert-space motion of the vectors Φµ(t) associated with STIRAP. When the statevector
Ψ(t) remains aligned with Φ0(t), following its Hilbert space motion [an example of adiabatic
following (AF); see Sec. 2.2.3] then the populations transfer from state 1 to state 3.

The adiabatic eigenvectors are used extensively in discussions of STIRAP, but other ap-
proaches have uses for depicting the dynamics. Sections 1.3.5, 1.3.9 and 2.2.8 define other useful
rotating-coordinate systems for viewing three-state dynamics. [Keep in mind that the bare-state
basis vectors of eqn. (1.7) already incorporate rotations at carrier frequencies.]

1.2.4 Representative STIRAP results

Simulations of examples of the TDSE, for very general pulse shapes (and large numbers of
quantum states) are readily obtained using commercial software such as Mathematica R© (my
own choice) or Matlab R© , with any personal computer platform. Numerous articles have dis-
played examples of the several variables associated with STIRAP processes, showing successful
population transfer, as in Fig. 1.3. Mostly these illustrations have been for situations in which the
two pulses, though offset by a delay, have the same time dependence (typically Gaussian) and
the same Rabi-frequency peak value. Such restrictions are not necessary. Figure 1.5 shows an
example of simulation for Rabi-frequency pulses of finite duration that have unequal peak values
and negative single-photon detuning, ∆ = −5. The top frame, (a), shows the relative values of
the two Rabi frequencies. Frame (b) shows the three adiabatic eigenvalues, labeled |−〉, |0〉, |+〉.
The central curve (dashed) is the constant associated with |0〉. Frame (c) shows the mixing angle

7The more concise definition θ = arctan ΩP /ΩS must be used with caution when making numerical evaluations.
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0.0.1 Adiabatic elimination; Two state behavior, 1984, 1997

When the detuning term � of eqn. (??) is very large the population in state 2 tends to adiabatically follow

the populations in states 1 and 2, oscillating rapidly with small amplitude [Sho90]. This makes possible

adiabatic elimination of state 2 from the equations, using the approximation obtained by setting to zero the

averaged time derivative of that state:

C2(t) ⇡ �
⌦P (t)

2�
C1(t)�

⌦S(t)

2�
C3(t). (1)

The requirement for this approximation is that the magnitude of the detuning be much larger than the Rabi

frequencies,

|�|� |⌦P (t)|, |�|� |⌦S(t)|. (2)

The resulting two-state TDSE can be written, with appropriate choice of overall statevector phase, as [Ore84]

i

d

dt


C1(t)
C3(t)

�
=

1
2


0 ⌦e↵(t)

⌦e↵(t) 2�e↵

� 
C1(t)
C3(t)

�
, (3)

where the e↵ective Rabi frequency is proportional to the product of the two field amplitudes,

⌦e↵(t) = �⌦P (t)⌦S(t)/2�, (4)

and the e↵ective detuning, time varying, is proportional to the di↵erence of the squares of the two Rabi

frequencies (i.e. to the di↵erence of the P - and S-field intensities)

�e↵(t) = [⌦P (t)2 � ⌦S(t)2]/4�. (5)

This intensity-dependent detuning originates with the dynamic Stark shift of states 1 and 3 produced by

state 2, not with any sweep of laser frequency, although such a contribution to detuning can readily be

incorporated into the equations.

Before the arrival of the pulses both �e↵(t) and ⌦e↵(t) vanish. The e↵ective detuning becomes nonzero

when the first pulse arrives, changes sign at the midpoint of the pulse sequence, and remains nonzero until

the last pulse ceases. The e↵ective Rabi frequency is pulsed and positive, and is nonzero only when both

pulses are present.

By suitably crafting the S and P fields one can produce an e↵ective interaction that acts as a pulsed

chirp, thereby moving population between states 1 and 3 without placing any in state 2. Because the chirp

direction does not matter in two-state adiabatic passage, the temporal ordering of the pulses is immaterial

here. This way of viewing STIRAP – mapping it into the well-studied two-state system with controlled

time-dependent Rabi frequency and detuning – was discussed by Vitanov and Stenholm [Vit97b]. It gives

one connection between STIRAP and the LZ-LZS-LZSM description of adiabatic passage.

The equations, and their interpretation of chirped adiabatic passage, were presented by Oreg, Hioe and

Eberly [Ore84]. They suggested accomplishing the population transfer by means of the pulse ordering shown

in Fig. 1, i.e. the ”intuitive” ordering of pulses, in which their ⌦1 (the P field) precedes their Omega2 (the

S field), not the “counterintuitive” ordering of STIRAP.
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Fig. 1.4. Examples of Hilbert-space rotations into final locations, associated with STIRAP. (a) The three
adiabatic eigenvectors rotate as shown: The eigenvectors Φ+ and Φ− rotate onto the equatorial plane, the
eigenvector Φ0 rotates in the 1,3 plane from the 1 axis to the -3 axis. (b) The statevector Ψ, maintaining
alignment with Φ0, rotates from the 1 axis to the -3 axis.

θ(t), varying monotonically from 0 to π/2. The bottom frame, (d), shows the populations Pn(t).
With the chosen parameters there is some small temporary population in state 2, but overall there
is complete population transfer, as in Fig. 1.3.

The mixing angle. The pulses used for the simulation of Fig. 1.5 have finite duration (see App.
H). The change of mixing angle, and population, takes place only during a finite interval when
both pulses are present. The grayed-hashed portions of the frames mark times when only a single
field is present. These intervals, and those in which one field is very weak, are irrelevant for the
population dynamics.

The system point. The conditions for the simulations shown in Fig. 1.5 are such that the time
evolution is adiabatic and the statevector remains closely aligned with (follows) the vector Φ0(t).
The dynamics can be traced by a system point that traces its eigenvalue, ε0(t), in the plot of
frame (b). Initially and finally two of the eigenvalues are zero, those labeled |0〉 and |+〉; the
third, |−〉 is equal to the detuning ∆, here a negative number. For the choice of parameters of
this calculation the time evolution is satisfactorily adiabatic, and the system point follows the
null-eigenvalue adiabatic state, as indicated by the arrows.

1.3 STIRAP characteristics

A number of conditions are necessary for successful population transfer with the STIRAP pro-
cess. Conversely, a system (quantum or classical) that undergoes STIRAP will exhibits several
identifying characteristics. Following are some conditions that were considered very early, al-
though subsequent work has, in some cases, altered the early restrictions. The reviews [Ber98,
Vit01a, Vit01b] discuss the sensitivity of STIRAP to experimental conditions.
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Fig. 1.5. Example of STIRAP with unequal finite-duration pulses and static nonzero single-photon detuning
∆. (a) Relative Rabi frequencies, showing S before P . (b) Relative adiabatic eigenvalues εµ(t). The
arrows show the adiabatic motion of the system point, positioned initially at the large dot on the curve
|0〉. (c) Mixing angle θ(t) in units of π. The pulse sequence produces a θ(t) change from 0 to π/2. (d)
Populations Pn(t). The grayed portions of the frames mark intervals when only a single field is present;
they have no effect on the population change.

1.3.1 Coherence

The dynamics described here for the STIRAP process for a quantum system is coherent, in-
volving phase-preserving changes described by the time-dependent Schrödinger equation (1.9)
and a statevector Ψ(t) [Sho90, Sho11]. Here “coherent” means that both the quantum system
(atom or molecule) and the excitation field (detuning, Rabi frequencies and phases ϕ) are free
from random uncontrollable environmental disturbances. Light from thermal sources, even when
spectrally filtered, does not have the required coherence. It is possible to treat some irregular
stochastic influences, including rigorous treatment of spontaneous emission, by means of a den-
sity (or statistical) matrix ρρ(t) formed from bilinear products of probability amplitudes8,

ρnm(t) = Cn(t)Cm(t)∗, (1.25)

but these effects cannot be large without destroying coherence and preventing the adiabatic fol-
lowing that is a key element of STIRAP. For a discussion of theoretical and experimental conse-
quences of laser bandwidth on STIRAP see [Kuh92].

8Many authors incorporate the phases ζn(t) into the definition of ρρ(t).
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A signature of coherent excitation by steady (unpulsed) fields of constant frequency is the
occurrence of Rabi oscillations in populations [All75,Kni80,Sho11], not present with incoherent
excitation and rate-equation descriptions of change (see App. D).

A combination of steady-field coherent excitation along with (or followed by) incoherent
spontaneous emission occurs in the technique of optical pumping [Hap72, Kit81, He90, Sho11].
The final properties of such a process are generally not a single quantum state; a density matrix
must be used to treat such processes.

1.3.2 Three states and two pulsed fields; The RWA

Historically, the basic STIRAP process involved three quantum states and two pulsed classical
radiation fields, with the statevector adiabatically following a single (dark) adiabatic state (see
Sec. 1.3.9). Section 6.4 mentions extensions to more states and interactions.

The two fields may be distinguished either by wavelength (as in the original Raman process)
or by polarization, as occurs in a Raman transition between Zeeman sublevels of a degenerate
ground level, see Fig. 1.10(a) in Sec. 1.3.14. The pulsed electromagnetic fields typically origi-
nate in one of two ways:

• The pulse shape may originate with the variation of field intensity as beam particles travel
across a directed stationary laser beam, as was the case with the first STIRAP experiments
[Gau90, Kuh92, Mar96]. Such pulses have been modeled as Gaussians. Particles traveling
with different velocities will experience faster or slower time variation.

• Alternatively the field envelopes may come from crafted laser-pulses acting on stationary
quantum systems, as was done with nanosecond pulses by [Sch93,Hal96]. On such a time
scale the particles in a vapor or liquid can be regarded as stationary. With microwave pulses
it is feasible to program the exact electric field of tens of cycles, thereby creating a discrete
approximation of quite general amplitude, phase and frequency variation — an example
of arbitrary waveform generation (AWG). The crafted femtosecond laser pulses created by
frequency-component manipulation [Fro83,Wei90,Bri03,Bri04] are generally of too short
duration for use as STIRAP pulses (but see the work by Shapiro on femtosecond pulse
trains [Sha07]).

The RWA. When dealing with radiation fields for use with STIRAP it is important to use
the RWA when setting up the mathematical description. This approximation assumes that any
statevector changes, caused by Rabi frequencies and detunings, are much slower than the field
carrier frequencies, justifying the replacement (see [All75, Sho90, Sho11])

1 + exp[±i2ωt]→ 1, (1.26)

where ω is either of the carrier frequencies. This approximation is not required when the interac-
tions responsible for the Rabi frequencies are not those of electromagnetic transitions (e.g. elec-
tric or magnetic dipole transitions or multiphoton transitions) but are slowly varying quasistatic
interactions, as noted in Sec. 6.8. When the Rabi frequency or the detuning becomes comparable
to the Bohr frequency it is necessary to include counter-rotating terms in the Hamiltonian.
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Intensity constraints. To accomplish coherent excitation the fields (and corresponding Rabi
frequencies) cannot be too weak, because their action must be completed before inevitable phase-
disrupting influences affect the system, but they cannot be too strong (as are commercial lasers
used for welding and cutting), or else they will rapidly induce nonlinear processes that will ionize
or dissociate the system of interest and destroy the initial quantum states. Electric fields must
therefore be much less than the electric field that holds electrons within an atom or molecule.

Other systems. As noted in Sec. 6.8, there are many physical systems, both quantum mechan-
ical and classical, that deal with ODEs like eqns. (1.10) and (1.11) for three variables and two
pulsed interactions. In these systems there can be found analogs of all of the properties associated
with traditional STIRAP.

1.3.3 Double (two-photon) resonance

Although it is not necessary for STIRAP that the individual-field carrier frequencies ωP and ωS

be resonant with their respective Bohr frequencies ω12 and ω23, they must maintain the two-
photon resonance condition (1.18). Thus STIRAP is an extension of work on optical double
resonance [Bro52, Whi76], but with pulsed fields that are not simultaneous.

From a theoretical viewpoint, the critical property of two-photon resonance is the presence
of the two null elements on the diagonal of the 3×3 matrix W(t) for the basic ODEs of STIRAP,
eqn. (1.10). As noted in Sec. 6.8 any three ODEs of this form have the potential for exhibiting
the efficient adiabatic change of system variables associated with STIRAP.

1.3.4 Two-photon detuning

Although STIRAP, as defined here, requires the statevector to maintain continuously alignment
with the dark adiabatic state, and hence requires two-photon resonance, it is quite possible to
achieve excellent population transfer when this resonance condition is violated, so that the RWA
Hamiltonian, with allowance for loss from states 2 and 3, is

W(t) = 1

2

 0 ΩP (t) 0
ΩP (t) 2∆2 − iΓ2 ΩS(t)

0 ΩS(t) 2∆3 − iΓ3

 , (1.27)

where, for radiative interactions, the cumulative detunings are

∆2 = ∆P (1.28)

∆3 =
{

∆P −∆S , E1, E3 < E2, lambda linkage,
∆P + ∆S , E1, < E2 < E3, ladder linkage. (1.29)

The adiabatic curves now may have intersections (“avoided crossings”) at which times the stat-
evector shifts alignments between degenerate adiabatic states, rather than maintaining alignment
with a single adiabatic state [Dan94,Rom97,Gri01,Yat02a]. The process is not STIRAP, but the
population histories may be hardly distinguishable from those of STIRAP. Figure 1.6 shows an
example, with simulations that use larger pulse areas than are used in experiments, in order to
achieve good adiabatic evolution.
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1 Two fields: Stimulated Raman excitation

The three-state system in which two fields act, defined in Sec. ??, provides a model for many two-field

processes. The lambda linkage occurs with stimulated Raman transitions, in which the P field acts to

pump population from the ground state 1 into an excited state 2, from which the S field stimulates a

Stokes transition into state 3. The system is a coherent version of stimulated Raman scattering (SRS)

in which the S field arises from spontaneous emission. The RWA Hamiltonian is defined by two Rabi

frequencies and two detunings.

Usually state 1 is termed the ground state, initially populated, state 2 is termed the excited state, and

state 3 is termed the target (or final) state; the latter may have either greater or less energy than state 2,

as shown by the two linkage patterns of Fig. 1. These diagrams show the relative energies En involved in

the original Hamiltonian, and the two nonzero diagonal elements of the RWA Hamiltonian, �n. Typically

the goal of an experiment is to move as much population from state 1 into state 3 as possible.

Figure 1 shows the definition of the two detunings for both the lambda and the ladder system.

The dynamics of this system when the two fields are adjusted to satisfy the two-photon resonance

condition, �3(t) = 0, is particularly important. For these cases the RWA Hamiltonian is

W(t) =

2

4
0

1
2 ⌦P (t) 0

1
2 ⌦P (t) �(t) 1

2 ⌦S(t)
0

1
2 ⌦S(t) 0

3

5 , (1)

1
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Fig. 1.6. Simulation of population transfer with two-photon detuning. (a) Relative values of the two Rabi
frequencies, S before P . (b) The adiabatic eigenvalues for states |−〉, |0〉 (dashed) and |+〉. Arrows show
the course of the system point, which follows an adiabatic state except at two curve intersections, A and B,
when the point follows a diabatic curve. (c) The population histories Pn(t). Population is transferred from
state 1 to state 3, with brief non-adiabatic presence of state 2. These simulations use identical Gaussian
pulses, of areas 20π, and detunings ∆2 = 0.1Ω0, ∆3 = 0.2Ω0.

1.3.5 STIRAP and torque

A statevector undergoing coherent change maintains unit length, and hence its motion in Hilbert
space is a generalized rotation. When the excitation is fully resonant, meaning ∆P = ∆S = 0,
the TDSE (1.10) can be presented in the form of a three-dimensional torque equation,

d

dt
r = Υ×r, (1.30)

in which an angular-velocity vector Υ (also called the torque vector) acts to rotate the vector r.
For that purpose consider the TDSE for three states coupled by three resonant interactions,

i
d

dt

 C1

C2

C3

 = 1

2

 0 ΩP iΩQ

ΩP 0 ΩS

−iΩQ ΩS 0

 C1

C2

C3

 , (1.31)
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To rewrite this as a torque equation we introduce new independent variables differing from Cn

by a phase, [r1, r2, r3]T = [C1, iC2,−C3]T , so that the TDSE reads

d

dt

 r1
r2
r3

 = 1

2

 0 −ΩP ΩQ

ΩP 0 −ΩS

−ΩQ ΩS 0

 r1
r2
r3

 . (1.32)

This is an example of a torque equation in which the components of the angular-velocity vector
Υ are half the Rabi frequencies,

Υ = 1

2
[ΩS ,ΩQ,ΩP ]T . (1.33)

Adiabatic following. The vector r, of unit length, will remain aligned with (adiabatically fol-
low) the angular-velocity vector if initially the two vectors are either parallel or antiparallel,

Υ · r = ±|Υ|r, so that Υ× r = 0, (1.34)

and the subsequent changes of Υ are sufficiently slow (adiabatic); see App. G. That is, r is an
instantaneous right eigenvector of the angular-velocity vector9.

Examples. The required adiabatic vectors are simplest to obtain when, as in STIRAP, there are
only two interactions. For example, let ΩQ = 0. Then the required adiabatic-following vector r
is obtained from the following expression for Υ× r = 0 with r = Υ/|Υ|: 0 −ΩP 0

ΩP 0 −ΩS

0 ΩS 0

 ΩS

0
ΩP

 = 0. (1.35)

This is the torque equation appropriate to STIRAP, and it yields the conventional (dark) adiabatic
eigenvector that has null component r2 = iC2. Adiabatic change of the angular-velocity vector
from strong S field, Υ = [1, 0, 0]T to strong P field, Υ = [0, 0, 1]T , will take the vector
r from [1, 0, 0]T to [0, 0, 1]T , or C3 = −1. This is STIRAP, viewed as a solution to the torque
equation. However, any change in mixing angle necessarily introduces some nonzero component
of r2 = iC2; see App. G.

Alternatively, let ΩS = 0. Then the relevant equation for adiabatic following is 0 −ΩP ΩQ

ΩP 0 0
−ΩQ 0 0

 0
ΩQ

ΩP

 = 0. (1.36)

Now the vector used for adiabatic following has only components of states 1 and 2, between
which adiabatic transfer will occur as the two fields shift from large ΩQ to large ΩP . This too is
STIRAP, but with a relabeling of the states and the interactions.

9Although Υ takes its elements from the RWA Hamiltonian W, the construction of r as an eigenvector of Υ is not
the same thing as constructing an eigenvector of W.
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1.3.6 Adiabatic following

Whereas general schemes of coherent excitation depend upon details of pulse shapes, most no-
tably the temporal pulse area10

A =
∫ +∞

−∞
dtΩ(t), (1.37)

adiabatic processes are generally insensitive to such details — they are termed robust. The
success of a STIRAP process depends primarily upon the success of maintaining alignment of the
statevector Ψ(t) with the adiabatic eigenvector Φ0(t) (or the vector r with the angular-velocity
vector Υ) during all changes to the RWA Hamiltonian W(t). The changes must therefore be
slow, in some sense: they must be adiabatic [Mes62, Mor64, Loy74, Gau90]. Appendix G gives
details for the STIRAP process.

Such statevector changes are examples of adiabatic following and, when they produce popu-
lation transfer, they are examples of adiabatic passage (AP)11 between quantum states, cf. Sec.
2.2.5. The original research that used the STIRAP mechanism, e.g. [Gau88, Kuk89, Gau90,
Ber98], focused on complete population transfer, i.e. adiabatic passage.

Subsequent work, using much of the formalism developed for STIRAP, demonstrated cre-
ation of coherent superpositions of quantum states, i.e. adiabatic following, e.g. [Vit99] and Sec.
6.1, but there has been no suggestion to use the acronym STIRAF for this.

Note: Originally the term “following” referred to continuing alignment of a macroscopic
dipole moment with an effective field, or of the Bloch vector with an angular-velocity vector
whose components came from a Hamiltonian, cf. Secs. 2.2.2 and 2.2.3. In the context of STIRAP
the term “following” usually refers to continual alignment of the statevector with an adiabatic
eigenvector or eigenstate, but equally well it can refer to alignment with the angular-velocity
vector of a torque equation, see Sec. 1.3.5.

1.3.7 Adiabatic condition

Appendix G discusses the conditions on the RWA Hamiltonian that are needed for adiabatic
following. Manifestations of non-adiabatic evolution of the three state system are evident in two
ways: the failure of P3(t) to be unity at the termination time T of the pulse sequence and the
failure of P2(t) to be zero at all times. Let us define these errors as

ε3 = 1− P3(T ), ε2 = Max P2(t). (1.38)

As the pulse area becomes larger, each of these errors diminishes. By choosing some error criteria
an experimenter is led to a requirement on minimum pulse areaA. Reviews [Ber98,Vit01b] have
suggested an area of at least 10 (or 3π) as suitable; see App. G. Figure 1.7 shows an example of
the connection between error and pulse area for two identically shaped Gaussian pulses, suitably

10In a two-state system resonantly driven by a monochromatic field complete population transfer will occur when A
is an odd-integer multiple of π, a so-called pi pulse.

11It has been suggested to me that although “passage” originally meant the complete transfer of population the term
could equally well describe the creation of any predetermined final state, of which a pure state is but one example.
Consistent with that notion the creation of a superposition state could be called “adiabatic passage” in addition to being
a halted “adiabatic following”.
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Fig. 1.7. (a) The error ε3 (b) The error ε2, both as a function of temporal pulse area for two near-optimally
overlapping Gaussian pulses. Dashed horizontal lines mark errors of 10−2.

offset in time, and a lossless RWA Hamiltonian that has both single-photon and two-photon
resonance: ∆2 = ∆3 = 0. The figure shows that, based on the requirement of an error less
than 10−2 in population transfer, a pulse area larger than 4π is needed. To maintain a state-2
population less than 10−2 it is necessary to have a pulse area less than around 15π. Somewhat
different values would be obtained if the error ε2 is defined as the integrated population in state 2.
The early use of STIRAP for preparation of preselected excited states found population transfer
P3(T ) = 0.9 satisfactory, but applications in quantum-information processing require values
differing from 1.0 by 10−5.

Allowable detuning. The single-photon detuning ∆2 does not enter the definition of the dark
state and so it does not directly affect the possibility of complete population transfer as long as
there is two-photon resonance, ∆3 = 0 . However, the detuning does affect the adiabaticity of
the dynamics [Vit01a], adding coupling between |+〉 and |−〉 and thereby requiring a larger pulse
area (and larger pulse energy) to maintain the same small error; see App. G. STIRAP therefore
operates most efficiently on single-photon resonance, when ∆2 = 0 (and, of course, ∆3 = 0).

Irreversible. It is sometimes suggested (cf. Sec. 2.2.6 and [Pet82,Pet85]) that adiabatic changes
should be reversible and that for any excitation to persist after passage of a pulse it is necessary
that adiabatic evolution must be violated at some time — either the slow pulse buildup must
be followed by a rapid cutoff or else there must by decoherence-inducing processes (e.g. colli-
sions or photoionization) that negate the description of coherent excitation by the TDSE. This
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expectation of reversibility attends excitation by a single pulse, or simultaneous pulses, but not
the sequential overlapping pulses of STIRAP, for which the initial and final Hamiltonians differ:
the STIRAP procedure demonstrably does not inevitably return all population to the initial state.
Reversibility does occur if the S−P sequence is followed by the reversed sequence P −S. This
will return population from state 3 to state 1 and restore the initial conditions.

1.3.8 Pulse S before P; Counter-intuitive ordering

The counter-intuitive pulse timing, S before P , is an essential aspect of STIRAP not present
in the traditional double-resonance work. Because changes are adiabatic the shapes of the two
envelopes are not important, within limits. The dynamics are most simply understood when the
pulse envelopes have finite duration: the P pulse-envelope is zero initially, when the S pulse is
nonzero, and the S pulse-envelope is zero finally, when the P pulse is nonzero. As the temporal
pulse areas increase (and so adiabatic following is better satisfied) there is little effect on the
population transfer produced by a pulse sequence having (negative) delay of around half the
pulse width. However, there is a very notable variation with pulse area in the results for positive
detuning, P before S: for that regime Rabi oscillations are evident. Figure 1.8 shows, for a
lossless and fully resonant system, ∆2 = ∆3 = 0, a set of plots of population transfer probability
for four pulse areas, ranging from 5π to 20π. As can be seen, when the pulse areas are an odd-
integer multiple π there occurs complete transfer for any large positive delay, whereas when the
pulse areas are an even-integer multiple π there is complete population return for any large delay.

To observe such variation of population transfer it is, of course, necessary that all the atoms
be subject to the same temporal pulse area: they must all have the same dipole transition-moment
and experience the same field. In experiments on molecular beams passing through laser beams,
as in [Gau90], this condition does not hold: the molecules have a range of speeds and interact
with a range of peak Rabi-frequencies, from the different rotational orientations (i.e. different
magnetic quantum numbers) thereby blurring the pulse-area dependence. Furthermore there can
be no loss from state 2: this would damp the Rabi oscillations.

Transfer with P before S. The regime at negative delay is where adiabatic transfer (STIRAP)
occurs. For zero delay there are Rabi oscillations that regularly place half the population into
state 2 (see Sec. 2.9.2), and the final populations depend upon the temporal pulse areas. When
there is large nonzero single-photon detuning, but two-photon resonance ∆3 = 0, it is possible
to achieve complete population transfer with an intuitive ordering of pulses, independent of pulse
area, but this is not STIRAP; see Sec. 6.2.

1.3.9 The dark state

In the traditional Raman or stimulated Raman processes the middle state of the three-state chain
is an excited state, and thus it can undergo spontaneous emission, visible as fluorescence. Often
such an emission will lead to a state other than states 1 or 3: the system will no longer be
describable by a statevector in a closed three-dimensional Hilbert space12 . It is customary to

12Allowance for spontaneous transitions amongst three states cannot be treated as a coherent process with a statevector.
It requires a density matrix.
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Fig. 1.8. Population transfer versus delay (in units of pulse width τ ) for lossless, fully resonant excitation,
∆P = ∆S = 0 and four choices of pulse areas: top to bottom 5π, 10π, 15π, 20π. With S first the
population transfer is insensitive to pulse area, whereas with P first the transfer depends on pulse area via
Rabi oscillations. (When state 2 has loss, these oscillations are damped; for pulses longer than the lifetime
they will therefore be absent.) The labels “S first” and “P first” assume population starts in state 1. The
plots also apply for transfer from state 3 to state 1, with interchange of S and P .

treat such probability loss by making the energy E2 complex; the detuning ∆ of eqn. (1.11) then
becomes ∆− iΓ/2, and any population arriving in state 2 will produce a fluorescence signal.

Because the eigenvector Φ0(t) is always a coherent superposition of states 1 and 3 it never
has any component of lossy state 2, and its components never produces fluorescence: it is a
dark state [Ari96]. That is, the STIRAP process relies on a time-varying dark state to produce
population transfer.

With the traditional (but arbitrary) choice of phases and energy zeros, eqn. (C.4a), the dark
state has zero eigenvalue, so that W(t)Φ0(t) = 0, but that choice is by no means necessary; cf.
Fig. 3.2 in Sec. 3.3 and App. E.1.

The bright state. The description of Hilbert-space statevector motion of a three-state system,
such as that of the basic stimulated Raman Hamiltonian W(t) of eqn. (1.11), requires three
orthogonal unit vectors. The simplest choice is the set of stationary vectors ψψn or the rotating
vectors ψψ′n(t) associated with physical states. The choice used for Fig. 1.4(a) is the set of
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instantaneous eigenvectors Φµ(t) of W(t). A third possibility retains the excited-state ψψ′2(t) and
the dark adiabatic state Φ0(t) as two of the coordinates. The resulting dark-bright set [Vit97c,
Vit97d, Fle96, Fle99, Pas99, Kis02], with elements labeled dark state (d), bright state (b) and
excited state (e), are

Φd(t) = cos θ(t)ψψ′1(t)− sin θ(t)ψψ′3(t) ≡ Φ0(t), (1.39a)
Φb(t) = sin θ(t)ψψ′1(t) + cos θ(t)ψψ′3(t), (1.39b)
Φe(t) = ψψ′2(t). (1.39c)

The bright and dark unit vectors rotate in the 1,3 plane of Hilbert space, while the third unit
vector remains fixed, along the 2 axis [trecall that the coordinate vectors ψψ′n(t) are rotating with
phases ζn(t)].

Two-state behavior. When the mixing angle θ(t) remains constant, as it will when the P and
S pulses have the same time dependence, the amplitudes in this basis obey the equations

i
d

dt
Cb(t) = 1

2
ΩrmsCe(t), (1.40a)

i
d

dt
Ce(t) = 1

2
ΩrmsCb(t) + ∆Ce(t), (1.40b)

i
d

dt
Cd(t) = 0, (1.40c)

and the dynamics appears as that of a two-state system: the bright state embodies all of the
interaction with the excited state. Section 2.10.1 discusses a second type of two-state behavior,
occurring when the detuning |∆| is very large.

1.3.10 Population trapping

The population that starts in state 1 and remains associated with the adiabatic state Φ0(t) does
not undergo loss by spontaneous emission or by any other mechanism that is associated with
excited state 2. This population remains trapped, locked in a population trapping state [Rad82].
Appendix E.2 discusses a very simple example of population trapping, in which the trapped state
occurs because of a choice of coordinate system: a rotation of coordinates alters the magnetic-
sublevel composition of an angular momentum state.

An important characteristic of the STIRAP process is that state 2 is not populated. One has
a choice of making this either a condition or a consequence. If you require that the S pulse
precedes the P pulse, and the detuning is constant, the particular adiabatic state of interest turns
out to be the dark state. Alternatively, if you make the dark state, with its null population in state
2, the condition, then the counter-intuitive pulse sequence is a consequence along with constant
detuning. In the sense of Euclid, axiomatizing geometry, you have a choice of your basic non-
redundant axioms.

1.3.11 Coherence-free subspace

As long as the statevector remains well aligned with the dark state its motion is in a two-
dimensional subspace of the three-dimensional Hilbert space, and its behavior can be described
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by two-state variables. This dimensional reduction is a special case of more general dark states
that contain no excited-state component, cf. Sec. E.3.

Even a well-isolated singleN -state quantum system, such as an atom or molecule, inevitably
interacts with an external environment over which an experimenter has no complete control.
Random fluctuations of the environment act to alter the phases and amplitudes associated with the
single system, in an uncontrollable way, a change referred to as decoherence. In some situations it
is possible to find a subspace of the N -dimensional Hilbert space which is unaffected by specific
types of decoherence. This is a decoherence-free subspace (DFS) [Zan97, Lid98, Dua98]. For
the three-state system probability loss from state 2 (only) is a form of decoherence that does
not affect the dark state: it is a simple two-dimensional example of a DFS for decoherence that
originates with population loss.

1.3.12 Photons

In setting up the RWA Hamiltonian for STIRAP in Sec. 1.2.1 I used what is usually called the
semiclassical approach to quantum-state changes, an approach in which the fields have so many
photons that a change by one is not noticeable and the fields can therefore are treated as given
functions of time, unaffected by the excitation. It is that view that underlies, for example, the
discussion of Autler-Townes splitting in Sec. 2.4.

The two fields of STIRAP may be those of traveling waves, such as a laser beam, or they may
be those of a standing-wave cavity field in which the discreteness of photon numbers, nP and
nS , must be treated. When treating quantized fields and definite numbers of photons the basis
states then include descriptors of atom states, P -field states and S-field states, as in the use of
photon-number states in the replacements (see [Wal70, Wal71b, Rad82, Yoo85]):

|1〉 → |1, nP , nS〉, |2〉 → |2, nP − 1, nS〉, |3〉 → |3, nP − 1, nS + 1〉. (1.41)

With this quantized-field description the STIRAP transition from the initial atom state 1 to the
final state 3 removes one P photon and adds one S photon. The reverse process replaces an S
photon by a P photon. The RWA amounts to considering only the three energy-conserving states
above, although there exist other links that do not conserve energy.

The equations also obtain by Floquet treatment of harmonically varying constant-intensity
classical fields [Shi65,Gue97]. For excitation by laser beams the photon numbers nP and nS are
so large that their quantum properties are not observable, and a classical description is satisfac-
tory.

The Rabi frequency for a field of n photons is Ωvac

√
n+ 1 where Ωvac is the vacuum Rabi

frequency. For the usual optical transitions the Rabi frequency expresses an electric-dipole inter-
action energy and so ~|Ωvac| = |d12Evac| where d12 is the electric-dipole transition moment and
Evac is the single-photon electric-field amplitude. With a cavity of frequency ωc and volume Vc

this has the magnitude [Har89] |Evac| =
√

~ωc/(2ε0Vc).

1.3.13 Pulse-shape insensitivity

Adiabatic processes typically have the property that the final state of the system does not depend
on details of the time variation of the Hamiltonian. For pulsed coherent excitation this means that
details of pulse shapes, and of frequency variation, are not important. In this respect adiabatic
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Fig. 1.9. Examples of pulse envelopes of finite duration T , all of which can accomplish STIRAP. Dotted
lines show envelope portions that are immaterial. Thick and thin lines show alternative pulse shapes. The
thinner lines, full and dashed, are what might be termed “shark-fin” pulses. The thicker lines are distortions
of hypergaussian shapes, exp[−(t/τ)n], with n > 2.

dynamics differs significantly from resonant population transfer induced by pi pulses [Rab54,
All75,Sho90,Vit01a,Vit01b,Sho11], that produce desired results by carefully controlled temporal
pulse areas.

Figure 1.9 illustrates an aspect of this insensitivity: Prior to the arrival of the P pulse the S
envelope-shape is immaterial; cf eqn. (G.22). Following the termination of the S pulse the P
envelope is immaterial. The prior and post intervals, shown shaded in the figure, have no effect
on the mixing angle that determines the structure of the dark state.

Although the success of STIRAP does not depend on any details of the pulse envelope, a
choice of pulse shape, for fixed laser power or temporal pulse area, can effect the adiabaticity
[Gue02, Tor08]. In practice, this means that for a given pulse area or peak Rabi frequency the
nonadiabaticity error can be minimized by suitable choice of pulse envelope.

1.3.14 Degeneracy treatment

Unlike the rate equations that describe the absorption, stimulated emission and spontaneous
emission of Einstein’s description of radiative processes (cf. App. D), the TDSE does not deal
with sets of states as a single unit; it deals with individual quantum-state probability amplitudes.
To treat degenerate states, for example an initial situation in which there is angular momentum
degeneracy (i.e. quantum states are Zeeman sublevels), it is necessary to include each quantum
state individually and explicitly in the description, thereby enlarging the Hamiltonian matrix: a
level having angular-momentum quantum number J has 2J + 1 distinguishable sublevels and
hence it requires 2J + 1 quantum states for its description; see [Zar88].

With allowance for angular momentum the linkage pattern of the Hamiltonian matrix depends
on the polarizations of the P and S fields [Zar88, Sho90, Sho11]. When the field polarizations
(the unit vectors eP and eS) are chosen appropriately, the linkage pattern of a multistate system
may be reducible to a three-state chain. Figure 1.10 shows two examples, in which eP and
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Fig. 1.10. (a) A stimulated Raman linkage between degenerate Zeeman sublevels of a two-level atom, using
P and S fields of opposite circular polarization. STIRAP moves between degenerate sub levels M = −1
and M = +1 of J = 1. (b) A stimulated Raman linkage between degenerate Zeeman sublevels of a three-
level atom. STIRAP will selectively excited a single sublevel, M = +2 of J = 2, starting from M = 0
of J = 0. Lighter S lines are unconnected to the three-state P − S linkage and do not affect the STIRAP
process.

eS describe opposite circular polarization. In the example of frame (a) a crafted time-variation
of single-field polarization, from eS to eP , will implement STIRAP between two degenerate
sublevels. In frame (b) amplitude-varying STIRAP will transfer population into a single sublevel.

1.3.15 Averages

The TDSE applies to individual quantum systems, e.g. single isolated atoms or molecules. Ex-
periments generally deal with ensembles of individual systems, each distinguished by some at-
tribute e such as center-of-mass motion, initial orientation, initial excitation energy or neighbor-
ing particles. Each individual system obeys an equation of the form

i
d

dt
C(e; t) = W(e; t)C(e; t). (1.42)

What is experimentally observable is the average over the ensemble, for example the population
at time t. This is evaluated by summing the populations for each environment,

Pn(t) =
∑

e

p(e) |Cn(e; t)|2, (1.43)

weighted by p(e), the probability of finding environment e.
It is generally not possible to find an “average atom” Hamiltonian W̄(t) such that its proba-

bility amplitudes C̄n(t),

i
d

dt
C̄(t) = W̄(t)C̄(t), (1.44)

give the required average probabilities

Pn(t) = |C̄n(t)|2. (1.45)
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Fig. 1.11. Contributing subsystems for STIRAP with degenerate Zeeman sublevels. Each chain has a
distinct set of M -dependent dipole moments and hence observations of population dynamics will average
over different Rabi frequencies.

However, adiabatic following offers an exception. The first STIRAP experiments [Gau88,Gau90]
dealt with rotational states of molecules, i.e. a system with degenerate Zeeman sublevels. The
two laser fields were linearly polarized and so the system could be described by a set of indepen-
dent three-state STIRAP equations, each labeled by the magnetic quantum number of the ground
state, as in Fig. 1.11; see also App. E.3. By ensuring that the subsystem with weakest links
underwent STIRAP the experimenters induced population transfer of all the linked sublevels
(M = 0 is unlinked). Their published results are thus of measured sublevel averages.
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2 The pre-history of STIRAP

The preceding subsections list characteristics that are associated with what is here defined as
STIRAP. For a process to be labeled an example of STIRAP these should be observable. Each
of them has had an independent history of study.

The following major portion of this review discusses some of the many articles that present
aspects of the theory underlying STIRAP. These deal with a variety of topics, primarily in atomic,
molecular and optical physics, that are part of the broadly developing physics of STIRAP, most
of which were mentioned in the preceding section as characteristic ingredients of STIRAP.

2.1 Basic background

The notion of stationary states of electron motion within atoms, and of transitions gaining and
losing discrete electromagnetic energy increments, date from the papers of Bohr [Boh13] and
Einstein [Ein16] that set the stage for modern quantum theory.

2.1.1 Quantum states

Because STIRAP was developed as a procedure for producing changes to a quantum-mechanical
system, its origins trace to the works in the 1920s that created the present quantum theory, with
its concepts of discrete quantum states and the time-dependent Schrödinger equation (TDSE), as
is discussed in [van68] and numerous textbooks, e.g. [Sch55, Dir58, Mes62].

The steps leading, by means of the statevector expansion (1.5), from the TDSE (1.9) to
coupled ODEs as in eqn. (1.10), is often attributed to Dirac [Dir26] as the “variation of con-
stants” method. It has counterparts in variational methods, such as Rayleigh-Ritz-Galerkin
methods [Sho73a, Sho73b], and finite-element methods, for solving partial differential equa-
tions [Bur87, Joh87], all of which rely on basis vectors in a multidimensional abstract vector
space.

2.1.2 Adiabatic change, 1916, 1928

Adiabatic change is key to the functioning of STIRAP. In thermodynamics an adiabatic process
is one that involves no transfer of heat or matter between a system and its surroundings. Notions
of adiabatic change in quantum theory trace to work of Ehrenfest [Ehr16a, Ehr16b] predating
modern quantum theory and the Schrödinger equation. A 1928 paper by Born and Fock [Bor28a]
introduced the idea of a system adapting its quantum state to gradually changing conditions (the
adiabatic theorem).

2.1.3 The LZSM papers, 1932

STIRAP relies on adiabatic change of the coefficients in the TDSE, for which there are early
predecessors applied to two quantum states and associated with the names of Landau [Lan32a,
Lan32b], Zener [Zen32], Stückelberg [Stu32] and Majorana [Maj32]; see [Gia05]. Historically,
such change was induced by a monotonically changing (sweeping) energy (a chirped detuning)
and is often given the acronym LZ or LZS or LZSM. Those works, and subsequent interest,
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cf. [Nik99], dealt with slowly changing quasistatic fields, such as occur between colliding atoms
or molecules.

The LZSM papers were also significant for providing analytic solutions to the TDSE, a no-
table feature found also in STIRAP. In the LZSM model the Rabi frequency was constant and
the detuning a linear function of time, giving parabolic cylinder functions as the solutions to the
two-state TDSE.

2.2 Vector pictures and torque equations, 1946–84

The excitation probabilities Pn(t) provide only a portion of the information present in a statevec-
tor and its Hilbert-space components. A number of ways of organizing and depicting additional
information have been useful in descriptions of coherent excitation. This section discuss some
of them that deal with abstract vectors. Their equations of motion, treated as torque equations,
provide a very simple picture of adiabatic change as adiabatic following — the continuing align-
ment of two abstract vectors. As noted in Sec. 1.3.5, the interpretation of the TDSE for STIRAP
as a torque equation makes clear the characteristics of STIRAP dynamics.

2.2.1 The Bloch equations, 1946

The development of magnetic resonance techniques led to the use of radio-frequency (rf) fields to
induce adiabatic changes between two states [Blo46,Tow55,Abr61]. Writing in 1946 a review of
magnetic resonance [Blo46] Bloch derived a torque equation for the collective magnetic moment
M of an ensemble of nuclear spins in the presence of a magnetic field H:

d

dt
M = γM×H, (2.1)

where γ is the gyromagnetic ratio (of magnetic moment to angular momentum). Bloch took
particular interest in a magnetic field that had a static longitudinal componentH0 and a transverse
component that varied at the rf frequency ω close to the resonance frequency ω0 = γH0:

Hx = H1 cosωt, Hy = ∓H1 sinωt, Hz = H0, (2.2)

(the signs refer to positive and negative values of γ) and, defining a resonance field H∗ = ω/|γ|
and detuning δ = (H0−H∗)/H1 he obtained a solution for M(t) that rotated around the z axis.

Bloch noted the condition for adiabatic change, either by varying the magnitude of the z-
component H0 or varying the frequency of the rf field ω, was |dδ/dt| � |γH1|.

Relaxation times T1 and T2. Bloch treated incoherent effects by introducing time constants T1

and T2 that characterized expected rate-equation relaxation of the oscillating magnetic moment
M: the relaxation of the “longitudinal” componentMz was determined by T1, while T2 governed
the “transverse” components Mx and My . Using these he gave the differential equation for the
three component of M as what are now known as the Bloch equations, written here in vector-
matrix form:

d

dt

 Mx

My

Mz

 =

 (1/T2) −γHz γHy

γHz (1/T2) −γHx

−γHy γHx (1/T2)

 Mx

My

Mz

 +
1
T1

 0
0
Meq

 , (2.3)
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where Meq = χH0 is the equilibrium magnetization (χ is the nuclear paramagnetic susceptibil-
ity).

Bloch variables u and v. Bloch made use of coordinates that rotated with the field frequency,
defining slowly-varying (Bloch) variables u and v through

Mx = u cosωt− v sinωt, My = ∓(u sinωt+ v cosωt). (2.4)

The Bloch equations became the basis for rapidly growing work on nuclear magnetic resonance
(NMR) [Abr61, Sli63], and then, with replacement of magnetization M by an electric dipole
moment, a foundation for describing laser-induced changes [All75,Mil76,Fen77,Sho90,Coh08].
The earliest applicable equations were those described in Sec. 2.2.2 below.

2.2.2 The Feynman-Vernon-Hellwarth torque equation, 1957–64

In 1957 Feynman, Vernon and Hellwarth (FVH) [Fey57] presented a transcription of the density-
matrix equations for coherent two-state excitation into the form of a three-dimensional torque
equation. Written with notation appropriate for the present article the equation reads (with sup-
pression of time arguments)

d

dt
r = Υ×r, (2.5)

where the three components of the unit vector r are formed from bilinear products of probability
amplitudes, in the present notation

r1 ≡ u = C2C
∗
1 +C1C

∗
2 , r2 ≡ v = i[C2C

∗
1−C1C

∗
2 ], r3 ≡ w = C2C

∗
2−C1C

∗
1 . (2.6)

The vector r, of constant unit length, is known as the Bloch vector and its motion takes place on
the Bloch sphere. Components r1 and r2 are termed coherences; component r3 is the population
inversion. The elements of the angular-velocity vector Υ (also known as “the torque vector”) are
taken from the RWA Hamiltonian W, with allowance for possible complex values,

Υ1 = W21 +W12, Υ2 = i[W21 −W12], Υ3 = ∆. (2.7)

A simple example of a two-state quantum system is an angular momentum (or spin) J = 1
2 ,

and the terminology of such a system (as a “pseudo spin”) is often used in discussions of two-state
dynamics, whatever the physical system may be. Although the dominant interest of researchers
remained two-state transitions, as fitted a system of spin one-half, in 1964 Morris extended that
work to treat the three states of a spin-one systems [Mor64]. He presented a torque equation akin
to that of FVH, anticipating work done later, cf. Sec. 2.2.8. As with earlier work, this considered
swept frequencies as the adiabatically-varying contributions to the Hamiltonian.

2.2.3 Adiabatic following, 1964

With the availability of lasers interest grew in schemes to use these as the interaction that would
induce two-state adiabatic transitions. Abella, Kurnit and Hartmann [Abe64] applied the FVH
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vector model to describing photon echoes and presented equations for two-state coherent exci-
tation expressed as a torque equation for a “pseudo-electric dipole moment”, an electric-dipole
counterpart of the magnetic moment M treated by Bloch [Blo46], cf. Sec. 2.2.1. This was used
as the basis for work by experimental work Grischkowsky [Gri70] who said: “the pseudomoment
will remain aligned along the changing effective field” (meaning the angular-velocity vector Υ).
Grischkowsky and Armstrong [Gri71] refer to the “adiabatic following model” of [Gri70] as
a contrast to the steady-state models of others. They say “the term ‘adiabatic following’ de-
scribes the situation in which the pseudomoment of the near-resonant transition follows (remains
parallel to) the effective field of the laser pulse.” Other publications using this model soon ap-
peared [Cri73, Gri73, Gri75].

Basically, as noted in Sec. 1.3.5, given a torque equation in the form (2.5) or (1.30), the two
vectors r and Υ will remain aligned if the variation of Υ is slow and the two vectors are either
parallel or antiparallel. so that Υ × r = 0. Those are the conditions for adiabatic following (of
Υ by r).

2.2.4 Two-photon vector models, 1971–75

The FVH vector model was extended to two-photon transitions by Takatsuji [Tak71], who dealt
with large detuning and the effective two-state Hamiltonian obtained by adiabatic elimination
(see Sec. 2.10.1). In this revision the Rabi frequency is proportional to the product of two
field envelopes and the detuning includes dynamic Stark shifts. This work was extended by
Grischkowsky, Loy and Liao [Gri75] to allow two independent fields. They described situa-
tions in which a Bloch vector remained aligned with (adiabatically followed) an angular-velocity
vector.

In 1975 Brewer and Hahn [Bre75], treating single-field excitation of a three-state system
subject to two-photon resonance, introduced the variables

uij = ρij + ρji, ivij = ρij − ρji, wij = ρii − ρjj , (2.8)

the single-photon detuning

∆ = ω − ω21 = ω − ω32, (2.9)

and the half Rabi frequencies

α = 1

2
d13E/~, β = 1

2
d23E/~. (2.10)

From these they defined the three variables

U = (αu13 + βu23)/Ω, (2.11a)
V = (αv13 + βv23)/Ω, (2.11b)
W = 2(α2w13 + β2w23 + αβu12)/Ω2, (2.11c)

where Ω = 2
√
α2 + β2 is the rms Rabi frequency of the two fields. As they stated, these

variables satisfy an equation analogous to the torque equation of FVH:

d

dt

 U
V
W

 =

 0 ∆ 0
−∆ 0 Ω
0 −Ω 0

 U
V
W

 . (2.12)



394 Pre-STIRAP

Brewer and Hahn were concerned with propagation effects, and considered both the lambda and
ladder linkages. They were interested in steady-state solutions and decaying pulsed excitation,
when T1 and T2 relaxation times had to be considered. They did not consider adiabatic changes
nor did they point out population trapping.

2.2.5 Adiabatic rapid passage, 1974–76

Loy, in 1974 [Loy74] observed population inversion attributed to optical adiabatic rapid passage
(ARP). The main requirements, as he noted, were that either the frequency of the two-level
system or that of the laser must be swept through the linewidth of the system in a time short
compared to the relaxation time and that the laser field must be sufficiently strong that the time
evolution is adiabatic.

In 1975 Grischkowsky, Loy and Liao [Gri75] treated adiabatic following for two-photon
transitions. This was discussed by Loy and Grischkowsky [Loy76, Loy77]. In these various
works the adiabatic changes were produced by swept frequencies, as were those discussed in the
text by Allen and Eberly [All75]. These processes, which relied on a linear sweep of detuning in
the two-state version of eqn. (1.10), were termed variously adiabatic following (AF) and rapid
adiabatic passage (RAP) or adiabatic rapid passage (ARP), with the adjective “rapid” indicating
that the transitions occurred on a time scale much shorter than spontaneous-emission lifetimes.

The noun “following” originally made reference to the alignment of the Bloch vector with
the controlled angular-velocity (torque) vector. In the context of STIRAP it usually refers to
alignment of the statevector with an adiabatic state; but see Sec. 1.3.5. The noun “passage”
historically restricted consideration to situations in which there occurs completed population
transfer.

2.2.6 Adiabatic passage with decoherence, 1982–84

A somewhat different approach to adiabatic passage, suiting a view of laser-induced excitation
common at the time, was considered by Peterson and Cantrell [Pet82, Pet85]. They were in-
terested in exciting molecules whose electronic excitation could be modeled as a succession of
bands of closely-spaced energy levels, to be excited by a set of simultaneous near-monochromatic
pulses, as shown in Fig. 2.1. They considered adiabatic evolution of dressed states to accomplish
population transfer, noting that (for their system) adiabatic changes would be reversible (but see
Sec. 1.3.7) so that to produce permanent population transfer they required decoherence-inducing
processes, i.e. the procedure was, in part, adiabatic but not rapid.

2.2.7 Generalized Bloch equation, 1980

A paper by Elgin in 1980 [Elg80] generalized the three-dimensional Bloch-vector description of
two-state dynamics introduced by FVH [Fey57] to the three-state chain excited by two electro-
magnetic pulses by means of an eight-component vector r. He used the generators of the SU(3)
group to express both the RWA Hamiltonian and the density matrix, thereby deriving a torque
equation for the dynamics in the absence of relaxation, and making evident the rotational nature
of the statevector: the generators of this statevector rotation are the generators of the SU(3) trans-
formation group. Elgin pointed out constants of the motion but gave no illustrative examples.
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Fig. 2.1. Schematic of excitation into bands of levels, as considered by [Pet82, Pet85]. Redrawn based on
Fig. 1 of [Pet82]. Reprinted from [Pet82] with permission from Elsevier.

2.2.8 The coherence vector, 1981–84

A series of papers by Hioe, some with colleagues Eberly and Carroll [Hio81, Hio82a, Hio82b,
Hio82c,Hio83a,Hio83b,Hio84a,Hio84b], and Oreg [Ore84] introduced a formalism for treating
coherent N -state quantum dynamics by means of a coherence vector S(t) of dimension N2 − 1
and unit length, whose real-valued elements, generalizing the three components of the Bloch
pseudo spin, are obtained from elements of the N -state density matrix. From the bilinear prod-
ucts

ujk = ρjk+ρkj , vjk = −i[ρjk−ρkj ], wl = −
√

2/l(l + 1)[ρ11, · · · , ρll−lρl+1,l+1], (2.13)

they formed an ordered array, a vector of constant length

S = {u12, . . . , v12, . . . , w1, . . . , wN−1}, (2.14)

that satisfies a multidimensional generalization of the three-dimensional torque equation pre-
sented by FHV [Fey57] and thereby undergoes rotation in N2−1 dimensions. In their words the
coherence vector extends the Bloch or pseudo-spin vector to N states interacting with external
forces of “arbitrary strength, time dependence and resonance character”. They pointed out that
products of n density matrices of an N -state system,

c(N,n) = Tr [ρ(t)n], n = 1, 2, . . . , N, (2.15)

were constants of the motion, an extension of earlier results by Elgin [Elg80] for N = 3.
The components of the coherence vector can, more generally, be defined by

Sj(t) = Tr [ρ(t)sj ], (2.16)

http://www.sciencedirect.com/science/article/pii/0030401882901055


396 Pre-STIRAP

where the sj are generators of the SU(N) group. Choices of group representations, fitting the
symmetry of the Hamiltonian linkage, allow simplification of the description of S(t) [Hio83b,
Hio85a, Hio87, Hio88a, Hio88b, Hio89]. Hioe and Eberly [Hio82a] showed that, under appro-
priate conditions, the eight-dimensional space of the coherence vector for a three-state system
can be decomposed into three independent subspaces, of dimension one, three and four, with
three independent coherence vectors. The squares of the lengths of these vectors are constants of
the motion. These results were presented, summarily, in [Hio82b]. Hioe has written a detailed
review of these and related results of dynamic symmetries [Hio09].

In 1985 Ho and Chu [Ho85] gave examples, with illustrations, of the oscillatory motion of
the N = 3 coherence vector for steady monochromatic fields.

2.2.9 The coherence vector and adiabatic following, 1983–84

The 1982 work of Hioe and Eberly [Hio82a] applied this formalism to the lossless three-state
chain linkage at exact two-photon resonance, allowing single-photon detuning, with identical
time dependence f(t) for P and S pulses. The 1983 Hioe paper [Hio83a] showed numerical
results for linearly varying single-photon detuning, a three-state version of the established two-
state adiabatic passage. Hioe and Eberly [Hio84a] examined this model, of simultaneous pulses,
for the effects of various analytic expressions for pulse shapes and detunings. They used sech
pulses and tanh detuning variation, as were used by Allen and Eberly for two states [All75],
to obtain analytic solutions for elements of the density matrix. Further papers discussed the
extension of the two-state LZSM theory of adiabatic passage (see Sec. 2.1.3) to three states and
two simultaneous pulses [Car86a, Car86b].

Although this example was one of three-state adiabatic passage, the conditions were not those
of STIRAP: adiabatic passage was driven by chirped frequencies rather than pulse amplitude
variations, and population passed through the intermediate state 2.

The 1984 paper of Oreg, Hioe and Eberly [Ore84] extended preceding discussion of the N -
state coherence vector S(t) stressing its use as a general formalism for treating multi-state dy-
namics, and adiabatic following in particular. With suitably defined generalization of the torque
vector of the Bloch equation, adiabatic motion can be viewed as the vector S(t) following (i.e.
remaining aligned with) the torque vector.

As stated in its abstract, this paper paid specific attention to the production of complete pop-
ulation inversion in a chain linkage whose interaction was by “a continuous sweep of the laser
field frequencies and/or envelopes”. The word sweep used here, and elsewhere in the article,
suggests that they have in mind a chirped-frequency procedure, as in earlier work on two-state
adiabatic passage. Indeed that is what they discuss in their specific example (from [Hio83a]) —
two chirped laser frequencies — but the coherence-vector formalism also fits alternative proce-
dures in which the frequencies are constant. Their stated interest was in finding a set of detunings
and Rabi frequencies such that by “sweeping” them adiabatically from initial to final values the
coherence vector will be led from some initial S(0) to some prescribed final S(T ).

A narrow interpretation of this paper, based on their examples, is that they have in mind chirp-
ing of frequencies. However, a sweep of Rabi frequencies is also a possibility they considered
(see Fig. 2.2), and if these are swept “counter-intuitively”, as was done later with “shark-fin”
pulses [Car92, Yat98a, Tor08], then the result is the traditional STIRAP pulse sequence. That
notion is not explicitly recognized in the paper [Ore84] and there is no indication that the authors
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adiabatic elimination of state 2 from the equations, using the approximation obtained by setting to zero the

averaged time derivative of that state:
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The requirement for this approximation is that the magnitude of the detuning be much larger than the Rabi
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here. This way of viewing STIRAP – mapping it into the well-studied two-state system with controlled

time-dependent Rabi frequency and detuning – was discussed by Vitanov and Stenholm [Vit97b]. It gives

one connection between STIRAP and the LZ-LZS-LZSM description of adiabatic passage.

The equations, and their interpretation of chirped adiabatic passage, were presented by Oreg, Hioe and

Eberly [Ore84]. They suggested accomplishing the population transfer by means of the pulse ordering shown

in Fig. 1, i.e. the ”intuitive” ordering of pulses, in which their ⌦1 (the P field) precedes their Omega2 (the

S field), not the “counterintuitive” ordering of STIRAP.
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Fig. 2.2. (a) Suggestion by Oreg, Hioe and Eberly [Ore84] for pulses that will accomplish three-state adia-
batic passage when single-photon detuning ∆ is very large and the system behaves as two states. Here Ω1

(the P field) precedes Ω2 (the S field), the intuitive ordering, and λ is the linear chirp rate used in modeling
swept detuning. From Fig. 7 of [Ore84]. Reprinted with permission from [Ore84]. Copyright 1984 by the
American Physical Society. (b) The counter-intuitive pulse sequence used by Kuklinski, Gaubatz, Hioe and
Bergmann [Kuk89] and shown as their Fig. 2. The S field, here Ω2, precedes the P field. Reprinted with
permission from [Kuk89]. Copyright 1989 by the American Physical Society.

examined this possibility other than with very large single-photon detuning and the resulting
two-state simplification; see Sec. 2.10.1.

After their eqn. (39) the authors say conditions are “anti-intuitive”: they speak of not follow-
ing the “natural” sequence of 1-2 excitation and then 2-3 excitation, but instead using “something
close to the opposite order of resonances” when moving population from state 1 to state 3. But
these are “anti-intuitive” conditions on detunings and chirps, not on the timing of pulsed Rabi
frequencies. Their example, starting with their eqn. (42), treats simultaneous P and S pulses that
have different detunings: the 2-3 resonance occurs first, followed by the 1-2 resonance, and they
do not maintain two-photon resonance. So this is not the counter-intuitive aspect traditionally
associated with STIRAP [Sho95b].

Their illustration of population histories, shown in their Fig. 4 taken from Fig. 1 of [Hio83a]
(see Fig. 6.3), shows appreciable population in the intermediate state. So this is not an exam-
ple of population transfer using the dark state of STIRAP. Their Fig. 3, from [Hio83a], shows
the adiabatic eigenvalues. There is no constant value, so again this is seen not to be STIRAP,
although it is certainly adiabatic following.

Their Fig. 7 [shown here as frame (a) of Fig. 2.2] shows sequential pulses, but it is the
P pulse, coupling states 1 and 2, that occurs first. This is not the S-first STIRAP sequence13.
However, it seems clear that their figure was intended merely to support their suggestion that
properly timed pulses could produce complete population transfer: their accompanying formulas
for pulse shapes describe descending S field and rising P field, as occurs with counter-intuitive
pulse ordering. They gave no illustrations of population histories with delayed pulses; their
computations were for the limiting case of large single-photon detuning, used with adiabatic
elimination and consequent two-state dynamics; see Sec. 2.10.1.

Summary: Coherence vector. The development of the coherence vector showed how one
could generalize the two-state Bloch vector to a multidimensional vector that satisfied a torque-

13Their figure shows P -before-S but the formulas of their figure caption, and in their text, are for S-before-P .

http://journals.aps.org/pra/abstract/10.1103/PhysRevA.29.690
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.40.6741
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like equation, and could from this find a vector that was unaffected by the moving torque — how
one could find Hilbert space vectors that underwent adiabatic following. But although this paper
and [Hio83a] provided a useful formalism for treating adiabatic following, including STIRAP,
the paper does not mention key conditions that differentiate STIRAP from other forms of AF.
Their illustrative examples produced complete population transfer, i.e. were AP, but were not
STIRAP. Their focus was on the coherence vector, not on adiabatic states, as a means of picturing
adiabatic following.

2.3 Population trapping, 1951–1967

The dynamic use of a dark, population-trapping state is an essential ingredient of STIRAP, distin-
guishing it from other forms of adiabatic following. The 1951 Lamb paper [Lam51] described a
means of preserving population in a three-state system in the presence of quenching effects. This
section discusses notions described by Lamb and his co-workers that are identifiable as elements
of STIRAP. Missing from the Lamb work is the adiabatic following needed for STIRAP.

2.3.1 The Lamb papers: Population trapping, 1950–52

In a series of papers starting in 1950 Lamb and Retherford discussed population changes in
hydrogen. The presented theory dealt with a lambda linkage and adiabatic eigenstates. The first
three papers, discussed below, have relevance to STIRAP. Further publications presented data on
the fine structure of hydrogen and deuterium, but are not relevant to STIRAP.

2.3.2 First Lamb paper, 1950

A 1950 paper of Lamb and Retherford [Lam50] began the series of publications on the fine
structure of the hydrogen atom. It provided needed background and notational definitions but it
did not treat excitation dynamics.

The paper presented a diagram of the structure of the 2S and 2P energy levels 14 of hydrogen
in a magnetic field, with neglect of nuclear spin,. The 2P states (a, b, c, d, e, f ) undergo sponta-
neous emission to the 1S states, whereas the 2S states (α, β) are metastable: their loss takes place
by two-photon decay, by collisions or by transition into 2P states induced by electric fields. The
authors noted that when a magnetic field B is present, atom motion with velocity v introduces
an electric field proportional to v ×B that can cause such transitions.

2.3.3 Second Lamb paper, 1951

In the second paper by these authors [Lam51] there was discussion of two specific radio-frequency
transitions, shown asM andR in Fig. 2.3(b). Again neglecting nuclear spin, one can say that the
M transition is between two Zeeman sublevels of the 2S configuration, transition α − β, while
the other transition is between sublevels of the 2S and 2P configuration, specifically the transition
α − e. The regime of interest is when the sublevels β and e are resonant, or nearly resonant, a
region shown in frame (a) with a yellow cartouche. In this region only three Zeeman sublevels

14Traditionally the quantum labels of a single electron would be denoted 2s and 2p, with lower case letters denoting
orbital angular momentum. Here I follow the notation of Lamb and use upper case letters.
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Fig. 2.3. Left: (a) Zeeman sublevels of hydrogen involved in three-state dynamics, with neglect of nuclear
spin. A cartouche marks the region of interest, shown in frame (b). Redrawn after Fig. 11 of [Lam50].
Reprinted with permission from [Lam50]. Copyright 1950 by the American Physical Society. (b) Linkage
pattern for interactions considered in [Lam51, Lam52] and [Ohl67]. There are two interactions at radio-
frequency (rf) ω, with strengths M (magnetic dipole) and R (electric dipole), and a quasi-static electric
interaction with strength V , in the notation of [Lam51, Lam52, Ohl67].

(three quantum states) need be considered, namely the metastable states α, β and the decaying
state e:

α : (2 2S1/2,ms = 1

2
), β : (2 2S1/2,ms = − 1

2
), e : (2 2P1/2,mj = 1

2
). (2.17)

The Hamiltonian linkages of these quantum states are shown in the frame at the right. There
are two steady radio-frequency (rf) fields, and a static (dc) electric field that, together, form a
triangle linkage pattern. In the notation of [Lam51, Lam52] and [Ohl67] these have interaction
strengths R, M , and V respectively. The M interaction is of magnetic dipole, the R interaction
is of electric dipole, and the V interaction is quasi-static.

2.3.4 Third Lamb paper, 1952

The third paper of the set, by Lamb alone [Lam52], considered in great detail the energy structure
of hydrogen, taking into account various relativistic effects of the electron-nucleus interaction,
including hyperfine structure, and the effects of externally applied electric and magnetic fields.
It paid particular attention to the quantum states — Zeeman sublevels — that appear in Fig. 2.3.
Lamb considered a three-state system in the RWA and interaction picture (see Sec. C) for the
states α, β, e. He presented, in his eqn. (207), a time-dependent Schrödinger equation that can be
written (with his notation for elements of the Hamiltonian but reordered statevector components)

http://journals.aps.org/pr/abstract/10.1103/PhysRev.79.549
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i
d

dt

 Cα

Ce

Cβ

 =
1
2

 0 R∗ei(δ+ωβe)t M∗eiδt

Re−i(δ+ωβe)t −iγ 2V e−iωβet

Me−iδt 2V ∗eiωβet 0

 Cα

Ce

Cβ

 , (2.18)

where the rf frequency of the two interactions is ω and the two Bohr frequencies are ωαβ and
ωαe,

~ωij = |Ei − Ej |, δ = ωαβ − ω. (2.19)

Eigenstates. Lamb found solutions by obtaining eigenvectors and eigenvalues of the RWA
Hamiltonian. Specifically, he sought the three eigenvalues ε of the determinantal equation∣∣∣∣∣∣

iε 1
2M

∗ 1
2R

∗

1
2M iε+ ω − ωαβ V ∗

1
2R V iε+ ω − ωαe − iγ

∣∣∣∣∣∣ = 0, (2.20)

and used these to construct solutions to the TDSE, a procedure well known to 19th century math-
ematicians [Inc56] that subsequently has been termed the use of “dressed states” or “adiabatic
states”, cf. Sec. 2.7.2.

In discussing the dynamics Lamb assumed that initially the states α and β held equal popu-
lations, and that later, because of radiative decay, state e was devoid of population. He showed
a plot of the α − β resonance, as a function of magnetic field. It has a shape that later became
known as a Fano profile [Fan61], see Sec. 2.5.2.

Trapping. In discussing his eqn. (219) Lamb showed that when the rf frequency ω is equal to
the Bohr frequency15 for the α−β transition between Zeeman sublevels of the 2S configuration,
then the decay rate is zero (i.e. there occurs “population trapping”, cf. Sec. 2.3.5), and there
occurs a “hole” in the spectrum (the Fano minimum); cf. also [Fon73]. This superposition can
be termed a “dark state”, although that terminology was not used by Lamb.

Summary: Lamb trapped state. This third Lamb paper, aiming to establish a detailed de-
scription not only of the energy structure of hydrogen and its isotopes, set out the basic TDSE of
three-state coherent excitation. It made use of what are now termed “dressed states” and iden-
tified a superposition state that had the properties subsequently identified as the “dark state”: a
coherent superposition that undergoes no loss. These structures were not dynamic — there was
no consideration of time-varying components, as is essential for STIRAP. Because the collisional
interaction V of Fig. 2.3(b) is always present, the linkage pattern of the Hamiltonian was a loop
rather than a chain.

15Note: Lamb referred to “Bohr energy”, “Bohr radius”, “Bohr magneton” but never “Bohr frequency”, only energy
differences.
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Fig. 2.4. Two presentations of the three-state chain-linkage α− e− β. (a) With energies ordered as in the
experiment. (b) With quantum state locations as needed to give a lambda linkage.

2.3.5 The population-trapping state of Lamb

It is instructive to redraw the linkage pattern of Fig. 2.3 as shown in Fig. 2.4(b). In the rotating-
wave picture the vertical positions of the nodes of the linkage pattern (traditionally indicated by
horizontal lines) are irrelevant, and so both these frames show linkages of the same system: a
three-state chain α − e − β in which the middle state e has decay while the terminating states
α, β, are metastable.

The linkage pattern of frame (b) is what has subsequently been termed a lambda linkage,
meaning the middle state of the linkage chain lies highest on the diagram. As is now very well
established, with the lambda linkage one can introduce an alternative basis of bright and dark
states, as in eqns. (1.39), such that all the loss occurs from the bright state B and the dark state
D undergoes no spontaneous emission. Lamb, in the penultimate paragraph of his section 72 on
p. 274 of [Lam52], states that the decaying state e will remain unpopulated if the two metastable
amplitudes satisfy the equation (using here notation of the present article)

1

2
RC1 + V C3 = 0. (2.21)

This effect, and its key relationship, can be recognized as population trapping (a term that ap-
peared only later): there occurs a particular quantum-state superposition that has no component
of the decaying state 2 and is therefore immune to loss or spontaneous emission (i.e. it is dark).
Its components depend on the relative magnitudes of two elements of the three-state Hamiltonian.

Notably, the two links of the Hamiltonian, here parametrized by rf field R and static field V ,
would later both originate with monochromatic radiation fields, i.e. fields that have nonzero car-
rier frequencies that nearly match the Bohr frequencies of the two links, here those of transitions
α− e and e−β. In the work of Lamb (and the LASL group) one of the Bohr frequencies is zero,
and the link is by means of a quasi-static electric field. In the first STIRAP work the two fields,
P and S, were radiation fields, with nonzero carrier frequencies and subsequent STIRAP work
has been with either traveling waves or standing waves.
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Fig. 2.5. Hyperfine components of 2S and 2P states as a function of magnetic field strength. Yellow
cartouche covers the resonance regime of interest. Short vertical arrows mark the locations of resonances
in MI = −1/2 and MI = +1/2, used for separating these two states. Redrawn after Fig. 16 of [Lam50].
Reprinted with permission from [Lam50]. Copyright 1950 by the American Physical Society.

2.3.6 Hyperfine structure; Nuclear spin filter, 1951, 1967

The interest in population trapping by Lamb and his associates had to do specifically with hyper-
fine structure and the preparation of spin-polarized particles. The nuclear spin is responsible for
a degeneracy that, in the presence of a magnetic field, splits the Zeeman sublevels into hyperfine
components. For hydrogen the nuclear spin is I = 1/2 and the splitting forms doublets. For
deuterium the nuclear spin is I = 1 and there occur a triplet of hyperfine components.

Figure 2.5 redraws Fig. 2.3 to show the hyperfine splitting produced by the nuclear spin. In
the regime of interest, as outlined by the yellow cartouche, the nucleus retains a given orientation,
unaffected by the radiation. That is,MI is a “good quantum number”, and we need only consider
a set of curves with given MI . The system then has the three-state dynamics considered above,
in the absence of nuclear spin.

As shown in Fig. 2.4 the three states are three Zeeman sublevels, metastable α and β and
radiatively decaying e, in the Lamb notation. Each of these is actually one state of a hyperfine
doublet, distinguished by the two values of MI . There are three fields: a static magnetic field
that induces Zeeman shifts, thereby making β and e degenerate, an rf field that will induce the
α − e transition, and a quasistatic velocity-induced electric field that couples β to e. In the
absence of β the population in α would rapidly be optically pumped into e, from which it would
be lost by spontaneous emission. The link between e and β will, for appropriate rf frequency
(as determined by the Zeeman splitting), prevent the loss from α. To use a term introduced a
few years later, there occurs a population trapping state. This trapping can be made specific to a
chosen magnetic spin projection, MI .

http://journals.aps.org/pr/abstract/10.1103/PhysRev.79.549
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2.3.7 LASL work, 1967

Starting in 1967 researchers at Los Alamos Scientific Laboratory (LASL) [Ohl67,McK68,Law69,
Ohl71] used the properties just mentioned, along with the dynamics discussed in earlier sections
above, to devise a procedure in which a specified nuclear spin projectionMI would remain undi-
minished in an atomic beam as it passed through various fields, while atoms that had other spin
projections would undergo “quenching” radiative decay. They use the term “spin filter”. None
of the papers by Lamb described above use that terminology.

The dynamics of the linkage pattern of Fig. 2.3 — that of idealized hydrogen without nuclear
spin — was examined in some detail by Ohlsen and McKibben in an unpublished LASL memo
of 1967 [Ohl67]. In the simplest case they considered the sublevels (quantum states) β and
e are degenerate, and the field polarization is such that there is no direct α − β linkage, i.e.
M = 0. Their TDSE was that of Lamb [Lam52], shown above as eqn. (2.18). They provided
analytic solutions to these equations subject to the initial condition that all population resides
in the quantum state α, Cα(0) = 1. Like Lamb [Lam52] they expressed these by means of
eigenvectors and eigenvalues. They were interested in asymptotic solutions, at time sufficiently
long that transients have decayed. They gave the explicit solutions, recognizable as components
of the dark state of eqn. (1.21),

Cα →
V

|R/2|2 + |V |2
, Cβ →

−(R/2)
|R/2|2 + |V |2

, Ce = 0. (2.22)

Thus the final disposition of populations depends on the two interaction strengths, one steady rf
(R) and one quasi-static (V ).

2.4 Autler-Townes splitting,1955–78

In 1955 Autler and Townes [Aut55] presented detailed formulas for evaluating the effects of ac
fields on quantum states — energy shifts now referred to as the ac Stark shift or dynamic Stark
shift. They pointed out that these shifts would affect spectral lines by splitting the emission or
absorption peak into two peaks, now known as an Autler-Townes doublet produced by Autler-
Townes (AT) splitting. This effect, of a doublet produced by a strong interaction probed by a
weaker interaction, can be found in eqn. (7.87) of Bloch [Blo55]. When this splitting becomes
sufficiently large there occurs a striking minimum of excitation and absorption, subsequently
used to advantage in producing electromagnetically induced transparency of a propagating beam,
cf. Sec. 5 and App. F.1 and F.2.

2.4.1 The Autler-Townes dressed states

Regarded as an aspect of three-state excitation by two fields, the AT splitting is a characteristic
of systems that have two very different Rabi frequencies, such as occurs at the start and finish
of a STIRAP pulse sequence or as illustrated for steady fields in Fig. 2.14 below (in Sec. 2.9.2).
It can be observed in any linkage pattern by any technique that probes the energy structure, e.g.
photon absorption or fluorescence or electron scattering.

The essentials of the behavior of such a system are readily understood with the aid of eigen-
states (dressed states) of the strongly-coupled portion of the Hamiltonian, cf. [Ima89, Sho08,
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Fig. 2.6. (a) Three-state linkage pattern between bare states 1,2,3. A weak probe field P connects states
1 and 2, a strong field S connects states 2 and 3. (The ordering of energies En, shown here as a lambda
linkage, is immaterial.) (b) The linkages when two dressed states are used for the 2-3 connection. The
dashed arrow denotes probability loss, either from spontaneous emission or from photoionization. From
Fig. 51 of [Sho08]. Reprinted from [Sho08] with permission.

Sho11]; see App. F.2. Figure 2.6(a) shows a three-state linkage pattern, displayed in lambda
form, in which a weak probe field P connects a populated ground state 1 with a decaying excited
state 2 that, in turn, is linked by a strong field S to a stable third state 3. Using the two AT dressed
states |+〉 and |−〉 discussed in App. F.2 to describe strongly coupled states 2 and 3, we obtain
the picture in frame (b), in which the probing P field, resonant with the 1-2 Bohr frequency,
is midway between the two lossy dressed states created by the resonant strong S field. At that
frequency, ∆P = 0, and in the limit of very large S field, the P field encounters destructive
interference of links to the two dressed-state components that prevent excitation; see App. F.2.

2.4.2 Optical Autler-Townes splitting, 1978

It was not for another two decades after the 1955 work of Autler and Townes, when lasers
were being exploited, that experiments revealed AT splitting at infrared and optical frequen-
cies [Sch75a,Sch75b,Cah76,Piq76,Del78]. Figure 2.7 shows an example from a paper by Gray
and Stroud in 1978 [Gra78]. Zoller [Zol79] provided detailed theory, illustrated, for noisy lasers,
as an example of double optical resonance (DOR) with unequal Rabi frequencies.

The Autler-Townes splitting provides an explanation for the start and end of the STIRAP
procedure [Vit01a, Vit01c], when AT splitting produced by the strong field prevents the weak
field from causing population changes; see Sec. 5.5.

2.5 Continuum states, 1958–89

Although STIRAP, like other procedures for coherently manipulating quantum states, deals with
just two or three states, a complete set of quantum states must include not only discrete bound
states but a continuum in which motional variables are allowed a continuum of kinetic energies.
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Fig. 2.7. Autler-Townes doublet seen in fluorescence. From Fig. 1 of [Gra78]. Reprinted from [Gra78]
with permission from the Optical Society of America. Here the strong S laser is tuned to exact Bohr-
frequency resonance, ∆S = 0, and the detuning ∆P (here labeled δB) of the weak P field is scanned
through its resonance, while measuring fluorescence (i.e. loss) from state 2. As the intensity IA of the S
field increases, from top to bottom frames, the AT splitting increases in direct proportion to

√
IA, i.e. the

magnitude of the S-field Rabi frequency. See Sec. 5 and 5.2 and App. F.2 for discussion of the theory.

The photoionization continuum of an atom and the photodissociation continuum of a molecule
are two examples. The continuum of photon directions and energies needed to describe free-
space spontaneous emission is another. The inclusion of continuum states, of energy ε, means
that the statevector construction of eqn. (1.5) becomes, for a single degree of freedom,

Ψ(t) =
∑

n

Cn(t) exp[−iζn(t)]ψψn +
∫
dε Cε(t) exp[−iζε(t)]ψψε. (2.23)

With this extension the excited state 2 becomes embedded in a spontaneous-emission (or pho-
toionization) continuum, often treated by means of a probability loss rate Γ2, evaluated using
“Fermi’s Famous Golden Rule Number 2” [Fer50],

Γ2 =
2π
~
$|〈2|V |ε2〉|2, (2.24)

where $ is the density of states at the resonance energy ε2.

http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-3-6-218
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2.5.1 Feshbach theory, 1958–67

The notion of a bound state embedded in kinetic-energy continuum of scattering states has a long
history in nuclear physics, where resonances are observed in the elastic scattering of neutrons.
A general formulation of scattering resonances of this sort, for both elastic scattering and gen-
eral reactions (e.g. neutron capture) was presented in a series of papers by Feshbach, starting in
1958 [Fes58, Fes62, Fes67]. His attention was directed to scattering states (for arbitrary projec-
tile) as the initial condition, in contrast to the emphasis on the embedded bound state of Fano
(in scattering theory such discrete states are known variously as compound states and collision
complexes), but here too the exact eigenstates were constructed.

2.5.2 Autoionization; Fano profile, 1961

In 1961 Fano [Fan61] presented a description of autoionization (the spontaneous ejection of a va-
lence electron from an excited state whose energy exceeds the ionization energy) by constructing
a quantum state that was a superposition of a discrete atomic excited state and a photoioniza-
tion continuum, each of which were linked to a stable state by radiative interaction, as shown in
Fig. 2.8(a). The loop linkage pattern is akin to that of Lamb shown in Fig. 2.3: two radiative
interactions and a static interaction, but displayed as a letter-V rather than a lambda.

Fano constructed time-independent dressed eigenstates of the Coulomb linkage between
bound and continuum states, and evaluated the radiative transition probability into this dressed
continuum. The Fano formula for absorption cross section near an autoionizing resonance
is [Fan61, Fan65]:

σ(ε) = σa

[
(q + ε)2

1 + ε2

]
+ σb, (2.25)

where σa and σb are parameters, ε is a scaled measure of the photon detuning from resonance,
ε = (ω − ω0)/(Γ/2), and q is the Fano q parameter.

The radiative absorption profile for state 1, shown in frame (b), exhibits not the usual Lorentz
profile that would be seen with the simple 1-2 linkage, but an asymmetric profile, now termed a
Fano profile, that exhibits a minimum as well as a maximum as a function of photon frequency.
The Fano minimum, an interference effect, can be considered a frequency-dependent dark state.

2.5.3 Scattering theory and autoionization, 1967

The Feshbach theory was applied explicitly to photon scattering, as is appropriate to stimulated
Raman scattering, autoionization and dielectronic recombination, by Shore [Sho67], who pre-
sented formulas for absorption and refractive index, parametrized with A,B,C,D, as

σ(ω) = C +
(Γ/2)B + (ω − ω0)A
(ω − ω0)2 + (Γ/2)2

, (2.26)

n(ω)− 1 =
Nc

2ω

[
(Γ/2)A− (ω − ω0)B
(ω − ω0)2 + (Γ/2)2

−D
]
. (2.27)
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Fig. 2.8. (a) The triangle linkage pattern for autoionization as modeled by Fano [Fan61]: a single field
has radiative links to both a discrete state 2 and a continuum, linked by Coulomb interaction V to state 2.
(b) The natural spectral-line shape for various values of the Fano parameter q. From Fig. 1 of [Fan61].
Reprinted with permission from [Fan61]. Copyright 1961 by the American Physical Society.

The connection between σ(ω) and n(ω) by means of parameters A,B,C,D is an example of
the Kramers-Kronig relationship between real and imaginary parts of causal complex functions.
These formulas readily generalize to overlapping resonances [Sho67].

2.5.4 Dark resonance, 1973

Fontana and Srivastava in 1973 [Fon73] reconsidered the model used by Lamb [Lam52], namely
(with their labeling) two excited states, a and b, that are linked to each other by a static interaction
V. They consider a radiation field that couples state a to ground state c and to a continuum of
photon fields. The linkage pattern is shown in Fig. 2.9.

The two excited states are regarded as degenerate, and are treated by introducing “perturbed
eigenstates” defined as (my notation)

|±〉 = [|a〉 ± |b〉]/
√

2. (2.28)

Using these states and the ground state paired with a photon continuum |f〉, they express the
statevector as

Ψ(t) = C+(t)|+〉+ C−(t)|−〉+
∑

f

Cf (t)|c〉|f〉, (2.29)

and set up the TDSE. They solve these using Fourier transforms. The solutions introduce a
complex-valued radiative decay rate γ for state a. For very long times the probability amplitude
for emitting a photon is

Cf (∞) = Hfa

Ef − 1
2 (E+ − E−)

(Ef − E′+)(Ef − E′−)
, (2.30)

http://journals.aps.org/pr/abstract/10.1103/PhysRev.124.1866
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Fig. 2.9. Linkage pattern of ref. [Fon73] for three atomic states. The ground state c is associated with a
continuum of photon modes, coupled to excited state a which, in turn, couples by a static interaction V to
excited state b.

Fig. 2.10. Spectrum of system with linkage pattern of Fig. 2.9 and strong-field detuning ∆S of -0.5γ. The
plots show, for various values of V , the relative probability of photon emission as a function of K = ωP /γ,
the photon frequency in units of the decay rate of state 2, here γ. The emission hole occurs at t he two-
photon resonance, ∆P = ∆S . From Fig. 1 of [Fon73]. Reprinted with permission from [Fon73]. Copyright
1973 by the American Physical Society.

where E′± is a complex-valued number. They give examples of this spectrum, i.e. the quantity
|Cf (∞)|2, a portion of which is shown in Fig. 2.10.

This paper describes a discrete state embedded in a continuum, a model that had been used
by Fano in 1961 to describe autoionization [Fan61]. In the Fano application the continuum is
that of an ion and a free electron, whereas in the Fontana work [Fon73] the continuum is that of
an emitted photon.

One sees here situations whereby photon spontaneous emission is suppressed (a spectral
hole). This occurs for a particular frequency, and is associated with a particular superposition of
excited states. This frequency is not adjustable, although variations of V affect the width of the
hole. Thus there are significant differences between what this paper describes and the dark states
that appear with optical excitation.

http://journals.aps.org/pra/abstract/10.1103/PhysRevA.7.1866
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0.1 Laser-induced continuum structure, 1984-1990

The embedding of a discrete bound state into an ionization continuum by the Coulomb interaction, as

formulated by Fano [?], has a counterpart in the continuum embedding of a discrete state by laster interaction,

producing a laser-induced continuum structure (LICS). The theoretical proposal for this process is attributed

to Knight [?], in a journal no longer published and not widely stocked. A detailed description of subsequent

theoretical work as well as a detailed discussion of the theory appears in a 1990 review by Knight, Laude

and Dalton [?].

0.1.1 Adiabatic elimination; Two state behavior, 1984, 1997

When the detuning term � of eqn. (??) is very large the population in state 2 tends to adiabatically follow

the populations in states 1 and 2, oscillating rapidly with small amplitude [Sho90]. This makes possible

adiabatic elimination of state 2 from the equations, using the approximation obtained by setting to zero the

averaged time derivative of that state:

C2(t) ⇡ �
⌦P (t)

2�
C1(t)�

⌦S(t)

2�
C3(t). (1)

The requirement for this approximation is that the magnitude of the detuning be much larger than the Rabi

frequencies,

|�|� |⌦P (t)|, |�|� |⌦S(t)|. (2)

The resulting two-state TDSE can be written, with appropriate choice of overall statevector phase, as [Ore84]

i

d

dt


C1(t)
C3(t)

�
=

1
2


0 ⌦e↵(t)

⌦e↵(t) 2�e↵

� 
C1(t)
C3(t)

�
, (3)

where the e↵ective Rabi frequency is proportional to the product of the two field amplitudes,

⌦e↵(t) = ⌦P (t)⌦S(t)/2�, (4)

and the e↵ective detuning, time varying, is proportional to the di↵erence of the squares of the two Rabi

frequencies (i.e. to the di↵erence of the P - and S-field intensities)

�e↵(t) = [⌦P (t)2 � ⌦S(t)2]/4�. (5)

This intensity-dependent detuning originates with the dynamic Stark shift of states 1 and 3 produced by

state 2, not with any sweep of laser frequency, although such a contribution to detuning can readily be

incorporated into the equations.

Before the arrival of the pulses both �e↵(t) and ⌦e↵(t) vanish. The e↵ective detuning becomes nonzero

when the first pulse arrives, changes sign at the midpoint of the pulse sequence, and remains nonzero until

the last pulse ceases. The e↵ective Rabi frequency is pulsed and positive, and is nonzero only when both

pulses are present. During its presence the e↵ective detuning undergoes a chirp. Figure 1 illustrates these

remarks.
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Fig. 2.11. Linkages through a continuum of P and S fields to produce LICS. The carrier frequencies are
detuned from the 1-2 two-photon resonance by ∆.

2.5.5 Pseudo-autoionization; Laser-induced continuum structure, 1975–82

The embedding of a discrete bound state into an ionization continuum by the Coulomb interac-
tion, as formulated by Fano [Fan61], has a counterpart in the continuum embedding of a dis-
crete state by laster interaction, producing a laser-induced continuum structure (LICS) — a reso-
nance in an otherwise structureless continuum. The possibility of creating a tunable “pseudo-
autoionizing” resonance with its enhanced photoionization ionization rate, was discussed by
Armstrong, Beers and Feneuille [Arm75], who dealt with quantized fields and photon numbers,
and by Heller and Popov [Hel76]. Figure 2.11 depicts the process in its simplest form: a strong
field S embeds state 2 into an otherwise structureless continuum shared with a weaker probe
field P linked to state 1. There is a two-photon transition between states 1 and 2, through the
intermediary of the continuum. The two frequencies have a two-photon detuning ∆.

As a result of the discrete state 2 embedded into the continuum, the ionization probability for
the probe transition exhibits a Fano profile as a function of the two-photon detuning ∆. The Fano
minimum (or “window”) in transmission is associated with trapped population (see Sec. 2.3). A
detailed description of subsequent theoretical work as well as a detailed discussion of the theory
appears in a 1990 review by Knight, Lauder and Dalton [Kni90].

Because this is, in part, a coherent process there can occur lossy two-photon Rabi oscillations
— the continuum does not entirely eliminate the coherent properties of the two states. An equa-
tion for the probability amplitudes for the two states involved given in [Kni90,Pas97,Vit97c] for
constant-intensity fields, is

i
d

dt

[
C1(t)
C2(t)

]
= 1

2

[
−iΓ1 −

√
Γ1Γ2(q + i)

−
√

Γ1Γ2(q + i) 2∆− iΓ1

] [
C1(t)
C2(t)

]
. (2.31)

The parameters Γn are the single-photon photoionization rates, proportional to radiation inten-
sities. The Fano q parameter is the ratio of the the real to the imaginary part of the two-photon
Rabi frequency, complex-valued because it has a contribution from the continuum.
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Fig. 2.12. Excited-state occupation as a function of the “resonance parameter” (∆′ −∆)T2, i.e. the two-
photon detuning ∆3 relative to the width parameter 1/T2. From Fig. 1 of [Ari76]. Reprinted from [Ari76]
with kind permission of Società Italiana di Fisica.

2.5.6 Optical dark states, 1976

The experimental recognition of dark states in the three-state lambda linkage, driven by opti-
cal fields, is generally credited to work of researchers in Pisa, starting with an observation of
dark lines in a pattern of fluorescence from a laser beam passing through sodium vapor [Alz76].
This was followed by theoretical work [Ari76] that, in plotting results from formulas of Brewer
and Hahn [Bre75], showed a very distinct dark center (a dark line) within a broad pattern of
excited-state excitation as a function of detuning, see Fig. 2.12. The dark lines occur where the
two-photon resonance condition is satisfied. Their interest was on excitation with fixed Rabi
frequencies; they did not consider adiabatic change. This subject was reviewed by Arimondo in
1996 [Ari96]. He referred to dark and bright states as noncoupled and coupled states, respec-
tively, and used these as basis states for the TDSE.

What makes these three-state optical dark states notably different from two-state superposi-
tions that had been considered earlier is that the three-state system involves two linkages that
each originate with a controllable radiation field having nonzero carrier frequency. The linkage
pattern is traditionally presented as a lambda whose legs are associated with two Rabi frequen-
cies, each of which derives from a field that has nonzero carrier frequency, i.e. a stimulated
Raman scenario.

2.6 Further population trapping, 1978–89

Renewed interest in population trapping (but without adiabatic change) followed the growing
application of laser technology to the manipulation of quantum states and the Pisa work on dark
states. The next subsections refer to notable theoretical developments.

 http://inis.iaea.org/search/search.aspx?orig_q=RN:8335783
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2.6.1 Dark and bright states, 1978

The theory of three-state coherent excitation (as contrasted with optical pumping) was discussed
by Gray, Whitley and Stroud in 1978 [Gra78]. In treating the TDSE for a three-state lambda
linkage they pointed out that, for steady fields, “one linear combination of the ground states is
coupled to the excited state by the applied fields, and the other linear combination is decoupled
entirely”, a clear definition of the bright and dark states of the RWA Hamiltonian. Their eqns.
(4) express the dark and bright variables, in the present notation, as

CD(t) = cos θ C1(t)− sin θ C3(t) CB(t) = sin θ C1(t) + cos θ C3(t), (2.32)

with tan θ = ΩP /ΩS . Here too the interest was in steady illumination and constant mixing angle
θ. They presented figures similar to Fig. 2.12.

2.6.2 Population trapping, 1982–83

A series of papers by Knight and his colleagues [Col82a, Col82b, Dal82a, Dal82b, Rad82] ex-
amined numerous aspects of population trapping (often termed coherent population trapping or
CPT)16 in three-state systems driven by two radiation fields. The dark state underlies this trap-
ping. These papers pay particular attention to the effects of fluctuations and decoherence on
population trapping. Interest here, and in other contemporary work, centered on steady fields,
not temporally offset pulses.

A paper by Morris and Shore in 1983 [Mor83] provided a formalism for determining the pres-
ence of one or more dark states in suitable linkage patterns, such as the tripod and the resonant
chain. The lambda linkage, with its single dark state, is the simplest example. The Morris-Shore
(MS) transformation, when applicable, replaces a more elaborate N -state linkage pattern by a
set of independent two-state systems; see App. E.3.

2.6.3 Velocity-selective population trapping, 1988–89

In 1988 Aspect and co-workers [Asp88, Asp89] described and demonstrated a technique for
creating a population-trapping superposition of degenerate Zeeman sublevels, labeled g− and
g+, that form the base of a lambda linkage to excited state e0 in which the two interactions
originate with circularly polarized light that brings momentum to the atom: the polarization σ+

adds ~k to the center-of-mass momentum p while the polarization σ− removes an increment ~k.
For a given z-direction center-of-mass momentum p three states are linked. Using the notation
| atom excitation, cm momentum 〉 the three states are

|g−, p− ~k〉, |e0, p〉, |g+, p+ ~k〉. (2.33)

Figure 2.13 (a) shows the linkage of these states.
As in any lambda linkage, there is a superposition state that is immune to change. When the

two fields have equal Rabi frequencies this population-trapping (non-absorbing) state is

Φ0(p) =
1√
2

[|g−, p− ~k〉 − |g+, p+ ~k〉] . (2.34)

16The acronym CPT is also used for coherent population transfer, usually in the context of adiabatic passage.
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Fig. 2.13. (a) Linkage pattern for the three states involved in velocity trapping, for given center-of-mass
momentum p. After Fig. 1 of [Asp89] (b) Calculated transverse atomic momentum distribution at a succes-
sion of times. The dashed curves show the initial distribution. As the interaction time increases, the height
of the double peak at ~k (characterizing the cooling process) increases, and its width decreases. From Fig.
5 of [Asp89]. Reprinted with permission from [Asp89]. Copyright 1989, AIP Publishing LLC.

As Aspect et al. point out [Asp89], permanent coherent population trapping, immune to both
laser excitation and spontaneous emission, is velocity selective, since it happens only for p = 0.
For nonzero p there will occur pumping, with a cycle time set by the spontaneous emission rate
Γ, that ultimately terminates in the stable population-trapping state Φ(0) of eqn. (2.34), with its
components of momentum ±~k. With that change there will occur a narrowing of the velocity
distribution — a cooling. Frame (b) shows calculated examples of this cooling for a succession
of lifetimes Θ = Γt [Asp89].

2.7 Adiabatic eigenvectors and dressed states, 1970–82

The use of eigenvectors to solve coupled homogeneous ODEs with constant coefficients pre-
dates quantum mechanics, and is found in 19th century literature on differential equations where
they are known as characteristic functions. For application to the mathematics of STIRAP the
eigenvectors must accommodate slowly changing ODEs. These adiabatic eigenvectors provide a
useful tool for depicting the motion in an abstract vector space.

2.7.1 Three-state eigenvectors, 1970–71

Walls [Wal70, Wal71a, Wal71b], treating a quantized-field version of the three-state two-field
system, presented formulas for the eigenvectors of the constant RWA Hamiltonian when there is
single-photon detuning ∆ but two-photon resonance. With adjustment to the present notation,

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.61.826
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his three states are those of eqn. (1.41) and his formulas read

Φ0 = [ΩS ψψ
′
1 − ΩP ψψ

′
3] / Ωrms, (2.35a)

Φ± = [ΩP ψψ
′
1 + (∆±Υ)ψψ′2 + ΩS ψψ

′
3] /

√
Ω2

rms + (∆±Υ)2, (2.35b)

where

Ωrms ≡
√

Ω2
P + Ω2

S , Υ ≡
√

Ω2
rms + ∆2. (2.36)

These formulas give the instantaneous eigenvectors of the slowly varying RWA Hamiltonian.
Later articles give alternative expressions for these eigenvectors [Aga79, Rad82, Gau90, Few97].
Walls was interested in the field dynamics and did not comment on the properties of the dark
state Φ0.

Incidentally, the use of eigenvectors as a technique for solving sets of coupled linear ordinary
differential equations with constant coefficients — such as those for multistate excitation by
monochromatic light in the RWA — was well established in 19th century literature on differential
equations, as discussed by Ince [Inc56].

2.7.2 Dressed atoms, 1977

Although others had used the technique for treating three state dynamics [Lam52,Wal70,Wal71a,
Wal71b, Whi76], the idea of using eigenstates of the full Hamiltonian (in the rotating-wave
approximation) as basis states owes much to the work of Cohen-Tannoudji and Reynard who
used such states with density-matrix equations to describe resonance fluorescence and absorp-
tion between Zeeman sublevels [Coh77a, Coh77b, Coh92]. They used the term “dressed atom”
to describe this basis. When the RWA Hamiltonian becomes time dependent its instantaneous
eigenstates become adiabatic states, a term used earlier in describing wavefunctions of bound
electrons during scattering events. The term “adiabatic state”, with a very different meaning, has
had a long history in thermodynamics, e.g. [Ran70, Rud94, Jea17].

2.7.3 Dressed states, 1979–82

As had Walls in 1970 [Wal70], Agarwal and Jha [Aga79] gave algebraic formulas for the compo-
nents of the three eigenvectors of the matrix W for the case of two-photon resonance, without not-
ing particular interest in the dark state. Radmore and Knight [Rad82] gave alternative algebraic
expressions for these components and permitted two-photon detuning. Fewell et al. [Few97] also
presented algebraic expressions for situations in which there is two-photon detuning.

2.8 Resonant coherent excitation, 1932–52

One of the ingredients of STIRAP is the availability of detailed descriptions of population
changes. Resonant excitation by steady incoherent light was well studied by spectroscopists,
as described in the text by Mitchell and Zemansky [Mit34]. The relevant equations were rate
equations and the populations were equilibrium values.
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2.8.1 Majorana-Rabi oscillations, 1932–37

Early in the application of the TDSE came recognition of what are now termed Rabi oscillations
[Maj32,Rab37,Sch37]: Formulas for coherently excited populations of a general spin system by
a single field were given in 1932 by Majorana [Maj32]. Expressions for population oscillations
between the two states of a spin one-half system were given by Schwinger [Sch37] and Rabi
[Rab37], who noted these were special cases of the Majorana formula for oscillatory population
transfer between arbitrary Zeeman sublevels [Maj32].

2.8.2 Double resonance, 1949–52

It was not until the 1950s with the use of microwaves [Bit49] that recognizable coherent-excita-
tion antecedents to the two-field coherent excitation of STIRAP appear, as double-resonance
experiments [Bro52]. The availability of lasers accelerated interest in resonant excitation and in
manipulating quantum states coherently. Much of that dealt with two-level atoms, as reviewed
in the classic monograph of Allen and Eberly [All75].

2.8.3 Optical double resonance, 1976

The two-field linkage through a resonant intermediate state as shown in Fig. 1.1(c), for which
eqns. (1.1) and (1.2) hold, is an example of what has been termed optical double resonance
(ODR), optical-optical double resonance (OODR) or double optical resonance (DOR), in which
two steady (unpulsed) monochromatic optical fields are tuned to resonance with two linked tran-
sitions, as discussed extensively [Bro52, Whi76, Zol79].

In 1976 such a system was discussed, for monochromatic fields, by Whitley and Stroud
[Whi76], who included various damping and relaxation terms, as treated by a density matrix
(their equations were for expectation values of Heisenberg operators, in the RWA). They used
eigenvectors of the relevant 9× 9 coefficient matrix, for which they gave some algebraic expres-
sions, and were primarily concerned with steady-state populations and absorption spectra as a
function of detunings.

2.9 Three-state dynamics, 1970–78

The relevant three-state RWA Hamiltonian and TDSE for steady fields had been presented by
Lamb [Lam52], as discussed above. Within a few years there was interest in the operation of
three-level masers, and time-averaged populations were evaluated from the three-state TDSE
by Javan [Jav57] for a weak probe field in the presence of a strong saturating field, a situation
that underlies the Autler-Townes (AT) splitting discussed in Sec. 2.4 and the electromagnetically
induced transparency of Sec. 5 .

2.9.1 Coherent excitation; Three-state propagator, 1970–71

Shimoda, in 1970 [Shi70], considered the three-state system linked by two classical monochro-
matic fields whose frequencies satisfy the two-photon resonance condition. He presented simple
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algebraic expressions for the elements of the propagator U(t), as used to obtain probability am-
plitudes at arbitrary times after state preparation at t = 0:

C(t) = U(t)C(0). (2.37)

The propagator satisfies the TDSE and reduces to the unit matrix initially,

i
d

dt
U(t) = W(t)U(t), U(0) = 1. (2.38)

As formulas of Shimoda show, the elements of U(t) oscillate with a frequency Υ/2, where

Υ =
√
|ΩP |2 + |ΩS |2 + ∆2

2, (2.39)

and so the populations therefore will exhibit oscillations at the flopping frequency Υ. As with res-
onant excitation of a two-state system, complete population transfer occurs periodically between
the two ends of the chain, with transfer taking place via the intermediate state.

Walls [Wal70,Wal71a,Wal71b], treating the quantized-field version of this coherent-excitation
model presented formulas for the oscillatory populations when there is single-photon detuning
but two-photon resonance.

2.9.2 Population histories, 1976–78

Illustrations of population dynamics for the three-state chain linked by two radiation fields (opti-
cal double resonance), with plots of population histories, were first presented by Sargent and Hor-
witz in 1976 [Sar76] and then by Shore and Ackerhalt the next year [Sho77]. Figure 2.14 shows
three examples with unequal Rabi frequencies. The plots, though obtained by numerical solution
to ODEs, were what could be obtained by application of the formulas of Shimoda [Shi70]. As
with other work of that time, the interest was in steady illumination, with constant and resonant
frequencies, not with pulsed excitation. Unequal Rabi frequencies, as occurs with EIT (cf. Sec.
5), were considered [Sho77], but only with an eye for population dynamics with steady fields,
as illustrated in Fig. 2.14. Frame (a) shows the lossless dynamics when the S field is weak,
ΩS = 0.3ΩP and both fields have null detunings, ∆S = ∆P = 0. States 1 and 2 dominate
the three-state Rabi oscillations. Frame (b) shows the lossless dynamics when the P field is
weak, ΩP = 0.3ΩS , again with null detunings. Here the population remains concentrated in
state 1 (partial trapping). Frame (c) shows this same situation but with detuning ∆P = 0.5ΩS ,
the requirement for resonance with the AT dressed state |+〉, see App. F.2. As the authors said:
“Levels 2 and 3 form a tightly coupled pair which oscillate about a time-dependent average pop-
ulation”, i.e. there occurs Rabi oscillation between state 1 and a coherent superposition of states
2 and 3, components of the AT dressed state.

Loss. The research of paper [Sho77] was motivated by interest in maximizing photoionization
yield from the uppermost state of a ladder linkage. The paper showed, with simulation, that
tuning the weak field to resonance with what is, in App. F.2, termed a dressed AT state would
maximize this yield, i.e. maximize population loss. (The paper also showed that there was an
optimal loss rate Γ3.) Figure 2.15 shows snapshots of population loss at a succession of times
as a function of the first-step weak-field detuning ∆P for the model of frames (b) and (c) of Fig.
2.14 but with state-3 loss Γ3 = 0.1ΩS . The two maxima are components of an AT doublet.
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Fig. 2.14. Population histories for three-state system driven by two simultaneous, constant but unequal
Rabi frequencies with ∆S = 0. (a) Weak S: ΩS = 0.3ΩP and ∆P = 0. Population is predominantly
in states 1 and 2. From Fig. 4(a) of [Sho77]. (b) Strong S: ΩP = 0.3ΩS and ∆P = 0. The population
remains largely trapped in state 1. From Fig. 5(a) of [Sho77]. (c) Strong S and retuned P : ΩP = 0.3ΩS ,
∆P = 0.5ΩS . There is resonant Rabi oscillation between state 1 and a superposition of states 2 and 3
(the AT dressed state |+〉 of App. F.2). From Fig. 7(a) of [Sho77]. (The tiny curve-labels were used
with then-available monochrome computer-graphics of 1977 to identify the several curves.) Reprinted with
permission from [Sho77]. Copyright 1977 by the American Physical Society.
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Fig. 2.15. Calculated population loss =
P

n Pn(t) (fraction ionized) at a succession of times as a function
of weak-field detuning ∆P , for ΩP = 0.3ΩS and state-3 ionization rate Γ3 = 0.1ΩS , with ∆S = 0. The
peaks originate with the AT doublet: at those detunings there occur maximum population transfer to and
from the lossy uppermost state 3. The loss is less rapid (partial trapping occurs) for ∆P = 0. Redrawn after
Fig. 8(a) of [Sho77]. Reprinted with permission from [Sho77]. Copyright 1977 by the American Physical
Society. and Fig. 10.3-10 of [Sho90].

2.10 Analytic results, 1984–90

Prior to the widespread availability of personal computers, with attendant software for rapidly
solving coupled ODEs, theoreticians relied on closed-form algebraic expressions to understand
quantum behavior. Such approaches, through analytic approximations for elements of the Hamil-

 http://journals.aps.org/pra/abstract/10.1103/PhysRevA.15.1640
 http://journals.aps.org/pra/abstract/10.1103/PhysRevA.15.1640
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tonian, still provide useful results, both as a check on numerical calculations and for evaluating
limiting cases. The following subsections mention examples. For a review of analytic solutions
by Hioe and others to the three-state system see [Hio09].

2.10.1 Adiabatic elimination; Two state behavior, 1984

When the detuning term ∆ of eqn. (1.11) is very large the population in state 2 tends to adiabat-
ically follow the populations in states 1 and 2, oscillating rapidly with small amplitude [Sho90].
This makes possible adiabatic elimination of state 2 from the equations, using the approximation
obtained by setting to zero the averaged time derivative of that state:

d

dt
C2(t) ≈ 0, C2(t) ≈ −

ΩP (t)
2∆

C1(t)−
ΩS(t)
2∆

C3(t). (2.40)

The requirement for this approximation is that the magnitude of the detuning be much larger than
the Rabi frequencies,

|∆| � |ΩP (t)|, |∆| � |ΩS(t)|. (2.41)

The resulting two-state TDSE can be written, with appropriate choice of overall statevector
phase, as [Ore84]:

i
d

dt

[
C1(t)
C3(t)

]
= 1

2

[
0 Ωeff(t)

Ωeff(t) 2∆eff

] [
C1(t)
C3(t)

]
, (2.42)

where the effective Rabi frequency is proportional to the product of the two field amplitudes,

Ωeff(t) = ΩP (t)ΩS(t)/2∆, (2.43)

and the effective detuning, time varying, is proportional to the difference of the squares of the
two Rabi frequencies (i.e. to the difference of the P - and S-field intensities)

∆eff(t) = [ΩP (t)2 − ΩS(t)2]/4∆. (2.44)

This intensity-dependent detuning originates with the dynamic Stark shift of states 1 and 3 pro-
duced by state 2, not with any sweep of laser frequency, although such a contribution to detuning
can readily be incorporated into the equations.

Before the arrival of the pulses both ∆eff(t) and Ωeff(t) vanish. The effective detuning be-
comes nonzero when the first pulse arrives, changes sign at the midpoint of the pulse sequence,
and remains nonzero until the last pulse ceases. The effective Rabi frequency is pulsed and
positive, and is nonzero only when both pulses are present. During its presence the effective de-
tuning undergoes a chirp. Figure 2.16 illustrates two examples of population transfer, using both
counter-intuitive and intuitive pulse ordering. Because only two states are explicitly involved,
not three, these examples do not fit the definition of STIRAP as used in this article.

It is important to recognize that both the two-photon Rabi frequency Ωeff(t) and the effective
detuning ∆eff(t) vary with the fields. When only a single field acts, so that EP (t) = ES(t),
then both these elements of the RWA Hamiltonian are proportional to the field intensity and have
a common time dependence, say f(t). Introduction of the increment dτ = f(t)dt then yields
equations with a constant coefficient matrix W [Sho90, Sho11].
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The requirement for this approximation is that the magnitude of the detuning be much larger than the Rabi
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where the e↵ective Rabi frequency is proportional to the product of the two field amplitudes,
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This intensity-dependent detuning originates with the dynamic Stark shift of states 1 and 3 produced by

state 2, not with any sweep of laser frequency, although such a contribution to detuning can readily be

incorporated into the equations.

Before the arrival of the pulses both �e↵(t) and ⌦e↵(t) vanish. The e↵ective detuning becomes nonzero

when the first pulse arrives, changes sign at the midpoint of the pulse sequence, and remains nonzero until

the last pulse ceases. The e↵ective Rabi frequency is pulsed and positive, and is nonzero only when both

pulses are present.

By suitably crafting the S and P fields one can produce an e↵ective interaction that acts as a pulsed

chirp, thereby moving population between states 1 and 3 without placing any in state 2. Because the chirp

direction does not matter in two-state adiabatic passage, the temporal ordering of the pulses is immaterial

here. This way of viewing STIRAP – mapping it into the well-studied two-state system with controlled

time-dependent Rabi frequency and detuning – was discussed by Vitanov and Stenholm [Vit97b]. It gives

one connection between STIRAP and the LZ-LZS-LZSM description of adiabatic passage.

The equations, and their interpretation of chirped adiabatic passage, were presented by Oreg, Hioe and

Eberly [Ore84]. They suggested accomplishing the population transfer by means of the pulse ordering shown

in Fig. 1, i.e. the ”intuitive” ordering of pulses, in which their ⌦1 (the P field) precedes their Omega2 (the

S field), not the “counterintuitive” ordering of STIRAP.
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a
b
i

f
r
e
q
u
e
n
c
y

i
s

p
u
l
s
e
d

a
n
d

p
o
s
i
t
i
v
e
,

a
n
d

i
s

n
o
n
z
e
r
o

o
n
l
y

w
h
e
n

b
o
t
h

p
u
l
s
e
s

a
r
e

p
r
e
s
e
n
t
.

B
y

s
u
i
t
a
b
l
y

c
r
a
f
t
i
n
g

t
h
e

S
a
n
d

P
fi
e
l
d
s

o
n
e

c
o
u
l
d
,
i
n

p
r
i
n
c
i
p
l
e
,
p
r
o
d
u
c
e

a
n

e
↵
e
c
t
i
v
e

i
n
t
e
r
a
c
t
i
o
n

t
h
a
t

a
c
t
s

a
s

a
p
u
l
s
e
d

c
h
i
r
p
,
t
h
e
r
e
b
y

m
o
v
i
n
g

p
o
p
u
l
a
t
i
o
n

a
d
i
a
b
a
t
i
c
a
l
l
y

b
e
t
w

e
e
n

s
t
a
t
e
s

1
a
n
d

3
.

T
h
e

p
r
o
b
a
b
i
l
i
t
y

o
f
t
h
i
s

p
o
p
u
l
a
t
i
o
n

t
r
a
n
s
f
e
r

c
a
n

b
e

e
s
t
i
m

a
t
e
d

f
r
o
m

e
x
p
r
e
s
s
i
o
n
s

p
r
e
s
e
n
t
e
d

b
y

L
Z
S
M

,

P
3
(
1

)
=

1
�

e
x
p
(
�
⇣)

,
⇣

=

⇡
⌦

e↵
(
t x

)

2

2
|˙ �

e↵
(
t x

)
|

(
6
)

w
h
e
r
e

t x
i
s

t
h
e

m
i
d
p
o
i
n
t

o
f

t
h
e

p
u
l
s
e

s
e
q
u
e
n
c
e
.

T
o

h
a
v
e

a
h
i
g
h

p
r
o
b
a
b
i
l
i
t
y

o
f

p
o
p
u
l
a
t
i
o
n

t
r
a
n
s
f
e
r

i
t

i
s

n
e
c
e
s
s
a
r
y

t
h
a
t

t
h
e

c
h
a
n
g
e

o
f
e
↵
e
c
t
i
v
e

d
e
t
u
n
i
n
g

b
e

v
e
r
y

s
l
o
w

,

|˙ �
e↵

(
t x

)
|⌧

⌦
e↵

(
t x

)

2
,

(
7
)

o
r

2
|�

|⇥
|˙ ⌦

P
(
t x

)
⌦

P
(
t x

)
�

˙ ⌦
S
(
t x

)
⌦

S
(
t x

)
|⌧

[
⌦

P
(
t x

)
⌦

S
(
t x

)
]

2
(
8
)

1

S
P

⌦
e↵

�
e↵

(
a
)

(
b)

(
c)

(
d
)

S
P

⌦
e↵

�
e↵

(
a

0 )
(
b0

)
(
c0

)
(
d

0 )

C
o
u
n
t
e
r
i
n
t
u
i
t
i
v
e

I
n
t
u
i
t
i
v
e

t/
T

P
o
p
u
l
a
t
i
o
n
s

E
↵
e
c
t
i
v
e

H
P

u
l
s
e
s

0
.
0
.
1

A
d
i
a
b
a
t
i
c

e
l
i
m

i
n
a
t
i
o
n
;
T

w
o

s
t
a
t
e

b
e
h
a
v
i
o
r
,
1
9
8
4
,
1
9
9
7

W
h
e
n

t
h
e

d
e
t
u
n
i
n
g

t
e
r
m

�
o
f
e
q
n
.

(
?
?
)

i
s

v
e
r
y

l
a
r
g
e

t
h
e

p
o
p
u
l
a
t
i
o
n

i
n

s
t
a
t
e

2
t
e
n
d
s

t
o

a
d
i
a
b
a
t
i
c
a
l
l
y

f
o
l
l
o
w

t
h
e

p
o
p
u
l
a
t
i
o
n
s

i
n

s
t
a
t
e
s

1
a
n
d

2
,

o
s
c
i
l
l
a
t
i
n
g

r
a
p
i
d
l
y

w
i
t
h

s
m

a
l
l

a
m

p
l
i
t
u
d
e

[
S
h
o
9
0
]
.

T
h
i
s

m
a
k
e
s

p
o
s
s
i
b
l
e

a
d
i
a
b
a
t
i
c

e
l
i
m

i
n
a
t
i
o
n

o
f
s
t
a
t
e

2
f
r
o
m

t
h
e

e
q
u
a
t
i
o
n
s
,
u
s
i
n
g

t
h
e

a
p
p
r
o
x
i
m

a
t
i
o
n

o
b
t
a
i
n
e
d

b
y

s
e
t
t
i
n
g

t
o

z
e
r
o

t
h
e

a
v
e
r
a
g
e
d

t
i
m

e
d
e
r
i
v
a
t
i
v
e

o
f
t
h
a
t

s
t
a
t
e
:

C
2
(
t)
⇡
�

⌦
P

(
t)

2
�

C
1
(
t)
�

⌦
S
(
t)

2
�

C
3
(
t)

.
(
1
)

T
h
e

r
e
q
u
i
r
e
m

e
n
t

f
o
r

t
h
i
s

a
p
p
r
o
x
i
m

a
t
i
o
n

i
s

t
h
a
t

t
h
e

m
a
g
n
i
t
u
d
e

o
f
t
h
e

d
e
t
u
n
i
n
g

b
e

m
u
c
h

l
a
r
g
e
r

t
h
a
n

t
h
e

R
a
b
i

f
r
e
q
u
e
n
c
i
e
s
,

|�
|�

|⌦
P

(
t)

|,
|�

|�
|⌦

S
(
t)

|.
(
2
)

T
h
e

r
e
s
u
l
t
i
n
g

t
w

o
-
s
t
a
t
e

T
D

S
E

c
a
n

b
e

w
r
i
t
t
e
n
,
w

i
t
h

a
p
p
r
o
p
r
i
a
t
e

c
h
o
i
c
e

o
f
o
v
e
r
a
l
l
s
t
a
t
e
v
e
c
t
o
r
p
h
a
s
e
,
a
s
[
O

r
e
8
4
]

i

d d
t


C

1
(
t)

C
3
(
t)

�
=

1 2


0

⌦
e↵

(
t)

⌦
e↵

(
t)

2
�

e↵

�


C
1
(
t)

C
3
(
t)

�
,

(
3
)

w
h
e
r
e

t
h
e

e
↵
e
c
t
i
v
e

R
a
b
i
f
r
e
q
u
e
n
c
y

i
s

p
r
o
p
o
r
t
i
o
n
a
l
t
o

t
h
e

p
r
o
d
u
c
t

o
f
t
h
e

t
w

o
fi
e
l
d

a
m

p
l
i
t
u
d
e
s
,

⌦
e↵

(
t)

=
⌦

P
(
t)

⌦
S
(
t)

/2
�

,
(
4
)

a
n
d

t
h
e

e
↵
e
c
t
i
v
e

d
e
t
u
n
i
n
g
,

t
i
m

e
v
a
r
y
i
n
g
,

i
s

p
r
o
p
o
r
t
i
o
n
a
l

t
o

t
h
e

d
i
↵
e
r
e
n
c
e

o
f

t
h
e

s
q
u
a
r
e
s

o
f

t
h
e

t
w

o
R

a
b
i

f
r
e
q
u
e
n
c
i
e
s

(
i
.
e
.

t
o

t
h
e

d
i
↵
e
r
e
n
c
e

o
f
t
h
e

P
-

a
n
d

S
-
fi
e
l
d

i
n
t
e
n
s
i
t
i
e
s
)

�
e↵

(
t)

=
[
⌦

P
(
t)

2
�

⌦
S
(
t)

2
]
/4

�
.

(
5
)

T
h
i
s

i
n
t
e
n
s
i
t
y
-
d
e
p
e
n
d
e
n
t

d
e
t
u
n
i
n
g

o
r
i
g
i
n
a
t
e
s

w
i
t
h

t
h
e

d
y
n
a
m

i
c

S
t
a
r
k

s
h
i
f
t

o
f

s
t
a
t
e
s

1
a
n
d

3
p
r
o
d
u
c
e
d

b
y

s
t
a
t
e

2
,

n
o
t

w
i
t
h

a
n
y

s
w

e
e
p

o
f

l
a
s
e
r

f
r
e
q
u
e
n
c
y
,

a
l
t
h
o
u
g
h

s
u
c
h

a
c
o
n
t
r
i
b
u
t
i
o
n

t
o

d
e
t
u
n
i
n
g

c
a
n

r
e
a
d
i
l
y

b
e

i
n
c
o
r
p
o
r
a
t
e
d

i
n
t
o

t
h
e

e
q
u
a
t
i
o
n
s
.

B
e
f
o
r
e

t
h
e

a
r
r
i
v
a
l
o
f
t
h
e

p
u
l
s
e
s

b
o
t
h

�
e↵

(
t)

a
n
d

⌦
e↵

(
t)

v
a
n
i
s
h
.

T
h
e

e
↵
e
c
t
i
v
e

d
e
t
u
n
i
n
g

b
e
c
o
m

e
s

n
o
n
z
e
r
o

w
h
e
n

t
h
e

fi
r
s
t

p
u
l
s
e

a
r
r
i
v
e
s
,
c
h
a
n
g
e
s

s
i
g
n

a
t

t
h
e

m
i
d
p
o
i
n
t

o
f
t
h
e

p
u
l
s
e

s
e
q
u
e
n
c
e
,
a
n
d

r
e
m

a
i
n
s

n
o
n
z
e
r
o

u
n
t
i
l

t
h
e

l
a
s
t

p
u
l
s
e

c
e
a
s
e
s
.

T
h
e

e
↵
e
c
t
i
v
e

R
a
b
i

f
r
e
q
u
e
n
c
y

i
s

p
u
l
s
e
d

a
n
d

p
o
s
i
t
i
v
e
,

a
n
d

i
s

n
o
n
z
e
r
o

o
n
l
y

w
h
e
n

b
o
t
h

p
u
l
s
e
s

a
r
e

p
r
e
s
e
n
t
.

B
y

s
u
i
t
a
b
l
y

c
r
a
f
t
i
n
g

t
h
e

S
a
n
d

P
fi
e
l
d
s

o
n
e

c
o
u
l
d
,
i
n

p
r
i
n
c
i
p
l
e
,
p
r
o
d
u
c
e

a
n

e
↵
e
c
t
i
v
e

i
n
t
e
r
a
c
t
i
o
n

t
h
a
t

a
c
t
s

a
s

a
p
u
l
s
e
d

c
h
i
r
p
,
t
h
e
r
e
b
y

m
o
v
i
n
g

p
o
p
u
l
a
t
i
o
n

a
d
i
a
b
a
t
i
c
a
l
l
y

b
e
t
w

e
e
n

s
t
a
t
e
s

1
a
n
d

3
.

T
h
e

p
r
o
b
a
b
i
l
i
t
y

o
f
t
h
i
s

p
o
p
u
l
a
t
i
o
n

t
r
a
n
s
f
e
r

c
a
n

b
e

e
s
t
i
m

a
t
e
d

f
r
o
m

e
x
p
r
e
s
s
i
o
n
s

p
r
e
s
e
n
t
e
d

b
y

L
Z
S
M

,

P
3
(
1

)
=

1
�

e
x
p
(
�
⇣)

,
⇣

=

⇡
⌦

e↵
(
t x

)

2

2
|˙ �

e↵
(
t x

)
|

(
6
)

w
h
e
r
e

t x
i
s

t
h
e

m
i
d
p
o
i
n
t

o
f

t
h
e

p
u
l
s
e

s
e
q
u
e
n
c
e
.

T
o

h
a
v
e

a
h
i
g
h

p
r
o
b
a
b
i
l
i
t
y

o
f

p
o
p
u
l
a
t
i
o
n

t
r
a
n
s
f
e
r

i
t

i
s

n
e
c
e
s
s
a
r
y

t
h
a
t

t
h
e

c
h
a
n
g
e

o
f
e
↵
e
c
t
i
v
e

d
e
t
u
n
i
n
g

b
e

v
e
r
y

s
l
o
w

,

|˙ �
e↵

(
t x

)
|⌧

⌦
e↵

(
t x

)

2
,

(
7
)

o
r

2
|�

|⇥
|˙ ⌦

P
(
t x

)
⌦

P
(
t x

)
�

˙ ⌦
S
(
t x

)
⌦

S
(
t x

)
|⌧

[
⌦

P
(
t x

)
⌦

S
(
t x

)
]

2
(
8
)

1

S
P

⌦
e↵

�
e↵

(
a
)

(
b)

(
c)

(
d
)

S
P

⌦
e↵

�
e↵

(
a

0 )
(
b0

)
(
c0

)
(
d

0 )

C
o
u
n
t
e
r
i
n
t
u
i
t
i
v
e

I
n
t
u
i
t
i
v
e

t/
T

P
o
p
u
l
a
t
i
o
n
s

E
↵
e
c
t
i
v
e

H
P

u
l
s
e
s

0
.
0
.
1

A
d
i
a
b
a
t
i
c

e
l
i
m

i
n
a
t
i
o
n
;
T

w
o

s
t
a
t
e

b
e
h
a
v
i
o
r
,
1
9
8
4
,
1
9
9
7

W
h
e
n

t
h
e

d
e
t
u
n
i
n
g

t
e
r
m

�
o
f
e
q
n
.

(
?
?
)

i
s

v
e
r
y

l
a
r
g
e

t
h
e

p
o
p
u
l
a
t
i
o
n

i
n

s
t
a
t
e

2
t
e
n
d
s

t
o

a
d
i
a
b
a
t
i
c
a
l
l
y

f
o
l
l
o
w

t
h
e

p
o
p
u
l
a
t
i
o
n
s

i
n

s
t
a
t
e
s

1
a
n
d

2
,

o
s
c
i
l
l
a
t
i
n
g

r
a
p
i
d
l
y

w
i
t
h

s
m

a
l
l

a
m

p
l
i
t
u
d
e

[
S
h
o
9
0
]
.

T
h
i
s

m
a
k
e
s

p
o
s
s
i
b
l
e

a
d
i
a
b
a
t
i
c

e
l
i
m

i
n
a
t
i
o
n

o
f
s
t
a
t
e

2
f
r
o
m

t
h
e

e
q
u
a
t
i
o
n
s
,
u
s
i
n
g

t
h
e

a
p
p
r
o
x
i
m

a
t
i
o
n

o
b
t
a
i
n
e
d

b
y

s
e
t
t
i
n
g

t
o

z
e
r
o

t
h
e

a
v
e
r
a
g
e
d

t
i
m

e
d
e
r
i
v
a
t
i
v
e

o
f
t
h
a
t

s
t
a
t
e
:

C
2
(
t)
⇡
�

⌦
P

(
t)

2
�

C
1
(
t)
�

⌦
S
(
t)

2
�

C
3
(
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.
(
1
)

T
h
e

r
e
q
u
i
r
e
m

e
n
t

f
o
r

t
h
i
s

a
p
p
r
o
x
i
m

a
t
i
o
n

i
s

t
h
a
t

t
h
e

m
a
g
n
i
t
u
d
e

o
f
t
h
e

d
e
t
u
n
i
n
g

b
e

m
u
c
h

l
a
r
g
e
r

t
h
a
n

t
h
e

R
a
b
i

f
r
e
q
u
e
n
c
i
e
s
,

|�
|�

|⌦
P

(
t)

|,
|�

|�
|⌦

S
(
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|.
(
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)

T
h
e

r
e
s
u
l
t
i
n
g

t
w

o
-
s
t
a
t
e

T
D

S
E

c
a
n

b
e

w
r
i
t
t
e
n
,
w

i
t
h

a
p
p
r
o
p
r
i
a
t
e

c
h
o
i
c
e

o
f
o
v
e
r
a
l
l
s
t
a
t
e
v
e
c
t
o
r
p
h
a
s
e
,
a
s
[
O

r
e
8
4
]

i

d d
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(
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C
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(
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=
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⌦
e↵

(
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⌦
e↵

(
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2
�

e↵
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C
1
(
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C
3
(
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�
,

(
3
)

w
h
e
r
e

t
h
e

e
↵
e
c
t
i
v
e

R
a
b
i
f
r
e
q
u
e
n
c
y

i
s

p
r
o
p
o
r
t
i
o
n
a
l
t
o

t
h
e

p
r
o
d
u
c
t

o
f
t
h
e

t
w

o
fi
e
l
d

a
m

p
l
i
t
u
d
e
s
,

⌦
e↵

(
t)

=
⌦

P
(
t)

⌦
S
(
t)

/2
�

,
(
4
)

a
n
d

t
h
e

e
↵
e
c
t
i
v
e

d
e
t
u
n
i
n
g
,

t
i
m

e
v
a
r
y
i
n
g
,

i
s

p
r
o
p
o
r
t
i
o
n
a
l

t
o

t
h
e

d
i
↵
e
r
e
n
c
e

o
f

t
h
e

s
q
u
a
r
e
s

o
f

t
h
e

t
w

o
R

a
b
i

f
r
e
q
u
e
n
c
i
e
s

(
i
.
e
.

t
o

t
h
e

d
i
↵
e
r
e
n
c
e

o
f
t
h
e

P
-

a
n
d

S
-
fi
e
l
d

i
n
t
e
n
s
i
t
i
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Counterintuitive Intuitive t/T Populations E↵ective H Pulses
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0.0.1 Adiabatic elimination; Two state behavior, 1984, 1997

When the detuning term � of eqn. (??) is very large the population in state 2 tends to adiabatically follow

the populations in states 1 and 2, oscillating rapidly with small amplitude [Sho90]. This makes possible

adiabatic elimination of state 2 from the equations, using the approximation obtained by setting to zero the

averaged time derivative of that state:

C2(t) ⇡ �
⌦P (t)

2�
C1(t)�

⌦S(t)

2�
C3(t). (1)

The requirement for this approximation is that the magnitude of the detuning be much larger than the Rabi

frequencies,

|�|� |⌦P (t)|, |�|� |⌦S(t)|. (2)

The resulting two-state TDSE can be written, with appropriate choice of overall statevector phase, as [Ore84]
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where the e↵ective Rabi frequency is proportional to the product of the two field amplitudes,

⌦e↵(t) = ⌦P (t)⌦S(t)/2�, (4)

and the e↵ective detuning, time varying, is proportional to the di↵erence of the squares of the two Rabi

frequencies (i.e. to the di↵erence of the P - and S-field intensities)

�e↵(t) = [⌦P (t)2 � ⌦S(t)2]/4�. (5)

This intensity-dependent detuning originates with the dynamic Stark shift of states 1 and 3 produced by

state 2, not with any sweep of laser frequency, although such a contribution to detuning can readily be

incorporated into the equations.

Before the arrival of the pulses both �e↵(t) and ⌦e↵(t) vanish. The e↵ective detuning becomes nonzero

when the first pulse arrives, changes sign at the midpoint of the pulse sequence, and remains nonzero until

the last pulse ceases. The e↵ective Rabi frequency is pulsed and positive, and is nonzero only when both

pulses are present.

By suitably crafting the S and P fields one could, in principle, produce an e↵ective interaction that acts

as a pulsed chirp, thereby moving population adiabatically between states 1 and 3. The probability of this

population transfer can be estimated from expressions presented by LZSM,

P3(1) = 1� exp(�⇣), ⇣ =

⇡⌦e↵(tx)

2

2| ˙�e↵(tx)|
(6)

where tx is the midpoint of the pulse sequence. To have a high probability of population transfer it is

necessary that the change of e↵ective detuning be very slow,

| ˙�e↵(tx)|⌧ ⌦e↵(tx)

2, (7)

or
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Fig. 2.16. Simulation of three-state dynamics with large single-photon detuning ∆. Left-hand frames are for
counter-intuitive pulse ordering, S before P . Right-hand frames are for intuitive ordering, P before S. Top
frames (a),(a′) are normalized Rabi frequencies. Middle frames (b), (b′) are effective Rabi frequencies and
detunings for two-state system obtained by adiabatic elimination. (c), (c′) are populations Pn(t) obtained
by numerical integration of the three-state equations. If adiabatic elimination were to be exactly valid there
would be no population in state 2. Its presence indicates slight failure of the two-state approximation. The
two pulses have temporal areas of 60π and the detuning is 3 × the peak Rabi frequencies.

Adiabatic criteria. By suitably crafting the S and P fields one could, in principle, produce an
effective interaction that acts as a pulsed chirp, thereby moving population adiabatically between
states 1 and 3. The probability of this population transfer can be estimated from expressions
presented by LZSM [Vit01a, Vit01b],

P3(∞) = 1− exp[−ξ], ξ ≡ πΩeff(tx)2

2|∆̇eff(tx)|
, (2.45)

where tx is the midpoint of the pulse sequence. To have a high probability of population transfer
(large ξ) it is necessary that the change of effective detuning be very slow,

|∆̇eff(tx)| � Ωeff(tx)2, (2.46)

or

2|∆| × |Ω̇P (tx)ΩP (tx)− Ω̇S(tx)ΩS(tx)| � [ΩP (tx)ΩS(tx)]2. (2.47)
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In the simple case of two identical pulses offset in time the slopes are equal and opposite at tx.
An estimate for the terms then gives the inequality

2|∆| � Ω2
0T, (2.48)

where T is of the order of the pulse half width. Because ∆ must be much larger than Ω0 to justify
the two-state approximation this inequality requires that T be very long, a condition that poses
experimental challenges.

Relation to STIRAP. The two-state equations obtained from three-state equations for large
single-photon detuning, and their interpretation of chirped adiabatic passage, were noted by
Oreg, Hioe and Eberly [Ore84]. Considering the use of temporally offset pulses for this model
they conclude that adiabatic inversion could be achieved by appropriate delay between the pulses.
Referring to the effective two-state approximation (i.e. large single-photon detunings), they
pointed to the need for the two Rabi frequencies to have opposite slopes, and they illustrate
this with Fig. 2.2(a) appropriate to linearly-sweeping P -before-S, i.e. “intuitive” ordering of the
pulses

Because the chirp direction does not matter in two-state adiabatic passage, the temporal or-
dering of the pulses is immaterial here. This way of viewing STIRAP with single-photon detun-
ing — mapping it into the well-studied two-state system with controlled time-dependent Rabi
frequency and detuning — was discussed by Vitanov and Stenholm [Vit97b]. It gives one con-
nection between STIRAP and the LZ-LZS-LZSM description of adiabatic passage, cf. Sec.
2.1.3. But because it only involves two states, and does not depend on pulse ordering, it is not
STIRAP as defined here, although it accomplishes complete population transfer with negligible
population in state 2. It is two-photon RAP.

2.10.2 Three-state LZSM model of adiabatic passage, 1986

The classic model of two-state adiabatic passage used by LZSM (see Sec. 2.1.3) takes the Rabi
frequency Ω to be constant and the detuning to vary linearly with time, at rate r. This model
readily extends to three states, as discussed by Carroll and Hioe [Car86a], who took the two
fields to have equal Rabi frequencies. Their RWA Hamiltonians, for N = 2 and N = 3 were

W(t) =
[

rt Ω/2
Ω/2 −rt

]
, W(t) =

 rt Ω/
√

8 0
Ω/
√

8 0 Ω/
√

8
0 Ω/

√
8 −rt

 . (2.49)

The three-state Hamiltonian describes a situation in which ∆P = ∆S = −rt in a ladder linkage
for which the two fields are both resonant at t = 0. Figure 2.17 shows the adiabatic and diabatic
eigenvalues associated with these matrices17.

Carroll and Hioe found approximate analytic expressions for the probabilities of the three
states at long times, expressed as functions of the “scaling parameter”

s = |Ω|/4
√
r. (2.50)

17Note that these formulas for W(t) require phase choices ζn(t) different from those leading to the W(t) shown in
eqn. (1.11).
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Fig. 2.17. Adiabatic (solid lines) and diabatic (dashed lines) eigenvalues for two-states (left) and three
states (right), assuming constant Rabi frequencies and linear chirp, with the RWA Hamiltonians of eqn.
(2.49). Redrawn based on Fig. 1 of [Car86a]. Reprinted with permission from [Car86a]. Copyright IOP
Publishing. All rights reserved.
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Fig. 2.18. Final populations as a function of the square of the “scaling parameter” s = |Ω|/4
√

r. Small s
produces diabatic passage (the system remains in state 1), large s produces adiabatic passage (the system
transitions to state 3). From Fig. 2 of [Car86a], with altered curve labels for visibility. Reprinted with
permission from [Car86a]. Copyright IOP Publishing. All rights reserved.

Figure 2.18 shows their results, for initial population entirely in state 1. As with the two-state
system, adiabatic following holds if |Ω| is large and r is small.

2.10.3 Analytic solutions, delayed overlapping pulses, 1984–88

Starting in 1984 Hioe and Eberly [Hio84a], Hioe [Hio84b] and Carroll and Hioe [Car88a], treat-
ing coherent excitation ofN -state systems by pulses having a common analytic time dependence,

http://iopscience.iop.org/0305-4470/19/7/017
http://iopscience.iop.org/0305-4470/19/7/017
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Fig. 2.19. Results of modeling three-state excitation with two offset analytic pulse shapes. From Figs. 2
and 3 of [Car88b], with curve labels 1,2,3 added for clarity. Reprinted with permission from [Car86a].
Copyright IOP Publishing. All rights reserved.

presented exact analytic solutions to the coherent density-matrix equations for a class of N -state
linkages that included the three-state system with two-photon resonance and swept single-photon
detuning. The model is a generalization of the two-state LZSM model of chirped adiabatic pas-
sage, cf. Sec. 2.1.3, with hyperbolic functions for pulses and detunings, as used by Allen and
Eberly [All75]. The review [Hio09] discusses a variety of analytic pulse shapes for which ana-
lytic solutions are possible for three-state systems.

Starting in 1986 Carroll and Hioe [Car86c, Car88b] examined analytic solutions to resonant
three-state excitation by pulses having different shapes and whose amplitudes were chosen as
analytic functions offset in time. The solutions, extensions of those for two-state pi pulses, were
expressed in terms of Clausen functions. Figure 2.19 shows two examples of results they dis-
played. Although the evolution of the system can be adiabatic, the presence of chirped detuning
sets this apart from STIRAP.

2.10.4 Hioe papers, 1981–90

Numerous papers provide supporting formalism for N -state adiabatic following, although none
fully described what is defined above as STIRAP. These works, many by Hioe, found constants
of motion, and dark states, and fitted them into notions of multidimensional Hilbert-space motion
by means of a coherence vector [Hio81,Elg82,Hio82a,Hio82b,Hio82c,Hio83a,Hio83b,Hio84a,
Hio84b, Ore84]. Notably, several of these papers pointed out the existence of various constants
of motion for the density matrix subject to coherent excitation. Indeed, the dark adiabatic state
is a consequence of SU(3) group symmetries of the RWA Hamiltonian. Exact expressions for
populations subject to offset pulses having analytic forms for envelopes appear in Carroll and
Hioe papers [Car88a, Car88b] but the offered solutions have variable detuning and so are not
STIRAP.

Although STIRAP fits readily into the formalism of the coherence vector, none of these
papers explicitly identified the STIRAP mechanism: a statevector that adiabatically follows a

http://iopscience.iop.org/0305-4470/19/7/017
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dark adiabatic eigenvector by means of a pulse sequence in which the S field precedes the P
field and the carrier frequencies remain constant, maintaining two-photon resonance. The exam-
ples chosen are what have been called RCAP-CHIRAP in Sec. 4 or the two-state limit of large
single-photon detuning, cf. Sec. 2.10.1. However, the paper [Ore84] is prescient for remark-
ing, referring to the effective two-state approximation: “. . . adiabatic inversion can be obtained
simply by designing a proper delay between the pulses” and “. . . if we wish a practical inversion
scheme we must sweep the Rabi frequencies in opposite directions”.

Several papers by Hioe and Carroll presented solutions to the three-state system, on two-
photon resonance, with analytic expressions for pulse shapes and detuning, but with simultaneous
pulses [Hio84b, Car86a, Car86b, Car88a]. Hioe was a co-author on the Kuklinski paper of 1989
[Kuk89] and with Carroll he described in 1990 solutions for delayed pulses, as are needed for
STIRAP. For a review of analytic solutions by Hioe and others to the three-state system see
[Hio09].

Multiphoton transitions. When the single-photon detuning is large (but two-photon resonance
applies) the STIRAP process, like other stimulated-Raman processes, can be regarded as a two-
photon transition, between two discrete states by way of an intermediate state that receives neg-
ligible population — a “virtual level” [Sho79]. More generally a two-photon transition rate in-
volves a superposition of many nonresonant intermediate states [Goe31, Wei33, Gol65], a result
traditionally derived using perturbation theory.

The formulas (2.43) and (2.44) are special cases of multiphoton transitions [Wei33, Fai87,
Del94] and dynamic shifts [Bac97] that include the effect of all but two discrete quantum states.
More generally there occurs a sum over all possible intermediate states and an integral over
continuum states. The denominators include both resonances, ωnm − ω and anti-resonances,
ωnm+ω. The more general formulas, valid for constant intensity, obtain either from perturbation
theory or by approximation to inversions of Laplace transforms [Sho90].
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3 STIRAP, 1988–90

The development of experimental STIRAP has been described on a number of occasions at sem-
inars by Klaas Bergmann. Here I do not wish to duplicate that history, only to give a synopsis of
the three basic initial publications from his research group that first established STIRAP. I have
titled the subsection headings to indicate what first appeared in the article, although much other
material was discussed.

3.1 First experiments, September, 1988

The procedure now known as STIRAP — three-state adiabatic passage in a stimulated Raman
process produced by constant-frequency radiation pulses in which the 2-3 interaction S pre-
cedes but overlaps the 1-2 interaction P — was first demonstrated in the experimental work
of Gaubatz, Rudecki, Becker, Schiemann, Kuelz, and Bergmann published in September, 1988
[Gau88]. Figure 3.1 shows the published experimental results, for vibrational excitation of Na2

molecules in a beam. Versions of this figure have appeared subsequently in many articles and re-
views [Gau90,Ber98,Vit01a,Vit01b,Sho11], as evidence of the pulse ordering (S before P ) that
distinguishes STIRAP from other population transfer procedures. Numerical modeling agreed
with the experimental results that showed the desirability of S pulse preceding, but overlapping,
the P pulse. The results were insensitive to small changes of pulse amplitudes, as is characteristic
of an adiabatic process.

3.2 First theory, December, 1989

The next year a theoretical paper by Kuklinski, Gaubatz, Hioe and Bergmann appearing in De-
cember, 1989, [Kuk89], provided a theoretical basis for the experimental results of [Gau88] by
using explicit formulas for the elements of the adiabatic dark state, expressed in terms of a mixing
angle that ratioed the two pulse amplitudes. These results differed from earlier discussions of the
dark state (cf. Sec. 2.3) by considering explicit time dependence, and presenting conditions for
validity of adiabatic evolution in the three-state linkage, the now-familiar condition that temporal
pulse areas should be much larger than π. They described their results as an example of adiabatic
passage and, more importantly, presented the conditions necessary for adiabatic following — the
adiabatic criterion that continues to guide experimenters.

Although not mentioned explicitly in [Kuk89, Gau90] the early work showed transfer of the
population of an entire set of Zeeman sublevels of a specific rotational level; see Sec. 1.3.15.

Further discussion by Carroll and Hioe of analytic pulse shapes and population formulas (in-
volving Bessel functions and hypergeometric functions) appeared in 1990 [Car90]. Writing with
submission in February, 1990, they said “A remarkable common result that emerges from all the
preceding analytic solutions is that sending two overlapping laser pulses in the counter-intuitive
interaction sequence with large pulse amplitudes provides an efficient way for population trans-
fer in a three-state system that is quite independent of the laser-pulse shapes, and that minimizes
the occupation probability of the intermediate state 2 . . . ”. They cite the experimental results of
Gaubatz et al. in 1988 [Gau88] as an example of this “adiabatic following”.
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Fig. 3.1. Population transfer as a function of displacement between S and P beams. Frames at the top
show the relative placement of the two beams. Transfer is largest when S precedes but overlaps P , the
so-called counter-intuitive ordering. From Fig. 4 of [Gau88]. Reprinted from [Gau88] with permission
from Elsevier. Improved versions appear in [Gau90, Ber98, Vit01a, Vit01b, Sho11].

3.3 First acronym, May, 1990

The acronym “STIRAP” first appeared in May, 1990, in an article by Gaubatz, Rudecki, Schie-
mann and Bergmann [Gau90]. That paper refined the presentation of the sodium-dimer excita-
tion data and developed the theoretical description that has remained the conventional approach
to STIRAP, including formulas for the three adiabatic eigenvectors (adiabatic states), which they
denoted |a−〉, |a0〉, |a+〉. With the present notation (and suppression of explicit time dependence)
their formulas for the two additional eigenvectors read (time dependence not shown) supplement
eqn. (1.24) [Gau90, Few97]

Φ+ =

 sin θ sinϕ
cos ϕ

cos θ sinϕ

 , ε+ = 1

2

[
∆ +

√
∆2 + Ω2

rms

]
, (3.1a)

Φ0 =

 cos θ
0

− sin θ

 , ε0 = 0, (3.1b)

Φ− =

 sin θ cosϕ
− sinϕ

cos θ cosϕ

 , ε− = 1

2

[
∆−

√
∆2 + Ω2

rms

]
, (3.1c)

http://www.sciencedirect.com/science/article/pii/0009261488803646
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Fig. 3.2. Time dependence of adiabatic eigenvalues, here denoted ω−, ω0, ω+, for three choices of the
one-photon detuning ∆P . The eigenvalue ω0 associated with the dark adiabatic state is constant, but with
the phase and energy conventions used for these plots, eqn. (C.4b), it is only zero when ∆P is zero. From
Fig. 8 of [Gau90]. Reprinted with permission from [Gau90]. Copyright 1990, AIP Publishing LLC.

where

tan θ =
ΩP

ΩS
, tanϕ =

Ωrms√
Ω2

rms + ∆2 + ∆
, Ωrms =

√
Ω2

P + Ω2
S . (3.2)

They refer to STIRAP as an example of adiabatic passage and adiabatic following [of the
statevector Ψ(t) to the adiabatic eigenvector Φ0(t) ≡ |a0〉]. They discussed results of numerical
simulation, using a density matrix approach that allow treatment of stochastic effects. Figure 3.2
reproduces their Fig. 8 plot of adiabatic eigenvalues, showing the constant eigenvalue ε0(t) = ω0

of the adiabatic dark state. With the phase and energy choices of that paper, eqn. (C.4b), this
eigenvalue is equal to the single-photon detuning ∆P , and is only zero when ∆P = 0.

Later that year came another use of the acronym, by Hioe [He90], who discussed the rela-
tionship of STIRAP to the earlier well-developed stimulated-emission pumping (SEP) procedure
for producing population transfer [Kit81, Ham86, Bec87].

http://scitation.aip.org/content/aip/journal/jcp/92/9/10.1063/1.458514
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There followed, within the next few years, tens of papers from the Bergmann group at the
University of Kaiserslautern, all treating various aspects of population transfer, or preparation
of superposition states, in atomic or molecular beams [Sho91, Cou92, Kuh92, Ore92, Sho92a,
Sho92b, Sch93, Mar95, Mar95, Sho95a, Sho95b, Hal96, Mar96, Few97, Una97, Yat97, Gue98b,
Hal98,Kuh98,The98,Una98a,Una98b,Vit98a,Vit98b,Yat98a,Yat98b,Hal98]. These works soon
extended the concepts of adiabatically evolving dark states to treat multistate linkage chains,
angular-momentum degeneracy, and coherent-superposition final states. Soon other groups took
an interest in STIRAP, as was noted in early reviews [Ber95, Ber98]. By now the applications of
the procedure and further developments of the theory have extended to researchers throughout
the world.
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4 RCAP-CHIRAP: Chirped adiabatic passage. 1983–85

The STIRAP process, as it is defined here, produces adiabatic changes by means of ampli-
tude changes of constant-frequency electromagnetic fields. An alternative procedure for ac-
complishing the robust adiabatic transfer of populations in a three-state chain was proposed by
Hioe [Hio83a] and colleagues Oreg and Eberly [Ore84, Ore85] several years prior to the devel-
opment of STIRAP. Unlike STIRAP, it uses swept detunings, produced by frequency-changing
(chirped) radiation pulses, to produce the desired adiabatic changes, as do many other multi-level
generalizations of the early two-state rapid adiabatic passage [Vit01a, Vit01b].

Oreg, Hioe and Eberly [Ore84] considered pulses of duration T with common envelopes
ΩP (t) = ΩS(t) and chirped detunings,

∆12(t) ≡ ∆P (t) = a− rt, ∆23(t) ≡ ∆S(t) = b− rt, (4.1)

both resonant at the pulse maxima, t = T/2. When b > a the ordering of null detunings (res-
onances) is 1-2 then 2-3, i.e. that of intuitive population transfer through intermediate state 2.
When a > b the order of null detunings, termed “antinatural” or “nonintuitive”, is 2-3 then 3-1
and the population transfer proceeds by a two-photon transition with the 1-3 resonance. Refer-
ring to the ordering in which LZSM curve-crossings occur when the frequencies are swept they
concluded that “ . . . the ‘antinatural’ case a > b is the more favorable for adiabatic inversion”.

This concept of three-state population transfer using chirped-frequency lasers has subse-
quently been termed variously Raman chirped adiabatic passage (RCAP) [Che95,Che97,Ber98,
Vit01b,Lon07a,Tsc07,Kum14] and, particularly for general application to ladder linkages, chir-
ped-frequency adiabatic passage (CHIRAP) [Ban94, Dan04].

The RCAP-CHIRAP process has been demonstrated on various molecular excitation situa-
tions [Ban94, Dan04]. Figure 4.1 shows an example of an experimental demonstration of this
technique. As can be seen from that figure (and as was emphasized in earlier theoretical discus-
sion [Sho92a]), the direction of the frequency sweep determines whether the population transfer
goes directly between states 1 and 3 or whether it proceeds through the intermediate state 2 or
avoids this state (as does STIRAP).
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Fig. 4.1. Demonstration of RCAP-CHIRAP. Top frame (a) shows adiabatic eigenvalues (full lines) and
diabatic eigenvalues (dotted lines) for three-state ladder linkage with two chirped detunings. Bottom frames
show population histories of state 1 (full line), 2 (dashed) and 3 (dotted): (b) for left-to-right detuning sweep
and indirect transfer through intermediate state 2. (c) for right-to-left detuning sweep, and direct transfer
from 1 to 3. From Fig. 3 of [Bro92]. Reprinted with permission from [Bro92]. Copyright 1992 by the
American Physical Society.

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.69.2062
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5 EIT: Transparency, slow light and dark-state polaritons 1989–2000

When one is interested in the effects of matter on the fields as they propagate, it is customary
to treat the atoms (or molecules) as a continuous distribution of macroscopic polarization P and
magnetization M source terms in wave equations derived from Maxwell’s equations for electric
and magnetic fields. In the absence of free charges and currents the dynamical Maxwell equations
read (in SI units with suppression of space and time dependence)

∇×E +
∂

∂t
B = 0, (5.1a)

∇×B− 1
c2
∂

∂t
E = µ0∇×M +

∂

∂t
µ0P. (5.1b)

Typically the source terms on the right-hand side of eqn. (5.1b) are treated by introducing
constants that characterize the steady-state behavior of aggregates of atoms, often expressed as
linear constitutive relations [Str41]:

P = ε0χE, M = χmH, (5.2)

where χ and χm are electric and magnetic susceptibility tensors — macroscopic averages of
single-atom electric and magnetic dipole moments. Such expressions rely on an approximation in
which the individual atoms remain in a steady state, i.e. they are not undergoing Rabi oscillations
of populations. These relations describe traditional linear optics. When the medium responds
transiently to multiple fields they require revision, as discussed in works on nonlinear optics
[Arm62, Wal71a, Han79, She84, Boy03].

5.1 Pulse propagation and transparency

Within this idealization of steady-state atomic structure the effect on the electric-field envelope
of a plane wave of angular frequency ω = 2πc/λ traveling along the z axis of a uniform medium
is governed, with neglect of higher derivatives, by the equation [Har92][

∂

∂z
+

1
vg

∂

∂t

]
E(z, t) = −i

π

λ
χ E(z, t), (5.3)

where the inverse group velocity is

1
vg

=
1
c

+
π

λ

∂χ

∂ω
. (5.4)

The real part of the (electric) susceptibility χ alters the group and phase velocities while the
imaginary part is responsible for attenuation (or gain). In treating propagation in this way one
deals with the atoms as a collective material, characterized by time-independent absorption co-
efficient and refractive index. The (real) refractive index η and absorption coefficient α obtain
from the complex-valued χ for nonmagnetic material through the relationship√

1 + χ = η + i
λ

4π
α. (5.5)
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Transparency. When the imaginary part of χ vanishes the material is transparent. This occurs,
for example at the Fano minimum of an autoionizing line that has no background absorption.

It can also occur when a second field alters the atomic dipole moments. The three-state chain
provides a simple opportunity for such “induced transparency” of the primary field.

The general theoretical description of a three-level lambda linkage with one weak “probe”
link was first presented by Weisskopf [Wei33]. It was worked out for general linkages, and
susceptibility evaluated, for application to laser amplifiers by Hänsch and Toschek [Hae70]
who reviewed earlier work. From steady-state solutions to density-matrix equations they noted
that transparency would occur under suitable “hole-burning” conditions described by Bennett
[Ben62] and originating with saturation in the strong-field transition, but they also wrote of a
“non-linear interference effect . . . related to Raman scattering”. This is not visible in their illus-
trations.

Starting in 1990 Harris and co-workers published a series of papers [Har90, Bol91, Har92,
Kas95] that described the properties of a three-state chain (experimentally demonstrated with a
lambda linkage) in which the two Rabi frequencies were constant and had very different values.
(This work modeled a three-state system with loss from state 2 by a TDSE, and used steady-state
solutions.) The stronger interaction S (termed in this context the control field) acts to create an
Autler-Townes doublet, while the weaker interaction P , connected to the initially populated state,
probes this doublet. The effect is visible as transparency for the probe field P , induced by the
strong field S. (Atoms starting in state 2 undergo gain, and the overall effect for the three-state
system is lasing without inversion, LWI [Ima89, Scu89, Koc92, Har97].)

Extensive reviews exist for this electromagnetically induced transparency (EIT), most com-
monly observed in propagation but also seen as hindered excitation [Har97,Mar98,Luk03,Fle05].

Although three-state chains with constant unequal Rabi frequencies had been discussed ear-
lier [Sho77, Sho90], the interest had been in population histories rather than the susceptibility
(i.e. coherences) and field propagation that has been identified with EIT.

5.2 Absorption, population trapping and Fano profile, 1989–92

Imamoglu and Harris [Ima89], modeling the lambda linkage with loss from state 2 (and stable
states 1 and 3), showed that the absorption of a weak P field in the presence of a strong S field had
a Fano profile as a function of P -field detuning. The Fano minimum, at two-photon resonance,
represented complete transparency, the result of destructive interference between excitation paths
from state 1 to the two dressed states of the 2-3 link and thence into the loss continuum. (Vitanov
et al. [Vit01a] show that when both states 2 and 3 are lossy the interference minimum is no longer
zero, and that in fact there will be enhanced absorption when Γ3 � Γ2.)

In 1992 Lounis and Cohen-Tannoudji [Lou92] treated population trapping in the lambda
linkage using scattering theory, for the situation when one of the two steady fields is much weaker
than the other, as occurs with the Autler-Townes effect and EIT. They showed that the weak-field
scattering amplitude is the sum of two amplitudes, identifiable with Rayleigh scattering and
Raman scattering. The interference between these two scattering amplitudes produces a Fano
profile in the total scattering cross-section.
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Fig. 5.1. Real (a) and imaginary (b) parts of the susceptibility for a weak probe beam in the presence of a
strong control field. The dashed line of frame (a) shows the absorption in the absence of the control field.
When that strong field is present there is a transparency window. Normalization is to the peak value of
the imaginary part of the susceptibility. From Fig. 2 of [Har90] Reprinted with permission from [Har90].
Copyright 1990 by the American Physical Society. and Fig. 5 of [Har97]. Reproduced with permission
from [Har97]. Copyright 1997, American Institute of Physics.

5.3 Slow light, 1999

The elimination of absorption, parametrized by the imaginary part of a complex-valued suscep-
tibility, accompanies a reduction of the group velocity, controlled by the real part of the sus-
ceptibility. The result is slow light [Hau99, Fle05, Khu10]. This phenomena has explanation
in models that treat the atomic structure as steady, responding to the thermal environment and
external fields, but not undergoing coherent excitation such as Rabi oscillations. Figure 5.1,
from [Har90], shows the absorption and associated dispersion for a weak probe passing through
material in which there is strong Autler-Townes splitting. At the center of the frame, where the
AT splitting gives maximum transparency (null absorption), there is a large positive derivative of
the susceptibility, and hence an appreciable decrease in the group velocity.

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.64.1107
http://scitation.aip.org/content/aip/magazine/physicstoday/article/50/7/10.1063/1.881806
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5.4 Stored light: Dark state polaritons, 2000

The slowing of a light pulse results from alteration of the polarization field P(r, t) (a macro-
scopic distribution of induced dipole moments) that serves as a source for the electric field in the
Maxwell equations describing wave propagation, (5.1). When one deals with radiation pulses
that are shorter than the relaxation times that obscure coherences of atomic excitation it is neces-
sary to treat both the effect of fields on atoms and of atoms on fields. This is done, for example,
with coupled Maxwell-Schrödinger or Maxwell-Bloch equations [All75, Sho90]. The polariza-
tion field must be evaluated from the time-varying single-atom dipole moments, customarily
regarded as uniformly distributed with a number density N (r). For the electric dipole moments
this is18:

P(r, t) = N (r)Re 〈d(r, t)〉 = N (r)Re
∑
nm

dnmCn(r, t)Cm(r, t)∗ exp[iζm − iζm]. (5.6)

This field has frequencies specified by the phases ζn as modulated by the probability amplitudes.
The field amplitudes that are part of the Rabi frequencies must be evaluated subject to alteration
by the induced dipole moments that constitute the P field.

For many purposes it suffices to treat the P field as a pulsed traveling plane wave, steadily
exposed to a strong and steady control field S in a Raman linkage. The description of the weak
electromagnetic P -field coupled to the distribution of polarization is then obtained by introducing
a new field, a coherent superposition of electromagnetic (photonic) variable, parametrized by
a spatially and temporally varying Rabi frequency ΩP (z, t), and an induced dipole moment,
proportional to a two-state atomic coherence (an off-diagonal element of the density matrix),
C3(z, t)C1(z, t)∗ and known, for historic reasons, as a “spin wave”. The superposition is termed
a dark-state polariton [Fle00, Vit01a, Fle02],

F (z, t) = cos Θ(z, t)ΩP (z, t)− sinΘ(z, t)
√
αcΓ C3(z, t)C1(z, t)∗. (5.7)

Here α is the absorption coefficient, Γ is the incoherent relaxation rate and the mixing angle is

Θ(z, t) =
√
αcΓ

ΩS(z, t)
. (5.8)

The dark-state polariton obeys the propagation equation [Vit01a][
∂

∂t
+ c cos2 Θ(z, t)

∂

∂z

]
F (z, t) = 0. (5.9)

When ΩS(z, t) is approximately uniform in z this equation describes the propagation of a quasi-
particle with velocity

v(t) = c cos2 Θ(t). (5.10)

When a polariton propagates in an EIT medium, it preserves its amplitude and shape, but its prop-
erties can be modified by simply changing the intensity of the control field S. By adiabatically

18To include effects of different environments the right-hand side must include a sum over these, as in eqn. (1.43).
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rotating Θ from 0 (a strong S field) to π/2 (a weak S field) an experimenter causes an initially
purely electromagnetic field (F = ΩP ) to become a pure polarization field (F =

√
αcΓC3C

∗
1 ),

and the propagation velocity to drop from the vacuum speed c to zero. Thus by slowly altering the
control field an experimenter can diminish the group velocity and, in the limit, bring the polariton
to rest, thereby capturing the initial probe field within the medium — it is then a purely atomic
excitation in which the initial photonic state has been mapped onto a spatially distributed atomic
two-state excitation (a spin wave). As long as the trapping procedure is sufficiently smooth (i.e.
adiabatic) the process is lossless and coherent. The mechanism is readily recognized as a variant
of the STIRAP process [Fle99].

Unlike the conventional absorption process, this coherent procedure retains all of the phase
information from the initial pulse. The recording of the field is reversible, reproducing the initial
field, thereby providing a means of storing and retrieving images that include full phase informa-
tion of the field [Jul04, Bei10, Hei10, Hed10, Gro11].

5.5 AT, EIT and STIRAP stages

At the start of the STIRAP process the S field is much stronger than the P field, conditions that
produce an Autler-Townes splitting of the P transition. This AT effect, and the concomitant EIT
(see App. F.1) can be seen in various ways, by means of any technique that probes the energies
of the three states, e.g the fluorescence (scattering) experiments of Gray and Stroud [Gra78] that
produced Fig. 2.7. One such probe is the EIT produced on the P field as it propagates. Because
of the AT splitting and the consequent EIT transparency the weak P field is not absorbed and, in
turn, induces no population transfer; see App. F.2.

Similar reasoning applies to the late stage of STIRAP, when the S field is negligible (or zero):
there occurs an AT splitting of the S transition, an EIT null of excitation, caused by the strong
P field, which prevents the S field from altering populations. This is manifested, amongst other
ways, in EIT of the (weak) S field.

Between these two extremes any description of the dynamics must treat the two fields to-
gether, as does picturing adiabatic following of the dark adiabatic state.

Not only does EIT provide an intuitive picture of STIRAP, but as Fleischhauer pointed out
[Fle99], the procedure of STIRAP is needed to prepare the most complete spatial distribution of
dark states needed to produce the best EIT.

5.6 Simultons, matched pulses and adiabatons, 1981–95

When the pulsed P -field becomes comparable in strength to the S field the two must be treated
jointly, along with the atoms of the media. The use of three-state systems as media for propaga-
tion of two collinear beams of coherent radiation has an extensive history. In 1981 Konopnicki
and Eberly [Kon81] discussed solutions to three-level Maxwell-Bloch equations that have the
character of simultaneous different-wavelength shape-preserving pulses (optical solitons), which
they termed simultons: two pulses of identical shape that propagate without loss or change. They
described analytic pulse shapes involving sech and tanh functions applied to resonant Cook-
Shore pulses [Coo79], and supplemented these with extensive numerical results. For simulton
propagation to occur, both the pulses and the medium have to be suitably prepared.
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In 1992 Harris [Har93] pointed out that population-trapped atoms can cause two optical
pulses, of arbitrary shape, to acquire identical envelopes after a characteristic propagation dis-
tance. He termed these paired fields matched pulses.

In 1994 Hioe and Grobe [Hio94] presented exact analytic solutions for a pair of resonant
shape-preserving solitary-waves that can propagate stably without loss through a medium of
three-state atoms having lambda or letter-V linkages or through five-state systems having letter-
M or letter-W linkages. Their results, based on Jacobi elliptical functions with tanh and sech as
special cases, provided a great variety of pulse pairs, which they termed matched-solitary-wave
pairs (MSP). The corresponding atomic evolution ranged from complete depletion to complete
population return.

Later in 1994 Grobe, Hioe and Eberly [Gro94] presented further analytic forms of resonant
two-pulse excitation in three-state systems. The pulse shapes, based on sech and tanh, and termed
adiabatons, rely on maintenance of the two-photon adiabatic condition based on the three-level
trapping state, eqn. (G.22). Initiated with a long-lasting S field and a later P pulse the paired
complementary pules travel with a common group velocity for long distances limited by nona-
diabaticity. In 1995 Eberly [Ebe95] provided further discussion, noting that adiabaticity allowed
population-trapping states of atoms to excite population-trapping fields states.

Harris commented on some of these works in connection with his review of EIT [Har97].



Contemporary STIRAP 435

6 Contemporary STIRAP

The various elements mentioned in Sec. 1.3 as essential characteristics of STIRAP do not give an
adequate picture of the technique as it is used at present. This section provides, not an overview of
all applications, which is not feasible, but a sense of how original limitations have been extended,
while still maintaining the essence of the process. It therefore gives a partial picture of what the
term STIRAP means at this time.

6.1 Partial STIRAP

The goal of complete population transfer has, for some applications, shifted to creation of a
specified superposition of states 1 and 3 by partially completing the STIRAP population transfer,
a process termed fractional-STIRAP (F-STIRAP) [Vit99,Dre09]. A conceptually simple example
is available with the linkage pattern shown in Fig. 1.10(a). In this example the pulses turn off
at the same rate. Alternatively the two pulses can be forced to terminate abruptly at a moment
when the mixing angle θ(t) has a desired value.

If one is interested not so much in population transfer but in maximizing the induced dipole
moment at the two-photon frequency ω13, as created by the coherence ρ13(t) = C1(t)C3(t)∗,
then the optimum pulse sequence will be “half-STIRAP”, with θ(T ) = π/4.

The S and P pulses can also be obtained from a single pulse whose polarization changes
from right- to left-polarization; see Fig. 1.10.

6.2 Reverse STIRAP

The original three-state STIRAP proceeded by aligning the statevector with the dark adiabatic
eigenvector Φ0(t), as will happen when the S field precedes the P field and population initially
resides in state 1. When there is nonzero single photon detuning ∆ it is possible to induce
complete population transfer with pulses that have the opposite ordering, P preceding S (the
intuitive pulse ordering). Figure 6.1 shows an example, from the original STIRAP paper of
Gaubatz et al. [Gau90].

As pointed out by Vitanov and Stenholm [Vit97b], having mind coherent excitation in which
spontaneous emission is negligible, “in the adiabatic limit both the intuitive and counter-intuitive
pulse orders produce complete population transfer for nonzero intermediate-level detuning.” Rel-
evant formulas for the eigenvectors |±〉, for Rabi frequencies much smaller than the detuning
magnitude as happens at the start and end of the pulse sequence, depend on the sign of the
detuning 19 . When the detuning is positive, ∆ > 0, then ϕ→ 0 and the formulas read

Φ+(t) =

 0
1
0

 , ε+(t) = +|∆|, (6.1a)

Φ−(t) =

 sin θ(t)
0

cos θ(t)

 , ε−(t) = 0. (6.1b)

19Expressions for the eigenvalues and the angle ϕ when |∆| � Ωrms require evaluation of ∆ + |∆|.
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Fig. 6.1. Transfer efficiency (relative excitation probability) vs displacement between plus centers (pulse
delay) when there is large single-photon detuning, but two-photon resonance. Letters A and B marks S-
before-P pulse sequences (B is detuned STIRAP), letter C marks simultaneous pulses and letter D marks
P -before-S pulse ordering. From Fig. 5 of [Gau90]. Reprinted with permission from [Gau90]. Copyright
1990, AIP Publishing LLC.

Initially and finally the degenerate null eigenvalues of |0〉 and |+〉 identify these as being linked
with degenerate states 1 and 3; the linkage depends on the mixing angle θ(t). When detuning is
negative, ∆ < 0, then ϕ→ π/2 and the formulas read

Φ+(t) =

 sin θ(t)
0

cos θ(t)

 , ε+(t) = 0, (6.2a)

Φ−(t) =

 0
−1
0

 , ε−(t) = −|∆|. (6.2b)

Now it is the degenerate null eigenvalues of |0〉 and |−〉 that occur with states 1 and 3.

By controlling the mixing angle θ(t) an experimenter can move population adiabatically
1→ 3 with either S before P or P before S [Gau90]. However, the history of state-2 population
differs in the two sequence, as one can appreciate by regarding the eigenvector construction for

http://scitation.aip.org/content/aip/journal/jcp/92/9/10.1063/1.458514
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Fig. 6.2. Simulations of population transfer in three-state chain, with nonzero single-photon detuning ∆,
produced by adiabatic following with offset pulses (a) Counter-intuitive ordering, S before P . (b) Intuitive
ordering, P before S. From Fig 3 of [Vit97b]. Reprinted with permission from [Vit97b]. Copyright 1997
by the American Physical Society.

resonance or when |∆| � Ωrms so that ϕ→ π/4,

Φ+(t) ≈ 1
Ωrms(t)

√
2

 ΩP (t)√
2

ΩS(t)

 , ε+(t) ≈ 1

2
Ωrms(t) (6.3a)

Φ−(t) ≈ 1
Ωrms(t)

√
2

 ΩP (t)
−
√

2
ΩS(t)

 , ε−(t) ≈ −1

2
Ωrms(t) (6.3b)

Both of these eignvectors have “bright” components of state 2, and this will contribute to the
population during a pulse sequence.

The possibility of producing complete population transfer using either pulse ordering allows
an experimenter to reverse the population transfer — to return population from state 3 to state 1
with this same S−P pulse sequence, thereby restoring the initial state, apart from a phase. In this
situation the first pulse sequence is counter-intuitive and the second is intuitive. For this reversing
of population transfer the initial statevector alignment is with a bright adiabatic eigenvector,
i.e. one that has a component of state 2. The process, termed bright-state STIRAP, backward-
STIRAP or B-STIRAP [Vit97b,Kle08,Gri09,Bor10,Sca11a,Sca11b,Sho11] requires one-photon
detuning and places transient population into the intermediate state. Figure 6.2 shows examples
of population histories with nonzero detaining ∆, using either counter-intuitive ordering, (a) or
intuitive ordering, (b).

The population histories resulting from B-STIRAP are like those obtained from the chirped
detuning of the RCAP-CHIRAP process. Figure 6.3 shows, in the right-hand frame, an exam-
ple of the population histories for an example of B-STIRAP [Bor10]. The appearance is hardly
distinguishable from the example of CHIRAP shown in the left-hand frame [Ore84], but the
Hamiltonian is different: in B-STIRAP the detuning remains fixed while in this CHIRAP exam-

http://journals.aps.org/pra/abstract/10.1103/PhysRevA.55.648
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S P ⌦e↵ �e↵ (a) (b) (c) (d)

0.0.1 Adiabatic elimination; Two state behavior, 1984, 1997

When the detuning term � of eqn. (??) is very large the population in state 2 tends to adiabatically follow

the populations in states 1 and 2, oscillating rapidly with small amplitude [Sho90]. This makes possible

adiabatic elimination of state 2 from the equations, using the approximation obtained by setting to zero the

averaged time derivative of that state:

C2(t) ⇡ �
⌦P (t)

2�
C1(t)�

⌦S(t)

2�
C3(t). (1)

The requirement for this approximation is that the magnitude of the detuning be much larger than the Rabi

frequencies,

|�|� |⌦P (t)|, |�|� |⌦S(t)|. (2)

The resulting two-state TDSE can be written, with appropriate choice of overall statevector phase, as [Ore84]

i

d

dt


C1(t)
C3(t)

�
=

1
2


0 ⌦e↵(t)

⌦e↵(t) 2�e↵

� 
C1(t)
C3(t)

�
, (3)

where the e↵ective Rabi frequency is proportional to the product of the two field amplitudes,

⌦e↵(t) = �⌦P (t)⌦S(t)/2�, (4)

and the e↵ective detuning, time varying, is proportional to the di↵erence of the squares of the two Rabi

frequencies (i.e. to the di↵erence of the P - and S-field intensities)

�e↵(t) = [⌦P (t)2 � ⌦S(t)2]/4�. (5)

This intensity-dependent detuning originates with the dynamic Stark shift of states 1 and 3 produced by

state 2, not with any sweep of laser frequency, although such a contribution to detuning can readily be

incorporated into the equations.

Before the arrival of the pulses both �e↵(t) and ⌦e↵(t) vanish. The e↵ective detuning becomes nonzero

when the first pulse arrives, changes sign at the midpoint of the pulse sequence, and remains nonzero until

the last pulse ceases. The e↵ective Rabi frequency is pulsed and positive, and is nonzero only when both

pulses are present.

By suitably crafting the S and P fields one can produce an e↵ective interaction that acts as a pulsed

chirp, thereby moving population between states 1 and 3 without placing any in state 2. Because the chirp

direction does not matter in two-state adiabatic passage, the temporal ordering of the pulses is immaterial

here. This way of viewing STIRAP – mapping it into the well-studied two-state system with controlled

time-dependent Rabi frequency and detuning – was discussed by Vitanov and Stenholm [Vit97b]. It gives

one connection between STIRAP and the LZ-LZS-LZSM description of adiabatic passage.

The equations, and their interpretation of chirped adiabatic passage, were presented by Oreg, Hioe and

Eberly [Ore84]. They suggested accomplishing the population transfer by means of the pulse ordering shown

in Fig. 1, i.e. the ”intuitive” ordering of pulses, in which their ⌦1 (the P field) precedes their Omega2 (the

S field), not the “counterintuitive” ordering of STIRAP.
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Fig. 6.3. (a): Simulation of RCAP-CHIRAP. From Fig. 1 of [Hio83a], Reprinted from [Hio83a] with
permission from Elsevier. And Fig. 4 of [Ore84]. Reprinted with permission from [Ore84]. Copyright
1984 by the American Physical Society. (b) Simulation of bright-state (or backward) STIRAP. From Fig. 2
of [Bor10]. Reprinted with permission from [Bor10]. Copyright 2010 by the American Physical Society.

ple the detuning varies linearly.

6.3 Inducing particle structure change

The original experiments defining STIRAP by population transfer between vibrational states
in a molecular beam [Gau90] were soon extended to electronic transitions in beams of neutral
atoms [Rub91, Mar96] and then to trapped ions [Mau04, Sor06, Wun07] and to color centers in
solids [Got06, Kle07, Ale08]. STIRAP has also became a tool for manipulating quantum states
of quantum dots [Hoh00] and superconducting nanostructures [Kis04,Pas04,Sie06,Sil09,Sie09,
Fal13]. Recently STIRAP has been demonstrated using X-ray pulses to excite isomeric states of
atomic nuclei [Lia11].

6.4 Additional states and interactions

The original three-state two-field model has been extended in several ways to include additional
states and interactions, while retaining characteristics of STIRAP. The basic three-state model of
STIRAP readily extends to systems that have Zeeman sublevels [Sho95a,Mar95,Mar96]. Redis-
tribution of populations amongst these sublevels produces coherences [Par93, Una98a, Law98,
Vew03, Kis05, Vew07a, Vew07b]. Rice and coworkers [Kob98, Kur01a] considered more elabo-
rate multistate linkage patterns.

Transfer state. A condition for successful population transfer with STIRAP is that the stat-
evector adiabatically follow an instantaneous eigenstate of the RWA Hamiltonian. More gener-
ally, for application to N -state systems, there must exist an adiabatic transfer state that connects
adiabatically the initial state to the target final state [Mar96, Vit98a].

http://www.sciencedirect.com/science/article/pii/0375960183909659
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.29.690
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.81.053415
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Fig. 6.4. N -state linkage pattern for multiple intermediate states.

Multiple intermediate states. The idealization of a single intermediate state is not always
well satisfied, and very soon after the first work on STIRAP Coulston and Bergmann [Cou92]
considered the effect of two intermediate states. This was extended by Vitanov and Stenholm
[Vit97a] who treated a set of intermediate states forming a superposition of multiple lambda
linkages, each between the same initial and final states, but with different intermediate states and
hence with different detunings ∆k, P -field Rabi frequencies Ω1k and S-field Rabi frequencies
ΩkN , as shown in Fig. 6.4. The TDSE for the probability amplitudes reads

i
d

dt
C1(t) =

∑
k

1

2
Ω1k(t)Cµ(t), (6.4a)

i
d

dt
Cµ(t) = ∆kCµ(t) + 1

2
Ω1k(t)C1(t) + 1

2
ΩkN (t)CN (t), (6.4b)

i
d

dt
CN (t) =

∑
k

1

2
ΩkNCµ(t). (6.4c)

Vitanov and Stenholm [Vit97a] showed that when the mixing-angle ratio ΩkN (t)/Ω1k(t) is in-
dependent of k there exists a null-eigenvalue adiabatic state and the possibility of STIRAP. Even
when this constraint on the ratio is not fulfilled it is possible, under appropriate conditions, to
have successful adiabatic population transfer.

Numerous authors have discussed the generalization from a few discrete states to a quasi-
continuum of states [Car92] and to a true continuum, as described by eqn. (2.31) [Nak94,Pas97,
Vit97c, Yat97, Una98b, Una00b, Pet05, Pet07].

Longer chains. Following the initial development of STIRAP subsequent work has extended
the notion of multistate adiabatic passage to longer chains, still with two sequentially-pulsed
radiation fields that act on alternating links of the chain [Sho91, Ore92, Vit98a, Vit98b]. The
single dark state that makes possible the adiabatic following of STIRAP is also found in N -state
chains with any odd-integer N [Sho91]. A simple example is the five-state letter-M (or double
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Fig. 6.5. (a) Five-state letter-M linkage (or double lambda) with two fields (one dark state). (b) Four-state
tripod linkage with three fields and linkages only to state 3 (two dark states) .

lambda) linkage shown in Fig. 6.5(a). The single dark state, superposing states 1, 3, 5, . . . , has
no component of states 2, 4, . . . . The use of two fields, with S before P , will produce complete
population transfer between state 1 and state N , as in STIRAP.

A variant on this chain system places the P pulse only on the 1-2 transition and the S pulse
only on the N to N − 1 transition, and has a “straddling” pulse (or pulses) that connects in
chainwise fashion states 2,3, . . . , N − 1. The primed linkages of Fig. 6.5(a) are examples of
the straddling pules, to extend in duration beyond the S and P pulses. It is possible with this
linkage to produce transfer from state 1 to state N by what has been termed straddle-STIRAP
[Mal97]. The mechanism for successful adiabatic population transfer involves N − 2 dressed
states that superpose all but states 1 andN and that serve as intermediate states for a set ofN −2
simultaneous three-state lambda linkages [Vit98b].

Tripod and fan linkages. An N -state fan linkage (also known as an “N-pod”, extending the
nam “tripod”), in which N − 1 states all have links only to a single state by means of N − 1
interactions, has N − 2 dark states. An example is the five-state tripod linkage of Fig. 6.5(b).
This system has two degenerate dark states, without any component of state 4. Adiabatic fol-
lowing with a generalization of STIRAP will produce a controllable superposition of states
1,2,3 [Una98a, Una99].

6.5 Spatial changes

The first experiments using STIRAP induced population transfers between vibrational levels of
diatomic molecules. More complicated molecules often exist in two physical forms, enantiomers
that are mirror images of each other and whose stable configurations — each with vibrational
states — are separated by a potential barrier. Ohta and colleagues [Oht02] have considered using
STIRAP to move population between the two enantiomers, thereby altering the chirality of the
molecule. Figure 6.6 illustrates the system, an example of the linkage pattern of Fig. 1.10(a).

One can extend the use of vibrational wells to a variety of systems, including optical lattices
in which single atoms or ions are held and undergo vibration. The coupling between potential
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Fig. 6.6. Example of enantiomer transfer via STIRAP. The connection between vibrational states of two
enantiomers depends upon the polarization of the field: the S and P transitions have opposite circular
polarizations. A single laser field with smoothly altering polarization produces the desired STIRAP. (a) The
linkage pattern produced by two polarizations. From Fig. 1 of [Oht02]. (b) Simulation of the population
change induced by a STIRAP pulse sequence obtained by varying polarization of a constant amplitude field.
From Fig. 5c of [Oht02]. Reprinted with permission from [Oht02]. Copyright 2002, AIP Publishing LLC.

wells, via tunneling, depends sensitively upon their separation, which can be adjusted by an
experimenter. The simple example of three such potential wells allows a STIRAP procedure
for population transfer between well 1 and well 3, bypassing the intermediate well. Figure 6.7
shows an example, from Eckert et al. [Eck04]. In such situations there is no carrier frequency and
no RWA; the basic TDSE receives its time dependences from manipulation of trapping-potential
dimensions.

6.6 Altering the fields

All of those experiments were concerned with the probability amplitudes describing internal
structures of particles — the three quantum states that, together with two fields, underly the
STIRAP mechanism. But other experimenters have examined the changes to the fields that ac-
company these changes in quantum states. The earliest of these experiments extended the static
phenomena of electromagnetically induced transparency (see Sec. 5) in which a strong control
field (S) alters the propagation characteristics (group velocity and absorption) of a weak probe
field (P ), to produce slow light [Hau99,Fle05,Khu10]. By controlling the S field an experimenter
controls a matter-field superposition, a dark-state polariton, in the host matter [Fle00,Fle02]. See
Sec. 5.4.

STIRAP has been used to alter particular frequency components of the macroscopic polariza-
tion field P(r, t) in transparent material, thereby enhancing such nonlinear effects as frequency
generation [Lon07b, Suc08, Tse10a, Tse10b, Por12].

Like the original Raman scattering process, STIRAP transfers a photon from the P field to
the S field. When the weak field is the standing-wave field of a cavity, the strong field can
alter the photon structure of the cavity field in a controlled way — making nonclassical field

http://scitation.aip.org/content/aip/journal/jcp/116/17/10.1063/1.1467054
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Fig. 6.7. Example of transfer between localizing potentials in which separation-dependent tunneling serves
as the interaction. (a) The three wells, L, M and R, with energies of vibrational states |0〉 and |1〉. Coupling
is by tunneling, adjusted by varying separations dLM and dMR. (b) Simulated time dependence of separa-
tions for STIRAP. (c) Simulated population histories showing transfer from L to R, avoiding M. From Figs.
1 and 2 of [Eck04]. Reprinted with permission from [Eck04]. Copyright 2004 by the American Physical
Society.

states [Sha01,Lar05,Lin08,Toy11,Nog12] or making photons on demand [Kuh02,Mau04,Bar09,
Mat09, Vas10].

6.7 Waveguides and fibers

A waveguide for electromagnetic radiation is a structure that allows free propagation along one
axis, taken to be z, while confining the field in the transverse x, y plane. An optical fiber is one
example. With assumptions of slow variation of the material properties along the z direction, as
expressed by the refractive index n(x, y, z) of the fiber cladding and n0 of the core, a monochro-
matic electric field amplitude E(x, y, z) having free-space wavelength λ obeys a paraxial wave
equation. With the introduction of a scalar amplitude Ψ(x, y, z) = exp[−ik0z]E(x, y, z), where
k0 = 2πn0/λ, the relevant equation is [Kaw01, Vor03],

i~e
∂

∂z
Ψ(x, y, z) =

[
−~2

e

2
(∇⊥)2 + V (x, y, z)

]
Ψ(x, y, z). (6.5)

Here ~e = λ/(2πn0) = 1/k0 is a length scale, (∇⊥)2 is the transverse Laplacian, and

V (x, y, z) =
1
2

[
1−

(
n(x, y, z)

n0

)2
]
. (6.6)

http://journals.aps.org/pra/abstract/10.1103/PhysRevA.70.023606
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This equation is analogous to the TDSE but with distance z as the independent variable rather
than time t. In the transverse direction the field-confinement expressed by the dimensionless
V (x, y, z) is analogous to a spatially varying potential energy. It allows evanescent fields, and
thereby quantifies coupling between two adjacent waveguides. The counterpart of the basis state
expansion (1.5) of the statevector that underlies the derivation of the coupled equations (1.10)
from the TDSE is the expansion of an electric field amplitude in terms of spatial field modes
ψn(x, y),

Ψ(x, y, z) =
∑

n

cn(z) exp[−iζn(x, y, z)]ψn(x, y), (6.7)

leading to a set of coupled-mode ordinary differential equations [Yar73,Hau91]. For three modes,
coupled to nearest neighbors in a planar layout and with suitable idealization of the tunneling
action, the equations can be presented as

i
d

dz

 c1(z)
c2(z)
c3(z)

 = 1

2

 0 ΩP (z) 0
ΩP (z)∗ 2∆2(z) ΩS(z)

0 ΩS(z)∗ 2∆3(z)

 c1(z)
c2(z)
c3(z)

 . (6.8)

The controllable spatial variation of the elements Ωn(z) and ∆n(z) originate with the tunneling
between adjacent waveguides; they are spatial analogs of the Rabi frequencies and detunings of
the TDSE. There have been experimental demonstrations of both STIRAP [for which ∆3(z) = 0
and ∆2 is constant] [Lon06a, Lon06b] and RCAP-CHIRAP [Lon07a] as well as results analo-
gous to more general changes of multi-state systems [Del08, Cir12, Cir13]. Figure 6.8 shows an
example of STIRAP with optical fibers [Lon07a, Lon09].

6.8 The defining equations

The usefulness of the original STIRAP concepts to other situations — to various interactions in-
cluding classical optical fields — suggests that a useful and less restrictive definition of STIRAP
can be made just from the set of three coupled ordinary differential equations (1.9), (1.10) or
(6.8), together with initial conditions and timing conditions on the coefficient matrix W(t) [the
Rabi frequencies of eqn. (1.11)]. The manipulation of tunneling interactions of optical trapping
potentials offer an example, cf. Sec. 6.5.

The optical fiber equations serve as another example of this view, in which propagation dis-
tance z replaces time t as the independent variable and tunneling replaces electromagnetic in-
teractions but the properties of the system otherwise map from the STIRAP equations, see Sec.
6.7.

Torque and STIRAP. Traditional torque equations, (1.30), deal with three real variables treated
as a vector r and three controlling parameters, treated as a vector Υ. The equations of resonant
STIRAP are of this form when one component of the torque vector Υ is zero — traditionally
component Υ2; see Sec. 1.3.5. Therefore any three variables r1, r2, r3 subject to such an equa-
tion of motion are capable of mimicking fully resonant STIRAP. It is only necessary that the
initial values be taken such that Υ× r = 0 and that the subsequent variation of Υ be slow.
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Counterintuitive scheme Intuitive scheme

Experiment Experiment

Fig. 6.8. Field transfer in optical fibers. Left hand frames illustrate STIRAP. Right hand frames illustrate
Rabi oscillations from intuitive ordering of interactions. From Fig. 4 of [Lon07a] Reprinted with permission
from [Lon07a]. Copyright 2007 by the American Physical Society. and Fig. 8 of [Lon09]. Reprinted from
[Lon09] with permission of John Wiley and Sons.

Two-state STIRAP. Still another example is the mapping of two-state excitation into STIRAP
equations, through the three Bloch equations [Lai96,Vit97b,Vit06,Den12]. The three real-valued
Bloch variables u, v, w, defined in terms of two-state probability amplitudes cn as [Fey57]

u+ iv = 2c1c∗2, w = c2c
∗
2 − c1c∗1, (6.9)

satisfy the three coupled equations (cf. Sec. 2.2.2)

d

dt

 u
v
w

 =

 0 −∆ 0
∆ 0 −Ω
0 Ω 0

 u
v
w

 . (6.10)

By comparison, the probability amplitudes Cn for fully resonant three-state excitation obey s
three-state TDSE that can be written as (note the reordering of variables)

d

dt

 −C3

−iC2

C1

 = 1

2

 0 −ΩS 0
ΩS 0 −ΩP

0 ΩP 0

 −C3

−iC2

C1

 . (6.11)

http://journals.aps.org/prb/abstract/10.1103/PhysRevB.76.201101
http://onlinelibrary.wiley.com/doi/10.1002/lpor.200810055/abstract
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Thus when we make the identification of variables Cn as

C3 − C2 = −(u+ iv) = −2c1c∗2, C1 = w = c2c
∗
2 − c1c∗1, (6.12)

and the identification of the two Rabi frequencies as

ΩS = 2∆, ΩP = 2Ω, (6.13)

we find that the two-state system obeys the resonant equations of a three-state system — those for
which we can initiate a STIRAP process. To do this we begin with the initial two-state conditions

w(−∞) = −1, u(−∞) = v(−∞) = 0, (6.14)

and apply a pulsed detuning ∆ ahead of an overlapping pulsed Rabi frequency Ω(t). The result
of STIRAP will be a coherent superposition of the two states, as expressed by the variable u(t):

u(+∞) = −1. (6.15)

As noted in reviews [Vit01a, Vit01b], the dark-state adiabatic following that is characteristic
of the early STIRAP has subsequently been extended to systems that comprise longer chains than
three, and for which the linkage pattern is more complicated than an unbranched chain. Here too
the acronym STIRAP has often been used. Although the equations deal with two quantum states,
they explicitly involve three variables and are identical with the STIRAP equations.
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7 Conclusion

The benefits of adiabatic passage — relative insensitivity to details of pulse shape, temporal
area and timing — make STIRAP attractive as a means of quantum-state manipulation. Raman
processes proceed through a lambda linkage, with spontaneous-emission loss from state 2, and
so too did the original STIRAP implementation. However, the ladder linkage uses the same
equations and timings: it serves equally well for robust adiabatic transfer, justifying the labeling
as STIRAP. Both population transfer and coherence preparation benefit from the adiabatic pulse
sequences that mark STIRAP. With single-photon detuning present combinations of adiabatic
and diabatic following can produce robust quantum changes; not all of these fit the definition of
STIRAP used here.

Application of the STIRAP procedure to systems other than discrete states of atoms and
molecules require only that system changes be described by the three ODEs of eqns. (1.10 )
and (1.11 ) with t some independent variable, and that the parameters ΩP and ΩS be suitably
sequenced and slowly varying.

The STIRAP mechanism relies on a number of concepts whose history predates the an-
nounced demonstration, theoretical description and naming of the first STIRAP [Gau88, Kuk89,
Gau90]. Each of these predecessors to STIRAP has an extensive literature and can, in retrospect,
be seen as having one or more attributes of STIRAP, but individually they are not the same as
STIRAP because they lack some part of the defining characteristics:

• A three-state chain of linked quantum states (or other variables).

• Two pulsed interactions (e.g. constant-carrier radiation fields) offset in time (or other
variable) but overlapping.

• Constant detunings [diagonal elements of W(t)].

• Maintained two-photon resonance [or equivalent diagonal elements of W(t)].

• Adiabatic following.

• A populated dark or population-trapping eigenvector of W; minimal population in state 2.

The 1952 paper of Lamb [Lam52] presented the basic physics of population trapping in a
three-state chain. It differs from later works in having one of the two field carrier frequencies be
zero, i.e. one field is quasi-static while the other is radiative and monochromatic, rf or optical.
It does not matter whether the dark-state pairs are excited states or metastable states or some
combination, because in the RWA all that matters is the linkages, not the original bare-state
energies En. There was no consideration given to dynamically altering the dark state structure
— changing the mixing angle — as is required for STIRAP.

It is unfortunate that the comprehensive LASL work [Ohl67] was never published. It is
available now on the internet. The LASL work on “spin filters”, making use of population
trapping, is a derivative of the Lamb work, and it is the latter, particularly [Lam52], that therefore
deserves recognition for early discovery of population trapping.

The literature on population trapping [Lam52, Sho77, Gra78, Rad82, Dal82a, Dal82b] and
dark states [Ari76,Alz76,Ari76,Alz79] prior to the introduction of STIRAP dealt primarily with
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steady illumination, not with pulsed adiabatic following, and so it dealt with dark states that
had static components and a fixed mixing angle. Only with the allowance of (adiabatically)
changing mixing angle does the dark state become associated with adiabatic population transfer
and STIRAP.

The authors of [Sho77] were concerned with adjusting fields to optimize effects on atoms and
so they gave no consideration to the steady-state complex-valued susceptibility that accompanies
an induced dipole moment and alters the fields, forming the basis of EIT, cf. Sec. 5, nor did they
consider pulsed changes of the trapping state, the basis of STIRAP.

Earlier literature treating adiabatic passage in two- and three-state systems considered only
swept frequencies as contributors to adiabatic change. Work on three-state adiabatic following,
such as that of Hioe [Hio83a] and Oreg, Hioe and Eberly [Ore84], cf. Sec. 2.2.8, dealt with
coherence vectors (generalizations of the Bloch vector) as the constructs that underwent “follow-
ing”. It was these rather than adiabatic states that were proposed as a means of understanding
quantum-state changes. That work did consider non-coincident pulses (an essential for STIRAP)
but was directed toward consideration of frequency sweeps, a natural extension of the chirped
adiabatic passage of two-state systems that traces back to 1932 and LZ-LZS-LZSM, cf. Sec.
2.1.3.

The possibility of population transfer by means of anti-intuitive (or counter-intuitive) excita-
tion was first recognized by Oreg, Hioe and Eberly in 1984 [Ore84]. However, the implementa-
tion they proposed used swept detuning of simultaneous pulses, an extension to three states of the
chirped adiabatic-passage commonly used at that time for two-state transfer. By contrast, STI-
RAP relies on sequenced amplitudes and constant carrier frequencies. Nevertheless they pointed
to the possibility of delayed pulses being advantageous for adiabatic inversion, and they recog-
nized situations (LZSM curve crossings) where “anti-intuitive” time evolution was advantageous.
Both of these concepts are essential ingredients of STIRAP.

The papers [Kuk89, Gau90] were the first to combine all the theoretical elements that are
essential for STIRAP, as defined in Sec. 1.3, and to provide a theory supporting the earlier first
measurements of population transfer by stimulated Raman adiabatic passage [Gau88]. They built
theory around the adiabatic change of eigenvectors and the following of that motion — notably
the dark state — by the statevector. As can be seen from Sec. 1.3.5 viewing STIRAP as an
example of a torque equation provides an even simpler view of the adiabatic following.

Subsequent work has, in many cases, treated systems differing substantially from those that
deal with coherent quantum-state excitation. The dependent variables may not be three quantum-
state amplitudes, the independent variable may not be time, and the interactions may not originate
with traveling electromagnetic fields. Nonetheless, one may find in the equations – variants of
the basic eqns. (1.10) and (1.11) and their solutions — analogs of the STIRAP phenomena, as
summarized in the bulleted list above. The consequence of meeting the conditions for STIRAP
is robust change of the variables Cn(t) from given initial values at t = 0 to prescribed values at
t = T .
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A Acronyms

The following set of acronyms and phrases are amongst the many that occur in the literature
connected with STIRAP. As will be seen some phenomena has had multiple acronyms, and some
acronyms have had multiple meanings. The listed citations are to early or popular uses. Many
will be found in Wikipedia or Google R© .

• AAP = Assisted Adiabatic Passage. A second field (see CDF) is imposed to improve
adiabaticity. [Dem05, Zha13]. Also vacuum-assisted adiabatic passage (VAAP) [Sie09]
and dissipation-assisted adiabatic passage (DAAP) [Mar03].

• AAPT = Assisted Adiabatic Population Transfer. [Kob98, Kur01a].

• AF = Adiabatic Following: continual alignment between the either the Bloch vector with
the angular-velocity vector or between the statevector and an adiabatic state (or a fixed
superposition of such states). [Gri70, Gri73, All75, Loy77, Sho11]. See Secs. 1.2.3 1.3.6
2.2.3.

• APLIP = Adiabatic Passage by Light Induced Potentials. [Vit01a, Vit01b, Sha06, Tsc07].

• AP = Adiabatic Passage: Complete population transfer adiabatically20. [Mes62, Vit01a,
Vit01b, Sha06, Kra07, Sho11]. See Sec. 2.2.5.

• ARP = (optical) Adiabatic Rapid Passage (= RAP): Population transfer produced by adia-
batic evolution in a time shorter than an incoherence [Loy74, Gri75]. See Sec. 2.2.5.

• AT = Autler-Townes splitting (or effect): A strong S field linked to state 2 induces ac Stark
shifts that split the 1-2 resonance obseved by a weak P probe. [Aut55, Zol79]. See Sec.
2.4 and 2.4.2.

• AWG = Arbitrary Waveform Generator.

• BAP = Bichromatic Adiabatic Passage: Use of two frequencies to produce AP [Yat03,
Amn04, Ele12].

• CAPTA = Chirped Adiabatic Passage by Two-photon Absorption [Che97, Tsc07].

• CDF = Counter-Diabatic Field: This is a second field that, when combined with the first
field, generates the desired adiabatic population transfer. It works to undo the effects of
nonadiabaticity on the population transfer. [Dem03, Dem05, Rus12, Zha13].

• CHIRAP = CHIRped Adiabatic Passage (= RCAP.) [Bro92, Mel92]. See Sec. 4.

• CPT = Coherent (or Complete) Population Transfer [Vit03a,Vit03b,Kyo06,Vas06,Kra07,
Ran07].

• CPT = Coherent Population Trapping, when population in a coherent superposition of two
stable quantum states is not affected by specific radiation. [Aga93, Mar98, Hal01, Win01,
Fle05, Lam06]. See Sec. 2.6.2.

20An alternative view: any completed adiabatic following.
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• CPT = Cyclic Population Transfer: repeated population transfer [Kra01].

• CQED = Cavity Quantum Electrodynamics: individual atoms passing through a single-
mode cavity exchange excitation energy with single photons [Har93, Wal06].

• CTAP = Coherent Tunneling by Adiabatic Passage [Gre04, Lon07a].

• DFG = Difference Frequency Generation [Suc08, Suc11, Por12].

• DFG = Deutsche Forschungsgemeinschaft (German Research Foundation).

• DFS = Decoherence-Free Subspace, a portion of a larger Hilbert space that is unaffected
by coherence-destroying processes [Zan97, Lid98, Dua98].

• DOR = Double Optical Resonance (= OODR) [Zol79]. See Sec. 1.1 2.8.3.

• EIT = Electromagnetically Induced Transparency [Har90,Har97,Mar98,Fle99,Fle05]. See
Sec. 5.

• DSP = Dark State Polariton: a coherent superposition of field and matter states [Fle02].
See Sec. 5.4.

• FVH = Feynman, Vernon and Hellwarth vector-model of two-state coherent excitation,
depicting the motion of the Bloch vector as governed by a torque equation [Fey57]. See
Sec. 2.2.2.

• GSD = Ground-State-Depletion: removal of population from the ground state [Aga06,
Rub13].

• LASL - Los Alamos Scientific Laboratory. Later renamed by congressional mandate Los
Alamos National Laboratory. See Sec. 2.3.7.

• LICS = Laser-Induced Continuum Structure: structure embedded in a continuum by a laser
field [Kni84, Kni90]. See Sec. 2.5.5.

• LWI = Lasing Without Inversion: a strong control field creates a superposition that leaves
gain for state 2 and transparency for state 1. [Ima89, Scu89, Koc92, Har97]. See Sec. 5.

• LZ or LZS or LZSM = Landau-Zener-Stückelberg-Majorana theory of two-state adiabatic
evolution through diabatic curve crossings. [Lan32a, Lan32b, Zen32, Stu32, Maj32]. See
Sec. 2.1.3.

• MS = Morris-Shore transformation, converts certain N -state linkage patterns to a set of
independent two-state systems. [Mor83, Vit03, Kyo06, Ran06b, Sho13]. See App. E.3.

• NMOR = Nonlinear Magneto-Optical Rotation : light-intensity-dependent rotation of the
polarization plane of linearly polarized light during its propagation through a medium
placed in an external magnetic field [Bud02, Pus11].

• NV = Nitrogen-Vacancy center in diamond. These are point defects, each of which consists
of a substitutional nitrogen adjacent to a vacancy. [Jel06, Neu08, Zha13, Alv11].
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• ODE - Ordinary Differential Equation. See eqn. (1.10).

• ODR = Optical Double Resonance. See Sec. 2.8.3.

• OODR = Optical-Optical Double Resonance [Dix60, Got78, Bed78, Ham86, Bra87] . See
Sec. 2.8.3.

• QIP = Quantum Information Processing: manipulation of quantum states that serve as
information elements [Zol05].

• QST = Quantum State Transfer [Bis04, Che13, Hou13].

• QST = Quantum State Tomography [The02, Lvo09, Roz12].

• RAP = Rapid Adiabatic Passage (=ARP). Complete population transfer using coherent
adiabatic evolution that is more rapid than the spontaneous emission lifetime [McC57,
Sho08, Sho11]. See Sec. 2.2.5.

• RCAP = Raman Chirped Adiabatic Passage (= CHIRAP). See Sec. 4.

• RESOLFT = REversible Saturable OpticaL Fluorescence Transition [Hel94,Kla01,Rub13].

• RIBAP = Retroreflection-Induced Bichromatic Adiabatic Passage [Yat03].

• RRS = Resonance Raman Spectroscopy: the P field is near resonance with an optically
allowed (electric-dipole) transition. See Sec. 1.1 and [Wikipedia].

• SAP = Spatial Adiabatic Passage protocol [Neg12, Ben12]. See Sec. 6.5.

• SAP = Super-Adiabatic Passage: treats adiabatic following in a two-state system subject
to excitation by amplitude-modulated field by means of super-adiabatic basis [Vit03a].

• SARP= Stark-induced Adiabatic Raman Passage [Muk11, Muk14].

• SCRAP = Stark Chirped Rapid Adiabatic Passage [Yat99, Ric00, Yat02a, Yat02b, Yat05,
Moh05].

• SEP = Stimulated Emission Pumping: The Stokes field of a Raman process is externally
generated, [Kit81, Ham86, He90, Dai94, Ber98, Vit01a, Sho03].

• SFG = Sum Frequency Generation [Lon07b, Wal09, New11, Suc11, Ran12c].

• SLAP = Subwavelength Localization via Adiabatic Passage technique [Mom09, Vis12,
Men13].

• SRS = Stimulated Raman Scattering; see Sec. 1.1 [She76,Ray79,Ray81,Ray85]. See Sec.
1.1.

• STED = STimulated-Emission-Depletion. A STED fluorescence microscope overcomes
the diffraction resolution limit by depleting the excited state of the fluorescing molecules
in the outer region of the focus [Hel94, Rub13].
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• STWM = Simultaneous Three-Wave Mixing processes [Por12, Wei13].

• TDSE = Time-Dependent Schrödinger Equation. See eqns. (1.9) and (1.10).

• Tripod = a four-state fan linkage with three states linked only to a common state, by three
fields [Una98a, Una99, The99]. See Sec. 6.4.

STIRAP variants

• STIRAP = STImulated Raman Adiabatic Passage [Gau90, Ber98].

• STIHRAP = STImulated Hyper-Raman Adiabatic Passage : one or two of the STIRAP
interactions P and S are two-photon or multiphoton transitions. [Yat98b,Gue98a,Gue98b,
Boh01].

• B-STIRAP = Bright-state (or Backward) Stimulated Raman Adiabatic Passage [Kle07,
Kle08, Bei08, Bei11, Cha12].

• D-STIRAP= Detuning-induced Stimulated Raman Adiabatic Passage. The application of
STIRAP to the Bloch eqations (as in [Vit06]) [Den12].

• Double-STIRAP : a first transfer (S before P ) is followed by a return transfer (P before
S) [Tro03, Osp08, Sho10].

• Double-STIRAP : a first transfer is followed by a second transfer to a fourth state (=
sequential STIRAP) [Dan08].

• Triple-STIRAP: A sequence of pulselets moves population back and forth between states
1 and 3, finishing with population in state 3 [Sho10].

• F-STIRAP = Fractional Stimulated Raman Adiabatic Passage [Vit99,Wan04,Vit10,Sho11,
Zhe11].

• Sequential-STIRAP: a first STIRAP is followed by a second one to a new final state
[Kur01].

• S-STIRAP = Straddle-STIRAP; see Sec. 6.4 [Mal97, Vit98b].

• V-STIRAP = Vacuum Stimulated Raman Adiabatic Passage: the S field is that of a cavity
vacuum [Kuh10, Vas10, Sho11].
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B Terminology

As in all subjects of continued intellectual endeavor, the study of adiabatic processes in coherent
excitation has engendered a great variety of notation and terminology, with differing meanings
for common words. This section discusses some of those.

B.1 States

Regarding terminology: I have here followed the common practice of regarding (Hilbert-space)
“vector” and (quantum) “state” as synonyms. Thus “eigenvector” and “eigenstate” are inter-
changeable terms.

In my writings I have followed the lead of the pioneers of quantum theory and referred
to “quantum state” (or simply “state”) as the most elementary unit of the theory: information
that uniquely defines the most detailed description of a system. For a simple system such as
hydrogen, that means a quantum state is defined by a complete list of 5 quantum numbers, say
n, `, J,MJ ,MI . There may occur several quantum states (i.e. several sets of quantum numbers)
that have the same energy — the states are degenerate but distinct. The presence of a magnetic
field typically removes (“lifts”) the degeneracy, so that every quantum state then has a unique
energy, and every energy is associated with a unique quantum state.

In writings that refer to quantum structures one finds two viewpoints:

View 1. The splitting of a degenerate energy level by a magnetic field produces what I, and
many other authors, have called “Zeeman sublevels”, or simply “sublevels”. That is, in the
absence of an externally applied magnetic (or electric) field a given energy (“energy level” or
“level”) may be associated with a set of degenerate quantum states — degenerate sublevels.

View 2. The LASL authors [Ohl67], and many others, write of “substates” (or “magnetic sub-
states” or “Zeeman substates”). This nomenclature implies the existence of a single “state” that
is to be further categorized with additional quantum numbers (akin to hidden variables). Those
that write of “substates” therefore use this as a synonym for what those of View 1 would call
“quantum states” or “Zeeman sublevels”.

B.2 Eigenvalues

The connection E = ~ω between energy E and (angular) frequency ω introduces ~ = h/2π,
the rationalized Planck constant or Dirac constant. For typographic simplification many authors
treat energy and frequency interchangeably, by assuming units such that ~ = 1.

The time-varying adiabatic eigenvalues εµ(t) of the RWA Hamiltonian need not have units
of energy, and must not be confused with the bare energies En associated with the system prior
to the introduction of the RWA.

C Phases

The choice of phases ζn(t) defines a picture, and with that the diagonal elements Wnn = ∆n of
the matrix W(t). The Schrödinger picture sets the phases to zero, so the diagonal elements are
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the bare energies,

ζn(t) = 0 ∆n = En/~, Schrödinger picture. (C.1)

The Dirac or interaction picture makes the diagonal elements zero by choosing the phases

ζn(t) = Ent/~, ∆n = 0, Dirac picture. (C.2)

This nullification of all diagonal elements facilitates time-dependent perturbation theory, but
leaves an exponential time variation multiplying the Rabi frequencies, cf. eqn. (2.18). The
rotating-wave picture for the three-state chain takes

ζ2(t) = ζ1(t) + ωP t, ζ3(t) = ζ2(t)± ωSt, rotating-wave picture, (C.3)

with the plus sign for a ladder and the minus sign for a lambda linkage. There remains to be
fixed ζ1(t), for which two choices are common. For lossless excitation these choices, and the
consequent diagonal elements, are

ζ1(t) = E1t/~ : ∆1 = 0, ∆2 = ∆P , ∆3 = ∆S ±∆S , (C.4a)
ζ1(t) = E2t/~− ωP t : ∆1 = −∆P , ∆2 = 0, ∆3 = ±∆S , (C.4b)

where the plus sign goes with the ladder linkage and the minus sign goes with the lambda
linkage.

With any picture the inclusion of loss obtains from the replacement ∆n → ∆n − iΓn/2.

D Rate equations; Multiple-photon vs. multiphoton

Incoherent radiative excitation described by rate equations for probabilities,

d

dt
Pn(t) =

∑
n

RnmPm(t), (D.5)

and with constant radiative-transition rates Rnm parameterized for two states by Einstein A and
B coefficients21 and (resonant) radiation density u,

excitation (1→ 2): R21 = B12u, de-excitation (2→ 1): R12 = B21u+A21, (D.6)

envisions photons as acting sequentially to produce a succession of multiple-photon absorptions
(Einstein coefficient B12) or stimulated emissions (coefficient B21) and spontaneous emissions
(coefficientA21). Long-established perturbation theory, often presented with Feynman diagrams,
uses the same picture: a succession of time-ordered events, e.g. [Guc74,Cou77]. With laser light
sources it becomes possible to observe processes described by multi-photon (or poly-photon) rate
coefficients Rnm that are proportional to a higher power than first of radiation intensity. In such
situations all of the field photons are regarded as being present simultaneously.

When applied to coherent excitation, and the TDSE, the terminology distinction is that in a
multiple photon process it is possible to extract populations from intermediate states, whereas in
a multi-photon process any intermediate states are far from resonance and hence are not observ-
able as final states.

21The subscript ordering on A and B is conventional and opposite to that used for the matrix Rnm. The Einstein
coefficients are defined for use with energy density u rather than with intensity I . When used with I , as is appropriate
for radiation beams, they are known as Milne coefficients.
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E Dark states and population trapping

E.1 The dark-state eigenvalue

The existence of an adiabatic state that lacks state-2 component, for the three-state chain with
two-photon resonance, is readily seen from matrix multiplication: a P ∗ 0

P b S
0 S∗ a

 S
0
−P

 = a

 S
0
−P

 . (E.7)

In general all of the elements a, b, P, S may be time dependent. As can be seen, the 1,1 and
3,3 elements of the matrix must be equal in order for the dark state to be an eigenvector. This
is the condition for two-photon resonance. The common association of the dark state with the
null-value eigenstate rests on a choice of phases ζn that nullifies the diagonal element a, cf. eqn.
(C.4a).

E.2 A simple example of population trapping

A simple example of population trapping can be seen in a model of excitation by linearly polar-
ized light acting on a degenerate two-level system [Sho76,Sho90,Sho11]. When the quantization
axis, (z), is taken along the polarization direction then the linkage pattern is as shown in Fig.
E.1(a). The population initially present in Zeeman sublevel J = 1,M = 0 will Rabi cycle into
the excited state, J = 0,M = 0, from which it will be lost, say by photoionization. Eventually
only the two sublevels M = ±1 will remain populated: 1/3 of the initial population will be
removed.

If, however, we choose the quantization axis to be along the beam propagation direction,
and hence perpendicular to the polarization direction, as show in the inset of frame (b), then the
field acting on the system must be expressed as a linear superposition of right- and left-circular
polarization. The selection rules for dipole radiation are now ∆M = ±1 rather than the ∆M = 0
of frame (a), and the linkage pattern is that of frame (b). It would appear that this relabeling of
coordinates will remove 2/3 of the initial population. This intuition is wrong: the system will be
left in a coherent superposition of the M = ±1 sublevels — a dark state.

In this example the trapped state occurs because a rotation of coordinates alters the sublevel
composition of an angular momentum state: what is seen as a single magnetic sublevel in one ref-
erence frame will appear as a coherent superposition in another frame [Zar88, Sho90]. Intuition
based on rate-equations, as is appropriate for incoherent excitation, cannot deal with coherent
superpositions.

E.3 Multiple dark states

For many N -state linkage patterns, such as the resonant fan (e.g tripod) or chain (e.g. letter-M)
there exist multiple dark states — superpositions of the basic bare states that are unaffected by
the interaction. The analysis of such situations proceeds by partitioning the N states into two
classes, NA in set A and NB in set B, such that there are no interactions within a class, only
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Fig. E.1. (a) Excitation of degenerate ground level, J = 1 to a lossy excited state J = 0 by radiation
linearly polarized along quantization axis z. (b) Linkage pattern for linear polarization expressed as coher-
ent superposition of right- and left-circular polarization. Insets show geometry of polarization vector (bold
arrow). The boxes for the J = 1 sublevels indicate states from which population is removed. In frame (a)
the removal is complete. In frame (b) only half the population is removed.

between state of different classes. The sets A and B may differ in size but all states are members
of one of these sets. Let the smaller number be denoted by N<:

N = NA +NB , N< = min(NA, NB). (E.8)

I shall assume that the set A contains the initial state and the set B contains at least one of the
excited states. Let the system must be such that, with this partitioning and a suitable ordering
of the quantum states (all A states preceding all B states in listings), the instantaneous RWA
Hamiltonian matrix has the structure

W =
[

∆A1A V
V† ∆B1B

]
, (E.9)

where ∆A and ∆B are scalars, 1A and 1B are square unit matrices, of dimension NA and NB

respectively, V is a rectangular matrix, of dimensionNA×NB , and V† is its Hermitian conjugate
(complex conjugate of transpose). That is, in the RWA the A states are degenerate, as are the B
states, and there are no transitions within these sets. Note that it is always possible, by suitable
choice of the phases ζn(t) used in defining the probability amplitudes Cn(t), to nullify the A
detuning, ∆A = 0. With this choice then when the transitions are all resonant both detunings
will vanish, ∆A = ∆B = 0, a commonly treated situation.

For such a linkage pattern it is possible to introduce a new set of Hilbert-space coordinates,
using a Morris-Shore transformation [Mor83, Sho13]

C̃j(t) =
∑

j

MjnCn(t) (E.10)
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that produces the TDSE

i
d

dt
C̃(t) = W̃(t)C̃(t), (E.11)

in which the transformed RWA Hamiltonian matrix W̃ = MWM† is block diagonal, i.e. along
the diagonal are a set of 2× 2 blocks w(n) together with a unit matrix 1U of dimension NU ,

W̃ =


w(1) 0 0 · · · 0
0 w(2) 0 · · · 0

0 0 w(3) . . . 0
...

...
...

. . . 0
0 0 0 0 ∆1U

 . (E.12)

The matrices w(n) (there are N< of these) have the structure

w(n) =

[
∆A

1
2 Ω̃(n)

1
2 Ω̃(n) ∆B

]
, (E.13)

in which every block has the same pair of detunings as the original system, ∆A and ∆B , but the
Rabi frequencies Ω̃(n) may differ from block to block. The ∆ associated with the unit matrix
1U is the detuning associated with the larger set of states: it is ∆A if NA > NB and is ∆B if
NB > NA. It is absent if NA = NB = N<, in which case all the elements of W̃ describe pairs
of interacting states.

The MS transformation replaces the N linked states by a set of N< coupled pairs, one for
each member of the smaller set of states. Any remaining states, NU in number, are unpaired and
unaffected by the interactions V and V†. This number is

NU = |NA −NB | = N − 2N<. (E.14)

If the unlinked components are in the A set, and hence they are unlinked from excited states in
set B, they are dark states or population-trapping states. If the components of the unpaired state
are in the B set they are spectator states.

This simple enumeration shows that the resonant tripod linkage has two dark states [Una98a],
the letter-M has one and the letter-W has one spectator state. As with the single dark state of the
lambda linkage, the structure of these states changes as the RWA Hamiltonian changes.

F Autler-Townes splitting

F.1 AT and EIT

The work of Autler and Townes [Aut55] treated a completely coherent model of a two-state
atom subject to excitation by a monochromatic field, with and without what is now called the
rotating-wave approximation. They used Floquet theory to find the frequencies with which the
probability amplitudes oscillated, a pair of values separated by what is now termed the Rabi
frequency. These form the AT doublet, separated by the AT splitting.
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Their model had no spontaneous emission or other sources of line width. They did not
examine details of the wave function that would be revealed by a weak probe linkage to a third
state, most notably the destructive interference that gives the notable transparency now associated
with electromagnetically induced transparency and discussed by Harris [Har97].

Because the EIT profile, as found when the two strongly coupled states decay into a single
continuum, has an interference null, it differs from a superposition of two Lorentzian profiles
where no such null occurs. In recent years the term “AT profile” has been used for such profiles
[Ani11], to distinguish them from EIT profiles that have a Fano minimum, although the original
AT model had no such incoherence-based profiles.

The observation of a null in the probed transition to two strongly coupled states is properly
termed EIT. The presence of two peaks in an observed spectral profile, whether or not there
occurs transparency, is properly termed an Autler-Townes effect, necessarily present in any EIT.

The Fano minimum of EIT occurs even with a small AT splitting. However, its observation
then requires a long time, and so it may not be apparent with pulsed excitation. When the two
strongly coupled states each undergo spontaneous emission, there are two continuua, and the null
does not occur.

F.2 Autler-Townes states

To treat the combination of a weak P field and a strong S field, |ΩS | � |ΩP |, we introduce
dressed states of the strongly coupled 2-3 subsystem. The original equations (1.27) (not restricted
to two-photon resonance but with a stable state 3, so Γ3 = 0) become

i
d

dt

 C1(t)
A−(t)
A+(t)

 = 1

2

 0 Ω− Ω+

Ω− 2∆P − i2Γ2 ±∆S − δ 0
Ω+ 0 2∆P − i2Γ2 ±∆S + δ

 C1(t)
A−(t)
A+(t)

 ,
(F.15)

where the sign + goes with the ladder and the − sign goes with the lambda linkage and δ is

δ =
√

(∆S)2 + |ΩS/2|2. (F.16)

Each of the two dressed states acquires the decay rate Γ2 of state 2.

Resonant P . Let the S field be very strong and resonant with the 2-3 transition, ∆S = 0.
Then if the P field maintains its resonant detuning with state 2, ∆P = 0, there will occur little
excitation from state 1 with steady illumination: the population remains trapped there, making
no transition into either dressed state. The larger is |ΩS | the more complete is the population
trapping. When |ΩS | is not much larger than |ΩP | population regularly leaves state 1 for states 2
and 3.

Figure 2.14 of Sec. 2.9.2 shows examples of this behavior, for a lossless system with ∆S = 0.
In frame (a) the S field is weaker than the P field, and the dynamics is dominated by Rabi
oscillations between states 1 and 2. As the S field grows stronger, and ∆P = 0, population
increasingly remains in state 1 — it becomes trapped there.
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Fig. F.2. Example of three-state excitation with constant intensity and strong resonant S field, ∆S = 0,
ΩS = 5ΩP , for different P -field detunings and loss rate Γ2 = 0.1ΩP . (a) ∆P = 0: P field resonant
with state 2. (b) ∆P = 0.5ΩS : P field resonant with dressed state |+〉. Populations of states 2 and 3 are
intertwined; they are equal components of |+〉. All states decay equally.

Detuned P . With nonzero values of ∆P the statevector will have a bright-state component,
and this will undergo excitation into lossy state 2. When the pulses persist for many lifetimes of
state 2 then the bright component will produce P -field attenuation and fluorescence.

State 1 will be resonant with one of the two AT dressed states (and thereby undergo max-
imum excitation and loss) when the real part of a second diagonal element of W(t) is zero.
When ∆S = 0 that will occur with the P -field detuning ∆P = ±|ΩS/2|. This is half the
Autler-Townes splitting. Frame (c) of Fig. 2.14, making this choice, shows the resulting Rabi
oscillations between state 1 and the AT dressed state |+〉.

Figure F.2 shows two examples of population histories when there is loss from state 2 and a
strong resonant S field (ΩS = 5ΩP and ∆S = 0), for two values of the P -field detuning ∆P .
When the P field and the S field are both resonant with their bare-state transitions, frame (a), the
loss has little effect on the population, which remains basically trapped in state 1. As the S field
becomes stronger the trapping becomes more complete. When the P field is tuned to a dressed-
state resonance, as in frame (b), there occur damped Rabi oscillations into a superposition of
states 2 and 3.

G The adiabatic condition

The condition for adiabatic evolution (and AF) can be found by expressing the original probabil-
ity amplitudes in an adiabatic basis,

C(t) =
∑

µ=+,0,−
Aµ(t)Φµ(t). (G.17)
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The resulting equations, with assumed two-photon resonance ∆3 = 0, read (with suppression of
explicit time dependence) [Vit01a]

i
d

dt

 A+

A0

A−

 =

 1
2 Ωrms cotϕ iθ̇ sinϕ iϕ̇
−iθ̇ sinϕ 0 −iθ̇ cosϕ
−iϕ̇ iθ̇ cosϕ 1

2 Ωrms tanϕ

 A+

A0

A−

 , (G.18)

where

tan θ =
ΩP

ΩS
, tan 2ϕ =

Ωrms

∆
. (G.19)

The condition for adiabatic following is that the matrix of coefficients be close to diagonal,
meaning that the non-adiabatic off-diagonal elements, here involving time derivatives of θ(t)
and ϕ(t), should be much smaller than the separation of the diagonal elements, i.e. the adiabatic
eigenvalues. In the limit of vanishing off-diagonal elements there occurs “perfect adiabatic evo-
lution” (an idealization akin to the frictionless plane), with Aµ(t) changing only by a phase. The
non-adiabatic coupling term ϕ̇ vanishes when ∆ = 0 (the eigenvalue separation is then Ωrms)
but it couples A+ and A− when there is nonzero single-photon detuning. In the limit of large
single-photon detuning this adiabatic basis is inappropriate; see Sec. 2.10.1.

When pulses rather than steady fields are used, the appropriate approximation to the proba-
bility amplitudes used for adiabatic following are [Vit01a]

C1 = cos θ =
ΩS

Ωrms
, C3 = − sin θ = − ΩP

Ωrms
, C2 =

2i
Ωrms

θ̇. (G.20)

Only in the limit of very slow change in mixing angle θ is there no population in the decaying
state.

The condition for adiabatic evolution in STIRAP has been expressed in three ways, which I
shall call : “local”, “worst-case” and “global”.

Local condition. The first of these comes from the requirement that change of the RWA Hamil-
tonian W(t) be very slow. For the STIRAP system this becomes a requirement that the change
in mixing angle θ(t) be much less than the eigenvalue separation, which for fully resonant exci-
tation (∆ = 0) is the rms Rabi frequency:

θ̇(t)� Ωrms(t), (G.21)

For resonant excitation this translates into condition (G.22) on changes of the Rabi frequencies.
This is a “local condition” for adiabatic evolution, and it must be satisfied at all times. The pulses
must therefore be smooth, with no rapid variations. For fully resonant excitation the adiabatic
condition can be written∣∣ΩP Ω̇S − ΩSΩ̇P

∣∣� ∣∣Ωrms

∣∣3. (G.22)

We recognize that when either field is very small, there can be abrupt changes in the other field
without violating this condition.
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Worst-case condition. The early papers on STIRAP [Kuk89, Gau90] dealt with Gaussian
pulses of equal peak Rabi frequency and Gaussian width T . They examined the requirement
that at the midpoint of the pulse sequence, t = 0, where the adiabatic condition was most re-
strictive, the evolution would satisfy the local condition (G.21), and they found, for optimally
delayed pulses, an inequality that can be written

Ωrms(0) T � 1. (G.23)

This is a “worst-case condition” of eqn. (G.21). It was expected to be applicable not only for
Gaussian pulses but for other optimally delayed smooth shapes.

Global condition. A “global condition” on the Rabi frequencies is obtainable by integrating
eqn. (G.21). The integral of the mixing angle from its initial value of 0 (dominant S field) to
its final value of π/2 (dominant P field) is, for any form of intermediate time variation π/2,
The integral of a Rabi frequency Ωn(t) is a (temporal) pulse area An. Thus by integrating eqn.
(G.21) we obtain the global condition that the rms pulse area be much larger than π/2,

Arms � π/2. (G.24)

This inequality has often been replaced by the statement that the individual pulse areas must be
larger than 10 (or 3π) [Ber98, Vit01b], but see Sec. 1.3.7.

H Simulation

In my simulations I express the Rabi frequencies in terms of pulse envelopes f(t) whose peak
values are unity:

ΩP (t) = ΩP0 fP (t), ΩS(t) = ΩS0 fS(t). (H.25)

The two envelopes are characterized by widths τP , τS (usually taken to be equal, τP = τS = τ )
and center-moments tP , tS , offset in time by delay tP − tS ,

fP (t) = f

(
t− tP
τP

)
, fS(t) = f

(
t− tS
τS

)
. (H.26)

Usually the pulses have the same peak values, ΩP = ΩS = Ω. The present simulations used two
shapes for f(t), a Gaussian fe(x) and a finite-duration cosine-squared fc(x),

fe(x) = exp(−x2), fc(x) =
{

cos2(x), |x| < π/2,
0 |x| ≥ π/2. (H.27)

I solve the resulting coupled equations (1.27) using the NDSolve macro of Mathematica R© .
For steady fields the time interval runs from 0 to T , while for pulses it runs from−T/2 to +T/2,
with t = 0 at the center of the pulse sequence.



462 Pre-STIRAP

References

[Abe64] Abella I.D., Kurnit N.A. and Hartmann S.R. “Photon Echoes”. Phys Rev, 141, 391–406 (1964).
[Abr61] Abragam A. The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961).
[Ack77] Ackerhalt J.R. and Shore B.W. “Rate equations versus Bloch equations in multiphoton ioniza-

tion”. Phys Rev A, 16, 277–282 (1977).
[Aga93] Agarwal G.S. “Coherent population trapping states of a system interacting with quantized fields

and the production of the photon statistics matched fields”. Phys Rev Lett, 71, 1351–1354
(1993).

[Aga06] Agarwal G.S., Dey T.N. and Gauthier D.J. “Competition between electromagnetically induced
transparency and Raman processes”. Phys Rev A, 74, 043805 (2006).

[Aga79] Agarwal G.S. and Jha S.S. “Theory of resonant Raman scattering of intense optical waves”. J
Phys B, 12, 2655–2671 (1979).

[Ale08] Alexander A., Lauro R., Louchet A., Chanelière T. and Le Gouet J.L. “Stimulated Raman
adiabatic passage in Tm3+:YAG”. Phys Rev B, 78, 144407 (2008).

[All75] Allen L. and Eberly J.H. Optical Resonance and Two-Level Atoms (Wiley, N.Y., 1975).
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[Gue97] Guérin S., Monti F., Dupont J.M. and Jauslin H.R. “On the relation between cavity-dressed
states, Floquet states, RWA and semiclassical models”. J. Phys. A, 30, 7193–7215 (1997).
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