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Conventions and notations

For reader’s convenience we list here some of the conventions and notations which are used
throughout the text:

• We use the “natural” units, i.e., we set c = ~ = 1.

• A four-vector is denoted as p = (p0, p1, p2, p3) and a three-vector as p = (p1, p2, p3).

• For the Minkowski metric tensor we use the “West Coast” convention, i.e.,

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (i)

Thus, for a dot-product of two four-vectors p and k we have

p · k = gµνp
µkν = p0k0 − p · k . (ii)

According to the sign of the quadrate p2 = p · p, we call a four-vector p

time-like ⇔ p2 > 0 ,
light-like (null) ⇔ p2 = 0 ,

space-like ⇔ p2 < 0 .

• The γ5 matrix is defined as γ5 = iγ0γ1γ2γ3.

• We will frequently use the chiral projectors

PL =
1− γ5

2
, PR =

1 + γ5

2
(iii)

and correspondingly the left-handed and right-handed fermion fields ψL = PLψ and
ψR = PRψ.

• For the totally antisymmetric Levi-Civita tensor (symbol) εµνρσ we adopt the sign conven-
tion ε0123 = +1.

• Charge conjugation ψc of a bispinor ψ is defined as (for details see appendix A)

ψc ≡ Cψ̄T . (iv)

• Analogously to (iv), we define also the “charge transpose” Ac of a matrix A in the Dirac
(bispinor) space as

Ac ≡ CATC−1 . (v)
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• The Pauli matrices are denoted by σ’s (rather than by τ ’s):

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (vi)

• We define operator
↔
∂ as f

↔
∂µg ≡ f(∂µg)− (∂µf)g.

• The Feynman “slash” notation for four-vectors (/p = pµγ
µ) or partial derivatives (/∂ =

∂µγ
µ) will be extensively used throughout the text.

• In analogy with the standard Dirac conjugation for bispinors ψ̄ = ψ†γ0 we also define
“Dirac conjugation” for matrices:

Ā ≡ γ0A
†γ0 . (vii)

• Apart from the normal commutator [A,B] = AB − BA of two matrices A and B, we
define also the “generalized commutator”

JA,BK ≡ AB − B̄Ā . (viii)

• The trace is denoted by Tr and is always taken over all indices. If some indices are not
traced over, it is explicitly indicated.

• The zero and unit matrices are most often denoted simply as 0 and 1, respectively. Occa-
sionally, the symbols and 1 are used as well, in order to emphasize their matrix character.
If the matrix dimension is not clear from the context, we indicate it by a subscript.

• Convention for representing the Green’s functions in Feynman diagrams is the following:

Full Green’s functions: a black blob

1PI Green’s functions: a shaded blob
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List of acronyms

1PI one-particle irreducible

2HDM Two-Higgs-Doublet Model

2PI two-particle irreducible

CJT Cornwall–Jackiw–Tomboulis

CKM Cabibbo–Kobayashi–Maskawa

EW electroweak

EWSB electroweak symmetry breaking

FCNC flavor-changing neutral currents

LSZ Lehmann–Symanzik–Zimmermann

MCS models with condensing scalars

NG Nambu–Goldstone

NJL Nambu–Jona-Lasinio

PS Pagels–Stokar

QCD quantum chromodynamics

QED quantum electrodynamics

QFT quantum field theory/theoretical

SD Schwinger–Dyson

SM Standard Model (of electroweak interactions)

SSB spontaneous symmetry breaking/breakdown

SUSY supersymmetry/supersymmetric

VEV(s) vacuum expectation value(s)

WT Ward–Takahashi

c.c. complex conjugate

(E)TC (extended) technicolor

h.c. Hermitian conjugate

All these acronyms are common in the literature, except for the MCS idiosyncratic one.
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1 Introduction

1.1 Electroweak and chiral symmetry breaking

One of today’s experimental certainties is the following observed elementary particle spectrum.
First of all, there are three generations of massive and electrically charged fermions1, the quarks
and the charged leptons. On top of these, there are three electrically neutral fermions, the neu-
trinos, at least some of which having non-zero, though as yet undetermined masses. And finally,
these “standard” fermions interact in a specific way with the vector (i.e., spin-1) bosons: with
eight massless gluons and with four electroweak (EW) vector bosons: with the massless photon,
the massive Z boson and two equally heavy W+ and W− bosons.

So much for what experimentalists tell us, let us now focus on theorists’ achievements. The
way how to arrive at a consistent2 interacting quantum field theory (QFT) of fermions and vec-
tor bosons has been known already for a long time. It is the gauge principle, whose essence
is, broadly speaking, the requirement of invariance of the Lagrangian under local (position-
dependent) action of some Lie group. This requirement leads to necessity of introducing the
appropriate affine connection – the coveted vector gauge bosons. The gauge principle was orig-
inally formulated with Abelian U(1) group and eventually generalized by Yang and Mills [2] to
non-Abelian groups.

As formulated, the gauge principle can be directly applied only to interactions of fermions
with the photon and with the gluons. The former case is the famous quantum electrodynamics
(QED) with the underlying symmetry group being the Abelian electromagnetic U(1)em one,
whereas the latter case is the no less famous quantum chromodynamics (QCD) with the non-
Abelian symmetry group SU(3)c.

However, the Z and W± bosons cannot be incorporated into this scheme that straightfor-
wardly. Generally speaking, the problem is in their massiveness: Directly applied gauge prin-
ciple yields strictly massless vector bosons. In order to overcome this problem, another deep
QFT result has to be invoked: the Nambu–Goldstone (NG) theorem [3, 4, 5]. It considers the
situation of the spontaneous symmetry breaking (SSB), i.e., the situation when the symmetry of
the equations of motion (i.e., of the Lagrangian) is higher than the symmetry of their solutions
(i.e., in particular of the vacuum state and of the Green’s functions). The NG theorem states that
if the symmetry in question is global (position-independent), then there emerge certain number
of massless scalar (i.e., spin-0) states in the spectrum, the NG bosons.

The crucial non-trivial finding [6, 7, 8], called the Englert–Brout–Higgs–Guralnik–Hagen–
Kibble mechanism or shortly just the Higgs mechanism, is that the NG theorem can be fruitfully
combined with the gauge principle. That is to say, one can consider the situation of spontaneous
breaking of a local rather than a global symmetry. In such a case no NG bosons appear, but
instead some of the gauge bosons obtain mass. Number of such massive gauge boson is the same
as the number of the NG bosons, present if the broken symmetry were global. In terms of the
degrees of freedom it can be interpreted as that the “would-be” NG bosons are transformed into
the longitudinal polarization states of the gauge bosons. This is often paraphrased as that the
gauge bosons become heavy by “eating” the NG bosons.

The observed spectrum of the EW gauge bosons together with the pattern of their mutual

1By “fermions” we will always mean “spin- 1
2

fermions”.
2By “consistent” we mean merely “renormalizable”. We neglect here the question of short distance behavior of the

theory, as well as much deeper question whether an interacting QFT does exist at all [1].
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interactions, as well as their interactions with fermions, can be accommodated by the assumption
of electroweak symmetry breaking (EWSB). That is to say, one first assumes existence of the EW
gauge symmetry with the underlying group SU(2)L × U(1)Y, corresponding to four massless
gauge bosons. Subsequently, this gauge symmetry is assumed to be spontaneously broken down
to its electromagnetic subgroup U(1)em, leaving only one gauge boson, the photon, massless,
whereas the other three ones, Z and W±, obtain this way non-vanishing masses.

Another issue are the fermion masses. They are protected by any symmetry that treats inde-
pendently the left-handed and the right-handed components of the fermion fields.3 A symmetry
of such properties is called chiral. The electroweak symmetry is chiral, hence not only the gauge
boson, but also the fermions are massless at the level of Lagrangian.

However, mere EWSB does not necessarily imply that the fermion masses are no longer pro-
tected. The problem is that there may exist a larger chiral symmetry than the electroweak one. In
fact, the “minimal” Lagrangian consisting only of the standard fermions and their electroweakly
symmetric interactions enjoys the rather large symmetry4 U(3)qL×U(3)uR×U(3)dR×U(3)`L×
U(3)eR , which is obviously chiral. Of course, it contains the gauged symmetry U(1)Y as a sub-
group and also some of its subgroups are anomalously broken. Still, however, even though the
electroweak symmetry gets broken, there remains enough chiral symmetry to protect the fermion
masses. Of course, unless something breaks somehow (explicitly or spontaneously) this residual
chiral symmetry.

Thus, (almost) all that remains to satisfy a theorist’s mind in the quest of finding a consistent
QFT framework describing the Nature is to invent a suitable mechanism(s) of the electroweak
and chiral symmetry breaking. That is to say, to enhance the currently observed particle spectrum
and its electroweakly symmetric interactions with some new dynamics (to be eventually exper-
imentally observed), being at the level of Lagrangian electroweakly symmetric too and making
the two required jobs: First, to spontaneously break the electroweak symmetry and second, to
break (explicitly or spontaneously) the chiral symmetry. Needless to say that the latter implies
the former, but the reverse is not true.

1.2 Ways out

A suitable mechanism of EWSB (and of chiral symmetry breaking) remains an open question,
experimental as well as theoretical. To date there are no experimental clues. On the other hand,
being one of the most urgent issues of the last decades’ particle physics, there are naturally many
theoretical proposals of such a mechanism, though none of them being completely satisfactory
and widely accepted.

The most prominent example of models aspiring to account for the EWSB is no doubt the
Standard Model (SM) [9, 10, 11]. There are at least three reasons for its popularity: It is histori-
cally the first such model, it is in a way a minimal EWSB model and finally it is “user-friendly”
in the sense of allowing for perturbative calculations. The SM introduces an SU(2)L scalar dou-
blet, known as the Higgs doublet. The key ingredient is the form of its potential, chosen in such
a peculiar way that the electrically neutral real component of the Higgs doublet develops a non-
vanishing vacuum expectation value (VEV), breaking the electroweak symmetry down to the
electromagnetic one. The Higgs doublet also inevitably5 couples to fermions. The correspond-

3Strictly speaking, this is true only for the fermion masses of the Dirac type, not of the Majorana type.
4For simplicity we assume at the moment that there are no right-handed neutrinos.
5According to the Gell-Mann’s Totalitarian principle: “Everything not forbidden is compulsory.”
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ing Yukawa interactions happen to break explicitly all chiral symmetries except for those being
a subgroup of the EW symmetry. Thus, after EWSB no residual chiral symmetry remains to
protect the fermion masses, which indeed emerge as products of the Yukawa coupling constants
and the Higgs field VEV.

The SM can be generalized by assuming other scalar representations than one doublet. The
common feature of such generalizations is more free parameters, allowing for better parame-
terization of observed phenomena such as neutrino masses, CP violation, etc. Most straight-
forwardly, one can consider two scalar doublets and arrive at the Two-Higgs-Doublet Model
(2HDM) [12, 13]. While in SM there remains after EWSB only one real scalar degree of free-
dom (the Higgs boson), whose mass is the only free parameter of the EWSB sector, in 2HDM
the situation is considerably more complicated and allowing for richer phenomenology. Further,
instead of adding just more doublets, one can also consider a scalar triplet [14, 15, 16], charged
singlet [17, 18] and doubly charged singlet [19, 20]. All possibilities can be naturally combined.

One of the virtues of these models with condensing scalars (MCS) is their “transparency” in
the sense that the particle spectrum is directly readable from the Lagrangian. This is connected
with another positive feature, that they are weakly coupled6 and thus practical, as one can use the
perturbation theory. On the other hand, these models have also certain drawbacks. For instance,
they always possess at least as many free parameters as there are distinct massive fermions, since
their masses are proportional to the Yukawa coupling constants. In other words, the hierarchy of
fermion masses is not explained, but merely parameterized.7

However, the most serious problem of the MCS is probably the one connected with the very
assumption of the existence of elementary scalars. Unless there is some special symmetry, the
scalar masses are not stable against quadratic radiative corrections. In other words, they tend
to be of order of the theory’s cut-off, which is presumably either the grand unification scale
(1015 − 1016 GeV) or even the Planck scale (1019 GeV). On the other hand, the scalar masses
should be at the same time well below the theory’s cut-off. This follows from the requirement
that the Landau poles of the scalar self-couplings, which are proportional to the scalar masses,
do not occur below the theory’s cut-off. In order to keep scalar masses reasonably low one has
to fine-tune their bare masses with an incredible accuracy, which is considered unnatural [21].
This mismatch between the “natural” and the “required” values of the scalar masses is just the
hierarchy problem of the SM (and generally of all MCS).

One way out is to invent some kind of symmetry protecting the scalar masses, in much the
same way as the chiral symmetry protects the fermion masses. Such symmetry has been really
invented [22, 23, 24, 25, 26, 27] and is known as the supersymmetry (SUSY). Its characteristic
feature is presence of both fermions and bosons in the same irreducible representations, the
supermultiplets. Thus, if SUSY is unbroken, the protection of fermion masses by the chiral
symmetry implies protection of masses of the scalars from corresponding supermultiplet.

The first and most straightforward attempt to apply the general idea of SUSY on the SM is
the Minimal Supersymmetric Standard Model (MSSM) [28,29,30]. It invokes theN = 1 SUSY
algebra and puts the standard fermions and the SM gauge bosons into the chiral and gauge su-
permultiplets, respectively. In order to avoid the gauge anomaly it postulates two Higgs doublets

6Perhaps with the exception of the top quark Yukawa coupling(s).
7A philosopher would assert that after all any physical theory is merely a parameterization of experimental data and

there is nothing such as an “explanation”. Still, there are better parameterizations and worse parameterizations and one
of the criteria how to distinguish one from another is the number of their tunable parameters.
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(thus, the MSSM includes as a part the 2HDM) and puts them into chiral supermultiplets.
If SUSY were exact, we would observe for each particle also its superpartner with the same

mass and the spin differing by 1/2. However, none of those superpartners has been observed.
Thus, SUSY has to be broken. Moreover, it has to be broken softly, i.e., in such a way that
the very reason for using SUSY, i.e., stabilizing the Higgs mass, is not jeopardized. Actually,
finding a reliable mechanism for such SUSY breaking appears to be probably the most serious
theoretical problem of the MSSM (and of its various non-minimal extensions), although propos-
als of solutions do exist. Anyway, from phenomenological point of view the best one can do at
the moment is to merely parameterize this soft SUSY breaking. This is achieved by breaking
SUSY explicitly by adding operators with positive mass dimension into the Lagrangian. Such
SUSY breaking has the desired property that the scalar masses are renormalized only logarith-
mically. On the other hand, it also introduces many new free parameters into the model, as is
after all common when dealing with a phenomenological Lagrangian. In fact, these form the vast
majority of those infamous 124 free parameters [31] of MSSM.

Another way of tackling the problem of EWSB is to realize that EWSB actually does happen
due to already known dynamics, namely due to the QCD dynamics of quarks and gluons. Broadly
speaking, as the QCD dynamics becomes strong at the scale ΛQCD ∼ 200 MeV, the quarks form
condensates that break their chiral symmetry. The point is that at the same time these condensates
break also the EW symmetry, just according to the correct pattern, i.e., down to the U(1)em.
Moreover, the ratio of the resulting masses of the EW gauge bosons is correct in the sense that
ρ = 1.8 However, there is a slight problem that the very magnitude of these masses is about
2 600 times smaller than the experimentally measured values. Another problem is the fermion
mass spectrum: As the QCD dynamics breaks the quark chiral symmetry down to the vectorial
subgroup SU(Nf) (in the case of Nf quarks), whereas the chiral symmetry in the lepton sector
remains unbroken, the net result of QCD is that the quarks come out all equally massive and the
leptons remain all equally massless, both with flagrant contradiction with experiment.

Nevertheless, the inspiration is obvious. Most straightforwardly, one can assume [32, 33]
that on top of the color gauge symmetry SU(3)c there exists also its “scaled-up copy”. That is
to say, there exists so called technicolor (TC) gauge symmetry with the corresponding group
GTC being SU(NTC) and new fermions called the technifermions (sometimes referred to as the
techniquarks, in order to emphasize the analogy with QCD), being, analogously to the ordinary
quarks, charged under both TC and EW groups, so that their condensates contribute to the EW
gauge boson masses. The scale ΛTC, at which TC dynamics becomes strong, must be about
roughly ΛTC ∼ 500 GeV in order to account for the measured magnitudes of EW gauge boson
masses.

However, since the TC dynamics couples only to the technifermions, the mass spectrum of the
standard fermions remains unaffected by it. In order to fix this problem the class of Extended TC
(ETC) models was invented [34,35]. The basic idea is to gauge the flavor (generation) symmetry
of the standard fermions and include in the representations of the corresponding gauge group
GETC also the technifermions. Obviously, by construction it is GTC ⊂ GETC and actually it
is assumed that GETC is spontaneously broken down to GTC. As the standard fermions and
the technifermions are coupled to each other, the consequent technifermion chiral symmetry
breaking gives rise also to standard fermion masses.

8For the precise definition of the ρ-parameter see Eq. (II.6.25) thereinafter.
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The simple picture sketched above, with the TC dynamics being just a scaled-up version of
QCD, turned out to be a bit too naı̈ve from the phenomenological point of view. Thus, the idea
of walking was proposed [36, 37, 38, 39, 40]: The TC dynamics is such that the corresponding
coupling constant does not run, like in QCD, but rather walks, i.e., stays almost constant over a
large extent of scales.

The two paradigms described above, the SUSY extensions of SM and the ETC theories,
are probably the most popular classes of models, describing the anticipated (and experimentally
searched for) physics beyond SM. This by no means means that no other proposals exist. To
mention at least some them: There are ideas like the Top quark condensate [41,42] and Topcolor
[43, 44] models, inspired by the surprisingly large mass of the top quark. There are attempts
known as the Little Higgs models [45, 46, 47] trying to explain the lightness of the Higgs boson
by assuming that it is a pseudo-NG boson of some spontaneously broken approximate global
symmetry. There are models of EWSB based on the assumption of existence of extra dimensions
[48]. And finally, is has been also recently attempted to gauge the fermion flavor symmetries in
an ETC manner, but without introducing the technifermions and the corresponding TC dynamics
[49, 50, 51].

1.3 This paper

This paper concerns with three main topics, being mutually thematically related, but possessing
a different level of originality and generality.

1.3.1 Strong Yukawa dynamics

Most of the models of EWSB mentioned in the previous section contains either weakly coupled
elementary scalars, or strongly coupled gauge bosons. There is also a third logical possibility
– the strongly coupled elementary scalars. One particular realization of this possibility was
proposed in Refs. [52,53].9 The key idea is that it is not solely the scalar dynamics (i.e., the self-
couplings in the scalar “potential”) which is responsible for the EWSB, but rather the Yukawa
dynamics. More precisely, mutual interactions of scalars and fermions are assumed to form
EWSB propagators of both the scalars and the fermions. In order to do so, the Yukawa dynamics
must be presumably strong.

As can be inferred from the paper name, building of such a model of EWSB based on a strong
Yukawa dynamics is its leading (but by no means the only) subject. However, instead of jumping
directly into the realm of EW interaction, first in part I we show the main ideas on a simple toy
model, in which only an Abelian U(1) symmetry is broken dynamically via the non-perturbative
solutions to the equations of motion. Since the full model of EW interactions will be rather
complicated (at least numerically), the Abelian toy model can serve as a laboratory for exploring
some general features, which hold even in the more complicated EW SU(2)L × U(1)Y model.

The “Abelian” introduction in part I is done in two consecutive steps: First, in chapter 2 we
give a more intuitive and diagrammatical introduction to the very idea with the emphasis on the
differences from the MCS. Second, in chapter 3 we redo the analysis from the previous chapter
in a more formal way, relying less on intuitive diagrammatical considerations and allowing better
for eventual generalization in next part.

9Strongly coupled scalars have been employed, for instance, also in the context of SUSY in Ref. [54].
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Only in part II we apply the idea of strong Yukawa dynamics on a realistic model of EWSB.
First, in chapter 4 we define the model in terms of its Lagrangian and the particle content and
present in this context also a convenient parameterization of the fields. In chapter 5 we prepare
the ground for the eventual demonstration that the EWSB by strong Yukawa dynamics is pos-
sible; technically, we construct the space of the propagators (the Ansatz) on which we will be
looking for the EWSB solutions. Finally, in chapter 6 we write down the relevant equations of
motion whose solutions are expected to exhibit the coveted EWSB. We give also some numerical
evidence that the proposed scenario is viable and the concept is not empty.

The parts I and II are based on Refs. [53, 55] and [52, 56], respectively, but treat the subject
in more detailed and technical way.

1.3.2 Fermion flavor mixing in models with dynamical mass generation

The model of EWSB with strong Yukawa dynamics, discussed in part II, brings some more
general, model-independent questions, which are common for a wider class of models with dy-
namical fermion mass generation, including in particular also the ETC models.

The first of such problems, discussed in this paper, is the problem of fermion flavor mixing.
Let us first briefly review how it is treated in MCS. Once the scalars develop their VEVs, the
Yukawa coupling terms give rise to fermion bilinear terms – the mass terms. However, as the
Yukawa interactions tie together fermions from different generations, so do consequently also
the resulting fermion mass terms. In other words, one ends up with fermion mass matrices
which are in principle arbitrary complex 3 × 3 matrices. In particular, they are generally not
diagonal. However, the mass spectrum is easily revealed by looking for their eigenvalues. It is
also comfortable to have the Lagrangian expressed directly in terms of the fermion fields, creating
and annihilating the fermions with definite masses. Such a basis of fermion fields is called the
mass eigenstate basis and obviously it is the basis in which the mass matrices are diagonal (and
non-negative). It can be obtained by unitary rotations of the original basis.

The original basis is commonly referred to as the weak eigenstate basis. The reason for that
is that the interaction terms of the fermions and the EW gauge bosons are in this basis flavor-
diagonal (i.e., they do not link together fermions from different families). However, in the course
of mass-diagonalization of the Lagrangian this changes: Applying the above mentioned unitary
transformations of the fermion fields leads to the emergence of non-diagonal flavor transitions in
the charged current interaction Lagrangian, i.e., in the interaction Lagrangian of fermions with
the W± bosons.10 Strength of such inter-flavor interactions is in the quark sector parameter-
ized by the 3× 3 Cabibbo–Kobayashi–Maskawa (CKM) matrix in the flavor space, which is by
construction automatically unitary.

So much for the situation in the MCS. The main lesson is that in these models the treatment
of the fermion flavor mixing relies on the presence of mass matrices in the Lagrangian. In models
with dynamical fermion mass generation, however, the situation is different. Typically, instead
of constant, momentum-independent mass matrices in the Lagrangian one obtains rather their
momentum-dependent generalizations – the fermion one-particle irreducible (1PI) parts of the
propagators, the self-energies. Due to their momentum dependence they cannot be interpreted as
Lagrangian quantities and hence it is not a priori clear how to treat the fermion flavor mixing:

10Interestingly enough, the interactions with photon and the Z boson remain flavor-diagonal, so that there are no flavor
changing neutral currents (FCNC) at the tree level.
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How to define the mass eigenstate basis and how to (in the case of quarks) define and calculate
the CKM matrix.

This question is discussed in part III and a solution is proposed. It is shown that depending on
details of momentum dependencies of quark self-energies the appropriately defined CKM matrix
can be in general non-unitary. As this subject is discussed thoroughly already in Ref. [57], the
part III is relatively concise and consists only of chapter 7.

1.3.3 Gauge boson masses

Another model-independent problem common in various models with dynamical fermion mass
generation is the problem of the gauge boson masses. Typically the situation is as follows: There
are some fermion fields, sitting in representations of some gauge group (not necessarily a simple
one). Some dynamics (whose precise details are not essential for the present discussion) generate
self-energies of these fermions, which in turn induce breaking of the gauge symmetry down to
some of its subgroup (not necessarily the trivial one). Thus, as the SSB is “proportional” to the
fermion self-energies, so must be also the resulting non-vanishing masses of some of the gauge
bosons, arising due to the Higgs mechanism.

The question how to calculate the gauge boson masses in terms of the fermion self-energies
is discussed in detail in part IV. Although the issue has already been discussed in the literature,
we present more systematic and more general treatment and find some flaws in the way it has
been treated in the literature so far. Namely, we point out the problem of symmetricity of the
gauge boson mass matrix. Although we improve the situation at least to the extent that we can
calculate the mass matrix of the EW gauge bosons as symmetric (assuming arbitrary number of
fermion generations and the most general fermion mixing, as well as contribution from massive
Majorana neutrinos), in more general theories (depending on the gauge group and the fermion
representations) the problem resists. This is one of the reasons why the results obtained in part IV
have not been published yet.

Part IV is organized as follows: First, in chapter 8 we review, primarily for the sake of
establishing the notation, some “textbook” facts and state the key assumptions under which we
in the subsequent chapter 9 derive the master formula for the gauge boson mass matrix in terms
of the fermion self-energies. The chapters 10 and 11 are then dedicated to specific application of
the general gauge boson mass matrix formula on the Abelian toy model and EWSB model from
parts I and II, respectively.

1.3.4 Appendices

In order to make the text reasonably self-contained, we also, after summarizing and conclud-
ing in chapter 12, provide for the reader’s convenience several appendices. In appendix A we
define the notion of fermion charge conjugation and state some of its properties. Appendix B
is devoted to reviewing the way how to quantize a general fermion field. We introduce for this
purpose the method of Faddeev and Jackiw, which we later, in appendix C, apply also to the
more constrained Majorana fermion field. In appendix D we discuss possible parameterizations
of multicomponent fermion fields with the emphasis on the Nambu–Gorkov formalism, which is
used extensively throughout the main text. Similar analysis, although in less detail, is done also
for multicomponent scalar fields in appendix E.
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Part I

Abelian toy model
2 An informal introduction

In this chapter we give a brief, less formal but more intuitive introduction to the very idea of
breaking a symmetry by scalar two-point functions, rather than by a one-point function. For this
purpose we employ a toy model with underlying Abelian symmetry. The idea will be, still on the
example of an Abelian symmetry, rephrased more formally in the next chapter 3 and eventually,
in the subsequent part II, applied on a realistic model of spontaneous breaking of the electroweak
symmetry.

This chapter, as well as the following one, is based on Refs. [53, 55].

2.1 Motivation

We consider a complex scalar field φ and a massless fermion field ψ. Their Lagrangian reads

L = ψ̄i/∂ψ + (∂µφ)†(∂µφ)− V (φ) + LYukawa , (I.2.1)

with the scalar potential given by

V (φ) = M2φ†φ+
1
2
λ(φ†φ)2 (I.2.2)

and the Yukawa part assumed to be

LYukawa = yψ̄LψRφ+ y∗ψ̄RψLφ
† . (I.2.3)

The Yukawa coupling constant y can be in fact considered real without loss of generality. Indeed,
if we write y = |y|eiα, we can always eliminate the phase eiα by redefining, e.g., φ→ eiαφ. We
will deliberately keep y complex, however, as it will help us to keep track of which of the two
interaction terms in (I.2.3) will be actually used in the particular vertices of the loop diagrams
later on.

Notice that the Yukawa interactions (I.2.3) are not the most general ones, they are postulated
to have a rather special form. In particular, the terms

L′Yukawa = y′ψ̄LψRφ
† + y′∗ψ̄RψLφ (I.2.4)

would have to be included in order to have the most general Yukawa interactions.
Let us investigate the symmetries of the Lagrangian. First, we observe that the Lagrangian

remains invariant under the phase transformation of the fermion field, ψ → [ψ]′ = eiα ψ, i.e., un-
der the vectorial symmetry U(1)V. This corresponds to the fermion number conservation. Apart
from this (rather uninteresting) vectorial symmetry, the Lagrangian is invariant also under axial
U(1)A symmetry, which is going to play a more important rôle in our considerations. Unlike the
vectorial symmetry, the axial symmetry acts not only on the fermion,

U(1)A : ψ −→ [ψ]′ = eiQθγ5 ψ , (I.2.5a)
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but also on the scalar:

U(1)A : φ −→ [φ]′ = e−2iQθ φ , (I.2.5b)

where θ is the parameter of the U(1)A transformation and Q is the axial charge. Notice that
the Lagrangian (I.2.1) is invariant under U(1)A, (I.2.5), due to the absence of the Yukawa terms
of the type (I.2.4). One can view it also from the opposite perspective: The terms (I.2.4) are
forbidden by the requirement of U(1)A invariance.

Notice that the axial U(1)A symmetry is in fact anomalously violated. We will ignore this
problem in this chapter; in fact it can be (and will be, in the next chapter) easily fixed by intro-
ducing additional fermions with appropriately chosen axial charges.

The basic observation is that potential fermion mass terms

Lmass = −mψ̄LψR + h.c. (I.2.6)

are forbidden by the underlying axial symmetry U(1)A. Thus, in order to generate the fermion
mass, the axial symmetry has to be broken somehow. This breaking may be either explicit
(i.e., by suitable symmetry-breaking terms, added to the Lagrangian) or spontaneous (i.e., by
symmetry-breaking solutions of the equations of motion). Here we are going to explore the latter
possibility, because later on, in part II, we will apply the ideas of the present Abelian toy model to
the realistic model of electroweak interaction, where the spontaneous breaking of the symmetry
is a must if one insists on a renormalizable theory of massive vector bosons.

We are now going to check what are the actual possibilities of breaking spontaneously the
axial symmetry. Before doing that let us just remark that the spontaneous symmetry breaking
(SSB) will be in any case a non-perturbative effect: If a Lagrangian (in particular its interaction
part) possesses some symmetry, then the symmetry is preserved at any order of the perturbative
expansion.

2.2 SSB by a one-point function

First of all, let us see how the task of spontaneous breaking of the axial symmetry and the associ-
ated fermion mass generation is solved traditionally: We review here basically the O(2) ∼ U(1)
linear σ-model [58,4] (whose generalizations lie in the very heart of the MCS). The key assump-
tion is that scalar “mass” squared (or more precisely, the scalar mass parameter in the potential
(I.2.2)) is negative: M2 < 0 (but still with λ > 0, in order to have the Hamiltonian bounded from
below). In consequence the classical scalar field configuration which minimizes the Hamiltonian,
the “vacuum”, is not φ0 = 0, but rather11

φ0 =
v√
2
, (I.2.7)

with

v ≡
√
−2M2

λ
. (I.2.8)

The quantization process basically consists of quantizing the field fluctuation around the vac-
uum – the classical minimum φ0. Thus, in our case, the true dynamical variable to be quantized

11We deliberately choose φ0 to be real.
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is not φ, but rather its shifted value φ − φ0. In the language of the quantum field theory we say
that the scalar field φ develops the non-vanishing vacuum expectation value (VEV)

〈φ〉 ≡ 〈0|φ(x)|0〉 =
v√
2
. (I.2.9)

Now we can conveniently rewrite the original complex field φ as

φ =
1√
2

(
v + σ + iπ

)
, (I.2.10)

where σ and π are real fields, whose VEVs are by construction vanishing. Upon plugging this
decomposition into the Lagrangian (I.2.1) and using the definition (I.2.8) of v we find that σ
(whose analogue in the SM is known as the Higgs boson) has the non-vanishing mass

Mσ =
√
−2M2 (I.2.11a)

=
√
λv , (I.2.11b)

while π is massless,

Mπ = 0 . (I.2.12)

The Green’s one-point function (I.2.9) is obviously non-invariant under the U(1)A. Thus,
the axial symmetry is spontaneously broken (with the corresponding NG boson being just the
massless pseudo-scalar field π) and the fermion’s masslessness is no longer protected. Indeed,
upon performing the shift φ→ φ− φ0 in the Yukawa Lagrangian (I.2.3) the fermion mass terms
(I.2.6) emerge, with the mass12 m given by

m = − v√
2
y . (I.2.13)

Finally, note that the SSB of the axial symmetry is really a non-perturbative effect, as advertised
above, since the expression (I.2.8) for v is non-analytical at λ = 0.

2.3 SSB by a two-point function

In the previous section the axial symmetry was broken by formation of the scalar’s one-point
function 〈φ〉, (I.2.9). It is natural to ask whether it is possible to break the axial symmetry also
by some other Green’s function, non-consistent with the axial symmetry. Apart from the one-
point function, the next-to-simplest possibility is a two-point function – the propagator. The
ordinary two-point function of the type 〈φφ†〉 (or, equivalently, 〈φ†φ〉), however, does not serve
well for this purpose, since it is invariant under the axial symmetry. However, there is another
possibility: the function 〈φφ〉 (or 〈φ†φ†〉), which clearly violates the axial symmetry.

A detailed and more formal discussion of the very mechanism of generating such “anoma-
lous” two-point functions is going to be the topic of the next chapter. Now we choose to discuss
these issues at more intuitive and heuristic level, focusing mainly on the consequences for the
particle spectrum.

12What we inconsistently call here the fermion “mass”, should be more appropriately called merely a fermion “mass
parameter”. The actual mass, i.e., the pole of the fermion propagator, is of course given by |m|.
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Let us begin with the scalar itself; the following reasoning is adopted from [53]. For the sake
of present considerations, we will consider the one-particle irreducible (1PI) part of 〈φφ〉 to be
momentum-independent; later on when formalizing our considerations we will take into account
a general momentum dependence. Thus, let us for the moment assume that the 1PI parts of the
symmetry-breaking propagators of the type 〈φφ〉, 〈φ†φ†〉 are somehow generated by means of the
dynamics of the theory. Namely, we assume the 1PI scalar propagators (and the corresponding
Feynman rules) to have form

〈φφ〉1PI =
φ φ

= −iµ2 , (I.2.14a)

〈φ†φ†〉1PI =
φ φ

= −iµ2∗ , (I.2.14b)

with µ being a complex constant with the dimension of mass. The corresponding full propagators
are

〈φφ〉 =
φ φ

= i
µ2

(p2 −M2)2 − |µ2|2
, (I.2.15a)

〈φ†φ†〉 =
φ φ

= i
µ2∗

(p2 −M2)2 − |µ2|2
. (I.2.15b)

In derivation of the full propagators (I.2.15) we assumed that the 1PI corrections to the “normal”
propagators 〈φφ†〉, 〈φ†φ〉 vanished:

〈φφ†〉1PI =
φ φ

= 0 , (I.2.16a)

〈φ†φ〉1PI =
φ φ

= 0 . (I.2.16b)

The assumption about the existence of the constant 1PI propagators 〈φφ〉1PI, 〈φ†φ†〉1PI, (I.2.14),
is equivalent to the assumption about the existence of the effective scalar quadratic terms of the
type φφ, φ†φ† in the Lagrangian:

Lscalar,free = (∂µφ)†(∂µφ)−M2φ†φ− 1
2
µ∗2φφ− 1

2
µ2φ†φ† . (I.2.17)

Decomposing now the complex field φ to its real and imaginary part as

φ =
1√
2

(
φ1 + iφ2

)
(I.2.18)
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and appropriately rotating the real fields φ1,2, one can diagonalize the free scalar Lagrangian
(I.2.17) and one finds the spectrum to be

M2
1,2 = M2 ± |µ|2 . (I.2.19)

The corresponding mass eigenstates ϕ1,2 are real scalar fields and can be expressed as certain
linear combinations of the original φ1,2 fields:(

φ1

φ2

)
=

(
cos θ − sin θ
sin θ cos θ

)(
ϕ1

ϕ2

)
, (I.2.20)

or, more compactly, as [53]

φ =
1√
2
eiθ
(
ϕ1 + iϕ2

)
, (I.2.21)

where the mixing angle θ is given by

tan 2θ =
Imµ2

Reµ2
. (I.2.22)

Thus, in a nutshell, we conclude that the assumption about the existence of non-vanishing scalar
two-point functions of the type 〈φφ〉, 〈φ†φ†〉 inevitably leads to splitting of the complex scalar φ
with the mass M2 into two real scalars ϕ1, ϕ2 with different masses M2

1 and M2
2 , respectively.

Let us now turn our attention to the fermion. Once the axial symmetry is broken by formation
of the scalar propagators 〈φφ〉, 〈φ†φ†〉, nothing protects the fermion from acquiring a mass.
Recall that the potential fermion mass terms (I.2.6) read

Lfermion,mass = −mψ̄LψR −m∗ψ̄RψL . (I.2.23)

Such effective mass terms are actually equivalent to the formation of 1PI parts of the fermion
propagators, connecting the left-handed and right-handed chiral fields:

〈ψLψ̄R〉1PI = −imPR , (I.2.24a)
〈ψRψ̄L〉1PI = −im∗PL . (I.2.24b)

However, instead of seeking directly for the fermion mass m itself, let us consider its generaliza-
tion: The momentum-dependent complex self-energy Σ(p2). The fermion 1PI propagators are
therefore assumed to have form

〈ψLψ̄R〉1PI =
ψL ψR

= −i Σ(p2)PR , (I.2.25a)

〈ψRψ̄L〉1PI =
ψR ψL

= −i Σ∗(p2)PL (I.2.25b)
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and the corresponding full propagators read

〈ψLψ̄R〉 =
ψL ψR

= i
Σ(p2)

p2 − |Σ(p2)|2
PL , (I.2.26a)

〈ψRψ̄L〉 =
ψR ψL

= i
Σ∗(p2)

p2 − |Σ(p2)|2
PR . (I.2.26b)

Analogously to the scalar case, we again assumed that there are no 1PI corrections to the fermion
propagators 〈ψLψ̄L〉, 〈ψRψ̄R〉 (i.e., proportional to /p, see appendix D):

〈ψLψ̄L〉1PI =
ψL ψL

= 0 , (I.2.27a)

〈ψRψ̄R〉1PI =
ψR ψR

= 0 . (I.2.27b)

Finally, it is also useful to see how the 1PI and full propagator of the fermion field ψ = ψL+ψR
look like:

〈ψψ̄〉1PI =
ψ ψ

= −i
[
Σ∗(p2)PL + Σ(p2)PR

]
, (I.2.28a)

〈ψψ̄〉 =
ψ ψ

= i
/p+ Σ(p2)PL + Σ∗(p2)PR

p2 − |Σ(p2)|2
. (I.2.28b)

Now we can see that with the self-energy Σ(p2) the fermion mass squared m2 can be easily
revealed as the pole of the propagator. That is, as the solution of the equation

m2 = |Σ(m2)|2 . (I.2.29)

Now the question is how the fermion self-energy Σ(p2) can be actually generated. The key
rôle is here played by the symmetry-breaking scalar propagators 〈φφ〉, 〈φ†φ†〉. For instance,
the 1PI propagator 〈ψLψ̄R〉1PI can be calculated via the loop diagram containing the full scalar
propagator 〈φφ〉, as depicted in Fig. I.2.1. Using the explicit formulæ (I.2.15), (I.2.25), (I.2.26)
for the propagators, the diagram in Fig. I.2.1 can be translated as

− iΣ(p2) = y2

∫
d4k

(2π)4
Σ∗(k2)

k2 − |Σ(k2)|2
µ2

[(k − p)2 −M2]2 − |µ2|2
. (I.2.30)

A similar diagram as that in Fig. I.2.1 can be drawn also for 〈ψRψ̄L〉1PI, just instead of 〈φφ〉
there would be rather 〈φ†φ†〉. Therefore only the substitution Σ↔ Σ∗ and µ→ µ∗ would have
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= y y
ψL ψR ψL ψR

ψLψR

φφ

Figure I.2.1. Diagrammatical representation of the equation (I.2.30). Cf. the Feynman rules (I.2.15),
(I.2.25), (I.2.26).

to be done in Eq. (I.2.30), together with y → y∗, as this time the second term of the Yukawa
interactions (I.2.3) would come into play.

The equation (I.2.30) is an integral equation for the unknown complex function Σ(p2). The
equation is non-linear and homogenous: It obviously possesses the trivial solution Σ(p2) ≡ 0.
We are of course seeking for a non-trivial solution.

Notice the convergence properties of the integral in (I.2.30): It converges even for a con-
stant fermion self-energy, since the kernel (the scalar propagator 〈φφ〉, (I.2.15a)) asymptotically
behaves like 1/k4 and the whole integrand thus as 1/k6. The physical reason for this is the fol-
lowing: The scalar propagator 〈φφ〉 is in fact a difference of the propagators of the scalar mass
eigenstates ϕ1, ϕ2, introduced in (I.2.20):

〈φφ〉 =
1
2
e2iθ
(
〈ϕ1ϕ1〉 − 〈ϕ2ϕ2〉

)
, (I.2.31)

as can be shown using (I.2.21) (note also that, by assumption, 〈ϕ1ϕ2〉 = 〈ϕ2ϕ1〉 = 0). Indeed,
taking into account the relations (I.2.19) and (I.2.22), the explicit form (I.2.15a) of 〈φφ〉 in terms
of µ can be rewritten as

µ2

(p2 −M2)2 − |µ2|2
=

1
2
e2iθ

(
1

p2 −M2
1

− 1
p2 −M2

2

)
. (I.2.32)

which is nothing else than (I.2.31). These convergence properties of the integral suggest that
the resulting non-trivial solution Σ(p2), if it exists, should be UV-finite. In fact, we can estimate
from the behavior of the kernel in (I.2.30) for large exterior momentum that Σ(p2) should behave
like 1/p4 for large p2.

Now that we have generated the fermion propagators 〈ψLψ̄R〉, 〈ψRψ̄L〉, we can turn back
to the question how the scalar propagators 〈φφ〉, 〈φ†φ†〉, whose existence was only assumed so
far, can be generated. One could ask whether it is possible to draw Feynman diagrams for the
scalar 1PI functions 〈φφ〉1PI, 〈φ†φ†〉1PI in a similar way, as we have just done for the fermion
propagators. Indeed, it turns out that with the fermion chirality-changing functions 〈ψLψ̄R〉,
〈ψRψ̄L〉 at disposal such diagrams can really be drawn. An example of such a diagram is depicted
in Fig. I.2.2 for the Green’s function 〈φφ〉1PI.

Before proceeding further it should be noted that the very existence of diagrams such as that
in Fig. I.2.2 forces us to revise our assumption that the 1PI functions 〈φφ〉1PI, 〈φ†φ†〉1PI are
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y∗ y∗=

ψL

ψR

φ φ φ φ

ψR

ψL

Figure I.2.2. Diagrammatical representation of the equation (I.2.36).

momentum-independent (i.e., proportional to complex constants µ2, µ2∗, respectively). Instead,
let us generalize the Eqs. (I.2.14) in a similar manner as we did before for the fermion 1PI
propagators: Let us promote the constants µ2, µ2∗ to complex functions, i.e., to the momentum-
dependent self-energies Π(p2), Π∗(p2). That is, we assume that Eqs. (I.2.14) now modify as

〈φφ〉1PI = −i Π(p2) , (I.2.33a)
〈φ†φ†〉1PI = −i Π∗(p2) (I.2.33b)

and the corresponding full propagators are given by

〈φφ〉 = i
Π(p2)

(p2 −M2)2 − |Π(p2)|2
, (I.2.34a)

〈φ†φ†〉 = i
Π∗(p2)

(p2 −M2)2 − |Π(p2)|2
, (I.2.34b)

cf. (I.2.15). (We do not present the Feynman rules again, as they are of course the same as those
in (I.2.14), (I.2.15).) The scalar spectrum is now given by the equation

M2
1,2 = M2 ± |Π(M2

1,2)| , (I.2.35)

which is just a generalization of (I.2.19).
Now we can write down the equation depicted diagrammatically in Fig. I.2.2:

− i Π(p2) = −2y∗2
∫

d4k

(2π)4
Σ(k2)

k2 − |Σ(k2)|2
Σ((k − p)2)

(k − p)2 − |Σ((k − p)2)|2
. (I.2.36)

The minus sign on the right-hand side is for the fermion loop, while the factor of 2 comes from
Tr[PLPL] = 2 (there is no combinatorial factor). Note that since the fermion self-energy Σ(p2)
presumably behaves like 1/p4 at large p2, the integral in (I.2.36) does converge. In fact, it does
converge as long as the Σ(p2) decreases, no matter how slowly (the limit case is Σ(p2) = const.,
in which case the integral (I.2.36) diverges logarithmically). Consequently, since Σ(p2) is a
decreasing function, the equation (I.2.36) suggests that Π(p2) is a decreasing function too.

Having upgraded the constant scalar propagators 〈φφ〉1PI, 〈φ†φ†〉1PI, (I.2.14), to momentum-
dependent ones (I.2.33), we should also accordingly revise the Eq. (I.2.30) for the fermion self-
energy. Not surprisingly, the result is

− i Σ(p2) = y2

∫
d4k

(2π)4
Σ∗(k2)

k2 − |Σ(k2)|2
Π((k − p)2)

[(k − p)2 −M2]2 − |Π((k − p)2)|2
. (I.2.37)
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Notice that since Π(p2) is assumed to be a decreasing function, the convergence behavior of the
integral (I.2.30) has been actually improved.

2.4 Summary

Let us recapitulate the results of this chapter. While in the case M2 < 0 the axial symmetry
is broken down by the dynamics of the scalar itself, through its VEV (i.e., constant one-point
function 〈φ〉), we have shown that in the case M2 > 0 the axial symmetry can be presumably
broken by the common (i.e., Yukawa) dynamics of both the scalar and the fermion. The SSB
of the axial symmetry is driven by the two-point functions of the type 〈φφ〉 and 〈ψLψ̄R〉, or
more precisely, by their 1PI parts Π and Σ. They are functions of momentum squared and are
tight together by the system of equations (I.2.36) and (I.2.37), which we state here again for the
reader’s convenience:13

− i Π(p2) = −2y∗2
∫

d4k

(2π)4
Σ(k2)

k2 − |Σ(k2)|2
Σ((k − p)2)

(k − p)2 − |Σ((k − p)2)|2
, (I.2.38a)

−i Σ(p2) = y2

∫
d4k

(2π)4
Σ∗(k2)

k2 − |Σ(k2)|2
Π((k − p)2)

[(k − p)2 −M2]2 − |Π((k − p)2)|2
. (I.2.38b)

In order to have SSB, these equations must posses some non-trivial solution (apart from the
obvious trivial solution Π(p2) = Σ(p2) ≡ 0, corresponding to no SSB).

The equations (I.2.38) are subset of the Schwinger–Dyson (SD) equations [59, 60, 61]. They
can be understood as a formal summation of all orders of the perturbation theory, therefore they
themselves are non-perturbative. This is in accordance with our previous claim that any SSB
must be a non-perturbative effect.

The SD equations constitute in principle infinite “tower” of coupled integral equations for
all Green’s functions of the theory, not only the two-point functions. For practical calculation
one usually has to truncate this “tower” at some level. We truncated it at the level of three-point
Green’s functions, which we approximate by the bare ones. Although we will in the following
chapters derive the SD equations in a more formal way, we will still use the same truncation
scheme, i.e., we will always neglect the three- and more-point functions in non-perturbative
calculations. (Nevertheless, there will be some perturbative calculations of the three-point func-
tions.)

Since the scalar mass M is the only mass scale in the Lagrangian, the fermion mass m, as
calculated from the Eq. (I.2.29), will necessarily have the form

m = M f(y) . (I.2.39)

Here f(y) must be a function only of the Yukawa coupling constant y, since it is the only di-
mensionless parameter of the SD equations (I.2.38), whose solution Σ is. This function is non-
perturbative, i.e., non-analytic in y. Moreover, inspired by the situation in the Nambu–Jona-
Lasinio (NJL) model [62, 63], where schematically f(y) ∼ exp(−1/y), one hopes that the a
small change in y (within the same order of magnitude) might produce a much larger (by several
orders of magnitude) change in f(y). Put another way, different Yukawa coupling constants, yet

13Recall that y = |y|eiα can be considered real, without loss of generality. The elimination of the eiα by redefinition
φ→ eiαφ, mentioned above, corresponds to redefinition Π → e2iαΠ in equations (I.2.38).
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of the same order of magnitude, can potentially produce a large hierarchy in the fermion spec-
trum. This is to be compared with the situation in case of condensing scalar, Sec. 2.2, where the
fermion mass m depends linearly on y:

m = −
√
−M2

λ
y . (I.2.40)
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3 Formal developments

While the previous chapter served as a rather intuitive and informal introduction, now we are
going to treat the same subject more rigorously and in more detail. In particular, we discuss here
in detail which parts of the scalar and fermion self-energies are actually needed for the sake of
demonstration of spontaneous breaking of the axial symmetry and we show how to arrive more
decently at the Schwinger–Dyson equations, derived in the previous chapter in a rather clumsy
way. Finally, we also give some numeric evidence of viability of the presented scheme.

3.1 The model

3.1.1 Lagrangian

We consider a complex scalar field φ and two species of massless fermions, ψ1 and ψ2, with the
Lagrangian

L = ψ̄1i/∂ψ1 + ψ̄2i/∂ψ2 + (∂µφ)†(∂µφ)−M2φ†φ+ LYukawa . (I.3.1)

The Yukawa interactions are again not the most general ones:

LYukawa = y1ψ̄1Lψ1Rφ+ y∗1ψ̄1Rψ1Lφ
†

+ y2ψ̄2Rψ2Lφ+ y∗2ψ̄2Lψ2Rφ
† . (I.3.2)

In particular, the terms with interchanged φ↔ φ†,

L̃Yukawa = ỹ1ψ̄1Lψ1Rφ
† + ỹ∗1ψ̄1Rψ1Lφ

+ ỹ2ψ̄2Rψ2Lφ
† + ỹ∗2ψ̄2Lψ2Rφ , (I.3.3)

are absent. On top of it, also the Yukawa interaction terms mixing both fermion species (i.e., the
terms proportional to, e.g., ψ̄1Lψ2R) are missing.

The Yukawa coupling constants y1, y2 can be again without loss of generality considered
real, since the phase can be eliminated by a redefinition of the corresponding fermion fields (e.g.,
by phase transformations of ψ1R and ψ2R). Nevertheless, we keep them deliberately complex
for similar reasons as in the previous chapter.

Notice that we do not consider in the Lagrangian (I.3.1) the scalar self-interaction term

Lselfint. = −1
2
λ(φ†φ)2 . (I.3.4)

This is due to the lesson learned in previous chapter that within the present scheme of breaking
the symmetry solely by the Yukawa dynamics, through formation of appropriate fermion and
scalar two-point functions, the pure scalar dynamics of the type (I.3.4) is dispensable, in contrast
to the breaking of the symmetry by scalar VEV, discussed in Sec. 2.2. Thus, from now on we
will systematically neglect the scalar self-interactions of the type (I.3.4) in the rest of this text. Of
course, in more phenomenologically oriented treatment the scalar self-interactions would have
to be included, as they are not protected by any symmetry and they would be generated anyway
by means of radiative corrections.
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3.1.2 Symmetries

Let us investigate the symmetries of the Lagrangian. First, we observe that the both fermion num-
bers are separately conserved, which corresponds to the vectorial symmetry U(1)V1 × U(1)V2 .
Just for the sake of later references let us write the transformation of ψi under U(1)Vj as14

U(1)Vj : ψi −→ [ψi]
′ = eiθVj ti,Vj ψi , (I.3.5)

where θVj are the parameters of the transformation and the generators ti,Vj are given by

ti,Vj =

{
QVi if i = j ,

0 if i 6= j ,
(I.3.6)

where QVi are some non-vanishing real numbers. (Needless to say that φ transforms trivially
under U(1)Vi , i.e., tφ,Vi = 0.) The fermion numbers are conserved separately for both fermion
species due to the specific form of the Yukawa interactions, namely due to the lack of the mixing
terms; otherwise there would be only one U(1)V symmetry, corresponding to the global fermion
number conservation of both fermion species.

Apart from the vectorial symmetry, there is also axial symmetry, which is going to play a
more important rôle in our considerations. In contrast to the case of vectorial symmetries, this
time, instead of two independent axial symmetries U(1)A1 ×U(1)A2 (which would be present in
absence of the Yukawa interactions), there is rather a single axial symmetry U(1)A. It acts on the
fermions as

U(1)A : ψi −→ [ψi]
′ = eiθAti,A ψi (I.3.7a)

and on the scalar as

U(1)A : φ −→ [φ]′ = eiθAtφ,A φ . (I.3.7b)

The fermion U(1)A generators ti,A are given by

ti,A = Qi,Aγ5 , (I.3.8)

with the axial charges Q1,A and Q2,A (being of course non-vanishing real numbers) constrained
by

Q1,A +Q2,A = 0 . (I.3.9)

The scalar U(1)A generator tφ,A then reads

tφ,A = −2Q1,A (I.3.10a)
= +2Q2,A . (I.3.10b)

Note that the axial symmetry U(1)A with the action (I.3.7) in fact forbids the Yukawa interactions
L̃Yukawa, (I.3.3).

Due to the existence of the axial symmetry, one might concern whether this symmetry is
not anomalous. At the moment this question is actually not too urgent, as the axial symmetry

14No sum over the fermion specie index j is assumed, here, as well as in the rest of the text.
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is global. However, later on in chapter 10 (more precisely, in Sec. 10.2) we will gauge it and
consequently it will become obligatory to remove the axial anomaly in order to have a consistent
gauge quantum field theory. Nevertheless, the theory is in fact anomaly free already at this
moment. This is thanks to the introduction of the two fermion species ψ1 and ψ2 with opposite
axial charges, see Eq. (I.3.9).15 The condition (I.3.9), primarily necessary for the theory to be
invariant under U(1)A, is precisely the condition for cancelation of the axial anomaly. This is
ultimately the reason why we have introduced two fermion species instead of only one and why
we have chosen the Yukawa interactions to have the special form (I.3.2).

3.1.3 Nambu–Gorkov formalism

As noted in the previous chapter, the axial symmetry has to be (spontaneously) broken in order
to allow for the generation of the fermion masses. We assume that this symmetry breakdown
will be driven by formation of the scalar propagators of the type 〈φφ〉 and 〈φ†φ†〉. Thus, it
turns out to be convenient to reparameterize the theory in terms of new degree of freedom: The
Nambu–Gorkov doublet Φ, defined as16

Φ ≡
(

φ
φ†

)
(I.3.11)

and introduced originally for fermions in Refs. [3, 64] in the context of the theory of supercon-
ductivity. The point is that now the propagator 〈ΦΦ†〉 contains the two symmetry-breaking prop-
agators 〈φφ〉, 〈φ†φ†〉, together with the two symmetry-conserving propagators 〈φφ†〉, 〈φ†φ〉, and
allows this way to treat them all on the same footing:

〈ΦΦ†〉 =
(
〈φφ†〉 〈φφ〉
〈φ†φ†〉 〈φ†φ〉

)
. (I.3.12)

The free, full and 1PI scalar propagators of the form (I.3.12) will be discussed in more detail in
Sec. 3.2.1. Now let us note the key property of the Nambu–Gorkov field Φ: It is real in the sense
that its charge conjugate (i.e., basically the Hermitian conjugate) is proportional to itself:

Φ = σ1 Φ†T , (I.3.13)

where the Pauli matrix σ1 acts in the two-dimensional space of the Nambu–Gorkov doublet
(I.3.11).

Let us rewrite the action of U(1)A on the scalar field from the basis φ, (I.3.7b), to the Nambu–
Gorkov basis Φ:

U(1)A : Φ −→ [Φ]′ = eiθAtΦ,A Φ , (I.3.14)

where the generator tΦ,A is expressed in terms of tφ,A, (I.3.10), as

tΦ,A =
(
tφ,A 0
0 −tφ,A

)
. (I.3.15)

15In this respect the two fermion species ψ1 and ψ2 can be regarded as analogues of the leptons and quarks, respec-
tively.

16This is special case of more general definition (E.1.3), discussed in detail in appendix E.
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We now rewrite the theory in terms of the Nambu–Gorkov field Φ. The free scalar part of the
Lagrangian (I.3.1),

Lscalar = (∂µφ)†(∂µφ)−M2φ†φ , (I.3.16a)

is easily rewritten in terms of Φ as

Lscalar =
1
2
(∂µΦ)†(∂µΦ)− 1

2
M2Φ†Φ . (I.3.16b)

The Yukawa Lagrangian (I.3.2) can be written compactly in terms of Φ as

LYukawa =
∑
i=1,2

ψ̄i Ȳi ψi Φ , (I.3.17a)

or equivalently as

LYukawa =
∑
i=1,2

Φ† ψ̄i Yi ψi . (I.3.17b)

The equivalence of the two apparently different expressions (I.3.17a) and (I.3.17b) is just a con-
sequence of the reality of the field Φ. The coupling constants Yi are doublets operating in the
space of the Nambu–Gorkov field Φ and are defined as

Y1 ≡
(
y∗1PL
y1PR

)
, Y2 ≡

(
y∗2PR
y2PL

)
. (I.3.18)

The conjugate coupling constants Ȳi are defined in accordance with (vii), i.e., as

Ȳi ≡ γ0Y
†
i γ0 , (I.3.19)

so that we have explicitly

Ȳ1 =
(
y1PR, y

∗
1PL

)
, Ȳ2 =

(
y2PL, y

∗
2PR

)
. (I.3.20)

3.2 Propagators

In this section we will first introduce the notation for the scalar and fermion propagators, then we
will state the form of the propagators that we will be looking for in the next section in the quest
for demonstrating the SSB and finally we will say something about what kind of spectrum is to
be expected.

3.2.1 Scalar propagators

Let us begin with the scalar. We denote the full scalar propagator (in the Nambu–Gorkov basis
Φ) as17

iGΦ = 〈ΦΦ†〉 =
Φ Φ

. (I.3.21)

17From now on we will usually not explicitly indicate the momentum arguments at propagators and self-energies,
unless they will not be obvious from the context.
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Notice that there are no arrows on the scalar line as a consequence of the reality of the field Φ.
The free propagator

iDΦ = 〈ΦΦ†〉0 , (I.3.22)

determined by the free scalar Lagrangian (I.3.16), is in the momentum representation given by

DΦ =


1

p2 −M2
0

0
1

p2 −M2

 . (I.3.23)

The scalar self-energy Π, defined as

− iΠ = 〈ΦΦ†〉1PI =
Φ Φ

, (I.3.24)

is now given in terms of the bare and full propagators by

Π = D−1
Φ −G−1

Φ . (I.3.25)

The meaning of this expression is that it actually corresponds to the geometric series

GΦ = DΦ +DΦ ΠDΦ +DΦ ΠDΦ ΠDΦ + . . . (I.3.26a)

=
(
D−1

Φ −Π
)−1

. (I.3.26b)

In other words, Π is indeed the 1PI part of the full propagator GΦ.
The reality condition (I.3.13) of Φ has important impacts on the form of the propagators. It

induces a non-trivial symmetry of the scalar propagator GΦ,

GΦ = σ1G
T
Φ σ1 . (I.3.27)

This condition must be satisfied also by the free propagator DΦ (and, indeed, it is satisfied, see
explicit form (I.3.23) of DΦ), as it is just a special case of GΦ. Thus, the self-energy Π must
satisfy the analogous condition too:

Π = σ1 ΠT σ1 , (I.3.28)

as can be inferred from the expression (I.3.25).

3.2.2 Fermion propagators

Similarly in the fermion sector, the full propagators of the fermion fields are18

iGψi = 〈ψiψ̄i〉 =
ψi ψi

. (I.3.29)

18We assume here implicitly that the fermion numbers U(1)V1 and U(1)V2 are separately conserved even once the
dynamics is taken into account. Otherwise we would have to consider propagator of the field ψ ≡

`ψ1
ψ2

´
with non-

vanishing off-diagonal elements, breaking U(1)V1×U(1)V2 spontaneously down to common fermion number symmetry
U(1)V.
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Note that since ψi = ψiL + ψiR, the propagators 〈ψiψ̄i〉 contain all the particular propagators
〈ψiLψ̄iL〉, 〈ψiRψ̄iR〉, 〈ψiLψ̄iR〉, 〈ψiRψ̄iL〉, which have been treated in the previous chapter sepa-
rately. The Lagrangian (I.3.1) contains no fermion mass terms, consequently the free propagators

iSi = 〈ψiψ̄i〉0 (I.3.30)

are in momentum space given simply by

S−1
i = /p . (I.3.31)

The fermion self-energies Σi,

− iΣi = 〈ψiψ̄i〉1PI =
ψi ψi

, (I.3.32)

are now given by

Σi = S−1
i −G

−1
ψi
, (I.3.33)

which again correspond to the geometric series

Gψi = Si + SiΣi Si + SiΣi SiΣi Si + . . . (I.3.34a)

=
(
S−1
i −Σi

)−1
, (I.3.34b)

so that Σi are indeed nothing else than the 1PI parts of the full propagators, as indicated in
(I.3.32).

3.2.3 Ansätze for the self-energies

The self-energies Σi and Π, as the agents of the SSB of the axial symmetry, will be subject of
our searching in the next section. In fact, our aim will be merely to demonstrate the possibility
the SSB itself, we will not be interested in, e.g., the symmetry-preserving results. Therefore
it is unnecessary to treat the self-energies in the full generality, it is sufficient to focus only on
their symmetry-breaking parts. In other words, is useful to consider a suitable Ansatz for the
self-energies.

The first step in constraining the otherwise in principle (almost) completely arbitrary self-
energies is to impose the Hermiticity conditions

Σi = Σ̄i , (I.3.35a)
Π = Π† (I.3.35b)

(where Σ̄i ≡ γ0 Σ†
i γ0, cf. (vii)). These conditions have no relation to the pattern of the SSB,

in fact they are merely of a technical character. They will serve us for two purposes: First, they
will reduce the number of unconstrained parts of the self-energies (i.e., reduce the number of
independent SD equations) and second, they will eventually ensure that the resulting fermion
and scalar spectrum (more precisely, the masses squared) will be real. In order to understand
better the Hermiticity conditions (I.3.35), it is also useful to realize that the same conditions
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would hold if the self-energies were (momentum-independent) mass parameters in a Hermitian
Lagrangian.

The Hermiticity conditions (I.3.35), together with the scalar symmetry condition (I.3.28),
lead to the self-energies of the specific form

Σi = /p
(
AL PL +AR PL

)
+
(
Σ∗PL + ΣPR

)
, (I.3.36a)

Π =
(

ΠN Π
Π∗ ΠN

)
, (I.3.36b)

whereAL,AR, ΠN and Σ, Π are respectively real and complex, but otherwise arbitrary functions
of p2.

In order to further meaningfully constrain the self-energies, it is worth considering their re-
lation to the axial symmetry U(1)A, which is assumed to be broken by them. In particular, it is
important to know that the non-invariance of the self-energies under U(1)A is measured by the
quantities

Σi ti,A − t̄i,A Σi = JΣi, ti,AK , (I.3.37a)
Π tΦ,A − tΦ,A Π = [Π, tΦ,A] (I.3.37b)

(cf. definition (viii)). This can be seen in two ways. First, more formally, one can directly study
the transformation behavior of the self-energies under U(1)A, induced by the transformation
rules (I.3.7a) and (I.3.14) of ψi and Φ, respectively. The corresponding self-energies Σi and Π
then transform as

U(1)A : Σi −→ [Σi]
′ = eiθA t̄i,A Σi e−iθAti,A (I.3.38a)

= Σi − iθA
(
Σi ti,A − t̄i,A Σi

)
+O(θ2A) (I.3.38b)

and

U(1)A : Π −→ [Π]′ = eiθAtφ,A Π e−iθAtφ,A (I.3.39a)
= Π− iθA

(
Π tΦ,A − tΦ,A Π

)
+O(θ2A) , (I.3.39b)

respectively. We see that the non-invariance of the self-energies under U(1)A is indeed propor-
tional to the corresponding quantities (I.3.37). Another way of seeing it, less formal but perhaps
more illuminating, is to imagine that the self-energies are momentum-independent (except for
the /p in Σi) and thus being interpretable as mass parameters of some effective Lagrangian:

Leff ≡ −
∑
i=1,2

ψ̄iΣi ψi −
1
2
Φ†ΠΦ . (I.3.40)

(Accordingly, this effective Lagrangian is basically the mass Lagrangian for the fermions and
scalar and it also contains corrections to the kinetic terms for the fermions, due to above men-
tioned /p being substituted by −i/∂.) Upon performing the U(1)A transformations (I.3.7a) and
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(I.3.14), the Lagrangian (I.3.40) transforms as

U(1)A : Leff −→ [Leff ]′ = −
∑
i=1,2

ψ̄i e−iθA t̄i,A Σi eiθAti,A ψi

−1
2
Φ† e−iθAtφ,A Π eiθAtφ,A Φ (I.3.41a)

= Leff − iθA
∑
i=1,2

ψ̄i
(
Σi ti,A − t̄i,A Σi

)
ψi

− 1
2
iθAΦ†

(
Π tΦ,A − tΦ,A Π

)
Φ +O(θ2A) .

(I.3.41b)

Again, the change of the Lagrangian (I.3.40), i.e., the model’s non-invariance under the ax-
ial symmetry U(1)A, driven by the self-energies Σi, Π, is again proportional to the quantities
(I.3.37).

We can now check explicitly how the self-energies of the specific form (I.3.36) break the
axial symmetry U(1)A. Short calculation reveals the symmetry-breaking quantities (I.3.37) to be

JΣi, ti,AK = 2Qi,A
(
ΣPR − Σ∗PL

)
, (I.3.42a)

[Π, tΦ,A] = −4Q1,A

(
0 −Π

Π∗ 0

)
= +4Q2,A

(
0 −Π

Π∗ 0

)
. (I.3.42b)

We see that in equations (I.3.42) some form-factors from the self-energies (I.3.36) are projected
out. Namely, the form-factors AL, AR and ΠN are missing, which means that they do not break
the symmetry. However, our aim here is to focus on the very mechanism of the SSB, or more
precisely, to demonstrate that the SSB can happen. For this purpose the symmetry-preserving
parts of the self-energies, while important for a more phenomenologically oriented analysis,
are not essential. We will therefore systematically neglect them and rather consider only the
symmetry-breaking part of self-energies (I.3.36), i.e., the parts Σ and Π. The Ansatz for the
self-energies will be therefore considered to be

Σi = Σ∗PL + ΣPR , (I.3.43a)

Π =
(

0 Π
Π∗ 0

)
. (I.3.43b)

Notice that this Ansatz is in accordance with the Ansatz considered in the previous chapter. The
corresponding full propagators follow immediately:

Gψi =
/p+ Σ†

i

p2 − |Σi|2
, (I.3.44a)

GΦ =
1

(p2 −M2)2 − |Π|2

(
p2 −M2 Π

Π∗ p2 −M2

)
. (I.3.44b)

This of course corresponds to the same equations for the spectrum as in the previous chapter:

m2
i = |Σi(m2

i )|2 , (I.3.45a)
M2

1,2 = M2 ± |Π(M2
1,2)| , (I.3.45b)
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Figure I.3.1. A tadpole diagram, contributing to scalar VEV.

cf. Eqs. (I.2.29), (I.2.35).
Let us finally remark that we could analyze in the same way also the vectorial symmetries

U(1)Vi . It is evident from the form (I.3.6) of the corresponding generators ti,Vj , which are just
pure real numbers without any γ5, that this time we would have

JΣi, ti,Vj K = ti,Vj (Σi −Σi) = 0 (I.3.46)

for any Σi. Therefore the vectorial symmetries cannot be broken by the fermion self-energies
〈ψiψ̄i〉 ∼ Σi (not to mention the self-energy of the scalar, which does not couple to the vectorial
symmetries at all), which is after all expected. The only possibility to break the vectorial sym-
metries would be to consider the fermion self-energies also of the type 〈ψc

i ψ̄i〉, 〈ψiψ̄c
i 〉, where

ψc
i denotes the charge conjugate19 of ψi. This would lead to the generation of the Majorana

self-energies. We will actually explore this possibility later on in the context of neutrinos.

3.3 Dynamics

Our general strategy in demonstrating the spontaneous breakdown of the axial U(1)A symme-
try will be to search for the symmetry-breaking parts of the propagators, i.e., the parts Σi and
Π of the self-energies Σi and Π, respectively, as shown in the previous section. We have al-
ready mentioned the important observation that at any finite order of perturbative expansion the
U(1)A symmetry remains preserved and the self-energies Σi and Π vanish. The SSB is there-
fore necessarily a non-perturbative effect and to treat it one has to employ some non-perturbative
technique. The technique used here are the Schwinger–Dyson (SD) equations, which represent
a formal summation of all orders of perturbative expansion and as such they provide the desired
non-perturbative treatment.

At this point a remark concerning the scalar VEV and the associated issue of tadpole terms
in the SD equations is in order. Recall that we neglected the scalar self-coupling (I.3.4). This
was done on the basis of argument that the scalar self-coupling is not essential for the proposed
mechanism of SSB, as it is not driven by the scalar VEV, formed solely by scalar dynamics,
but rather by the scalar and fermion propagators, formed by the Yukawa dynamics. However,
the Yukawa dynamics can give rise to the scalar VEV too, as shown schematically in Fig. I.3.1.
Thus, to be be consistent with the motivation of neglecting the scalar self-coupling (I.3.4), we
will neglect the possible tadpole diagrams as well. More precisely, we will neglect them from the
very beginning, i.e., we will derive the SD equations already under the assumption of vanishing

19For more detail on charge conjugation of fermions see appendix A.
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−iV2
= + + . . .

Figure I.3.2. The two-particle irreducible (2PI) diagrams contributing to V2.

scalar VEV. Again, we stress that in principle the scalar VEV should be taken into account, as it
is not protected by any symmetry.

3.3.1 Cornwall–Jackiw–Tomboulis formalism

There are various methods how to derive the SD equations. Here we are going use the method
based on the Cornwall–Jackiw–Tomboulis (CJT) formalism [65]. We first define the appropriate
effective potential and then we search for its stationary points with respect to the variations of
the full propagators (or, equivalently, the self-energies, since the free propagators are fixed). This
will lead to the integral SD equations, by solving which one can find the full propagators. We
follow this program first for general self-energies Σi, Π and only then we will take into account
the specific Ansatz (I.3.43).

The CJT effective potential is defined as

V [GΦ, Gψ1 , Gψ2 ] ≡ VΦ[GΦ] +
∑
i=1,2

Vψi [Gψi ] + V2[GΦ, Gψ1 , Gψ2 ] , (I.3.47)

where

Vψi [Gψi ] ≡ −i
∫

d4k

(2π)4
Tr
{

ln(S−1
i Gψi)− S−1

i Gψi + 1
}
, (I.3.48a)

VΦ[GΦ] ≡ 1
2
i
∫

d4k

(2π)4
Tr
{

ln(D−1GΦ)−D−1GΦ + 1
}
. (I.3.48b)

The factor of 1/2 at VΦ is due to the reality of the Nambu–Gorkov field Φ, otherwise there would
be the factor of 1 in the case of complex Φ. Similarly for the fermions, since they are complex
fields, the factor at Vψi is 1. For the real (i.e., Majorana) fermions there would be the factor of
1/2 too (this will actually be the case later on when dealing with Majorana neutrinos). Finally,
the minus sign at Vψi is due to the fermion nature of ψi.

The quantity V2 is what actually defines the dynamics. It is the sum of all two-particle
irreducible (2PI) vacuum diagrams (“bubbles”), see Fig. I.3.2. More formally, it is given by the
vacuum-to-vacuum amplitude

〈0|S|0〉 = 1− (2π)4 δ4(0) iV2 , (I.3.49)

where S is the S-matrix given by Yukawa interaction Lagrangian (I.3.2).
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The effective potential V [G] is a functional of the full propagators of all fields in the theory,
denoted collectively as G ≡ (GΦ, Gψ1 , Gψ2). According to Ref. [65], the SD equations corre-
spond to its stationary point, i.e., to the point in the space of the full propagators where the partial
functional derivatives of the effective potential vanish. The SD equations are thus naı̈vely given
by

δV [G]
δG

= 0 . (I.3.50)

However, one has to be careful. An attention has to be taken concerning the direction of allowed
variation. It may happen that the fields in question have some symmetry, which induces also
the symmetry of the corresponding propagator. Thus, while looking for the stationary point of
the effective potential V , one has to make sure that the variations of the propagator respect this
symmetry.

Indeed, in our case it is the scalar Nambu–Gorkov field Φ, which possesses the non-trivial
symmetry (I.3.13), inducing the symmetry (I.3.27) of the propagator. Therefore we will search
for the stationary point of V not on the whole space of all propagators, but rather only on its
subspace, defined by the constraint (I.3.27).

Technically, extremizing of a function V (G) (generalization to the functional V [G] is straight-
forward) over a multivariable G, constrained, e.g., by the condition G = f(G), is achieved by
means of the method of Lagrange multipliers: One first constructs a new function (the Lagrange
function) V (G,λ) ≡ V (G) − λ(G − f(G)). Now, instead of minimizing V (G) with respect
to the constrained set of variables G, one minimizes V (G,λ) with respect to the whole (uncon-
strained) set of both the variables G and λ. Having obtained the result, one can eliminate the λ
from the result in favor of G and get this way the final result satisfying the prescribed condition
G = f(G).

Let us now apply the method of Lagrange multipliers to the problem of extremizing the
functional V [G] on the subset constrained by (I.3.27). Thus, instead of extremizing just V [G]
with respect to variations of the propagators, we introduce the new functional Vλ[G,λ], defined
as

Vλ[G,λ] ≡ V [G] + VΦ,λ[GΦ, λ] , (I.3.51)

where

VΦ,λ[GΦ, λ] ≡
∫

d4k

(2π)4
Tr
{
λ
(
GΦ − σ1G

T
Φ σ1

)}
, (I.3.52)

and extremize it with respect to both the propagators G and the Lagrange multiplier λ:

δ Vλ
δ G

= 0 , (I.3.53a)

δ Vλ
δ λ

= 0 . (I.3.53b)

Recall that the Lagrange multiplier λ is not a number, but rather a momentum-dependent 2 × 2
matrix, operating in the two-dimension Nambu–Gorkov space (in other words, it has the same
structure as GΦ).
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Before continuing, let us make a technical aside. It turns out to be more convenient to calcu-
late not directly the functional derivatives (I.3.53), but rather their matrix transpose. Put another
way, since Vλ (as well as all V , VΦ, etc.) is a pure number (not a matrix), we make all differen-
tiations with respect to GT and λT, rather than with respect to G and λ. This is because of the
matrix identities

∂

∂AT
detA = A−1 detA , (I.3.54a)

∂

∂AT
Tr(AB) = B , (I.3.54b)

holding for any matrices20 A, B. (For completeness, recall also another useful and well known
identity, used in our calculations: Tr lnA = ln detA.)

We start with the differentiation with respect to λ. The direct calculation reveals

δ Vλ
δ λT

=
δ VΦ,λ

δ λT
=

1
(2π)4

(
GΦ − σ1G

T
Φ σ1

)
. (I.3.55)

Demanding that it vanishes we just obtain the constraint (I.3.27) forGΦ and through (I.3.25) also
the constrain (I.3.28) for Π.

Let us proceed with the differentiation with respect to the propagator GΦ. The particular
derivatives are

δ VΦ

δ GT
Φ

= −i
1
2

1
(2π)4

(
D−1 −G−1

Φ

)
= −i

1
2

1
(2π)4

Π (I.3.56)

and

δ VΦ,λ

δ GT
Φ

=
1

(2π)4
(
λ− σ1 λ

T σ1

)
. (I.3.57)

Thus

δ Vλ
δ GT

Φ

= −i
1
2

1
(2π)4

Π +
1

(2π)4
(
λ− σ1 λ

T σ1

)
+

δ V2

δ GT
Φ

. (I.3.58)

This must vanish, so that we can express Π from it as

− iΠ = −2
(
λ− σ1 λ

T σ1

)
− 2(2π)4

δ V2

δ GT
Φ

. (I.3.59)

Now we must somehow eliminate the Lagrange multiplier. For this we make use of the equation
(I.3.53b), or more precisely, of its consequence (I.3.28):

− iΠ = −iσ1 ΠT σ1 (I.3.60a)

= +2
(
λ− σ1 λ

T σ1

)
− 2(2π)4σ1

(
δ V2

δ GT
Φ

)T

σ1 . (I.3.60b)

20Provided A−1 does exist, otherwise the right-hand side of (I.3.54a) is adjA, which exists always.
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Ȳi Yi−i V2,i[GΦ, Gψi
] =

Φ Φ

ψi ψi

ψiψi

Figure I.3.3. Diagrammatical representation of V2,i, Eq. (I.3.66).

We can now sum the two equations (I.3.59) and (I.3.60) to eliminate the Lagrange multiplier λ
and to obtain the final scalar SD equation:

− iΠ = −(2π)4
[
δ V2

δ GT
Φ

+ σ1

(
δ V2

δ GT
Φ

)T

σ1

]
. (I.3.61)

From this equation it is manifestly evident that Π will indeed satisfy the condition (I.3.28).
The fermions are much easier, since ψi are complex (i.e., Dirac) fermions and therefore there

is no special constraint on the form of their propagators. (For real, i.e., Majorana fermions there
would be constraint ψ = ψc; this situation will in fact arise in chapter 6, where we will in the
context of electroweak interactions discuss the neutrinos.) The fermion SD equation is therefore
given simply by

δ V

δ GT
ψi

=
δ Vλ
δ GT

ψi

= 0 . (I.3.62)

Some algebra reveals

δ Vψi
δ GT

ψi

= i
1

(2π)4
(
S−1
i −G

−1
ψi

)
= i

1
(2π)4

Σi (I.3.63)

and the SD equation consequently reads

− iΣi = (2π)4
δ V2

δ GT
ψi

. (I.3.64)

3.3.2 Hartree–Fock approximation

To proceed further, we have to specify V2. In principle, it is an infinite sum of all 2PI diagrams,
as can be seen in Fig. I.3.2. We truncate this series at the simplest possible diagrams, i.e., we
consider only the very first one in Fig. I.3.2. This particular choice of V2 is called the Hartree–
Fock approximation. Since the Yukawa interactions do not mix the fermion species (i.e., there
are no interactions of the type ψ̄1ψ2φ) and in the Hartree–Fock approximation there is only one
fermion loop in each diagram, V2 can be written as a sum of independent contributions from the
two fermion species,

V2[GΦ, Gψ1 , Gψ2 ] =
∑
i=1,2

V2,i[GΦ, Gψi ] , (I.3.65)
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where the particular terms on the right-hand side are given as

− iV2,i[GΦ, Gψi ] = −1
2
i5
∫

d4k

(2π)4
d4p

(2π)4
Tr
{
YiGψi(k) ȲiGψi(p)GΦ(k − p)

}
. (I.3.66)

This expression is easily understood according to Fig. I.3.3. The minus sign on the right side is
for the fermion loop, while the factor of 1/2 is a combinatorial factor. The trace in (I.3.66) is over
both the fermion and the Nambu–Gorkov scalar space. However, since the couplings constants
Yi, Ȳi are rectangular matrices, one has to be careful when applying the rule about the cyclicity
of the trace. E.g., one can move Yi from the beginning of the trace to its end; then, however, the
trace is only over the fermion space; the trace over the Nambu–Gorkov space would be in such a
case already effectively implemented by the matrix multiplication ȲiGΦ Yi.

The functional derivatives of V2 relevant for the SD equations (I.3.61), (I.3.64) are

δ V2

δ GT
Φ(p)

=
∑
i=1,2

1
2

1
(2π)4

∫
d4k

(2π)4
Trψ

{
YiGψi(k) ȲiGψi(k − p)

}
, (I.3.67a)

δ V2

δ GT
ψi

(p)
=

1
(2π)4

∫
d4k

(2π)4
TrΦ

{
YiGψi(k) ȲiGΦ(k − p)

}
. (I.3.67b)

Notice that the particular traces in (I.3.67) are only over the indicated space. Therefore the rule
about cyclicity of the trace (in terms of the quantities Yi, Ȳi, Gψi , GΦ) is no longer applicable.

One can now verify that the following identity holds:

δ V2

δ GT
Φ

= σ1

(
δ V2

δ GT
Φ

)T

σ1 . (I.3.68)

It holds due to the property of the Yukawa coupling constants Yi, (I.3.18),

Yi = σ1 Ȳ
TΦ
i , (I.3.69)

with the transpose TΦ being understood only in the two-dimensional Nambu–Gorkov space. We
stress, however, that the identity (I.3.68) holds only within our special form (I.3.66) of V2; in
another than the Hartee–Fock approximation (I.3.66) may no longer be true.

Now we can plug the functional derivatives (I.3.67) of V2 into the general forms (I.3.61),
(I.3.64) of the SD equations and with the help of the identity (I.3.68) we obtain

− iΠ(p) = −
∑
i=1,2

∫
d4k

(2π)4
Trψ

{
YiGψi(k) ȲiGψi(k − p)

}
, (I.3.70a)

−iΣi(p) =
∫

d4k

(2π)4
TrΦ

{
YiGψi(k) ȲiGΦ(k − p)

}
, (I.3.70b)

see Fig. I.3.4.

3.3.3 Employing the Ansatz

The SD equations (I.3.70) hold generally, for any form of the propagators, unconstrained by any
Ansatz. Now it is time to put our Ansatz (I.3.43) back into game.
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Ȳi Yi

ψi ψi ψi ψi

Φ Φ Φ Φ

Φ

ψi

ψi

ψi

Φ

ψi

ψi

ψi

Figure I.3.4. Diagrammatical representation of the SD equations (I.3.70) in the Hartree–Fock approxima-
tion.

If we just mechanically plug the Ansatz (I.3.43) into the SD equations (I.3.70), we obtain21

− i
(

0 Πp

Π∗
p 0

)
=

−2
∫

d4k

(2π)4
1

k2 − |Σ1k|2
1

`2 − |Σ1`|2

(
|y1|2(k · `) y∗21 Σ1k Σ1`

y2
1 Σ∗1k Σ∗1` |y1|2(k · `)

)
−2
∫

d4k

(2π)4
1

k2 − |Σ2k|2
1

`2 − |Σ2`|2

(
|y2|2(k · `) y∗22 Σ∗2k Σ∗2`
y2
2 Σ2k Σ2` |y2|2(k · `)

)
,

(I.3.71a)

−i
(
Σ∗1p PL + Σ1p PR

)
=

∫
d4k

(2π)4
1

k2 − |Σ1k|2
1

(`2 −M2)2 − |Π`|2

×
[
|y1|2/k(`2 −M2) + y∗21 Σ1k Π∗

` PL + y2
1 Σ∗1k Π` PR

]
, (I.3.71b)

−i
(
Σ∗2p PL + Σ2p PR

)
=

∫
d4k

(2π)4
1

k2 − |Σ2k|2
1

(`2 −M2)2 − |Π`|2

×
[
|y2|2/k(`2 −M2) + y2

2 Σ2k Π` PL + y∗22 Σ∗2k Π∗
` PR

]
, (I.3.71c)

where we denoted

` ≡ k − p . (I.3.72)

Each of these three matrix equations comprise in fact two independent (not related by the com-
plex conjugation) scalar equations. Of these altogether six scalar equations let us first discuss the

21We indicate here the momentum arguments for the sake of brevity by subscripts, i.e., Πp ≡ Π(p2), Σip ≡ Σi(p
2).

This notation will be used repeatedly throughout the text.
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following three ones:

0 = −2|y1|2
∫

d4k

(2π)4
kα

k2 − |Σ1k|2
`α

`2 − |Σ1`|2

−2|y2|2
∫

d4k

(2π)4
kα

k2 − |Σ2k|2
`α

`2 − |Σ2`|2
, (I.3.73a)

0 = |y1|2
∫

d4k

(2π)4
/k

k2 − |Σ1k|2
`2 −M2

(`2 −M2)2 − |Π`|2
, (I.3.73b)

0 = |y2|2
∫

d4k

(2π)4
/k

k2 − |Σ2k|2
`2 −M2

(`2 −M2)2 − |Π`|2
. (I.3.73c)

(The last two equations are strictly speaking not scalar, because as they contain /k, they are
proportional to /p. Nevertheless, the true scalar equations can be easily projected out; effectively it
suffices to make the replacement /k → (k·p)/p2.) Of course, these equations have to be discarded,
as they do not comply with the Ansatz (I.3.43). This is after all manifested in the pathological
fact that their left-hand sides are vanishing. Nevertheless, it is useful to take a quick look at their
right-hand sides. The integrals in all three equations (I.3.73) are UV-divergent for any decreasing
or constant self-energies Σi, Π. Since we assume that the symmetry-breaking self-energies Σi, Π
must be UV-finite, i.e., decreasing (see the discussion at the end of this section), we conclude that
even if we included the symmetry-preserving self-energies into our Ansatz (so that the left-hand
sides of (I.3.73) would not be vanishing), they would come out necessarily UV-divergent. This is
because symmetry-preserving self-energies (as well as any other symmetry-preserving Green’s
functions) contain, apart from possible non-perturbative parts, also perturbative parts, i.e., the
parts calculable within the usual perturbation theory using the symmetry-preserving interactions
from the (symmetric) Lagrangian.

We are thus left with the remaining three equations:

− i Πp = −2y∗21

∫
d4k

(2π)4
Σ1k

k2 − |Σ1k|2
Σ1`

`2 − |Σ1`|2

−2y∗22

∫
d4k

(2π)4
Σ∗2k

k2 − |Σ2k|2
Σ∗2`

`2 − |Σ2`|2
, (I.3.74a)

−i Σ1p = y2
1

∫
d4k

(2π)4
Σ∗1k

k2 − |Σ1k|2
Π`

(`2 −M2)2 − |Π`|2
, (I.3.74b)

−i Σ2p = y∗22

∫
d4`

(2π)4
Σ∗2k

k2 − |Σ2k|2
Π∗
`

(`2 −M2)2 − |Π`|2
, (I.3.74c)

depicted also in Fig. I.3.5. Mathematically, this is a set of three non-linear integral equations for
three unknown functions Σ1(p2), Σ2(p2) and Π(p2). These equations are homogenous, i.e., they
have the trivial solution Σ1(p2) = Σ2(p2) = Π(p2) ≡ 0, corresponding to no SSB. Our task is
to find a non-trivial solution, which would indicate the occurence of the SSB.

Very little can be said about the possible non-trivial solutions. Even their number is in princi-
ple unknown. However, note that the equations (I.3.74) are basically the same as those (I.2.38),
derived diagrammatically in the previous chapter (up to the different number of fermion equa-
tions). Recall that we have concluded, on the basis of the convergence properties of the integrals
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Figure I.3.5. Diagrammatical representation of the SD equations (I.3.74) for the symmetry-breaking parts
of the propagators.

in the equations, that the resulting self-energies must be UV-finite, i.e., decreasing. Indeed, the
form of the equations is clearly consistent with this assumption.

In fact, this assumption can be supported by another, more physical argument. If the self-
energies were UV-divergent, appropriate counterterms would have to be added to the Lagrangian.
However, as the self-energies are symmetry-breaking, so would have to be also the counterterms
themselves. But the Lagrangian must be symmetric, which prohibits such counterterms. Conse-
quently, as there is no possibility to add the symmetry-breaking counterterms to the Lagrangian,
the symmetry-breaking self-energies (as well as any other symmetry-breaking Green’s functions)
must be necessarily UV-finite.

3.4 Numerics

As there is virtually no hope to solve the SD equations (I.3.74) analytically, one has to resort
to some kind of numerical approach. In this section the results of the numerical solution of SD
equations are presented, together with a brief description of the numerical procedure itself.
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3.4.1 Approximations

The SD equations in the form (I.3.74), yet being a result of numerous approximations, are still
quite difficult to be solved even numerically, so further approximations have to be done. The most
serious problem is the existence of the poles in the propagators. While vital for the very mass
generation, these poles are extremely difficult to integrate numerically. Thus, we get rid of them
by switching form the Minkowski to the Euclidean metric via the Wick rotation. Effectively, in
the propagators the Wick rotation consists of changing p2 → −p2

E, with p2
E being always non-

negative. By this we remove the poles in the fermion propagators. In the scalar propagator the
situation is more complicated, the pole still remains, only its position is changed. After wick
rotation it is given by equation

p2
E +M2 − |Π(−p2

E)| = 0 , (I.3.75)

which, depending on Π, can still have a solution for some positive p2
E. This problem is “solved”

by considering in the numerical analysis only those Π for which the pole equation (I.3.75) has
no (real and positive) solution.

Moreover, in order to reduce the number of independent equations to be solved, we deliber-
ately consider both the fermion and scalar self-energies to be real. In fact, this approximation
is consistent with the removing of the poles discussed above, as now there is no iε-prescription
to bring any imaginary parts (provided, of course, that the coupling constants y1, y2 are set real
too).

As a net result, we solve the following set of equations for the unknown real functions Σ1(p2),
Σ2(p2) and Π(p2):

Πp =
∑
i=1,2

2y2
i

∫
d4k

(2π)4
Σik

k2 + Σ2
ik

Σi`
`2 + Σ2

i`

, (I.3.76a)

Σ1p = y2
1

∫
d4k

(2π)4
Σ1k

k2 + Σ2
1k

Π`

(`2 +M2)2 −Π2
`

, (I.3.76b)

Σ2p = y2
2

∫
d4k

(2π)4
Σ2k

k2 + Σ2
2k

Π`

(`2 +M2)2 −Π2
`

, (I.3.76c)

where p2 = p2
0 + p2

1 + p2
2 + p2

3 ≥ 0 and y1, y2 ∈ R. Notice that from now on we omit the
subscript E and redefine the self-energies like, e.g., Σi(−p2)→ Σi(p2) ≡ Σip, and similarly for
Π.

The system of equations (I.3.76) has apparently three free parameters y1, y2 and M . In fact,
the parameter M , as being the only parameter with dimension of mass in the theory, serves just
as a scale parameter for the self-energies and momenta. Therefore it can be set to any value
without the loss of generality. Hence we are left with only two relevant parameters, the Yukawa
coupling constants y1 and y2, according to which the solutions will be classified.

Now the task is to solve the equations (I.3.76) possibly for each pair y1, y2. However, as the
equations (I.3.76) depend on the squares of y1, y2, one does not need to scan the full (y1, y2)
space, it suffices to check only one quadrant. Say, the one where both y1, y2 are positive. More-
over, even this quadrant need not to be probed full, due to the symmetricity of the equations
(I.3.76) under exchange of the fermion species, 1↔ 2. If one knows a solution for at some point
(y1, y2), one automatically knows also the solution at the point (y2, y1).
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3.4.2 Numerical procedure

The system of equations (I.3.76) can be formally written as

Π = G[Σ1,Σ2] , (I.3.77a)
Σ1 = F1[Σ1,Π] , (I.3.77b)
Σ2 = F2[Σ2,Π] , (I.3.77c)

where the functionals G, Fi are given by the integrals on the right-hand sides of (I.3.76). These
integrals are four-dimensional over the full R4. Upon rewriting the integrals to the hyperspherical
coordinates, two of the three angular integrals can be performed analytically and one is finally
left with only two-dimensional integrals. There remain two integrals that cannot be in general
solved analytically: One angular over the interval [0, π] and one radial (momentum squared) over
[0,∞).

Since the self-energies are presumably approaching zero at large momenta, so do the corre-
sponding integrands in the integrals (I.3.76). Therefore introducing a sufficiently high momen-
tum cut-off in the integral should not alter the solutions substantially. Such a cut-off corresponds
to replacing the infinite interval of the radial integral by a finite one.

The next step is discretizing the self-energies. That is to say, instead of computing the self-
energies as the functions of all momenta (eventually up to the cut-off introduced in the previous
paragraph), we compute the self-energies only in the finite, but sufficiently large number of fixed
discrete momenta, appropriately (i.e., not necessarily equidistantly) distributed between the zero
and the cut-off. Choosing such a discretization, the integrals can be naturally substituted by sums
by means of some quadrature rule for numerical integrating. To be concrete, we have used the
Simpson’s rule for radial integral and the Gauss–Chebyshev quadrature formula for the angular
integral.

To summarize, we have traded the system of non-linear integral equations for unknown func-
tions (i.e., the self-energies) by a system of non-linear algebraic equations for finite set of un-
known numbers (i.e., the discretized self-energies). It has actually the same structure (I.3.77)
as the original set of integral equations, only the symbols Π, Σi have to be understood as vec-
tors of finite dimensions, rather than functions, and the symbols G, Fi are some complicated
multivariable vector-valued functions rather than functionals.

Such an algebraic system is already directly amenable to the numerical treatment. The stan-
dard (and in fact the only) method for solving it is the method of iterations. It consists roughly
of the following: One chooses some initial Ansatz, or “zeroth” iteration, for the fermion self-
energies:

Σ(0)
1 , Σ(0)

2 . (I.3.78)

Consequently, one can also calculate the “zeroth” iteration of the scalar self-energy:

Π(0) = G[Σ(0)
1 ,Σ(0)

2 ] . (I.3.79)

By this the iteration process is established: the (n + 1)-th iteration is calculated from the n-th
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iteration as

Σ(n+1)
1 = F1[Σ

(n)
1 ,Π(n)] , (I.3.80a)

Σ(n+1)
2 = F2[Σ

(n)
2 ,Π(n)] , (I.3.80b)

Π(n+1) = G[Σ(n)
1 ,Σ(n)

2 ] , (I.3.80c)

with n ≥ 0. Clearly, if this procedure converges, then its limit is the solution to the discretized
equations (I.3.77). The convergence of the iteration process (I.3.80) can be controlled, e.g., by
the quantities

I
(n)
X =

∫
X(n)∫
X(n−1)

, (I.3.81)

where X = Π,Σ1,Σ2. The advantage of the quantities I(n)
X is that they constitute only three

scalar quantities, not vectors like the self-energies, so that their convergence can be controlled
much easier that the convergence of the self-energies. Obviously, if a self-energy converges to
some non-trivial fixed point, then the corresponding I(n)

X converges to 1, and if the self-energy
converges to zero, I(n)

X converges to some I in the interval 0 ≤ I < 1. The opposite implications
may not hold in general. However, in our case it turned out that they do hold, due to a “good”
behavior22 of the iterations. Thus, the quantities I(n)

X can indeed be used for controlling the
convergence of the iteration process.

Usual behavior of such a nonlinear system in the case of only one equation for one unknown
function is such that for (almost) any initial Ansatz the iteration procedure converges to a (triv-
ial or non-trivial) solution. Example of such an equation is the equation (I.2.30), i.e., the SD
equation for one Σ (there is no subscript i in such a case) with Π set to be a constant. Whether
the solution Σ is trivial or non-trivial depends typically on whether y < ycrit. or y > ycrit.,
respectively, for some critical value ycrit..

In our case of more coupled equations the situation turns out to be, however, different. First,
if there is only the trivial solution, the situation is the same as before: For any initial Ansatz
(I.3.78) the I(n)

X converges to some 0 ≤ I < 1. However, the existence of a non-trivial solution
manifests differently than before: For the initial Ansatz (I.3.78) too “small” the I(n)

X behaves
exactly like if there was only the non-trivial solution. However, for the Ansatz being sufficiently
“big” (and, needless to say, the same y1, y2) the iteration procedure blows up, i.e., I(n)

X converges
to some I > 1 or even diverges.23

Let us specify the loose notions “small” and “big” more precisely. We can choose the initial
Ansatz (I.3.78) to be

Σ(0)
1 (p2) = Σ(0)

2 (p2) = x f(p2) , (I.3.82)

where f(p2) is some fixed decreasing function, its concrete form turns out not to be very impor-
tant. More important is the real parameter x, by setting of which we can manage the iteration

22The particular iterations of the self-energies turn out to be positive and monotonically decreasing functions. Or,
loosely speaking, their shapes are similar, the only difference between the iterations is in their “size”.

23In fact, this picture, as presented here, is somewhat simplified. In reality there are some additional complications
due to the existence of the scalar pole (I.3.75).
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process to converge to the trivial solution (which exists in any case) or to blow up (presumably in
the case of existence of a non-trivial solution). Not surprisingly, the former is achieved by setting
x small enough, while the latter corresponds to x large enough.

There must exist a limiting value of xlim. between the two régimes. Since we can for any x
determine, according to the behavior of the iteration procedure, whether x < xlim. or x > xlim.,
the value xlim. can be approximatively determined, with arbitrary accuracy, by means of the
bisection method.

The behavior of the iterations process for x close to xlim. is rather peculiar: There exist some
n0 such that for n < n0 the iteration process seems to converge to the non-trivial solution, but
for n > n0 it starts to go to the trivial solution or blows up (depending on whether x < xlim.

or x > xlim., respectively). The point is that the closer is x to xlim., the larger is n0. One can
deduce that ideally, for x = xlim., the n0 would be infinite. Or in other words, for the Ansatz
(I.3.82) with x = xlim. the iteration procedure would converge to the non-trivial solution.

The procedure of finding a sufficiently accurate numerical solution (or, more precisely, a
sufficiently accurate approximation of the solution) of (I.3.77) therefore schematically consists
of:

1. Getting x as close to xlim. as possible. As this is numerically the most demanding part,
the achieved proximity of x to xlim. is ultimately only a question of the available time and
computer capacities.

2. Finding the corresponding n0, until which the iteration process (seemingly) converges.

3. Taking the n0-th iteration, i.e., Π(n0), Σ(n0)
1 , Σ(n0)

2 , as the solution of (I.3.77).

Since the numerical procedure, as described above, has clearly many ambiguities, a special
care was taken whether these ambiguities do not influence substantially the obtained results. In
other words, the stability of the numerical algorithm was tested. Three main variations of the
algorithm were considered:

Class of Ansätze Several types of the decreasing function f(x) in the Ansatz (I.3.82) were con-
sidered. For some of them (some very rapidly decreasing exponentials) the iteration proce-
dure converged for any x only to the trivial solution. However, if f(p2) was such that the
iteration procedure converged to a non-trivial solution, then the non-trivial solution was
always the same and hence presumably unique.

Integration method There is an arbitrariness in the choice of the numerical integration method
for the two of four integrals in each of the equations (I.3.76) that have to be performed
numerically. For the purpose of probing this arbitrariness we employed consecutively two
methods: the trapezoidal rule and the Simpson’s rule. On top of these, for the angular inte-
gration we have used also the Gauss–Chebyshev quadrature formula (using the Chebyshev
polynomials of the second kind). The final results for all integration methods agreed, the
differences were only in the speed of convergence.

Step-size As a remnant of the numerical integration there is necessarily a step-size dependence
of the results. The important question is how this dependence behaves for arbitrarily small
step-sizes. If there is no sensible (i.e., finite) limit of the integral as the step-sizes are going
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Figure I.3.6. A quadrant of the (y1, y2) plane with indicated areas of different behavior of the system of
equations (I.3.76). According to the resulting fermion self-energies there are three main areas: first where
Σ1 ≡ 0 and Σ2 6= 0, second where Σ1 6= 0 and Σ2 6= 0 and third where Σ1 6= 0 and Σ2 ≡ 0, denoted
as (I), (II) and (III), respectively. There is also the area, denoted as (IV), where the pole (I.3.75) in the
scalar propagator prohibited us from finding solutions. The dashed line, going from y1 = 72 and y2 = 88
to y1 = 104 and y2 = 88, shows where the dependence of the spectrum on the Yukawa coupling constants
was probed – see Fig. I.3.8 and Fig. I.3.9.

to zero (the continuum limit), the results of the numerical integration have no meaning. We
checked that this limit does exist and that all interesting phenomena (especially the strong
y1,2-dependence of the fermion masses, presented thereinafter) are present in it.

Moreover, in order to check the consistency of our numerical method by a comparison with
an independent result, we calculated the equation for Σi (either of (I.3.76a) or (I.3.76b)), with Π
set to be a constant (up to our knowledge, there are no independent calculations of the full set of
the coupled equations (I.3.76) we could compare with) and compared our result with the results
of Ref. [66] (Eq. (2) and Fig. 2 therein). They coincided.
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2) and Π(p2) to the system of equations (I.3.76),
computed here for y1 = 83 and y2 = 88. Note the saturation of the self-energies at low momenta and fast
decrease at high momenta.

3.4.3 Numerical results

Using the numerical procedure described above, a part of the quadrant y1, y2 > 0 was probed
and non-trivial solutions were found. Moreover, as far as we were able to check, all non-trivial
solutions seem to be unique.

There are three types of the non-trivial solutions, according to whether only Σ1, only Σ2 or
both Σ1, Σ2 are non-trivial. The locations of the three types of solutions in the (y1, y2) plane
are depicted in Fig. I.3.6. While for most of the values of y1, y2 the solutions were found, there
is a region around the origin in the (y1, y2) plane where the numerical analysis failed due to the
existence of the scalar pole (I.3.75). Thus, we cannot say anything about the solutions of the
equations (I.3.76) for y1, y2 being simultaneously small.

The typical shape of the resulting non-trivial self-energies is depicted in Fig. I.3.7. They are
saturated at low momenta and fall down rapidly at high momenta so that the integrals (I.3.76) are
indeed finite.

Our aim was to find the dependence of the spectrum – the masses of the fermions and the
scalars – on the Yukawa coupling constants y1, y2. For the calculation of masses we have used
the Minkowski-metric equations (I.3.45). We have probed the y1,2-dependence along the cut
depicted in Fig. I.3.6, since it connects all the three main areas (I), (II) and (III) and therefore
the resulting y1,2-dependence of the spectrum can be regarded as quite typical. The results are
depicted in Figs. I.3.8 and I.3.9. Note how the critical lines between the areas are evident in
the y1,2-dependence of the spectrum. The most significant result – the behavior of the fermion
spectrum – can be seen in Fig. I.3.9. As y1 approaches the critical line between (II) and (I) (or
(III), respectively) in the direction from (II) to (I) ((III)), the ratio m2

2/m
2
1 becomes arbitrarily

high (low)!
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3.5 Summary

In this chapter we have redone the previous chapter’s analysis in a more rigorous way:

• When defining the model, we have made sure this time, by introducing two fermion species
with judiciously chosen axial charges, that the theory was free of the axial anomaly.

• While in the previous chapter we have “derived” the SD equations in a mere diagrammat-
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ical way, now we have derived them using the elaborate CJT formalism.

• Moreover, we have derived the SD equations first for arbitrary self-energies and only then
we have restricted them only on the properly chosen parts of the self-energies, sufficient
for the task of demonstrating the presence of SSB of the axial symmetry.

• We have given a numerical evidence of viability of the present scheme by finding non-
trivial UV-finite solutions to the SD equations with the following properties:

– They seem to be unique.

– They exhibit a critical behavior in the sense that they exist only for Yukawa coupling
constants large enough.

– They allow for arbitrary amplification of fermion masses ratio.
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Part II

Electroweak interactions
4 The model

In this part we apply the ideas from the previous one on a realistic theory of electroweak inter-
actions. This chapter is dedicated merely to defining of the model and only in the subsequent
chapters 5 and 6 we will discuss the very possibility of breaking the electroweak symmetry by the
Yukawa dynamics. Apart from sole definition of the model by means of its particle content and
its symmetries, most of this chapter is dedicated to convenient reparameterization of the theory
(i.e., the fields, the symmetry generators and the gauge and Yukawa interactions) in terms of the
Nambu–Gorkov formalism. This time, in contrast to part I, this reparameterization will apply not
only to scalars, but also to fermions, namely to leptons.

This chapter, as well as the whole part II, is a technically-oriented extension of Refs. [52,56].

4.1 The Lagrangian

4.1.1 Particle content

We consider an SU(2)L × U(1)Y gauge-invariant theory equipped with the usual SM fermion
content. That is to say, we consider the quark and lepton left-handed SU(2)L doublets

( uaL
daL

)
and

(
νaL
eaL

)
, respectively, together with the charged fermion right-handed singlets uaR, daR, eaR.

We assume n generations: a = 1, . . . , n. Moreover, on top of this SM particle content we intro-
duce also m right-handed neutrino singlets νaR. Their number m may be in principle arbitrary,
unrelated to the number of generations, so in general we have to assume a = 0, . . . ,m 6= n.
(Notice that the numbers of the left-handed doublets and of the charged right-handed singlets are
constrained to be the same due to the requirement of anomaly freedom.) Since the fields of each
type with different values of the index a are not distinguished by the quantum numbers of the
SU(2)L × U(1)Y symmetry, we can call them the flavors24.

In the following it will be useful to suppress the flavor indices and adopt more compact
notation. We will therefore denote the particular left-handed fields of all generations collectively
as

fL ≡

 f1L
...

fnL

 , f = ν, e, u, d, (II.4.1)

and similarly the right-handed charged fields as

fR ≡

 f1R
...

fnR

 , f = e, u, d. (II.4.2)

24See for example the very first sentence of Ref. [67]: “Flavors are just replication of states with identical quantum
numbers.”
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The definition of the right-handed neutrino field νR is analogous and differs of course only for-
mally by its different dimension (m instead of n):

νR ≡

 ν1R
...

νmR

 . (II.4.3)

The SU(2)L doublets are now given in terms of the left-handed fields (II.4.1) as

`L ≡
(
νL
eL

)
, qL ≡

(
uL
dL

)
. (II.4.4)

Furthermore, we consider two scalar SU(2)L doublets25

S ≡
(
S(+)

S(0)

)
, (II.4.5a)

N ≡
(

N (0)

N (−)

)
, (II.4.5b)

with bare masses MS and MN , respectively. For definiteness, their Lagrangian thus reads

Lscalar = (∂µS)†(∂µS) + (∂µN)†(∂µN)−M2
SS

†S −M2
NN

†N . (II.4.6)

We stress that M2
S ,M

2
N > 0, so that, likewise in the previous part, we do not need to consider

the scalar self-interactions.
Since the right-handed neutrinos are singlets under the whole SU(2)L × U(1)Y, there is no

protection for the their Majorana mass terms. In other words, the requirement of the electroweak
symmetry SU(2)L×U(1)Y alone is consistent with the assumption of the existence of hard mass
term in the Lagrangian of the form

Lmass = − 1
2
(ν̄R)cMνRνR −

1
2
ν̄RM

†
νR(νR)c , (II.4.7)

where MνR is an m × m symmetric26 mass matrix and (νR)c denotes the charge conjugation
(iv), discussed in more detail in appendix A.

On the other hand, one can define the lepton number symmetry U(1)` as follows: On the
lepton fields `L, eR, νR it acts non-trivially as

U(1)` : {`L, eR, νR} −→ [{`L, eR, νR}]′ = eiQ`θ{`L, eR, νR} (II.4.8)

(with Q` being the U(1)` charge) and leaves all other fields (i.e., the quark fields, the scalars
and the gauge bosons) invariant. Clearly, the theory is invariant under (II.4.8), except for the
Lagrangian (II.4.7), which breaks it explicitly. ForMνR = 0 the lepton number symmetry U(1)`
would be exact. Nevertheless, we will for definiteness assume MνR 6= 0; implications of the
case MνR = 0 will be discussed only occasionally.

25The denotations “S” and “N” stand respectively for “southern” and “northern”, since, as we will see later, the S
doublet will contribute primarily to the masses of the down-type fermions, while the N doublet primarily to the masses
of the up-type fermions.

26See equation (D.3.18) in appendix D.
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4.1.2 Yukawa interactions

By assumption responsible for the eventual dynamical EWSB, the Yukawa interactions are for
us of key importance. We postulate

LYukawa = LYukawa,q + LYukawa,` , (II.4.9)

where

LYukawa,q = q̄LyddRS + q̄LyuuRN + h.c. , (II.4.10a)
LYukawa,` = ¯̀

LyeeRS + ¯̀
LyννRN + h.c. (II.4.10b)

The Yukawa coupling constants yu, yd, yν , ye are in principle arbitrary complex matrices. For
the sake of later references let us decompose (II.4.10) also as

LYukawa,q = L(0)
Yukawa,q + L(±)

Yukawa,q , (II.4.11a)

LYukawa,` = L(0)
Yukawa,` + L(±)

Yukawa,` , (II.4.11b)

i.e., into the interactions of the neutral scalars:

L(0)
Yukawa,q = d̄LyddRS

(0) + d̄Ry
†
ddLS

(0)† + ūLyuuRN
(0) + ūRy

†
uuLN

(0)† , (II.4.12a)

L(0)
Yukawa,` = ēLyeeRS

(0) + ēRy
†
eeLS

(0)† + ν̄LyννRN
(0) + ν̄Ry

†
ννLN

(0)† (II.4.12b)

and the interactions of the charged scalars:

L(±)
Yukawa,q = ūLyddRS

(+) + d̄Ry
†
duLS

(+)† + d̄LyuuRN
(−) + ūRy

†
udLN

(−)†, (II.4.13a)

L(±)
Yukawa,` = ν̄LyeeRS

(+) + ēRy
†
eνLS

(+)† + ēLyννRN
(−) + ν̄Ry

†
νeLN

(−)† . (II.4.13b)

Notice that we do not consider the interactions

L̃Yukawa = L̃Yukawa,q + L̃Yukawa,` , (II.4.14)

with

L̃Yukawa,q = q̄LỹddRÑ + q̄LỹuuRS̃ + h.c. , (II.4.15a)

L̃Yukawa,` = ¯̀
LỹeeRÑ + ¯̀

LỹννRS̃ + h.c. , (II.4.15b)

whose neutral and charged parts read

L̃(0)
Yukawa,q = − d̄LỹddRN (0)† − d̄Rỹ†ddLN

(0) + ūLỹuuRS
(0)† + ūRỹ

†
uuLS

(0), (II.4.16a)

L̃(0)
Yukawa,`= − ēLỹeeRN

(0)† − ēRỹ†eeLN (0) + ν̄LỹννRS
(0)† + ν̄Rỹ

†
ννLS

(0) (II.4.16b)

and

L̃(±)
Yukawa,q = ūLỹddRN

(−)† + d̄Rỹ
†
duLN

(−) − d̄LỹuuRS(+)† − ūRỹ†udLS(+), (II.4.17a)

L̃(±)
Yukawa,`= ν̄LỹeeRN

(−)† + ēRỹ
†
eνLN

(−) − ēLỹννRS(+)† − ν̄Rỹ†νeLS(+), (II.4.17b)
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respectively. In fact, these interactions are also permitted by the underlying SU(2)L × U(1)Y
symmetry: The doublets S̃, Ñ are defined in terms of S, N as27

S̃ ≡ iσ2S
c =

(
S(0)†

−S(+)†

)
, (II.4.18a)

Ñ ≡ iσ2N
c =

(
N (−)†

−N (0)†

)
, (II.4.18b)

i.e., they are basically just the charge conjugates of S,N (and thus having opposite hypercharge),
only rotated by the antisymmetric matrix iσ2 =

(
0 1

−1 0

)
, so that they are valid SU(2)L doublets.

Dismissing of the interactions (II.4.14) is in fact justified by assuming that there is a discrete
symmetry, called Pdown, acting non-trivially only on eR, dR, S as

Pdown : {eR, dR, S} −→ [{eR, dR, S}]′ = −{eR, dR, S} (II.4.19)

and leaving all other fields invariant. Clearly, this symmetry forbids the interactions (II.4.14). Its
most obvious advantage is at this moment the reduction of the number of the Yukawa coupling
constants. Further reasons for imposing Pdown will be discussed at the end of Sec. 6.1.6.

At this point one may notice that the Yukawa Lagrangian (II.4.9) is basically the same as in
the SM (apart from the Yukawa interactions of νR), with S and N playing the rôle of the Higgs
doublet φ and φ̃ = iσ2φ

c, respectively. One may then ask why not to consider only one scalar
doublet like in the SM, instead of two distinct doublets S, N . This question will be discussed in
Sec. 6.1.4, after introduction of the SD equations.

4.1.3 Gauge interactions

Notation for the gauge basis

The theory is invariant under the SU(2)L × U(1)Y gauge symmetry. We denote the generators
of the respective subgroups as

SU(2)L : ta=1,2,3 , (II.4.20a)
U(1)Y : ta=4 (II.4.20b)

and the corresponding gauge fields as

SU(2)L : Aµa=1,2,3 , (II.4.21a)
U(1)Y : Aµa=4 . (II.4.21b)

Another gauge basis

However, for various reasons the gauge boson basis Aµ1 , Aµ2 , Aµ3 , Aµ4 is not always convenient.
Thus, we are now going to introduce another basis.

27The charge conjugates Sc, Nc are defined in Eq. (E.1.4) in appendix E.
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The generators t3, t4 can be rotated as(
tZ
tem

)
≡ OW

(
t3
t4

)
, (II.4.22)

which corresponds to the rotation of the gauge bosons Aµ3 , Aµ4(
AµZ
Aµem

)
≡ OW

(
Aµ3
Aµ4

)
. (II.4.23)

We defined here the orthogonal matrix OW in terms of the gauge coupling constants g, g′ (cor-
responding to the respective subgroups SU(2)L and U(1)Y) as

OW ≡
(

cos θW − sin θW
sin θW cos θW

)
≡ 1√

g2 + g′2

(
g −g′
g′ g

)
, (II.4.24)

where θW is the Weinberg (or weak mixing) angle. Now the new generator tem corresponds to
the unbroken subgroup U(1)em:

U(1)em : tem . (II.4.25)

Of course, the fields AµZ and Aµem correspond to the Z boson and γ (photon), respectively, i.e., to
the gauge boson mass eigenstates after the eventual spontaneous breakdown of SU(2)L×U(1)Y
down to U(1)em, as we will show in detail in chapter 11.

Similarly we can rotate the gauge fields Aµ1 , Aµ2 as(
AµW+

AµW−

)
≡ UW

(
Aµ1
Aµ2

)
, (II.4.26)

where

UW ≡ 1√
2

(
1 −i
1 i

)
(II.4.27)

is a unitary matrix. The fields AµW± correspond to the W± bosons (being charge conjugation
eigenstates) and satisfy

(AµW±)† = AµW∓ . (II.4.28)

4.2 Reparameterization of the Lagrangian

The theory has been so far formulated in terms of the fields S, N , qL, uR, dR, `L, νR, eR. This
is convenient for the formulation of the model from the gauge principle, since all the mentioned
fields are in fact directly the SU(2)L × U(1)Y irreducible representations. However, for practi-
cal calculations it will be more useful to reparameterize the theory in terms of new degrees of
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freedom Φ, q, Ψ`, defined in terms of the original ones as

Φ ≡



S(+)

N (−)†

S(+)†

N (−)

S(0)

S(0)†

N (0)

N (0)†


, q ≡

(
uL + uR
dL + dR

)
, Ψ` ≡


νL + (νL)c

νR + (νR)c

eL + (eL)c

eR + (eR)c

 . (II.4.29)

In the following sections we comment closer on the motivations for introducing this, at first sight
unnecessarily complicated notation and give a more detailed technical treatment of each of the
fields Φ, q, Ψ`. At this moment let us just say that the main motivation is the same as before
within the Abelian toy model in part I, where it was more convenient to work with the Nambu–
Gorkov field Φ =

( φ
φ†

)
than with φ due to the employed mechanism and pattern of the SSB.

Similar argumentation will be used also in the present context, especially for scalars and leptons.
Last but not least, the notation (II.4.29) will allow us to write some (but not all) formulæ in much
more compact and elegant way. For instance, as a consequence of having only three independent
fields Φ, q, Ψ` there will be also only three (though matrix) SD equations.

The notation for fermions, introduced in this section, will be utilized also later in chapter 11
when discussing masses of the electroweak gauge bosons.

4.2.1 Scalars

Reparameterization of the fields

Recall in the Abelian toy model, where the symmetry was broken by the two-point functions
〈φφ〉, 〈φ†φ†〉, it was more convenient to work with the Nambu–Gorkov field Φ =

( φ
φ†

)
instead

of the single complex field φ. Analogously, we now assume that the electroweak symmetry will
be broken by formation of the two-point functions of the type, e.g., 〈S(0)S(0)〉, 〈N (0)N (0)〉, etc.
Therefore, instead of working with the two scalar doublet S, N , organized perhaps in a single
field φ,

φ ≡
(

S
N

)
=


S(+)

S(0)

N (0)

N (−)

 , (II.4.30)

it will be more convenient to work with the corresponding Nambu–Gorkov field, whose matrix
propagator, in contrast to propagator of the field φ, naturally incorporates the symmetry-breaking
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propagators of the desired type. I.e., we can, in accordance with appendix E, define:

Φ′ ≡
(

φ
φc

)
=



S(+)

S(0)

N (0)

N (−)

S(+)†

S(0)†

N (0)†

N (−)†


. (II.4.31)

Here the scalar charge conjugation φc is defined by (E.1.4) in appendix E.
However, as indicated by the prime, the basis Φ′ is in fact still not the most convenient one

(and consequently also not the one we will eventually use for actual calculations). The reason for
this is that the electrically neutral and the electrically charged components are in Φ′ distributed
in a rather inconvenient way. The following choice proves to be more (or perhaps the most)
convenient:

Φ ≡



S(+)

N (−)†

S(+)†

N (−)

S(0)

S(0)†

N (0)

N (0)†


. (II.4.32)

One can appreciate better this choice by noting that it has the generic structure

Φ =
(

Φ(+)

Φ(0)

)
, (II.4.33)

where Φ(+) and Φ(0) are made exclusively of the charged and neutral scalars, respectively:

Φ(+) ≡


S(+)

N (−)†

S(+)†

N (−)

 , Φ(0) ≡


S(0)

S(0)†

N (0)

N (0)†

 . (II.4.34)

Thus, due to the conservation of the electric charge the propagator 〈ΦΦ†〉 will have in the basis
(II.4.33) a block diagonal form. Moreover, the structure of (II.4.33) resembles the structure of
an SU(2)L doublet with the electroweak hypercharge Y = 1, consequently the structure of the
SU(2)L × U(1)Y generators in the Φ basis will be rather familiar.

In fact, Φ is related to Φ′ by a simple linear transformation

Φ = U Φ′ , (II.4.35)
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where the unitary matrix U is explicitly given as

U ≡



1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0


(II.4.36a)

=
1
2


1 + σ3 0 0 1− σ3

0 1− σ3 1 + σ3 0
σ1 + iσ2 0 1− σ3 0

0 1 + σ3 0 σ1 − iσ2

 . (II.4.36b)

In order to establish the link with the literature, we also introduce the notation

ΦSN ≡
(

S(+)

N (−)†

)
, (II.4.37a)

ΦS ≡
(

S(0)

S(0)†

)
, (II.4.37b)

ΦN ≡
(

N (0)

N (0)†

)
, (II.4.37c)

which is used in Ref. [56]. We will also use this notation later on when discussing the Ansatz for
the scalar 1PI propagator. In this notation we clearly have

Φ(+) =
(

ΦSN
Φc
SN

)
, (II.4.38a)

Φ(0) =
(

ΦS
ΦN

)
, (II.4.38b)

with Φ(+), Φ(0) defined in (II.4.34).
Both Nambu–Gorkov fields Φ′ and Φ are real fields, since their charge conjugates are just

their linear transforms. For the primed field the linear relation between Φ′ and Φ′c has the
“canonical” form (see (E.1.7))

Φ′c = σ1 Φ′ , (II.4.39)

with the Pauli matrix σ1 operating in the Nambu–Gorkov doublet space of Φ′ (i.e., rotating φ
and φc). In the unprimed basis this condition translates as

Φc = Σ1 Φ , (II.4.40)
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where

Σ1 ≡ U σ1 U (II.4.41a)

=


0 1 0 0
1 0 0 0
0 0 σ1 0
0 0 0 σ1

 . (II.4.41b)

The reality conditions (II.4.39) and (II.4.40) have impact on the form of the corresponding prop-
agators: The full propagators in both bases

iGΦ′ = 〈Φ′Φ′†〉 , (II.4.42)
iGΦ = 〈ΦΦ†〉 (II.4.43)

must non-trivially satisfy

GΦ′ = σ1G
T
Φ′ σ1 , (II.4.44)

GΦ = Σ1G
T
Φ Σ1 . (II.4.45)

Rewriting of the gauge interactions

It will be later useful to know explicitly the SU(2)L × U(1)Y generators in the Φ basis. In order
to find them we now rewrite the gauge interaction of the scalars from the original basis S, N to
the Φ one. In terms of S, N the scalar gauge interactions read28

Lscalar,gauge =
∑

X=S,N

(
DµX

)†(DµX
)
, (II.4.46)

where the covariant derivatives read

Dµ = ∂µ − ig
σa
2
Aµa − ig′

YX
2
Aµ4 . (II.4.47)

The weak hypercharge Y is, in general, related to the electric charge Q and the third component
of the weak isospin t3 of the corresponding SU(2)L × U(1)Y irreducible representation by the
Gell-Mann–Nishijima formula

Y = 2(Q− t3) . (II.4.48)

I.e., in our case of the electroweak doublets S, N , (II.4.5), we have numerically

YS = +1 , (II.4.49a)
YN = −1 . (II.4.49b)

We can write the Lagrangian (II.4.46) more compactly in terms of the field φ, (II.4.30), as

Lscalar,gauge =
(
Dµφ

)†(Dµφ
)
, (II.4.50)

28The Lagrangian (II.4.46) includes also the scalar kinetic terms, entering the Lagrangian (II.4.6).
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with the covariant derivative given by29

Dµ = ∂µ − iTφ,aAµa . (II.4.51)

This time already a = 1, . . . , 4. The generators Tφ,a are defined with the gauge coupling con-
stants g, g′ deliberately included in:

Tφ,a=1,2,3 ≡ 1
2
g

(
σa 0
0 σa

)
, (II.4.52a)

Tφ,a=4 ≡ 1
2
g′
(
YS 0
0 YN

)
. (II.4.52b)

We will now reparameterize the model in terms of the field Φ instead of the field φ. In order
to do so, it turns out to be useful to utilize the primed basis Φ′ as an intermediate stage, i.e.,
to parameterize the model first in terms of the primed field Φ′ and only then to move on to the
parameterization in terms of the field Φ.

In terms of the primed Nambu–Gorkov basis Φ′ the gauge interaction Lagrangian (II.4.50)
recasts as

Lscalar,gauge =
1
2
(
DµΦ′

)†(DµΦ′
)
, (II.4.53)

where this time

Dµ = ∂µ − iTΦ′,aA
µ
a . (II.4.54)

The generators TΦ′,a in the Φ′ basis can be expressed in terms of those Tφ,a in the φ basis,
(II.4.52), as

TΦ′,a =
(
Tφ,a 0
0 −TT

φ,a

)
. (II.4.55)

Now we can rewrite the gauge interaction Lagrangian (II.4.53) and the symmetry generators
(II.4.55) into the unprimed Nambu–Gorkov basis Φ. The Lagrangian has again the same form

Lscalar,gauge =
1
2
(
DµΦ

)†(DµΦ
)
, (II.4.56)

with

Dµ = ∂µ − iTΦ,aA
µ
a . (II.4.57)

Using the relation (II.4.35) between the bases Φ′ and Φ, the generators TΦ,a can be given in
terms of TΦ′,a, (II.4.55), as

TΦ,a = U TΦ′,a U . (II.4.58)

The generators TΦ,a (8× 8 matrices) can be now for a = 1, 2 written in terms of 4× 4 blocks as

TΦ,a=1,2 =
(

0 Ta
T †a 0

)
(II.4.59a)

29In order not to overload the notation, we denote the covariant derivative always as Dµ, irrespective of which basis
(φ, Φ′ or Φ) it is written in.



The model 63

and for a = 3, 4 in terms of 2× 2 blocks as

TΦ,a=3 =
1
2
g


1 0 0 0
0 −1 0 0
0 0 −σ3 0
0 0 0 σ3

 , (II.4.59b)

TΦ,a=4 =
1
2
g′


1 0 0 0
0 −1 0 0
0 0 σ3 0
0 0 0 −σ3

 . (II.4.59c)

The blocks Ta are given by

T1 =
1
2
g


1 0 0 0
0 0 0 −1
0 −1 0 0
0 0 1 0

 =
1
4
g

(
(1 + σ3) −(1− σ3)
−(σ1 + iσ2) (σ1 − iσ2)

)
, (II.4.60a)

T2 =
1
2
g


−i 0 0 0
0 0 0 i
0 −i 0 0
0 0 i 0

 =
1
4
g

(
−i(1 + σ3) i(1− σ3)
−i(σ1 + iσ2) i(σ1 − iσ2)

)
, (II.4.60b)

and for practical calculation it is useful to note that they are related to each other by

T2 = −iσ3T1 , (II.4.61)

with σ3 operating in the space of the indicated blocks of T1, T2. Notice also that in expressing
TΦ,4 we have already used the numerical values (II.4.49) of the hypercharges YS , YN .

Since we will break spontaneously the SU(2)L × U(1)Y symmetry down to the non-trivial
subgroup U(1)em, rather than completely to the trivial group, it will be later on useful to know
explicitly the generators corresponding to broken symmetries and the generator of the unbroken
U(1)em. The generators TΦ,1, TΦ,2 already correspond to the fully broken symmetries, so it
suffices to rotate the generators TΦ,3, TΦ,4 according to (II.4.22) in order to find the completely
broken generator TΦ,Z and the conserved generator TΦ,em. The resulting generators can be,
regarding later applications, written in the form

TΦ,em =
(
TΦ(+),em 0

0 TΦ(0),em

)
, (II.4.62a)

TΦ,Z =
(
TΦ(+),Z 0

0 TΦ(0),Z

)
, (II.4.62b)

with the components of TΦ,em given by

TΦ(+),em =
gg′√
g2 + g′2

(
1 0
0 −1

)
, (II.4.63a)

TΦ(0),em = 0 (II.4.63b)
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and the components of TΦ,Z by

TΦ(+),Z =
1
2
g2 − g′2√
g2 + g′2

(
1 0
0 −1

)
, (II.4.64a)

TΦ(0),Z =
1
2

√
g2 + g′2

(
−σ3 0
0 σ3

)
, (II.4.64b)

respectively.

4.2.2 Quarks

Reparameterization of the fields

Recall the definition of the left-handed quark doublet in terms of the left-handed quark fields uL
and dL, (II.4.4):

qL =
(
uL
dL

)
. (II.4.65a)

It is convenient to organize analogously the right-handed singlet fields uR and dR, (II.4.2), into
the right-handed quark doublet

qR ≡
(
uR
dR

)
. (II.4.65b)

Even more compact notation can be, however, achieved by combining the chiral doublets (II.4.65)
in the obvious way as

q ≡ qL + qR =
(
uL + uR
dL + dR

)
≡
(
u
d

)
. (II.4.66)

The field q (and occasionally also the fields u, d) will be the most convenient to use and we will
therefore rewrite the relevant interactions in its terms.

Rewriting of the gauge interactions

We start the rewriting of the theory in terms of q with the gauge interactions, aiming mainly at the
form of the electroweak generators in the basis q. In terms of the left- and right-handed doublets
qL, qR, (II.4.65), the gauge interactions can be written as

Lquark,gauge = q̄L

(
g
1
2
σaAµa + g′

1
2
YqA

µ
4

)
γµqL + q̄Rg

′ 1
2

(
Yu 0
0 Yd

)
Aµ4γµqR .(II.4.67)

The hyper-charges Yq, Yu, Yd correspond to the left-handed doublet qL and to the right-handed
singlets uR, dR, respectively. They are given in terms of the electric charges Qf ,

Qu = +
2
3
, (II.4.68a)

Qd = −1
3
, (II.4.68b)



The model 65

and in terms of the third components of the weak isospin t3f ,

t3u = +
1
2
, (II.4.69a)

t3d = −1
2
, (II.4.69b)

by the general formula (II.4.48). Specifically, we have

Yq = 2(Qf − t3f ) , (II.4.70a)
Yf = 2Qf , (II.4.70b)

so that the numerical values are

Yq = +
1
3
, (II.4.71a)

Yu = +
4
3
, (II.4.71b)

Yd = −2
3
. (II.4.71c)

In the basis q the gauge interaction Lagrangian (II.4.67) recasts as

L = q̄γµTq,aqA
a
µ , (II.4.72)

where the generators are defined again with the gauge coupling constants included in as

Tq,a=1,2,3 = g
σa
2
PL , (II.4.73a)

Tq,a=4 = g′
Yq
2
PL + g′

1
2

(
Yu 0
0 Yd

)
PR (II.4.73b)

= −g′σ3

2
PL + g′

(
Qu 0
0 Qd

)
. (II.4.73c)

In expressing the generator Tq,4 in the form (II.4.73c) we have used the relations (II.4.70) and
the explicit values (II.4.69) of t3f .

Again, it is useful to know the form of the generator Tq,em, corresponding to the conserved
U(1)em subgroup, together with the orthogonal generator Tq,Z . Using the relations (II.4.22) we
arrive at

Tq,em =
gg′√
g2 + g′2

(
Qu 0
0 Qd

)
, (II.4.74a)

Tq,Z = − g′2√
g2 + g′2

(
Qu 0
0 Qd

)
+
√
g2 + g′2

σ3

2
PL . (II.4.74b)

Just for the sake of later references we also mark explicitly the block-diagonal form of the
generators Tq,3, Tq,4:

Tq,a=3,4 =
(
Tu,a 0
0 Td,a

)
, (II.4.75)
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where

Tf,3 ≡ g t3fPL , (II.4.76a)

Tf,4 ≡ g′
1
2
(
YqPL + YfPR

)
(II.4.76b)

= −g′t3fPL + g′Qf , (II.4.76c)

and naturally also of the generators Tq,em, Tq,Z :

Tq,em =
(
Tu,em 0

0 Td,em

)
, (II.4.77a)

Tq,Z =
(
Tu,Z 0

0 Td,Z

)
, (II.4.77b)

where

Tf,em ≡ gg′√
g2 + g′2

Qf , (II.4.78a)

Tf,Z ≡ − g′2√
g2 + g′2

Qf +
√
g2 + g′2 t3fPL . (II.4.78b)

Rewriting of the Yukawa interactions

Now when we have, in addition to the scalar part, reparameterized also the quark part of the
theory, we can finally rewrite the Yukawa interactions (II.4.10a) in terms of the new degrees of
freedom Φ and q:

LYukawa,q = q̄ Ȳq qΦ (II.4.79a)
= Φ† q̄ Yq q . (II.4.79b)

Here the coupling constant Yq is a complicated rectangular matrix, incorporating all of the partic-
ular Yukawa coupling constants from the original Lagrangian (II.4.10a), together with the chiral
projectors PL,R. It is a column with eight entries, corresponding to eight entries of the scalar
field Φ. Each of the eight entries is a 2 × 2 matrix in the space of the quark doublet q. Hav-
ing in mind the expression of Φ in terms of the fields (II.4.37), the coupling constant Yq can be
expressed in the block form as

Yq =


Yq,SN
Ȳ TΦ
q,SN

Yq,S
Yq,N

 . (II.4.80)

The block Yq,SN is explicitly given as

Yq,SN =


(

0 0
y†dPL − ỹuPR 0

)
(

0 0
yuPR + ỹ†dPL 0

)
 , (II.4.81a)
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so that Ȳ TΦ
q,SN , with TΦ denoting the transpose only in the eight-dimensional space of the scalar

field Φ, has the form

Ȳ TΦ
q,SN =


(

0 ydPR − ỹ†uPL
0 0

)
(

0 y†uPL + ỹdPR
0 0

)
 . (II.4.81b)

The blocks Yq,S and Yq,N read

Yq,S =


(
ỹuPR 0

0 y†dPL

)
(
ỹ†uPL 0

0 ydPR

)
 , (II.4.81c)

Yq,N =


(
y†uPL 0

0 −ỹdPR

)
(
yuPR 0

0 −ỹ†dPL

)
 (II.4.81d)

and one can observe that they satisfy

Yq,S = σ1 Ȳ
TΦ
q,S , (II.4.82a)

Yq,N = σ1 Ȳ
TΦ
q,N . (II.4.82b)

Consequently, the whole Yq satisfies

Yq = Σ1 Ȳ
TΦ
q . (II.4.83)

Notice that we have included in the expression (II.4.81) of Yq, just for completeness, also the
“tilded” Yukawa coupling constants ỹu and ỹd, corresponding to the interactions (II.4.15a), for-
bidden by the discrete symmetry (II.4.19). In fact, we assume of course ỹu = ỹd = 0.

4.2.3 Leptons

Reparameterization of the fields

Likewise in the case of quarks, we have two n-plets νL and eL of the left-handed fields, organized
into the SU(2)L doublet (II.4.4),

`L =
(
νL
eL

)
, (II.4.84a)
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and one n-plet eR of the right-handed charged lepton singlets. This time, in contrast to quarks,
there are m (in general different from n) right-handed neutrino fields, organized into the m-plet
νR, (II.4.3). Nevertheless, it is again convenient to introduce the right-handed lepton doublet
field `R:

`R ≡
(
νR
eR

)
. (II.4.84b)

Since this time the dimensions of the two doublets `L and `R differ, we cannot sum them
and define this way the doublet ` = `L + `R, as we did with quarks (see Eq. (II.4.66)). We can,
however, organize them in the following way

Ψ′
` ≡

(
`L + (`L)c

`R + (`R)c

)
=


νL + (νL)c

eL + (eL)c

νR + (νR)c

eR + (eR)c

 . (II.4.85)

We call it a Nambu–Gorkov field, since it is in a sense the same object as the scalar Nambu–
Gorkov field Φ. In particular, it is also a real or Majorana field, since it satisfies the Majorana
condition:

Ψ′c
` = Ψ′

` . (II.4.86)

The properties of the fermion Majorana field (II.4.85) are discussed in more detail in appendix D,
Sec. D.3.

The main advantage of the Nambu–Gorkov formalism (II.4.85) and actually the reason why
we use it (apart from m 6= n, which could be after all overcome in a simpler way than by
defining Ψ′

`) is that its matrix propagator naturally contains the Majorana propagators, i.e., the
propagators of the type 〈ψψ̄c〉, 〈ψcψ̄〉. Such propagators can be clearly in principle generated
for the neutrinos without breaking the sacred electromagnetic invariance.

However, we are now at the same situation as before with scalars, or more precisely, with the
field Φ′. The prime at Ψ′

` indicates that this basis is not the most convenient one. The reason for
that is again the same: In Ψ′

` the neutral and charged components are mixed. There is a better
basis Ψ` of the Nambu–Gorkov doublet, which can be constructed as follows: First we define
the Nambu–Gorkov doublets separately for both types of leptons:

Ψν ≡
(
νL + (νL)c

νR + (νR)c

)
, (II.4.87a)

Ψe ≡
(
eL + (eL)c

eR + (eR)c

)
, (II.4.87b)

and then we make out of them the doublet Ψ`:

Ψ` ≡
(

Ψν

Ψe

)
=


νL + (νL)c

νR + (νR)c

eL + (eL)c

eR + (eR)c

 . (II.4.88)
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Notice that this field is again Majorana:

Ψc
` = Ψ` . (II.4.89)

The Nambu–Gorkov doublet in this basis is more convenient, because has the same natural form
as the electroweak doublet (II.4.84) and consequently certain quantities (e.g., the propagators
and the generators) will have more natural and familiar block forms.

Notice that the fields Ψ` and Ψ′
` are related to each other by a simple linear transformation:

Ψ` = UΨ′
` , (II.4.90)

where

U ≡


1n×n 0 0 0

0 0 1m×m 0
0 1n×n 0 0
0 0 0 1n×n

 . (II.4.91)

The matrix U satisfies U†U = UTU = 1.
To complete the present discussion of the Nambu–Gorkov formalism, let us state the conse-

quence of the Majorana character of the field Ψ` for its propagator

iGΨ` = 〈Ψ`Ψ̄`〉 . (II.4.92)

The Majorana condition (II.4.89) implies the following symmetry of the propagator:

GΨ`(p) = Gc
Ψ`

(−p) , (II.4.93)

where Gc
Ψ`

(generally, a “charge conjugation” of matrix in Dirac space) is defined in (v). (The
same relation as (II.4.93) holds also for the propagators of the primed Nambu–Gorkov field Ψ′

`,
as it satisfies the same Majorana condition (II.4.86).) More details are to be found in appendix D.

Rewriting of the gauge interactions

We will now rewrite the gauge interaction into the basis Ψ`. Likewise in the case of scalars, we
will use the basis Ψ′

` as a convenient intermediate step, using the results from appendix D. In
terms of the left- and right-handed doublets (II.4.84) the gauge interaction can be written as

Llepton,gauge = ¯̀
L

(
g
1
2
σaAµa + g′

1
2
Y`A

µ
4

)
γµ`L + ¯̀

Rg
′ 1
2

(
Yν 0
0 Ye

)
Aµ4γµ`R ,

(II.4.94a)

or more compactly as

Llepton,gauge = ¯̀
LγµT`L,a`LA

µ
a + ¯̀

RγµT`R,a`RA
µ
a , (II.4.94b)

with T`L,a, T`R,a defined for a = 1, 2, 3 as

T`L,a=1,2,3 ≡ g
1
2
σa , (II.4.95a)

T`R,a=1,2,3 ≡ 0 (II.4.95b)
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and for a = 4 as

T`L,a=4 ≡ g′
1
2
Y` , (II.4.95c)

T`R,a=4 ≡ g′
1
2

(
Yν 0
0 Ye

)
. (II.4.95d)

The hyper-charges Y`, Yν , Ye, corresponding to `L, νR and eR, respectively, are again related to
the corresponding electric charges Qf ,

Qν = 0 , (II.4.96a)
Qe = −1 , (II.4.96b)

and to the third components of the isospin t3f ,

t3ν = +
1
2
, (II.4.97a)

t3e = −1
2
, (II.4.97b)

by the formula (II.4.48), i.e.,

Y` = 2(Qf − t3f ) , (II.4.98a)
Yf = 2Qf . (II.4.98b)

The numerical values are

Y` = −1 , (II.4.99a)
Yν = 0 , (II.4.99b)
Ye = −2 . (II.4.99c)

As shown in appendix D, the Lagrangian (II.4.94b) acquires in the Nambu–Gorkov basis Ψ′
`

the form

Llepton,gauge =
1
2
Ψ̄′
`γµTΨ′`,a

Ψ′
`A

µ
a , (II.4.100)

with the generators TΨ′`,a
expressed in terms of the original generators T`L,a, T`R,a, (II.4.95), as

TΨ′`,a
=

(
T`L,aPL − TT

`L,a
PR 0

0 T`R,aPR − TT
`R,a

PL

)
. (II.4.101)

(Cf. Eq. (D.4.31).) For transition from Ψ′
` to Ψ` we can now use the relation (II.4.90). In the

basis Ψ` the Lagrangian (II.4.100) recasts as

Llepton,gauge =
1
2
Ψ̄`γµTΨ`,aΨ`A

µ
a , (II.4.102)

with the generators TΨ`,a given in terms of the generators TΨ′`,a
simply as

TΨ`,a = U TΨ′`,a
U† . (II.4.103)
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Explicitly we obtain:

TΨ`,1 = −γ5 g
1
2

(
0 PT

+

P+ 0

)
, (II.4.104a)

TΨ`,2 = g
1
2

(
0 −iPT

+

iP+ 0

)
, (II.4.104b)

TΨ`,3 = −γ5 g
1
2

(
P+ν 0
0 −P+e

)
, (II.4.104c)

TΨ`,4 = −γ5 g
′ 1
2

(
Y`P+ν 0

0 Y`P+e

)
+ γ5 g

′ 1
2

(
YνP−ν 0

0 YeP−e

)
(II.4.104d)

= γ5 g
′ 1
2

(
P+ν 0
0 −P+e

)
− γ5g

′
(
Qνσ3ν 0

0 Qeσ3e

)
. (II.4.104e)

The three matrices P+, P+ν , P+e in (II.4.104) differ only in their dimensions: While the first
is rectangular, the other two are square with different dimensions:

P+ ≡
(

1n×n 0
0 n×m

)
, (II.4.105a)

P+ν ≡
(

1n×n 0
0 m×m

)
, (II.4.105b)

P+e ≡
(

1n×n 0
0 n×n

)
. (II.4.105c)

Note that the three matrices coincide in the special case m = n. In practical calculations it is
also useful to note that they are related by the formulæ

P+P
T
+ = P+e , (II.4.106a)

PT
+P+ = P+ν . (II.4.106b)

Analogously, one can also define the matrices P−ν , P−e as

P−ν ≡
(

n×n 0
0 1m×m

)
, (II.4.107a)

P−e ≡
(

n×n 0
0 1n×n

)
. (II.4.107b)

Notice that each pair P+f , P−f forms a complete set of projectors on the two-dimensional
Nambu–Gorkov space of each particular Ψf , (II.4.87), f = ν, e:

P±f P±f = P±f , (II.4.108a)
P±f P∓f = 0 , (II.4.108b)

P±f + P∓f = 1 , (II.4.108c)

with the right-hand sides of (II.4.108b), (II.4.108c) being square matrices of dimensions n +m
and 2n for the neutrinos and charged leptons, respectively. We can also “generalize” the Pauli
matrix σ3:

σ3f ≡ P+f − P−f , (II.4.109)



72 Dynamical symmetry breaking in models with strong Yukawa interactions

i.e.,

σ3ν =
(

1n×n 0
0 −1m×m

)
, (II.4.110a)

σ3e =
(

1n×n 0
0 −1n×n

)
. (II.4.110b)

The generators TΨ`,em and TΨ`,Z are again given by the formulæ (II.4.22) and explicitly come
out as

TΨ`,em = − gg′√
g2 + g′2

γ5

(
Qν σ3ν 0

0 Qe σ3e

)
, (II.4.111a)

TΨ`,Z =
g′2√
g2 + g′2

γ5

(
Qν σ3ν 0

0 Qe σ3e

)
− 1

2

√
g2 + g′2 γ5

(
P+ν 0
0 −P+e

)
.

(II.4.111b)

Like in the case of quarks, we again, for the sake of later references, mark explicitly the
block-diagonal form of the generators TΨ`,3, TΨ`,4:

TΨ`,a=3,4 =
(
TΨν ,a 0

0 TΨe,a

)
, (II.4.112)

where

TΨf ,3 ≡ −g γ5 t3f P+f , (II.4.113a)

TΨf ,4 ≡ −γ5 g
′ 1
2
Y`P+f + γ5 g

′ 1
2
YνP−f (II.4.113b)

= g′γ5 t3f P+f − g′γ5Qf σ3f , (II.4.113c)

and analogously of the generators TΨ`,em, TΨ`,Z :

TΨ`,em =
(
TΨν ,em 0

0 TΨe,em

)
, (II.4.114a)

TΨ`,Z =
(
TΨν ,Z 0

0 TΨe,Z

)
, (II.4.114b)

where

TΨf ,em ≡ − gg′√
g2 + g′2

γ5Qf σ3f , (II.4.115a)

TΨf ,Z ≡ g′2√
g2 + g′2

γ5Qf σ3f −
√
g2 + g′2 γ5 t3fP+f . (II.4.115b)

Consider now the charged lepton generators TΨe,a with a = 3, 4 or a = em, Z. These
generators operate on the space of the Nambu–Gorkov doublet Ψe, which is made of the left-
handed and the right-handed charged lepton fields eL and eR, respectively. Since the number of
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components of both eL and eR is the same (i.e., n), the fields eL, eR can be represented, apart
from the Nambu–Gorkov doublet Ψe, also by the field

e ≡ eL + eR , (II.4.116)

just like the quarks (cf. formulae (II.4.66)). It is useful to know the generators Te,a (with a = 3, 4
or a = em, Z), i.e., the generators TΨe,a rewritten in the basis e. For this we can make use of the
result (D.4.26) (and generally the results from Sec. D.4 of appendix D), stating that

Te,a =
(
PL, PR

)
TΨe,a

(
PL
PR

)
, a = 3, 4 or a = em, Z . (II.4.117)

Not surprisingly, the resulting generators Te,a are of the same form as the quark generators Tf,a,
f = u, d, see Eqs. (II.4.76) and (II.4.78). Only for the sake of later reference, let us state the
generators Te,a explicitly. We have

Te,3 = g t3ePL , (II.4.118a)

Te,4 = g′
1
2
(
Y`PL + YePR

)
(II.4.118b)

= −g′t3ePL + g′Qe (II.4.118c)

for the a = 3, 4 basis and

Te,em =
gg′√
g2 + g′2

Qe , (II.4.119a)

Te,Z = − g′2√
g2 + g′2

Qe +
√
g2 + g′2 t3ePL (II.4.119b)

for the a = em, Z basis.

Rewriting the lepton number symmetry

The lepton number symmetry U(1)`, (II.4.8), is in the Nambu–Gorkov basis Ψ` translated as

U(1)` : Ψ` −→ [Ψ`]
′ = eiTΨ`θ Ψ` . (II.4.120)

We denote the generator TΨ` for the sake of later references as

TΨ` =
(
TΨν 0
0 TΨν

)
, (II.4.121)

where TΨν and TΨe are of course the same

TΨν = −γ5 σ3Q` , (II.4.122a)
TΨe = −γ5 σ3Q` . (II.4.122b)
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Rewriting of the Yukawa interactions

The lepton part (II.4.10b) of the Yukawa interactions (II.4.9) is rewritten in terms of Φ and Ψ` as

LYukawa,` =
1
2
Ψ̄` ȲΨ` Ψ` Φ (II.4.123a)

=
1
2
Φ† Ψ̄` Y` Ψ` , (II.4.123b)

with the coupling constant YΨ` being again, similarly as the quark coupling constant Yq, an 8-
plet, being contracted in (II.4.123) with the 8-plet Φ. In contrast to quarks, however, the entries
of YΨ` are this time not 2×2, but rather 4×4 matrices in the space of the field Ψ`. We can write
YΨ` as

YΨ` =


YΨ`,SN

Ȳ TΦ
Ψ`,SN

YΨ`,S

YΨ`,N

 . (II.4.124)

The block YΨ`,SN is given explicitly as

YΨ`,SN =




0 0 0 y∗ePL
0 0 −ỹT

ν PR 0
0 −ỹνPR 0 0

y†ePL 0 0 0




0 0 0 ỹ∗ePL
0 0 yT

ν PR 0
0 yνPR 0 0

ỹ†ePL 0 0 0




, (II.4.125a)

so that Y TΦ
Ψ`,SN

reads

Y TΦ
Ψ`,SN

=




0 0 0 yePR
0 0 −ỹ†νPL 0
0 −ỹ∗νPL 0 0

yT
e PR 0 0 0




0 0 0 ỹePR
0 0 y†νPL 0
0 y∗νPL 0 0

ỹT
e PR 0 0 0




. (II.4.125b)
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The remaining blocks are given as

YΨ`,S =




0 ỹνPR 0 0

ỹT
ν PR 0 0 0
0 0 0 y∗ePL
0 0 y†ePL 0




0 ỹ∗νPL 0 0
ỹ†νPL 0 0 0

0 0 0 yePR
0 0 yT

e PR 0




, (II.4.125c)

YΨ`,N =




0 y∗νPL 0 0

y†νPL 0 0 0
0 0 0 −ỹePR
0 0 −ỹT

e PR 0




0 yνPR 0 0
yT
ν PR 0 0 0
0 0 0 −ỹ∗ePL
0 0 −ỹ†ePL 0




(II.4.125d)

and since they satisfy

YΨ`,S = σ1 Ȳ
TΦ
Ψ`,S

, (II.4.126a)

YΨ`,N = σ1 Ȳ
TΦ
Ψ`,N

, (II.4.126b)

the whole YΨ` satisfies, similarly to the quark case, the relation

YΨ` = Σ1 Ȳ
TΦ
Ψ`

. (II.4.127)

In addition, there is also the relation

YΨ` = Y cTΦ
Ψ`

, (II.4.128)

which is a consequence of the Majorana nature of Ψ`. Therefore there is no analogue of this
relation for the quarks. For the sake of completeness we have again included in (II.4.125) also
the coupling constants ỹν , ỹe from (II.4.15b), which we actually assume to be vanishing due to
the symmetry (II.4.19): ỹν = 0, ỹe = 0.

4.3 Summary

We have considered an SU(2)L × U(1)Y gauge theory equipped with n generations of the SM
fermions (i.e., the left-handed quark and lepton doublets qL and `L and the right-handed quark
and charged lepton singlets uR, dR and eR). We have enhanced this theory with m right-handed
neutrino singlets νR, allowing for the gauge-invariant Majorana mass term (II.4.7).
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Moreover, we introduced two scalar doublets S and N with opposite hypercharges ±1. The
bare masses squared of these scalars are assumed to be positive, in contrast to the usual Higgs
scalar doublet. Also, again in contrast to the SM, we neglected the scalar self-interactions. How-
ever, the Yukawa interactions (though in the form somewhat constrained by the imposed discrete
symmetry Pdown, (II.4.19)) were kept, as they will be of vital importance for the quest of spon-
taneous symmetry breaking in chapter 6.

Most of the chapter was dedicated to the reparameterization of the theory in terms of the
new degrees of freedom. Namely, instead of using the scalar (S, N ), quark (qL, uR, dR) and
lepton (`L, νR, eR) irreducible representations of SU(2)L×U(1)Y, we introduced new fields Φ,
q and `, in terms of which we have rewritten the gauge interactions (i.e., basically the symmetry
generators) and the Yukawa interactions.
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5 Ansätze for propagators

Our strategy of demonstrating the SSB in the next chapter will be to find its manifestation in the
sector of fermion and scalar propagators. In other words, we will look for symmetry-breaking
parts of those propagators. For that purpose it will be sufficient to probe only a subset of all
possible propagators, i.e., to restrict to some Ansatz for the propagators. This chapter is dedicated
to finding such Ansatz.

5.1 Strategy

In constructing the Ansätze for propagators we will above all make sure carefully that it will not
break the sacred electromagnetic invariance. Apart from this rather obligatory requirement we
will follow also two optional criteria, whose aim is rather to simplify the calculations as much as
possible while keeping present the most essential physical properties of our pattern of the SSB:

First, we will consider only those self-energies that break the symmetry and will neglect
the symmetry-preserving self-energies. We can do this, since we wish only to demonstrate the
viability of the SSB and do not pretend to make any phenomenological predictions. Moreover,
from the technical point of view, it will be convenient to consider only the symmetry-breaking
self-energies since by general arguments we know that they must be UV-finite.

Second, we will also neglect those self-energies (though symmetry-breaking) that renormal-
ize the wave function. This is because we concentrate here mainly on the effects of the SSB on
the particle spectrum. The renormalization of the kinetic terms, though finite, is therefore not of
much interest from our adopted point of view. Nevertheless, we will, just for curiosity, separately
write down explicitly the SD equations for such self-energies and show that they really come out
finite, as they should.

The finial, rather minor guiding principle for determining the Ansatz will be anticipating the
Hartree–Fock approximation of the SD equations, to be introduced only in the next chapter 6.
This will in fact apply only to the scalars. It will turn out that some of the scalar self-energies,
even though symmetry-breaking and not renormalizing the kinetic terms, will be vanishing in
the one-loop, Hartree–Fock approximation. We will therefore set them to zero from the very
beginning, just in order to make the intermediate formulæ as simple and tractable as possible.

5.2 Scalars

5.2.1 Notation for propagators

The scalar self-energy ΠΦ is defined as the difference

ΠΦ ≡ D−1
Φ −G−1

Φ (II.5.1)

between the inverse free propagator DΦ and the inverse full propagator GΦ,

iDΦ = 〈ΦΦ†〉0 , (II.5.2)
iGΦ = 〈ΦΦ†〉 . (II.5.3)

Since the original scalar doublets S, N have hard masses MS , MN , respectively, the free propa-
gator DΦ is given by

DΦ = diag(D0
S , D

0
N , D

0
S , D

0
N , D

0
S , D

0
S , D

0
N , D

0
N ) , (II.5.4)



78 Dynamical symmetry breaking in models with strong Yukawa interactions

where

D0
S ≡

1
p2 −M2

S

, D0
N ≡

1
p2 −M2

N

. (II.5.5)

We will now construct an appropriate Ansatz for ΠΦ by following the philosophy outlined above.

5.2.2 General form of the self-energy

First, recall that since the Nambu–Gorkov field Φ satisfies the condition (II.4.40), there is the non-
trivial condition (II.4.45) for the full propagator GΦ. Since the free propagator (II.5.4) satisfies
this condition too (it must, as being just a special case of the full propagator in the case of no
interactions), the self-energy (II.5.1) must satisfy it as well:

ΠΦ = Σ1 ΠT
Φ Σ1 , (II.5.6)

with Σ1 given by (II.4.41). This is the first, most basic requirement on ΠΦ.
Further, we demand that the U(1)em is preserved by the scalar self-energy ΠΦ. That is to

say, we demand that30

[ΠΦ, TΦ,em] = 0 , (II.5.7)

with the electromagnetic generator TΦ,em given by (II.4.62a).
Moreover, we want rather for technical reasons the self-energy ΠΦ to be Hermitian:

ΠΦ = Π†
Φ . (II.5.8)

Apart from obviously convenient reduction of the number of independent parts of ΠΦ this con-
dition will later on ensure that the masses squared of the scalars bosons will be real.

The three conditions (II.5.6), (II.5.7), (II.5.8) constrain the ΠΦ to have the form

ΠΦ =
(

ΠΦ(+) 0
0 ΠΦ(0)

)
, (II.5.9)

where

ΠΦ(+) ≡
(
A 0
0 AT

)
, (II.5.10a)

ΠΦ(0) ≡
(

C E
E† D

)
, (II.5.10b)

with

A ≡
(
A1 A2

A∗2 A3

)
, (II.5.11a)

C ≡
(
C1 C2

C∗2 C1

)
, (II.5.11b)

D ≡
(
D1 D2

D∗
2 D1

)
, (II.5.11c)

E ≡
(
E1 E2

E∗2 E∗1

)
. (II.5.11d)

30See discussion of the quantities (I.3.37), measuring the symmetry breaking.
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Here the numbers A1, A3, C1, D1 and A2, C2, D2, E1, E2 are real and complex functions of p2,
respectively.

5.2.3 Symmetry constraints

Not all of the functions Ai, Ci, Di, Ei, however, break the symmetry. Some of them (or some
linear combination(s) of them) may preserve it. Let us now check it.

The TΦ,Z generator

Let us start with the symmetry associated with the generator TΦ,Z , (II.4.62b). Its breaking in-
duced by the scalar self-energy ΠΦ is measured by the commutator [ΠΦ, TΦ,Z ]. Due to the
block-diagonal structure of TΦ,Z we have

[ΠΦ, TΦ,Z ] =
(

[ΠΦ(+) , TΦ(+),Z ] 0
0 [ΠΦ(0) , TΦ(0),Z ]

)
, (II.5.12)

with TΦ(+),Z , TΦ(0),Z given by (II.4.64).
For the first commutator [ΠΦ(+) , TΦ(+),Z ] we have immediately

[ΠΦ(+) , TΦ(+),Z ] = 0 . (II.5.13)

Vanishing of [ΠΦ(+) , TΦ(+),Z ] is in fact due to the requirement of the electromagnetic invariance,
since the generator TΦ(+),Z , (II.4.64a), is proportional to its electromagnetic counterpart TΦ(+),em,
(II.4.63a).

More interesting is the second commutator [ΠΦ(0) , TΦ(0),Z ]. Explicit calculation reveals

[ΠΦ(0) , TΦ(0),Z ] =
1
2

√
g2 + g′2

(
−[C, σ3] {E, σ3}
−{E†, σ3} [D,σ3]

)
, (II.5.14)

with the particular (anti)commutators

[C, σ3] = 2
(

0 −C2

C∗2 0

)
, (II.5.15a)

[D,σ3] = 2
(

0 −D2

D∗
2 0

)
, (II.5.15b)

{E, σ3} = 2
(
E1 0
0 E∗1

)
. (II.5.15c)

Therefore, we conclude that from the nine self-energies A1, A3, C1, D1, A2, C2, D2, E1, E2

only the three C2, D2, E1 break the symmetry associated with the generator TΦ,Z .

The TΦ,1, TΦ,2 generators

We can calculate similarly also the commutators of ΠΦ with the generators TΦ,1, TΦ,2, (II.4.59a),
and arrive at

[ΠΦ, TΦ,a=1,2] =
(

0 Xa

−X†
a 0

)
, (II.5.16)
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with Xa given by

Xa = ΠΦ(+) Ta − TaΠΦ(0) . (II.5.17)

Noting the definitions (II.4.60) of Ta, we find

X1 =
1
2
g


(A1 − C1) −C2 −E1 −(A2 + E2)
(A2 + E2)∗ E1 D∗

2 −(A3 −D1)
C∗2 −(A1 − C1) (A2 + E2)∗ E∗1
−E∗1 −(A2 + E2) (A3 −D1) −D2

 (II.5.18a)

and

X2 = −iσ3X1 . (II.5.18b)

In expression (II.5.18b) for X2 we have used the relation (II.4.61). Thus, we conclude that the
self-energies C2, D2, E1 separately break the invariance. Of the remaining six self-energies A1,
A3, C1, D1, A2, E2 only the combinations

A1 − C1 , (II.5.19a)
A3 −D1 , (II.5.19b)
A2 + E2 (II.5.19c)

break the generators TΦ,1, TΦ,2, while the combinations

A1 + C1 , (II.5.20a)
A3 +D1 , (II.5.20b)
A2 − E2 (II.5.20c)

leave them invariant.

The discrete Pdown symmetry

Furthermore, recall that apart from the continuous symmetry SU(2)L × U(1)Y there is also the
discrete symmetry Pdown, (II.4.19), acting on the scalar doublets S, N as

Pdown : S −→ [S]′ = −S , (II.5.21a)
Pdown : N −→ [N ]′ = +N . (II.5.21b)

For the individual blocks A, C, D, E of Π we have therefore

[A,Pdown] = 2
(

0 A2

A∗2 0

)
, (II.5.22a)

[C,Pdown] = 0 , (II.5.22b)
[D,Pdown] = 0 , (II.5.22c)
[E,Pdown] = 2E . (II.5.22d)
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The “commutators” in (II.5.22) are defined as

[X,Pdown] ≡ X − [X]′ , (II.5.23)

where [X]′ is transformation of X under Pdown. Therefore we see, in particular, that the func-
tions A2 and E2 do break the Pdown symmetry separately, which is to be compared with the
previous result that only the combination A2 +E2 breaks the SU(2)L×U(1)Y symmetry, while
the combination A2 − E2 preserves it.

Elimination of E

Now, as we know which of the functionsAi, Ci,Di,Ei, or their linear combinations do break the
symmetries of the Lagrangian and which not, we can proceed to the construction of the Ansatz.
We have seen that all functions, but the combinations A1 +C1 and A3 +D1, break at least a part
of the full symmetry SU(2)L × U(1)Y × Pdown. Since the symmetry-preserving combinations
contain the perturbative and hence potentially UV-divergent contributions, we will not consider
them in our Ansatz and set

A1 + C1 = 0 , (II.5.24a)
A3 +D1 = 0 . (II.5.24b)

Now all of the other functions, as being symmetry-breaking and hence UV-finite, should be
in principle included into the Ansatz. However, for various reason we will neglect also some of
these symmetry-breaking functions. First of all, we set E = 0:

E1 = 0 , (II.5.25a)
E2 = 0 . (II.5.25b)

There are two reason for doing that. The first reason is rather pragmatic: If E = 0, then the
matrix ΠΦ(0) , (II.5.10b), has a block-diagonal form with the non-vanishing blocks C, D being
2×2 matrices. Recall that the self-energy ΠΦ(+) , (II.5.10a), has already the same block-diagonal
form too. Now since the free propagator DΦ, (II.5.4), is a diagonal matrix, the full propagator
GΦ has consequently the same block structure as the self-energy ΠΦ, i.e., it consists of four 2×2
blocks on the diagonal. The point is that each of these blocks is calculated from the self-energy
by taking inverse of a 2× 2 matrix, which is of course much easier than taking inverse of a 4× 4
matrix (which would be inevitable if E 6= 0).

Second reason for setting E = 0 actually anticipates what we will discuss only in the next
chapter. Likewise in chapter 3 on the Abelian toy model, we will also here study the dynamics us-
ing the SD equations, derived from the CJT effective potential. And also likewise in the Abelian
toy model, we will approximate the CJT effective potential by the single one-loop diagram, i.e.,
we will use the Hartree–Fock approximation. However, as we will show explicitly later, it turns
out that in this approximation the SD equations for E are vanishing, and consequently in one
loop we have indeed E = 0. Only at two loops there would be a non-vanishing contribution to
E.
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5.2.4 Refining the notation

Now when we have set E = 0, it is convenient to change slightly our denotations. We rename
the non-vanishing self-energy blocks as

A ≡ ΠΦSN , (II.5.26a)
C ≡ ΠΦS , (II.5.26b)
D ≡ ΠΦN , (II.5.26c)

so that the self-energies ΠΦ(+) and ΠΦ(0) now read

ΠΦ(+) =
(

ΠΦSN 0
0 ΠT

ΦSN

)
, (II.5.27a)

ΠΦ(0) =
(

ΠΦS 0
0 ΠΦN

)
. (II.5.27b)

The full propagator GΦ has the form

GΦ =
(
GΦ(+) 0

0 GΦ(0)

)
, (II.5.28)

with

GΦ(+) =
(
GΦSN 0

0 GT
ΦSN

)
, (II.5.29a)

GΦ(0) =
(
GΦS 0

0 GΦN

)
. (II.5.29b)

The particular propagators GΦSN , GΦS , GΦN are given in terms of the self-energies ΠΦSN ,
ΠΦS , ΠΦN as

GΦSN =
[(

p2 −M2
S 0

0 p2 −M2
N

)
−ΠΦSN

]−1

, (II.5.30a)

GΦS =
[(

p2 −M2
S 0

0 p2 −M2
S

)
−ΠΦS

]−1

, (II.5.30b)

GΦN =
[(

p2 −M2
N 0

0 p2 −M2
N

)
−ΠΦN

]−1

. (II.5.30c)

Here we can see explicitly what was mentioned above: If the block E was not assumed to
be vanishing, the propagator G(0) could not be written in the convenient block-diagonal form
(II.5.29b).

Also, in order to be in accordance with Ref. [56], we rename the functions A2, C2, D2 as

A2 ≡ ΠSN , (II.5.31a)
C2 ≡ ΠS , (II.5.31b)
D2 ≡ ΠN . (II.5.31c)
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Furthermore, we denote the symmetry-breaking combinations (II.5.19a), (II.5.19b) as

A1 − C1 ≡ 2AS , (II.5.32a)
A3 −D1 ≡ 2AN , (II.5.32b)

The self-energies ΠΦSN , ΠΦS , ΠΦN therefore read

ΠΦSN =
(

AS ΠSN

Π∗
SN AN

)
, (II.5.33a)

ΠΦS =
(
−AS ΠS

Π∗
S −AS

)
, (II.5.33b)

ΠΦN =
(
−AN ΠN

Π∗
N −AN

)
. (II.5.33c)

Plugging these self-energies into the expressions (II.5.30) for the full propagators, we arrive at

GΦSN =
1

(p2 −M2
S −AS)(p2 −M2

N −AN )− |ΠSN |2

×
(
p2 −M2

N −AN ΠSN

Π∗
SN p2 −M2

S −AS

)
, (II.5.34a)

GΦS =
1

(p2 −M2
S +AS)2 − |ΠS |2

(
p2 −M2

S +AS ΠS

Π∗
S p2 −M2

S +AS

)
, (II.5.34b)

GΦN =
1

(p2 −M2
N +AN )2 − |ΠN |2

(
p2 −M2

N +AN ΠN

Π∗
N p2 −M2

N +AN

)
.

(II.5.34c)

5.2.5 Wave function renormalization self-energies

The self-energy Ansatz (II.5.33), with five symmetry-breaking functions ΠSN , ΠS , ΠN , AS ,
AN , is still quite complicated. One could ask whether it is possible to simplify it by neglecting
some of the five functions, while keeping present the most significant features of the resulting
scalar spectrum.

Consider the scalar spectrum, which is obtained as poles of the full propagator. From the
three particular propagators (II.5.34) we have altogether six pole equations:

p2 =
M2
S +AS

2
+
M2
N +AN

2
±

√(
M2
S +AS

2
−
M2
N +AN

2

)2

+ |ΠSN |2 , (II.5.35a)

p2 = M2
S −AS ± |ΠS | , (II.5.35b)

p2 = M2
N −AN ± |ΠN | . (II.5.35c)

Recall that all the quantities ΠSN , ΠS , ΠN , AS , AN are functions of p2.
The first equation (II.5.35a) (which is actually two equations, thanks to the “±” option) says

that as a result of the SSB the original two charged fields S(+) and N (−)† with the respective
masses MS and MN mix into two new charged fields with masses given by the pole equation(s)
(II.5.35a).
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More interesting are the other two equations, (II.5.35b) and (II.5.35c). For the sake of def-
initeness let us focus on the former one, (II.5.35b), as the latter one, (II.5.35c), is completely
analogous. As discussed already on a similar example in chapter 3, the equation (II.5.35b) (com-
prising again actually two equations) describes mixing between the two complex fields S(0) and
S(0)† with the same bare masses MS , resulting into two new real fields with different masses.
Clearly, this mass splitting is proportional to ΠS , as for the case ΠS = 0 the two equations
(II.5.35b) would coincide. If on the other hand AS = 0, the mass splitting is still present. In fact,
AS serves only as a finite renormalization of the bare massMS , with no impact on the interesting
phenomenon of mass splitting. Therefore we will neglect in our Ansatz the function AS , as well
as on the basis of the same arguments also the function AN :

AS = 0 , (II.5.36a)
AN = 0 . (II.5.36b)

5.2.6 Final form of the Ansatz

We can now state the final form of the Ansatz. The scalar self-energy ΠΦ is given by

ΠΦ =


ΠΦSN 0 0 0

0 ΠT
ΦSN 0 0

0 0 ΠΦS 0
0 0 0 ΠΦN

 , (II.5.37)

where

ΠΦSN =
(

0 ΠSN

Π∗
SN 0

)
, (II.5.38a)

ΠΦS =
(

0 ΠS

Π∗
S 0

)
, (II.5.38b)

ΠΦN =
(

0 ΠN

Π∗
N 0

)
. (II.5.38c)

This corresponds to the full propagator GΦ of the form

GΦ =


GΦSN 0 0 0

0 GT
ΦSN

0 0
0 0 GΦS 0
0 0 0 GΦN

 , (II.5.39)

where the particular propagators are given by

GΦSN =
1

(p2 −M2
S)(p2 −M2

N )− |ΠSN |2

(
p2 −M2

N ΠSN

Π∗
SN p2 −M2

S

)
, (II.5.40a)

GΦS =
1

(p2 −M2
S)2 − |ΠS |2

(
p2 −M2

S ΠS

Π∗
S p2 −M2

S

)
, (II.5.40b)

GΦN =
1

(p2 −M2
N )2 − |ΠN |2

(
p2 −M2

N ΠN

Π∗
N p2 −M2

N

)
. (II.5.40c)
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The pole equations (II.5.35) reduce to

p2 =
M2
S +M2

N

2
±

√(
M2
S −M2

N

2

)2

+ |ΠSN |2 , (II.5.41a)

p2 = M2
S ± |ΠS | , (II.5.41b)

p2 = M2
N ± |ΠN | . (II.5.41c)

Finally, in order to make formulæ more compact, it is convenient to introduce the notation

DSN ≡ 1
(p2 −M2

S)(p2 −M2
N )− |ΠSN |2

, (II.5.42a)

DS ≡ 1
(p2 −M2

S)2 − |ΠS |2
, (II.5.42b)

DN ≡ 1
(p2 −M2

N )2 − |ΠN |2
(II.5.42c)

for the fractions figuring in the expressions (II.5.40) for the full propagators.
For the sake of later references, we state here explicitly the Feynman rules for the propagators.

The Feynman rules for the self-energies (II.5.31) read

〈S(0)S(0)〉1PI =
S

(0)
S

(0)

= −i ΠS , (II.5.43a)

〈N (0)N (0)〉1PI =
N

(0)
N

(0)

= −i ΠN , (II.5.43b)

〈S(+)N (−)〉1PI =
S

(+)
N

(−)

= −i ΠSN . (II.5.43c)

The 1PI propagators with the opposite arrows differ from these only by complex conjugation
of the corresponding function ΠS , ΠN , ΠSN , respectively.

The Feynman rules for the symmetry-breaking parts of the full propagators (II.5.40) (the
off-diagonal entries) read

〈S(0)S(0)〉 =
S

(0)
S

(0)

= iΠS DS , (II.5.44a)

〈N (0)N (0)〉 =
N

(0)
N

(0)

= iΠN DN , (II.5.44b)

〈S(+)N (−)〉 =
S

(+)
N

(−)

= iΠSN DSN . (II.5.44c)



86 Dynamical symmetry breaking in models with strong Yukawa interactions

Again, the opposite arrows correspond to complex conjugation of the respective self-energy func-
tions. The Feynman rules for the symmetry-preserving parts of the full propagators (II.5.40) (the
diagonal entries) are given by

〈S(0)S(0)†〉 =
S

(0)
S

(0)

= i (p2 −M2
S)DS , (II.5.45a)

〈N (0)N (0)†〉 =
N

(0)
N

(0)

= i (p2 −M2
N )DN , (II.5.45b)

〈S(+)S(+)†〉 =
S

(+)
S

(+)

= i (p2 −M2
N )DSN , (II.5.45c)

〈N (−)N (−)†〉 =
N

(−)
N

(−)

= i (p2 −M2
S)DSN . (II.5.45d)

5.3 Quarks

Now we will construct an Ansatz for the quark self-energy. We will proceed basically in the same
way as before with scalar: First we will demand the electromagnetic invariance together with the
Hermiticity. Next we will investigate which parts of the self-energy break the symmetries of the
model and which not, with the intention to keep in the Ansatz only those symmetry-breaking
parts. And finally, we will argue that even some of the symmetry-breaking parts of the self-
energy can be neglected without affecting the most significant impacts of the SSB on the particle
spectrum, which will be this time the very generation of fermion masses (rather than the mass
splitting in the scalar case).

5.3.1 Notation for propagators

The full scalar propagator Gq,

iGq = 〈qq̄〉 , (II.5.46)

is related to the free propagator Sq, whose inverse reads, due to the absence of quarks mass terms
in the Lagrangian, simply

S−1
q = /p , (II.5.47)

by the self-energy Σq:

Σq ≡ S−1
q −G−1

q . (II.5.48)

We are now going to construct a suitable Ansatz for it.
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5.3.2 General form of the self-energy

The requirement of the U(1)em invariance for the quark self-energy Σq reads

Σq Tq,em − T̄q,em Σq = 0 . (II.5.49)

Since the generator Tq,em has the block-diagonal form (see explicit form (II.4.74a) of Tq,em), the
self-energy Σq must have due to the condition (II.5.49) a block-diagonal form too:

Σq =
(

Σu 0
0 Σd

)
. (II.5.50)

Here the self-energies Σu, Σd are given in terms of the fields u, d, Eq. (II.4.66), as

− iΣu = 〈uū〉1PI , (II.5.51a)
−iΣd = 〈dd̄〉1PI . (II.5.51b)

Thus, the single condition (II.5.49) of the electromagnetic invariance now decouples into two
separate conditions

Σf Tf,em − T̄f,em Σf = 0 , f = u, d . (II.5.52)

However, since the particular generators Tf,em, (II.4.78a), are just pure real numbers, the condi-
tions (II.5.52) are fulfilled automatically and the requirement of electromagnetic invariance gives
us no further constraints on the particular quarks self-energies Σu and Σd.

Further, we demand satisfaction of the condition

Σq = Σ̄q (II.5.53)

(recall that Σ̄q = γ0 Σ†
q γ0), which is just a direct analogue of the Hermiticity condition (II.5.8)

for the scalar self-energy. Due to the block-diagonal form of (II.5.65) of Σq the condition
(II.5.53) implies Σf = Σ̄f for both f = u, d. As a consequence we obtain the general form
of both Σf :

Σf = /p(AfL PL +AfR PR) + (Σ†f PL + Σf PR) , (II.5.54)

where AfL, AfR, Σf are p2-dependent, complex n × n matrices and the matrices AfL, AfR
are moreover Hermitian. The Hermiticity condition (II.5.53) is technical in two senses: First, it
reduces the number of independent parts of the quark self-energy, and second, it ensures that the
resulting fermions spectrum will be real.31

5.3.3 Symmetry constraints

The Tq,Z and Tq,1, Tq,2 generators

Let us now examine which parts of the quark self-energy do break the symmetry. For the sym-
metry associated with the generator Tq,Z the relevant quantity is

Σq Tq,Z − T̄q,Z Σq = −1
2

√
g2 + g′2

(
−Σ†u PL + Σu PR 0

0 Σ†d PL − Σd PR

)
,

(II.5.55)
31To be more precise, this is true only under the additional assumption, being made here implicitly, that the matrices

1−AfL and 1−AfR are positive definite. This is actually related to the positivity of the spectral function.
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while for the generators Tq,1 and Tq,2 we have

Σq Tq,1 − T̄q,1 Σq =

− 1
2
g/pPL(AuL −AdL)

(
0 −1
1 0

)
− 1

2
g

(
0 Σd PR − Σ†u PL

Σu PR − Σ†d PL 0

)
,

(II.5.56a)
Σq Tq,2 − T̄q,2 Σq =

− i
1
2
g/pPL(AuL −AdL)

(
0 1
1 0

)
− i

1
2
g

(
0 −(Σd PR − Σ†u PL)

Σu PR − Σ†d PL 0

)
.

(II.5.56b)

The discrete Pdown symmetry

Let us now check the invariance under the discrete symmetry Pdown, (II.4.19). Its action quark
fields can be written compactly as

Pdown : u −→ [u]′ = u , (II.5.57a)
Pdown : d −→ [d]′ = −γ5 d . (II.5.57b)

It is clear that the up-type self-energy Σu stays intact under (II.5.57):

[Σu,Pdown] = 0 . (II.5.58a)

(Recall the definition (II.5.23) of this commutator.) On the other hand, the down-type self-energy
Σd, (II.5.54), does not commute with (II.5.57), its chirality-changing part Σd changes the sign
under Pdown, so that

[Σd,Pdown] = 2(Σ†d PL + Σd PR) . (II.5.58b)

We conclude that only the Σd is non-invariant under Pdown. However, as we saw a moment ago
(Eqs. (II.5.55) and (II.5.56)), Σd was non-invariant also under the SU(2)L×U(1)Y. In this sense
the behavior under Pdown tells us nothing new concerning the (non-)invariance of the quark self-
energy under the symmetries of the Lagrangian. This is in contrast with the scalar self-energy,
where due to the discrete symmetry Pdown the self-energy ΠSN is symmetry-breaking and thus
capable of being a part of the scalar self-energy Ansatz.

Purely symmetry-breaking self-energy

We have probed the behavior of the quark self-energy under all symmetries of the Lagrangian
and thus we can continue at the very construction of the Ansatz. We have seen that both Σu
and Σd did break the symmetry and hence they have to be included into the Ansatz. On the
other hand, we have also seen that out of the four functions AuL, AuR, AdL, AdR only the
combination AuL − AdL did break the symmetry and hence should be included into the Ansatz
too. We therefore denote

AuL −AdL ≡ 2Aq (II.5.59)
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and set

AuL +AdL = 0 , (II.5.60)

together with

AuR = 0 , (II.5.61a)
AdR = 0 . (II.5.61b)

The most general, purely symmetry-breaking Ansatz therefore has the form

Σu = /pAq PL + (Σ†u PL + Σu PR) , (II.5.62a)

Σd = −/pAq PL + (Σ†d PL + Σd PR) . (II.5.62b)

5.3.4 Wave function renormalization self-energies

Likewise in the case of scalars, we are now going to argue that not all of the three symmetry-
breaking functions Σu, Σu, Aq in (II.5.62) are necessary in the quest for the phenomenon of the
dynamical generation of fermion masses. These can be obtained as poles of the full propagators
corresponding to the self-energies (II.5.62). Explicitly the pole equations read

det
[
p2 − Σ†u(1−Aq)−1Σu

]
= 0 , (II.5.63a)

det
[
p2 − Σ†d(1 +Aq)−1Σd

]
= 0 . (II.5.63b)

We immediately see that in order to have non-vanishing fermion masses we must have non-
vanishing chirality changing parts of the propagators, i.e., the self-energies Σu, Σd. On the other
hand, the self-energy Aq is obviously not essential in this respect. Recall that we are primarily
interested in the very demonstration of the generation of fermion masses, without an ambition to
make the phenomenological predictions. For this purpose considering Aq is redundant. There-
fore we will neglect it in the Ansatz and set

Aq = 0 , (II.5.64)

which completes construction of the Ansatz.

5.3.5 Final form of the Ansatz

Let us summarize for the sake of later references various formulæ concerning the final form of
the quark self-energy Ansatz.

Propagators

The final form of the Ansatz reads

Σq =
(

Σu 0
0 Σd

)
, (II.5.65)

where

Σf = Σ†f PL + Σf PR . (II.5.66)
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Notice that the definition (II.5.66) is correct for f standing both for q and for u, d; we will use
this convention in the rest of this section.

We can now write down the explicit form of the full quark propagator. Since both the self-
energy Σq and the free propagator Sq are diagonal in the space of the quark doublet, so must be
the propagator Gq:

Gq =
(
Gu 0
0 Gd

)
. (II.5.67)

Using the relation (II.5.48) and the form of the Ansatz (II.5.65), we can express the propagators
Gf ,

Gf =
(
/p−Σf

)−1
, (II.5.68)

either in terms of Σf as

Gf =
(
/p+ Σf

)(
p2 − Σ†f Σf

)−1
PL +

(
/p+ Σ†f

)(
p2 − Σf Σ†f

)−1
PR , (II.5.69)

or in terms of Σf as

Gf =
(
/p+ Σ†

f

)(
p2 −Σf Σ†

f

)−1
(II.5.70a)

=
(
p2 −Σ†

f Σf

)−1(
/p+ Σ†

f

)
. (II.5.70b)

Mass spectrum

Since the two quantities Σ†f Σf and Σf Σ†f are different matrices, so are the two “denominators”
in (II.5.69). However, their pole structure is the same, as both matrices Σ†f Σf and Σf Σ†f have
the same (p2-dependent) spectrum. In other words, the two, apparently different, pole equations

det
(
p2 − Σ†f Σf

)
= 0 , (II.5.71a)

det
(
p2 − Σf Σ†f

)
= 0 (II.5.71b)

are identical. To see this recall that the self-energy Σf can be diagonalized by means of the
bi-unitary transformation (see also Eq. (D.5.1) in appendix D):

Σf = V †f Mf Uf , (II.5.72)

where Uf , Vf are unitary matrices and Mf is a diagonal, real and non-negative matrix. Needless
to say that all three matrices Uf , Vf , Mf are functions of p2; some consequences of this general
momentum dependence will be discusses in chapter 7. Plugging the expression (II.5.72) into
the pole equations (II.5.71) and using the unitarity of Uf , Vf , we find that both pole equations
(II.5.71) are reexpressed by the same equation

det
(
p2 −M2

f

)
= 0 (II.5.73)

(which can be understood, due to the diagonality of Mf , as a set of n independent equations
p2 −M2

fi = 0, i = 1, . . . , n, rather than as a single equation). We have thus shown that the
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two pole equations (II.5.71) are really the same. Moreover, we have also explicitly shown that
the quark mass spectrum is real and positive. However, the number of solutions of the pole
equation remains undetermined, due to the undetermined momentum dependence of Σf . Only
in the special case of constant, momentum-independent Σf one knows that there are exactly n
solutions.

Notation for “denominators”

Let us also introduce, in accordance with appendix D, some useful notation for the “denomina-
tors” of the propagators:

DfL =
(
p2 − Σf Σ†f

)−1
, (II.5.74a)

DfR =
(
p2 − Σ†f Σf

)−1
, (II.5.74b)

and

DfL =
(
p2 −Σf Σ†

f

)−1 = DfL PL +DfR PR , (II.5.75a)

DfR =
(
p2 −Σ†

f Σf

)−1 = DfL PR +DfR PL . (II.5.75b)

For the reader’s convenience we also present the “commutation” relations

Σf DfR = DfL Σf (II.5.76)

and

Σf DfR = DfLΣf , (II.5.77)

useful for practical calculations.

5.4 Leptons

We are now going to construct the Ansatz for the self-energy of the lepton field Ψ`. We will
follow the same guidelines as in the case of scalars and quarks.

5.4.1 Notation for propagators

Just in order to establish the notation, recall that the lepton self-energy ΣΨ` is defined as the
difference between the free propagator SΨ` and the full propagator GΨ` :

ΣΨ` ≡ S−1
Ψ`
−G−1

Ψ`
. (II.5.78)

At the same time, it can be computed as the 1PI propagator:

− iΣΨ` = 〈Ψ`Ψ̄`〉1PI . (II.5.79)

The full propagator is expressed in terms of the Nambu–Gorkov field Ψ` as

iGΨ` = 〈Ψ`Ψ̄`〉 . (II.5.80)
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The inverse free propagator SΨ` has due to the existence of the non-vanishing bare right-handed
Majorana neutrino masses (II.4.7) the non-trivial form

S−1
Ψ`

= /p−
(
M†
νR PL +MνR PR

)
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , (II.5.81)

which is to be compared with much simpler form (II.5.47) of the quark free propagator.

5.4.2 General form of the self-energy

Recall that since the lepton field Ψ` satisfies the Majorana condition (II.4.89), there is the con-
straint (II.4.93) on its full propagatorGΨ` . As the free propagator (II.5.81) satisfies this constraint
too (since the mass matrix MνR is symmetric), so must also the self-energy ΣΨ` :

ΣΨ`(p) = Σc
Ψ`

(−p) . (II.5.82)

Apart from the “obligatory” constraint (II.5.82) we will also demand that ΣΨ` satisfy the
“optional” technical constraint

ΣΨ` = Σ̄Ψ` . (II.5.83)

The reasons for imposing this condition are the same as in the case of quarks: reduction of the
independent parts of ΣΨ` and reality and non-negativity of the lepton spectrum.

We require invariance of ΣΨ` under the electromagnetic U(1)em symmetry. Namely, we
demand

ΣΨ` TΨ`,em − T̄Ψ`,em ΣΨ` = 0 . (II.5.84)

Due to the block-diagonal form of TΨ`,em, (II.4.111a), the self-energy ΣΨ` must have a block-
diagonal form too:

ΣΨ` =
(

ΣΨν 0
0 ΣΨe

)
. (II.5.85)

The single condition (II.5.84) on the electromagnetic invariance now decouples into two condi-
tions

ΣΨf TΨf ,em − T̄Ψf ,em ΣΨf = 0 , f = ν, e , (II.5.86)

being subject to independent treatments.
The self-energies ΣΨν , ΣΨe are given in terms of the fields Ψν , Ψe, Eq. (II.4.87), as (f =

ν, e)

− iΣΨf = 〈Ψf Ψ̄f 〉1PI . (II.5.87)

Since the fields Ψν , Ψe are Majorana too, we have for ΣΨν , ΣΨe the same constraints as the
(II.5.82) for ΣΨ` :

ΣΨf (p) = Σc
Ψf

(−p) . (II.5.88)

Similarly, the Hermiticity condition (II.5.83) now translates into two conditions

ΣΨf = Σ̄Ψf . (II.5.89)
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5.4.3 Symmetry constraints

Electromagnetic invariance for neutrinos

We are now going to discuss the conditions (II.5.86) of electromagnetic invariance for each of
the two lepton types separately. We start with the neutrinos, as they are easier. Recall that

TΨν ,em = 0 , (II.5.90)

as can be seen from (II.4.115a) with Qν = 0. Therefore the equation (II.5.86) is for neutrinos
satisfied trivially and hence it gives no constraint on ΣΨν . Put another way, due to electrical neu-
trality of neutrinos their self-energy can be arbitrary (up to the constraints (II.5.88) and (II.5.89))
without affecting the electric charge conservation. In particular, in contrast to charged fermions,
it can contain also the components of the Majorana type. To be explicit, the two conditions
(II.5.88) and (II.5.89) constrain the self-energy ΣΨν to have the form

ΣΨν = /p(AT
Ψν PL +AΨν PR) + (Σ†Ψν PL + ΣΨν PR) , (II.5.91)

where the matrices AΨν and ΣΨν are respectively Hermitian and symmetric, but otherwise com-
pletely arbitrary. However, as the left-handed and the right-handed neutrino components have
different transformation properties under the symmetries of the model, it is convenient to take
into account the doublet structure of the Nambu–Gorkov field Ψν ,

Ψν =
(
νL + (νL)c

νR + (νR)c

)
, (II.5.92)

and introduce for the sake of later references a special denotation for the corresponding blocks
in the matrices AΨν and ΣΨν , entering (II.5.91):

AΨν ≡
(

AT
νL AνM

A†νM AνR

)
, (II.5.93a)

ΣΨν ≡
(

ΣνL ΣνD
ΣT
νD ΣνR

)
. (II.5.93b)

Here AνL, AνR are Hermitian matrices, while ΣνL, ΣνR are symmetric matrices. The matrices
AνM , ΣνD are arbitrary. In terms of these blocks the self-energy ΣΨν , (II.5.91), has the form:

ΣΨν = /p

(
AνL PL +AT

νL PR A∗νM PL +AνM PR
AT
νM PL +A†νM PR AT

νR PL +AνR PR

)
+
(

Σ†νL PL + ΣνL PR Σ∗νD PL + ΣνD PR
Σ†νD PL + ΣT

νD PR Σ†νR PL + ΣνR PR

)
. (II.5.94)

Electromagnetic invariance for charged leptons

For the charged leptons Ψe the application of the conditions (II.5.88) and (II.5.89) yields ΣΨe in
the same form as before ΣΨν , (II.5.91), i.e.,

ΣΨe = /p(AT
Ψe PL +AΨe PR) + (Σ†Ψe PL + ΣΨe PR) , (II.5.95)
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with AΨe and ΣΨe being again respectively Hermitian and symmetric matrices. However,
since the corresponding electromagnetic generator TΨe,em, (II.4.115a), is this time non-trivial
(Qe = −1), the application of the condition of electromagnetic invariance (II.5.86) constrains
the matrices AΨe , ΣΨe to have in the Nambu–Gorkov space (II.4.87b) the special block forms

AΨe =
(
AT
eL 0
0 AeR

)
, (II.5.96)

ΣΨe =
(

0 Σe
ΣT
e 0

)
. (II.5.97)

In this block form the self-energy ΣΨe has the form

ΣΨe = /p

(
AeL PL +AT

eL PR 0
0 AeR PR +AT

eR PL

)
+
(

0 Σe PR + Σ∗e PL
Σ†e PL + ΣT

e PR 0

)
. (II.5.98)

Recall that the matrices AeL, AeR are Hermitian, while Σe can be arbitrary.
One can take also another, more illuminating view on the Ansatz (II.5.95) for ΣΨe . We can

notice that the generator TΨe,em is proportional to γ5 σ3. Therefore, as shown in appendix D,
Eq. (D.3.10), the transformation of the Namu–Gorkov field Ψe, generated by the generator
TΨe,em, is equivalent to the transformation of the Dirac field e = eL + eR, (II.4.116), induced
by the generator Te,em, (II.4.119a). Accordingly, the condition (II.5.86) is equivalent to the con-
dition

Σe Te,em − T̄e,em Σe = 0 , (II.5.99)

with

− iΣe = 〈eē〉1PI . (II.5.100)

In other words, due to the invariance under the electromagnetic symmetry U(1)em (and since eL
and eR are of the same dimensionality) the description using the charged Nambu–Gorkov field
Ψe is completely equivalent to the description using the Dirac field e. This is shown in more
detail in Sec. D.4 of appendix D, together with more results concerning passing between the two
equivalent descriptions Ψe and e. Using these results it can be shown that the self-energy ΣΨe ,
(II.5.95), of the Nambu–Gorkov field Ψe corresponds to the following form of the self-energy
Σe of the Dirac field e:

Σe = /p(AeL PL +AeR PR) + (Σ†e PL + Σe PR) . (II.5.101)

Notice that Σe has the same form as the self-energies (II.5.54) of the quark fields u, d. It is of
course not surprising, since for the electrically charged quarks the condition of electromagnetic
invariance is the same as for charged leptons (compare the U(1)em generators (II.4.78a) for u, d
with the generator (II.4.119a) for e).

Two comments are in order now. First, we have now a posteriori justified our choice in
the case of quarks to work directly from the very beginning within the Dirac basis q = qL +
qR. Formally it would have been more correct to start with Nambu–Gorkov field Ψq and only
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afterwards to show its equivalence to q due to non-vanishing quarks’ electric charges and due the
same number of left-handed and the right-handed quarks.

Second, if the description using the field e is equivalent to the description using the field Ψe,
there is a question why to introduce Ψe at all and why not to work exclusively with e. Certainly
this would be possible. However, we choose to work rather in terms Ψe, since it seems to be
convenient to treat the charged leptons and the neutrinos on the same footing as long as possible
and only in the final results to take back into play their different nature.

The TΨ`,Z generator

Having established the U(1)em invariant Ansatz, we can analyze its transformation properties
under the complementary symmetries of the full SU(2)L × U(1)Y symmetry, i.e., under the
symmetries induced by the generators TΨ`,Z , TΨ`,1, TΨ`,2.

We start with the generator TΨ`,Z , (II.4.111b). As it is block-diagonal, we can analyze two
separate quantities ΣΨf TΨf ,Z − T̄Ψf ,Z ΣΨf for the two lepton types f = ν, e.

For the neutrinos with the generator TΨν ,Z given explicitly by (II.4.115b) (recall thatQν = 0)
and with ΣΨν given by (II.5.91) we therefore arrive explicitly at

ΣΨν TΨν ,Z − T̄Ψν ,Z ΣΨν =
1
2

√
g2 + g′2/p

(
PL[P+ν , AΨν ]

T + PR[P+ν , AΨν ]
)

+
1
2

√
g2 + g′2

(
PL{P+ν ,ΣΨν}† + PR{P+ν ,ΣΨν}

)
,

(II.5.102)

with the relevant (anti)commutators given in terms of (II.5.112) by

[P+ν , AΨν ] =
(

0 AνM
−A†νM 0

)
, (II.5.103a)

{P+ν ,ΣΨν} =
(

2ΣνL ΣνD
ΣT
νD 0

)
. (II.5.103b)

For the charged leptons with the generator TΨe,Z given explicitly by (II.4.115b) and ΣΨe

given by (II.5.98) we obtain

ΣΨe TΨe,Z − T̄Ψe,Z ΣΨe =
1
2

√
g2 + g′2

(
0 Σ†e PL + ΣT

e PR
Σ∗e PL + Σe PR 0

)
.

(II.5.104)

The TΨ`,1, TΨ`,2 generators

Similarly can be treated the generators TΨ`,1 and TΨ`,2, (II.4.104a) and (II.4.104b), respectively.
Taking into account the form of ΣΨ` obtained so far, we find

ΣΨ` TΨ`,a − T̄Ψ`,aΣΨ` =
(

0 −Xa

X̄a 0

)
, (II.5.105)
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where

X1 ≡ 1
2
g

[
/pPL

(
(AνL −AeL) A∗νM

0 0

)
+ /pPR

(
−(AνL −AeL)T −AνM

0 0

)
+PL

(
−Σ†νL −Σ∗νD
−Σ†eD 0

)
+ PR

(
ΣνL ΣνD
ΣT
eD 0

)]
, (II.5.106a)

X2 ≡ i
1
2
g

[
/pPL

(
−(AνL −AeL) −A∗νM

0 0

)
+ /pPR

(
−(AνL −AeL)T −AνM

0 0

)
+PL

(
−Σ†νL −Σ∗νD
Σ†eD 0

)
+ PR

(
−ΣνL −ΣνD
ΣT
eD 0

)]
. (II.5.106b)

The discrete Pdown symmetry

And finally, there is the discrete symmetry Pdown, (II.4.19). Clearly, it does not affect the neu-
trinos at all. The charged leptons are nevertheless affected. We can repeat the result for the
down-type quarks (II.5.58b) that non-invariance of Σe under Pdown is proportional to Σe:

[Σe,Pdown] = 2(Σ†e PL + Σe PR) . (II.5.107)

Lepton number symmetry

As discussed in Sec. 4.1.1, the lepton number symmetry is in fact broken explicitly by the non-
vanishing right-handed Majorana neutrino mass terms (II.4.7). It is nevertheless useful to see
how this symmetry would be broken spontaneously (i.e., by the lepton self-energies) in the case
of MνR = 0.

Recall that the lepton number symmetry U(1)` acts on the Nambu–Gorkov field Ψ` as
(II.4.120), with the corresponding generator TΨ` having the diagonal form (II.4.121). Thus
again, since both TΨ` and ΣΨ` are diagonal, we can investigate the quantity ΣΨ` TΨ`− T̄Ψ` ΣΨ`

separately for neutrinos and charged leptons. We obtain

ΣΨe TΨe − T̄Ψe ΣΨe = 0 , (II.5.108a)

ΣΨν TΨν − T̄Ψν ΣΨν = 2Q`

(
Σ†νL PL − ΣνL PR 0

0 −Σ†νR PL + ΣνR PR

)
.

(II.5.108b)

We can see the expected result that only the two Majorana-type self-energies ΣνL, ΣνR break
the lepton number symmetry.

Purely symmetry-breaking self-energy

We conclude that the symmetry-preserving components of the self-energies areAeR,AνR,AνL+
AeL, plus the ΣνR as we assume the explicit violation (II.4.7) of the lepton number symmetry. (If
we assumed the lepton number symmetry to be at the Lagrangian level exact, we would include
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ΣνR into the Ansatz too.) The symmetry-breaking self-energies are then ΣνL, ΣνD, Σe, AνM ,
AνL −AeL. We therefore neglect the symmetry-preserving components of the Ansatz,

AνL +AeL = 0 , (II.5.109a)
AeR = 0 , (II.5.109b)
AνR = 0 , (II.5.109c)
ΣνR = 0 (II.5.109d)

and upon denoting

AνL −AeL ≡ 2A` (II.5.110)

find the most general electromagnetically invariant Ansatz consisting only of the symmetry-
breaking and thus UV-finite parts to be the following:

ΣΨν = /p

(
A` PL +AT

` PR A∗νM PL +AνM PR
AT
νM PL +A†νM PR 0

)
+
(

Σ†νL PL + ΣνL PR Σ∗νD PL + ΣνD PR
Σ†νD PL + ΣT

νD PR 0

)
, (II.5.111a)

ΣΨe = /p

(
−A` PL −AT

` PR 0
0 0

)
+
(

0 Σe PR + Σ∗e PL
Σ†e PL + ΣT

e PR 0

)
.

(II.5.111b)

Or in terms of the forms (II.5.91), (II.5.95) for ΣΨν , ΣΨe we have for the relevant quantities
AΨν , ΣΨν and AΨe , ΣΨe :

AΨν =
(

AT
` AνM

A†νM 0

)
, (II.5.112a)

ΣΨν =
(

ΣνL ΣνD
ΣT
νD 0

)
(II.5.112b)

and

AΨe =
(
−AT

` 0
0 0

)
, (II.5.113a)

ΣΨe =
(

0 Σe
ΣT
e 0

)
. (II.5.113b)

5.4.4 Wave function renormalization self-energies

The procedure of refining the Ansatz now continues in the same way as with the quarks. The
pole equations corresponding to the full propagators with the self-energies given by the Ansatz
(II.5.112), (II.5.113) read

det
[
p2 − (1−AΨν )

−1/2Σ†Ψν ,M (1−AT
Ψν )

−1ΣΨν ,M
(1−AΨν )

−1/2
]

= 0 , (II.5.114a)

det
[
p2 − (1−AΨe)

−1/2Σ†Ψe(1−A
T
Ψe)

−1ΣΨe
(1−AΨe)

−1/2
]

= 0 , (II.5.114b)
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where we denoted

ΣΨν ,M ≡ ΣΨν +
(

0 0
0 MνR

)
=
(

ΣνL ΣνD
ΣT
νD MνR

)
. (II.5.115)

Clearly, while the chirality-changing parts of the self-energies, ΣΨν and ΣΨe , are necessary for
generation of the lepton masses, the chirality preserving parts, AΨν and AΨe , are not and will be
accordingly discarded from the Ansatz. That is to say, we set

AΨν = 0 , (II.5.116a)
AΨe = 0 , (II.5.116b)

or in terms of the individual entries of AΨν , AΨe ,

A` = 0 , (II.5.116c)
AνM = 0 . (II.5.116d)

5.4.5 Final form of the Ansatz

By setting (II.5.116) we have completed the construction of the lepton self-energy Ansatz. In
this section we summarize the obtained results and for the reader’s convenience we also repeat
some of the formulæ presented already above.

Self-energies

The final form of the Ansatz (II.5.111) upon considering (II.5.116) thus reads

ΣΨf = Σ†Ψf PL + ΣΨf PR , (II.5.117)

where, likewise in the case of quarks, the subscript f can stand both for ` as well as for ν, e. On
basis of the previous discussion we have

ΣΨν =
(

ΣνL ΣνD
ΣT
νD 0

)
, (II.5.118a)

ΣΨe =
(

0 Σe
ΣT
e 0

)
. (II.5.118b)

Just for completeness recall that

ΣΨ` =
(

ΣΨν 0
0 ΣΨe

)
. (II.5.119)

so that

ΣΨ` =
(

ΣΨν 0
0 ΣΨe

)
. (II.5.120)

Since there is a non-vanishing neutrino bare mass in the Lagrangian (the right-handed Majo-
rana mass term MνR, Eq. (II.4.7)), it is convenient to define

ΣΨν ,M ≡ ΣΨν +
(

0 0
0 MνR

)
=
(

ΣνL ΣνD
ΣT
νD MνR

)
(II.5.121)
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and correspondingly also

ΣΨ`,M ≡
(

ΣΨν ,M 0
0 ΣΨe

)
, (II.5.122)

so that naturally

ΣΨν ,M ≡ Σ†Ψν ,M PL + ΣΨν ,M PR (II.5.123)

and

ΣΨ`,M ≡ Σ†Ψ`,M PL + ΣΨ`,M PR . (II.5.124)

Full propagators

Having arrived at the definitive self-energy Ansatz, we can now finally express the full propagator
GΨ` , (II.5.80), using the formula (II.5.78). It has necessarily the diagonal form

GΨ` =
(
GΨν 0

0 GΨe

)
, (II.5.125)

where

GΨν =
(
/p−ΣΨν ,M

)−1
, (II.5.126a)

GΨe =
(
/p−ΣΨe

)−1
, (II.5.126b)

and

GΨ` =
(
/p−ΣΨ`,M

)−1
, (II.5.127)

We do not state here explicit forms of the inversions, as they would be the same as for the quarks.
In any case, detailed formulæ can be found in appendix D.

Mass spectrum

The pole equations corresponding to the propagators GΨν , GΨe are

det
[
p2 − Σ†Ψν ,M ΣΨν ,M

]
= 0 , (II.5.128a)

det
[
p2 − Σ†Ψe ΣΨe

]
= 0 . (II.5.128b)

Pole equations with interchanged Σ†Ψν ,M ↔ ΣΨν ,M
and Σ†Ψe ↔ ΣΨe

are equivalent to (II.5.128)
as could be shown in an analogous way as in the case of quarks. Notice that the charged lepton
pole equation (II.5.128b) can be simplified due to the special form (II.5.118b) of ΣΨe as

det
[
p2 − Σ†e Σe

]
= 0 . (II.5.129)

Due to the same argument as in the case of quarks, the pole equations again predict real and
positive lepton masses. Their number, however, is for general self-energies undetermined. Only
in the special case of the momentum-independent self-energies we know that there will be n+m
solutions to the neutrino equation (II.5.128a) and n solutions to the charged lepton equation
(II.5.128b).
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Notation for “denominators”

Likewise in the case of quarks, it is now convenient to introduce some notation for the “denomi-
nators” in the full propagators GΨν and GΨe , (II.5.126):

DΨν ≡
(
p2 − ΣΨν ,M

Σ†Ψν ,M
)−1 ≡

(
DνL DνM

D†
νM DT

νR

)
, (II.5.130a)

DΨe ≡
(
p2 − ΣΨe

Σ†Ψe
)−1 ≡

(
DeL 0
0 DT

eR

)
, (II.5.130b)

as well as

DΨν ≡
(
p2 −ΣΨν ,M

Σ†
Ψν ,M

)−1
, (II.5.131a)

DΨe ≡
(
p2 −ΣΨe

Σ†
Ψe

)−1
. (II.5.131b)

Similarly we also define, for the sake of later references, the notation concerning the propagator
GΨ` , (II.5.127):

DΨ` ≡
(
p2 − ΣΨ`,M

Σ†Ψ`,M
)−1 =

(
DΨν 0

0 DΨe

)
(II.5.132)

and

DΨ` ≡
(
p2 −ΣΨ`,M

Σ†
Ψ`,M

)−1 =
(

DΨν 0
0 DΨe

)
. (II.5.133)

(Cf. appendix D.) Unlike in the case of quarks, we do not need to introduce a special denotation
for the expressions with interchanged Σ† ↔ Σ and Σ† ↔ Σ , since they are given just by
the transposition and charge conjugation, respectively, see (D.3.37) and (D.3.39). The charged
lepton notation (II.5.130b) is consistent with the quark notation (II.5.74): For the charged leptons
the definition (II.5.130b) equivalent to

DeL =
(
p2 − Σe Σ†e

)−1
(II.5.134)

DeR =
(
p2 − Σ†e Σe

)−1
(II.5.135)

to be compared with the analogous quark definition (II.5.74).
The lepton analogues of the quark relations (II.5.76) and (II.5.77) read in the Nambu–Gorkov

basis

ΣΨν ,M DT
Ψν = DΨν ΣΨν ,M , (II.5.136a)

ΣΨe D
T
Ψe = DΨe ΣΨe (II.5.136b)

and

ΣΨν ,M Dc
Ψν = DΨν ΣΨν ,M , (II.5.137a)

ΣΨe Dc
Ψe = DΨe ΣΨe , (II.5.137b)
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respectively (similarly for the Ψ`-quantities (II.5.132), (II.5.133)). In terms of the individual
Nambu–Gorkov components it translates for the charged leptons simply as

ΣeDeR = DeL Σe , (II.5.138)

while for the neutrinos we obtain slightly more complicated set of relations

ΣνDDνR + ΣνLD∗
νM = DνL ΣνD +DνM MνR , (II.5.139)

ΣνLDT
νL + ΣνDDT

νM = DνL ΣνL +DνM ΣT
νD , (II.5.140)

MνRDνR + ΣT
νDD

∗
νM = DT

νRMνR +D†
νM ΣνD . (II.5.141)

5.5 Summary

We looked for the self-energy Ansatz separately for scalars (Φ), quarks (q) and leptons (Ψ`).
The procedure was in each case basically the same: First we found the most general form of
the Ansatz consistent with the requirement of Hermiticity and electromagnetical invariance, as
well as with the constraints following from the eventual Nambu–Gorkov nature of the field in
question. Then we checked the invariance of the Ansatz under the generators of the coset space
SU(2)L×U(1)Y/U(1)em and kept in the Ansatz only the non-invariant parts. This was followed
by discarding the wave function renormalization parts. Finally, in sections 5.2.6, 5.3.5 and 5.4.5,
we made a short summary of the formulæ associated with the final form of the Ansatz, including
the expressions and notations for the corresponding full propagators.
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6 Dynamics

In this chapter we will study the Yukawa dynamics of the presented model with the aim to
show that it is capable of breaking the electroweak symmetry down to the electromagnetic one
by means of formation of symmetry-breaking parts of the scalar and fermion propagators. We
will proceed basically in the same way as we did in part I within the Abelian toy model. We
will first derive the SD equations at the Hartree–Fock approximation for arbitrary self-energies
and only then we will restrict them on the self-energies of the form derived in the previous
chapter. The solutions to these SD equations are assumed to be UV-finite, as the considered self-
energies Ansätze contain only symmetry-breaking parts. For the sake of comparison, we will
present also the SD equations for the non-Ansatz parts of the self-energies and show that they
indeed come out UV-finite or UV-divergent, depending on whether they are symmetry-breaking
or symmetry-preserving. In some cases, however, we will have for that purpose to resort to
two-loop considerations.

Apart from mere formulation of the SD equations, we will also give some numerical evidence
that they have the solutions of the desired properties: UV-finite and allowing, at least in principle,
for the realistic fermion spectrum, with large observed hierarchies. Finally, we will also briefly
comment on the compatibility of the obtained results with the electroweak observables.

6.1 Schwinger–Dyson equations

In analyzing the dynamics of the model we will now proceed exactly in the same way as we did
in the context of the Abelian toy model in chapter 3. That is to say, we will employ the method of
the SD equations, truncated at the level of two-point functions; all other functions, in particular
the three-point functions, will be approximated by the bare ones. We will again derive the SD
equations using the CJT formalism, with the CJT effective potential calculated in the lowest, i.e.,
in the Hartree–Fock approximation.

6.1.1 SD equations in general

We will now derive the SD equations using the CJT formalism and again under the deliberate (and
unjustified) assumption of vanishing scalar VEVs.32 As the procedure will be almost completely
analogous to what we did in chapter 3, we will not go into much detail.

The CJT effective potential is given by

V [GΦ, Gq, GΨ` ] = VΦ[GΦ] + Vq[Gq] + VΨ` [GΨ` ] + V2[GΦ, Gq, GΨ` ] . (II.6.1)

The first three terms are defined standardly (cf. (I.3.48) in the Abelian case) as

VΦ[GΦ] = i
1
2

∫
d4k

(2π)4
Tr
{

ln(D−1
Φ GΦ)−D−1

Φ GΦ + 1
}
, (II.6.2a)

Vq[Gq] = −i
∫

d4k

(2π)4
Tr
{

ln(S−1
q Gq)− S−1

q Gq + 1
}
, (II.6.2b)

VΨ` [GΨ` ] = −i
1
2

∫
d4k

(2π)4
Tr
{

ln(S−1
Ψ`
GΨ`

)− S−1
Ψ`
GΨ`

+ 1
}
. (II.6.2c)

32See the discussion at the beginning of Sec. 3.3
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The factor of 1/2 at VΨ` is due to the Majorana character of the field Ψ`. The functional V2 is
again given by the sum of all 2PI diagrams.

The SD equations correspond to the condition for the stationary point of the effective poten-
tial V , (II.6.1), with respect to the variations of the propagatorsGΦ,Gq,GΨ` . However, similarly
to the Abelian toy model, the space of the allowed variations is not arbitrary. Recall that while
the quark field q is unrestricted, yielding also no restriction on its propagator Gq, the scalar and
lepton fields Φ, Ψ` satisfy the conditions (II.4.40), (II.4.89), implying the non-trivial conditions
for their propagators (II.4.45), (II.4.93), respectively. Therefore in varying the propagators one
has to take carefully into account these restrictions.

Technically the procedure of extremizing the effective potential V under the constraints
(II.4.45), (II.4.93) is carried out again using the method of the Lagrange multipliers. Without
going into the detail we only state the resulting SD equations:

− iΠΦ(p) = −(2π)4
[

δ V2

δ GT
Φ(p)

+ Σ1

(
δ V2

δ GT
Φ(p)

)T

Σ1

]
, (II.6.3a)

−iΣq(p) = (2π)4
δ V2

δ GT
q (p)

, (II.6.3b)

−iΣΨ`(p) = (2π)4
[

δ V2

δ GT
Ψ`

(p)
+
(

δ V2

δ GT
Ψ`

(−p)

)c
]
. (II.6.3c)

Notice that the form of the equations for ΠΦ, ΣΨ` indeed does guarantee the satisfaction of the
respective constraints (II.5.6), (II.5.82).

6.1.2 Hartree–Fock approximation

We approximate the functional V2 in (II.6.1) by the Hartree–Fock approximation, used also in
chapter 3. Again, V2 therefore decouples into the sum of the independent contributions from the
quarks and the leptons:

V2[GΦ, Gq, GΨ` ] = V2,q[GΦ, Gq] + V2,`[GΦ, GΨ` ] , (II.6.4)

with the particular fermion contributions given according to Fig. II.6.1 (and taking into account
the Yukawa interactions (II.4.79) and (II.4.123)) as

− iV2,q[GΦ, Gq] = −1
2
i5Nc

∫
d4k

(2π)4
d4p

(2π)4
Tr
{
Yq Gq(k) Ȳq Gq(p)GΦ(k − p)

}
,

(II.6.5a)

−iV2,`[GΦ, GΨ` ] = −1
4
i5
∫

d4k

(2π)4
d4p

(2π)4
Tr
{
YΨ` GΨ`(k) ȲΨ` GΨ`(p)GΦ(k − p)

}
,

(II.6.5b)

where Nc = 3 is the number of colors. One can compare this with the analogous expression
(I.3.66) in the Abelian toy model, with the two fermion species ψ1, ψ2 being analogues of q, Ψ`,
respectively.

We can now plug the approximation (II.6.4) of V2 into the equations (II.6.3) and calculate
the corresponding functional derivatives in order to arrive at the final form of the SD equations
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Ȳq Yq−i V2,q[GΦ, Gq] =

ȲΨℓ
YΨℓ

−i V2,ℓ[GΦ, GΨℓ
] =

Φ Φ

ΦΦ

q q

qq

Ψℓ Ψℓ

ΨℓΨℓ

Figure II.6.1. Diagrammatical representation of V2,q and V2,`, Eqs. (II.6.5). Note the missing arrows at the
lepton lines due to the Majorana (i.e., real) character of the corresponding field Ψ`.

(before taking into account the Ansatz for the propagators). Likewise in the Abelian case, com-
puting of the SD equation (II.6.3a) for ΠΦ can be somewhat simplified by noting that due to the
properties (II.4.83), (II.4.127) of the coupling constants Yq, YΨ` , respectively, and also due to the
using of the Hartree–Fock approximation (II.6.5) there are the following identities:

δ V2,q

δ GT
Φ

= Σ1

(
δ V2,q

δ GT
Φ

)T

Σ1 , (II.6.6a)

δ V2,`

δ GT
Φ

= Σ1

(
δ V2,`

δ GT
Φ

)T

Σ1 . (II.6.6b)

On top of this, there is also property (II.4.128) of the lepton coupling constant Y`, following
from the Majorana character of the field Ψ`. It implies, again together with the Hartree–Fock
approximation (II.6.5), the relation

δ V2,`

δ GT
Ψ`

(p)
=

(
δ V2,`

δ GT
Ψ`

(−p)

)c

, (II.6.7)

allowing to simplify the calculation of the SD equation (II.6.3c) for ΣΨ` .
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Figure II.6.2. The SD equations (II.6.8) for ΠΦ, Σq , ΣΨ` in the Hartree–Fock approximation, yet without
employment of a specific Ansatz for the self-energies.

As a net result, we arrive at the following set of SD equations:33

− iΠΦ = −Nc
∫

d4k

(2π)4
Trψ

{
Yq Gq Ȳq Gq

}
− 1

2

∫
d4k

(2π)4
Trψ

{
YΨ` GΨ` ȲΨ` GΨ`

}
,

(II.6.8a)

−iΣq =
∫

d4k

(2π)4
TrΦ

{
Yq Gq Ȳq GΦ

}
, (II.6.8b)

−iΣΨ` =
∫

d4k

(2π)4
TrΦ

{
YΨ` GΨ` ȲΨ` GΦ

}
, (II.6.8c)

see Fig. II.6.2.

6.1.3 Employing the Ansatz

We now restrict the general SD equations (II.6.8) to the self-energy Ansätze derived in the pre-
vious chapter. This means two things:

33We do not indicate the momentum dependencies in the SD equations (here as well as elsewhere in this chapter) as
they can be easily revealed from the corresponding Feynman diagrams.
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Figure II.6.3. The SD equations (II.6.9) for the scalar self-energies ΠSN , ΠS , ΠN , respectively.

1. We substitute the full propagators GΦ, Gq, GΨ` in the SD equations (II.6.8) by the expres-
sions (II.5.39), (II.5.67), (II.5.125), corresponding to the self-energies Ansätze (II.5.37),
(II.5.65), (II.5.119).

2. We keep only those equations, which contribute to the parts of ΠΦ, Σq, ΣΨ` , consistent
with the corresponding Ansatz.

In other words, we plug the Ansatz derived in chapter 5 to both sides of the SD equations (II.6.8)
and keep only those equations with non-vanishing left-hand side.

The Ansatz (II.5.37) for the scalar self-energy ΠΦ consists of the three independent compo-
nents ΠSN , ΠS , ΠN , see (II.5.38). The single matrix equation (II.6.8a) for ΠΦ thus yields the
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dL dRdL dR

yu yd

uLuR

dL dR

yd yd

dLdR

N (−) S(+)S(0) S(0)

= +

uL uR uL uR

yd yu
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uL uR

yu yu
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S(+) N (−)N (0) N (0)

Figure II.6.4. The SD equations (II.6.10) (up to the missing overall factor of PR in (II.6.10)) for the quark
self-energies Σu and Σd, respectively.

following three non-matrix SD equations:

− i ΠSN = −2Nc
∫

d4k

(2π)4
Tr
{
y†d ΣuDuR y

†
u ΣdDdR

}
−2
∫

d4k

(2π)4
Tr
{

(ΣνLD∗
νM + ΣνDDνR)y†ν ΣeDeR y

†
e

}
, (II.6.9a)

−i ΠS = −2Nc
∫

d4k

(2π)4
Tr
{
y†d ΣdDdR y

†
d ΣdDdR

}
−2
∫

d4k

(2π)4
Tr
{
y†e ΣeDeR y

†
e ΣeDeR

}
, (II.6.9b)

−i ΠN = −2Nc
∫

d4k

(2π)4
Tr
{
y†u ΣuDuR y

†
u ΣuDuR

}
−2
∫

d4k

(2π)4
Tr
{
y†ν(ΣνLD

∗
νM + ΣνDDνR)y†ν(ΣνLD

∗
νM + ΣνDDνR)

}
−2
∫

d4k

(2π)4
Tr
{
y†ν(ΣνLD

T
νL + ΣνDDT

νM )y∗ν(Σ
T
νDD

∗
νM +MνRDνR)

}
,

(II.6.9c)

see Fig. II.6.3. Notice the employment of the notation for the propagator “denominators”, intro-
duced in sections 5.2.6, 5.3.5, 5.4.5
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Figure II.6.5. The SD equations (II.6.11) (up to the missing overall factor of PR in (II.6.11)) for the lepton
self-energies ΣνD , ΣνL and Σe, respectively.

The Ansatz (II.5.65) for the quark self-energy Σq consists of the two flavor-matrix functions
Σu, Σd. Correspondingly, the equation (II.6.8b) for Σq gives rise to the two SD equations

− i Σu =
∫

d4k

(2π)4
yuDuR Σ†u yu ΠN DN +

∫
d4k

(2π)4
ydDdR Σ†d yu ΠSN DSN ,

(II.6.10a)

−i Σd =
∫

d4k

(2π)4
ydDdR Σ†d yd ΠS DS +

∫
d4k

(2π)4
yuDuR Σ†u yd ΠSN DSN ,

(II.6.10b)

see Fig. II.6.4.
And finally, the Ansatz (II.5.119) for the lepton self-energy ΣΨ` consists again of two flavor-

matrix functions ΣΨν , ΣΨe . This time, however, the self-energies ΣΨν , ΣΨe are “reducible” in
the sense that each of them contains mutually dependent parts. To see this explicitly, consider
their respective matrix forms (II.5.118): the Dirac parts ΣνD, Σe are contained twice in each
ΣΨν , ΣΨe . Moreover, some of the blocks of ΣΨν , ΣΨe are vanishing. Thus, it is convenient to
decompose ΣΨν , ΣΨe into the block in Nambu–Gorkov space and consider only those indepen-
dent and non-vanishing, i.e., the mentioned Dirac parts ΣνD, Σe and the Neutrino left-handed
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uL uR uL uR
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uL uR
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S(+) S(+)S(0) S(0)

Figure II.6.6. The SD equations (II.6.12) for the quark self-energies Σu and Σd, respectively, in the case of
only one scalar doublet S and without the discrete symmetry Pdown.

Majorana part ΣνL. We have therefore the following three independent equations:

− i ΣνD =
∫

d4k

(2π)4
yν(DνR Σ†νD +DT

νM Σ†νL)yν ΠN DN

+
∫

d4k

(2π)4
yeDeR Σ†e yν ΠSN DSN , (II.6.11a)

−i ΣνL =
∫

d4k

(2π)4
yν(DT

νM Σ∗νD +DνRM
†
νR)yT

ν ΠN DN , (II.6.11b)

−i Σe =
∫

d4k

(2π)4
yeDeR Σ†e ye ΠS DS

+
∫

d4k

(2π)4
yν(DνR Σ†νD +DT

νM Σ†νL)ye ΠSN DSN , (II.6.11c)

see Fig. II.6.5. (In fact, the matrix equation for ΣνL still includes some mutually dependent
equations, since ΣνL = ΣT

νL.)

6.1.4 Why two scalar doublets?

Now it is time to comment on why we considered two scalar doublets S and N with opposite
hypercharges, instead of only one, like in the SM. Thus, assume for a moment that the scalar
doublet N is missing and the only scalar doublet in the theory is S. Relax also the requirement
of invariance under the discrete symmetry Pdown. Then the Yukawa interactions of both S and
S̃ are present and have the same form as those in the SM. Consequently, the doublet S can be in
such a case regarded as a direct analogue of the SM Higgs doublet.

The SD equations (II.6.10) for the quark self-energies Σu, Σd (we consider for simplicity
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only the quarks, as the case of neutrinos would be analogous) then modify as

− i Σu =
∫

d4k

(2π)4
ỹuDuR Σ†u ỹu Π∗

S DS +
∫

d4k

(2π)4
ydDdR Σ†d ỹuD

0
S , (II.6.12a)

−i Σd =
∫

d4k

(2π)4
ydDdR Σ†d yd ΠS DS −

∫
d4k

(2π)4
ỹuDuR Σ†u ydD

0
S . (II.6.12b)

In understanding these equations and their relation to the corresponding diagrams in Fig. II.6.6 it
is useful to take into account that in the case of missing N we have effectively MN = ΠSN = 0,
so that (p2 − M2

N )DSN = D0
S and accordingly the expression (II.5.45c) for the propagator

〈S(+)S(+)†〉 reduces to

〈S(+)S(+)†〉 =
S

(+)
S

(+)

= iD0
S , (II.6.13)

where D0
S is the bare propagator (II.5.5).

First of all we see that in the case of only one scalar doublet S we must not postulate the
discrete symmetry Pdown, as otherwise we would have ỹu = ỹd = 0 and consequently only the
down-type quarks would become massive, while the up-type quarks would remain massless.

What is important, however, is the presence of the symmetry-preserving propagator 〈S(+)

S(+)†〉 = iD0
S , (II.6.13), which behaves asymptotically as 1/k2. This is to be compared with the

symmetry-breaking scalar propagator 〈S(+)N (−)〉 = iΠSN DSN in equations (II.6.10), which
behaves asymptotically34 as 1/k4. In other words, the integrals in (II.6.12) have worse asymp-
totic behavior than the integrals in (II.6.10). This is the very reason why we considered two scalar
doublets instead of one, since the better asymptotic behavior of integrands in the SD equations
(II.6.10) makes the existence of UV-finite solutions more probable and accordingly the whole
proposed mechanism of dynamical EWSB more viable.

6.1.5 Non-Ansatz SD equations

This section is just an informational aside with the aim to show explicitly that:

• Those symmetry-breaking parts of the self-energies, not included in our regular self-
energies Ansätze and consequently also not in the SD equations presented in the previous
section, are indeed UV-finite. This applies namely to the wave function renormalization
parts of the self-energies, i.e., to the scalar functions AS , AN , the quark function Aq and
the lepton functions A`, AνM .

• The symmetry-preserving parts of the self-energies are UV-divergent.

For the sake of simplicity we do not present here the SD equations for the non-Ansatz parts of the
self-energies in a self-consistent way, but rather investigate how the loops with the Ansatz propa-
gators (i.e., as presented in sections 5.2.6, 5.3.5, 5.4.5) contribute to them. Put more formally, we
consider the right-hand sides of the SD equations (II.6.8) as described in point 1. on page 106,

34Recall that this asymptotic behavior was interpreted in chapter 2 to be due to difference of two propagators, corre-
sponding to the scalar mass eigenstates.
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but, in contrast to what is described in subsequent point 2., we consider for the left-hand sides the
self-energies of the general Hermitian and electromagnetically invariant forms, i.e., as presented
at the ends of sections 5.2.2, 5.3.2, 5.4.2.

Scalar self-energies

Let us start with the scalars. The SD equations for the relevant individual functions A1, A3, C1,
D1 (see (II.5.11)), obtained from (II.6.8a) by the procedure described above, then read35

− iA1 = −2
∫

d4k

(2π)4
(k · `) Tr

{
y†dDuL ydDdR

}
, (II.6.14a)

−iA3 = −2
∫

d4k

(2π)4
(k · `) Tr

{
y†uDdL yuDuR

}
, (II.6.14b)

−iC1 = −2
∫

d4k

(2π)4
(k · `) Tr

{
y†dDdL ydDdR

}
, (II.6.14c)

−iD1 = −2
∫

d4k

(2π)4
(k · `) Tr

{
y†uDuL yuDuR

}
, (II.6.14d)

where ` ≡ p − k and p is the external momentum. We see that each of the four integrals in
(II.6.14) is separately divergent, since the propagators DuL, DdL, DuR, DdR are not suppressed
by any self-energy and hence behave as 1/k2 for large k2.

However, we know that the combinations 2AS = A1 − C1, 2AN = A3 −D1 (Eq. (II.5.32))
should be UV-finite, since they break the symmetry. Indeed, it is the case:

− iAS = −
∫

d4k

(2π)4
(k · `) Tr

{
y†d (DuL −DdL) ydDdR

}
, (II.6.15a)

−iAN = +
∫

d4k

(2π)4
(k · `) Tr

{
y†u (DuL −DdL) yuDuR

}
. (II.6.15b)

The UV-finiteness is consequence of the fact that the difference of the two propagators DuL,
DdL is already suppressed by fermion symmetry-breaking and consequently also decreasing,
UV-finite self-energies Σu, Σd:

DuL −DdL = Σu Σ†uDuLDdL −DuLDdL Σd Σ†d . (II.6.16)

Correspondingly DuL − DdL falls faster than 1/k2, rendering the integrals (II.6.15) UV-finite.
Obviously, the symmetry-preserving combinationsA1+C1,A3+D1 (Eqs. (II.5.20a), (II.5.20b))
remain divergent, as the sum DuL +DdL still behaves like 1/k2.

35We consider here for simplicity only the quark contributions; for the leptons the argument would be essentially the
same, only unnecessarily obscured due to the technicalities connected with the Nambu–Gorkov formalism.
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Fermion Dirac self-energies

Let us consider only the case of quarks, for similar reasons as mentioned in footnote 35 on
page 111. The integrals for the particular functions AuL, AuR, AdL, AdR, Eq. (II.5.54), read

− i/pAuL =
∫

d4k

(2π)4
/k
[
ydDdR y

†
d (`2 −M2

N )DSN + yuDuR y
†
u (`2 −M2

N )DN

]
,

(II.6.17a)

−i/pAuR =
∫

d4k

(2π)4
/k
[
y†uDdL yu (`2 −M2

S)DSN + y†uDuL yu (`2 −M2
N )DN

]
,

(II.6.17b)

−i/pAdL =
∫

d4k

(2π)4
/k
[
yuDuR y

†
u (`2 −M2

S)DSN + ydDdR y
†
d (`2 −M2

S)DS

]
,

(II.6.17c)

−i/pAdR =
∫

d4k

(2π)4
/k
[
y†dDuL yd (`2 −M2

N )DSN + y†dDdL yd (`2 −M2
S)DS

]
.

(II.6.17d)

Clearly, all the four self-energies AuL, AuR, AdL, AdR are separately divergent. However, it is
again easy to see that the symmetry-breaking combination 2Aq = AuL − AdL (Eq. (II.5.59)) is
UV-finite, as it must be:

− i/pAq =
1
2

∫
d4k

(2π)4
/k ydDdR y

†
d

[
(`2 −M2

N )DSN − (`2 −M2
S)DS

]
− 1

2

∫
d4k

(2π)4
/k yuDuR y

†
u

[
(`2 −M2

S)DSN − (`2 −M2
N )DN

]
. (II.6.18)

Again, crucial are the differences of the scalar propagators in the square brackets:

(`2 −M2
N )DSN − (`2 −M2

S)DS =
[
(`2 −M2

S)|ΠSN |2 − (`2 −M2
N )|ΠS |2

]
DSN DS ,

(II.6.19a)

(`2 −M2
S)DSN − (`2 −M2

N )DN =
[
(`2 −M2

N )|ΠSN |2 − (`2 −M2
S)|ΠN |2

]
DSN DN .

(II.6.19b)

Since these quantities are suppressed by the presumably decreasing self-energies ΠSN , ΠS , ΠN ,
the integrals (II.6.18) for the symmetry-breaking self-energy Aq are indeed UV-finite. Needless
to say that the symmetry-preserving self-energies AuL +AdL, AuR, AdR remain UV-divergent.

Fermion Majorana self-energy AνM

Finally we mention the neutrino Majorana self-energy AνM . Its SD equation reads

− i/pAνM =
∫

d4k

(2π)4
/k y∗ν D

†
νM yν(`2 −M2

N )DN . (II.6.20)
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Recall that AνM is symmetry-breaking and as such it should be also UV-finite. This is actually
the case: The necessary suppression of the integrand in (II.6.20) is this time maintained by the
propagator DνM , which is proportional to (and thus suppressed by) the self-energies ΣνL and
ΣνD, as shown in (D.3.50) in appendix D.

6.1.6 Beyond one loop

In this section we make two unsystematic remarks connected in some way with the three-loop
effective potential, corresponding to two-loop SD equations.

The Hartree–Fock (i.e., two-loop) approximation of the effective potential (II.6.4) leads to the
one-loop SD equations (II.6.8). It turns out that by neglecting higher-loop contributions some
self-energies obtain rather special accidental properties, which are not protected once the dia-
grams with more loops are taken into account. This applies namely to the right-handed neutrino
Majorana self-energy ΣνR, which is at one loop UV-finite, and to the scalar self-energyE, which
is at one loop vanishing.

Right-handed neutrino Majorana self-energy ΣνR

Consider the right-handed neutrino Majorana self-energy ΣνR:

− iΣνR PR = 〈(νR)cν̄R〉1PI . (II.6.21)

Recall that since we have broken explicitly the lepton number by including into the Lagrangian
the right-handed Majorana mass terms (II.4.7), this self-energy does not break any of the sym-
metries of the theory and hence can be in general UV-divergent. For this reason we have not
included it in section 5.4.5 in our self-energy Ansatz.

Nevertheless, pretend for a moment that we did include ΣνR into our Ansatz. The corre-
sponding SD equation then reads

− iΣνR =
∫

d4k

(2π)4
yT
ν

(
DT
νL Σ†νL +DνM Σ†νd

)
yν ΠN DN . (II.6.22)

We see that ΣνR comes out from (II.6.22) as UV-finite!
The point is that the UV-divergent part of ΣνR should be calculable perturbatively, i.e., using

only the bare propagators and vertices, defined by the Lagrangian. However, it turns out that
in one-loop approximation (i.e., in the second order in the expansion in the Yukawa coupling
constants) there are actually no perturbative corrections to ΣνR. Therefore, since our SD equa-
tions (II.6.8) are only one-loop (which corresponds to the two-loop Hartree–Fock approximation
(II.6.4) of the effective potential), they do not include the perturbative contributions and thus the
equation (II.6.22) for ΣνR is coincidentally UV-finite.

The scalar self-energy E

Consider the scalar self-energy E, (II.5.11d),

E =
(
E1 E2

E∗2 E∗1

)
, (II.6.23)
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Figure II.6.7. Two-loop contributions to−iE1 = 〈N (0)†S(0)〉1PI. (The /p’s at some of the fermion lines just
schematically indicate that the corresponding full propagators are odd functions of the momentum, whose
name need not be necessarily p. Cf. also the notation (D.3.57) in appendix D.)

where

− iE1 = 〈N (0)†S(0)〉1PI , (II.6.24a)
−iE2 = 〈N (0)S(0)〉1PI . (II.6.24b)

This self-energy is symmetry-breaking and hence UV-finite. Recall that we have not included it
in the Ansatz (II.5.37), arguing that in the Hartree–Fock approximation there are no contributions
to it anyway. Let us now discuss this issue in more details.

Consider the Yukawa interactions (II.4.9) of the scalar doublets S, N . In particular, we are
interested only in the part describing interactions of the neutral components S(0), N (0), i.e., in
(II.4.12). Notice that S(0) interacts at tree-level only with the down-type fermions (d, e), while
N (0) only with the up-type fermions (u, ν). Therefore it is clear that it is impossible to make a
one-loop correction to the propagators of the type 〈N (0)†S(0)〉, 〈N (0)S(0)〉, simply as one cannot
bilinearly connect propagators of different fermions.

However, at two loops there are already non-trivial contributions to E. Recall that there are
the charged scalars S(+), N (−), capable of changing an up-type fermion to the down-type and
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Figure II.6.8. Two-loop contributions to −iE2 = 〈N (0)S(0)〉1PI.

vice versa, see (II.4.13). Thus, adding a charged scalar internal line inside the fermion loop
allows to overcome the problems described in the previous paragraph and draw non-vanishing
contributions to E1, E2, see Figs. II.6.7, II.6.8.

The situation would be however different if we have not postulated the discrete symmetry
Pdown, as in such a case there would be present also the Yukawa interactions (II.4.14) of the
charge conjugated scalar doublets S̃, Ñ . The point is that considering both Lagrangians (II.4.9)
and (II.4.14) there would be contributions to E1, E2 already at one-loop level, as can be seen
in Fig. II.6.9. One can also notice that the loop integrals for E1 and E2 in Fig. II.6.9 are re-
spectively UV-finite and UV-divergent. This is not a coincidence. Recall that even though the
Pdown symmetry is broken, the self-energy E1 is still symmetry-breaking (see Eqs. (II.5.14) and
(II.5.15c)) and hence necessarily UV-finite. On the other hand, in the case of broken Pdown sym-
metry the self-energyE2 contains symmetry-preserving and hence potentially (and also actually)
UV-divergent part, as can be seen from (II.5.19c) and (II.5.20c).

Recall at this point, however, the very reason why we assumed the Pdown symmetry: The
actual vanishing of E in the one-loop approximation makes the construction of the scalar self-
energy Ansatz more tractable. That is because in such a case it suffices, when expressing the full
scalar propagator, to invert only 2× 2 matrices and not 4× 4 matrices. Therefore, on top of the
reducing of the free parameters of the Lagrangian, mentioned in Sec. 4.1.2, the postulation of
Pdown is desirable also from this practical reason.

6.2 Numerical results

In order to make the numerical treatment of the model more tractable, some simplifications of
the Lagrangian were made:
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Figure II.6.9. One-loop contributions to E in the case of no Pdown symmetry. Notice that E1 (the first line)
and E2 (the second line) are respectively UV-finite and UV-divergent.

• We considered MνR = 0.

• We considered only one generation of the charged fermions, i.e., n = 1.

• We considered only one right-handed neutrino, i.e., m = 1.

Let us comment the assumption MνR = 0. As already discussed in Sec. 4.1.1, in this case
lepton number symmetry U(1)` is exact at the level of Lagrangian and one should include both
ΣνL and ΣνR into the Ansatz, as both are U(1)` symmetry-breaking and thus UV-finite. On the
other hand, one can also restrict oneself only to the solutions of the SD equations, which preserve
U(1)`, or, in other words, one can assume ΣνL = 0 and ΣνR = 0 from the beginning. This is
exactly what we did in the numerical analysis: We considered only the Dirac-type neutrino self-
energy ΣνD, while the Majorana-type ΣνL, ΣνR were neglected.

Under these assumptions the SD equation (II.6.11b) for ΣνL is dismissed and the set (II.6.11)
of lepton SD equations is formally the same as the set (II.6.10) of quark SD equations. We em-
phasize that all fermion self-energies are then Dirac and they have no non-trivial matrix structure
in the flavor space.

Further approximations of the SD equations consist of:

• Considering all Yukawa coupling constants real.

• Considering all self-energies real.

These approximations are the same as before in Sec. 3.4.1 within the Abelian toy model. The
same is also the very numerical procedure, see Sec. 3.4.2.

Recall that in the Abelian toy model the parametric space to be scanned was essentially two-
dimensional: The true free parameters were the two (real) Yukawa coupling constants y1 and
y2; the bare scalar mass M , as the only dimensional-full parameter of the model, served only
as a scale parameter for the self-energies and momenta. Therefore it was possible to scan the
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parameter space at least to the extent of being able to decide whether for a given pair y1, y2 the
solution is trivial or not. As a result of this scanning we obtained Fig. I.3.6.

This time the situation is considerably more complicated. We have four (real) Yukawa cou-
pling constants, yu, yd, yν , ye, and two bare scalar masses MS and MN . Of the two masses MS ,
MN only one can be considered as a free parameter, the other serves again merely as a scaling
parameter for the dimension-full quantities. Thus, we have altogether five free parameters and
consequently five-dimensional space to be scanned. However, a systematic scanning of such a
vast parametric space was not possible. We have therefore checked the solutions only in some,
rather randomly selected points in the parametric space in order to get some feeling about the
general features and behavior of the solutions.

Thus, even though the parametric space was not scanned systematically, it was found that the
above described SD equations have a similar behavior as the SD equations of the Abelian toy
model:

1. Non-trivial, UV-finite solutions do exist.

2. The solutions are found only for relatively large values of the Yukawa coupling constants
(of order of tens).

3. Large ratios of fermion masses can be accommodated while having the corresponding
Yukawa coupling constants of the same order of magnitude.

The point 3. above is promising in the quest for realistic fermion mass hierarchy. Because of the
large parameter space which needs to be scanned this has not been accomplished. However, some
achievements, which suggest that it should be possible, have been made. First, we accommodated
the hierarchy between the lepton and quark doublets. For yν = 63, ye ≈ 84, yu = 65, yd = 90
(and M2

S = 2, M2
N = 1) we found mν > me = O(10−4) and mu > md = O(10−2).

(Note that all masses are expressed in the units of MN .) Second, we managed to generate a
large hierarchy within one doublet. Considering only the leptons and neglecting the quarks
(yu = yd = 0), we found me/mν = O(102), calculated for yν ≈ 50, ye = 80 (and again
M2
S = 2, M2

N = 1). Nevertheless, it should be emphasized that this lepton mass ratio would
be presumably significantly enhanced by the seesaw mechanism upon taking the Majorana right-
handed neutrino mass term into account.

6.3 Compatibility with electroweak observables

6.3.1 ρ-parameter

While the realistic fermion spectrum together with the Yukawa coupling constants not vastly
different can be presumably accommodated, it brings on the other hand the problem how to keep
the ρ-parameter

ρ ≡ M2
W

M2
Z cos2 θW

(II.6.25)

close to 1. Note that in the case of exact custodial symmetry of the Lagrangian, i.e., when n = m,
yν = ye, yu = yd, MS = MN and MνR = 0, one expects ρ = 1 exactly. In chapter 11, after
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Figure II.6.10. The S-parameter (II.6.27) plotted for the special case MS± = MN± = MSN± ≡ M±.
Note that, according to the Particle Data Group [68], S = −0.10± 0.10.

calculating the explicit form of the fermion contribution to theW±, Z masses, it will be possible
to see this for fermions explicitly.

Of course, in reality the custodial symmetry is in any case broken at least by fermions, since
yν 6= ye, yu 6= yd. However, there is a possibility that if the scalar sector is (at least reasonably
approximately) custodially symmetric and remains so even after the SSB, then the scalars can
render ρ to be close to 1, provided they are heavy enough so that they can overcome the effect of
the custodial symmetry breaking in the fermion sector.

6.3.2 Flavor-changing neutral currents

The new scalars must be heavy enough in order to avoid constraints from FCNC. We can make in
this respect a rough, order-of-magnitude estimate. Consider, for instance, the decay µ→ e+S(0).
The virtual heavy scalar can subsequently decay as S(0) → ē+ e. The Yukawa interactions will
therefore induce the flavor-changing muon decay, µ→ e+ē+e, with the amplitude being roughly
given by y2/M2

S . (We assume that in the absence of fine tuning, all Yukawa couplings, including
the flavor-changing ones, will be of the same order of magnitude.) The dominant muon decay
channel, with branching ratio close to 100%, is µ→ e+ ν̄e+νµ, whose amplitude is analogously
proportional toGF. From here we infer the estimate BR(µ→ e+ē+e) ∼ (y2/GFM

2
S)2. Taking

the current experimental limit [68], BR(µ→ e+ ē+ e) < 10−12, we find MS/y ? 102.5 TeV.

6.3.3 S-parameter

The very introduction of new scalars also affects the Peskin–Takeuchi S-parameter [69]. In order
to estimate the scalar contribution to it, we set for simplicity the scalar self-energies ΠS , ΠN ,



Dynamics 119

ΠSN to be constant. The spectrum (see the pole equations (II.5.41)) is then given simply by

M2
SN± =

M2
S +M2

N

2
±

√(
M2
S −M2

N

2

)2

+ |ΠSN |2 , (II.6.26a)

M2
S± = M2

S ± |ΠS | , (II.6.26b)
M2
N± = M2

N ± |ΠN | . (II.6.26c)

The resulting S-parameter then can be written as

S = SS + SN + SSN , (II.6.27)

where

SS ≡ 1
12π

[
5
6
−

2M2
S+M

2
S−(

M2
S+ −M2

S−
)2 − 1

2
ln
M2
S+M

2
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µ4

− 1
2
M6
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S+M

2
S−(M2
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S−
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]
, (II.6.28a)

SN ≡ 1
12π

[
5
6
−

2M2
N+M

2
N−(

M2
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N−
)2 − 1

2
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M2
N+M
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]
, (II.6.28b)

SSN ≡ 1
12π

ln
M2
SN+M

2
SN−

µ4
. (II.6.28c)

(The µ is just an arbitrary mass scale introduced for æsthetic reasons; the total S-parameter
(II.6.27) is independent of it.) Taking into account the previous discussion of the ρ-parameter and
the scalar masses, we plotted the S-parameter for the special case MS± = MN± = MSN± ≡
M±. The resulting S-parameter, which is then function only of the mass ratioM+/M−, is plotted
in Fig. II.6.10. When in this special case the ratio M+/M− is far from one, the S-parameter is
well approximated by the simple formula S = 1

6π

(
5
6−ln

∣∣M+
M−

∣∣). On the other hand, forM+/M−

close to one the S-parameter behaves like −1
15π

(
1− M+

M−

)2
. From Fig. II.6.10 one can see that the

S-parameter meets the experimental bounds for any value of M+/M− from 0.01 up to 100.

6.4 Summary

We have derived, within the Yukawa dynamics considered in chapter 4 and using the CJT for-
malism, the SD equations for the scalar and fermion self-energies. They were derived for general
self-energies and eventually restricted to the Ansatz introduced in the previous chapter 5. The
form of these SD equations suggests the expected UV-finiteness of the solutions.

Due to huge parametric space of the set of SD equations (even in the oversimplified case
of only one generation of charged fermions, one Dirac neutrino and real Yukawa coupling con-
stants), the systematic numerical survey for the solutions was not possible, in contrast to the
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Abelian toy model in Sec. 3.4.2. Nevertheless, an unsystematic (i.e., rather random) scanning of
the parametric space revealed some promising points (one of which was presented in Sec. 6.2),
suggesting the possibility of obtaining a realistic fermion spectrum.

Finally, we commented on the compatibility with the electroweak observables. While the
sole fermion sector pushes the ρ-parameter away from 1, the scalar sector can render it close to
1, provided the scalars are heavy enough, as they after all tend to be, as the numerical analysis
suggests. This presumable heaviness of scalars is also consistent with the desired suppression of
the FCNC. Finally, we showed that even the S-parameter remains in norm, provided the scalar
masses are mutually not too different.
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Part III

Flavor mixing
7 Quark flavor mixing

We will now discuss the implications of the very momentum-dependence of the dynamically
generated quark self-energies for the mixing of the physical quarks, i.e., of the quark mass
eigenstates. We will show that, unlike in models (e.g., the MCS and particularly the SM)
with mass matrices (i.e., momentum-independent self-energies), the resulting effective Cabibbo–
Kobayashi–Maskawa (CKM) matrix [70,71] is in general non-unitary and the FCNC are present
already at lowest (tree) order in the gauge coupling constant. We will not present the case of
leptons, as the discussion would be essentially the same, with the resulting Pontecorvo–Maki–
Nakagawa–Sakata (PMNS) matrix [72, 73] being non-unitary as well.

We stress that the following discussion applies to any model of EWSB generating the quark
self-energies with a momentum dependency. In this respect the model presented in part II can be
regarded as a particular example of such class of models.

This chapter is a concise version of paper [57], where more details can be found.

7.1 Gauge interactions in the interaction eigenstate basis

We start off by a slight change of notation, to be applied exclusively in this chapter. Instead of the
denotation u, d, introduced in section 4.1.1 and used throughout part II, we will use the primed
denotation u′, d′ and call it the (weak) interaction eigenstate basis. The denotation u, d will be
reserved for the so-called mass eigenstate basis, to be introduced thereinafter.

In the interaction eigenstate basis u′, d′ and in the basis (II.4.23) and (II.4.26) of the EW
gauge fields the gauge interactions (II.4.67) read

Lquark,qauge = Lcc(u′, d′) + Lnc(u′, d′) + Lem(u′, d′) , (III.7.1)

where

Lcc(u′, d′) =
g√
2
ū′γµPLd

′AµW+ + h.c. , (III.7.2a)

Lnc(u′, d′) =
g

2 cos θW

∑
f=u,d

f̄ ′γµ(vf − afγ5)f ′A
µ
Z , (III.7.2b)

Lem(u′, d′) =
∑
f=u,d

eQf f̄
′γµf

′Aµem . (III.7.2c)

We use the standard notation [74]

vf ≡ t3f − 2Qf sin2 θW , (III.7.3a)
af ≡ t3f . (III.7.3b)
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7.2 Momentum-independent self-energies

Before investigating the general case of momentum-dependent self-energies in the next section,
we revise in this section how the fermion flavor mixing is treated in the special case of constant
self-energies. In other words, we review here the SM (and generally any MCS, the most promi-
nent representative of which the SM is).36 Nevertheless, we present it here, in order to establish
some notation and to make the text reasonably self-contained. The primary reason is, however,
that the case of constant self-energies provides a natural reference point when discussing in the
next section some novel consequences stemming from self-energies’ momentum dependence.

Since the quark self-energies Σu, Σd are by assumption momentum-independent, they can
be regarded as mass matrices sitting in the Lagrangian:

L(SM)
mass (u

′, d′) = − ū′Σuu
′ − d̄′Σdd

′ (III.7.4a)
= − ū′LΣuu′R − d̄′LΣdd′R + h.c. , (III.7.4b)

where we took into account the form Σf = Σ†f PL + Σf PR (f = u, d), Eq. (II.5.66). The
component Σf can be diagonalized via the bi-unitary transformation37

Σf = V †f Mf Uf , (III.7.5)

where Uf , Vf are some unitary matrices and Mf is a diagonal, real, non-negative matrix:

Mf ≡ diag
(
mf1 ,mf2 , . . . ,mfn

)
. (III.7.6)

More compact notation can be achieved by defining the unitary matrix Xf as

Xf ≡ V †f PL + U†f PR , (III.7.7)

so that the full Σf can be written as

Σf = X̄†
f Mf X

†
f . (III.7.8)

We can now define new fields as

u = X†
uu

′ , (III.7.9a)

d = X†
dd
′ , (III.7.9b)

which can be rewritten in terms of the original chiral components as

uL = Vu u
′
L , dL = Vd d

′
L , (III.7.9c)

uR = Uu u
′
R , dR = Ud d

′
R . (III.7.9d)

Thus, the Lagrangian (III.7.4), expressed in terms of u, d (or their chiral components) is mass-
diagonal:

L(SM)
mass (u, d) = − ūMuu− d̄Mdd (III.7.10a)

= − ūLMuuR − d̄LMddR + h.c. (III.7.10b)
36We will thus use the superscript SM for the quantities calculated using the assumption of constant self-energies.
37The following diagonalization of mass matrices is a special case of more general analysis for the momentum-

dependent self-energies, presented in section (D.5) of appendix D.
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I.e., particular components ui, dj (i, j = 1, . . . , n) of the fields u, d have now straightforward in-
terpretation as operators creating the states |ui〉, |dj〉with definite massesmui ,mdj (see (III.7.6))
from the vacuum and we are allowed to call the operators u, d the mass eigenstate basis.

The redefinitions (III.7.9) apply also for the rest of the Lagrangian, in particular for the gauge
interactions (III.7.2). One obtains

L(SM)
cc (u, d) =

g√
2
ūγµPLVCKMdA

µ
W+ + h.c. , (III.7.11a)

L(SM)
nc (u, d) =

g

2 cos θW

∑
f=u,d

f̄γµ(vf − afγ5)fA
µ
Z , (III.7.11b)

L(SM)
em (u, d) =

∑
f=u,d

eQf f̄γµfA
µ
em . (III.7.11c)

We see that in contrast to the Lagrangian (III.7.2), the charged current interactions L(SM)
cc are

no longer flavor-diagonal, but rather exhibit the flavor mixing parameterized by the celebrated
Cabibbo–Kobayashi–Maskawa (CKM) matrix [70,71], which is expressed in terms of the matri-
ces Vu, Vd, (III.7.5), as

VCKM ≡ VuV
†
d . (III.7.12)

Note that VCKM is unitary38 due to the unitarity of matrices Vu, Vd. On the other hand, the
electromagnetic and neutral current interactions remain diagonal, which is again a consequence
of the unitarity of the matrices Xu, Xd.

Consider now, for the sake of later references, the decay process W+ → ui + d̄j and its
S-matrix element

Sfi = 〈ui, d̄j |S|W+〉 (III.7.13a)
= δfi + (2π)4 δ4(p+ k − q)NpNkNq iMfi , (III.7.13b)

where the factors Np, Nk, Nq are defined in Eq. (A.2.2) (we assign the external momenta as
W+(q) → ui(p) + d̄j(k)). This is the simplest process in which the effect of the CKM matrix
takes place. Within the SM-like Lagrangian (III.7.11a) we have in the lowest order in the gauge
coupling constant g for the corresponding amplitude immediately

M(SM)
fi =

g√
2
ūui(p) γ

µPL(VCKM)ij vdj(k) εµ(q) . (III.7.14)

7.3 Momentum-dependent self-energies

Let us now relax the requirement of the self-energies’ momentum-independence and allow them
to depend on momentum in a general way.39 In this situation the self-energies cannot be any

38An n × n unitary matrix has n2 real parameters. Of these, 1
2
n(n − 1) are angles and 1

2
n(n + 1) are complex

phases. However, for VCKM the number of free parameters can be further reduced, since one column and one row can
be made real by appropriate redefinitions of quark fields. This amounts to 2n − 1 redundant phases, so that in VCKM

there are only 1
2
(n− 1)(n− 2) physical, CP-violating phases.

39Problem of extracting physical information from matrix-like momentum-dependent self-energies has been already
discussed (although in the different context of perturbative radiative corrections), e.g., in Refs. [75, 76, 77, 78, 79, 80].
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longer interpreted as mass matrices and there is no obvious way how to reexpress the Lagrangian
from the interaction eigenstate basis into the mass eigenstate basis. We will show that even in
this situation one can define the mass eigenstate basis, though in an effective sense, together with
the effective CKM matrix.

The crucial observation is that although we do not have the theory expressed in terms of
the mass eigenstate basis u, d (i.e., in terms of the fields that create the quarks with definite
mass), it is still possible to calculate the amplitudes of the processes involving the mass eigen-
states |ui〉, |dj〉, with the masses mui , mdj given by the pole equations (II.5.71). This is allowed
by the Lehmann–Symanzik–Zimmermann (LSZ) reduction formula [81], which states that the
amplitude of a given process involving the mass eigenstates u, d can be calculated (up to the po-
larization vectors and possible sign due to the fermionic nature of involved particles) as a residue
of the appropriate (momentum space) connected Green’s function for the external momenta go-
ing on their mass-shell. The point is that the Green’s function need not be calculated in terms
of eventual operators u, d of the mass eigenstates, but rather in terms of the original interaction
eigenstate basis operators u′, d′, which have no direct connection to the mass eigenstates (possi-
bly even up to any unitary redefinition, as we will see later). Note that the Green’s functions are
easily calculated: One can apply the usual perturbation theory given by the Lagrangian (III.7.2),
with the additional Feynman rule that the fermion lines in the diagrams are given by the full
quark propagators

iGf = 〈f ′f̄ ′〉 , (III.7.15)

which are expressed in terms of the self-energies Σf as

Gf = (/p−Σf )−1 , (III.7.16)

cf. Eq. (II.5.68).
The possibility of calculating processes involving the mass eigenstates, as sketched in the

previous paragraph, opens the way to investigating the fermion flavor mixing in the case of
momentum-dependent self-energies. We explain it in more detail in the following section on the
example of flavor mixing in the charged current sector. Next, in the subsequent section, we state
(without detailed derivation) the analogous results for the electromagnetic and neutral current
sectors.

7.3.1 Charged current interactions

Effective CKM matrix

The idea is simple and can be roughly stated as follows: First, we calculate (using the approach
described above) the S-matrix element for the process W+ → ui + d̄j in the lowest order in
the gauge coupling constant. Second, we demand that the obtained amplitude has the same form
as the amplitude (III.7.14) calculated within the SM (Sec. 7.2) and define this way the effective
CKM matrix. This effective CKM matrix is eventually interpreted to be a part of the effective
Lagrangian of the SM form (III.7.11).

Let us work out the idea in detail. Consider the connected Green’s function 〈u′d̄′AµW+〉 and
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u

d̄

W+µ

−q

p

−k

=iGµ
W+(p, k, q)

Figure III.7.1. Diagrammatical representation and momenta assignment of the connected Green’s function
iGµ
W+(p, k, q), Eq. (III.7.18). The shaded blob denotes its 1PI part, iΓµ

W+(p,−k), while the dark blobs
represent the full propagators. (Notice the arrows on the boson line: We conventionally define the W+ as
an antiparticle.)

define its Fourier transform iGµW+(p, k, q) as∫
d4xd4y d4z eip·x eik·y e−iq·z 〈0|T u′(x) d̄′(y)AµW+(z)|0〉 =

(2π)4 δ4(p+ k − q) iGµW+(p, k, q) . (III.7.17)

For the assignment of the momenta see Fig. III.7.1. Recall that a connected Green’s function is
generally calculated as a proper (1PI) Green’s function with full propagators at the external lines:

iGµW+(p, k, q) = iGu(p) iΓνW+(p,−k) iGd(−k) iGµν(q) . (III.7.18)

For the external fermion lines we consider the full propagators Gu(p), Gd(p), as defined by
Eq. (III.7.16). The W± propagator Gµν(q) is taken at this moment to be just the bare propagator
of a massive vector field [74] with hard massMW (the massMW will be discussed in more detail
in chapter 11). Similarly, the proper vertex ΓµW+(p,−k) is taken to be the tree one, determined
by the charged current Lagrangian Lcc(u′, d′), (III.7.2a), i.e.,

ΓµW+(p,−k) =
g√
2
γµPL . (III.7.19)

Thus, we have at the leading order in the gauge coupling constant g immediately

iGµW+(p, k, q) = iGu(p) i
g√
2
γνPL iGd(−k) iGµν(q) . (III.7.20)

We are now ready to apply the LSZ reduction formula. (In the following we will rely on
the results from section (D.5) of appendix D, concerning the diagonalization of momentum-
dependent self-energies, as well as of the corresponding full propagators.) Recall that upon
taking the limit p2 → m2

ui , k
2 → m2

dj
, q2 → M2

W in the Green’s function iGµW+(p, k, q), the
residue of the leading divergent term (i.e., the one with the triple pole) is (up to polarization
vectors and a sign) the desired amplitudeMfi of the process W+ → ui + d̄j , (III.7.13). Taking
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into account the explicit form (III.7.20) of iGµW+(p, k, q) and applying the asymptotic formulæ
(D.5.13) for the propagators Gu(p), Gd(p), we arrive straightforwardly at the result

iGµW+(p, k, q) −−−−−→
p2→m2

ui

k2→m2
dj

q2→M2
W

− iUui(p)
p2 −m2

ui

iV̄dj (k)
k2 −m2

dj

iεµ∗(q)
q2 −M2

W

iMfi + . . . , (III.7.21)

where the ellipsis represents less divergent terms (i.e., the terms with double and single poles and
regular terms). The amplitudeMfi in (III.7.21) comes out as

Mfi =
g√
2
ūui(p)

(
ṼuṼ

†
d

)
ij
γµPL vdj(k) εµ(q) . (III.7.22)

For the precise definition of the matrices Ṽu, Ṽd see Eq. (D.5.16). Now let just say that the
matrices Ṽu, Ṽd are in general non-unitary and their definition is related to the diagonalization of
the (momentum-dependent) self-energies Σu, Σd in a similar manner as the definition (III.7.5)
of Vu, Vd. In fact, the both pairs of matrices coincides in the limit of momentum-independent
self-energies.

We are now going to compare the amplitude Mfi, (III.7.22) with the amplitude M(SM)
fi ,

(III.7.14)), calculated within the SM for the same process W+ → ui + d̄j and in the same
(lowest) order in the gauge coupling constant. Demanding that both amplitudes have the same
form, we conclude that the effective CKM matrix is given by

V
(eff)
CKM ≡ ṼuṼ

†
d . (III.7.23)

This effective CKM matrix has the striking feature of being in general non-unitary, in contrast
to the CKM matrix (III.7.12) in the SM, thanks to the mentioned non-unitarity of Ṽu, Ṽd. Note
however, that in the special case of constant self-energies Σu, Σd the two expressions (III.7.12)
and (III.7.23) coincide and the unitarity of CKM matrix is restored.

Effective Lagrangian

Let us now proceed to the definition of the effective Lagrangian. The CKM matrix in the SM oc-
curs not only in the matrix elements of the type (III.7.14) (in the same way as our effective CKM
matrix (III.7.23) does), but it also lives in the charged current Lagrangian (III.7.11a), written in
terms of the mass-diagonalized quark fields u, d. The natural question arises whether and to
what extent it is analogously possible to reexpress the Lagrangian in terms of the mass eigenstate
basis u, d also in the present case of momentum-dependent self-energies and how to incorporate
this way the effective CKM matrix obtained above. The answer is that it is possible merely in an
effective sense to be specified below.

We define the effective Lagrangian L(eff)(u, d) in the following way: We postulate the mass
eigenstate basis operators u, d in such a way that they are operators creating the quarks with the
masses given by the momentum-dependent self-energies Σu, Σd via the pole equations (II.5.71).
More precisely, L(eff)(u, d) contains, on top of the fermion kinetic terms, the mass Lagrangian
L(eff)

mass(u, d) of the form (III.7.10), i.e.,

L(eff)
mass(u, d) = − ūMuu− d̄Mdd . (III.7.24)
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Here the mass matrices Mu, Md are of the form (III.7.6):

Mu = diag(mu1 ,mu2 , . . . ,mun) , (III.7.25a)
Md = diag(md1 ,md2 , . . . ,mdn) , (III.7.25b)

with the entries determined by the poles of the full propagators Gu(p), Gd(p). Let the effective
Lagrangian L(eff)(u, d) contain also the kinetic terms of the gauge bosons W±, Z, γ and the
corresponding mass terms. Since L(eff)(u, d) is written in terms of massive fields, it is capable
of describing processes like W+ → ui + d̄j directly, without employing the LSZ reduction
formula. Indeed, postulating that L(eff)(u, d) contains the SM-like charged current interactions
of the form

L(eff)
cc (u, d) =

g√
2
ūγµPLṼuṼ

†
d dA

µ
W+ + h.c. , (III.7.26)

it is straightforward to see that this leads to the same matrix element as the one (III.7.22) ob-
tained using the LSZ formula. As expected, comparing this effective charged current interaction
Lagrangian with that of the SM (III.7.11a), we are again led to the definition (III.7.23) of the
effective CKM matrix.

7.3.2 Electromagnetic and neutral current interactions

In the same way as we probed in the previous section the charged current sector, it is possible
to investigate the flavor mixing also in the electromagnetic and neutral current sectors. Since
the procedure is technically completely analogous, we merely state the results. Considering the
decay processes Z → fi+ f̄j and γ → fi+ f̄j , f = u, d, we arrive at the corresponding effective
interaction Lagrangians (to be part of L(eff)(u, d))

L(eff)
nc (u, d) =

g

2 cos θW

∑
f=u,d

f̄γµ

[
(vf + af )Ṽf Ṽ

†
f PL + (vf − af )Ũf Ũ

†
fPR

]
fAµZ ,

(III.7.27a)

L(eff)
em (u, d) =

∑
f=u,d

eQf f̄γµ

(
Ṽf Ṽ

†
f PL + Ũf Ũ

†
fPR

)
fAµem . (III.7.27b)

The matrices Ũu, Ũd are defined in (D.5.16). Again, they are in general non-unitary, but in the
special case of constant self-energies they reduce to the unitary matrices Uu, Ud, (III.7.5).

We see that, in contrast to their SM counterparts (III.7.11b), (III.7.11c), the effective La-
grangians (III.7.27a), (III.7.27b) exhibit non-trivial flavor mixing. However, as expected, they
reduce to those (III.7.11b), (III.7.11c) of the SM with no flavor mixing in the special case of
constant self-energies, since then the matrices Ṽf , Ũf are unitary.

7.4 Discussion

First, a few comments are in order concerning the effectiveness of L(eff)(u, d). It is not effective
in the usual sense as being a low energy approximation of the full theory.40 Rather, it is by

40By “full theory” one can in the narrower sense understand the theory described in part II. In the wider sense, though,
as the discussion of this chapter can be applied to any EWSB dynamics, generating momentum-dependent quarks self-
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construction effective in the sense that it reproduces predictions of the full theory, but only for a
very limited set of processes (and only at the tree level). Namely, on top of reproducing the quark
mass spectrum, only the processesW+ → ui+d̄j and Z/γ → qi+q̄j , q = u, d, modulo crossing
symmetry, are computed correctly (i.e., in accordance with the full theory). If one calculates any
more complicated process (e.g., W+ +W− → qi + q̄j) within this effective theory, one obtains
an answer differing from the answer obtained within the full theory. Clearly, we have lost some
amount of the physical information contained in the full theory when passing to the effective one.
However, this makes sense, since the self-energies as the momentum-dependent matrix functions
(in the full theory) contain “much more” physical information than the constants like the masses
and the flavor mixing matrices (in the effective theory).

There is a significant exception, though. In the case of constant self-energies the amount
of physical information remains the same while going from the full theory to the effective one.
Recall that in this case the effective Lagrangian L(eff)(u, d) (Eqs. (III.7.26), (III.7.27)) reduces
precisely to the SM Lagrangian L(SM)(u, d) (Eq. (III.7.11)), which is indeed fully physically
equivalent to the full theory, since the two are related by the unitary transformation (III.7.9).

This leads us to another substantial difference between the two cases. We are accustomed
from the SM that the interaction eigenstate basis (u′, d′) and mass eigenstate basis (u, d) are
related to each other by the unitary transformation (III.7.9) and working in either of them is
merely a matter of taste. This is clearly not the case in the more general situation of momentum-
dependent self-energies: Here the interaction eigenstate basis operators u′, d′ are the fundamental
ones and there is no way to obtain from them the mass eigenstate basis operators u, d by a suitable
unitary transformation. This is of course related to the effective nature of the corresponding La-
grangian L(eff)(u, d), since the operators u, d are nothing more that merely postulated, effective
fields.

The comparison with Refs. [75, 76] is in order now. We have confirmed the phenomenolog-
ical results concerning non-unitarity of the effective CKM matrix and occurence of the flavor
changing electromagnetic and neutral currents. In particular, we recovered the explicit formula
(III.7.23) for the former. What is new in our treatment is that we provided also explicit formulæ
(III.7.27) for the flavor mixing in the electromagnetic and neutral current sectors. Moreover, we
found out that the corresponding mixing matrices are only effective ones: They allow to compute
the processes in the lowest order in the gauge coupling constants, but if one wants to go to higher
orders of the perturbation theory, it is necessary to come back to the self-energies and consider
their full momentum dependence.

We also contributed to the discussion of the relation between the interaction eigenstate basis
u′, d′ and the mass eigenstate basis u, d. We confirmed that both bases cannot be related by a
unitary transformation. The authors of Refs. [75,76] showed, however, that the two bases can be
related by the non-unitary transformation

u = X̃†
uu

′ , d = X̃†
dd
′ , (III.7.28)

(cf. Eq. (III.7.9)) with non-unitary X̃’s defined by Eq. (D.5.18). (The resulting non-diagonality
of quark kinetic terms due to non-unitarity of matrices X̃ can be cured by adding appropriate

energies of the type (II.5.66), the term “full theory” can be understood just as the SU(2)L×U(1)Y gauge-invariant theory
of quarks plus the symmetry-breaking quark self-energies (II.5.66), without specification of the precise mechanism of
their generation.
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finite counterterms to Lagrangian [82, 83, 84].) This is in accordance with our result: Using
the non-unitary redefinitions (III.7.28) in the Lagrangian (III.7.11) (and neglecting impacts on
kinetic terms), we arrive precisely at our effective Lagrangian (III.7.26), (III.7.27). Since we
argued, however, that any Lagrangian, written in the mass eigenstate basis, should be (at least
in principle) regarded as an effective one, in the sense described above, we conclude that the
non-unitary transformations (III.7.28) should be regarded effective as well.

7.5 Summary

We have investigated some of the implications of the non-trivial momentum dependence of the
quark self-energies. We concentrated on the mixing between the quark mass eigenstates in the
charge current, as well as in the neutral current and electromagnetic sector. We found that,
depending on the details of the momentum-dependency of the self-energies, the resulting CKM
matrix can be, in general, non-unitary and the neutral and electromagnetic currents can change
flavor already at the tree level.

These results were expressed by the interaction Lagrangians (III.7.26), (III.7.27) in terms of
the mass eigenstate basis, i.e., with the operators creating (and annihilating) quark states with
definite mass. We argued that the mass eigenstate basis cannot be, in general, related to the
original interaction eigenstate basis by a unitary transformation of the type (III.7.9). In this sense
the mentioned interaction Lagrangians were considered only as effective ones.
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Part IV

Gauge boson masses
8 Preliminaries

The spontaneous symmetry breaking of a gauged symmetry leads to the generation of masses of
(at least some of) the gauge bosons. This part is dedicated to the problem how to calculate these
masses under the assumption that the symmetry is broken by fermion propagators. The scalar
contribution will not be considered for the reasons briefly discussed at the end of Sec. 9.5.2 in
the next chapter.

In this and in the following chapter we will discuss the problem in as general way as possible
and only in chapters 10 and 11 we will apply the obtained results to the gauged Abelian toy model
(from part I) and to the electroweak interactions (from part II). Thus, this chapter is dedicated to
mere setting the stage, i.e., to introducing the notation and stating the assumptions under which
we will in the next chapter 9 derive the very formula for the gauge boson mass matrix. Although
this chapter can be therefore perhaps omitted at first reading, we do not put it in appendices, as it
provides an organic introduction to the subsequent chapters.

This chapter is organized deliberately into two main sections. In the first section 8.1, “Global
symmetry”, we discuss the issues, which are not related to eventual gauging. In particular, we
introduce the fermion content together with the assumed (global) symmetries and derive the
Ward–Takahashi (WT) identity for the corresponding Green’s function 〈jµaψψ̄〉. In the subse-
quent section 8.2, “Local symmetry”, we gauge the theory and discuss various properties of
gauge bosons and their propagator and also derive, using the result from the preceding section,
the WT identity for the Green’s function 〈Aµaψψ̄〉.

8.1 Global symmetry

8.1.1 Fermion content

General

Assume that we have a theory with n left-handed fermion fields ψLi, i = 1, . . . , n, and with m
right-handed fermion fields ψRj , j = 1, . . . ,m. We organize these fields into the left-handed
n-plet ψL and the right-handed m-plet ψR, respectively:

ψL ≡

 ψL1

...
ψLn

 , ψR ≡

 ψR1

...
ψRm

 , (IV.8.1)

and denote the corresponding Lagrangian as L(ψ). Its kinetic part is

Lkinetic(ψ) =
n∑
i=1

ψ̄Lii/∂ψLi +
m∑
j=1

ψ̄Rj i/∂ψRj (IV.8.2a)

= ψ̄Li/∂ψL + ψ̄Ri/∂ψR . (IV.8.2b)
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Assume further that the theory possesses a global symmetry with some Lie group G, which
can be possibly non-Abelian. The fields ψL and ψR, (IV.8.1), transform under G as

G : ψL −→ [ψL]′ = eiθatLa ψL , (IV.8.3a)
G : ψR −→ [ψR]′ = eiθatRa ψR , (IV.8.3b)

where θa are the parameters of the transformation and the generators tLa, tRa are Hermitian
matrices with the dimensions n × n, m ×m, respectively, forming some representations of G,
which need not be necessarily irreducible. The range of the gauge index a = 1, . . . , NG is given
by the dimension of G.

The right-hand sides of the transformations (IV.8.3) are infinitesimally given by

[ψL]′ = ψL + θa δaψL +O(θ2a) , (IV.8.4a)
[ψR]′ = ψR + θa δaψR +O(θ2a) , (IV.8.4b)

where

δaψL ≡ i tLaψL , (IV.8.5a)
δaψR ≡ i tRaψR . (IV.8.5b)

Thus, the Noether current jµa corresponding to the transformations (IV.8.3) is defined as41

jµa = − ∂L(ψ)
∂(∂µψL)

δaψL −
∂L(ψ)
∂(∂µψR)

δaψR (IV.8.6)

and explicitly reads

jµa = ψ̄Lγ
µtLaψL + ψ̄Rγ

µtRaψR . (IV.8.7)

(We assume, of course, that in L(ψ) there are no other derivatives of the fermion fields than those
in the kinetic terms (IV.8.2).) Recall the crucial property of jµa of being conserved:42

∂µj
µ
a = 0 , (IV.8.8)

as can be seen by taking into account the corresponding equations of motion.
And finally and most importantly, we assume that there is some dynamics in the theory. We

leave this dynamics unspecified in order to make present discussion as general as possible and
also because we actually do not need to specify it in much detail. The only thing we assume is
that the dynamics spontaneously breaks the symmetry G down to a subgroup H ⊆ G:

G −→ H ⊆ G . (IV.8.9)

Operational meaning of this assumption will be specified in the following sections; in nut-
shell, we will only assume that the dynamics provides us with symmetry-breaking fermion self-
energies of the type discussed in the previous chapters.

Likewise we denoted the number of generators of G as NG, we will denote the number of
generators of H as NH.

41We assume that there are no other fields than ψL, ψR, transforming non-trivially under G. Otherwise such fields
would contribute to jµa as well.

42We neglect the possibility of anomalous non-conservation of the current.
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Dirac case

The picture introduced so far is quite general in the sense that it does not assume anything special
concerning the fermion content (IV.8.1), the symmetry group G and the pattern (IV.8.9) of the
eventual SSB. However, we will from now assume for simplicity the following:

A1 The numbers of the left-handed and the right-handed fermions are the same:

n = m. (IV.8.10)

A2 The symmetry group G has a U(1) subgroup:

U(1) ⊆ G . (IV.8.11)

A3 The dynamics is such that the U(1) subgroup, mentioned in A2, remains unbroken:

U(1) ⊆ H . (IV.8.12)

The consequences of the assumptions A1–A3 are discussed in more detail in appendix D, now
let us state only the main points. The assumption A1 implies that since the multiplets (IV.8.1)
have the same dimensions, one can define the field

ψ ≡ ψL + ψR , (IV.8.13)

allowing for more compact formalism. The assumption A2 implies that there are no Majorana
mass terms in the free Lagrangian and the bare fermion propagator can be consequently expressed
just as 〈ψψ̄〉0 (i.e., there is no necessity for introducing the Nambu–Gorkov formalism (D.3.1)
in order to incorporate the Majorana propagators of the type 〈(ψ)cψ̄〉 etc.). And finally, the
assumption A3 implies that even though the dynamics is switched on, still no Majorana self-
energies are generated and the full fermion propagator can be expressed as 〈ψψ̄〉 too.

The assumptions A1–A3 are by no means necessary and we make them here only for sim-
plicity. Any of them can be violated and in fact in the case of neutrinos it is violated, as we saw
on in the previous chapters. In such a case, when the assumptions A1–A3 are not fulfilled, one
can work with the Nambu–Gorkov field

Ψ ≡
(
ψL + (ψL)c

ψR + (ψR)c

)
(IV.8.14)

instead of ψ (for details see appendix D). In fact, all considerations that we will do from now
with quantities (like propagators, symmetry generators, vertices, etc.) expressed in the basis ψ,
can be equally well done with the same quantities expressed in the basis Ψ. Therefore we will
not lose any generality by assuming A1–A3.

Having accepted the assumptions A1–A3, let us now rewrite the formulæ above from the
bases ψL, ψR into the single basis ψ. The kinetic terms (IV.8.2) recast as

Lkinetic(ψ) = ψ̄i/∂ψ . (IV.8.15)
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The transformation (IV.8.3) in terms of ψ is

G : ψ −→ [ψ]′ = eiθata ψ . (IV.8.16a)

Let us state this time explicitly also the corresponding transformation of ψ̄:

G : ψ̄ −→ [ψ̄]′ = ψ̄ e−iθa t̄a . (IV.8.16b)

Notice that while the transformation of ψ is generated by the generator ta, defined as

ta ≡ tLaPL + tRaPR (IV.8.17a)

(needless to say that due to (IV.8.10) the matrices tLa, tRa are of the same dimension and hence
it is correct to add them up), the transformation of ψ̄ is generated rather by t̄a, defined standardly
(cf. (vii)) as t̄a ≡ γ0t

†
aγ0, i.e., having the form

t̄a = tLaPR + tRaPL . (IV.8.17b)

Notice that the generators ta and t̄a differ only by the sign at the γ5 matrix.
In some applications later it will prove to be more convenient to parameterize the generators

ta, t̄a not as (IV.8.17), i.e., as a linear combination of the chiral projectors PL, PR, but rather as
a linear combination of 1 and γ5:

ta = tV a + tAaγ5 , (IV.8.18a)
t̄a = tV a − tAaγ5 , (IV.8.18b)

where the new generators tV a, tAa are again Hermitian and again do not contain of course any
γ5 matrices. The two bases tLa, tRa and tV a, tAa are related to each other by obvious relations

tV a =
1
2
(
tRa + tLa

)
, (IV.8.19a)

tAa =
1
2
(
tRa − tLa

)
(IV.8.19b)

and

tRa = tV a + tAa , (IV.8.20a)
tLa = tV a − tAa . (IV.8.20b)

The Noether current jµa in terms of the generators ta reads

jµa = ψ̄γµtaψ . (IV.8.21)

Notice that now, in contrast to the expression (IV.8.7) for jµa , the order of γµ and ta matters,
since in general γµta = t̄aγ

µ 6= taγ
µ due to presence of γ5 in ta.
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Fermion propagator

Consider the full fermion propagator iG = 〈ψψ̄〉. For the sake of later references, we state here
the proper definition of its Fourier transform:

〈0|T
[
ψ(x)ψ̄(y)

]
|0〉 =

∫
d4p

(2π)4
iG(p) e−ip·(x−y) . (IV.8.22)

The full propagator G has general form

G−1 = S−1 −Σ (IV.8.23)

where S is the free (bare) propagator, defined by the part of the Lagrangian quadratic in the
fermion fields, i.e., with the interactions neglected. The Σ is the (proper) self-energy, i.e., the
1PI part of the propagator: −iΣ = 〈ψψ̄〉1PI.

The full propagator G transforms under G as

G : G −→ [G]′ = eiθ·tG e−iθ·t̄ , (IV.8.24)

as can be seen by applying the transformation (IV.8.16) on the definition (IV.8.22) of G. From
this we can deduce the transformation rule for G−1 and consequently also for Σ:

G : Σ −→ [Σ]′ = eiθ·t̄Σ e−iθ·t (IV.8.25a)
= Σ− iθa

(
Σ ta − t̄aΣ

)
+O(θ2) . (IV.8.25b)

In the infinitesimal form (IV.8.25b) we can identify the quantity

JΣ, taK ≡ Σ ta − t̄aΣ , (IV.8.26)

which measures the non-invariance of the self-energy Σ under action of G generated by the
generator ta.

Likewise in most this text, also in this chapter we will not consider the fermion propagator
in the most general form, but rather somewhat constrained. First of all, we will assume that it
satisfies the Hermiticity condition

G = Ḡ . (IV.8.27)

Notice that, as shown in the appendix D, the free propagator S (being actually only a special
case of G) satisfies this condition automatically, due to Hermiticity of the Lagrangian. Thus, the
condition (IV.8.27) for G is in fact equivalent to the similar condition for Σ:

Σ = Σ̄ . (IV.8.28)

Furthermore, we will assume that the fermions are at the level of the Lagrangian massless,
i.e., that the free propagator has the simple form

S−1 = /p (IV.8.29)

and is therefore invariant under the transformation (IV.8.24), generated by the group G: [S]′ = S.
We in fact do not lose any generality by making the assumption (IV.8.29); its purpose is merely
to have a simpler notation, since any potential hard masses can be included by redefinition of Σ.
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More crude assumption is made concerning the Σ itself, as we will assume it to be a function
only of p2, not /p. This assumption can be compactly written as[

Σ, γ5

]
= 0 (IV.8.30)

and corresponds to the assumptions made within the Abelian toy model and the electroweak
interactions. Thus, under the assumptions (IV.8.28) and (IV.8.30) the self-energy Σ has the
familiar form

Σ = Σ†PL + ΣPR , (IV.8.31)

where Σ is a complex n × n matrix and is a function only of p2. Concerning the momentum
dependence we only assume that limp2→∞ Σ(p2) = 0, in order that certain integrals, to be
introduced thereinafter, be UV-finite. Apart from this, the form (IV.8.31) of the self-energy is no
longer constrained, in particular, we do not assume any special commutation relations between
the self-energy Σ and the symmetry generators ta.

Finally, under the assumptions (IV.8.29) and (IV.8.31) the full propagator

G =
(
/p−Σ

)−1
(IV.8.32)

can be explicitly expressed as

G =
(
/p+ Σ†)DL = DR

(
/p+ Σ†) , (IV.8.33)

where we denoted

DL ≡
(
p2 −ΣΣ†)−1

, (IV.8.34a)

DR ≡
(
p2 −Σ†Σ

)−1
, (IV.8.34b)

in accordance with definitions (D.2.26) in appendix (D). Needless to say that in general DL 6=
DR.

C, P and CP transformations

The discrete symmetries C and P (i.e., the charge conjugation and the parity, respectively) act on
the fermion field ψ(x) as

C : ψ(x) −→ [ψ(x)]C = ψc(x) , (IV.8.35)

P : ψ(x) −→ [ψ(x)]P = γ0 ψ(x̃) . (IV.8.36)

Here the charge conjugated field ψc is defined in (iv) and more details can be found in ap-
pendix A. The symbol x̃ denotes the parity-transformed 4-vector x,

x̃ ≡ (x0,−x) (IV.8.37)

or

x̃µ ≡ Pµν xν , (IV.8.38)
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where Pµν is the Lorentz transformation corresponding to the space reflection, i.e.,

Pµν ≡


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (IV.8.39)

For the combined CP transformation (first is applied the charge conjugation C and then the parity
P) of ψ(x) we therefore have

CP : ψ(x) −→ [ψ(x)]CP = γ0 ψ
c(x̃) (IV.8.40a)

= γ0 C ψ̄
T(x̃) , (IV.8.40b)

where C is the matrix of charge conjugations, introduced in appendix A.
The full fermion propagator G(p) now transforms under C and P as

[G(p)]C = C GT(−p)C−1 , (IV.8.41)

[G(p)]P = γ0G(p̃) γ0 , (IV.8.42)

where p̃ is defined analogously as x̃ above. The transformation under CP follows as

[G(p)]CP = γ0 C G
T(−p̃)C−1 γ0 . (IV.8.43)

The same transformation rules hold also for the inverse propagator G−1(p), i.e., in particular,
also for the self-energy Σ(p).

Let us now return to the assumptions made above concerning the form of the propagator.
Considering the bare propagator S(p), (IV.8.29), we easily observe that it is invariant under both
C and P , simply due to −C γT

µ C
−1 = γµ and γ0 /̃p γ0 = /p, respectively. Considering the Ansatz

(IV.8.31) for the self-energy Σ, we first note that as it depends only on p2 (rather than on /p),
we can suppress the momentum argument due to p2 = (−p̃)2 and write the transformation rules
simply as

[Σ]C = CΣT C−1 , (IV.8.44)

[Σ]P = γ0 Σ γ0 , (IV.8.45)

[Σ]CP = γ0 CΣT C−1 γ0 . (IV.8.46)

For concreteness, in terms of the Ansatz (IV.8.31) these transformations explicitly read

[Σ]C = Σ∗PL + ΣTPR , (IV.8.47)

[Σ]P = Σ†PR + ΣPL , (IV.8.48)

[Σ]CP = ΣTPL + Σ∗PR . (IV.8.49)

Put another way, in terms of Σ the C, P and CP transformations consist merely of transposition,
Hermitian conjugation and complex conjugation, respectively:

[Σ]C = ΣT , (IV.8.50)

[Σ]P = Σ† , (IV.8.51)

[Σ]CP = Σ∗ . (IV.8.52)
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It will be also useful to know the transformation properties under C, P and CP of the Noether
current jµa , which we rename here for convenience as jµta ,

jµta(x) ≡ ψ̄(x) γµ ta ψ(x) , (IV.8.53)

in order to mark explicitly its dependence on the symmetry generator ta. The transformation
rules under C and P , induced solely by the corresponding transformation (IV.8.35), (IV.8.36) of
the fermion fields, are[

jµta(x)
]C = −jµt̄ca(x) , (IV.8.54)[

jµta(x)
]P = Pµν jνt̄a(x̃) , (IV.8.55)

where

tca ≡ C tTa C
−1 , (IV.8.56)

see (v). For the combined transformation CP we have[
jµta(x)

]CP = −Pµν jνtca(x̃) . (IV.8.57)

At this point it is appropriate to introduce some notation to be used in the following sections.
Assuming that tca can be expressed as a linear combination of the generators ta, we define the
corresponding matrix Cab as43

tca = Cab tb . (IV.8.58)

It can be shown, using Tr[tcat
c
b] = Tr[tatb] ∼ δab and (tca)

c = ta, that Cab must be symmetric
and orthogonal:

C = CT = C−1 (IV.8.59)

and also independent of γ5.
It may be instructive to give some explicit examples of Cab:

Group U(1): The only generator t is in general given as t = tLPL + tRPR, where tL, tR are
arbitrary real numbers. Obviously:

C = 1 . (IV.8.60)

Group SU(2): The generators are given as ta = 1
2σa in terms of the Pauli matrices σa, a =

1, 2, 3. Recalling that σ1 and σ3 are symmetric, while σ2 is antisymmetric, we obtain [85]

C = diag(+1,−1,+1) . (IV.8.61)

Group SU(3): The generators are given as ta = 1
2λa, where λa, a = 1, . . . , 8, are the Gell-

Mann matrices. This time we get [85]

C = diag(+1,−1,+1,+1,−1,+1,−1,+1) . (IV.8.62)

43Do not confuse this matrix with the fermion matrix C of charge conjugation.
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Using the notion of the matrix Cab the transformation (IV.8.54) of the current under C can be
reexpressed as[

jµta(x)
]C = −Cab jµt̄b(x) . (IV.8.63)

Considering the CP transformation of the current, we can return to the original notation “jµa ”
(rather than “jµta”) and rewrite (IV.8.57) as[

jµa (x)
]CP = −Cab Pµν jνb (x̃) . (IV.8.64)

8.1.2 Global Ward–Takahashi identity

In this section we derive the Ward–Takahashi (WT) [86, 87] identity for the global symmetry G.
Later, in section 8.2.6, we will argue that the same result holds also once the symmetry is gauged.

Preliminary calculation

Before proceeding to the very derivation of the WT identity, we make some preliminary calcula-
tion, which we will use also later in section 8.2.6.

Consider the T -product of the type T
[
V µ ψ ψ̄

]
, where V µ is a bosonic operator. The T -

product is then given explicitly by

T
[
V µ(x)ψ(y) ψ̄(z)

]
=

θ(x0 − y0) θ(y0 − z0)V µ(x)ψ(y) ψ̄(z)− θ(z0 − y0) θ(y0 − x0) ψ̄(z)ψ(y)V µ(x)
+ θ(y0 − z0) θ(z0 − x0)ψ(y) ψ̄(z)V µ(x)− θ(x0 − z0) θ(z0 − y0)V µ(x) ψ̄(z)ψ(y)
+ θ(y0 − x0) θ(x0 − z0)ψ(y)V µ(x) ψ̄(z)− θ(z0 − x0) θ(x0 − y0) ψ̄(z)V µ(x)ψ(y) .

(IV.8.65)

We now compute its derivative with respect to x, i.e., apply the operator ∂xα. At doing so one
must remember that not only V µ itself is x-dependent, but so are also some of the Heawiside
functions θ in the definition (IV.8.65) of the T -product. Thus, taking this carefully into account
and using the formula d

dxθ(x) = δ(x), we arrive at

∂xα T
[
V µ(x)ψ(y) ψ̄(z)

]
= T

[(
∂xαV

µ(x)
)
ψ(y) ψ̄(z)

]
+ gα0 δ(x0 − y0)

(
θ(y0 − z0)

[
V µ(x), ψ(y)

]
ψ̄(z)− θ(z0 − y0) ψ̄(z)

[
V µ(x), ψ(y)

])
+ gα0 δ(x0 − z0)

(
θ(y0 − z0)ψ(y)

[
V µ(x), ψ̄(z)

]
− θ(z0 − y0)

[
V µ(x), ψ̄(z)

]
ψ(y)

)
.

(IV.8.66)

Here we have already rearranged the resulting terms in order to have them in the convenient form
of the commutators. Notice that these commutators are in fact equal-time, due to the preceding
delta-functions.
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Derivation of the WT identity

Consider now the Green’s function 〈jµaψψ̄〉. We will calculate its divergence with respect to
x, i.e., the quantity ∂xµ〈jµaψψ̄〉. Recall that 〈jµaψψ̄〉 is shorthand for 〈0|T

[
jµa (x)ψ(y) ψ̄(z)

]
|0〉.

Thus, as it contains the T -product, we can use the result (IV.8.66) with V µ = jµa . We obtain

∂xµ〈0|T
[
jµa (x)ψ(y) ψ̄(z)

]
|0〉 = 〈0|T

[(
∂xµj

µ
a (x)

)
ψ(y) ψ̄(z)

]
|0〉

+ δ(x0 − y0)
(
θ(y0 − z0)〈0|

[
j0a(x), ψ(y)

]
ψ̄(z)|0〉 − θ(z0 − y0)〈0|ψ̄(z)

[
j0a(x), ψ(y)

]
|0〉
)

+ δ(x0 − z0)
(
θ(y0 − z0)〈0|ψ(y)

[
j0a(x), ψ̄(z)

]
|0〉 − θ(z0 − y0)〈0|

[
j0a(x), ψ̄(z)

]
ψ(y)|0〉

)
.

(IV.8.67)

First of all, the first term, containing
(
∂xµj

µ
a (x)

)
, can be dismissed due to the conservation

(IV.8.8) of the current jµa . To proceed we have to calculate the commutators
[
j0a(x), ψ(y)

]
and[

j0a(x), ψ̄(z)
]
. Invoking the form (IV.8.21) of the current jµa we can use the simple matrix identity

[AB,C] = A{B,C} − {A,C}B to rewrite the commutators in terms of the anticommutators
of the type {ψ,ψ} and {ψ,ψ†}. Recall that the commutators are equal-time, thus so are the
anticommutators. However, they are therefore nothing else than the canonical anticommutators
(B.1.6) of the fermion fields, stemming from the process of quantization, as shown in appendix B.
Using this fact we readily arrive at[

j0a(x), ψ(y)
]
e.t.

= −δ3(x− y) ta ψ(y) , (IV.8.68a)[
j0a(x), ψ̄(y)

]
e.t.

= δ3(x− y) ψ̄(y) t̄a . (IV.8.68b)

We can now plug these results into (IV.8.67). After factorizing the δ3 functions out of the round
brackets we see that the contents of the round brackets have the form of T -products of fermion
operators:

∂xµ〈0|T
[
jµa (x)ψ(y) ψ̄(z)

]
|0〉 =

− δ4(x− y) ta 〈0|T
[
ψ(y) ψ̄(z)

]
|0〉+ δ4(x− z) 〈0|T

[
ψ(y) ψ̄(z)

]
|0〉 t̄a .

(IV.8.69)

We recognize the quantities on the right-hand side as the fermion propagators iG = 〈ψψ̄〉. This
equation is in fact the coveted WT identity, relating the three-point Green’s function 〈jµaψψ̄〉
with the two-point Green’s function 〈ψψ̄〉.

Finally, it is useful to rewrite the WT identity (IV.8.69) into the momentum space in terms of
the 1PI function 〈jµaψψ̄〉1PI = γµa . The Fourier transform of 〈jµaψψ̄〉 is defined as

〈0|T
[
jµa (x)ψ(y)ψ̄(z)

]
|0〉 =∫

d4q

(2π)4
d4p′

(2π)4
d4p

(2π)4
eiq·x e−ip′·y eip·z (2π)4δ4(p+ q − p′) iG(p′) γµa (p′, p) iG(p) ,

(IV.8.70)

where we have already explicitly indicated its 1PI part γµa . Taking this definition and the defini-
tion (IV.8.22) of the Fourier transform of the fermion propagator G into account we can rewrite
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the WT identity (IV.8.69) in a more convenient and familiar form as

qµγ
µ
a (p′, p) = G−1(p′) ta − t̄aG−1(p) , (IV.8.71)

where p′ ≡ p+ q.

8.2 Local symmetry

8.2.1 Gauging of the theory

Lagrangian

We now “switch on” the gauge interactions. That it to say, we assume that the transformation
(IV.8.16) is local,44 i.e., the parameters θa are now position-dependent. In order to maintain
the invariance of the theory under such gauge transformation, we are forced to introduce a set of
gauge bosons – the spin-1 massless particlesAµa , a = 1, . . . , NG, coupled in a specific way to the
fermions. At the Lagrangian level instead of L(ψ) we have to deal now with its extension [88]

L(ψ,Aµa) = L(ψ) + gjµaAaµ −
1
4
Fµνa Faµν , (IV.8.72)

where Fµνa is the gauge boson field-strength tensor, defined as

Fµνa ≡ ∂µAνa − ∂νAµa + gfabcA
µ
bA

ν
c . (IV.8.73)

As there are derivatives in it, the last term in (IV.8.72), proportional to (Fµνa )2, thus contains the
kinetic terms for the gauge bosons. Moreover, it potentially contains also the gauge boson self-
interaction terms, proportional to the structure constants fabc of the group G. These are defined
using the commutation relations of the generators of G as

[ta, tb] = ifabc tc . (IV.8.74)

The term gjµaAaµ in (IV.8.72) contains the coveted interactions of the fermions with the
gauge bosons:

Lint. = gjµaAaµ (IV.8.75a)
= gψ̄γµtaψA

µ
a . (IV.8.75b)

Another way of deriving them consists of trading the partial derivatives in the fermion kinetic
term (IV.8.15) for the covariant derivatives, i.e.,

∂µ −→ Dµ ≡ ∂µ − ig taAµa , (IV.8.76)

so that the kinetic term (IV.8.15) modifies as

Lkinetic(ψ) = ψ̄i/∂ψ −→ ψ̄i/Dψ = Lkinetic(ψ) + gjµaAaµ . (IV.8.77)

44We assume here, again merely for simplicity, that the whole group G is gauged, whereas in some applications this
may be the case only for some its subgroup.
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Quantization

The Lagrangian (IV.8.72) describes a classical theory. The process of its quantization entails
effectively two modifications.

First, one must fix the gauge. By fixing the gauge we avoid the problem of overcounting the
gauge boson degrees of freedom in the functional integral by counting in the gauge fields related
by a gauge transformation (and hence physically equivalent). We will fix the gauge by adding
the gauge-fixing term of the form

Lg.f. = − 1
2ξ

(∂µAµa)
2 (IV.8.78)

to the Lagrangian (IV.8.72).
Second, the quantization of the Lagrangian (IV.8.72) requires also introduction of the Faddeev–

Popov ghosts ca, a = 1, . . . , NG, with the Lagrangian

Lghosts = −c̄a∂µDµ
abcb (IV.8.79a)

= −c̄a�ca − gfabcc̄a∂µ(Aµb cc) . (IV.8.79b)

These ghost fields, emerging in the process of the quantizing, are scalars obeying the Fermi–
Dirac statistics. Thus, as being unphysical, they can appear in the Feynman diagrams only in the
closed loops, with the aim to preserve the unitarity of the theory. We will however not need them
in the present text.

8.2.2 Simplifying assumptions about the gauge dynamics

Weak gauge dynamics

Let us comment on the quantity g, the gauge coupling constant. We make now the key assump-
tion that the gauge dynamics is weak, i.e.,

g � 1 , (IV.8.80)

so that the perturbative expansions in g is meaningful.
The assumption (IV.8.80) about the weakness of the gauge dynamics was in fact implic-

itly present already in applications considered in the previous parts. Recall the situation in the
Abelian toy model and in the electroweak interactions: The symmetry is broken spontaneously
by the strong Yukawa dynamics, through the formation of appropriate fermion and scalar self-
energies, while the gauge dynamics is actually not considered at all. It is assumed to be merely a
passive spectator and can be incorporated only perturbatively, provided it is weakly coupled, as
we are going to show in this chapter.

More gauge coupling constants

At this point a remark concerning the nature of the symmetry group G is in order. In gauging
the theory we have so far implicitly assumed that the symmetry G is simple, which allowed us to
introduce only one coupling constant g. If G was not simple but rather a product of some simple
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subgroups, we would need to introduce a special coupling constant for each such subgroup. In
fact, in the applications of our interest the group G is always of the form of a product of two or
more simple groups. Recall that in the Abelian toy model we had G = U(1)V1×U(1)V2×U(1)A,
while in the electroweak interactions we had G = SU(2)L × U(1)Y.

This problem can be overcome as follows. Assume that the group in question, G, is of the
form

G = G1 ×G2 × . . .×GN , (IV.8.81)

where each subgroup Gi (i = 1, . . . , N ) is a simple group with NGi generators and we attribute
a gauge coupling constant gGi to it. Now we can define the diagonal matrix

g ≡ diag
(
gG1 , . . . , gG1︸ ︷︷ ︸
NG1 times

, gG2 , . . . , gG2︸ ︷︷ ︸
NG2 times

, . . . , gGN , . . . , gGN︸ ︷︷ ︸
NGN times

)
. (IV.8.82)

The point is that the gauge coupling constants typically appear in formulæ in combinations with
the quantities carrying the gauge index. E.g., in the case of only one gauge coupling constant g,
considered so far, we deal typically with quantities of the type

gXa , (IV.8.83)

where Xa can stand for a generator ta, symmetry current jµa , gauge field Aµa , etc. In the case of
G given by (IV.8.81) the expressions of the type (IV.8.83) generalize straightforwardly as

gabXb , (IV.8.84)

where gab is given by (IV.8.82).
In this text, however, for the sake of notational simplicity, we will still use the notation of the

type (IV.8.83) (i.e., pretending that G is simple) and will keep in mind that such a notation is in
a more general case (IV.8.81) merely a shorthand for (IV.8.84). In fact, later, after introducing
the notation (IV.8.152) (combining a gauge coupling constant and a symmetry generator into a
single symbol) we will not need to deal with this issue anymore.

More Abelian factors in G

If the gauge group G contains more that one Abelian factor of U(1), another subtlety comes
into play [89, 90, 91]. Recall that strictly non-Abelian field-strength tensor Fµνa , (IV.8.73), is
gauge-covariant, but not gauge-invariant. The only way how to make a (renormalizable and
CP-conserving) gauge-invariant quantity out of it is to consider its “square” FaµνF

µν
a , i.e., the

usual kinetic term, as in the Lagrangian (IV.8.72). In particular, the “off-diagonal” kinetic terms,
contracting field-strength tensor of two different groups, at least one of them being non-Abelian,
are forbidden. On the other hand, in Abelian gauge theories this need not be true, as the Abelian
field-strength tensor alone is already gauge-invariant. For definiteness, consider the gauge group
in question to be

G =
∏
a

U(1)a . (IV.8.85)
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Then since each Fµνa is gauge-invariant, one can write the most general kinetic term as

Lkinetic = −1
4
ξabF

µν
a Fbµν , (IV.8.86)

where ξab (not to be confused with the gauge-fixing parameter above) is in principle non-diagonal,
real and positive matrix, which can be also without loss of generality assumed to be symmetric.
By an appropriate rotation of the gauge fields the matrix ξab can be transformed into the unit
matrix δab, but the prize is that the matrix g, (IV.8.82), of the gauge couplings constants is no
longer diagonal. Still, however, g can be made symmetric by a specific choice of coordinates in
the gauge space.

This should be in principle taken into account especially in chapter 10, where the Abelian
toy model with the group G = U(1)V1 × U(1)V2 × U(1)A will be gauged. However we will
for the sake of simplicity treat the subject in the usual way: We will consider diagonal kinetic
terms, so that there will be no mixing in the free propagator of the gauge bosons, and we will
also associate each U(1) with just one gauge coupling constant.

8.2.3 Properties of the gauge fields

Let us discuss briefly, to the needed extent, the properties of the gauge fields.

Transformation properties

Not only the fermions, but also the gauge fields themselves transform non-trivially under G.
Assuming that ta are generators of some representation of G, then the action of G on the gauge
fields can be written as45

G : taA
µ
a −→ ta[Aµa ]

′ = eiθ·t
(
taA

µ
a +

i
g
∂µ
)
e−iθ·t , (IV.8.87)

or, more compactly, as

G : Aµa −→ [Aµa ]
′ = Xab(θ)A

µ
b +

1
g
Y µa (θ) , (IV.8.88)

where we defined the quantities Xab(θ), Y µa (θ) as

taXab(θ) ≡ eiθ·t tb e−iθ·t , (IV.8.89)
ta Y

µ
a (θ) ≡ eiθ·t i∂µ e−iθ·t . (IV.8.90)

In the lowest order in the transformation parameters θa and their derivatives ∂µθa we have ex-
plicitly

Xab(θ) = δab + fabcθc +O(θ2) , (IV.8.91)
Y µa (θ) = ∂µθa +O(θ2) . (IV.8.92)

In the following we will be concerned mostly with the matrix X(θ). It satisfies

X(−θ) = X−1(θ) = XT(θ) = X†(θ) , (IV.8.93)
45In order not to waste the indices, we use in the exponentials the shorthand notation θata ≡ θ · t.
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as can be seen from its expression in the form

X(θ) = exp(iθaTa) , (IV.8.94)

where the matrices Ta are generators of the adjoint representation of G, i.e., their elements are
given by

(Ta)bc = −ifabc , (IV.8.95)

so that Ta are antisymmetric:

T T
a = −Ta . (IV.8.96)

Recall that the structure constants fabc are real and antisymmetric. In terms of (IV.8.94) the
relation (IV.8.89) recasts as

ta
(
eiθ·T )

ab
= eiθ·t tb e−iθ·t . (IV.8.97)

For the sake of later references let us write again the transformation (IV.8.88) ofAµa , this time
under global G, i.e., with Y µa (θ) ≡ 0:

G : Aµa −→ [Aµa ]
′ =

(
eiθ·T )

ab
Aµb (IV.8.98a)

= Aµa + θb δbA
µ
a +O(θ2) , (IV.8.98b)

where

δaA
µ
b ≡ i(Ta)bcAµc (IV.8.99a)

= fabcA
µ
c . (IV.8.99b)

Equations of motion

The equations of motion of the gauge bosons Aµa , following from the Lagrangian (IV.8.72) by
means of the standard Euler–Lagrange procedure, are

∂µF
µν
a = −gJνa . (IV.8.100)

The quantity Jµa is the Noether current associated with the global symmetry G of the Lagrangian
(IV.8.72), i.e., given by

Jµa = − ∂L
∂(∂µψ)

δaψ −
∂L

∂(∂µAνb )
δaA

ν
b (IV.8.101a)

= jµa + fabcF
µν
b Acν , (IV.8.101b)

where jµa is the given by (IV.8.21) and for δaAνb we used (IV.8.99). The current Jµa is conserved:

∂µJ
µ
a = 0 , (IV.8.102)

implying that the current jµa is no longer conserved as in (IV.8.8), its divergence is now propor-
tional to fabc:

∂µj
µ
a = O(fabc) . (IV.8.103)
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Adding the gauge fixing term (IV.8.78) to the Lagrangian (IV.8.72) the equations of motion
modifiy as

∂µF
µν
a = −gJνa −

1
ξ
∂ν(∂µAµa) . (IV.8.104)

Employing the explicit form of Jµa , (IV.8.101), the equations of motion can be rewritten in a
more convenient way as

(D−1)µνabAbν = −gjµa +O(fabc) (IV.8.105)

Here we have introduced the differential operator (D−1)µνab , defined as

(D−1)µνab ≡
[
∂2gµν −

(
1− 1

ξ

)
∂µ∂ν

]
1ab . (IV.8.106)

Propagators

Consider first the free propagator of the gauge bosons Aµa , denoted as

iDµν
ab = 〈AµaAνb 〉0 . (IV.8.107)

The free part of the Lagrangian L(ψ,Aµa), (IV.8.72), i.e., the part quadratic in Aµa , is given
explicitly by

Lgauge,quadratic(ψ,Aµa) = −1
4
(
∂µAνa − ∂νAµa

)2 − 1
2ξ
(
∂µA

µ
a

)2
(IV.8.108a)

=
1
2
Aaµ (D−1)µνab Abν + ∂µV

µ(A, ∂A) , (IV.8.108b)

where the differential operator (D−1)µνab is given by (IV.8.106) and the four-vector V µ(A, ∂A)
is certain function of the gauge fields Aµa and their derivatives. Assuming that the surface term
∂µV

µ can be neglected when computing the action, the Fourier transform of (D−1)µνab defines
the momentum space inverse free propagator (D−1)µνab :(

D−1
)µν
ab

=
∫

d4x (D−1)µνab eiq·x (IV.8.109a)

= −
[
q2gµν −

(
1− 1

ξ

)
qµqν

]
1ab (IV.8.109b)

= −
(
gµν − qµqν

q2

)
q21ab −

1
ξ

qµqν

q2
q21ab . (IV.8.109c)

The full propagator Dµν
ab is obtained by inverting (IV.8.109),(

D−1D
)µν
ab
≡ (D−1)µac ρD

ρν
cb = gµν1ab , (IV.8.110)

so that we arrive at

Dµν
ab = −

(
gµν − qµqν

q2

)
1ab

q2
− ξ q

µqν

q2
1ab

q2
. (IV.8.111)
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Notice here the rôle of the gauge-fixing parameter 1/ξ: If it was missing, the inverse propagator
(D−1)µνab would be proportional to the projector gµν − qµqν/q2, so that it would be a singular
matrix without a meaningful inversion. Only by addition of the projector qµqν/q2 (proportional
to 1/ξ), which makes together with gµν − qµqν/q2 a complete set of projectors, we obtain a
regular matrix suitable for inversion.

The full propagator Gµνab of the gauge bosons,

iGµνab = 〈AµaAνb 〉 , (IV.8.112)

is given in terms of the free one as (we suppress the Lorentz and gauge indices)

G−1 = D−1 + Π , (IV.8.113)

where the polarization tensor Πµν
ab is the gauge boson self-energy:

iΠµν
ab = 〈AµaAνb 〉1PI . (IV.8.114)

It can be proved (see, e.g., [92]) that as a consequence of the symmetry of the Lagrangian the
polarization tensor Πµν

ab must be transversal,

qµΠ
µν
ab (q) = 0 , (IV.8.115)

i.e., it is proportional to the transversal projector:

Πµν
ab (q) =

(
gµνq2 − qµqν

)
Πab(q2) , (IV.8.116)

where the form factor Πab (being a function of q2 due to Lorentz invariance) is symmetric in the
gauge indices a, b. The full propagator Gµνab has consequently the form

Gµνab = −
(
gµν − qµqν

q2

)[
(q2 − q2Π)−1

]
ab
− ξ q

µqν

q2
1ab

q2
. (IV.8.117)

Notice that only the transversal part of the full propagator Gµνab gets renormalized, whereas the
part proportional to the gauge-fixing parameter ξ stays intact and is identical to its counterpart
in the free propagator Dµν

ab , (IV.8.111). This is in fact due to the transversality (IV.8.115) of the
polarization tensor Πµν

ab : Assuming an additional term qµqνΠ(L)
ab in (IV.8.116), the term propor-

tional to ξ in the full propagator Gµνab would be modified as 1ab/q2 →
[
(q2 − q2Π(L))−1

]
ab

.

Transformation under G

The transformation rule for the full propagator Gµνab under the global symmetry G, i.e., under
(IV.8.98), is

G : Gµνab −→ [Gµνab ]′ =
(
eiθ·T )

ac
Gµνcd

(
e−iθ·T )

db
, (IV.8.118a)

or, by suppression the gauge indices, in a more compact matrix form

G : Gµν −→ [Gµν ]′ = eiθ·T Gµν e−iθ·T . (IV.8.118b)
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The transformation rule for the polarization tensor follows:

G : Πµν
ab −→ [Πµν

ab ]′ =
(
eiθ·T )

ac
Πµν
cd

(
e−iθ·T )

db
, (IV.8.119a)

or, in the matrix form,

G : Πµν −→ [Πµν ]′ = eiθ·T Πµν e−iθ·T . (IV.8.119b)

One can immediately see that the free propagator (IV.8.111) is invariant under G:

G : Dµν
ab −→ [Dµν

ab ]′ = Dµν
ab . (IV.8.120)

As the transformations of the gauge propagators under G do not touch the Lorentz indices,
it is in particular clear that the form factor Πab, (IV.8.116) transforms in the same way as Πµν

ab .
I.e., one can use the transformation rule (IV.8.119), just with the Lorentz indices missing. Never-
theless, let us write, only for the sake of later references, the transformation rule of Πab together
with its infinitesimal form:

G : Π −→ [Π]′ = eiθ·T Π e−iθ·T (IV.8.121a)
= Π + iθa

[
Ta,Π

]
+O(θ2) . (IV.8.121b)

C, P and CP transformations

Consider first the behavior of the gauge field Aµa under the charge conjugation C. It transforms
in such a way that the following relation holds [92]:

[Aµa(x)]
C(−tca) = Aµa(x) ta . (IV.8.122)

Here −tca can be recognized as the generators of the conjugate representation of G; recall in this
respect also the definition (IV.8.56) of tca. It follows that the field-strength tensor Fµνa , (IV.8.73),
transforms in the same way

[Fµνa (x)]C(−tca) = Fµνa (x) ta , (IV.8.123)

so that the Yang–Mills Lagrangian L = − 1
4F

µν
a Faµν stays invariant under C.

In order to find a more compact expression for [Aµa(x)]
C , we recall that tca can be expressed

as a linear combination of the generators ta. Using the corresponding relation (IV.8.58) we arrive
at more compact expression for the transformation rule of Aµa under C [85]:

[Aµa(x)]
C = −CabAµb (x) , (IV.8.124)

where we also used the properties (IV.8.59) of the matrix Cab.
The transformation of the gauge field Aµa under parity P is straightforward:

[Aµa(x)]
P = Pµν Aνa(x̃) , (IV.8.125)

so that we can readily write the transformation law for Aµa under the combined parity CP:

[Aµa(x)]
CP = −Cab Pµν Aνb (x̃) . (IV.8.126)



148 Dynamical symmetry breaking in models with strong Yukawa interactions

The C and P transformations of the full propagator Gµνab , (IV.8.112), are given by

[Gµνab (q)]C = Cac CbdG
µν
cd (q) , (IV.8.127)

[Gµνab (q)]P = Pµα Pνβ G
αβ
ab (q̃) , (IV.8.128)

and the combined CP transformation is consequently

[Gµνab (q)]CP = Cac Cbd Pµα Pνβ G
αβ
cd (q̃) . (IV.8.129)

The same transformation rules as for Gµνab hold also for the polarization tensor Πµν
ab , (IV.8.114).

Noting the explicit forms (IV.8.117) and (IV.8.116) of Gµνab and Πµν
ab , respectively, we see that

the propagators are in fact invariant under parity: [Gµνab (q)]P = Gµνab (q), so that effectively
[Gµνab (q)]CP = [Gµνab (q)]C ; analogously for Πµν

ab . Thus, the CP transformation of Gµνab and Πµν
ab

manifests itself only by its effect on the form factor Πab:

[Πab]
CP = Cac Cbd Πcd . (IV.8.130)

From this we can in particular see that the free propagatorsDµν
ab , (IV.8.111), as well as the gauge-

fixing part of the full propagator Gµνab , (IV.8.117), is invariant under CP , since Cac Cbd δcd = δab
Consider finally the Lagrangian describing the interactions of the gauge fields with fermions:

L(x) = g jµta(x)Aaµ(x) . (IV.8.131)

Using the transformation rules for the current and for the gauge fields, we straightforwardly
obtain

[L(x)]C = [L(x)]P = g jµt̄a(x̃)Aaµ(x̃) . (IV.8.132)

We therefore see that C and P are not good symmetries of the gauge interactions, unless t̄a = ta
for all a, i.e., unless the generators ta do not contain any γ5 matrices. On the other hand, consider
the transformation of the interaction Lagrangian (IV.8.131) under the combined symmetry CP .
Using the results (IV.8.132) we readily observe

[L(x)]CP = g jµta(x)Aaµ(x) (IV.8.133a)
= L(x) , (IV.8.133b)

since ˜̃x = x and ¯̄ta = ta. I.e., the gauge interactions are always invariant under CP .46

8.2.4 Gauge boson masses

The gauge boson mass spectrum is given by the poles of their propagator. The free propagator
Dµν
ab has its only pole in q2 = 0, which reflects the fact that the gauge bosons are at the La-

grangian level massless. However, the dynamics may be such that once the bare propagator is
corrected by the polarization tensor Πµν

ab , the resulting full propagator Gµνab already has poles at

46We mean here unbroken gauge interactions. If the gauge symmetry is broken, the gauge sector can be CP-violating.
This happens, e.g., in the charged current interactions in the SM. Even in this case, however, it is not the gauge sector
itself, but rather the Yukawa sector (or generally a sector, generating the fermion masses), which is ultimately responsible
for the CP-violation.
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some q2 6= 0, corresponding to massive gauge bosons. Clearly, the inspection of the full prop-
agator Gµνab reveals that the source of non-vanishing poles can be only the

(
q2 − q2Π

)−1
part.

Thus, the poles are given by the equation

det
(
q2 − q2Π(q2)

)
= 0 . (IV.8.134)

Let us investigate the conditions for the pole equation (IV.8.134) to have a non-vanishing
solution. In order to simplify the problem it is convenient first to diagonalize the symmetric
matrix Π(q2) via the orthogonal transformation as

Π(q2) = O(q2)π(q2)OT(q2) , (IV.8.135)

where π(q2) is a diagonal matrix:

π(q2) = diag
(
π1(q2), . . . , πNG(q2)

)
(IV.8.136)

and O(q2) is an orthogonal matrix:

O(q2)OT(q2) = 1 . (IV.8.137)

We demand that O(q2) is orthogonal for all q2, which implies that O(q2) is also regular for all
q2, i.e., it has, in particular, no pole at q2 = 0 and therefore is expressible in the form

O(q2) =
∞∑
n=0

(q2)nOn , (IV.8.138)

where On are some momentum-independent matrix coefficients. The orthogonality condition
(IV.8.137) is in terms of the first few coefficients On expressed as

O0 O
T
0 = 1 , (IV.8.139a)

O0 O
T
1 +O1 O

T
0 = 0 , (IV.8.139b)

O1 O
T
1 +O0 O

T
2 +O2 O

T
0 = 0 , (IV.8.139c)

...

Using the orthogonal transformation (IV.8.135) the determinant in (IV.8.134) simplifies as

det
(
q2 − q2Π(q2)

)
=

NG∏
a=1

(
q2 − q2πa(q2)

)
, (IV.8.140)

so that instead of the single pole equation (IV.8.134) we have now a separate equation

q2 − q2πa(q2) = 0 (IV.8.141)

for each a = 1, . . . , NG.
Let us now discuss possibilities of the analytic structure of πa(q2) (for some fixed a). Assume

first that it is regular at q2 = 0 (i.e., it has no pole at q2 = 0). In such a case the pole equation
(IV.8.141) has clearly the vanishing solution q2 = 0, which corresponds to the massless gauge
boson. Now assume on contrary that πa(q2) has a simple pole, i.e., a pole of the type 1/q2.
Then the term q2πa(q2) in the pole equation (IV.8.141) contains a constant part, given by the
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residue of the pole 1/q2 of πa(q2), and correspondingly q2 = 0 cannot be a solution of the
equation (IV.8.141). In other words, a pole of the type 1/q2 in πa(q2) with a non-vanishing
residue guarantees that the gauge boson acquires a non-vanishing mass. Finally, to complete the
argument, one might also in principle assume that the pole in πa(q2) is not simple (i.e., that it
is, for instance, of the type 1/q4). However, this cannot happen, since any pole of a Green’s
function should be physically interpretable as a propagator of some intermediate particle. In the
present case the allowed pole of the type 1/q2 corresponds to a massless scalar particle, the NG
boson, coupled bilinearly to the gauge boson. We will discuss this interpretation more closely
later in section 9.6.

Thus, the most general form of πa(q2) is

πa(q2) =
1
q2
m2
a +

∞∑
n=0

(q2)n πn,a , (IV.8.142)

wherem2
a and πn,a are some coefficients independent of q2, and the full diagonal π(q2), (IV.8.136),

has the form

π(q2) =
1
q2
m2 +

∞∑
n=0

(q2)n πn , (IV.8.143)

where

m2 ≡ diag
(
m2

1, . . . ,m
2
NG

)
, (IV.8.144)

πn ≡ diag
(
πn,1, . . . , πn,NG

)
. (IV.8.145)

We showed that each particular π(q2) has the pole of the type 1/q2. On the other hand, recall
that O(q2) has no pole at q2 = 0, (IV.8.138). Thus, when applied to π(q2) to obtain Π(q2) via
(IV.8.135), O(q2) protects the pole structure (IV.8.143) so that Π(q2) can be written in the same
form as π(q2):

Π(q2) =
1
q2
M2 +

∞∑
n=0

(q2)n Πn . (IV.8.146)

Here the coefficients M2, Πn are some symmetric matrices, in principle non-diagonal. For the
sake of later references we state here explicit relations between M2, Πn and m2, πn for the first
few terms:

M2 = O0 m
2OT

0 , (IV.8.147a)
Π0 = O0 π0 O

T
0 +O1 m

2OT
0 +O0 m

2OT
1 , (IV.8.147b)

Π1 = O0 π1 O
T
0 +O1 π0 O

T
0 +O0 π0 O

T
1 +O1 m

2OT
1 +O2 m

2OT
0 +O0 m

2OT
2 ,

(IV.8.147c)
...

8.2.5 Three-point function

The three-point function 〈Aµaψψ̄〉 and especially its 1PI part will be subject of the most of the
next chapter. We will now state some of its properties and derive the WT identity for it.
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Aµ

a

q

p′

p

=iΓµ

a
(p′, p)

Figure IV.8.1. Assignment of momenta of the proper vertex Γµa(p
′, p), (IV.8.150). Momentum conservation

q = p′ − p is implied.

Definitions

Consider the three-point Green’s function 〈Aµaψψ̄〉,

iGµa(x, y, z) = 〈0|T
[
Aµa(x)ψ(y)ψ̄(z)

]
|0〉 , (IV.8.148)

and its momentum representation

Gµa(x, y, z) =
∫

d4q

(2π)4
d4p′

(2π)4
d4p

(2π)4
eiq·x e−ip′·y eip·z (2π)4δ4(p+ q − p′)Gµa(p′, p) .

(IV.8.149)

Since it is a full Green’s function, it can be written as the 1PI function iΓµa = 〈Aµaψψ̄〉1PI times
the full propagators attached to the external legs:

iGµa(p
′, p) = iGµabν(q) iG(p′) iΓνb (p

′, p) iG(p) , (IV.8.150)

where q = p′ − p.
Note that according to the Lagrangian (IV.8.75) the bare (tree) proper vertex Γµa(p

′, p) reads

Γµa(p
′, p)

∣∣
bare

= g γµta (IV.8.151a)
= γµTa . (IV.8.151b)

Here we have introduced the notation

Ta ≡ g ta , (IV.8.152a)

to be used in the following extensively. Recall that, as discussed above, the definition (IV.8.152a)
generalizes for G given by (IV.8.81) naturally as

Ta ≡ gab tb , (IV.8.152b)

where gab is given by (IV.8.82). We will call the quantity Ta a “generator” too.
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Hermiticity

Since the fermion self-energy Σ is assumed to satisfy the Hermiticity condition (IV.8.28), it is
only natural to assume that the vertex Γµa(p

′, p) satisfies an analogous condition too:

Γµa(p
′, p) = Γ̄µa(p, p

′) . (IV.8.153)

The two Hermiticity conditions (IV.8.28) and (IV.8.153) will eventually, in the next chapter,
ensure that the polarization tensor will be real.

Transformation under G

Let us now check the transformation properties. According to the transformation rules (IV.8.16)
and (IV.8.98) for fermions and gauge bosons, respectively, we observe that the full (i.e., not 1PI)
three-point function 〈Aµaψψ̄〉, (IV.8.148), must transform under the global symmetry G as

G : Gµa(x, y, z) −→ [Gµa(x, y, z)]
′ = eiθ·t (eiθ·T )

ab
Gµa(x, y, z) e−iθ·t̄ .

(IV.8.154)

The same transformation rule must, due to (IV.8.149), hold also in the momentum representation:

G : Gµa(p
′, p) −→ [Gµa(p

′, p)]′ = eiθ·t (eiθ·T )
ab
Gµb (p

′, p) e−iθ·t̄ . (IV.8.155)

Later we will be however interested rather in the transformation rule of the 1PI function iΓµa =
〈Aµaψψ̄〉1PI. Recall that in the momentum representation the full and 1PI vertices are related by
(IV.8.150). The transformation of 〈Aµaψψ̄〉 under G must be therefore induced by the transfor-
mations of its particular components expressed in (IV.8.150), i.e.,

G : iGµa(p
′, p) −→ [iGµa(p

′, p)]′ = [Gµabν(q)]
′ [G(p′)]′ [Γνb (p

′, p)]′ [G(p)]′ .
(IV.8.156)

We can now plug the expression (IV.8.150) for Gµa(p
′, p) into (IV.8.155) and compare the re-

sulting form of the expression for [Gµa(p
′, p)]′ with the other expression (IV.8.156) for the same

quantity to obtain the equation

eiθ·t (eiθ·T )
ab
Gµabν(q)G(p′) Γνb (p

′, p)G(p) e−iθ·t̄ = [Gµabν(q)]
′ [G(p′)]′ [Γνb (p

′, p)]′ [G(p)]′ .
(IV.8.157)

Notice that we know the transformation rules (IV.8.24) and (IV.8.118) for the fermion and gauge
boson propagator, respectively, entering the right-hand side of (IV.8.157). Using these we can
finally extract from the equation (IV.8.157) the desired transformation rule for the proper vertex
Γµa(p

′, p):

G : Γµa(p
′, p) −→ [Γµa(p

′, p)]′ = eiθ·t̄ (eiθ·T )
ab

Γµb (p
′, p) e−iθ·t . (IV.8.158)

It is easy to show that the bare vertex (IV.8.151) is invariant under global G, as it after all must
be:

G : Γµa(p
′, p)

∣∣
bare

−→
[
Γµa(p

′, p)
∣∣
bare

]′ = Γµa(p
′, p)

∣∣
bare

. (IV.8.159)
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Transformation under C, P and CP

The transformation of the three-point function Gµa(p
′, p) under C, P and CP is induced by the

corresponding transformations of the gauge bosons and fermions. I.e., schematically

[iGµa(p
′, p)]X = 〈[Aµa ]X [ψ]X [ψ̄]X 〉 , (IV.8.160)

where X = C,P, CP . Using the transformation rules for individual fields we obtain this way the
transformation rules for the three-point function Gµa(p

′, p):

[Gµa(p
′, p)]C = −Cab C GµT

b (−p,−p′)C−1 , (IV.8.161a)

[Gµa(p
′, p)]P = Pµν γ0G

ν
a(p̃

′, p̃) γ0 , (IV.8.161b)

[Gµa(p
′, p)]CP = −Pµν Cab γ0 C G

νT
b (−p̃,−p̃′)C−1 γ0 . (IV.8.161c)

In order to find the transformation rules for the proper vertex Γµa(p
′, p), we proceed exactly

in the same way as above when probing the transformation properties under G: We note that
since the full Green’s function Gµa(p

′, p) is of the form (IV.8.150), its transformations under C,
P and CP must be induced also by the corresponding transformations of the propagators and the
proper vertex Γµa(p

′, p):

[iGµa(p
′, p)]X = [Gµabν(q)]

X [G(p′)]X [Γνb (p
′, p)]X [G(p)]X . (IV.8.162)

Thus, noting that both expressions (IV.8.161) and (IV.8.162) must be the same and taking into
account the known transformation rules for the propagators on the right-hand side of (IV.8.162),
we arrive at the transformation rules for the proper vertex Γµa(p

′, p):

[Γµa(p
′, p)]C = −Cab C ΓµT

b (−p,−p′)C−1 , (IV.8.163)

[Γµa(p
′, p)]P = Pµν γ0 Γνa(p̃

′, p̃) γ0 , (IV.8.164)

[Γµa(p
′, p)]CP = −Pµν Cab γ0 C ΓνTb (−p̃,−p̃′)C−1 γ0 , (IV.8.165)

which are the same as those (IV.8.161) for Gµa(p
′, p).

Consider now the free vertex Γµa(p
′, p)|bare = γµTa, (IV.8.151). Transforming it under C

and P via (IV.8.163) and (IV.8.164), respectively, we obtain[
Γµa(p

′, p)
∣∣
bare

]C =
[
Γµa(p

′, p)
∣∣
bare

]P = γµT̄a . (IV.8.166)

We see that the non-invariance of the free vertex under C and P applied separately is attributed
to the presence of γ5 in the generators Ta. On the other hand, under combined transformation
CP the free vertex remains invariant:[

Γµa(p
′, p)

∣∣
bare

]CP = γµTa (IV.8.167a)

= Γµa(p
′, p)

∣∣
bare

. (IV.8.167b)

Of course, this is nothing else than mere rephrasing of the above discussion of the (non-)invariance
of the Lagrangian L = gjµaAaµ, (IV.8.131), under C, P and CP; compare with equations
(IV.8.132), (IV.8.133).
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8.2.6 Local Ward–Takahashi identity

Now we are going to derive the Abelian approximation of WT identity for the Green’s function
〈Aµaψψ̄〉, or, more precisely, for its 1PI part iΓµa = 〈Aµaψψ̄〉1PI. We will use for this purpose the
results from section 8.1.2 concerning the WT identity for the Green’s function γµa = 〈jµaψψ̄〉1PI.

Relation between Γµa and γµa

We start by finding the relation between Γµa(p
′, p) and γµa (p′, p). By applying the operator

(D−1)µνab , (IV.8.106), on 〈Aµaψψ̄〉 we obtain

(D−1
x )µab ν〈0|T

[
Aνb (x)ψ(y) ψ̄(z)

]
|0〉 = 〈0|T

[(
(D−1

x )µab ν A
ν
b (x)

)
ψ(y) ψ̄(z)

]
|0〉
(IV.8.168a)

= −g〈0|T
[
jµa (x)ψ(y) ψ̄(z)

]
|0〉+O(fabc) .

(IV.8.168b)

The commuting of (D−1)µνab through the T -product in the first equality, (IV.8.168a), is done by
applying twice (recall that (D−1)µνab is a differential operator of the second order) the formula
(IV.8.66), first time with V µ = Aµa and second time with V µ = ∂αA

µ
a , and noting that[

Aµa(x), ψ(y)
]

= 0 , (IV.8.169a)[
Aµa(x), ψ̄(y)

]
= 0 , (IV.8.169b)

as well as[
∂xαA

µ
a(x), ψ(y)

]
= 0 , (IV.8.170a)[

∂xαA
µ
a(x), ψ̄(y)

]
= 0 . (IV.8.170b)

The second equality, (IV.8.168b), is just an application of the equations of motion (IV.8.105).
Using the momentum representations (IV.8.149) and (IV.8.70) of 〈Aµaψψ̄〉 and 〈jµaψψ̄〉, re-

spectively, we obtain the Fourier transform of the equation (IV.8.168):[
D−1(q) iG(q)

]µ
ab ν

iG(p′) iΓνb (p
′, p) iG(p) = −g iG(p′) γµa (p′, p) iG(p) +O(fabc) .

(IV.8.171)

We also used here the fact that (D−1)µνab is a Fourier transform of the inverse free propagator
(D−1)µνab , (IV.8.109a). After some manipulations with propagators in (IV.8.171) we finally ex-
press Γµa(p

′, p) in terms of γµa (p′, p) as

Γµa(p
′, p) = g

[
G−1(q)D(q)

]µ
ab ν

γνb (p′, p) +O(fabc) . (IV.8.172)

Derivation of the WT identity

Now we want to calculate qµΓµa(p
′, p) by contracting (IV.8.172) with qµ. In doing so an awk-

ward quantity qµ
[
G−1D

]µ
ab ν

appears on the right-hand side. It can be, however, significantly
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simplified. From the explicit forms (IV.8.117) and (IV.8.111) of Gµνab and Dµν
ab , respectively, it

follows[
G−1D

]µ
ab ν

= (1ab −Πab)
(
gµν −

qµqν
q2

)
+
qµqν
q2

1ab , (IV.8.173)

so that

qµ
[
G−1D

]µ
ab ν

= qν1ab (IV.8.174)

and consequently

qµΓµa(p
′, p) = gqµγ

µ
a (p′, p) +O(fabc) . (IV.8.175)

However, the contraction qµγµa (p′, p) has been already calculated in Sec. 8.1.2, it is just the WT
identity (IV.8.71).47 We therefore arrive at the analogous WT identity48 for Γµa(p

′, p):

qµΓµa(p
′, p) = G−1(p′)Ta − T̄aG−1(p) +O(fabc) , (IV.8.176)

differing from the WT identity (IV.8.71) for γµa (p′, p) basically only by the overall factor of g
(recall the definition (IV.8.152) of Ta) and by the presence of the non-Abelian terms O(fabc).

The WT identity, as derived in (IV.8.176), is ambiguous due to the presence of the undeter-
mined terms O(fabc). In fact, these terms can be determined as well and the resulting identity
is called the Slavnov–Taylor identity. For our purposes, however, the simple derivation of the
ambiguous WT identity (IV.8.176) will turn out to be sufficient, because later on we will show
that neglecting of the ambiguous terms O(fabc) will be consistent with our approximations of
the polarization tensor.

We finally note that the bare (tree) proper vertex Γµa(p
′, p)|bare, (IV.8.151), does satisfy the

WT identity (IV.8.176) (actually with vanishing O(fabc)) provided one takes as the fermion
propagators G−1(p) the bare ones S−1(p) = /p. Indeed, the WT identity, reading in such case

qµΓµa(p
′, p)

∣∣
bare

= S−1(p′)Ta − T̄a S−1(p) , (IV.8.177)

reduces to the simple identity

/q Ta = /p
′ Ta − T̄a /p , (IV.8.178)

holding due to T̄a /p = /p Ta and p′ = p+ q.

47Recall that in Sec. 8.1.2 we derived the contraction qµγ
µ
a (p′, p), where γµa = 〈jµaψψ̄〉1PI, under the assumption

∂µj
µ
a = 0, (IV.8.8). This assumption is not fulfilled now, see (IV.8.103). However, ∂µj

µ
a is proportional to O(fabc),

which is exactly the order in which we are interested in, see (IV.8.175).
48A remark concerning the terminology is in order now. The identity (IV.8.176) for Γµa(p′, p) is usually in the case of

non-vanishing O(fabc) referred to as the Slavnov–Taylor identity [93, 94] and only in the case of O(fabc) = 0 as the
WT identity. However, since we will in the following neglect the terms O(fabc), we use in this text the term WT identity
exclusively, for both cases.
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8.3 Summary

Major part of this chapter consisted of reviewing some textbook, as well as some less-textbook
(but still rather straightforward) facts, concerning a gauge field theory with fermions. This was
for the sake of later references accompanied by introducing the corresponding notation. Most
importantly, we have stated, among other things, the transformation rules of fermion and gauge
boson propagators, as well as of the three-point function 〈Aµaψψ̄〉, both full and 1PI, under
continuous and discrete symmetries. We also derived WT identity for the three-point function.

On top of mere reviewing facts, we also stated some assumptions under which we would
work in the following chapters:

• There is the same number of the left-handed and the right-handed fermions ψL and ψR,
respectively, and their common fermion number symmetry remains unbroken. Hence we
can work with the field ψ = ψL + ψR, (IV.8.13).

• The theory is at the Lagrangian level massless, so that the free propagator of the fermion
field ψ is given simply by S−1 = /p, (IV.8.29).

• The self-energy Σ of ψ contains no /p, (IV.8.30), and satisfies the Hermiticity condition
Σ = Σ̄, (IV.8.28). It has consequently the form Σ = Σ†PL+ΣPR, (IV.8.31), considered
already in the previous chapters.

• The symmetry group G is broken down to H ⊆ G by the self-energy Σ. Operationally:

JΣ, taK = 0 for ta ∈ h , (IV.8.179a)
JΣ, taK 6= 0 for ta ∈ g\h , (IV.8.179b)

where g and h are Lie algebras corresponding to the groups G and H, respectively.

• The gauge dynamics is weak: g � 1, (IV.8.80).

• There are no “off-diagonal” gauge coupling constants in the case of more Abelian factors
in G.
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9 Gauge boson mass matrix formula

This chapter is the very heart of the part IV. We will derive here, on the basis of assumptions
and formalism developed in the previous chapter, as well as within certain additional assump-
tions made in this chapter, the formula for the gauge boson mass matrix. However, as will be
discussed in detail, the resulting formula will not be applicable for an arbitrary spontaneously
broken gauge theory with fermions, but merely to a specific subclass of such theories, satisfying
certain condition. Luckily enough, this subclass contains the models discussed in parts I and II,
so that we will be able to apply the gauge boson mass matrix formula to them in the following
two chapters.

Massiveness of a gauge boson manifests itself also by existence of its longitudinal polariza-
tion. This new degree of freedom can be physically interpreted as a (“would-be”) NG boson,
associated with the spontaneous breakdown of the (gauged) symmetry. Thus, besides mere cal-
culating the gauge bosons masses, we will in this chapter in section 9.6 also occupy ourselves
with their interpretation in terms of the NG bosons.

9.1 Strategy

9.1.1 Pole approximation of the polarization tensor

Why the pole approximation

The gauge boson spectrum (as well as any other spectrum) is given by poles of their full prop-
agator. The key quantity is here the polarization tensor Πµν

ab (q), or, due to its transversality
(IV.8.116), the form factor Πab(q2). We have already mentioned in section 8.2.4 that the suffi-
cient (though not necessary) condition for the gauge bosons to become massive is existence of a
pole of the type 1/q2 in the Laurent expansion of Πab(q2).

In fact, our approach will be to approximate the Π(q2) only by its pole part. That is to say,
we will focus only on the residue M2 and neglect all the coefficients Πn, n ≥ 0, in the Laurent
expansion (IV.8.146) of Π(q2):

Π(q2) .=
1
q2
M2 . (IV.9.1)

Thus, using this pole approximation of Π(q2) the pole equation (IV.8.134) reduces to

det
(
q2 −M2

)
= 0 , (IV.9.2)

i.e., to a simpler problem of finding the eigenvalues of the matrix M2, which can be accordingly
interpreted as the gauge boson mass matrix.

The pole approximation (IV.9.1) is motivated and justified by the assumption g � 1, (IV.8.80),
concerning the weakness of the gauge dynamics, i.e., by the fact that perturbative calculations
in g are possible. As we are going to prove below, it turns out non-trivially that if one wants to
calculate, by solving the pole equation (IV.8.134), the gauge boson mass spectrum in the lowest
(second) order in g, then it is sufficient to consider only the pole term of Π(q2), since the higher
terms in Laurent expansion of Π(q2) happen to contribute only to higher terms in the g-expansion
of the gauge boson masses.
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Proof

In order to prove the statement made in the previous paragraph, we are now going to investigate
the perturbative expansion in g of solutions of the pole equation (IV.8.134). For that purpose it is
convenient to make use of the diagonalization (IV.8.135) of the self-energy Π(q2) and investigate
first in this respect only one particular pole equation (IV.8.141) and only then generalize the result
to the full non-diagonal Π(q2).

We start with the observation that the polarization tensor is in any case at least of the second
order in g. This is a consequence of the fact that any interaction of Aµa with any other field
(including the fermions, ghost, as well as the gauge bosons themselves), is proportional to g; see
the Lagrangian L(ψ,Aµa), (IV.8.72).

Let us diagonalize Π(q2) via (IV.8.135) to obtain the diagonal π(q2) with the elements
πa(q2), (IV.8.136). Since Π(q2) is of the second order in g, so must be also each πa(q2). Re-
calling the general form (IV.8.142) of πa(q2), it is therefore convenient to factorize g2 out of the
corresponding pole residue m2

a as

m2
a ≡ g2µ2

a , (IV.9.3)

where µ2
a is now of zeroth order in g. Similarly can be treated the coefficients πn,a:

πn,a ≡ g2an,a(µ2
a)
−n , (IV.9.4)

where we have also utilized the dimension-full coefficient µ2
a from (IV.9.3) to carry the mass di-

mension of each πn,a (assuming, of course, that µ2
a 6= 0). Consequently the coefficients an,a are

dimensionless and again of order g0, due to explicit factorization of g2. Using these definitions
the expression (IV.8.142) for πa(q2) recasts as

πa(q2) = g2

[( q2
µ2
a

)−1

+
∞∑
n=0

an,a

( q2
µ2
a

)n]
. (IV.9.5)

Finally, it is also convenient to introduce the dimensionless quantity xa,

xa ≡ q2

µ2
a

, (IV.9.6)

to be used in the following.
Now recall that πa(q2) enters the pole equation (IV.8.141) for the unknown q2. Using the

definitions above, this pole equation for the unknown q2 transforms as

xa − g2

[
1 +

∞∑
n=0

an,ax
n+1
a

]
= 0 (IV.9.7)

and turning thus into an equation for the unknown xa.
If g2 = 0, the equation (IV.9.7) has the solution xa = 0. We can therefore expect that

for g2 6= 0 the solution xa will be proportional49 to g2 and hence without loss of generality
49We insist that xa be an analytic function of g2, i.e., not, for instance, proportional to 1/g2. To see that such situation

can easily happen, it is instructive to consider the case when all an,a, except a0,a and a1,a, vanish. Then the equation
(IV.9.7) for xa is quadratic and it is straightforward to show that while the first of its two solutions is indeed proportional
to g2, the second solution is proportional to 1/g2 and thus non-analytic.
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expressible in the form

xa = g2(1 + εa) , (IV.9.8)

where εa is some function of g2. We are now going to argue that εa is proportional to g2. By
plugging the Ansatz (IV.9.8) for xa into the equation (IV.9.7) we obtain the equation for εa:

εa − g2
∞∑
n=0

an,ag
2n(1 + εa)n+1 = 0 . (IV.9.9)

Now the argument is the same as above with xa: If g2 = 0, the equation (IV.9.9) has the solution
εa = 0, from which we conclude that εa must be really proportional50 to g2, as proposed. Put in
the original formalisms, we see that the solution of the pole equation (IV.8.141), i.e., the gauge
boson mass, is given in the lowest order in the gauge coupling constant g as

q2 = g2µ2
a(1 + εa) (IV.9.10a)

= g2µ2
a(1 +O(g2)) , (IV.9.10b)

where we recall that µ2
a, given by (IV.9.3), is of zeroth order in g2. In other words, the residue

m2
a in the q2-expansion of πa(q2), (IV.8.142), is just the lowest order of the g-expansion of the

gauge boson mass.
We have shown that in the case of diagonal π(q2), (IV.8.136), the spectrum obtained consid-

ering only the residue m2 is the lowest approximation of the g-expansion of the full spectrum,
obtained from the full π(q2) with higher orders in q2 properly included. Now we are going to
generalize this result to the case of non-diagonal Π(q2).

Obviously, π(q2) and Π(q2), related by the orthogonal transformation (IV.8.135), must yield
the same spectrum. Therefore it remains to prove that the orthogonal transformation (IV.8.135)
preserves also the spectrum obtained by the pole approximations of π(q2) and Π(q2), i.e., that
the residues m2 and M2 of both the diagonal π(q2) and non-diagonal Π(q2), respectively, have
the same eigenvalues. To see this we recall that the residues m2 and M2 are related by the trans-
formation (IV.8.147a): M2 = O0m

2OT
0 . However, this transformation itself is also orthogonal,

see (IV.8.139a). Thus, m2 and M2 indeed must have the same eigenvalues, which completes the
proof.

Structure of the gauge boson mass matrix

Let us also, for the sake of later references, investigate the structure of the gauge boson mass
matrix.

Recall that the mass matrix M2, considered in the pole approximation (IV.9.1), is a (sym-
metric) NG×NG matrix and thus its rank can be at most NG. Assume therefore that its rank is51

N ′ ≤ NG. We are now going to show for the sake of later purposes that the matrix M2 can be
written as

M2 = FFT , (IV.9.11)
50Cf. footnote 49.
51The rank N ′ of the gauge boson mass matrix is of course equal to the number of “broken generators”: N ′ =

NG −NH.
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where the matrix F is rectangular, of dimension NG × N ′. Needless to say that the rank of the
matrix F must be the maximal possible, i.e., min(N ′, NG) = N ′, so that the rank of the matrix
M2 is N ′ too, as supposed.

The matrix M2, as being symmetric, can be transformed via the orthogonal transformation
as

M2 = Om2OT , (IV.9.12)

where O is an orthogonal matrix and m2 is a matrix of the block form

m2 =
(
m2
R 0

0 0

)
, (IV.9.13)

where m2
R is a symmetric matrix, which is regular, i.e., of the dimension N ′ ×N ′. (Notice that

although the two orthogonal transformations (IV.9.12) and (IV.8.147a) look similar, they are not
the same. While the former assumes the special block structure (IV.9.13), withm2

R being regular,
but not necessarily diagonal, the latter does not assume any special block structure, but on the
other hand it insists on the diagonality .)

We may write the orthogonal matrix O in a block form too:

O =
(
A B
C D

)
, (IV.9.14)

where the dimensions of the blocksA, B, C, D are the same as the dimension of the correspond-
ing blocks in m2, (IV.9.13). If we plug the block forms (IV.9.13) and (IV.9.14) of m2 and O,
respectively, into (IV.9.12), we find the corresponding block form of M2:

M2 =
(
Am2

RA
T Am2

R C
T

Cm2
RA

T Cm2
R C

T

)
. (IV.9.15)

We now assert that the coveted matrix F is given by

F ≡
(
A
C

)
mR . (IV.9.16)

Let us first check that F , defined as (IV.9.16), really does satisfy the basic equation (IV.9.11):

FFT =
(
A
C

)
m2
R

(
AT, CT

)
(IV.9.17a)

=
(
Am2

RA
T Am2

R C
T

Cm2
RA

T Cm2
R C

T

)
(IV.9.17b)

= M2 . (IV.9.17c)

Thus, the equation (IV.9.11) is satisfied. Furthermore, the dimension of the matrix F , (IV.9.16),
is clearly NG ×N ′. This completes the proof that the matrix F with desired properties exists.

We also note that while the product FFT is given by the defining relation (IV.9.11), for the
product FTF we obtain

FTF = m2
R . (IV.9.18)
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iΠµν
ab (q) = +

++

Figure IV.9.1. Schematic diagrammatical representation of the lowest order (i.e., g2) diagrams (IV.9.21) of
purely gauge (the first three diagrams) and fermion (the last diagram) origin, contributing to the polarization
tensor Πµν

ab (q).

In deriving this relation one has to take into account that ATA+CTC = 1, which follows from
the fact that the matrix O, (IV.9.14), is orthogonal: OTO = 1.

We finally briefly discuss the ambiguity in determining F . It is determined by the above
requirements uniquely up to the orthogonal rotation

F ′ = F OF , (IV.9.19)

where OF is an orthogonal matrix of the dimension N ′ × N ′. This orthogonal rotation of F
corresponds to the orthogonal rotation of m2

R as

m2′
R = OT

F m
2
ROF . (IV.9.20)

From this we can in particular see that the matrix FTF = m2
R is always regular, irrespectively

of the basis.

9.1.2 Loop integral for the polarization tensor

Since we assume that the gauge dynamics is perturbative, we will calculate the gauge boson mass
spectrum in the lowest order in the gauge coupling constant g, i.e., in the order g2. In the previous
section we showed that for that purpose it suffices to calculate only the pole part (IV.9.1) of the
polarization tensor.

We will also assume that the symmetry group G is broken spontaneously down to a subgroup
H by the fermion self-energies, as in the parts I and II. Since these self-energies are of course non-
perturbative phenomena, we will therefore calculate the gauge boson spectrum in a mixed way:
perturbatively in the gauge dynamics and at the same time non-perturbatively in the symmetry-
breaking dynamics.
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Aµ
a

=iΠµν
ab (q) Aν

b

q

Figure IV.9.2. The polarization tensor Πµν
ab (q), given by Eq. (IV.9.22). The fermion lines are not bare

propagators, but rather the full ones (unlike in the previous chapters, in this chapter we will not provide
them with the black blobs).

Let us start by reviewing how the polarization tensor is calculated in the symmetric (i.e., not
spontaneously broken) theory. The perturbative contributions to the polarization tensor in the
order g2 are one-loop and can be divided into two groups as

iΠµν
ab (q) = iΠµν

ab (q)
∣∣
gauge

+ iΠµν
ab (q)

∣∣
fermions

, (IV.9.21)

according to whether they are of purely gauge origin (including the ghost contribution) or whether
they come from the fermion loop. The corresponding diagrams are depicted in Fig. IV.9.1.

Let us first discuss the pure gauge diagrams iΠµν
ab (q)|gauge. It is a textbook fact [88] that their

sum is transversal and that they do not contribute to the pole part of the polarization tensor. This
remains true even once the symmetry is broken, since the SSB is, by assumption, triggered only
by fermion propagators, which do not enter the pure gauge diagrams. We can therefore safely
discard them.

We are thus left with the fermion contribution iΠµν
ab (q)|fermions, only which can potentially

contribute to the pole (IV.9.1) of the polarization tensor. Clearly, for that purpose one has to in-
clude the symmetry-breaking dressed fermion propagators, since the symmetry-preserving prop-
agators do not contribute to the pole of the polarization tensor [88]. However, it turns out that in
such a case the fermion loop diagram, as depicted in Fig. IV.9.1, is not correct. The point is that
the bare vertices in the loop do not satisfy the correct WT identity (IV.8.176), once the fermion
propagators in the loop are considered to be not bare, but rather dressed, of the form (IV.8.32).
As a result the polarization tensor is not transversal. As we are going to show in detail below,
the most direct and easy way to cure this problem is to exchange one of the two bare vertices in
Fig. IV.9.1 by a dressed one, satisfying the WT identity.

We will therefore consider the polarization tensor with only the one-loop fermion contribu-
tion to be explicitly given by52 [95, 96]

iΠµν
ab (q) = −

∫
ddp

(2π)d
Tr
{

Γµa(p+ q, p)G(p) γνTbG(p+ q)
}

(IV.9.22)

and diagrammatically depicted in Fig. IV.9.2.53 Notice that while one of the two vertices is bare,
γνTb, the other is the full proper vertex Γµa(p

′, p), introduced in Sec. 8.2.5. As already mentioned,

52Notice that there is no combinatorial factor due to the Dirac (i.e., complex) character of the field ψ, Eq. (IV.8.13).
When dealing with a Majorana (i.e., real) field, there would be a combinatorial factor of 1/2 in front of the integral
(IV.9.22).

53The symbol d is the space-time dimension and has nothing to do with the dimensional regularization, we will always
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the presence of Γµa(p
′, p) is in fact necessary in order to maintain the transversality (IV.8.116) of

Πµν
ab , as we are going to show below, provided that it satisfies the WT identity (IV.8.176) in the

Abelian approximation:

qµΓµa(p
′, p) = G−1(p′)Ta − T̄aG−1(p) , (IV.9.23)

i.e., with the structure constants fabc set to zero. Such approximation is consistent with neglect-
ing the pure gauge diagrams iΠµν

ab (q)|gauge, which are proportional to fabc as well.

9.2 Properties of the polarization tensor

Let us now investigate some of the most important properties of the polarization tensor given by
the loop integral (IV.9.22).

9.2.1 Transversality

Let us check the transversality of the polarization tensor (IV.9.22) under the assumption (IV.9.23).
Explicit calculation of qµΠ

µν
ab (q) reveals

qµΠ
µν
ab (q) = i

∫
ddp

(2π)d
Tr
{[
qµΓµa(p+ q, p)

]
G(p) γνTbG(p+ q)

}
(IV.9.24a)

= i
∫

ddp
(2π)d

Tr
{[
G−1(p+ q)Ta − T̄aG−1(p)

]
G(p) γνTbG(p+ q)

}
(IV.9.24b)

= i
∫

ddp
(2π)d

Tr
{
G(p) γν

[
Tb, Ta

]}
(IV.9.24c)

= 0 . (IV.9.24d)

Here we have in (IV.9.24b) used the WT identity (IV.9.23), in (IV.9.24c) we shifted the inte-
gration variable of one of the two resulting integrals and using the cyclicity of the trace made
some rearrangements of the integrand and finally in (IV.9.24d) we used the fact that the integral
independent of any other momentum than the integration momentum and carrying at the same
time a Lorentz index must vanish due to the Lorentz invariance.

Since Πµν
ab (q) depends only on q, it must be, by Lorenz invariance, a linear combination of

gµν and qµqν . Therefore if qµΠ
µν
ab (q) is vanishing, so must be also qνΠ

µν
ab (q). It may be however

assume d = 4. We prefer this symbolic denotation, because the space-time dimension will emerge explicitly in various
formulae and by using the symbol d rather than 4 we will prevent at least some of the numerical factors (like, e.g.,
1/(d− 1) = 1/3) from looking unnecessarily mysteriously.
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instructive to check it explicitly:

qνΠ
µν
ab (q) = i

∫
ddp

(2π)d
Tr
{

Γµa(p+ q, p)G(p) /qTbG(p+ q)
}

(IV.9.25a)

= i
qµ

q2

∫
ddp

(2π)d
Tr
{[
qαΓαa (p+ q, p)

]
G(p) /qTbG(p+ q)

}
(IV.9.25b)

= i
qµ

q2

∫
ddp

(2π)d
Tr
{[
G−1(p+ q)Ta − T̄aG−1(p)

]
G(p) /qTbG(p+ q)

}
(IV.9.25c)

= i
qµ

q2
qν

∫
ddp

(2π)d
Tr
{
G(p) γν

[
Tb, Ta

]}
(IV.9.25d)

= 0 . (IV.9.25e)

Most of the steps here are the same as before in (IV.9.24), only in (IV.9.25b) we used the fact
that due to the Lorentz invariance it holds∫

ddp fµ(p, q) =
qµ

q2

∫
ddp qαfα(p, q) (IV.9.26)

for any function f(p, q), depending, apart from the integration momentum p, on the only external
momentum q.

Thus, the polarization tensor is indeed transversal and therefore of the form (IV.8.116). The
corresponding form factor Πab(q2) can be explicitly written as

Πab(q2) = i
1

d− 1
1
q2

∫
ddp

(2π)d
Tr
{

Γµa(p+ q, p)G(p) γµTbG(p+ q)
}
. (IV.9.27)

9.2.2 Reality

In the previous chapter we made the assumption that both the fermion propagator G(p) and the
vertex Γµa(p

′, p) satisfy the respective Hermiticity conditions (IV.8.27) and (IV.8.153). We have
suggested in Sec. 8.2.5 that the two Hermiticity conditions will eventually ensure the reality of
the polarization tensor Πµν

ab (q) (and consequently, within the pole approximation (IV.9.1), also
the reality of the gauge boson mass matrix M2

ab).
Indeed, consider the expression (IV.9.22) for the polarization tensor. Using the Hermiticity

conditions (IV.8.27), (IV.8.153) and the cyclicity of the trace, shifting appropriately the integra-
tion momentum and taking into account the identity TrA† = Tr∗A, one can rewrite (IV.9.22)
as

iΠµν
ab (q) = −

∫
ddp

(2π)d
Tr∗

{
Γµa(p+ q, p)G(p) γνTbG(p+ q)

}
. (IV.9.28)

Comparing this expression with the original expressions (IV.9.22) for the polarization tensor and
recalling that via the Wick rotation an extra factor of i appears in the measure ddp, one concludes
that Πµν

ab (q) (and consequently also the mass matrix M2
ab) must be really real.
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9.2.3 Transformation properties

Consider first the transformation of the polarization tensor (IV.9.22) under the continuous sym-
metry G. It must be induced by the corresponding transformations of G(p), G(p + q) and
Γµa(p+ q, p) under G. Assuming that these transform as they should, i.e., according to (IV.8.24)
and (IV.8.158), respectively, we obtain

G : iΠµν
ab (q) −→

[iΠµν
ab (q)]′ = −

∫
ddp

(2π)d
Tr
{

[Γµa(p+ q, p)]′ [G(p)]′ γνTb [G(p+ q)]′
}

(IV.9.29a)

= −
(
eiθ·T )

ac

∫
ddp

(2π)d
Tr
{

Γµc (p+ q, p)G(p) γν e−iθ·t Tb eiθ·t︸ ︷︷ ︸
Td (e−iθ·T )db

G(p+ q)
}

(IV.9.29b)
=

(
eiθ·T )

ac
iΠµν
cd (q)

(
e−iθ·T )

db
, (IV.9.29c)

where we used in the line (IV.9.29b) the relation (IV.8.97). Thus we see that provided the
fermion propagators and the vertex transform correctly under G, so does Πµν

ab (q), since the result
(IV.9.29c) corresponds to the correct transformation rule (IV.8.119).

Transformation properties of the polarization tensor (IV.9.22) under the discrete symmetries
C, P can be treated in the same manner. Again, it could be shown that provided the propa-
gators and the vertex in the integral (IV.9.22) transform correctly according to their respective
transformation rules, so does the resulting polarization tensor.

9.3 The vertex

The integral (IV.9.22) for the polarization tensor contains the fermion propagatorsG(p),G(p+q)
and the dressed vertex Γµa(p

′, p). While the propagators are known by assumption, the vertex
will have to be somehow constructed in the following section. In order not to make that task
unnecessarily difficult, it is worth observing which part of Γµa(p

′, p) are actually needed for the
purpose of calculating the gauge boson mass spectrum under the pole approximation (IV.9.1).

9.3.1 Momentum expansions

Let us start by investigating the analytic structure of Γµa(p
′, p). Consider the right-hand side of

its WT identity (IV.9.23) for q = 0 (recall that p′ = p+ q):

G−1(p)Ta − T̄aG−1(p) = −ΣTa + T̄aΣ (IV.9.30a)
= −g JΣ, taK , (IV.9.30b)

where we plugged in the Ansatz (IV.8.32) for the fermion propagator G(p). Notice that it is
proportional to the quantity (IV.8.26), measuring the non-invariance of the propagator under the
symmetry generated by ta. Since we assume that the symmetry G is actually broken, (IV.9.30)
must be considered in general non-vanishing. Consequently, since the left-hand side of the WT
identity is proportional to q, the vertex Γµa(p

′, p) must have a pole of the type 1/q, if the WT
identity is to be satisfied.
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Any pole in a Green’s function can be attributed only to a propagator of an intermediate par-
ticle. In our case, since the vertex Γµa(p

′, p) is by construction 1PI, it cannot contain propagators
neither of the fermions nor of the gauge bosons. Any possible pole of Γµa(p

′, p) can therefore
occur only due to some dynamically generated composite particles. But such particles are in fact
there: They are the NG bosons, associated with the SSB of the group G down to H. Notice that
the NG bosons can be in this respect understood as “compensating fields”, serving to ensure the
satisfaction of the WT identity even if the symmetry of the Lagrangian is broken by the ground
state (or by the Green’s functions).54

We will discuss the interpretation of the vertex in terms of the NG bosons closer in Sec. 9.6.
For the moment it suffices to note that the NG bosons couple bilinearly to the gauge bosons and
are massless, hence the pole of the type 1/q, dictated by the WT identity, must be of the form
qµ/q2, where q is the momentum carried by the gauge boson. The vertex Γµa(p

′, p) must have
therefore the general form

Γµa(p
′, p) = Γµa(p

′, p)
∣∣
NG

+ Γµa(p
′, p)

∣∣
reg.

, (IV.9.31a)

where NG part Γµa(p
′, p)|NG has the form

Γµa(p
′, p)

∣∣
NG

=
qµ

q2
Γa(p′, p)

∣∣
NG

, (IV.9.31b)

and where both Γµa(p
′, p)|reg. and Γa(p′, p)|NG are regular for all p′ and p.

The vertex Γµa(p
′, p) of the form (IV.9.31) can be expanded into the Laurent series in q =

p′ − p about q = 0 as

Γµa(p
′, p) =

qµ

q2
Aa(p) +

qµ

q2
qαB

α
a (p) + Cµa (p) +O(q) , (IV.9.32)

where Aa(p), Bαa (p), Cµa (p) are some functions only of p. Note that we can uniquely identify

Γµa(p
′, p)

∣∣
NG

=
qµ

q2

[
Aa(p) + qαB

α
a (p)

]
+O(q) , (IV.9.33a)

Γµa(p
′, p)

∣∣
reg.

= Cµa (p) +O(q) . (IV.9.33b)

This uniqueness is actually possible only in the lowest orders in q. Already for the terms linear
in q the separation (IV.9.33) of the expansion (IV.9.32) into the NG part and the non-NG part is
ambiguous: Assume, e.g., that there is a term q2Da(p) in the square bracket of the expansion
(IV.9.33a) of the NG part Γµa(p

′, p)|NG. Clearly, the q2 in it can be canceled with the NG pole
1/q2 and thus the same term can be equally well considered, in the form qµDa(p), as a part
of expansion (IV.9.33b) of the regular part Γµa(p

′, p)|reg.. We will come across this problem in
Sec. 9.4.7, where we will see that this ambiguity can be parameterized, within our approximation
scheme, by one real parameter.

We can similarly expand the fermion propagator G(p+ q) about q = 0:

G(p+ q) = G(p) + qαG
α(p) +O(q2) , (IV.9.34)

54Recall that the WT identity is a consequence of the symmetry of the Lagrangian, not of the ground state.
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where

Gα(p) = ∂αG(p) (IV.9.35)
= −G(p)

(
∂αG−1(p)

)
G(p) . (IV.9.36)

E.g., for the fermion propagator of the form (IV.8.32) (or better (IV.8.33)) we have explicitly

Gα(p) = γαDL + 2pα(/p+ Σ†)D′
L + 2pαΣ†′DL , (IV.9.37)

where the prime denotes the derivative with respect to p2. Straightforward plugging of the ex-
pansions (IV.9.32) and (IV.9.35) into the basic expression (IV.9.22) for the polarization tensor
Πµν
ab (q) yields

Πµν
ab (q) = i

qµ

q2

∫
ddp

(2π)d
Tr
{
Aa(p)G(p) γνTbG(p)

}
+ i
∫

ddp
(2π)d

Tr
{
Cµa (p)G(p) γνTbG(p)

}
+ i

qµ

q2
qα

∫
ddp

(2π)d
Tr
{
Aa(p)G(p) γνTbGα(p) +Bαa (p)G(p) γνTbG(p)

}
+O(q) . (IV.9.38)

The integral in the first line actually vanishes. This can be seen already from the Lorentz invari-
ance, technically it is maintained by a symmetric integration. On the basis of a similar argument
there will survive only terms even in q in the expansion (IV.9.38), so that the terms O(q) are
actually O(q2). We make further simplifications by noting that under integral we can make the
substitution∫

ddp fµν(p) =
1
d
gµν

∫
ddp fαα(p) , (IV.9.39)

provided fµν(p) does not depend on any other four-vector than p. This allows to make the
Lorentz structure of (IV.9.38) explicit:

Πµν
ab (q) = i

1
d
gµν

∫
ddp

(2π)d
Tr
{
Cαa (p)G(p) γαTbG(p)

}
+ i

1
d

qµqν

q2

∫
ddp

(2π)d
Tr
{
Aa(p)G(p) γαTbGα(p) +Bαa (p)G(p) γαTbG(p)

}
+O(q2) . (IV.9.40)

9.3.2 Preliminary expression for the mass matrix

Under the pole approximation (IV.9.1) of Πab(q2) the polarization tensor Πµν
ab (q) has the form

Πµν
ab (q) =

(
gµν − qµqν

q2

)
M2
ab . (IV.9.41)
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Assuming that the vertex Γµa(p
′, p) satisfies the WT identity (IV.9.23), the expression (IV.9.40)

must be transversal. Thus, by comparing it with (IV.9.41), we arrive at two seemingly different
explicit expressions for the gauge boson mass matrix:

M2
ab = i

1
d

∫
ddp

(2π)d
Tr
{
Cαa (p)G(p) γαTbG(p)

}
(IV.9.42a)

= −i
1
d

∫
ddp

(2π)d
Tr
{
Aa(p)G(p) γαTbGα(p) +Bαa (p)G(p) γαTbG(p)

}
.

(IV.9.42b)

Both expression (IV.9.42a) and (IV.9.42b) must be of course the same due to the WT identity
(IV.9.23), which relates the vertex and the fermion propagator to each other.

9.3.3 Recapitulation

Consider now the contraction qµΓµa(p
′, p) of the expansion (IV.9.32) of the vertex Γµa(p

′, p):

qµΓµa(p
′, p) = Aa(p) + qµ

(
Bµa (p) + Cµa (p)

)
+O(q2) . (IV.9.43)

Recall that due to the WT identity (IV.9.23) this expression must be equal to G−1(p′)Ta −
T̄aG

−1(p). We can see that whileAa (i.e., the leading part of the NG part (IV.9.33a) of Γµa(p
′, p))

is determined by the WT uniquely as

Aa(p) = G−1(p)Ta − T̄aG−1(p) , (IV.9.44)

for the functions Bαa and Cµa the WT identity determines only their sum.
Recall that, as we observed above, in order to compute the gauge boson mass matrix via the

expression(s) (IV.9.42), one has to know either Aa, Bαa , or Cµa . In particular, at least one of
the functions Bαa and Cµa must be necessarily known. However, as we have just seen, on the
basis of the WT identity we can determine only Bµa + Cµa , which is clearly insufficient for our
purposes. Thus, the following section will be dedicated to the task of inventing some additional
well motivated requirements on the vertex Γµa(p

′, p), allowing to determine separately each of
the functions Bαa and Cµa uniquely.

9.4 Construction of the vertex

We already mentioned that the dressed fermion propagator is known, e.g., by solving the corre-
sponding SD equations like in parts I and II. In principle, in order to be entirely consistent, the
vertex should be calculated in the same way and in the same time as the fermion propagators:
by means of solving the corresponding SD (or Bethe–Salpeter) equation for the vertex. How-
ever, guided by the applications, we assume that it is not. We have therefore to approximate it
somehow, or in other words, we have to choose or construct a suitable Ansatz for it.

This section is dedicated to the construction of such an Ansatz. We will first state the minimal
reasonable form of the vertex and then constrain it by imposing various additional requirements.
These requirements will be of two kinds: First, we will require correct transformation behavior
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under various symmetries. Second, we will require that the vertex be consistent with the underly-
ing NG boson interpretation. This way we will finally end up with (almost) uniquely determined
vertex.55

9.4.1 General form of the Ansatz

We start the construction of the vertex Ansatz by stating some general assumptions about its
form.

Recall first that the SSB is by assumption driven by symmetry-breaking parts of the fermion
self-energy Σ. Let us then assume that Σ actually contains only those symmetry-breaking
(and consequently UV-finite) parts and is free of any symmetry-preserving (and potentially UV-
divergent) parts. (This assumption of course corresponds to how we have constructed Ansätze
for Σ in parts I and II.) It follows that in the case of no SSB the self-energy Σ vanishes.

We can then make the natural requirement that in the case of no SSB (i.e., when Σ = 0) the
vertex reduces to the bare on. This can be accomplished if the vertex is written as the bare one
plus “something” proportional to Σ. Put more formally, we assume the vertex Γµa(p

′, p) to be of
the form

Γµa(p
′, p) = γµTa + Γµa(p

′, p)
∣∣
cor.

, (IV.9.45)

where the correction Γµa(p
′, p)|cor. to the bare vertex γµTa, (IV.8.151), is proportional to the

self-energies Σ and hence vanishing in the limit Σ = 0.
Just proportionality to Σ is however still quite general. Following the philosophy of making

a minimal reasonable Ansatz we impose the following simplifying restrictions: We assume that
Γµa(p

′, p)|cor.
• is linear in the self-energies Σ,

• contains the self-energies Σ evaluated only in p′ and p.

Moreover, recall that since we calculate the gauge boson mass matrix in the pole approximation,
it is sufficient to calculate the polarization tensor in the order g2. We are therefore interested only
in the part of the vertex linear in g, which leads us to assume that Γµa(p

′, p)|cor.
• is linear in the generators Ta and T̄a.

(Recall that Ta is linear in g, due to the definition (IV.8.152).) The three conditions imply that
Γµa(p

′, p)|cor. is a linear combination of the eight terms

Σp Ta , Σp′ Ta , T̄aΣp , T̄aΣp′ , TaΣp , TaΣp′ , Σp T̄a , Σp′ T̄a , (IV.9.46)

with the coefficients of the linear combination being only some functions of the two available
momenta p′ and p and of the gamma matrices.

To conclude, we are led to assume that the vertex Γµa(p
′, p) has the form

Γµa(p
′, p) = γµTa +

[
fµ(a)Ta + T̄a f

µ(b) + Ta f
µ(c) + fµ(d) T̄a

]
+ γ5

[
fµ(e)Ta + T̄a f

µ(f) + Ta f
µ(g) + fµ(h) T̄a

]
, (IV.9.47)

55The vertex will be determined up to certain terms which do not contribute to the gauge boson mass matrix in the
pole approximation and hence we will not need to worry much about them.
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where each fµ(x), x = a, b, . . . ,h, is a linear combination of Σp′ and Σp and x is some
“multiindex” parameterizing each linear combination. In the following section we will, under
certain assumptions, find the general momentum and Lorentz structure of fµ(x) and show that
x is in fact a finite set of complex numbers.

9.4.2 Momentum and Lorentz structure

The main guiding principle in determining the analytic structure of Γµa(p
′, p) will be to insist on

its good interpretability in terms of the NG bosons. We have already encountered it in Sec. 9.3
when we assumed the vertex to be of the form (IV.9.31). Let us now rephrase that assumption
in another way. The vertex is a function of two independent momenta p′ and p. Their linear
combination q = p′−p is special in the sense that it is the momentum carried by the gauge boson
and also by the eventual NG boson, bilinearly coupled to it. Then the correct NG interpretability
of the vertex Γµa(p

′, p) technically means imposing the following conditions on the vertex:

• The poles of the types 1/`2 and 1/(` · q), where ` is some linear combination of p′ and p,
being linearly independent of q, are forbidden.

• Any pole of the type 1/q2 can be only simple and must be multiplied by qµ.

These conditions hold of course in general, independently of the special vertex form (IV.9.47),
assumed in the previous section. Nevertheless we will use them now for determining fµ(x).

Since the vertex Γµa(p
′, p) is dimensionless (in the units of mass), so must be also fµ(x).

Recall that fµ(x) is a linear combination of

Σp′ , Σp . (IV.9.48)

But the self-energies Σ are of the dimension +1. Therefore we have to find the coefficients of the
linear combination of (IV.9.48) with the negative dimension −1 in order to have dimensionless
fµ(x). It seems, on the basis of the requirements made in the previous paragraph, that the only
possibility for the coefficient is

qµ

q2
(IV.9.49)

times a complex factor.
However, it turns out that this does not in fact exhaust all possibilities. Consider the following

linear combination of Σp′ and Σp:

Σp′ −Σp

p′2 − p2
. (IV.9.50)

The crucial fact is that this quantity is regular for all values p′ and p.56 In the worst case, when
p′ → p (i.e., when q → 0), it just converges to the derivative of Σp:

Σp′ −Σp

p′2 − p2
= Σ′

p +O(q) , (IV.9.51)

56Unless the self-energy itself has a pole at some p2. We do not take this possibility into account.
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where the prime denotes the derivative with respect to p2. Thus, due to (IV.9.51), we can use
(IV.9.50) as a building block for fµ(x) as well, without introducing any unwanted kinematic sin-
gularity. Since it has the dimension −1, is suffices to multiply it by something of dimension +1
and carrying the Lorentz index. Taking into account the conditions above, the only possibilities
turn out to be

qµ , pµ , [γµ, /q] , [γµ, /p] ,
qµ

q2
[/q, /p] ,

qµ

q2
p2 ,

qµ

q2
(q · p) , (IV.9.52)

again up to complex factors.
We conclude from the previous discussion that fµ(x) is an element of the complex eight-

dimensional vector space, spanned by the basis

qµ

q2

{
Σp′ ⊕Σp

}
⊕ Σp′ −Σp

p′2 − p2

{
qµ⊕ pµ⊕ [γµ, /q]⊕ [γµ, /p]⊕

qµ

q2
[/q, /p]⊕

qµ

q2
p2

}
. (IV.9.53)

Notice that we have not included here the last term from (IV.9.52) (proportional to (q · p)), since
it depends linearly on the other terms.

The basis (IV.9.53) is however not the most convenient one. Recall that transformation law
(IV.8.163) of Γµa(p

′, p) under C, as well as the Hermiticity condition (IV.8.153) include the ex-
changes

p′ ↔ p . (IV.9.54)

As we will eventually apply the conditions (IV.8.163), (IV.8.153) to the vertex, it will prove
convenient to have expressed fµ(x) in terms of a basis made of eigenstates of (IV.9.54). Thus,
instead of being a linear combination of Σp′ and Σp, we will use the linear combination of Σ+

and Σ−, defined as

Σ± ≡ Σp′ ±Σp . (IV.9.55)

Clearly, Σ± are eigenstates of (IV.9.54) with the eigenvalues ±1. Similarly, we will express
everything in terms of the two linearly independent momenta q and q′:

q ≡ p′ − p , (IV.9.56a)
q′ ≡ p′ + p , (IV.9.56b)

which are eigenstates of (IV.9.54) with the eigenvalues−1 and +1, respectively. Notice also that
the denominator of (IV.9.50) can be expressed in terms of q and q′ conveniently as

p′2 − p2 = (q · q′) . (IV.9.57)

We can now rewrite the basis (IV.9.53) in terms of the self-energies Σ± and the momenta q, q′

and arrive finally at fµ(x) of the form

fµ(x) ≡ x1
qµ

q2
Σ+ + x2

qµ

q2
Σ− + x3

q′µ

(q · q′)
Σ− + x4

qµ

q2
[/q, /q′]
(q · q′)

Σ−

+x5

[γµ, /q′]
(q · q′)

Σ− + x6

[γµ, /q]
(q · q′)

Σ− + x7
qµ

(q · q′)
Σ− + x8

qµ

q2
q′µ

(q · q′)
Σ− ,

(IV.9.58)
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where x = (x1, . . . , x8) is a vector of eight complex numbers. The Ansatz (IV.9.47) is thus
parameterized altogether by 8× 8 = 64, at this moment completely arbitrary complex numbers.
In the following sections we will, step by step, determine almost57 all of them.

9.4.3 WT identity

The most basic condition that must be satisfied by the vertex Γµa(p
′, p) is certainly the WT identity

(IV.9.23), since it ensures the transversality of the polarization tensor (IV.9.22), as shown in
section 9.2.1. Using the form (IV.8.32) for the fermion propagator the WT identity has the form

qµΓµa(p
′, p) = /qTa −Σp′ Ta + T̄aΣp . (IV.9.59)

The requirement that the Ansatz (IV.9.47), with fµ(x) given by (IV.9.58), satisfies this WT
identity will now enable us to determine more than half of the 64 parameters of the Ansatz.

Let us rewrite the WT identity (IV.9.59) in terms of Σ±,

qµΓµa(p
′, p) = /qTa −

1
2
(Σ+ + Σ−)Ta +

1
2
T̄a (Σ+ −Σ−) , (IV.9.60)

and consider the contraction qµfµ(x):

qµf
µ(x) = x1Σ+ + (x2 + x3)Σ−

+ (x4 + x5)
[/q, /q′]
(q · q′)

Σ− + x7
q2

(q · q′)
Σ− + x8

q′2

(q · q′)
Σ− . (IV.9.61)

By imposing WT identity (IV.9.60) on the Ansatz (IV.9.47) (with fµ(x) given by (IV.9.58)) we
can, using the contraction qµfµ(x), readily read off the constraints on the free parameters x. For
x1 we obtain the constraints

a1 = −1
2
, (IV.9.62)

b1 = +
1
2
, (IV.9.63)

x1 = 0 for x 6= a, b . (IV.9.64)

For the parameters x2, x3 we find

x2 + x3 = −1
2

for x = a, b , (IV.9.65)

x2 + x3 = 0 for x 6= a, b , (IV.9.66)

enabling us to eliminate, say, x3 in favor of x2. For the rest we have

x4 + x5 = 0 , (IV.9.67)
x7 = 0 , (IV.9.68)
x8 = 0 , (IV.9.69)

57Cf. footnote 55 on page 169.
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for all x = a, . . . , h, which enables us again to eliminate, e.g., x5 in favor of x4. On the other
hand, note that x6 (again for all x = a, . . . , h) remains unconstrained by the WT identity.

Thus, applying the WT identity the vertex (IV.9.47) reduces to

Γµa(p
′, p) = γµTa −

1
2
qµ

q2
(
Σ+ Ta − T̄aΣ+

)
− 1

2
q′µ

q · q′
(
Σ− Ta + T̄aΣ−

)
+
(
qµ

q2
− q′µ

q · q′

)[ (
a2 Σ− Ta + b2 T̄aΣ−

)
+
(
c2 TaΣ− + d2 Σ− T̄a

)
+ γ5

(
e2 Σ− Ta + f2 T̄aΣ−

)
+ γ5

(
g2 TaΣ− + h2 Σ− T̄a

)]
+
(
qµ

q2
[/q, /q′]
q · q′

−
[γµ, /q′]
q · q′

)[ (
a4 Σ− Ta + b4 T̄aΣ−

)
+
(
c4 TaΣ− + d4 Σ− T̄a

)
+ γ5

(
e4 Σ− Ta + f4 T̄aΣ−

)
+ γ5

(
g4 TaΣ− + h4 Σ− T̄a

)]
+

[γµ, /q]
(q · q′)

[ (
a6 Σ− Ta + b6 T̄aΣ−

)
+
(
c6 TaΣ− + d6 Σ− T̄a

)
+ γ5

(
e6 Σ− Ta + f6 T̄aΣ−

)
+ γ5

(
g6 TaΣ− + h6 Σ− T̄a

)]
. (IV.9.70)

Notice that by imposing the WT identity we have reduced the number of free complex parameters
from 64 to 24.

9.4.4 Transformation under G

Correct transformation behavior under full G

We continue by recalling that the vertex must transform properly under the global symmetry G,
i.e., as (IV.8.158), in order to guarantee the correct transformation property of the polarization
tensor (IV.9.22) (see Sec. 9.2.3). If we suppress the momentum arguments, which do not play
any substantial rôle in the present considerations, we can write the vertex (IV.9.70) in a schematic
form

Γµa = vµ1 ΣTa + vµ2 T̄aΣ + vµ3 Σ T̄a + vµ4 TaΣ . (IV.9.71)

The transformation of Γµa under G must be induced by the corresponding transformation of Σ:

G : Γµa −→ [Γµa ]
′ = vµ1 [Σ]′ Ta + vµ2 T̄a [Σ]′ + vµ3 [Σ]′ T̄a + vµ4 Ta [Σ]′ (IV.9.72a)

= eiθ·t̄
[

vµ1 Σ
(
e−iθ·t Ta eiθ·t)+ vµ2

(
e−iθ·t̄ T̄a eiθ·t̄)Σ

+ vµ3 Σ
(
e−iθ·t T̄a eiθ·t)+ vµ4

(
e−iθ·t̄ Ta eiθ·t̄)Σ]e−iθ·t ,

(IV.9.72b)

where we have already used the transformation rule (IV.8.25a) for Σ.
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Let us first check the first two terms (proportional to vµ1 , vµ2 ). Using (IV.8.97) we find that
the round brackets can be expressed as

e−iθ·t Ta eiθ·t =
(
eiθ·T )

ab
Tb , (IV.9.73a)

e−iθ·t̄ T̄a eiθ·t̄ =
(
eiθ·T )

ab
T̄b . (IV.9.73b)

Plugging these expressions into (IV.9.72b), we find that the first two terms of the vertex (IV.9.71)
do transform correctly according to the rule (IV.8.158).

On the other hand, it turns out that the third and fourth term (proportional to vµ3 , vµ4 ) do not
transform properly, since in general

e−iθ·t T̄a eiθ·t 6=
(
eiθ·T )

ab
T̄b , (IV.9.74a)

e−iθ·t̄ Ta eiθ·t̄ 6=
(
eiθ·T )

ab
Tb . (IV.9.74b)

In other words, we found that only terms of the type ΣTa and T̄aΣ are allowed, while the
terms of the type Σ T̄a and TaΣ are forbidden by the requirement that the vertex must transform
under G according to (IV.8.158). In terms of the free parameters of the vertex (IV.9.70) we
therefore must set

x2 = x4 = x6 = 0 for x = c, d, g, h , (IV.9.75)

so that the vertex Γµa(p
′, p) now acquires the form

Γµa(p
′, p) = γµTa −

1
2
qµ

q2
(
Σ+ Ta − T̄aΣ+

)
− 1

2
q′µ

q · q′
(
Σ− Ta + T̄aΣ−

)
+
(
qµ

q2
− q′µ

q · q′

)[(
a2 Σ− Ta + b2 T̄aΣ−

)
+ γ5

(
e2 Σ− Ta + f2 T̄aΣ−

)]
+
(
qµ

q2
[/q, /q′]
q · q′

−
[γµ, /q′]
q · q′

)[(
a4 Σ− Ta + b4 T̄aΣ−

)
+ γ5

(
e4 Σ− Ta + f4 T̄aΣ−

)]
+

[γµ, /q]
(q · q′)

[(
a6 Σ− Ta + b6 T̄aΣ−

)
+ γ5

(
e6 Σ− Ta + f6 T̄aΣ−

)]
, (IV.9.76)

which contains half as many complex free parameters as (IV.9.70), i.e., 12.

Invariance under unbroken H ⊆ G

The next natural requirement is to demand the vertex Γµa(p
′, p) to be invariant under unbroken

H ⊆ G:

H : Γµa(p
′, p) −→ [Γµa(p

′, p)]′ = Γµa(p
′, p) . (IV.9.77)

However, it is easy to see that this invariance is already automatically guaranteed due to the
correct transformation behavior of Γµa(p

′, p) under the full symmetry group G, ensured above.
To see it, let us first remind the rôle of the self-energy Σ here: It is this Σ which is assumed to
break G down to H. In other words, it is by definition invariant under H:

H : Σ −→ [Σ]′ = Σ . (IV.9.78)
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Second, note that the only part of Γµa(p
′, p), transforming non-trivially under G, is the self-

energy Σ, see (IV.9.72a). Therefore, since Σ stays invariant under H, so must Γµa(p
′, p), which

completes the proof of (IV.9.77).

9.4.5 Transformation under C, P and CP

Separate C and P invariance

Consider now the transformations of the vertex under the discrete symmetries C and P . Apply-
ing the corresponding transformation rules (IV.8.163) and (IV.8.164), respectively, on the vertex
(IV.9.76), we obtain

[Γµa(p
′, p)]C = γµT̄a −

1
2
qµ

q2

(
[Σ+]C T̄a − Ta [Σ+]C

)
− 1

2
q′µ

q · q′
(
[Σ−]C T̄a + Ta [Σ−]C

)
+
(
qµ

q2
− q′µ

q · q′

)[(
b2 [Σ−]C T̄a + a2 Ta [Σ−]C

)
+ γ5

(
f2 [Σ−]C T̄a + e2 Ta [Σ−]C

)]
+
(
qµ

q2
[/q, /q′]
q · q′

−
[γµ, /q′]
q · q′

)[
−
(
b4 [Σ−]C T̄a + a4 Ta [Σ−]C

)
− γ5

(
f4 [Σ−]C T̄a + e4 Ta [Σ−]C

)]
+

[γµ, /q]
(q · q′)

[(
b6 [Σ−]C T̄a + a6 Ta [Σ−]C

)
+ γ5

(
f6 [Σ−]C T̄a + e6 Ta [Σ−]C

)]
,

(IV.9.79)

[Γµa(p
′, p)]P = γµT̄a −

1
2
qµ

q2

(
[Σ+]P T̄a − Ta [Σ+]P

)
− 1

2
q′µ

q · q′
(
[Σ−]P T̄a + Ta [Σ−]P

)
+
(
qµ

q2
− q′µ

q · q′

)[(
a2 [Σ−]P T̄a + b2 Ta [Σ−]P

)
− γ5

(
e2 [Σ−]P T̄a + f2 Ta [Σ−]P

)]
+
(
qµ

q2
[/q, /q′]
q · q′

−
[γµ, /q′]
q · q′

)[(
a4 [Σ−]P T̄a + b4 Ta [Σ−]P

)
− γ5

(
e4 [Σ−]P T̄a + f4 Ta [Σ−]P

)]
+

[γµ, /q]
(q · q′)

[(
a6 [Σ−]P T̄a + b6 Ta [Σ−]P

)
− γ5

(
e6 [Σ−]P T̄a + f6 Ta [Σ−]P

)]
,

(IV.9.80)

where the transformation [Σ]C and [Σ]P are given by (IV.8.44) and (IV.8.45), respectively.
We can now impose two natural requirements on the vertex:
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C invariance: Recall that the non-invariance of the gauge interactions under C is attributed
solely to the presence of γ5 in the symmetry generators Ta, i.e., to Ta 6= T̄a. We can
therefore require that in the case of [Σ]C = Σ the only source of non-invariance of the
vertex under C should be also the generators Ta. Rephrased more formally, we require(

Ta = T̄a and [Σ]C = Σ
)

=⇒ [Γµa(p
′, p)]C = Γµa(p

′, p) . (IV.9.81)

Taking into account the explicit form (IV.9.79) of [Γµa(p
′, p)]C , we are forced to set

b2 = a2 , (IV.9.82a)
f2 = e2 , (IV.9.82b)
b4 = −a4 , (IV.9.82c)
f4 = −e4 , (IV.9.82d)
b6 = a6 , (IV.9.82e)
f6 = e6 . (IV.9.82f)

P invariance: Similarly can be treated the non-invariance under the P symmetry, whose only
source in the gauge interactions is also the presence of γ5 in the generators Ta. We can
therefore analogously require that if [Σ]P = Σ, then the only source of parity violation of
the vertex should be also the generators Ta:(

Ta = T̄a and [Σ]P = Σ
)

=⇒ [Γµa(p
′, p)]P = Γµa(p

′, p) . (IV.9.83)

This time we obtain, using [Γµa(p
′, p)]P , (IV.9.80), the constraints

e2 = f2 = e4 = f4 = e6 = f6 = 0 , (IV.9.84)

leading to the absence of γ5 in the vertex, elsewhere than in the generators Ta and in the
self-energy Σ.

By putting the two constraints (IV.9.82) and (IV.9.84) together we obtain the vertex in the
form

Γµa(p
′, p) = γµTa −

1
2
qµ

q2
(
Σ+ Ta − T̄aΣ+

)
− 1

2
q′µ

q · q′
(
Σ− Ta + T̄aΣ−

)
+ a2

(
qµ

q2
− q′µ

q · q′

)(
Σ− Ta + T̄aΣ−

)
+ a4

(
qµ

q2
[/q, /q′]
q · q′

−
[γµ, /q′]
q · q′

)(
Σ− Ta − T̄aΣ−

)
+ a6

[γµ, /q]
(q · q′)

(
Σ− Ta + T̄aΣ−

)
, (IV.9.85)

i.e., now with only 3 free complex parameters a2, a4, a6.
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Combined CP invariance

Consider now the CP transformation of the vertex Γµa(p
′, p). Since the gauge interactions are

always invariant under CP , any CP violation of the vertex should be attributed only to the CP
violation of Σ:

[Σ]CP = Σ =⇒ [Γµa(p
′, p)]CP = Γµa(p

′, p) . (IV.9.86)

Not surprisingly, this condition is now satisfied by the vertex (IV.9.85) automatically, since we
have already imposed the two conditions (IV.9.81) and (IV.9.83). Indeed, using (IV.8.165) we
find the CP transformation of (IV.9.85) to be

[Γµa(p
′, p)]CP = γµTa −

1
2
qµ

q2

(
[Σ−]CP Ta − T̄a [Σ−]CP

)
− 1

2
q′µ

q · q′
(
[Σ−]CP Ta + T̄a [Σ−]CP

)
+ a2

(
qµ

q2
− q′µ

q · q′

)(
[Σ−]CP Ta + T̄a [Σ−]CP

)
+ a4

(
qµ

q2
[/q, /q′]
q · q′

−
[γµ, /q′]
q · q′

)(
[Σ−]CP Ta − T̄a [Σ−]CP

)
+ a6

[γµ, /q]
(q · q′)

(
[Σ−]CP Ta + T̄a [Σ−]CP

)
(IV.9.87)

(where [Σ]CP is given by (IV.8.46)), which clearly satisfies the condition (IV.9.86).

9.4.6 Hermiticity

We have shown in Sec. 9.2.2 that in order to arrive at a real gauge boson mass matrix, the vertex
must satisfy the Hermiticity condition Γµa(p

′, p) = Γ̄µa(p, p
′), (IV.8.153). For the vertex of the

form (IV.9.85) we have for Γ̄µa(p, p
′) explicitly

Γ̄µa(p, p
′) = γµTa −

1
2
qµ

q2
(
Σ+ Ta − T̄aΣ+

)
− 1

2
q′µ

q · q′
(
Σ− Ta + T̄aΣ−

)
+ a∗2

(
qµ

q2
− q′µ

q · q′

)(
Σ− Ta + T̄aΣ−

)
+ a∗4

(
qµ

q2
[/q, /q′]
q · q′

−
[γµ, /q′]
q · q′

)(
Σ− Ta − T̄aΣ−

)
+ a∗6

[γµ, /q]
(q · q′)

(
Σ− Ta + T̄aΣ−

)
. (IV.9.88)

Comparing this with (IV.9.85) the requirement (IV.8.153) of Hermiticity leads to the conclusion
that the three free parameters a2, a4, a6 in (IV.9.85) must be real:

a2 , a4 , a6 ∈ R . (IV.9.89)
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9.4.7 The NG interpretation

Ambiguity in extracting the NG part

Let us now come back to the separation (IV.9.31) of the vertex Γµa(p
′, p) into the NG and regular

part. Taking into account the form (IV.9.85) of the vertex we can write

Γµa(p
′, p)

∣∣
NG

=
qµ

q2

[
− 1

2
(
Σ+ Ta − T̄aΣ+

)
+ a2

(
Σ− Ta + T̄aΣ−

)
+ a4

[/q, /q′]
q · q′

(
Σ− Ta − T̄aΣ−

)
+ q2Γa(p′, p)

∣∣
amb.

]
, (IV.9.90)

Γµa(p
′, p)

∣∣
reg.

= γµTa −
(1

2
+ a2

) q′µ

q · q′
(
Σ− Ta + T̄aΣ−

)
− a4

[γµ, /q′]
q · q′

(
Σ− Ta − T̄aΣ−

)
+ a6

[γµ, /q]
q · q′

(
Σ− Ta + T̄aΣ−

)
− qµΓa(p′, p)

∣∣
amb.

. (IV.9.91)

Notice the presence of the terms proportional to the quantity Γa(p′, p)|amb.. Its aim is to param-
eterize the ambiguity in the identification of the NG part of the vertex, which we have already
discussed in Sec. 9.3.1. In principle, Γa(p′, p)|amb. can be apparently arbitrary, as the whole
vertex Γµa(p

′, p) is independent of it.
However, we can determine the Γa(p′, p)|amb. in the same spirit as we have determined

(so far) the whole vertex Γµa(p
′, p). That is to say, on top of the natural requirement that

Γa(p′, p)|amb. is free of any kinematical singularities, we can assume it to be a linear combi-
nation of the terms (IV.9.46), to transform under G according to (IV.8.158), to be invariant under
C and P in the sense of (IV.9.81) and (IV.9.83), respectively, and to satisfy the Hermiticity con-
dition (IV.8.153). As a result we find Γa(p′, p)|amb. to be given by

Γa(p′, p)
∣∣
amb.

= b
1

q · q′
(
Σ− Ta − T̄aΣ−

)
, (IV.9.92)

where b ∈ R is its only free parameter. Thus, as advertised, the ambiguity of the separation
(IV.9.31) is parameterized by only one real number.

Unbroken gauge index

Let us now focus on the NG part of the vertex, which we found to be

Γµa(p
′, p)

∣∣
NG

=
qµ

q2

[
− 1

2
(
Σ+ Ta − T̄aΣ+

)
+ a2

(
Σ− Ta + T̄aΣ−

)
+
(
b
q2

q · q′
+ a4

[/q, /q′]
q · q′

)(
Σ− Ta − T̄aΣ−

)]
. (IV.9.93)

The Γµa(p
′, p)|NG contains the bilinear coupling between the gauge boson Aµa and some linear

combination of the NG bosons (this will be investigated in more detail in Sec. 9.6). However,
this linear combination is non-trivial if and only if the generator corresponding to Aµa is broken,
i.e., when the quantity (IV.8.26) vanishes. Therefore we demand

ΣTa − T̄aΣ = 0 =⇒ Γµa(p
′, p)

∣∣
NG

= 0 . (IV.9.94)
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If we did not demand this, it could be possible to generate masses for the gauge bosons corre-
sponding to an unbroken subgroup. E.g., the photon would come out massive. That is why the
requirement (IV.9.94) is so crucial. Upon its application to the NG part (IV.9.93) of the vertex
we immediately find

a2 = 0 . (IV.9.95)

For the NG and the regular part of the vertex we thus have

Γµa(p
′, p)

∣∣
NG

=
qµ

q2

[
− 1

2
(
Σ+ Ta − T̄aΣ+

)
+
(
b
q2

q · q′
+ a4

[/q, /q′]
q · q′

)(
Σ− Ta − T̄aΣ−

)]
,

(IV.9.96a)

Γµa(p
′, p)

∣∣
reg.

= γµTa −
(

1
2
q′µ

q · q′
− a6

[γµ, /q]
q · q′

)(
Σ− Ta + T̄aΣ−

)
−
(
b
qµ

q · q′
+ a4

[γµ, /q′]
q · q′

)(
Σ− Ta − T̄aΣ−

)
, (IV.9.96b)

and the full vertex reads

Γµa(p
′, p) = γµTa −

1
2
qµ

q2
(
Σ+ Ta − T̄aΣ+

)
−
(

1
2
q′µ

q · q′
− a6

[γµ, /q]
q · q′

)(
Σ− Ta + T̄aΣ−

)
+ a4

(
qµ

q2
[/q, /q′]
q · q′

−
[γµ, /q′]
q · q′

)(
Σ− Ta − T̄aΣ−

)
. (IV.9.97)

Thus, the vertex Γµa(p
′, p), (IV.9.97), has now only two free real parameters.

9.5 Gauge boson mass matrix

The vertex of the form (IV.9.97) is the best what we can obtain by imposing various requirements
on the vertex alone. Now we will return to our ultimate task of calculating the gauge boson
spectrum and things will soon start to be less elegant.

9.5.1 Intermediate formula

We are now going to calculate the gauge bosons mass matrix using the expression (IV.9.42). The
needed coefficients of the expansion (IV.9.32) of the vertex (IV.9.97) read explicitly

Aa(p) = −Σp Ta + T̄aΣp , (IV.9.98a)

Bαa (p) =
(
pα − 2a4[γα, /p]

)(
−Σ′

p Ta + T̄aΣ′
p

)
, (IV.9.98b)

Cµa (p) = γµTa + 2a4[γµ, /p]
(
−Σ′

p Ta + T̄aΣ′
p

)
− pµ

(
Σ′
p Ta + T̄aΣ′

p

)
. (IV.9.98c)

Notice that of the two parameters a4, a6 of the vertex (IV.9.97) the a6 does not enter here, as it
would enter only terms linear and higher in q in the expansion (IV.9.32) of the vertex (IV.9.97).
Thus, the gauge boson mass matrix in the pole approximation (IV.9.1) will depend only on a4.
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Upon plugging the coefficients (IV.9.98) into the formula (IV.9.42) and making some algebra
we arrive at the gauge boson mass matrix M2

ab of the form58

M2
ab = i

1
2

∫
ddp

(2π)d
Tr
{

2DL JΣ, TaKDR JΣ†, T̄bK

+ 2
2
d
p2
(
D′
R JΣ†, T̄aKDL JΣ, TbK + D′

R JΣ†, T̄bKDL JΣ, TaK
)

+
1
2
(
1 + 4(d− 1)a4

)4
d
p2DL JΣ′, TaKDR JΣ†, T̄bK

+
4
d
p2JΣ, TaKJDR TbΣ†,D′

LK
}
, (IV.9.99)

where DL, DR are given by (IV.8.34). This can be expressed as a sum of the symmetric and
antisymmetric part:

M2
ab = M2

ab

∣∣
S

+M2
ab

∣∣
A
, (IV.9.100)

where

M2
ab

∣∣
S

= i
1
2

∫
ddp

(2π)d
Tr
{

2DL JΣ, TaKDR JΣ†, T̄bK

+
1
2
(
1 + 4(d− 1)a4

)2
d
p2
(
DL JΣ′, TaKDR JΣ†, T̄bK + DL JΣ′, TbKDR JΣ†, T̄aK

)
+ 2

2
d
p2
(
D′
R JΣ†, T̄aKDL JΣ, TbK + D′

R JΣ†, T̄bKDL JΣ, TaK
)

+
2
d
p2
[
JΣ, TaKJDR TbΣ†,D′

LK + JΣ, TbKJDR TaΣ†,D′
LK
]}

, (IV.9.101)

M2
ab

∣∣
A

= i
1
2

∫
ddp

(2π)d
Tr
{

2
d
p2
[
JΣ, TaKJDR TbΣ†,D′

LK− JΣ, TbKJDR TaΣ†,D′
LK
]

+
1
2
(
1 + 4(d− 1)a4

)2
d
p2
(
DL JΣ′, TaKDR JΣ†, T̄bK−DL JΣ′, TbKDR JΣ†, T̄aK

)}
.

(IV.9.102)

9.5.2 Requirement of symmetricity

We require that the gauge boson mass matrix be symmetric:

M2
ab

∣∣
A

= 0 . (IV.9.103)

Notice that the mass matrixM2
ab and, in particular, also the antisymmetric partM2

ab|A depend on
the free parameter a4. Being experienced from the previous process of deriving the vertex, one
might think that now it suffices just to set a4 to some suitable value in order to fulfil (IV.9.103).

58We will now use extensively the notation (viii) in order to make the formulæ more compact
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However, it turns out that for general59 fermion setting (given by the self-energy Σ and the
generators Ta, T̄a) it is just not possible to find such a value of a4. It is a pathological feature
of the present scheme (defined both by the vertex Ansatz (IV.9.97) and by the loop diagram
(IV.9.22) for the polarization tensor) that the resulting gauge boson mass matrix does not come
out symmetric.

Nevertheless, there is a good news. It turns out that in all of the applications of interest the
quantity on the first line of the expression (IV.9.102) for M2

ab|A “miraculously” vanishes:

Aab = 0 , (IV.9.104)

where we introduced for the sake of later references the denotation

Aab ≡ Tr
{

JΣ, TaKJDR TbΣ†,D′
LK− JΣ, TbKJDR TaΣ†,D′

LK
}

(IV.9.105a)

= Tr
{

TaΣ† D′
L T̄bΣDR − TaΣ† DL T̄bΣD′

R

+ T̄a DLΣTb D′
RΣ† − T̄a D′

LΣTb DRΣ†
}
. (IV.9.105b)

In particular, this happens in both the Abelian toy model and the electroweak interactions; we
will show it in detail in the respective chapters 10 and 11 when discussing the gauge boson
masses in these models. Thus, we will from now assume that the condition (IV.9.104) does hold.

Now, when we assume the condition (IV.9.104), the situation greatly improves. It obviously
suffices to set

a4 = −1
4

1
d− 1

(IV.9.106)

in order to fulfil the condition (IV.9.103) by eliminating the term in M2
ab|A, (IV.9.102), propor-

tional to 1 + 4(d− 1)a4. In fact, this elimination by setting (IV.9.106) is in fact necessary, as the
term in question does not vanish in some applications of interest, unlike the termAab, (IV.9.105).

At this point we can finally briefly comment on why we have not considered the scalar con-
tribution to the gauge boson mass matrix. If we considered the scalars, we would arrive at the
vertex of the same form as the fermion vertex (IV.9.97), but this time without gamma matrix
structure, which is in (IV.9.97) parameterized by the parameters a4 a6. By properly adjusting
one of these parameters (a4) we were able to make the fermion contribution to the gauge boson
mass matrix symmetric (at least in the cases satisfying the condition (IV.9.103)). However, for
the scalars this is not possible, simply because the scalar vertex is free of any free tunable param-
eters. This inability of making the scalar contribution to the gauge boson mass matrix symmetric
is the reason why we neglect the scalars.

59Of course, we do not want a4 to depend on particular details of the theory (i.e., the gauge group G and the fermion
representations and self-energies), but rather to have the same value of a4 for all possible theories. Otherwise it would
be certainly possible to make M2

ab|A vanishing by tuning a4 appropriately.
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9.5.3 The final formula

Thus, under setting (IV.9.106) of a4 and under the assumption (IV.9.104) we arrive at the final
expression for the gauge boson mass matrix:

M2
ab = i

1
2

∫
ddp

(2π)d
Tr
{

2DL JΣ, TaKDR JΣ†, T̄bK

+ 2
2
d
p2
(
D′
R JΣ†, T̄aKDL JΣ, TbK + D′

R JΣ†, T̄bKDL JΣ, TaK
)

+
2
d
p2
(
JΣ, TaKJDR TbΣ†,D′

LK + JΣ, TbKJDR TaΣ†,D′
LK
)}

.

(IV.9.107)

Let us summarize some of the features of M2
ab, given by (IV.9.107):

• It is real.

• It is symmetric.

• Its signature can be, depending on the self-energy Σ, virtually arbitrary. (I.e., in particular
the positive definiteness is not guaranteed.)

• The element M2
ab vanishes if at least one of the generators Ta and Tb is unbroken in the

sense of (IV.8.26) (in the first two lines in (IV.9.107) it can be seen directly, while for the
last line one has to utilize the condition (IV.9.104)).

• It is free of any undetermined parameters and thus in this sense unique.

• It is UV-finite, as long as the self-energy Σ is suppressed at high momenta.

Also recall that the formula (IV.9.107) for M2
ab is applicable only under the condition (IV.9.104).

For the sake of later references let us also state the vertex Γµa(p
′, p) with the parameter a4

determined as (IV.9.106):

Γµa(p
′, p) = γµTa −

1
2
qµ

q2
(
Σ+ Ta − T̄aΣ+

)
−
(

1
2
q′µ

q · q′
− a6

[γµ, /q]
q · q′

)(
Σ− Ta + T̄aΣ−

)
− 1

4
1

d− 1

(
qµ

q2
[/q, /q′]
q · q′

−
[γµ, /q′]
q · q′

)(
Σ− Ta − T̄aΣ−

)
. (IV.9.108)

Notice that it still depends on one real parameter, a6, which we nevertheless leave undeter-
mined.60 It could be presumably determined in an analogous way as a4, i.e., by requiring that
the whole Πab(q2), not only the lowest order of its Laurent series (i.e., the M2

ab), be symmetric
(under the condition (IV.9.104)). The vertex (IV.9.108) can be divided into the NG part and the

60Cf. footnote 55 on page 169.
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πA

q

p′

p

=iPA(p′, p)

Figure IV.9.3. Assignment of momenta of the effective vertex PA(p′, p), connecting the NG boson πA with
fermions. Momentum conservation q = p′ − p is implied.

regular part as

Γµa(p
′, p)

∣∣
NG

=
qµ

q2

[
− 1

2
(
Σ+ Ta − T̄aΣ+

)
+
(
b
q2

q · q′
− 1

4
1

d− 1
[/q, /q′]
q · q′

)(
Σ− Ta − T̄aΣ−

)]
, (IV.9.109a)

Γµa(p
′, p)

∣∣
reg.

= γµTa −
(

1
2
q′µ

q · q′
− a6

[γµ, /q]
q · q′

)(
Σ− Ta + T̄aΣ−

)
−
(
b
qµ

q · q′
− 1

4
1

d− 1
[γµ, /q′]
q · q′

)(
Σ− Ta − T̄aΣ−

)
. (IV.9.109b)

Again, the real free parameter b, parameterizing this separation, could be presumably determined
by insisting on the symmetricity of the contribution of only the NG bosons to the polarization
tensor for all q (see Eq. (IV.9.110) below).

9.6 Nambu–Goldstone boson interpretation

9.6.1 Introduction

Since the symmetry G is by assumption spontaneously broken to some subgroup H ⊆ G, we
expect appearance of the corresponding NG bosons – composite spin-0 massless particles. The
number of the NG bosons is given asNNG = NG−NH, whereNG,NH are dimensions (numbers
of generators) of G, H, respectively. We will denote the NG bosons as πA, A = 1, . . . , NNG.

As the current (IV.8.21), corresponding to the broken symmetry G, is made of the fermion
fields, the NG bosons are composites of the fermions and there will a direct coupling between
the NG bosons and the fermion–antifermion pairs. These couplings can be parameterized by an
effective vertex PA(p′, p), see Fig. IV.9.3 for assignment of the momenta.

If the broken symmetry were global, the NG bosons would be seen in the spectrum as normal
particles (asymptotic states) and they would interact with fermions via the vertices PA(p′, p).
However, even if the symmetry is gauged and the NG bosons decouple from the spectrum, the
couplings PA(p′, p) play an important rôle: They induce the necessary bilinear couplings of the
gauge bosons and NG bosons, which can be only a loop effect, since the two types of bosons do
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Aµ
a

=qµIaA(q2)

q

πA

Figure IV.9.4. The bilinear coupling qµIaA(q2) between the gauge boson Aµa and the NG boson πA.

Aµ
a

=iΠµν
ab (q)|

NG

πA
Aν

b

Figure IV.9.5. The contribution Πµν
ab (q)|NG of the NG bosons to the polarization tensor, induced by the

bilinear couplings IaA(q2).

not couple directly. Due to Lorentz invariance the bilinear coupling of the NG bosons πA and the
gauge bosons Aµa has the most general form qµIaA(q2), see Fig. (IV.9.4). The bilinear couplings
are of course crucial for decoupling of the NG boson from the spectrum and generating the gauge
boson masses. In fact, the contribution of the NG bosons to the polarization tensor is in terms of
the bilinear coupling qµIaA(q2) given by

iΠµν
ab (q)

∣∣
NG

= −i
qµqν

q2
IaA(q2) IbA(q2) , (IV.9.110)

see Fig. IV.9.5, i.e., the NG bosons contribute only to the longitudinal part of the polarization
tensor.

9.6.2 Decomposition of Γµa(p
′, p)

The starting point of our analysis is the full vertex Γµa(p
′, p). As already briefly discussed in

previous sections, among other contributions to it there are also contributions from the NG bosons
and the vertex Γµa(p

′, p) can be therefore decomposed as (IV.9.31a). We have already stated the
general form (IV.9.31b) of the NG part Γµa(p

′, p)|NG,

Γµa(p
′, p)

∣∣
NG

=
qµ

q2
Γa(p′, p)

∣∣
NG

, (IV.9.111)

which was in this form so far sufficient for our purposes. Recall that under our approximation
scheme we have explicitly found

Γa(p′, p)
∣∣
NG

= −1
2
(
Σ+ Ta − T̄aΣ+

)
+
(
b
q2

q · q′
− 1

4
1

d− 1
[/q, /q′]
q · q′

)(
Σ− Ta − T̄aΣ−

)
,

(IV.9.112)

where b is some real undetermined constant, see (IV.9.109a).
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Aµ
a

=iΓµ
a(p

′, p)|
NG

q

πA

p′

p

Figure IV.9.6. The “anatomy” (IV.9.113) of the NG part Γµa(p
′, p)|NG of the vertex.

Now, when we have introduced the bilinear coupling of the NG and gauge bosons, we can
investigate the “anatomy” of Γµa(p

′, p)|NG in more detail. It turns out that Γµa(p
′, p)|NG can be

expressed as (see also Fig. IV.9.6)

Γµa(p
′, p)

∣∣
NG

= qµIaA(q2)
iδAB
q2

PB(p′, p) , (IV.9.113)

where qµIaA(q2) is the bilinear coupling of the gauge bosonAµa to the NG boson πA, iδAB/q2 =
〈πAπB〉 is the propagator of the NG bosons and finally PB(p′, p) is the coupling of the NG boson
πB to the fermions.

9.6.3 Expression for PA(p′, p)

We will now investigate how to express the NG effective vertexPA(p′, p) in terms of Γµa(p
′, p)|NG

and IaA(q2), which may be useful in situations when the latter two quantities are known.
Comparing the two expressions (IV.9.111) and (IV.9.113) for Γµa(p

′, p)|NG, we obtain the
equation

IaA(q2)PA(p′, p) = −i Γa(p′, p)
∣∣
NG

. (IV.9.114)

In the following it will be more convenient to suppress the gauge boson (a) as well as the NG
boson (A) indices and utilize instead the matrix form. The equation (IV.9.114) in the matrix
formalism then reads

I(q2)P (p′, p) = −i Γ(p′, p)
∣∣
NG

. (IV.9.115)

Now we would like to extract P (p′, p) from this equation. However, we cannot multiply the
equation (IV.9.115) by the inverse matrix of I(q2), simply because it may not in general exist:
Recall that I(q2) is after all, in general, a rectangular matrix and hence singular. However, we can
do the following: We can multiply the equation (IV.9.115) from left with IT(q2) (i.e., contract
the equation (IV.9.114) with IaB(q2)) to arrive at

IT(q2) I(q2)P (p′, p) = −i IT(q2) Γ(p′, p)
∣∣
NG

. (IV.9.116)

Recall that the matrix I(q2) is NG×NNG, with NNG ≤ NG. Assume now that the rank of I(q2)
is the maximal possible, i.e., NNG, and assume this for all q2. Then the matrix IT(q2) I(q2),
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Aµ
a

=qµIaA(q2) πA

q

Figure IV.9.7. The one-loop contribution (IV.9.120) to the bilinear coupling qµIaA(q2) between the gauge
boson Aµa and the NG boson πA.

which isNNG×NNG, has the rankNNG and therefore is regular and invertible. We can therefore
finally express the effective NG vertex PA(p′, p) as

P (p′, p) = −i
[
IT(q2) I(q2)

]−1
IT(q2) Γ(p′, p)

∣∣
NG

, (IV.9.117)

or in components,

PA(p′, p) = −i
([
IT(q2) I(q2)

]−1
)
AB
IaB(q2) Γa(p′, p)

∣∣
NG

. (IV.9.118)

9.6.4 Loop expression for IaA(q2)

We asserted above that the bilinear coupling IaA(q2) between the gauge and the NG bosons is a
loop effect. Let us now check this issue closer. Recall that the NG contribution to the polarization
tensor is in terms of IaA(q2) given by (IV.9.110). Taking into account the loop integral (IV.9.22)
for the polarization tensor we see that the same NG contribution should be given by the NG part
of the vertex, Γµa(p+ q, p)|NG:

iΠµν
ab (q)

∣∣
NG

= −
∫

ddp
(2π)d

Tr
{

Γµa(p+ q, p)
∣∣
NG

G(p) γνTbG(p+ q)
}
. (IV.9.119)

If we substitute the expression (IV.9.113) for Γµa(p + q, p)|NG in it and compare the resulting
integral with the other expression (IV.9.110) for iΠµν

ab (q)|NG, we obtain an equation containing
only the two NG vertices IaA(q2) and PA(p′, p). After some manipulation (involving the multi-
plication of the equation by IT(q2) from left in order to obtain the invertible matrix IT(q2) I(q2)
as above) we arrive at the explicit expression for IaA(q2) in terms of PA(p′, p):

qµIaA(q2) = −
∫

ddp
(2π)d

Tr
{
γµTaG(p− q)PA(p− q, p)G(p)

}
. (IV.9.120)

This is diagrammatically depicted in Fig. IV.9.7.

9.6.5 Lowest orders in q

Recall now the expansion (IV.9.32) of the vertex Γµa(p
′, p) in the lowest powers of q and the

identification (IV.9.33a) of Γµa(p
′, p)|NG, corresponding to

Γa(p′, p)
∣∣
NG

= Aa(p) + qαB
α
a (p) +O(q2) . (IV.9.121)
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The explicit form (IV.9.112) of Γa(p′, p)|NG yields

Aa(p) = −
(
ΣTa − T̄aΣ

)
, (IV.9.122a)

Bαa (p) = −vα
(
Σ′ Ta − T̄aΣ′) , (IV.9.122b)

where we defined

vα ≡ pα +
1
2

1
d− 1

[γα, /p] . (IV.9.123)

From (IV.9.117) we get the corresponding expansion of the effective NG vertex PA(p′, p):

P (p′, p) = −i
[
IT(0) I(0)

]−1
IT(0)

(
A(p) + qαB

α(p)
)

+O(q2) . (IV.9.124)

Note that only I(0) enters here, high terms in q2 of I(q2) are dispensable in the given order of
the expansion (IV.9.124).

Let us now take a closer look at I(0). We saw that the NG part Γµa(p
′, p)|NG does contribute

only to the longitudinal part of the polarization tensor. Of course, the regular part Γµa(p
′, p)|reg.

can in principle contribute to it as well. However, in the considered lowest orders in q it is only
Γµa(p

′, p)|NG which actually does contribute to it, see the expansion (IV.9.40) of Πµν
ab (q). We can

thus, due to the expression (IV.9.110) for Πµν
ab (q)|NG (and taking into account the transversality

of Πµν
ab (q)), write

Πab(q2) =
1
q2
IaA(0) IbA(0) +O(q0) . (IV.9.125)

I.e., the gauge boson mass matrix is within the pole approximation (IV.9.1) given by

M2
ab = IaA(0) IbA(0) , (IV.9.126)

or in the matrix form,

M2 = I(0) IT(0) . (IV.9.127)

We can therefore on the basis of (IV.9.11) identify

I(0) = F , (IV.9.128)

as discussed above in Sec. 9.1.1, and rewrite cosmetically the expression (IV.9.124) for P (p′, p)
as

P (p′, p) = −i
[
FTF

]−1
FT
(
A(p) + qαB

α(p)
)

+O(q2) . (IV.9.129)

9.7 Summary

Let us summarize the main points of this chapter. Before arriving at the final formula (IV.9.107)
for the gauge boson mass matrix, several simplifying assumptions have been made.

First of all, we specified the way of treating the polarization tensor. We argued that for the
purpose of computing the gauge boson masses in the lowest (second) order in the gauge coupling
constant it is sufficient to consider only the pole part of the form factor Πab(q2) of the polarization
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tensor. For its very computation we chose the one-loop diagram (IV.9.22), Fig. IV.9.2, with the
fermion lines given by the symmetry-breaking propagators of the form and properties considered
in the previous chapter.

In order to arrive at transversal polarization tensor, one of the two vertices in (IV.9.22) had
to be dressed and satisfying the WT identity (while the other had to be the bare one and thus not
satisfying the WT identity). In principle, if the symmetry breaking dynamics yields the dressed
fermion propagators, it should be capable of yielding in the same manner also the dressed vertex.
However, we assumed, motivated primarily by the models presented in parts I and II, that due to
the used approximation scheme (i.e., in our case the truncation scheme of the SD equations) we
did not have the dressed vertex at disposal. Hence, the only way to arrive at the dressed vertex,
satisfying the WT identity, was to construct it.

A great part of the chapter was dedicated to this construction, which would not be possi-
ble without making some non-trivial assumptions concerning the general form of the vertex.
Namely, we imposed in Sec. 9.4.1 linearity in Σp′ , Σp, as well as in Ta, T̄a, and in Sec. 9.4.2
the correct analytic structure. The rest was rather straightforward (though somewhat tedious):
We imposed the indispensable WT identity, correct transformation behavior under both the con-
tinuous and discrete symmetries and Hermiticity. Finally, we exploited one more time the NG
boson interpretation of the vertex, already used before for constraining the analytic structure of
the vertex.

The vertex developed this way still contained two real free parameters. In order to determine
them we returned to our ultimate task of calculating the gauge boson mass matrix and required it
to be symmetric. This requirement actually applied only to one of those free parameters, as the
other did contribute only to the higher orders of the Laurent expansion of the polarization tensor.

At this point the troubles appeared. It turned out that there is no single value of the men-
tioned free parameter of the vertex, ensuring the symmetricity of the gauge boson mass matrix
for arbitrary gauge theory with arbitrary setting of fermion multiplets, unless the quantity Aab,
(IV.9.105), vanishes. Thus, we could not choose but assuming Aab = 0 and write down the final
unique formula (IV.9.107) for the gauge boson mass matrix under this assumption.

Such result is of course not satisfactory in general. However, for our purposes of calculating
the gauge boson masses within the Abelian toy model and the electroweak interactions in the
following two chapters the formula (IV.9.107) will be in fact sufficient, as the condition Aab = 0
will be in both cases satisfied.
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10 Application to the Abelian toy model

In this chapter we apply the results from the previous chapter to the Abelian toy model, discussed
in part I. However, we will not directly jump into the Abelian model (to be discussed only in
section 10.2), but rather gradually, step by step, decrease the level of generality considered in the
previous two chapters. This will eventually allow us to use some of the results from this chapter
also in the following chapter, dedicated to the gauge boson masses in electroweak interactions.

10.1 Some special cases

10.1.1 Assumption [Σ, Ta] = 0

We start with the assumption that the self-energy Σ commutes with the generators Ta (for all a):

[Σ, Ta] = 0 . (IV.10.1)

(Needless to say that this is, in general, not the same as the seemingly similar condition JΣ, TaK,
(IV.8.26), for the generator Ta to be unbroken.) Notice that the analogous condition [Σ, T̄a] = 0
already follows automatically from this one due to the Hermiticity condition Σ = Σ̄, (IV.8.28).
Under this assumption the vertex (IV.9.108), derived in the previous chapter, simplifies as

Γµa(p
′, p) = γµTa −

1
2
qµ

q2
(
Σp′ + Σp

)(
Ta − T̄a

)
−

(
1
2
q′µ

q · q′
− a6

[γµ, /q]
q · q′

)(
Σp′ −Σp

)(
Ta + T̄a

)
− 1

4
1

d− 1

(
qµ

q2
[/q, /q′]
q · q′

−
[γµ, /q′]
q · q′

)(
Σp′ −Σp

)(
Ta − T̄a

)
. (IV.10.2)

Let us now check the crucial condition (IV.9.104), whose fulfilment is necessary for being
able to calculate the gauge boson masses using the formula (IV.9.107). Direct calculation reveals

Tr
{

JΣ, TaKJDR TbΣ†,D′
LK
}

=
1
2

Tr
{(
Ta − T̄a

)(
Tb − T̄b

)
ΣΣ†D2′

L

}
, (IV.10.3)

which is symmetric in the gauge indices a, b, so that (recall the definition (IV.9.105a) of Aab)

Aab = Tr
{

JΣ, TaKJDR TbΣ†,D′
LK
}
− (a↔ b) (IV.10.4a)

= 0 . (IV.10.4b)

I.e., the condition (IV.9.104) is indeed fulfilled. We can therefore safely use the expression
(IV.9.107) for the gauge boson matrix and we find

M2
ab = −i

1
2

∫
ddp

(2π)d
Tr
{(
Ta − T̄a

)(
Tb − T̄b

)[
ΣΣ† − 2

d
p2
(
ΣΣ†)′](p2 −ΣΣ†)−2

}
.

(IV.10.5a)

This result can be further simplified by eliminating Σ in favor of Σ (recall that Σ = Σ†PL +
ΣPR). For this purpose one can use the fact that the commutation relations (IV.10.1) hold not
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only for Σ, but also for Σ. This, together with the cyclicity of the trace and the commutation
relations (D.2.25) leads to simplification of the mass matrix (IV.10.5a) as

M2
ab = −i

1
2

∫
ddp

(2π)d
Tr
{(
Ta − T̄a

)(
Tb − T̄b

)[
ΣΣ† − 2

d
p2
(
ΣΣ†

)′](
p2 − ΣΣ†

)−2
}
.

(IV.10.5b)

Recall that in Sec. 9.5.2 we have set the parameter a4 of the vertex (IV.9.97) to the non-trivial
value (IV.9.106) to ensure that the resulting gauge boson mass matrix is indeed symmetric, once
the condition (IV.9.104) is satisfied. Nevertheless, let us, just for curiosity, calculate the gauge
boson mass matrix using the formula (IV.9.99) with arbitrary a4:

M2
ab = −i

1
2

∫
ddp

(2π)d

× Tr
{(
Ta − T̄a

)(
Tb − T̄b

)[
ΣΣ† − 1

d

(
1 + 4(d− 1)a4

)
p2
(
ΣΣ†)′](p2 −ΣΣ†)−2

}
(IV.10.6a)

= −i
1
2

∫
ddp

(2π)d

× Tr
{(
Ta − T̄a

)(
Tb − T̄b

)[
ΣΣ† − 1

d

(
1 + 4(d− 1)a4

)
p2
(
ΣΣ†

)′](
p2 − ΣΣ†

)−2
}
.

(IV.10.6b)

Thus, incidentally, we see that in the present special case (defined by (IV.10.1)) the gauge bo-
son mass matrix is actually symmetric for any value of a4. Nevertheless, in the following we
will keep the special value (IV.9.106) of a4, as it follows from the general requirement that the
formula (IV.9.107) be applicable, upon fulfilling the condition (IV.9.104), for any theory (e.g.,
the electroweak interactions), in which the gauge boson mass matrix may not be symmetric for
arbitrary a4 like in the present case.

10.1.2 Case of U(1)N

Moreover, let us now assume, on top of the assumption (IV.10.1), that the group G is Abelian.
More precisely, we assume that the generators Ta commute with each other, as well as with T̄a:

[Ta, Tb] = 0 , (IV.10.7a)
[Ta, T̄b] = 0 . (IV.10.7b)

For our purposes it will be moreover sufficient to assume that all fermions sit in the same repre-
sentation of G. This implies that in the expressions

Ta = TLa PL + TRa PR (IV.10.8a)
= TV a 1+ TAa γ5 (IV.10.8b)

for Ta (cf. Eqs. (IV.8.17), (IV.8.18)) the components TLa, TRa, as well as TV a, TAa, can be
considered as Hermitian matrices 1× 1, i.e., mere real numbers.
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Gauge boson mass matrix

Note that the generators Ta, (IV.10.8), as being only some real linear combinations of PL and
PR, now act only in the Dirac space, while the self-energy Σ operates only in the flavor space.
Thus, since Ta and Σ operates in different spaces, their product is a Kronecker product and the
trace of their product can be written as a product of their traces: Tr[TaΣ] = Tr[Ta] Tr[Σ]. The
gauge boson mass matrix (IV.10.5b) can be therefore written as

M2
ab =

1
16

Tr
{(
Ta − T̄a

)(
Tb − T̄b

)}
µ2 (IV.10.9a)

= TAaTAb µ
2 , (IV.10.9b)

where we denoted

µ2 ≡ −8i
∫

ddp
(2π)d

Tr
{[

ΣΣ† − 2
d
p2
(
ΣΣ†

)′](
p2 − ΣΣ†

)−2
}
. (IV.10.10)

After Wick rotation this expression for µ2 becomes

µ2 = 8
∫

ddp
(2π)d

Tr
{[

ΣΣ† − 2
d
p2
(
ΣΣ†

)′](
p2 + ΣΣ†

)−2
}
. (IV.10.11)

From this expression one can in particular see that without additional assumptions about the be-
havior of the matrix function Σ(p2) the positivity of µ2 (and consequently the positivity of the
mass squared of the gauge boson corresponding to the broken subgroup) is indeed not automati-
cally guaranteed, as advertised above.

The mass matrix (IV.10.9) is of the expected form M2 = FFT, (IV.9.11), with F being
identified as the vector (i.e., matrix NG × 1)

F ≡

 TA1 µ
...

TANG µ

 . (IV.10.12)

Thus, the mass matrix is singular, with rank 1, and the only non-vanishing eigenvalue

M2
A ≡ TrFFT = FTF (IV.10.13a)

= µ2
NG∑
a=1

T 2
Aa (IV.10.13b)

expresses the mass squared of the gauge boson, corresponding to the spontaneously broken axial
subgroup U(1)A. The remaining NG − 1 gauge bosons stay massless.

NG boson coupling

Consider now the expansion (IV.9.121) of the NG part Γµa(p
′, p)|NG. For the simplified vertex

(IV.10.2) we have

Aa(p) = −Σ
(
Ta − T̄a

)
, (IV.10.14a)

Bαa (p) = −vαΣ′(Ta − T̄a) , (IV.10.14b)
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where vα is defined in (IV.9.123). It can be, upon noting that Ta − T̄a = 2TAaγ5, rewritten as

Aa(p) = −2TaAΣγ5 , (IV.10.15a)
Bαa (p) = −2TaAvαΣ′γ5 . (IV.10.15b)

Recalling the expression (IV.10.12) for F , we thus find

FT
(
A(p) + qαB

α(p)
)

= −2µ
(
Σ + (q · v)Σ′

)
γ5

∑
a

T 2
Aa . (IV.10.16)

Upon substituting this expression, together with the expression (IV.10.13) for FTF , into the
formula (IV.9.129) for the NG coupling P (p′, p), the quantities

∑
a T

2
Aa cancel and we finally

obtain

P (p′, p) = 2i
1
µ

(
Σ + (q · v)Σ′

)
γ5 +O(q2) . (IV.10.17)

Note that although our treatment of the NG boson was based on the gauge boson polarization
tensor and in intermediate stages of calculation the gauge coupling constant g appeared implicitly
(through its presence in generators Ta), the final expression (IV.10.17) for the NG boson coupling
P (p′, p) is independent of g, due to cancelation of

∑
a T

2
Aa. This correctly suggests that the result

(IV.10.17) holds irrespective of whether the spontaneously broken symmetry is gauged or not.

10.1.3 Comparison with the Pagels–Stokar formula

Assume now for simplicity that Σ is just a real scalar function, without any non-trivial matrix
structure (i.e., the number of fermion flavors is one). Then the Wick-rotated expression (IV.10.11)
for µ2 reads

µ2 = 8
∫

d4p

(2π)4
Σ2 − 1

2p
2
(
Σ2
)′(

p2 + Σ2
)2 , (IV.10.18)

where we have also explicitly set d = 4.
A similar expression has already been derived in the literature: It is the Pagels–Stokar (PS)

formula [97], which can be in the present context for the sake of comparison recast as

µ2
PS = 8

∫
d4p

(2π)4
Σ2 − 1

4p
2
(
Σ2
)′(

p2 + Σ2
)2 . (IV.10.19)

We can see that there is a slight difference between the two formulæ (IV.10.18) and (IV.10.19):
The coefficient at the term (Σ2)′ in our formula (IV.10.18) is twice as large as in the PS formula
(IV.10.19).

Origin of this discrepancy is easily revealed. It is the different value of the parameter a4 in
the expression (IV.9.97) for the vertex Γµa(p

′, p) which makes the difference: For a general a4

our expression (IV.10.18) for µ2 would be modified as

µ2 = 8
∫

d4p

(2π)4
Σ2 − 1

4

(
1− 12a4

)
p2
(
Σ2
)′(

p2 + Σ2
)2 . (IV.10.20)
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as can be seen from (IV.10.6). Clearly, while our formula (IV.10.18) corresponds to non-vanishing
value (IV.9.106) of a4,

a4 = − 1
12
, (IV.10.21)

the PS formula (IV.10.19) corresponds simply to

a4 = 0 . (IV.10.22)

Pagels and Stokar introduced in Ref. [97] the “dynamical perturbation theory”, which, upon
adapting on the present context, states roughly the same as what we did in Sec. 9.4.1: One keeps
in the vertex only the terms linear in the gauge coupling constant g. This actually implies the form
(IV.9.45), i.e., the vertex must have the form of the bare vertex plus something which vanishes in
the case of no SSB, since at order g there are no perturbative corrections to the vertex. However,
Pagels and Stokar moreover assumed that the only non-perturbative correction to the bare vertex
is the pole term qµ/q2 and overlooked the possibility that there can be also non-perturbative
contributions regular in q = 0. Recall now that the present discussion concerns about an axial
symmetry U(1)A, whose generator is Ta = gγ5τa, with τa being a real number, so that the vertex
(IV.9.97) within the simplifying assumptions about Σ made in this section reads

Γµa(p
′, p) = gγµγ5τa − g

qµ

q2
Σ+γ5τa + 2ga4

(
qµ

q2
[/q, /q′]
q · q′

−
[γµ, /q′]
q · q′

)
Σ−γ5τa .

(IV.10.23)

We can see clearly that insisting that only the pole term can be non-perturbative (i.e., proportional
to Σ) indeed effectively corresponds to setting a4 = 0.

Notice for the sake of completeness that there also exists in the literature an improved version
of the PS formula, introduced in [98]:

µ2
improved = 8

∫
d4p

(2π)4

{
Σ2 − 1

2p
2
(
Σ2
)′(

p2 + Σ2
)2 +

1
2
p2
(
Σ′
)2 p2 − Σ2(

p2 + Σ2
)2} . (IV.10.24)

Although our formula (IV.10.18) is not identical to this improved one, it reduces to it if one
neglects the terms proportional to (Σ′)2.

Pagels and Stokar have used for the fermion self-energy a rather crude Ansatz Σ = 4m3
D/p

2

(with p2 being in Minkowski metric), where mD is the “dynamical quark mass”, to estimate
value of the pion decay constant fπ , related to µ2 as

f2
π =

Nc
2
µ2 , (IV.10.25)

where Nc = 3 is the number of colors. Using the value mD = 244MeV from [99] they were
surprised to obtain from their formula (IV.10.19) the estimate fπ = 83MeV (the same value is
actually obtained also using the improved PS formula (IV.10.24)), which is rather close to the
experimental value fπ = 93 MeV. Interestingly enough, had they used rather the expression
(IV.10.18) for µ2, instead of (IV.10.19), they would obtain fπ = 96MeV, i.e., the agreement
would be even better.
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10.1.4 Mixing in U(1)2

Let us now discuss in some detail a special case from the previous sections with N = 2. Recall
that the gauge boson mass matrix (IV.10.9) has the explicit form

M2 =
(

T 2
A1 TA1 TA2

TA1 TA2 T 2
A2

)
µ2 , (IV.10.26)

with the two eigenvalues

M2
V = 0 , (IV.10.27a)

M2
A = µ2(T 2

A1 + T 2
A2) , (IV.10.27b)

corresponding to the masses squared of the mass-diagonal gauge fields, denoted as AµV, AµA,
respectively. They are given by an orthogonal rotation of the original gauge fields Aµ1 , Aµ2 :(

AµV
AµA

)
=

(
cos θ − sin θ
sin θ cos θ

)(
Aµ1
Aµ2

)
. (IV.10.28)

For the mixing angle θ there is the identity

tan θ =
TA1

TA2
, (IV.10.29)

i.e.,

sin θ =
TA1√

T 2
A1 + T 2

A2

, (IV.10.30a)

cos θ =
TA2√

T 2
A1 + T 2

A2

. (IV.10.30b)

Consider now the interaction Lagrangian, reading in terms of the original fields Aµ1 , Aµ2

L = ψ̄γµT1ψA
µ
1 + ψ̄γµT2ψA

µ
2 . (IV.10.31)

In terms of the mass-diagonal fields AµV, AµA we have

L = ψ̄γµTVψA
µ
V + ψ̄γµTAψA

µ
A , (IV.10.32)

where the new generators TV, TA are given by the rotation of the original generators T1, T2 in
much the same way as the fields themselves, (IV.10.28), i.e., as(

TV

TA

)
=

(
cos θ − sin θ
sin θ cos θ

)(
T1

T2

)
. (IV.10.33)

Explicitly in terms of components of the original generators T1, T2 we have(
TV

TA

)
=

1√
T 2
A1 + T 2

A2

(
TV 1TA2 − TV 2TA1

TV 1TA1 + TV 2TA2 + γ5

(
T 2
A1 + T 2

A2

) ) (IV.10.34a)

=
1√

T 2
A1 + T 2

A2

(
TV 1TA2 − TV 2TA1

TV 1TA1 + TV 2TA2

)
+ γ5

1√
T 2
A1 + T 2

A2

(
0

T 2
A1 + T 2

A2

)
.

(IV.10.34b)
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Note that TV is non-vanishing due to the linear independency of the generators T1, T2, which is
expressed by the condition

det
(
TV 1 TA1

TV 2 TA2

)
= TV 1TA2 − TV 2TA1 6= 0 . (IV.10.35)

Also note that TV is purely vectorial (i.e., it does not contain the axial γ5-component). On
the other hand the generator TA is not purely axial: While its γ5-component is certainly non-
vanishing (at least one of TA1, TA2 must be non-zero due to the condition (IV.10.35)), its vectorial
component can be, in general, non-vanishing too. Evidently, the generator TA is purely axial only
if

TV 1TA1 + TV 2TA2 = 0 . (IV.10.36)

Under this assumption the expression (IV.10.34) for TV and TA simplifies significantly as(
TV

TA

)
=

√
T 2
A1 + T 2

A2

(
TV 1/TA2

γ5

)
(IV.10.37a)

=
√
T 2
A1 + T 2

A2

(
−TV 2/TA1

γ5

)
. (IV.10.37b)

Note that at least one of these two expressions makes sense, as at least one the two quantities
TA1, TA2 is non-vanishing, due to (IV.10.35).

10.2 Abelian toy model

10.2.1 Mass spectrum

We can now finally proceed to discussing the Abelian toy model, introduced in chapter 3. Assume
that its symmetry group G = U(1)V1×U(1)V2×U(1)A is gauged. We denote the corresponding
gauge bosons and coupling constants as AµV1

, AµV2
, AµA and gV1 , gV2 , gA, respectively. Recall

that the axial subgroup U(1)A was spontaneously broken by the fermion self-energies, while the
vectorial subgroups U(1)Vi remained unbroken. We thus expect that the gauge boson AµA will
acquire a non-vanishing mass, while the other two gauge bosons AµVi will remain massless.

In chapter 8, in the course of introducing the formalism for the quest of calculating the gauge
boson masses, we assumed for convenience that all of the fermion fields present in the theory
were organized in a single field ψ. In the present case the theory contains two fermion species
ψ1 and ψ2, so we put them together as

ψ ≡
(
ψ1

ψ2

)
. (IV.10.38)

The corresponding representation of the symmetry generators then reads

TVi =
(
T1,Vi 0

0 T2,Vi

)
, (IV.10.39a)

TA =
(
T1,A 0

0 T2,A

)
, (IV.10.39b)
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where Ti,Vj , Ti,A are defined in terms of ti,Vj , ti,A, Eqs. (I.3.6), (I.3.8), respectively, as (no sum
over j, cf. footnote 14 on page 29)

Ti,Vj = gVj ti,Vj , (IV.10.40a)
Ti,A = gA ti,A , (IV.10.40b)

i.e., according to the definition (IV.8.152), with the gauge coupling constants included in the
generators.

Consider now the self-energy Σ of the field ψ. We assumed in chapter 3 that the vectorial
symmetries U(1)V1 , U(1)V2 remained unbroken, i.e., in particular that there was no mixing be-
tween the two fermion species ψ1 and ψ2. Therefore the off-diagonal elements of Σ must be
vanishing:

Σ =
(

Σ1 0
0 Σ2

)
. (IV.10.41)

The assumption (IV.10.41) has two consequences. First, the self-energy Σ commutes with all
generators:

[Σ, Ta] = 0 (a = V1,V2,A) , (IV.10.42)

because the particular generators Ti,Vj and Ti,A have no non-trivial matrix structure (up to γ5 in
the case of Ti,A, which commutes with Σi anyway). We can therefore use the results from
Sec. 10.1.1, namely the satisfaction of the condition (IV.10.1) and the simplified expression
(IV.10.5) for the gauge boson mass matrix. The second consequence of the diagonal form
(IV.10.41) of the self-energy Σ is that since the generators Ta, (IV.10.39), are diagonal in the
fermion species space as well, the one-loop expression (IV.10.5) for the gauge boson matrix
decouples into the sum of independent contributions of the fermion species ψ1, ψ2:

M2
ab = M2

ab

∣∣
1

+M2
ab

∣∣
2
. (IV.10.43)

Due to the already mentioned fact that the generators Ti,a, (IV.10.40), are, up to some γ5, just
real numbers, we can use the results from Sec. 10.1.2 and write M2

ab|i in the form (IV.10.9):

M2
ab

∣∣
i

=
1
16

Tr
{(
Ti,a − T̄i,a

)(
Ti,b − T̄i,b

)}
µ2
∣∣
i
, (IV.10.44)

where

µ2
∣∣
i

= −8i
∫

ddp
(2π)d

|Σi|2 − 2
dp

2|Σi|2′(
p2 − |Σi|2

)2 . (IV.10.45)

Notice that this expression for µ2|i is considerably simpler than the analogous general expression
(IV.10.10) above, since Σi are now just complex scalar functions without any non-trivial matrix
structure in the flavor space.

Taking into account the forms of the generators Ti,a, namely the fact that Ti,A are propor-
tional to γ5, while Ti,Vj are proportional to 1 (see definition (IV.10.40) of Ti,a in terms of ti,a,
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Figure IV.10.1. Diagrammatical representation and assignment of momenta of the amplitude
iTµνρ(p, k, q) = 〈AµAA

ν
AA

ρ
A〉1PI, (IV.10.49). Momentum conservation is assumed: p+ k + q = 0.

Eqs. (I.3.6), (I.3.8)), we find the contribution M2|i of ψi to gauge boson mass matrix to be
explicitly given (in the basis AµV1

, AµV2
, AµA) as

M2
∣∣
i

=

 0 0 0
0 0 0
0 0 1

 g2
AQ

2
i,A µ

2
∣∣
i
. (IV.10.46)

We therefore arrive at the final result that the gauge bosons AµV1
, AµV2

, corresponding to the
unbroken vectorial subgroup U(1)V1 × U(1)V2 , remain massless, while the gauge boson AµA,
corresponding to the spontaneously broken axial subgroup U(1)A, acquires non-vanishing mass,
which is proportional to the symmetry-breaking fermion self-energies Σ1 and Σ2. Explicitly thus
the gauge boson mass spectrum reads

M2
V1

= 0 , (IV.10.47a)

M2
V2

= 0 , (IV.10.47b)

M2
A = g2

AQ
2
1,A

(
µ2
∣∣
1

+ µ2
∣∣
2

)
(IV.10.47c)

(recall that Q2
1,A = Q2

2,A, due to (I.3.9)). Finally, the coupling of ψi to the (would-be) NG boson
is

Pi(p′, p) = 2i
1
µ|i

(
Σi + (q · v)Σ′

i

)
γ5 +O(q2) , (IV.10.48)

see (IV.10.17).

10.2.2 Effective trilinear gauge boson self-coupling

Spontaneous breakdown of the axial symmetry U(1)A manifests itself in the sector of the cor-
responding gauge boson AµA not only by giving the non-vanishing mass M2

A, (IV.10.47c), to it,
but also by generating various Green’s functions, non-invariant under U(1)A. In particular, the
three-point function 〈AµAAνAA

ρ
A〉 can emerge.
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Figure IV.10.2. Diagrammatical representation of the particular amplitude iTµνρi (p, k, q), (IV.10.50).

This function was analyzed in some detail in Ref. [55]. If we denote its 1PI part as iTµνρ(p,
k, q) (see Fig. IV.10.1 for the assignment of momenta), it can be calculated in the lowest (third)
order in the gauge coupling constant gA as61

iTµνρ(p, k, q) =
∑
i=1,2

[
iTµνρi (p, k, q) + iT νµρi (k, p, q)

]
, (IV.10.49)

where each particular iTµνρi (p, k, q) is given by the diagram in Fig. IV.10.2, with the fermion
lines given by the symmetry-breaking propagator (I.3.44a) and the vertices given as igAγµti,A,
where the U(1)A generators ti,A have been defined in (I.3.8). I.e., we explicitly have

iTµνρi (p, k, q) = g3
AQ

3
i,A

∫
d4`

(2π)4
1[

`2 − Σ2
i,`

][
(`+ p)2 − Σ2

i,`+p

][
(`− k)2 − Σ2

i,`−k
]

× Tr
{
γµ/̀γν(/̀− /k)γρ(/̀+ /p)γ5

− γµ/̀γνγργ5Σi,`−kΣ
†
i,`+p + γµγν(/̀− /k)γργ5Σi,`Σ

†
i,`+p − γ

µγνγρ(/̀+ /p)γ5Σi,`Σ
†
i,`−k

}
.

(IV.10.50)

Notice that each iTµνρi (p, k, q) is logarithmically divergent. However, the full iTµνρ(p, k, q),
(IV.10.49), is UV-finite (provided the self-energies Σi are non-increasing functions of momen-
tum), as the logarithmical divergencies cancel due to the anomaly-free condition Q1,A +Q2,A =
0, (I.3.9). On the basis of the same argument one can see that in the case of no SSB, i.e., when
Σ1 = Σ2 = 0, the amplitude iTµνρi (p, k, q), given by (IV.10.49), indeed vanishes.

For illustration, let us now evaluate the amplitude iTµνρ(p, k, q) under certain approxima-
tions. First, we set the fermion self-energies to be constant, Σi = mi, where mi is a positive real

61Likewise we did not consider the scalar contribution to the gauge boson mass M2
A, we do not consider their contri-

bution to iTµνρ(p, k, q) either.
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Figure IV.10.3. The M2-dependence of the function f(m2,M2), (IV.10.54). Both quantities are normal-
ized by m2 to be dimensionless; note that m2f(m2,M2) is only function of M2/m2. The cusps appear at
M2 = 3m2 and M2 = 4m2. The former one also indicates the beginning of the imaginary part.

number (i.e., in particular, it does not contain γ5) and thus directly interpretable as the fermion’s
mass. Second, we put, for the sake of simplicity, all external momenta on their mass-shell:
p2 = k2 = q2 = M2

A. The momentum conservation p+ k + q = 0 enables us to easily compute
the dot products of external momenta: p · k = p · q = k · q = − 1

2M
2
A. The amplitude (IV.10.49)

then simplifies as

iTµνρ(p, k, q) =

Geff

[
(qµkα − kµqα)pβενραβ + (pνqα − qνpα)kβερµαβ + (kρpα − pρkα)qβεµναβ

]
,

(IV.10.51)

which corresponds to the effective Lagrangian

Leff = Geff εαβγδ
(
∂σA

α
A

)(
∂βAσA

)(
∂γAδA

)
. (IV.10.52)

Here the effective coupling constant Geff can be expressed as

Geff = g3
A

∑
i=1,2

Q3
i,A f(m2

i ,M
2
A) . (IV.10.53)

The function f(m2,M2) is defined by the integral

f(m2,M2) ≡ 2
π2M2

∫ 1

0

dx
x(1− x)√

x(3x− 4) + 4m2

M2

arctan
x√

x(3x− 4) + 4m2

M2

(IV.10.54)
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(here m2 should be replaced by m2 − i0+ whenever the correct branch choice of a multivalued
analytic function is in question), which can be calculated analytically in some special cases:

f(m2, 0) =
1

24π2m2
, (IV.10.55a)

f(0,M2) =
−1

6π2M2
. (IV.10.55b)

More information about the shape of f(m2,M2) can be extracted numerically, see Fig. IV.10.3.

10.3 Summary

We did not directly assumed an Abelian symmetry (i.e., the mutually commuting generators),
but rather started with generators commuting with the fermion self-energy. Already this simple
assumption (allowing for satisfaction of the sine qua non condition (IV.9.104)) led to a significant
simplification of the formula for the gauge boson mass matrix, derived in the previous chapter.
Only after this we continued with the very assumption of Abelianity, due to the specific form of
the generators assumed to be 1× 1 matrices in the flavor space.

At this point we were ready to compare the results obtained so far with the corresponding
results in the literature, namely with the Pagels–Stokar formula. We found a small discrepancy
and associated it with the specific form of our vertex, ensuring the symmetricity of the gauge
boson mass matrix (under the condition (IV.9.104)) also for other than Abelian theories (for
which the gauge boson mass matrix is incidentally symmetric in any case).

The results mentioned in the first paragraph made the following computation of the gauge
boson masses within the gauged Abelian toy model from part I, chapter 3, fairly easy. We arrived
at the expected result that of the three gauge bosons only one (corresponding to the broken
subgroup U(1)A) obtained mass, while the other two (corresponding the unbroken subgroup
U(1)V1 × U(1)V2) remained massless.
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11 Application to the electroweak interactions

In this chapter we will calculate, using the procedure introduced in chapter 9, the gauge boson
mass matrix for the electroweak theory in terms of the symmetry-breaking parts of the fermion
propagators, considered in detail in part II, and will show that the spectrum will be the expected
one, i.e., containing one massless gauge boson (the photon) and three massive gauge bosons, two
of which (W±) with the same mass.

11.1 Expected form the of gauge boson mass matrix

The electroweak symmetry SU(2)L × U(1)Y is assumed to be spontaneously broken by the
fermion propagators down to the subgroup U(1)em:

SU(2)L × U(1)Y −→ U(1)em . (IV.11.1)

Thus, we expect that three of the four gauge bosons corresponding to the full group SU(2)L ×
U(1)Y will acquire a non-vanishing mass, while the fourth one (the photon), corresponding to
unbroken subgroup U(1)em, will remain massless.

Before starting the very calculation, we will first investigate more precisely what form of
the gauge boson mass matrix we expect to obtain. We will employ for this purpose three mu-
tually independent assumptions: electromagnetic invariance of the gauge boson mass matrix,
masslessness of the photon and symmetricity of gauge boson mass matrix.

11.1.1 Electromagnetic invariance

Let us first find the form of the electromagnetic generator tem, (II.4.22), in the adjoint represen-
tation (IV.8.95). Its matrix elements are given by(

Tem
)
ab

= −ifab , (IV.11.2)

where the coefficients fab are defined as

[tem, ta] ≡ ifab tb . (IV.11.3)

The particular commutators can be easily calculated, e.g., by taking ta=1,2,3 to be given by the
Pauli matrices, ta=1,2,3 = σa, and ta=4 to be the unit matrix, ta=4 = 12×2, so that tem has the
form tem = σ3 sin θW + 1 cos θW. One obtains

[tem, t1] = 2i sin θW t2 , (IV.11.4a)
[tem, t2] = −2i sin θW t1 , (IV.11.4b)
[tem, t3] = 0 , (IV.11.4c)
[tem, t4] = 0 . (IV.11.4d)

We therefore find

Tem = 2i sin θW


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 . (IV.11.5)
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Since the subgroup U(1)em is unbroken, the polarization tensor, and consequently also the
gauge boson mass matrix M2, must be invariant under it. Operationally it means that M2 must
commute with Tem:[

M2, Tem
]

= 0 , (IV.11.6)

as can be inferred from (IV.8.121). If we now, upon taking into account the explicit form (IV.11.5)
of Tem, apply this condition on the matrix M2, we find that M2 must have the block diagonal
form

M2 =
(
M2
W± 0
0 M2

Zγ

)
, (IV.11.7)

where M2
W± is a 2× 2 matrix of the special form

M2
W± =

(
A B
−B A

)
, (IV.11.8)

while M2
Zγ is an arbitrary 2× 2 matrix, i.e., of the general form

M2
Zγ =

(
C D
E F

)
, (IV.11.9)

and A, B, C, D, E, F are arbitrary complex numbers.

11.1.2 Masslessness of the photon

We have found the most general form of the mass matrix M2, consistent with the requirement
(IV.11.6) of the electromagnetic invariance. However, the fact that the subgroup U(1)em is un-
broken implies not only such invariance ofM2, but also vanishing of the mass of the gauge boson
Aµem (photon), corresponding to U(1)em. In fact, the masslessness of the photon is not guaran-
teed by the electromagnetic invariance (IV.11.6) of M2: Notice, that the mass matrix M2

Zγ of
photon and Z boson, (IV.11.9), is electromagnetically invariant, but still its spectrum is virtually
arbitrary and in particular it admits a massive photon. The masslessness of the photon must be
therefore assumed independently. We are now going to show how it constrains the form of the
matrix M2

Zγ .
Let us first note that M2

Zγ , (IV.11.9), can be without loss of generality expressed also in the
form

M2
Zγ =

(
g2 a −gg′ b
−gg′ c g′2 d

)
, (IV.11.10)

where the coefficients a, b, c, d are regular for g = g′ = 0. It can be understood by noting that the
polarization tensor is calculated using the one-loop integral (IV.9.22) (cf. also Fig. IV.9.2) with
two vertices, where the vertex connected to Aµ3 or Aµ4 is proportional to g or g′, respectively.

The matrix M2
Zγ , (IV.11.10), is written in the basis (Aµ3 , A

µ
4 ), hence we can denote it also as

M2
Zγ ≡ M2

Zγ

∣∣
(3,4)

(IV.11.11)
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to make the basis explicit. For the present considerations it will be however more convenient to
have it expressed in the basis (AµZ , A

µ
em), given in terms of the (Aµ3 , A

µ
4 ) one by (II.4.23). The

matrix M2
Zγ can be therefore transformed from the basis (Aµ3 , A

µ
4 ) to the basis (AµZ , A

µ
em) as

M2
Zγ

∣∣
(em,Z)

= OWM2
Zγ

∣∣
(3,4)

OT
W . (IV.11.12)

Taking into account the explicit form (IV.11.10) of M2
Zγ |(3,4), we find

M2
Zγ

∣∣
(em,Z)

=
1√

g2 + g′2

(
g4a+ g2g′2

(
b+ c

)
+ g′4d g3g′

(
a− b

)
+ gg′3

(
c− d

)
g3g′

(
a− c

)
+ gg′3

(
b− d

)
g2g′2

(
a− b− c+ d

) )
.

(IV.11.13)

Now we can easily apply the assumption that the photon Aµem must be massless. It implies
that all a, b, c, d must be the same:

a = b = c = d . (IV.11.14)

(In fact, this results already from a less strong assumption that M2
Zγ |(em,Z) is diagonal, i.e., that

AµZ and Aµem are mass eigenstates. The masslessness of the photon then follows automatically.)
Thus, upon defining

µ2
Zγ ≡ a = b = c = d , (IV.11.15)

the matrix M2
Zγ in the basis (AµZ , A

µ
em) acquires the form

M2
Zγ

∣∣
(em,Z)

=
(
g2 + g′2 0

0 0

)
µ2
Zγ (IV.11.16)

and in the basis (Aµ3 , A
µ
4 ) the form

M2
Zγ

∣∣
(3,4)

=
(

g2 −gg′
−gg′ g′2

)
µ2
Zγ . (IV.11.17)

11.1.3 Symmetricity

Finally, we assume that the mass matrix M2 is symmetric:

M2T = M2 . (IV.11.18)

The partM2
Zγ , (IV.11.17), is already symmetric, hence this assumption applies non-trivially only

on M2
W± , (IV.11.8), and yields

B = 0 , (IV.11.19)

so that

M2
W± =

(
A 0
0 A

)
. (IV.11.20)
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We can now similarly as above argue that A is proportional to g2, so that M2
W± can be expressed

as

M2
W± ≡

(
g2 0
0 g2

)
µ2
W± , (IV.11.21)

where µ2
W± is regular for g = 0. Needless to stress that since M2

W± is proportional to the unit
matrix, it is invariant under any regular transformation and thus, in particular, it has the same form
in both bases (Aµ1 , A

µ
2 ) and (AµW+ , A

µ
W−), related to each other by the unitary transformation

(II.4.26).

11.2 Quark contribution

Since the polarization tensor is calculated at one-loop level, it will be a sum of separate contri-
butions from the quarks and the leptons:

Πµν
ab (q2) = Πµν

ab (q2)
∣∣
q
+ Πµν

ab (q2)
∣∣
`
. (IV.11.22)

This is in direct analogy with the expression (IV.10.43) of the gauge boson mass matrix in the
Abelian toy model as a sum of independent contributions from the two fermion species ψ1 and
ψ2. In this section we will calculate the quark contribution Πµν

ab (q2)|q, while the lepton contribu-
tion Πµν

ab (q2)|` is postponed to Sec. 11.3.
The quark contribution to the polarization tensor is given by

iΠµν
ab (q)

∣∣
q

= −Nc
∫

ddp
(2π)d

Tr
{

Γµq,a(p+ q, p)Gq(p) γνTq,bGq(p+ q)
}
, (IV.11.23)

where Nc = 3 is the number of colors. For the vertex we use the Ansatz (IV.9.108) derived in
Sec. 9.4:

Γµq,a(p
′, p) = γµTq,a −

1
2
qµ

q2

[
Σq,+ Tq,a − T̄q,aΣq,+

]
−
(

1
2
q′µ

q · q′
− a6

[γµ, /q]
q · q′

)[
Σq,− Tq,a + T̄q,aΣq,−

]
− 1

4
1

d− 1

(
qµ

q2
[/q, /q′]
q · q′

−
[γµ, /q′]
q · q′

)[
Σq,− Tq,a − T̄q,aΣq,−

]
,

(IV.11.24)

with the generators Tq,a given by (II.4.73). We also use the notation

Σq,± ≡ Σq,p′ ±Σq,p , (IV.11.25)

in agreement with (IV.9.55). Recall that a6 in (IV.11.24) is an undetermined parameter, which
will nevertheless not enter the final formula for the mass matrix. All quantities (vertices and
propagators) are here expressed in terms of the quark doublet field q =

(
u
d

)
, Eq. (II.4.66). Since

the vertex (IV.11.24) satisfies by constructions the WT identity

qµΓµq,a(p
′, p) = Gq(p′)Tq,a − T̄q,aGq(p) (IV.11.26a)

= /q −Σq,p′ Tq,a + T̄q,aΣq,p , (IV.11.26b)
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the polarization tensor (IV.11.23) is transverse.
The polarization tensor Πµν

ab (q2)|q is a 4 × 4 matrix in the gauge space. It can be therefore
considered as a 2 × 2 block matrix, with each block itself being also a 2 × 2 matrix. Now it is
important to note that the off-diagonal blocks actually vanish, so that Πµν

ab (q2)|q can be written,
upon suppressing the gauge indices, in the block matrix form

Πµν(q2)
∣∣
q

=

(
Πµν
W±(q2)

∣∣
q

0
0 Πµν

Zγ(q
2)
∣∣
q

)
. (IV.11.27)

This is due to the fact that the trace over the two-dimensional electroweak space of a product of
two generators in the integral (IV.11.23) (one sitting in the vertex Γµq,a(p + q, p) and the other
being a part of the bare vertex γµTq,b), with one being antisymmetric (Tq,1, Tq,2) and the other
symmetric (Tq,3, Tq,4), is zero. There are also the fermion propagators (both full and 1PI), but as
they are diagonal in the considered space, they do not affect the argument. The subscripts W±

and Zγ on the right-hand side of (IV.11.27) are to suggest that the corresponding quantities are
the polarization tensors of the indicated gauge bosons, with no mixing between them. Since the
whole Πµν

ab (q2)|q is transversal, so must be also the particular Πµν
W±,ab(q

2)|q and Πµν
Zγ,ab(q

2)|q.
In other words, the quark contribution to the gauge boson mass matrix is indeed of the ex-

pected form (IV.11.7). We can therefore now treat the quark contribution to the masses of W±

and Z separately.

11.2.1 Masses of W±

The quark contribution M2
W± |q to the mass matrix M2

W± , (IV.11.21), of W± is now given by
the polarization tensor (IV.11.23) with gauge indices restricted to a, b = 1, 2, by means of the
pole approximation (IV.9.1) described in detail in chapter 9. In order to use the corresponding
general formula (IV.9.107) for the gauge boson mass matrix, we have first to check satisfaction
of the condition Aab = 0, (IV.9.104), where Aab is given by

Aab = Tr
{

Tq,aΣ†
q D′

qL T̄q,bΣq DqR − Tq,aΣ†
q DqL T̄q,bΣq D′

qR

+ T̄q,a DqLΣq Tq,b D′
qRΣ†

q − T̄q,a D′
qLΣq Tq,b DqRΣ†

q

}
. (IV.11.28)

Notice in particular that in each of the four terms in (IV.11.28) there is one generator without
the bar (Tq,a or Tq,b) and one with the bar (T̄q,a or T̄q,b). Recall now the form (II.4.73a) of the
generators Tq,a with a = 1, 2: Tq,a = g σa2 PL, implying T̄q,a = g σa2 PR. Now since the chiral
projectors PL, PR commutes with anything in (IV.11.28) and due to their property PL PR = 0,
we conclude that each of the four terms in (IV.11.28) vanishes and the condition (IV.9.104) is
indeed fulfilled.

We can now plug the quark self-energy Σq (given by (II.5.65) and (II.5.66)) and the gen-
erators Tq,1, Tq,2 into the formula (IV.9.107) and we arrive at the result of the expected form
(cf. (IV.11.21))

M2
W±

∣∣
q

=
(
g2 0
0 g2

)
µ2
W±

∣∣
q
, (IV.11.29)
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where

µ2
W±

∣∣
q

= −i
1
2
Nc

∫
ddp

(2π)d

× Tr
{[(

Σu Σ†u
)
− 2
d
p2
(
Σu Σ†u

)′]
DdLDuL −

2
d
p2
(
Σu Σ†u

)[
DdLD

′
uL −D′

dLDuL

]
+
[(

Σd Σ†d
)
− 2
d
p2
(
Σd Σ†d

)′]
DuLDdL −

2
d
p2
(
Σd Σ†d

)[
DuLD

′
dL −D′

uLDdL

]}
.

(IV.11.30)

11.2.2 Masses of Z and γ

Let us continue with the quark contribution M2
Zγ |q to the Z and γ mass matrix (IV.11.17), which

is given by the polarization tensor (IV.11.23) with a, b = 3, 4. We can make the following
observation: Since both the generators Tq,3, Tq,4, (II.4.75), and the self-energy Σq, (II.5.65), are
diagonal in the two-dimensional space of the quark species (up-type and down-type), so is for
a = 3, 4 also the vertex Γµq,a(p

′, p), (IV.11.24), itself:

Γµq,a(p
′, p) ≡

(
Γµu,a(p

′, p) 0
0 Γµd,a(p

′, p)

)
. (IV.11.31)

Consequently, the contributions from up-type and down-type quarks to the gauge boson polar-
ization tensor decouple and the polarization tensor can be written as

Πµν
Zγ,ab(q

2)
∣∣
q

=
∑
f=u,d

Πµν
Zγ,ab(q

2)
∣∣
f
. (IV.11.32)

Here each Πµν
Zγ,ab(q)|f is given by

iΠµν
Zγ,ab(q)

∣∣
f

= −Nc
∫

ddp
(2π)d

Tr
{

Γµf,a(p+ q, p)Gf (p) γνTf,bGf (p+ q)
}
,

(IV.11.33)

whereGf (p) and Tf,b are given by (II.5.68) and (II.4.76), respectively. The vertex Γµf,a(p+q, p)
is given by the formula (IV.11.24) with the subscript q changed to f = u, d and since it satisfies
the corresponding WT identity, Πµν

Zγ,ab(q)|f is transversal.
Recall the explicit form (II.4.76) of the generators Tf,3, Tf,4. They are just real linear combi-

nations of 1 and γ5, i.e., they are of the same special form which was considered in section 10.1.2.
Thus, using the results from there (including fulfilment of the condition (IV.9.104)), we readily
obtain the quark contribution M2

Zγ |q in the form

M2
Zγ

∣∣
q

=
(

g2 −gg′
−gg′ g′2

) ∑
f=u,d

µ2
Zγ

∣∣
f
, (IV.11.34)

in agreement with the desired general form (IV.11.17), ensuring the masslessness of the photon.
The parameters µ2

Zγ |f are

µ2
Zγ

∣∣
f

= −i
1
2
Nc

∫
ddp

(2π)d
Tr
{[(

Σf Σ†f
)
− 2
d
p2
(
Σf Σ†f

)′]
D2
fL

}
, (IV.11.35)
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which is, up to a factor, of the same form as the analogous parameter µ2|i, (IV.10.45), in the
Abelian toy model.

11.2.3 Comparison with the Pagels–Stokar formula

The formulæ similar to those (IV.11.30), (IV.11.35) for µ2
W± |q, µ2

Zγ |f=u,d have been already
presented in the literature [41]. They have been derived as a straightforward generalization of
the Pagels–Stokar result [97].

We have already encountered similar situation in Sec. 10.1.3, when we compared our result
to the PS result [97] and discussed the discrepancy between them. In fact, now the problem is
exactly the same: Our results (IV.11.30), (IV.11.35) do not correspond to those from Ref. [41]
and the reason lies again in the different choice of the parameter a4 of the vertex (IV.9.97). While
we set a4 to the value (IV.9.106), the results in [41] correspond to the vanishing value a4 = 0.

Let us discuss in more detail this issue for the coefficient µ2
W± |q, (IV.11.30). (The discus-

sion of the coefficient µ2
Zγ |f=u,d, (IV.11.35), would be exactly the same as in Sec. IV.11.35.)

Assume now that a4 in the Ansatz (IV.9.97) has a general, undetermined value. Then the quark
contribution M2

W± |q can be written as

M2
W±

∣∣
q

=
(
g2 0
0 g2

)(
µ2
W±

∣∣
q
+ µ2

W±

∣∣
a4/S

)
+
(

0 g2

−g2 0

)
µ2
W±

∣∣
a4/A

,

(IV.11.36)

where µ2
W± |q is the contribution already computed in (IV.11.30) and the coefficients µ2

W± |a4/S,
µ2
W± |a4/A of the symmetric and antisymmetric part of M2

W± |q are given as

µ2
W±

∣∣
a4/S

= −i
1
2
Nc
(
1 + 4(d− 1)a4

) ∫ ddp
(2π)d

Tr
{

1
d
p2
[
Σu Σ†′u + Σ′d Σ†d

]
DdLDuL

+
1
d
p2
[
Σ′u Σ†u + Σd Σ†′d

]
DuLDdL

}
,

(IV.11.37a)

µ2
W±

∣∣
a4/A

= −i
1
2
Nc
(
1 + 4(d− 1)a4

) ∫ ddp
(2π)d

Tr
{

i
1
d
p2
[
Σu Σ†′u + Σ′d Σ†d

]
DdLDuL

− i
1
d
p2
[
Σ′u Σ†u + Σd Σ†′d

]
DuLDdL

}
.

(IV.11.37b)

One can see that antisymmetric part of M2
W± |q, proportional to µ2

W± |a4/A, is indeed in general
non-vanishing, unless one sets a4 as in (IV.9.106).

Consider, however, the case of only one fermion generation. In such a case the self-energies
Σu, Σd (and consequently also DuL, DdL) are just complex numbers, without any matrix struc-
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ture, and thus commuting. The coefficients µ2
W± |a4/S and µ2

W± |a4/A then simplify as

µ2
W±

∣∣
a4/S

= −i
1
2
Nc
(
1 + 4(d− 1)a4

) ∫ ddp
(2π)d

1
d
p2
(
|Σu|2′ + |Σd|2′

)
DuDd ,

(IV.11.38a)

µ2
W±

∣∣
a4/A

= −i
1
2
Nc
(
1 + 4(d− 1)a4

) ∫ ddp
(2π)d

i
1
d
p2
([

Σu Σ∗′u − Σ∗u Σ′u
]

+
[
Σ∗d Σ′d − Σd Σ∗′d

])
DuDd ,

(IV.11.38b)

where

Du ≡ 1
p2 − |Σu|2

, (IV.11.39a)

Dd ≡ 1
p2 − |Σd|2

. (IV.11.39b)

Consider now further simplifying assumption of real self-energies:

Σu = Σ∗u , (IV.11.40a)
Σd = Σ∗d . (IV.11.40b)

Under this assumption each of the two square brackets in (IV.11.38b) vanishes and consequently
µ2
W± |a4/A vanishes too:

µ2
W±

∣∣
a4/A

= 0 . (IV.11.41)

We stress that this happens for any value of a4. The mass matrix M2
W± |q, (IV.11.36), now

acquires the symmetric form

M2
W±

∣∣
q

=
(
g2 0
0 g2

)
µ̄2
W±

∣∣
q
, (IV.11.42)

where

µ̄2
W±

∣∣
q
≡ µ2

W±

∣∣
q
+ µ2

W±

∣∣
a4/S

(IV.11.43a)

= −i
1
2
Nc

∫
ddp

(2π)d
Tr
{[(

Σ2
u + Σ2

d

)
− 1
d

(
1− 4(d− 1)a4

)
p2
(
Σ2′
u + Σ2′

d

)]
DuDd

− 2
d
p2
(
Σ2
u − Σ2

d

)(
D′
uDd −DuD

′
d

)}
. (IV.11.43b)

If we now set a4 = 0, we reproduce the result from [41]. We stress again that this result is
not correct, as it holds (i.e., seems to be correct in the sense that the gauge boson mass matrix
is symmetric) only in the very special case of Σu, Σd being real numbers. Once one considers
a more general case of Σu, Σd being either complex or matrices (or both), setting a4 to be
anything but the unique non-vanishing value (IV.9.106) gives wrong results (i.e., non-symmetric
gauge boson mass matrix).
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11.3 Lepton contribution

The lepton contribution to the polarization tensor reads

iΠµν
ab (q)

∣∣
`

= −1
2

∫
ddp

(2π)d
Tr
{

ΓµΨ`,a(p+ q, p)GΨ`(p) γ
νTΨ`,bGΨ`(p+ q)

}
,

(IV.11.44)

where the vertex is given by

ΓµΨ`,a(p
′, p) = γµTΨ`,a −

1
2
qµ

q2

[
ΣΨ`,+ TΨ`,a − T̄Ψ`,aΣΨ`,+

]
−
(

1
2
q′µ

q · q′
− a6

[γµ, /q]
q · q′

)[
ΣΨ`,− TΨ`,a + T̄Ψ`,aΣΨ`,−

]
− 1

4
1

d− 1

(
qµ

q2
[/q, /q′]
q · q′

−
[γµ, /q′]
q · q′

)[
ΣΨ`,− TΨ`,a − T̄Ψ`,aΣΨ`,−

]
(IV.11.45)

and where

ΣΨ`,± ≡ ΣΨ`,p′ ±ΣΨ`,p (IV.11.46)

as usual. Notice that all quantities under the trace in (IV.11.44) are written in the Nambu–Gorkov
basis Ψ`, (II.4.88), which is a real field, therefore there is the extra factor of 1/2 in (IV.11.44).
Since the vertex (IV.11.45) satisfies the WT identity, the polarization tensor Πµν

ab (q)|` is transver-
sal.

The generators TΨ`,1, TΨ`,2 are off-diagonal in the two-dimensional electroweak space, while
TΨ`,3, TΨ`,4 are diagonal, see (II.4.104). Since the propagators are in this space diagonal too,
we conclude, on the basis of the same arguments as in the quark case, that Πµν

ab (q2)|` has the
block-diagonal form

Πµν(q2)
∣∣
`

=
(

Πµν
W±(q2)

∣∣
`

0
0 Πµν

Zγ(q
2)
∣∣
`

)
, (IV.11.47)

with each block being a 2×2 matrix in the gauge space. It follows that both particular polarization
tensors Πµν

ab,W±(q2)|` and Πµν
ab,Zγ(q

2)|` are transversal. Again, the lepton contribution to the
gauge boson mass matrix is therefore of the form (IV.11.7).

11.3.1 Masses of W±

The lepton contribution M2
W± |` to the W± mass matrix (IV.11.21) is calculated in completely

the same way as the quark contribution M2
W± |q above, i.e., using the formula (IV.9.107) for the

gauge boson mass matrix, with gauge indices a, b = 1, 2. Before using it, however, we have to
check the condition (IV.9.104), i.e., vanishing of the quantity

Aab = Tr
{

TΨ`,aΣ†
Ψ`

D′
Ψ`
T̄Ψ`,bΣΨ` Dc

Ψ`
− TΨ`,aΣ†

Ψ`
DΨ` T̄Ψ`,bΣΨ` Dc′

Ψ`

+ T̄Ψ`,a DΨ` ΣΨ` TΨ`,b Dc′
Ψ`

Σ†
Ψ`
− T̄Ψ`,a D′

Ψ`
ΣΨ` TΨ`,b Dc

Ψ`
Σ†

Ψ`

}
.

(IV.11.48)
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Recall first the form of the relevant generators TΨ`,1, TΨ`,2:

TΨ`,a =
(

0 τ †Ψ`,aP
T
+

τΨ`,aP+ 0

)
, (IV.11.49)

where P+ is given by (II.4.105a) and where the τΨ`,a are denotations for

τΨ`,1 ≡ −γ5 g
1
2
, (IV.11.50a)

τΨ`,2 ≡ i g
1
2
. (IV.11.50b)

(See also definitions (II.4.104a) and (II.4.104b) of TΨ`,1 and TΨ`,2, respectively.) Recall also
that ΣΨ` , (II.5.119), is diagonal in the electroweak space and so is thus also DΨ` , (II.5.133).
The first term in (IV.11.48) can be therefore expanded as

Tr
{
TΨ`,aΣ†

Ψ`
D′

Ψ`
T̄Ψ`,bΣΨ` Dc

Ψ`

}
= Tr

{
τ̄Ψ`,b P

T
+ ΣΨe Dc

Ψe P+ τΨ`,aΣ†
Ψν

D′
Ψν

}
+ Tr

{
τ †Ψ`,a P

T
+ Σ†

Ψe
D′

Ψe P+ τ̄
†
Ψ`,b

ΣΨν Dc
Ψν

}
.

(IV.11.51)

Recall now that ΣΨe , (II.5.117) and (II.5.118b), is off-diagonal in the 2-dimensional Nambu–
Gorkov space of Ψe, (II.4.87b). Therefore Dc

Ψe =
(
p2 −Σ†

Ψe
ΣΨe

)−1
is in this space diagonal

and ΣΨe Dc
Ψe is again off-diagonal. Since the only non-vanishing block element of P+ is the

upper left one (we consider P+ to be 2× 2 block matrix in the Nambu–Gorkov space), we arrive
at

PT
+ ΣΨe Dc

Ψe P+ = 0 . (IV.11.52a)

One can find analogously

PT
+ Σ†

Ψe
D′

Ψe P+ = 0 . (IV.11.52b)

Thus the quantity (IV.11.51), i.e., the first term in Aab, (IV.11.48), vanishes. Similarly can be
treated also the remaining three terms in (IV.11.48) and shown to be vanishing as well. Thus, we
conclude that the condition (IV.9.104) is indeed fulfilled.

We can now freely use the formula (IV.9.107) to find

M2
W±

∣∣
`

=
(
g2 0
0 g2

)
µ2
W±

∣∣
`
, (IV.11.53)
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where µ2
W± |` can be expressed, e.g., as

µ2
W±

∣∣
`

= −i
1
2

∫
ddp

(2π)d

× Tr
{[(

ΣΨν ,M
Σ†Ψν ,M

)
− 2
d
p2
(
ΣΨν ,M

Σ†Ψν ,M
)′](

PT
+ DΨe

)(
P+DΨν

)
− 2
d
p2
(
ΣΨν ,M

Σ†Ψν ,M
)[(

PT
+ DΨe

)(
P+DΨν

)′ − (PT
+ DΨe

)′(
P+DΨν

)]
+
[(

ΣΨe
Σ†Ψe

)
− 2
d
p2
(
ΣΨe

Σ†Ψe
)′](

P+DΨν

)(
PT

+ DΨe

)
− 2
d
p2
(
ΣΨe

Σ†Ψe
)[(

P+DΨν

)(
PT

+ DΨe

)′ − (P+DΨν

)′(
PT

+ DΨe

)]}
.

(IV.11.54a)

This form of µ2
W± |` is relatively compact and elegant in the sense that the charged leptons and

neutrinos are treated in it symmetrically, on the same footing. However, one can consider the
Nambu–Gorkov components (II.5.121), (II.5.118b) and (II.5.130) of ΣΨν ,M , ΣΨe and DΨν ,
DΨe , respectively, and express the µ2

W± |` in a less compact form as

µ2
W±

∣∣
`

= −i
1
2

∫
ddp

(2π)d

× Tr
{[(

ΣνD Σ†νD + ΣνL Σ†νL
)
− 2
d
p2
(
ΣνD Σ†νD + ΣνL Σ†νL

)′]
DeLDνL

− 2
d
p2
(
ΣνD Σ†νD + ΣνL Σ†νL

)[
DeLD

′
νL −D′

eLDνL

]
+
[(

ΣT
νD Σ†νL +MνR Σ†νD

)
− 2
d
p2
(
ΣT
νD Σ†νL +MνR Σ†νD

)′]
DeLDνM

− 2
d
p2
(
ΣT
νD Σ†νL +MνR Σ†νD

)[
DeLD

′
νM −D′

eLDνM

]
+
[(

Σe Σ†e
)
− 2
d
p2
(
Σe Σ†e

)′]
DνLDeL −

2
d
p2
(
Σe Σ†e

)[
DνLD

′
eL −D′

νLDeL

]}
.

(IV.11.54b)

This latter form of µ2
W± |` can be used for a crosscheck, since one can see from it more clearly

that in the case of Dirac neutrinos (ΣνL = MνR = 0, implying also DνM = 0) the lepton
contribution µ2

W± |` would be formally the same as the analogous quark contribution µ2
W± |q,

expressed by (IV.11.30).

11.3.2 Masses of Z and γ

Again, as before with the quarks, the generators TΨ`,3, TΨ`,4, (II.4.112), are block-diagonal in
the two-dimensional electroweak space. Thus, since the self-energy ΣΨ` , (II.5.119), is also block
diagonal, so is for a = 3, 4 also the vertex ΓµΨ`,a(p

′, p), (IV.11.45):

ΓµΨ`,a(p
′, p) ≡

(
ΓµΨν ,a(p

′, p) 0
0 ΓµΨe,a(p

′, p)

)
. (IV.11.55)
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Consequently the contributions from the neutrinos and charged leptons to the polarization tensor
decouple and we can write

Πµν
Zγ,ab(q

2)
∣∣
`

=
∑
f=ν,e

Πµν
Zγ,ab(q

2)
∣∣
f
, (IV.11.56)

where each contribution Πµν
Zγ,ab(q

2)|f is given by (a, b = 3, 4)

iΠµν
Zγ,ab(q)

∣∣
f

= −1
2

∫
ddp

(2π)d
Tr
{

ΓµΨf ,a(p+ q, p)GΨf (p) γ
νTΨf ,bGΨf (p+ q)

}
.

(IV.11.57)

The vertex ΓµΨf ,a(p + q, p) is of the same form as (IV.11.45) satisfying the WT identity so that
Πµν
Zγ,ab(q)|f is transversal.

In contrast to the quarks where we calculated the contributions from the up-type and the
down-type quarks at the same time, now this is not convenient due to substantial differences
between the two types of leptons. We will therefore calculate the contributions from the charged
leptons and neutrinos separately.

Contribution of charged leptons

We start with the charged leptons, as they are substantially easier than the neutrinos. Since the
number of the left-handed and the right-handed charged leptons is the same (i.e., n) and since
the Majorana components of the charged leptons’ propagators vanish, the Dirac basis (II.4.116),

e = eL + eR , (IV.11.58)

makes sense. The expression (IV.11.57) for the polarization tensor Πµν
Zγ,ab(q)|e can be therefore

rewritten from the basis Ψe into the basis e (using the results from appendix D, section D.4) as

iΠµν
Zγ,ab(q)

∣∣
e

= −
∫

ddp
(2π)d

Tr
{

Γµe,a(p+ q, p)Ge(p) γνTe,bGe(p+ q)
}
, (IV.11.59)

where a, b = 3, 4. The point is that now we are in the same situation as before with quarks,
since the basis e corresponds to the quark bases u and d. Therefore we can use the results from
Sec. 11.2 about quarks. We obtain the charged lepton contribution M2

Zγ |e to the Z and γ mass
matrix as

M2
Zγ

∣∣
e

=
(

g2 −gg′
−gg′ g′2

)
µ2
Zγ

∣∣
e
, (IV.11.60)

where

µ2
Zγ

∣∣
e

= −1
2
i
∫

ddp
(2π)d

Tr
{[(

Σe Σ†e
)
− 2
d
p2
(
Σe Σ†e

)′]
D2
eL

}
. (IV.11.61)

Of course, this is (up to the missing factor of Nc) the same as the quark expression (IV.11.35).
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Contribution of neutrinos

Let us continue with the neutrinos. Since this time the relevant generators TΨν ,3, TΨν ,4 do not
commute with the self-energy ΣΨν , we cannot make use of the results from Sec. 10.1.2. In
particular, we have to first of all check to condition (IV.9.104). The quantity Aab now reads

Aab = Tr
{

TΨν ,aΣ†
Ψν

D′
Ψν T̄Ψν ,bΣΨν Dc

Ψν − TΨν ,aΣ†
Ψν

DΨν T̄Ψν ,bΣΨν Dc′
Ψν

+ T̄Ψν ,a DΨν ΣΨν TΨν ,b Dc′
Ψν Σ†

Ψν
− T̄Ψν ,a D′

Ψν ΣΨν TΨν ,b Dc
Ψν Σ†

Ψν

}
.

(IV.11.62)

Notice that the generators TΨν ,3, TΨν ,4 have the form (cf. (II.4.113))

TΨν ,a = τΨν ,a γ5 P+ν , (IV.11.63)

where

τΨν ,3 ≡ −g 1
2
, (IV.11.64a)

τΨν ,4 ≡ g′
1
2
, (IV.11.64b)

and P+ν is given by (II.4.105b). The quantity Aab, (IV.11.62), can be therefore rewritten as

Aab = −τΨν ,aτΨν ,b

× Tr
{

P+ν Σ†
Ψν

D′
Ψν P+ν ΣΨν Dc

Ψν − P+ν Σ†
Ψν

DΨν P+ν ΣΨν Dc′
Ψν

+ P+ν DΨν ΣΨν P+ν Dc′
Ψν Σ†

Ψν
− P+ν D′

Ψν ΣΨν P+ν Dc
Ψν Σ†

Ψν

}
.

(IV.11.65)

Now it turns that the following identities hold:

Tr
{
P+ν Σ†

Ψν
D′

Ψν P+ν ΣΨν Dc
Ψν

}
= Tr

{
P+ν Σ†

Ψν
DΨν P+ν ΣΨν Dc′

Ψν

}
,

(IV.11.66a)

Tr
{
P+ν DΨν ΣΨν P+ν Dc′

Ψν Σ†
Ψν

}
= Tr

{
P+ν D′

Ψν ΣΨν P+ν Dc
Ψν Σ†

Ψν

}
.

(IV.11.66b)

Each of these identities can be proven, apart from using the cyclicity of the trace, by inserting
1 = γ0 γ0 and using the relations like Σ†

Ψν
= γ0 ΣΨν γ0 and DΨν = γ0 Dc

Ψν γ0, stemming
from the Hermiticity condition (II.5.89) for the self-energy ΣΨν . Thus, the first and third term
in (IV.11.65) cancel with the second and fourth term, respectively, so that Aab vanishes and the
condition (IV.9.104) is indeed satisfied.
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Hence we can use the formula (IV.9.107) for the gauge boson mass matrix. The explicit
calculation reveals the neutrino contribution to the M2

Zγ mass matrix to be of the form

M2
Zγ

∣∣
ν

=
(

g2 −gg′
−gg′ g′2

)
µ2
Zγ

∣∣
ν
, (IV.11.67)

where µ2
Zγ |ν can be, likewise in the case of µ2

W± |`, (IV.11.54), expressed in two ways. The more
compact form of µ2

Zγ |ν reads

µ2
Zγ

∣∣
ν

= −i
1
2

∫
ddp

(2π)d

× Tr
{[(

ΣΨν ,M
Σ†Ψν ,M

)
− 2
d
p2
(
ΣΨν ,M

Σ†Ψν ,M
)′](

P+ν DΨν

)(
P+ν DΨν

)
− 2
d
p2
(
ΣΨν ,M

Σ†Ψν ,M
)[(

P+ν DΨν

)(
P+ν DΨν

)′ − (P+ν DΨν

)′(
P+ν DΨν

)]
+
[(

ΣΨν ,M
P+ν Σ†Ψν ,M

)
− 2
d
p2
(
ΣΨν ,M

P+ν Σ†Ψν ,M
)′]
DΨν P+ν DΨν

}
,

(IV.11.68a)

while the less elegant form is

µ2
Zγ

∣∣
ν

= −i
1
2

∫
ddp

(2π)d
Tr
{[(

ΣνD Σ†νD + ΣνL Σ†νL
)
− 2
d
p2
(
ΣνD Σ†νD + ΣνL Σ†νL

)′]
×D2

νL

− 2
d
p2
(
ΣνD Σ†νD + ΣνL Σ†νL

)[
DνLD

′
νL −D′

νLDνL

]
+
[(

ΣT
νD Σ†νL +MνR Σ†νD

)
− 2
d
p2
(
ΣT
νD Σ†νL +MνR Σ†νD

)′]
×DνLDνM

− 2
d
p2
(
ΣT
νD Σ†νL +MνR Σ†νD

)[
DνLD

′
νM −D′

νLDνM

]
+
[(

ΣνL Σ†νL
)
− 2
d
p2
(
ΣνL Σ†νL

)′]
D2
νL

+
[(

ΣT
νD Σ∗νD

)
− 2
d
p2
(
ΣT
νD Σ∗νD

)′]
D†
νM DνM

+
([(

ΣT
νD Σ†νL

)
− 2
d
p2
(
ΣT
νD Σ†νL

)′]
DνLDνM + h.c.

)}
.

(IV.11.68b)

Again, the latter form allows for a crosscheck as one sees more clearly that in the case of Dirac
neutrinos (ΣνL = MνR = 0 and DνM = 0) this expression for µ2

Zγ |ν would be the same as the
analogous expressions µ2

Zγ |f for f = u, d, e, Eqs. (IV.11.35) and (IV.11.61).
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11.4 Summary

We have calculated the gauge boson mass matrix M2 in the basis Aµa , a = 1, 2, 3, 4, using
the results from chapter 9 and partially also from chapter 10. We found it to be exactly of the
expected form

M2 =
(
M2
W± 0
0 M2

Zγ

)
, (IV.11.69)

with

M2
Zγ =

(
g2 −gg′
−gg′ g′2

)
µ2
Zγ , (IV.11.70)

M2
W± =

(
g2 0
0 g2

)
µ2
W± , (IV.11.71)

cf. (IV.11.7) and (IV.11.17), (IV.11.21).
The factor µ2

Zγ was found to be a sum of separate contributions of the up-type and down-type
quarks, neutrinos and charged leptons

µ2
Zγ = µ2

Zγ

∣∣
u

+ µ2
Zγ

∣∣
d

+ µ2
Zγ

∣∣
ν

+ µ2
Zγ

∣∣
e
, (IV.11.72)

where the particular contributions µ2
Zγ |u, µ2

Zγ |d and µ2
Zγ |ν , µ2

Zγ |e are given by (IV.11.35) and
(IV.11.68), (IV.11.61), respectively, while µ2

W± is a sum of separate contributions from the quark
and lepton doublets:

µ2
W± = µ2

W±

∣∣
q
+ µ2

W±

∣∣
`
, (IV.11.73)

where µ2
W± |q, µ2

W± |` are given by (IV.11.30), (IV.11.54), respectively.
The mass spectrum is now given by

M2
γ = 0 , (IV.11.74a)

M2
Z = (g2 + g′2)µ2

Zγ , (IV.11.74b)

M2
W = g2µ2

W± , (IV.11.74c)

i.e., it contains the massless photon, the massive Z boson with mass squared M2
Z and the two

massive W+ and W− bosons with the same mass squared M2
W .

Let us finally comment on the ρ-parameter, defined in (II.6.25) and rewritable using (IV.11.74)
as

ρ ≡
µ2
W±

µ2
Zγ

. (IV.11.75)

Recall that experimentally ρ is close to 1, which corresponds to approximate custodial symme-
try. Since in our case the gauge boson masses M2

W , M2
Z depend on unknown62 details of the

momentum-dependencies of the fermion self-energies, we cannot address directly the issue of

62Recall that the present analysis of the gauge boson masses pretends to be as model-independent as possible, i.e., it
does not rely on the very mechanism of how the fermion self-energies are actually generated.
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the value of the ρ-parameter. Nevertheless, we can at least crosscheck our results by verifying
whether in the case of exact custodial symmetry they yield ρ = 1. In the quark sector the cus-
todial symmetry corresponds simply to Σu = Σd, while in the lepton sector it corresponds to
ΣνD = Σe and ΣνL = MνR = 0 (provided n = m, i.e., the number of fermion generations
and the number of right-handed neutrinos are the same).63 Under these assumptions we have
µ2
Zγ |u = µ2

Zγ |d = 2µ2
W± |q and µ2

Zγ |ν = µ2
Zγ |e = 2µ2

W± |`, so that µ2
Zγ = µ2

W± and the
ρ-parameter (IV.11.75) is consequently indeed equal to 1.

63This situation can be accommodated within the model of strong Yukawa dynamics, discussed in part II, by assuming
(on top of n = m andMνR = 0) that yu = yd, yν = ye andMS = MN , which corresponds to custodially symmetric
Lagrangian. One can easily verify that under these assumptions the SD equations indeed allow for the custodially
symmetric solution Σu = Σd, ΣνD = Σe and ΣνL = 0 (and ΠS = ΠN = ΠSN ).
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12 Conclusions

Nominally the main topic of the paper was to explore the possibility of breaking a symmetry by
strong Yukawa dynamic. First in part I we introduced the raw idea on an example of the Abelian
toy model and eventually in part II we applied it on a realistic model of electroweak interactions.
Let us now recapitulate shortly our results and make a brief comparison with the main competing
models: the SM (and generally all MCS) and the ETC models.

The main dynamical assumption of the presented model (or mechanism) is that the pre-
sumably strong Yukawa interactions, linking together the fermions and scalars, give rise to the
fermion and scalar propagators that break spontaneously the symmetry in question. One should
in particular note that the fermion masses are generated directly in the course of SSB, not as a
mere consequence. The fact that the fermion mass generation is in this way intimately connected
with SSB can be thus viewed as an appealing feature of the presented model. This is to be con-
trasted with the situation in MCS, where the SSB is a matter of only the scalar sector alone and
the fermion masses may or may not be subsequently generated, depending on whether they have
the Yukawa couplings with the condensing scalars. In this respect the presented model is closer
to ETC models, where the presence of fermions is also vital for the SSB to happen, although the
very mechanism is different.

One of the drawbacks of MCS is certainly the number of free parameters: There are (depend-
ing on the number of scalars) at least as many theoretically arbitrary Yukawa coupling constants
as fermions, intended to obtain mass. The presented model obviously suffers from this problem
too. Even though the Yukawa coupling constants are comfortable in the sense that they explicitly
break the chiral and flavor symmetries, their large number suggests that there should exist a more
fundamental underlying theory capable of predicting them. In this respect the SM as well as the
presented model should be viewed as effective theories valid only up to some scale.

On top of just formulating the model in terms of its particle content, introducing suitable
formalism and writing down the equations of motion we also performed its numerical analysis.
However, we did not pretend to make any phenomenological predictions but rather aimed merely
to demonstrate viability of the proposed mechanism of SSB and eventually to find some of its
generic features. This allowed us to make substantial simplifications of the relevant equations:
We considered only a subset of the whole possible particle spectrum and looked only for the
symmetry-breaking parts of the propagators, while neglecting the symmetry-preserving ones.
Moreover, the very fact that the SSB is assumed to be triggered primarily by the scalar and
fermion two-point functions, as opposed to the scalar one-point functions in MCS, allowed us to
make for the sake of simplicity further approximations: We neglected the scalar self-couplings,
needed in MCS but dispensable in the presented model, and also we directly assumed that the
scalars do not develop VEVs. These assumptions were operationally manifested by the absence
of tadpole (i.e., constant) terms in the SD equations for the propagators of both the scalars and
fermions. However, it should be also said honestly that without neglecting the tadpole terms we
actually did not manage to find solutions of the SD equations.

The numerical analysis, done under the above assumptions, revealed that the SSB indeed does
happen, provided that the Yukawa coupling constants are large enough (larger than certain critical
values) so that the dynamics is strong and hence in non-perturbative régime, as anticipated.

One of the particular numerical findings was that the large fermion hierarchy can be accom-
modated while keeping the Yukawa coupling constants to be of the same order of magnitude (al-
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though for the price of certain fine-tuning of their precise values). This rather appealing feature
is to be compared with the situation in the MCS (and in particular in the SM): As the fermions
masses differ by as much as six orders of magnitude (leaving aside the neutrinos), so do in-
evitably also the Yukawa coupling constants, which is for dimensionless numbers considered
unnatural. Clearly, the point is that while in the MCS the fermions masses depend linearly on the
Yukawa coupling constants, in the presented model this dependence is due to its non-perturbative
character non-linear.

Another finding was that the scalars generally tend to be heavier than the fermions by orders
of magnitude. Namely, we found that they are at least hundred times heavier, but it is conceivable
that upon carrying out the numerical analysis with less over-simplifying assumptions they could
be even heavier. This is actually reassuring for several reasons. First, the scalars in fact need to
be heavy already from phenomenological reasons: in order to be compatible with the suppression
of FCNC and in order to be (possibly) able to render the ρ-parameter to be close to one. Second
reason is rather theoretical: Since in the presented model the scalar masses are not proportional to
the scalar self-couplings (and their VEVs), there are no upper limits on their sizes and therefore
we do not have to deal with the usual hierarchy problem notorious in the MCS (without SUSY).
The large scalar masses can be thus interpreted as indeed being proportional to the theory’s cut-
off and accordingly the presented model is to be understood as an effective theory valid only up
to the scale of the scalar masses.

Obviously, many questions remain unsolved. They are mostly connected with the unknown
particle spectrum of the theory. Since the theory is strongly interacting, appearance of bound
states must be expected. They are, however, difficult to predict, with the only exception of the
“would-be” NG bosons (or, equivalently, the longitudinal polarization states of the W± and Z
bosons), whose presence is guaranteed by the existence NG theorem. On top of these, it would
be in particular worth knowing whether there exists also an excitation, mimicking the SM Higgs
boson and unitarizing the scattering amplitudes. Due to strong and accordingly non-perturbative
nature of the dynamics these questions are difficult to answer and the only way to tackle them
would be probably to resort to some kind of lattice simulations.

Despite the paper name, the specific model with strong Yukawa dynamics, developed in
parts I and II, is by no means its only subject. Equally, if not more important achievements are
two model-independent issues, discussed in the following two parts.

In part III we considered the fermion flavor mixing in the situation when instead of con-
stant, momentum-independent fermion mass matrices, occurring in particular in MCS, one has
at disposal rather their momentum-dependent generalization, the self-energies. The main mo-
tivation for dealing with this issue was of course the above discussed model of strong Yukawa
dynamics, where the fermion self-energies serve as agents of the SSB. However, such situation
is typical also for other models with dynamical symmetry breaking, like, e.g., the currently de-
veloped model [49, 50, 51] of strong gauge flavor dynamics, or, at least in principle, the “more
mainstream” ETC models.

Specifically, we considered the case of quarks and investigated how the quark self-energies
affect the flavor mixing in interactions of the charged, neutral and electromagnetic currents. Our
approach was to calculate first in the leading order in the gauge coupling constants the corre-
sponding amplitudes (i.e., the decays of gauge bosons into the fermion–antifermion pairs) by
means of the LSZ reduction formula. In order to make a link with the usual notions like the
“CKM matrix” or the “mass-eigenstate basis”, we constructed an effective Lagrangian, corre-
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sponding to the calculated amplitudes. We found that the effective CKM matrix defined this
way is in general not unitary and that the FCNC, as well as the flavor-changing electromagnetic
transitions, can be present already in the leading order in the gauge coupling constants. All
these findings are related to the fact that the notion of a mass-eigenstate basis is in this situation
merely an effective one and that it cannot be obtained from the weak interaction eigenstate basis
by a unitary transformation. It should be, however, stressed that all these peculiarities depend
crucially on the details of the quark self-energies momentum dependencies, which have been
considered to be virtually arbitrary. In particular, in the special case of constant self-energies (or,
equivalently, the mass matrices) the results of our analysis naturally reduce to those familiar ones
from the SM (and generally MCS).

In part IV we occupied ourselves with the other model-independent issue, which was the
precise mechanism of generation of the gauge boson masses in models like the presented one
of the strong Yukawa dynamics. That is to say, we considered a rather general situation when
a gauge symmetry is broken down to some of its subgroups by formation of self-energies of
the fermions, which are coupled to it. What is important is that the very mechanism of the
fermion self-energies generation is not essential, so that the analysis and the outcomes of part IV
are applicable on a wider class of theories, including also the mentioned model of gauge flavor
dynamics and the ETC models.

The general strategy was to calculate the gauge boson polarization tensor in one loop, with
one insertion of the bare vertex and the other of the full vertex, satisfying the WT identity. This
is actually nothing else than what was already done in the “classical” references [95, 96], just
this time more systematically and under more general assumptions. What was new was the
construction of the full vertex, especially of its part that cannot be uniquely determined from
the WT identity. Namely, we introduced the new term proportional to the transversal quantity
qµ[/q, /q′] − q2[γµ, /q′] (where q is the momentum carried by the gauge boson), which has not
been considered in the literature yet. We showed that this term is necessary in order to arrive at a
symmetric gauge boson mass matrix. Taking it into account we also found some minor correction
to the Pagels–Stokar formula.

Having said that the new term in the vertex is necessary for the gauge boson mass matrix
to be symmetric, it must be also added that it is not sufficient. Depending on the details of
the theory in question (namely on its gauge group and its fermion representations) it may still
happen that the gauge boson mass matrix comes out non-symmetric. The point is that within our
approach there is actually no known way how to cure this situation. Although in the theories of
interest (i.e., in Abelian theories and in the electroweak theory) the gauge boson mass matrices
still “miraculously” come out symmetric, in general they do not, which obviously questions
our approach (and correspondingly also the approach of Refs. [95, 96]). Investigation of these
shortcomings and seeking for their resolution is subject to further research.
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the Grant LA08015 of the Ministry of Education of the Czech Republic.

All Feynman diagrams were drawn using the JaxoDraw [108, 109].



Fermion charge conjugation 221

Appendices
A Fermion charge conjugation

As the main text deals with Majorana fermions, it relies heavily on the notion of charge conju-
gation. Thus, in order to make the text reasonably self-contained, we review some facts about
it. They will be used mostly in appendix C when quantizing Majorana field and in appendix D
when introducing the Nambu–Gorkov formalism for fermions.

A.1 Properties of the charge conjugation

Let ψ be a solution of the classical Dirac equation(
i/∂ −m

)
ψ = 0 . (A.1.1)

If we demand the charge conjugated field ψc,

ψc ≡ Cψ̄T , (A.1.2)

to be also a solution, then the matrix C must satisfy the relation

C−1γµC = −γT
µ . (A.1.3)

Taking into account this equation together with the properties of gamma matrices under Hermi-
tian conjugation (provided gµν is given by (i))

γ†µ = γ0γµγ0 , (A.1.4)

we arrive at two independent relations for C:

γµ = (CC†)γµ(CC†)−1 , (A.1.5a)
γµ = (CC∗)γµ(CC∗)−1 . (A.1.5b)

They are evidently satisfied if

CC† = a1 , (A.1.6a)
CC∗ = b1 (A.1.6b)

for some (non-zero) complex constants a, b. These are arbitrary at this moment, yet they can be
fixed by imposing another conditions that the operation of charge conjugation should fulfil.

The first condition we can impose is the natural requirement that double charge conjugation
is an identity:

(ψc)c = ψ . (A.1.7)

By requiring this we can easily find that

b = −1 . (A.1.8)
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For figuring out the second condition the following observation is crucial: if ψ is a solution of
the Dirac equation with positive (negative) energy, then ψc is a solution with negative (positive)
energy:

(/p−m)ψ = 0 ⇐⇒ (/p+m)ψc = 0 , (A.1.9a)
(/p+m)ψ = 0 ⇐⇒ (/p−m)ψc = 0 . (A.1.9b)

This suggests that we could identify uc(p) with v(p) (and vice versa). Another observation,
although without an impact on the determination of a, is that charge conjugation does not change
the spin of the particle, i.e.,

(γ/s)ψ = +ψ ⇐⇒ (γ/s)ψc = +ψc , (A.1.10a)
(γ/s)ψ = −ψ ⇐⇒ (γ/s)ψc = −ψc , (A.1.10b)

where s is the space-like spin four-vector, orthogonal to p. To conclude, we see that the charge
conjugation interchanges the particle with its antiparticle, but it protect its spin state. Hence
we see that uc(p, s) is proportional to v(p, s) (and vice versa) and we are free to normalize the
operation of charge conjugation in such a way that

uc(p, s) = v(p, s) , (A.1.11a)
vc(p, s) = u(p, s) , (A.1.11b)

assuming that u(p, s) and v(p, s) are properly normalized according to

ū(p, s)u(p, s) = 2m, (A.1.12a)
v̄(p, s) v(p, s) = −2m. (A.1.12b)

Then the constant a can be fixed as

a = 1 . (A.1.13)

Summarizing our results, we see that matrix C is unitary,

C† = C−1 , (A.1.14)

and antisymmetric ,

CT = −C . (A.1.15)

We conclude that now the matrix C is defined uniquely up to an arbitrary phase factor.
These results are valid in any representation of gamma matrices (provided that the Hermiticity

properties of gamma matrices (A.1.4) hold). Sometimes it may happen, however, that by a
suitable phase transformation the matrix C can be made real. Then for its inverse there is a nice
relation

C−1 = −C . (A.1.16)

Incidentally, this happens in the most widely used representations, i.e., in those of Dirac, Weyl
and Majorana.
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In derivation of (A.1.10) we have used the identity

C−1γ5C = γT
5 , (A.1.17)

which follows simply from the basic relation (A.1.3). From this we see that the commutation
properties of C with γ5 are obviously representation-dependent. For example, in Dirac and Weyl
representations we have [C, γ5] = 0, while in Majorana representation there is {C, γ5} = 0.

In order to justify the above statements about reality of C and about the commutation prop-
erties of C with γ5 in particular representations of gamma matrices we present here the explicit
forms of C and γ5 in the mentioned representations:

C = iγ2γ0 =
(

0 −iσ2

−iσ2 0

)
, γ5 =

(
0 1
1 0

)
, (Dirac) (A.1.18a)

C = iγ2γ0 =
(
−iσ2 0

0 iσ2

)
, γ5 =

(
1 0
0 −1

)
, (Weyl) (A.1.18b)

C = iγ0 =
(

0 iσ2

iσ2 0

)
, γ5 =

(
σ2 0
0 −σ2

)
. (Majorana)

(A.1.18c)

We see that in all cases C is real and as such it is defined uniquely up to a sign.
Let us consider the eigenstates of the operation of charge conjugation. Since the charge

conjugation applied twice is an identity, its eigenvalues should be±1. Thus, it should be possible
to write an arbitrary bispinor ψ as a linear combination of the two charge conjugation eigenstates
corresponding to the eigenvalues ±1. Indeed, it is the case: Upon defining64

ψ1 ≡ 1√
2

(
ψc + ψ

)
, (A.1.19a)

ψ2 ≡ i√
2

(
ψc − ψ

)
, (A.1.19b)

we can decompose an arbitrary bispinor ψ and its charge conjugate counterpart ψc as

ψ =
1√
2

(
ψ1 + iψ2

)
, (A.1.20a)

ψc =
1√
2

(
ψ1 − iψ2

)
. (A.1.20b)

Clearly the fields ψ1 and iψ2 are the desired charge conjugation eigenstates corresponding to the
eigenvalues +1 and −1, respectively. Moreover, the fields ψ1,2 have the important property of
being Majorana fields, since they satisfy the Majorana condition

ψc
1,2 = ψ1,2 . (A.1.21)

More issues about the Majorana fields are discussed in appendices C and D. Now let us only
remark that since we can consider the Majorana fields ψ1,2 as “real” fermion fields, the decom-
position (A.1.20) is a direct analogue of the decomposition of a complex scalar field φ into its
real and imaginary parts, i.e., φ = (φ1 + iφ2)/

√
2, where both φ1,2 are real fields.

64Convenience of the factors of 1√
2

in the definitions (A.1.19) will be justified later when discussing quantization of
Majorana field.



224 Dynamical symmetry breaking in models with strong Yukawa interactions

Finally, it is also useful to introduce the following definition: Let A be a matrix in the Dirac
space; then we define its charge transpose Ac as

Ac ≡ CATC−1 , (A.1.22)

where C is the matrix of charge conjugation. It satisfies

(AB)c = BcAc . (A.1.23)

In this formalism the relations (A.1.3) and (A.1.17) can be compactly rewritten as

γc
µ = −γµ , (A.1.24a)
γc
5 = γ5 . (A.1.24b)

A.2 Plane wave solution

The solution of the classical free Dirac equation can be expressed in terms of plane waves as

ψ(x) =
∑
±s

∫
d3pNp

[
b(p, s)u(p, s) e−ip·x + d∗(p, s) v(p, s) eip·x

]
, (A.2.1)

where the normalization factor Np is defined as

Np ≡ 1
(2π)3/2(2p0)1/2

(A.2.2)

and the zeroth component p0 of the on-shell four-momentum p is p0 =
√

p2 +m2 > 0. The
quantities b(s, p), d(s, p) are some undetermined complex numbers with dimension

[b(s, p)] = [d(s, p)] = M−3/2 , (A.2.3)

where M is an arbitrary mass scale. Using the results above, the charge conjugate solution is
then

ψc(x) =
∑
±s

∫
d3pNp

[
b∗(p, s)uc(p, s) eip·x + d(p, s) vc(p, s) e−ip·x

]
(A.2.4a)

=
∑
±s

∫
d3pNp

[
d(p, s)u(p, s) e−ip·x + b∗(p, s) v(p, s) eip·x

]
. (A.2.4b)

Hence the charge conjugation at classical level consists effectively only of interchanging

b(p, s) ←→ d(p, s) . (A.2.5)

Let us now see how the operation of charge conjugation is implemented at quantum level.
The process of quantization consists of promoting the numerical coefficients b(p, s), d(p, s) to
operators, acting on the Fock space65 and satisfying certain anticommutation relations. The
charge conjugation can now be implemented in terms of the unitary operator UC as

ψc = UC ψ U
†
C . (A.2.6)

65We follow the convention and spell the family name of the Russian physicist Vladimir Aleksandroviq Fok

as “Fock”, although it would be more appropriate to spell it as “Fok”.
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As a consequence of the requirement (ψc)c = ψ the operator UC is also an involution, i.e.,

U−1
C = UC . (A.2.7)

This property together with the property of being unitary implies that UC is Hermitian. The
operator UC commutes with the c-number part66 of ψ and acts non-trivially only on the creation
and annihilation operators in analogy with (A.2.5) as

UC b(p, s)U
†
C = d(p, s) , (A.2.8a)

UC d
†(p, s)U†C = b†(p, s) . (A.2.8b)

To be specific, if the solution of the quantized Dirac equation is

ψ(x) =
∑
±s

∫
d3pNp

[
b(p, s)u(p, s) e−ip·x + d†(p, s) v(p, s) eip·x

]
, (A.2.9)

then for it charge conjugate we have

ψc(x) =
∑
±s

∫
d3pNp

[
d(p, s)u(p, s) e−ip·x + b†(p, s) v(p, s) eip·x

]
. (A.2.10)

66However, for a numerical multiple k ∈ C of ψ it still holds (kψ)c = k∗ψc.
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B Quantization of Dirac field

The aim of this appendix is to review various approaches to the canonical quantization of the
Dirac field and to set up the formalism to be used in the subsequent appendix C when quantizing
the Majorana field.

B.1 Naı̈ve unconstrained Hamiltonian procedure

The classical textbook approach to quantize the Dirac field uses the language and methods of the
(unconstrained) Hamiltonian mechanics. One begins with the classical67 Dirac field, defined by
the Lagrangian

L = ψ̄i/∂ψ −mψ̄ψ , (B.1.1)

with the dynamical variable ψ being a complex four-component quantity. In accordance with the
Hamiltonian mechanics, its conjugate momentum π† is defined as68

π† ≡ ∂L
∂ψ̇

, (B.1.2)

which leads to

π† = iψ† . (B.1.3)

The complex conjugate bispinor ψ† is the other independent dynamical variable, with the as-
sociated conjugate momentum π defined analogously to π† (and being actually the Hermitian
conjugate of π†). The space of all ψ, ψ†, π†, π (as functions of the spatial coordinate x with
fixed time coordinate) constitutes the phase space. There is an important notion of the Poisson
bracket, which is a bilinear antisymmetric map on the space of all smooth functions (or func-
tionals, since we are dealing with a field, i.e., with a system of infinite number of degrees of
freedom) on the phase space. For two such functions f , g, it is defined as (the subscript P. stands
for “Poisson”)

{
f, g
}

P.
≡

(
δf

δψ

δg

δπ†
− δg

δψ

δf

δπ†

)
+

(
ψ → ψ†

π† → π

)
. (B.1.4)

The fundamental Poisson brackets are those of the phase space coordinates themselves (under-
stood as the Dirac delta distributions on the phase space) and read{

ψa(t,x), π†b(t,y)
}

P.
= δabδ

3(x− y) , (B.1.5a){
ψa(t,x), ψb(t,y)

}
P.

= 0 , (B.1.5b){
π†a(t,x), π†b(t,y)

}
P.

= 0 , (B.1.5c)

67Throughout this appendix we will consider only commuting classical variables. The introduction of anticommuting
(Grassmann) classical variables will become indispensable only in appendix C when discussing the canonical quantiza-
tion of Majorana field.

68Notice that we define the canonical momentum conjugate to the dynamical variable ψ as π†, i.e., with the dagger.
By this we follow the conventions that the quantity with (without) the dagger is a horizontal (vertical) vector (cf. the case
of ψ and ψ†). A similar convention will be adopted also in definitions (B.2.3), (B.2.5), (B.2.6) below.
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and similarly for ψ†, π. Now the process of canonical quantization consists of two main steps:
First, the dynamical variables ψ, ψ† (and consequently also their conjugate momenta π†, π) are
promoted to be operators on the Hilbert space of states (i.e., on the Fock space). Second, one
postulates that they satisfy the equal-time anticommutation relations of the same form as the fun-
damental Poisson brackets (B.1.5), up to an additional factor of i on the right-hand sides. Using
the explicit definition of the conjugate momenta in terms of ψ, ψ†, these equal-time anticommu-
tation relations read{

ψa(x), ψ
†
b(y)

}
e.t.

= δabδ
3(x− y) , (B.1.6a){

ψa(x), ψb(y)
}

e.t.
= 0 , (B.1.6b){

ψ†a(x), ψ
†
b(y)

}
e.t.

= 0 . (B.1.6c)

However, the procedure described above is merely a mnemonic approach, leading inciden-
tally to the correct result via an incorrect way. One way of seeing that there is a problem is the
following: Instead of the non-Hermitian Lagrangian (B.1.1) we could have equally well consid-
ered the Hermitian Lagrangian

L =
1
2
ψ̄i

↔

/∂ψ −mψ̄ψ , (B.1.7)

which is completely equivalent to (B.1.1), because it differs from (B.1.1) only by a total diver-
gence and thus gives the same action and consequently the same equations of motion. However,
now the conjugate momentum for the dynamical variable ψ is

π† =
1
2
iψ† , (B.1.8)

which differs from the result (B.2.3) by a factor of 1/2! This factor enters (via the procedure de-
scribed in the previous paragraph) also the equal-time anticommutation relations of the quantized
field. Hence it looks like that there is an ambiguity in the process of the canonical quantization,
because it is possible to arrive at two different sets of anticommutation relations (differing by a
factor of 1/2) and it is not a priori clear which of them is the correct one.69

Let us now localize the source of the problem. When passing from the Lagrangian formalism
to the Hamiltonian formalism, one has to determine the operator of Hamiltonian via the dual
Legendre transformation. In order to do so, the equation (B.1.2) has to be inverted, i.e., the
velocity ψ̇ has to be expressed as a function of the conjugate momentum π†. This is possible if
and only if the Hessian matrix

W ≡ ∂2L
∂ψ̇2

(B.1.9)

is invertible. (Analogously for ψ† and π.) In our case of the Dirac Lagrangian (regardless of
whether in the Hermitian or non-Hermitian form) the Hessian is not only singular, it is actually
identically vanishing, W ≡ 0, and the equation (B.1.2) (neither of its component) cannot be

69One could argue that while differentiating with respect to ψ we considered ψ† to be a constant (and vice versa) and
this might be the source of the problem. However, it turns out that this is not really the case. Indeed, doing everything
carefully, taking as dynamical variables the real and imaginary parts of ψ, i.e., having in total eight real scalar dynamical
variables rather than two complex four-component variables ψ, ψ† , the result would be the same.
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inverted.70 This means that the right-hand side of the equation (B.1.2) has no ψ̇-dependence
(otherwise it could have been inverted) and thus it is a constraint of the type Φ(ψ, π) = 0 on the
phase space. In fact, this could have been seen already before when we found that π ∼ ψ: Since
ψ and π are linearly related to each other, knowing the ψ in a single spacetime point allows one
to determine π in that point.

B.2 Dirac constrained Hamiltonian procedure

We see that the ordinary Hamiltonian approach does not work here because of the presence of
constraints on the phase space. There is, however, a method how to deal with such a constrained
Hamiltonian system, developed by Dirac [100, 101, 102]. We will not describe here his method
in the full generality (interested reader can find details in the original works mentioned above, as
well as in [103]) but merely apply it for the purposes of the present case of the Dirac field.

In order to show that both the Hermitian and non-Hermitian Lagrangians (B.1.7), (B.1.1)
give unambiguously the same quantization, i.e., the same equal-time anticommutation relations
(B.1.6), we will consider the Lagrangian of the generic form

L =
1
2
ψ̄i

↔

/∂ψ −mψ̄ψ + α
i
2
∂µ(ψ̄γµψ) (B.2.1a)

=
i
2

[
(1 + α)ψ̄γµ(∂µψ)− (1− α)(∂µψ̄)γµψ

]
−mψ̄ψ . (B.2.1b)

Here we parameterize by the arbitrary complex parameter α the whole class of equivalence of all
Lagrangians, which differ only by a total divergence term. They all give consequently the same
Euler–Lagrange equations of motion:

(i/∂ −m)ψ = 0 . (B.2.2)

The choice of α = 1 corresponds to the non-Hermitian Lagrangian (B.1.1), while α = 0 yields
the Hermitian Lagrangian (B.1.7), respectively. Since α is completely unphysical parameter, we
expect that the resulting equal-time anticommutation relations should have no α-dependence.
Note that using the naı̈ve approach without constraints there would be the factor of 2/(1 +α) on
the right-hand sides of (B.1.6), which is precisely something we would like to get rid off.

Consider first the conjugate momenta for our dynamical variables ψ and ψ†:

ψ −→ π†1 =
∂L
∂ψ̇

=
i
2
(1 + α)ψ† , (B.2.3a)

ψ† −→ π2 =
∂L
∂ψ̇†

= − i
2
(1− α)ψ . (B.2.3b)

Now we can calculate the canonical (or naı̈ve) Hamiltonian71 HC as usual via the dual Legendre

70However, even though the Hessian is singular, still there is generally no problem in expressing the Hamiltonian only
in terms of the dynamical variables and the conjugate momenta and not the velocities. E.g., in our case of identically
vanishing Hessian, it will be shown that the Hamiltonian is a function only of the dynamical variables themselves, there
is no dependence neither on the conjugate momenta, nor on the velocities.

71We will use freely the same term “Hamiltonian” for both the Hamiltonian density H and the Hamiltonian H itself
(defined as H =

R
d3xH).
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transformation:

HC = π†1ψ̇ + ψ̇2π2 − L (B.2.4a)

=
i
2

[
(1 + α)ψ̄γ · (∇ψ)− (1− α)(∇ψ̄) · γψ

]
+mψ̄ψ . (B.2.4b)

We see that the canonical Hamiltonian does not depend on the conjugate momenta (as remarked
in footnote 70 on page 228). This means that the corresponding Hamilton equations are not
consistent – they give different dynamics than the correct Euler–Lagrange equations (B.2.2).

In order to solve the problem we first note that the definitions of the conjugate momenta
(B.2.3) are independent on the velocities ψ̇, ψ̇† and hence they constitute the constraints on the
phase space:

φ†1(π
†
1, ψ

†) ≡ π†1 −
i
2
(1 + α)ψ† = 0 , (B.2.5a)

φ2(π2, ψ) ≡ π2 +
i
2
(1− α)ψ = 0 . (B.2.5b)

Now we introduce the total Hamiltonian, which is the canonical one plus a linear combination of
the constraints φ†1, φ2:

HT ≡ HC + φ†1λ1 + λ†2φ2 (B.2.6)

The total Hamiltonian is equivalent to the canonical one on the subspace of the phase space
where the solutions of equations of motion lie, since in such a case the constraints are supposed
to vanish.

Let us now turn our attention to the “Lagrange multipliers” λ1, λ†2. We need some condition
to determine them. The natural requirement is that the constraints (B.2.5) hold constantly during
the time evolution of the system, governed by the total Hamiltonian (B.2.6). I.e., we demand

φ̇†1 =
{
φ†1,HT

}
P.

!= 0 , (B.2.7a)

φ̇2 =
{
φ2,HT

}
P.

!= 0 . (B.2.7b)

Now the question is whether these two conditions are enough to determine both the multipli-
ers λ1, λ†2. If not, it would mean that in addition to the primary constraints (B.2.5) there are
some other constraints in the theory. These so called secondary constraints can be found via
the iterative Dirac procedure of consecutive adding new constraints and corresponding Lagrange
multipliers to the total Hamiltonian until the requirement of time-independence of all such con-
straints leads to determination of all Lagrange multipliers.

In the present case of the Dirac field it turns out that the conditions (B.2.7) do really fix the
Lagrange multipliers uniquely as

λ1 = +i
{
φ2,HC

}
P.

= γ0γ · (∇ψ)− imγ0ψ , (B.2.8a)

λ†2 = −i
{
φ†1,HC

}
P.

= −(∇ψ̄) · γ + imψ̄ (B.2.8b)

and consequently, the primary constraints (B.2.5) are the only ones in the Hamiltonian formula-
tion of theory of Dirac field. Using the explicit form of the Lagrange multipliers we can write
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the total Hamiltonian (B.2.6) as72

HT = π̄1γ · (∇ψ) + (∇ψ̄) · γπ2 − im(π̄1ψ − ψ̄π2) . (B.2.9)

It is easy to convince oneself that the Hamilton equations of motion of the total Hamiltonian
(B.2.9) are equivalent to those (B.2.2) of Euler–Lagrange, provided one uses the definitions of
the conjugate momenta (B.2.3).

So far we have only shown how to treat correctly the dynamics at the classical level. Con-
cerning the quantization, we have already seen that postulating the equal-time anticommutation
relations as analogues of the fundamental Poisson brackets (which of course hold in the same
form (B.1.5) for all α by the definition) yields inconsistent (because α-dependent) equal-time
anticommutation relations. Dirac suggested that instead of the Poisson bracket {·, ·}P. we should
take its generalization – the Dirac bracket {·, ·}D.. The advantage of the Dirac bracket is that
it incorporates the structure of the constraints. For example, using the Dirac bracket the time
evolution is generated not by the total Hamiltonian, but merely by the canonical one:

ḟ =
{
f,HT

}
P.

=
{
f,HC

}
D.
. (B.2.10)

Moreover, the Dirac bracket of any function f on the phase space with any second class constraint
Φi is vanishing:{

f,Φi
}

D.
= 0 . (B.2.11)

Before we proceed to the definition of the Dirac bracket, certain classification of the con-
straints must be done. Those constraints whose mutual Poisson bracket are all vanishing are
called the first class constraints. It can be shown that the first class constraints are associated
with some non-physical degrees of freedom, they in fact generate gauge symmetries. This type
of constraints arises for instance in the Yang–Mills theories. The other constraints (which have at
least one non-vanishing Poisson bracket with the others) are called the second class constraints.

Now let us introduce the vector Φ of all second class constraints and calculate the antisym-
metric matrix C of the Poisson brackets of all its entries: Cij ≡ {Φi,Φj}P.. This matrix can
be shown to be regular.73 Now we can define the Dirac bracket of any two functions f , g on the
phase space as74

{
f, g
}

D.
≡

{
f, g
}

P.
−
{
f,Φa

}
P.
C−1
ab

{
Φb, g

}
P.
. (B.2.12)

It is easy to convince oneself that the Dirac bracket not only shares some properties with the
Poisson bracket – it is bilinear, antisymmetric, satisfies the Jacobi identity (and, of course, it
reduces to the Poisson bracket in absence of any second class constraints), but it also satisfies the
“constraints compatible” conditions advertised above (cf. (B.2.10) and (B.2.11)).

72We use here for conjugate momenta the same notation of Dirac conjugation as for the bispinors, i.e., π̄ = π†γ0.
73If it were not, there would exist such a basis in the vector space of the second class constraints that the matrix C

would have a diagonal form, with at least one zero on the diagonal (provided we have a special case of diagonalizable
matrix C). Accordingly there would be some constraint(s) with vanishing Poisson bracket with all other constraints.
However, this contradicts our assumption that we are dealing with the second class constraints only.

74We are using here the summation convention also for the space indices. More precisely, yet less clearly, since the
proper definition of the matrix C is Cij(x,y) ≡ {Φi(x),Φj(y)}P. (omitting the time dependence), the second term
on the right-hand side of (B.2.12) should be

R
d3x d3y

˘
f,Φa(x)

¯
P.
C−1
ab (x,y)

˘
Φb(y), g

¯
P.

.



Quantization of Dirac field 231

Let us now turn back to our case of the Dirac field. Explicit calculation reveals that

{φ†1, φ2}P. = −{φ2, φ
†
1}P. = −i (B.2.13)

and hence the constraints φ†1, φ2 are of the second class.75 The corresponding matrix C reads

C = C−1 =
(

0 −i
i 0

)
δ3(x− y) . (B.2.14)

Plugging this into the definition of the Dirac bracket, we arrive at the fundamental Dirac brackets
(omitting the trivial ones):{

ψa(t,x), π†1,b(t,y)
}

D.
=

1 + α

2
δabδ

3(x− y) , (B.2.15a){
ψ†a(t,x), π2,b(t,y)

}
D.

=
1− α

2
δabδ

3(x− y) . (B.2.15b)

If we now express the conjugate momenta π†1, π2 in terms of ψ, ψ† (Eq. (B.2.3)), the factors of
(1± α)/2 cancel each other and we arrive at the desired α-independent result{

ψa(t,x), iψ†b(t,y)
}

D.
= δabδ

3(x− y) , (B.2.16a)

which leads to the correct equal-time anticommutation relations (B.1.6).

B.3 Faddeev and Jackiw method

The above described Dirac method is a sort of “classical” method of quantizing constrained
Hamiltonian systems. However, there exist an alternative, easier method developed by Faddeev
and Jackiw [104, 105], which gives the same answers using much less effort. Their method is
well suited for systems, whose Lagrangian is linear in the first time derivatives (velocities) and
consequently considered singular from the traditional Hamiltonian point of view.

In the Faddeev–Jackiw approach the system of the Dirac field actually turns out to be uncon-
strained. The key observation is that if one understands the phase space as the set of all possible
states of the system, or, equivalently, as the set of all initial conditions of the corresponding
equations of motion, then for the case of the Dirac field (with first-order Euler–Lagrange equa-
tions) the configuration space and the phase space actually coincide. This is the very reason why
introducing the conjugate momenta in fact means introducing artificial constraints.

In order to apply the Faddeev–Jackiw method, it is useful first to introduce some new simpli-
fying formalism. Instead of dealing with two independent four-component dynamical variables
ψ and ψ† separately, it is useful to combine them to make a new single eight-component variable
χ

χ ≡
(

ψ
ψ∗

)
, (B.3.1)

75This is connected to the fact that we were able to determine uniquely the Lagrange multipliers λ1, λ†2 from the
equations (B.2.7). If the constraints φ†1, φ2 were of the first class, the multipliers would remain undetermined (at least at
the first stage of the iterative Dirac procedure).
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which now constitutes the configuration space (i.e., the phase space).76 (Notice that χ is actually
a variant of the Nambu–Gorkov field, to be discussed in appendix D.) The Lagrangian (B.2.1)
can now be written in terms of χ as

L =
i
2
χT
[
(A0 −A0T) + α(A0 +A0T)

]
χ̇−H , (B.3.2)

where the canonical HamiltonianH, (B.2.4), (we omit the subscript C) is now rewritten as

H =
i
2
χT
[
(A−AT) + α(A + AT)

]
· (∇χ) +

1
2
mχT(B +BT)χ . (B.3.3)

The matrices Aµ, B are defined as

Aµ ≡
(

0 0
γ0γ

µ 0

)
, B ≡

(
0 0
γ0 0

)
, (B.3.4)

or more suggestively, using the familiar notation γ0 = β and γ0γ = α,

A0 =
(

0 0
1 0

)
, A =

(
0 0
α 0

)
, B =

(
0 0
β 0

)
. (B.3.5)

The corresponding Euler–Lagrange equations read

i(A0 −A0T)χ̇ =
δH

δχ
(B.3.6a)

= i(A−AT) · (∇χ) +m(B +BT)χ . (B.3.6b)

It is straightforward to check that these equations are equivalent to those in the usual form (B.2.2).
In analogy with (B.2.10) Faddeev and Jackiw postulated that the time-evolution of a function

f on the phase space is governed by the Hamiltonian (B.3.3) as

ḟ =
{
f,H

}
F.J.

, (B.3.7)

with the Faddeev–Jackiw bracket {·, ·}F.J. defined as{
f, g
}

F.J.
≡ δf

δχi

δg

δχj
Ωij . (B.3.8)

For determining the unknown 8×8 matrix Ω we notice that the time-evolution of the phase space
coordinates themselves is

χ̇ =
{
χ,H

}
F.J.

= Ω
δH

δχ
. (B.3.9)

Now comparing this equation with the equation of motion (B.3.6) we readily see that the matrix
Ω is given by

Ω = −i(A0 −A0T)−1 . (B.3.10)

76Alternatively, we could define χ as eight-component real vector χ ≡
√

2
` Reψ

Imψ

´
. However, this is equivalent to our

choice (B.3.1), since both bases are related to each other through a unitary transformation.
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or explicitly, in terms of 4× 4 blocks,

Ω =
(

0 −i
i 0

)
. (B.3.11)

It is interesting to note that due to the form of the matrix Ω the Faddeev–Jackiw bracket is
antisymmetric, which implies that it also satisfies the Jacobi identity {f, {g, h}F.J.}F.J.+cycl. =
0. This, together with the Leibnitz rule {f, gh}F.J. = g{f, h}F.J. + {f, g}F.J.h, means that the
Faddeev–Jackiw bracket defines a Poisson structure on the phase space in the same way as the
Poisson and Dirac brackets do.

As a basis for the quantization we will use, as usual, the “fundamental” Faddeev–Jackiw
brackets{

χi(t,x), χj(t,y)
}

F.J.
= Ωij δ3(x− y) , (B.3.12)

which in terms of ψ and ψ†, using the definitions of Ω, (B.3.11), and χ, (B.3.1), read{
ψa(t,x), ψ†b(t,y)

}
F.J.

= −iδab δ3(x− y) , (B.3.13a){
ψa(t,x), ψb(t,y)

}
F.J.

= 0 , (B.3.13b){
ψ†a(t,x), ψ†b(t,y)

}
F.J.

= 0 . (B.3.13c)

Clearly, these Faddeev–Jackiw brackets give upon quantization rise to the correct equal-time
anticommutation relations (B.1.6) without the unwanted α-dependency (and with less effort than
the Dirac procedure).
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C Quantization of Majorana field

In this appendix we quantize the Majorana field. Although we can use (and will use) for that
purpose the technique introduced in the previous appendix on the example of quantizing the
Dirac field, there are also certain substantial differences, due to which it is worth dedicating a
special appendix to it.

C.1 Necessity of Grassmann variables

A fermion field ψ, satisfying the Majorana condition [106]

ψ = ψc , (C.1.1)

is called the Majorana field. It can be quantized in a similar way as the unconstrained Dirac field,
which was done in appendix B. There is one important conceptual difference, however. When
quantizing the Dirac field, we started with a Lagrangian of a classical Dirac field. This field
was consider to be commuting, the property of being anticommuting was introduced only when
promoting the classical field to operator field and introducing the equal-time anticommutation
relation. At the classical level there was no problem with the commutation of the field variables,
at least not when analyzing the dynamics and introducing various types of brackets. The only
problem was that the Hamiltonian was unbounded from below, but this did not concern us (at the
classical level; at the quantum level this was cured by the anticommutation of the field operators).

On the contrary, for Majorana field one has to introduce the property of being anticommuting
from the very beginning, already at the level of classical Lagrangian. The reason for that is that
when imposing the Majorana condition on commuting fields, the Lagrangian itself turns out to
be identically vanishing. Let us see it in detail. For the mass term we have (we omit here the
unnecessary factor of m)

Lmass = ψ̄ψ (C.1.2a)
= ψ̄cψc (C.1.2b)
= −ψTC−1Cψ̄T (C.1.2c)
= −(ψ̄ψ)T (C.1.2d)
= −Lmass . (C.1.2e)

Thus, it must be Lmass = 0. In the steps in (C.1.2) we mostly used the results from appendix A,
concerning the charge conjugation. The key step, however, was in line (C.1.2d), when the as-
sumption of commutativity of fermion fields came into play. If we had assumed rather anticom-
muting fields, there would be opposite sign in (C.1.2d). Let us continue with the kinetic term
(again, omitting the factor of i):

Lkinetic = ψ̄γµ(∂µψ) (C.1.3a)
= ψ̄cγµ(∂µψc) (C.1.3b)
= −ψT C−1γµC︸ ︷︷ ︸

−γT
µ

(∂µψ̄T) (C.1.3c)

= [(∂µψ̄)γµψ]T (C.1.3d)
= (∂µψ̄)γµψ . (C.1.3e)
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Most of the steps here were analogous to those in (C.1.2). This time the commutativity of ψ was
used in line (C.1.3d). On the other hand, the kinetic term (C.1.3a) can be rewritten also using the
integration by parts as

Lkinetic = −(∂µψ̄)γµψ + ∂µ(ψ̄γµψ) . (C.1.4)

Thus, as long as we can neglect the total divergence ∂µ(ψ̄γµψ), we again see that Lkinetic =
−Lkinetic, so that Lkinetic = 0.

We will thus suppose that the components of the bispinor ψ are anticommuting (Grassmann)
variables: {ψa, ψb} = 0 = {ψa, ψ∗b}. The Lagrangian reads

L =
1
4
ψ̄i

↔

/∂ψ − 1
2
mψ̄ψ (C.1.5a)

=
1
2
ψ̄i/∂ψ − 1

2
mψ̄ψ . (C.1.5b)

Unlike the case of Dirac field, both of the forms of Lagrangian (C.1.5) for Majorana anticommut-
ing field are exactly equal to each other and are perfectly Hermitian. There is no possibility to
add a total divergence term of the type ∂µ(ψ̄γµψ), to the Lagrangian, since for (anticommuting)
Majorana fermion the bilinear ψ̄γµψ identically vanishes.77

The extra factors of 1/2 in the Majorana Lagrangian (C.1.5) (as compared to the Dirac La-
grangian) are coming from the decomposition of a Dirac field ψ to two Majorana fields ψ1,2

(cf. (A.1.20)):

ψ =
1√
2

(
ψ1 + iψ2

)
. (C.1.6)

Plugging this decomposition to the Dirac Lagrangian one can rewrite it as a sum of two Majorana
Lagrangians (C.1.5).78 I.e., the Dirac field ψ can be understood as two independent Majorana
fields ψ1,2 with equal masses. The factor of 1/

√
2 in the decomposition (C.1.6) ensures that the

creation and annihilation operators of the eventually quantized Majorana fields ψ1,2 are properly
normalized, as will be shown below.

C.2 Quantization

For quantizing the Majorana field we will use the method of Faddeev and Jackiw, described
in appendix B. When quantizing the Dirac field, our independent dynamical variables were ψ
and ψ∗. Now these variable are no more independent, in fact they are proportional to each
other as a consequence of the Majorana condition (C.1.1). Hence we will take ψ as our only
dynamical variable. The Lagrangian (C.1.5) can be rewritten only in terms of ψ (using the
Majorana condition and the assumption of anticommutation) as

L = − i
2
ψTC−1γ0ψ̇ −H , (C.2.1)

77This is related also to the fact that a Majorana field, as being basically a real fermion field, cannot be charged under
any U(1) symmetry, whose Noether current would be otherwise proportional just to the (actually vanishing) quantity
ψ̄γµψ.

78As a matter of fact, this is possible again only due to the fact that the field variables anticommute. I.e., in such case
upon plugging the decomposition (C.1.6) to the Dirac Lagrangian the result is diagonal in the Majorana fields ψ1,2. On
the other hand, in commuting case there would be rather off-diagonal terms of (e.g., ψ̄1ψ2) instead.
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with the Hamiltonian

H = − i
2
ψTC−1γ · (∇ψ)− m

2
ψTC−1ψ , (C.2.2)

where C is the matrix of charge conjugation, introduced in appendix A. The corresponding
Euler–Lagrange equations are

− iC−1γ0ψ̇ =
δH

δψ
(C.2.3a)

= −iC−1γ · (∇ψ)−mC−1ψ , (C.2.3b)

which can be rewritten in the usual covariant form as the Dirac equation

(i/∂ −m)ψ = 0 . (C.2.4)

Now we will determine the fundamental Faddeev–Jackiw brackets (see Sec. B.3 of the pre-
vious appendix), which will later serve as a basis for the quantization of the system:{

ψi(x), ψj(y)
}

F.J.
= Ωij δ3(x− y) . (C.2.5)

The unknown 4× 4 matrix Ω will be determined from the requirement that the time evolution is
given by

ψ̇ =
{
ψ,H

}
F.J.

= Ω
δH

δψ
. (C.2.6)

Comparing this with the equations of motion (C.2.3) we find the matrix Ω as

Ω = (−iC−1γ0)−1 = iγ0C (C.2.7)

and arrive at the fundamental Faddeev–Jackiw brackets{
ψa(x), ψb(y)

}
F.J.

= i(γ0C)ab δ3(x− y) . (C.2.8)

(Note that in contrast to the case of the Dirac field, discussed in appendix B, now as a conse-
quence of anticommutation of ψ the Faddeev–Jackiw brackets are symmetric, since (γ0C)T =
γ0C.) Moreover, we can use just derived brackets of the type {ψ,ψ}F.J., (C.2.8), to derive
also those of the type {ψ∗, ψ∗}F.J. and {ψ,ψ∗}F.J., using only the Majorana condition and the
properties of the charge conjugation:{

ψ∗a(x), ψ∗b (y)
}

F.J.
= i(C−1γ0)ab δ3(x− y) , (C.2.9a){

ψa(x), ψ∗b (y)
}

F.J.
= −iδab δ3(x− y) . (C.2.9b)

Applying the prescription of canonical quantization on the above Faddeev–Jackiw brackets
(C.2.8) and (C.2.9) we readily arrive at the equal-time anticommutation relations79{

ψa(x), ψ
†
b(y)

}
e.t.

= δab δ
3(x− y) , (C.2.10a){

ψa(x), ψb(y)
}

e.t.
= −(γ0C)ab δ3(x− y) , (C.2.10b){

ψ†a(x), ψ
†
b(y)

}
e.t.

= −(C−1γ0)ab δ3(x− y) . (C.2.10c)

The first anticommutator (C.2.10a) of the type {ψ,ψ†}e.t. is the same as in the Dirac case. How-
ever, the other two of the type {ψ,ψ}e.t., (C.2.10b), and {ψ†, ψ†}e.t., (C.2.10c), while trivial in
the Dirac case, are now non-trivial, which is novel and important feature of the Majorana field.

79Again, only one of the following three anticommutators is independent, the other two can be derived from it using
the Majorana condition.
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C.3 Creation and annihilation operators

Recall that the general solution of the quantized Dirac equation in the plane wave expansion
(cf. (A.2.9)) reads

ψ(x) =
∑
±s

∫
d3pNp

[
b(p, s)u(p, s) e−ip·x + d†(p, s) v(p, s) eip·x

]
, (C.3.1)

where the annihilation and creation operators b(p, s), b†(p, s) and d(p, s), d†(p, s) satisfy the well
known anticommutation relations80{

b(p, s), b†(p′, s′)
}

= δss′ δ
3(p− p′) , (C.3.2a){

d(p, s), d†(p′, s′)
}

= δss′ δ
3(p− p′) . (C.3.2b)

These anticommutation relations are implied by the equal-time anticommutation relations of the
Dirac field (B.1.6).

We have seen that the Majorana field is a solution of the ordinary Dirac equation (C.2.4)
constrained by the Majorana condition (C.1.1). Thus, applying the Majorana condition on (C.3.1)
we readily arrive at the general Majorana solution of the Dirac equation [107]:

ψ(x) =
∑
±s

∫
d3pNp

[
a(p, s)u(p, s) e−ip·x + a†(p, s) v(p, s) eip·x

]
. (C.3.3)

Now the Majorana equal-time anticommutation relations (C.2.10) imply that the annihilation and
creation operators a(p, s), a†(p, s) satisfy{

a(p, s), a†(p′, s′)
}

= δss′ δ
3(p− p′) . (C.3.4)

For completeness let us also note that the unitary operator of the charge conjugation UC (in-
troduced in appendix A) now acts trivially on Majorana creation and annihilation operators
(cf. Eq. (A.2.8)):

UC a(p, s)U
†
C = a(p, s) . (C.3.5)

Return now to the decomposition (C.1.6) of a Dirac field ψ to a sum of two Majorana fields
ψ1,2. Denoting the annihilation operators of the Majorana fields ψ1,2 as a1,2(p, s) and plug-
ging the plane wave expansions (C.3.1), (C.3.3) into the decomposition (C.1.6), we see that the
annihilation operators a1,2(p, s) are expressed in terms of b(p, s), d(p, s) as

a1(p, s) =
1√
2

(
d(p, s) + b(p, s)

)
, (C.3.6a)

a2(p, s) =
i√
2

(
d(p, s)− b(p, s)

)
. (C.3.6b)

Now it is straightforward to calculate the anticommutation relations {ai(p, s), a†i(p, s)}, i = 1, 2,
using the Dirac anticommutation relation (C.3.2) and to check that they do correspond to the
Majorana anticommutation relations (C.3.4), including the correct factor of 1 on the right-hand
side of (C.3.4). This is the very reason why we have included the factor of 1/

√
2 in the definition

of the Majorana fields ψ1,2 in the decomposition (C.1.6).
80We list here (as well as below in (C.3.4)) only the independent non-trivial anticommutators.
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C.4 Propagators

Another novel property of the Majorana field, important when doing perturbation expansions and

using the Wick’s theorem, is that apart from the contractions of the type ψψ̄ and ψ̄ψ there are

also contractions of the type ψψ and ψ̄ψ̄. The contractions of the type ψψ̄ and ψ̄ψ are the same
as for the Dirac field:81

〈0|T
{
ψ(x) ψ̄(0)

}
|0〉 ≡ iG(x) . (C.4.1)

The contractions of the type ψψ and ψ̄ψ̄ are now easily calculated by straightforward application
of the Majorana condition to (C.4.1):

〈0|T
{
ψ(x)ψT(0)

}
|0〉 = −iG(x)C , (C.4.2a)

〈0|T
{
ψ̄T(x) ψ̄(0)

}
|0〉 = iC−1G(x) . (C.4.2b)

This result can be calculated also directly by inserting the plane wave expansion of the Majorana
field (C.3.3) to the left-hand sides of (C.4.2), using the integral representation of the Heaviside
step function and taking into account the relations∑

±s
u(p, s) vT(p, s) = −(/p+m)C , (C.4.3a)∑

±s
v(p, s)uT(p, s) = −(/p−m)C , (C.4.3b)∑

±s
ūT(p, s) v̄(p, s) = C−1(/p−m) , (C.4.3c)∑

±s
v̄T(p, s) ū(p, s) = C−1(/p+m) . (C.4.3d)

Let us now investigate in more detail the propagator G(x), (C.4.1), under the assumption of
Majorana condition (C.1.1):

iG(x) = 〈0|T
{
ψ(x) ψ̄(0)

}
|0〉 (C.4.4a)

= 〈0|T
{
ψc(x) ψ̄c(0)

}
|0〉 (C.4.4b)

= −C〈0|T
{
ψ̄T(x)ψT(0)

}
|0〉C−1 (C.4.4c)

= C〈0|T
{
ψ(0) ψ̄(x)

}
|0〉TC−1 (C.4.4d)

= iGc(−x) , (C.4.4e)

whereGc is defined in (A.1.22). We have thus arrived at the important property of the propagator
of a Majorana field:

G(x) = Gc(−x) . (C.4.5a)

The same also holds in the momentum representation (we use the same symbol G for both the
position and momentum representations):

G(p) = Gc(−p) . (C.4.5b)

81We are using compact matrix notation, more precisely we should write 〈0|T
˘
ψa(x)ψ̄b(y)

¯
|0〉 = iGab(x− y).
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D Fermion propagator

In this comprehensive appendix we discuss various issues connected with propagators of fermion
fields. We first assume the most general case of arbitrary number of left-handed and right-handed
fermions and catalogue all possible ways how to comprise them into a single field, allowing for
more compact treatment. Out of these we pick two, the standard Dirac field and the Majorana
field in the Nambu–Gorkov formalism, and discuss them in more detail. We also eventually show
how to switch, under certain conditions, between the two descriptions. Finally, we also discuss
in some detail some special issues for propagator of the Dirac field, namely its diagonalization
and asymptotic behavior.

D.1 General case

Let ψL be an m-plet of left-handed and ψR an n-plet of right-handed fermions. We can now
construct the following 16 bilinears:

ψLψ̄L , ψRψ̄R , ψLψ̄R , ψRψ̄L , (D.1.1a)

(ψL)c(ψ̄L)c , (ψR)c(ψ̄R)c , (ψL)c(ψ̄R)c , (ψR)c(ψ̄L)c , (D.1.1b)

(ψL)cψ̄L , (ψR)cψ̄R , (ψL)cψ̄R , (ψR)cψ̄L , (D.1.1c)

ψL(ψ̄L)c , ψR(ψ̄R)c , ψL(ψ̄R)c , ψR(ψ̄L)c . (D.1.1d)

Out of each of these 16 bilinears ψ1ψ̄2 we can make the full (〈ψ1ψ̄2〉) of 1PI (〈ψ1ψ̄2〉1PI) prop-
agator (we use the shorthand notation 〈ψ1ψ̄2〉 ≡

∫
d4x 〈0|T [ψ1(x) ψ̄2(0)]|0〉e−ip·x). The inten-

tion of this appendix is to systemize somehow these propagators and to find out some compact
notation for them.

First we investigate the Lorentz structure of the propagators. Since the propagators depend
only on momentum p, they can only be linear combination of four independent Lorentz matrices
/p, /pγ5, 1, γ5, or, in more convenient basis, of /pPL, /pPR, PL, PR. The coefficients of the
linear combination are Lorentz scalars, i.e., they can depend only on p2. At the same time, the
coefficients are matrices in the flavor space.

For the full propagators we can employ the chiral projectors PL, PR and use the fact that
multiplication of fermion fields with the chiral projectors “commutes” with the T -product. I.e.,
for instance, we have 〈ψRψ̄R〉 = 〈PRψRψ̄RPL〉 = PR〈ψRψ̄R〉PL. Therefore the quantity
〈ψRψ̄R〉 must be of the form /pPL (times something containing no gamma matrices), since all
other possibilities (/pPR, PL and PR) vanish after enclosing with PR and PL.

On the other hand, for 1PI propagators this approach is no longer possible. A better approach
is to view the 1PI propagators as two-point interaction vertices, stemming from the Lagrangian.
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E.g., the Lagrangian L = ψ̄Ri/∂ψR = ψ̄RPLi/∂PRψR = ψ̄Ri/∂PRψR, viewed as an interaction
Lagrangian, gives rise to the “two-point interaction vertex” 〈ψRψ̄R〉1PI = i/pPR.

Applying these (rather mnemonic) rules to all possible propagators (both full and 1PI), con-
structible out of the bilinears (D.1.1), we obtain:

〈ψRψ̄R〉 = i/pPLARR , n× n ,
(D.1.2a)

〈ψLψ̄L〉 = i/pPRALL , m×m,

(D.1.2b)

〈ψLψ̄R〉 = iPLALR , m× n ,
(D.1.2c)

〈ψRψ̄L〉 = iPRARL , n×m,
(D.1.2d)

〈ψRψ̄R〉1PI = i/pPR aRR , n× n ,
(D.1.3a)

〈ψLψ̄L〉1PI = i/pPL aLL , m×m,

(D.1.3b)

〈ψLψ̄R〉1PI = iPR aLR , m× n ,
(D.1.3c)

〈ψRψ̄L〉1PI = iPL aRL , n×m,
(D.1.3d)

〈(ψR)c(ψ̄R)c〉 = i/pPRBRR , n× n ,
(D.1.4a)

〈(ψL)c(ψ̄L)c〉 = i/pPLBLL , m×m,

(D.1.4b)

〈(ψL)c(ψ̄R)c〉 = iPRBLR , m× n ,
(D.1.4c)

〈(ψR)c(ψ̄L)c〉 = iPLBRL , n×m,
(D.1.4d)

〈(ψR)c(ψ̄R)c〉1PI = i/pPL bRR , n× n ,
(D.1.5a)

〈(ψL)c(ψ̄L)c〉1PI = i/pPR bLL , m×m,

(D.1.5b)

〈(ψL)c(ψ̄R)c〉1PI = iPL bLR , m× n ,
(D.1.5c)

〈(ψR)c(ψ̄L)c〉1PI = iPR bRL , n×m,
(D.1.5d)

〈(ψR)cψ̄R〉 = iPL CRR , n× n ,
(D.1.6a)

〈(ψL)cψ̄L〉 = iPR CLL , m×m,
(D.1.6b)

〈(ψL)cψ̄R〉 = i/pPL CLR , m× n ,
(D.1.6c)

〈(ψR)cψ̄L〉 = i/pPR CRL , n×m,

(D.1.6d)

〈(ψR)cψ̄R〉1PI = iPR cRR , n× n ,
(D.1.7a)

〈(ψL)cψ̄L〉1PI = iPL cLL , m×m,
(D.1.7b)

〈(ψL)cψ̄R〉1PI = i/pPR cLR , m× n ,
(D.1.7c)

〈(ψR)cψ̄L〉1PI = i/pPL cRL , n×m,

(D.1.7d)
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〈ψR(ψ̄R)c〉 = iPRDRR , n× n ,
(D.1.8a)

〈ψL(ψ̄L)c〉 = iPLDLL , m×m,
(D.1.8b)

〈ψL(ψ̄R)c〉 = i/pPRDLR , m× n ,
(D.1.8c)

〈ψR(ψ̄L)c〉 = i/pPLDRL , n×m,

(D.1.8d)

〈ψR(ψ̄R)c〉1PI = iPL dRR , n× n ,
(D.1.9a)

〈ψL(ψ̄L)c〉1PI = iPR dLL , m×m,
(D.1.9b)

〈ψL(ψ̄R)c〉1PI = i/pPL dLR , m× n ,
(D.1.9c)

〈ψR(ψ̄L)c〉1PI = i/pPR dRL , n×m.

(D.1.9d)

The factors of i are just conventional. The form factors A, B, C, D, a, b, c, d are matrices in
the flavor space (with indicated dimensions) and may depend only on p2. This dependence is not
explicitly indicated. For the special case of momentum-independent form factors a, b, c, d the
1PI propagators are equivalent to the Lagrangian

L = ψ̄Ri/∂aRRψR + ψ̄Li/∂aLLψL + ψ̄RaRLψL + ψ̄LaLRψR

+(ψ̄R)ci/∂bRR(ψR)c + (ψ̄L)ci/∂bLL(ψL)c + (ψ̄R)cbRL(ψL)c + (ψ̄L)cbLR(ψR)c

+(ψ̄R)ccRRψR + (ψ̄L)ccLLψL + (ψ̄R)ci/∂cRLψL + (ψ̄L)ci/∂cLRψR
+ ψ̄RdRR(ψR)c + ψ̄LdLL(ψL)c + ψ̄Ri/∂dRL(ψL)c + ψ̄Li/∂dLR(ψR)c . (D.1.10)

However, not all of these propagators are independent or unconstrained. Using the properties
of the charge conjugation (see appendix A) we can write the dependencies between the form
factors as

BRR = AT
RR , (D.1.11a)

BLL = AT
LL , (D.1.11b)

BLR = AT
RL , (D.1.11c)

BRL = AT
LR , (D.1.11d)

bRR = aT
RR , (D.1.12a)

bLL = aT
LL , (D.1.12b)

bLR = aT
RL , (D.1.12c)

bRL = aT
LR , (D.1.12d)

CRR = CT
RR , (D.1.13a)

CLL = CT
LL , (D.1.13b)

CLR = CT
RL , (D.1.13c)

cRR = cTRR , (D.1.14a)
cLL = cTLL , (D.1.14b)
cLR = cTRL , (D.1.14c)

DRR = DT
RR , (D.1.15a)

DLL = DT
LL , (D.1.15b)

DLR = DT
RL , (D.1.15c)

dRR = dT
RR , (D.1.16a)

dLL = dT
LL , (D.1.16b)

dLR = dT
RL . (D.1.16c)
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m = n m 6= n

Dirac case Ψ1 ≡ ψL + ψR Ψ2 ≡
(
ψL
ψR

)

Majorana case Ψ3 ≡
(

Ψ1

Ψc
1

)
=

(
ψL + ψR

(ψL)c + (ψR)c

) Ψ4 ≡ Ψ2 + Ψc
2

=
(
ψL + (ψL)c

ψR + (ψR)c

)

Table D.1.1. Four possibilities how to organize the fields ψL, ψR into a single field, based on two inde-
pendent criteria. We discuss in more detail only the fields Ψ1 and Ψ4, denoted in the text as ψ and Ψ,
respectively, together with the relations between them.

Even though one takes into account the fact that not all of the propagators are independent
of one another, there are still quite a lot of independent propagators. Nevertheless, it turns out
that it is not necessary to treat them all separately. It is possible to construct a new field Ψ out
of the original fields ψL, ψR in such a way that its propagator 〈ΨΨ̄〉, 〈ΨΨ̄〉1PI contains all the
propagators listed above.

The are basically four ways (denoted in Tab. D.1.1 as Ψ1, Ψ2, Ψ3, Ψ4) how to construct the
field Ψ, based on two independent criterions: First criterion is whetherm = n orm 6= n. Second
and more important criterion is whether we demand invariance of the propagator under the phase
(i.e., U(1)) transformation

U(1) : ψL −→ [ψL]′ = eiθ ψL , (D.1.17a)
U(1) : ψR −→ [ψR]′ = eiθ ψR . (D.1.17b)

The point is that this invariance forbids the propagators of the type 〈ψc
1ψ̄2〉, 〈ψ1ψ̄

c
2〉. Thus, if this

invariance holds, there are less propagators to be included in 〈ΨΨ̄〉.
We will not discuss here all three possibilities listed in Tab. D.1.1. Considering the appli-

cations in the main text, we will analyze here in more detail only the Dirac case with m = n
and the Majorana case with m 6= n, i.e., the fields denoted in Tab. D.1.1 as Ψ1 and Ψ4, which
we rename for our purposes as ψ and Ψ, respectively. We will investigate the “anatomy” of the
propagators 〈ψψ̄〉 and 〈ΨΨ̄〉 and show that they really incorporate all the particular propagators
that they should. Finally, we will also see how the most constrained field ψ can be implemented
as a special case of the most general field Ψ.

D.2 Dirac field

We will investigate first the most special, or most constrained case, requiring satisfaction of both
conditions mentioned above: The same number of the left-handed and the right-handed fermions
and at the same time invariance of their propagators under the phase transformation (D.1.17). On
the other hand, however, it is also the most familiar case, as it applies to all charged fermions.
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D.2.1 General treatment

Propagator in general

Since n = m, we can define new field ψ,

ψ ≡ ψL + ψR , (D.2.1)

and its full, free and 1PI propagator:

iGψ = 〈ψψ̄〉 , (D.2.2)
iSψ = 〈ψψ̄〉0 , (D.2.3)
−iΣψ = 〈ψψ̄〉1PI . (D.2.4)

These are related to one another as

Σψ = S−1
ψ −G

−1
ψ . (D.2.5)

The full and 1PI propagators have the form

iGψ = 〈ψψ̄〉 (D.2.6a)
= 〈ψRψ̄R〉+ 〈ψLψ̄L〉+ 〈ψLψ̄R〉+ 〈ψRψ̄L〉 (D.2.6b)

= i
(
/pPLARR + /pPRALL + PLALR + PRARL

)
(D.2.6c)

and

− iΣψ = 〈ψψ̄〉1PI (D.2.7a)
= 〈ψRψ̄R〉1PI + 〈ψLψ̄L〉1PI + 〈ψLψ̄R〉1PI + 〈ψRψ̄L〉1PI (D.2.7b)

= i
(
/pPR aRR + /pPL aLL + PR aLR + PL aRL

)
, (D.2.7c)

respectively. One can easily see that all the four particular propagators in (D.2.6b) and in (D.2.7b)
are invariant under the phase transformation (D.1.17), which now in terms of the field ψ read

U(1) : ψ −→ [ψ]′ = eiθ ψ . (D.2.8)

Free Lagrangian and propagator

Let us now consider the most general free Lagrangian, made of the fields ψL, ψR and invariant
under the phase transformation (D.1.17):

L = ψ̄Li/∂ψL + ψ̄Ri/∂ψR − ψ̄LmDψR − ψ̄Rm†
DψL , (D.2.9)

where mD is in principle arbitrary complex m×m = n× n matrix. The subscript D stands for
“Dirac”, since these are the “Dirac mass terms”. In terms of ψ the free Lagrangian can be easily
rewritten as

L = ψ̄i/∂ψ − ψ̄(m†
DPL +mDPR)ψ . (D.2.10)
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If we denote

m ≡ m†
DPL +mDPR , (D.2.11)

we can write it even more compactly as

L = ψ̄i/∂ψ − ψ̄mψ . (D.2.12)

The free propagator iSψ = 〈ψψ̄〉0 can be easily achieved by inverting the free Lagrangian:

Sψ =
[
/p− (m†

DPL +mDPR)
]−1

(D.2.13a)

= (/p+mD)(p2 −m†
DmD)−1PL + (/p+m†

D)(p2 −mDm
†
D)−1PR . (D.2.13b)

In terms of m, (D.2.11), we can write also

Sψ =
[
/p−m

]−1
(D.2.14a)

= (/p+ m†)(p2 −m m†)−1 (D.2.14b)

= (p2 −m†m)−1(/p+ m†) . (D.2.14c)

D.2.2 Simplifying assumptions

With respect to the applications in the main text, we are now going to make some simplifying as-
sumptions concerning the free and 1PI propagators and to arrive at expressions the corresponding
full propagator.

Hermiticity

We first make the assumption about Hermiticity of the self-energy Σψ:

Σψ = Σ̄ψ (D.2.15)

(where Σ̄ψ ≡ γ0 Σ†
ψ γ0). Notice that the free propagator already satisfies analogous condition:

Sψ = S̄ψ . (D.2.16)

This is in fact just the condition for the free Lagrangian to be Hermitian. Consequently, since
the full propagator can be expressed in terms of those free and 1PI as Gψ = (S−1

ψ −Σψ)−1, the
condition (D.2.15) for the self-energy induces an analogous condition for the full propagator:

Gψ = Ḡψ . (D.2.17)

These conditions for the 1PI and full propagators imply the following relations among their, until
now independent, components:

ARR = A†RR , (D.2.18a)

ALL = A†LL , (D.2.18b)

ARL = A†LR (D.2.18c)
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for the full propagators and

aRR = a†RR , (D.2.19a)

aLL = a†LL , (D.2.19b)

aRL = a†LR (D.2.19c)

for the 1PI propagator.

No wave-function renormalization

We may set

aRR = 0 , (D.2.20a)
aLL = 0 , (D.2.20b)

and rename the remaining coefficients aRL = a†LR as

aLR = −ΣD , (D.2.21a)
aRL = −Σ†D . (D.2.21b)

The subscript D stands for Dirac. The self-energy Σψ , (D.2.7), then recasts as

Σψ = Σ†D PL + ΣD PR . (D.2.22)

Now if we further assume that the bare propagator is just S−1
ψ = /p, the components of the full

propagator Gψ , (D.2.6), are

ARR = DR , (D.2.23a)
ALL = DL , (D.2.23b)
ALR = ΣDDR = DL ΣD , (D.2.23c)
ARL = Σ†DDL = DR Σ†D , (D.2.23d)

where we denoted

DR ≡
(
p2 − Σ†D ΣD

)−1
, (D.2.24a)

DL ≡
(
p2 − ΣD Σ†D

)−1
. (D.2.24b)

Let us explicitly state the commutation relation

ΣDDR = DL ΣD , (D.2.25)

used in (D.2.23c) and (D.2.23d). Also note that DL, DR trivially commute with γµ, since DL,
DR do not contain any γ5.

It is convenient to introduce also another notation. Let us define

DR ≡
(
p2 −Σ†

ψ Σψ

)−1 = DL PR +DL PL , (D.2.26a)

DL ≡
(
p2 −Σψ Σ†

ψ

)−1 = DL PL +DR PR . (D.2.26b)
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The commutation relation of DL, DR with Σψ reads

DLΣψ = Σψ DR , (D.2.27)

which is much the same as the commutation relation (D.2.25). On the other hand, the commuta-
tion relations with γµ are now non-trivial, due to presence of γ5 in DL, DR:

γµ DL = DR γ
µ , (D.2.28a)

γµ DR = DL γ
µ . (D.2.28b)

Expressions of the full propagator

Consider now the full propagator Gψ , given in terms of Σψ as

Gψ =
(
/p−Σψ

)−1
. (D.2.29)

The inversion can be done in terms of ΣD, with the chiral projectors shown explicitly, as

Gψ =
(
/p+ ΣD

)
DR PL +

(
/p+ Σ†D

)
DL PR , (D.2.30)

which is analogous to the expression (D.2.13) of the free propagator Sψ . Using the definitions
(D.2.26) it is also possible to express Gψ in terms of Σψ in more compact way, with the chiral
projectors “hidden”:

Gψ =
(
/p+ Σ†

ψ

)
DL (D.2.31a)

= DR

(
/p+ Σ†

ψ

)
, (D.2.31b)

in analogy with the expression (D.2.14) for the free propagator Sψ .

Diagrammatics

Let us finally state here the Feynman rules for the self-energy (D.2.22) and the full propagator
(D.2.31). The self-energy line is

〈ψψ̄〉1PI =
ψ ψ

= −i
(
Σ†D PL + ΣD PR

)
(D.2.32a)

= −iΣψ (D.2.32b)

and its chiral components read

〈ψLψ̄R〉1PI =
ψL ψR

= −i ΣD PR , (D.2.33a)

〈ψRψ̄L〉1PI =
ψR ψL

= −i Σ†D PL . (D.2.33b)
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For the full propagator we have

〈ψψ̄〉 =
ψ ψ

= i
(
/p+ ΣD

)
DR PL + i

(
/p+ Σ†D

)
DL PR (D.2.34a)

= i
(
/p+ Σ†

ψ

)
DL = iDR

(
/p+ Σ†

ψ

)
, (D.2.34b)

with the chiral component not including /p:

〈ψLψ̄R〉 =
ψL ψR

= iΣDDR PL = iDL ΣD PL , (D.2.35a)

〈ψRψ̄L〉 =
ψR ψL

= iΣ†DDL PR = iDR Σ†D PR , (D.2.35b)

and the chiral component proportional to /p:

〈ψLψ̄L〉 =
ψL ψL

/p = i /pDL PR , (D.2.36a)

〈ψRψ̄R〉 =
ψR ψR

/p = i /pDR PL . (D.2.36b)

D.3 Majorana field in the Nambu–Gorkov formalism

Now we relax both assumptions made in the previous section, i.e., we do not anymore require
invariance of the propagators of ψL, ψR under the phase transformation (D.1.17) and we assume
that the numbers of ψL and ψR are in general different: m 6= n.

D.3.1 General treatment

Propagator in general

We define the new field Ψ, called the Namby–Gorkov field, as

Ψ ≡
(
ψL + (ψL)c

ψR + (ψR)c

)
(D.3.1)

and denote its propagators as

iGΨ = 〈ΨΨ̄〉 , (D.3.2)
iSΨ = 〈ΨΨ̄〉0 , (D.3.3)
−iΣΨ = 〈ΨΨ̄〉1PI . (D.3.4)
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Again, the self-energy is related to the full and free propagators as

ΣΨ = S−1
Ψ −G−1

Ψ . (D.3.5)

Clearly, the definition (D.3.1) is consistent with the assumption m 6= n. Moreover, the
propagators really do incorporate the particular propagators like, e.g., 〈ψc

Lψ̄R〉, breaking the
invariance under (D.1.17). Let us see it explicitly. The full propagator reads

iGΨ = 〈ΨΨ̄〉 (D.3.6a)

=
(
〈(ψL)c(ψ̄L)c〉 〈(ψL)cψ̄R〉
〈ψR(ψ̄L)c〉 〈ψRψ̄R〉

)
+
(
〈ψLψ̄L〉 〈ψL(ψ̄R)c〉
〈(ψR)cψ̄L〉 〈(ψR)c(ψ̄R)c〉

)
+
(
〈ψL(ψ̄L)c〉 〈ψLψ̄R〉
〈(ψR)c(ψ̄L)c〉 〈(ψR)cψ̄R〉

)
+
(
〈(ψL)cψ̄L〉 〈(ψL)c(ψ̄R)c〉
〈ψRψ̄L〉 〈ψR(ψ̄R)c〉

)
(D.3.6b)

= i
(
/pPLA+ /pPR B + PL C + PRD

)
, (D.3.6c)

while the 1PI is

− iΣΨ = 〈ΨΨ̄〉1PI (D.3.7a)

=
(
〈ψLψ̄L〉1PI 〈ψL(ψ̄R)c〉1PI

〈(ψR)cψ̄L〉1PI 〈(ψR)c(ψ̄R)c〉1PI

)
+
(
〈(ψL)c(ψ̄L)c〉1PI 〈(ψL)cψ̄R〉1PI

〈ψR(ψ̄L)c〉1PI 〈ψRψ̄R〉1PI

)
+
(
〈(ψL)cψ̄L〉1PI 〈(ψL)c(ψ̄R)c〉1PI

〈ψRψ̄L〉1PI 〈ψR(ψ̄R)c〉1PI

)
+
(
〈ψL(ψ̄L)c〉1PI 〈ψLψ̄R〉1PI

〈(ψR)c(ψ̄L)c〉1PI 〈(ψR)cψ̄R〉1PI

)
(D.3.7b)

= i
(
/pPLA1PI + /pPR B1PI + PL C1PI + PRD1PI

)
, (D.3.7c)

where we denoted

A ≡
(
BLL CLR
DRL ARR

)
, (D.3.8a)

B ≡
(
ALL DLR

CRL BRR

)
, (D.3.8b)

C ≡
(
DLL ALR
BRL CRR

)
, (D.3.8c)

D ≡
(
CLL BLR
ARL DRR

)
, (D.3.8d)

A1PI ≡
(
aLL dLR
cRL bRR

)
, (D.3.9a)

B1PI ≡
(

bLL cLR
dRL aRR

)
, (D.3.9b)

C1PI ≡
(

cLL bLR
aRL dRR

)
, (D.3.9c)

D1PI ≡
(
dLL aLR
bRL cRR

)
. (D.3.9d)

Indeed, we can see the propagators, non-invariant under (D.1.17), are really included. In fact,
all of the possible propagators (D.1.2), (D.1.4), (D.1.6), (D.1.8) and (D.1.3), (D.1.5), (D.1.7),
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(D.1.9), that can be made out of the fields ψL, ψR, are included in the propagators (D.3.6) and
(D.3.7), respectively. In this sense the formalism Ψ is the most general one.

For completeness, let us also derive how the U(1) transformation (D.1.17) looks in terms of
the field Ψ:

U(1) : Ψ =
(
ψL + (ψL)c

ψR + (ψR)c

)
−→

[Ψ]′ =
(

eiθ ψL + e−iθ (ψL)c

eiθ ψR + e−iθ (ψR)c

)
(D.3.10a)

=
(

eiθPL + e−iθPR 0
0 eiθPR + e−iθPL

)(
ψL + (ψL)c

ψR + (ψR)c

)
(D.3.10b)

=
(

e−iγ5θ 0
0 eiγ5θ

)
Ψ (D.3.10c)

= e−iγ5σ3 θ Ψ . (D.3.10d)

The matrix σ3 acts of course in the Nambu–Gorkov doublet space.
The field Ψ is a Majorana field, since it satisfies the Majorana condition (A.1.21):

Ψc = Ψ , (D.3.11)

as can be readily seen from its definition (D.3.1). As shown in appendix C, the full propagator
GΨ must therefore satisfy the condition

GΨ(p) = Gc
Ψ(−p) . (D.3.12)

The same condition must be satisfied also by the free propagator SΨ, which is after all merely a
special case of GΨ in the case of no interactions. Thus, self-energy ΣΨ must satisfy it too:

ΣΨ(p) = Σc
Ψ(−p) . (D.3.13)

The conditions (D.3.12) and (D.3.13) for GΨ and ΣΨ are in fact equivalent to the conditions
(D.1.11), (D.1.13), (D.1.15) and (D.1.12), (D.1.14), (D.1.16), respectively, discussed already
above. In terms of the matrix formalism (D.3.8) and (D.3.9) they can be more compactly rewrit-
ten as

A = BT , (D.3.14a)
C = CT , (D.3.14b)
D = DT , (D.3.14c)

A1PI = BT
1PI , (D.3.15a)

C1PI = CT1PI , (D.3.15b)
D1PI = DT

1PI . (D.3.15c)
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Free Lagrangian and propagator

The most general free Lagrangian of the fields ψL, ψR, non-invariant under (D.1.17), reads

L = ψ̄Li/∂ψL + ψ̄Ri/∂ψR −
(
ψ̄LmDψR +

1
2
ψ̄LmL(ψL)c +

1
2
(ψ̄R)cmRψR + h.c.

)
.

(D.3.16)

Here mD is a rectangular m×n matrix, while the mL, mR are square matrices with dimensions
n × n, m × m, respectively. Moreover, the matrices mL, mR can be taken without loss of
generality symmetric:

mL = mT
L , (D.3.17a)

mR = mT
R , (D.3.17b)

since their antisymmetric parts do not contribute to the Lagrangian. Let us see it on an example
of, say, mR:

(ψ̄R)cmRψR = −ψT
RC

−1mRψR (D.3.18a)

= −
[
ψT
RC

−1mRψR
]T

(D.3.18b)

= −ψT
RC

−1mT
RψR (D.3.18c)

= (ψ̄R)cmT
RψR . (D.3.18d)

(In the second line, (D.3.18b), we used the antisymmetricity (A.1.15) of the matrix C of charge
conjugation, which compensated for the minus sign due to anti-commuting character of the
fermion field, occurring when taking the transpose.) Therefore the antisymmetric part of mR

must vanish in the bilinear ψ̄RmR(ψR)c. For mL the argument would be the same.
In terms of the field Ψ the free Lagrangian (D.3.16) can be rewritten as

L =
1
2
Ψ̄i/∂Ψ− 1

2
Ψ̄mΨ +

1
2
∂µ
(
ψ̄Lγ

µψL
)

+
1
2
∂µ
(
ψ̄Rγ

µψR
)
, (D.3.19)

where we defined the matrix m,

m ≡ m†PL +mPR , (D.3.20)

in terms of the symmetric matrix m:

m ≡
(
mL mD

mT
D mR

)
. (D.3.21)

The total divergencies in (D.3.19) do not contribute to the action and we will accordingly dismiss
them in the following.

The free propagator SΨ is now obtained easily by inverting the free Lagrangian (D.3.19).
Likewise in the Dirac case, we can express it either in terms of m, (D.3.21), as

SΨ =
[
/p− (m†PL +mPR)

]−1
(D.3.22a)

= (/p+m)(p2 −m†m)−1PL + (/p+m†)(p2 −mm†)−1PR , (D.3.22b)
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or more compactly, in terms of m, (D.3.20), as

SΨ =
[
/p−m

]−1
(D.3.23a)

= (/p+ m†)(p2 −m m†)−1 (D.3.23b)

= (p2 −m†m)−1(/p+ m†) . (D.3.23c)

Notice that both expressions (D.3.22) and (D.3.23) for SΨ are formally the same as their Dirac
counterparts (D.2.13) and (D.2.14), respectively, for Sψ . One can verify that SΨ indeed satisfies
the condition

SΨ(p) = Sc
Ψ(−p) , (D.3.24)

due to obvious symmetricity of m,

m = mT , (D.3.25)

or equivalently, due to

m = mc . (D.3.26)

D.3.2 Simplifying assumptions

Hermiticity

We are again free to demand

ΣΨ = Σ̄Ψ . (D.3.27)

Since the free propagator SΨ already satisfies SΨ = S̄Ψ, the condition (D.3.27) implies, by
means of the relation (D.3.5), similar condition for GΨ:

GΨ = ḠΨ . (D.3.28)

Assuming (D.3.28) and (D.3.27) we obtain, on top of the conditions (D.3.14) and (D.3.15), also
the following conditions for the particular components (D.3.8), (D.3.9) of the propagators:

A = A† , (D.3.29a)

B = B† , (D.3.29b)

C = D† , (D.3.29c)

A1PI = A†1PI , (D.3.30a)

B1PI = B†1PI , (D.3.30b)

C1PI = D†1PI . (D.3.30c)

No wave-function renormalization

We may set

A1PI = 0 , (D.3.31a)
B1PI = 0 (D.3.31b)
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and rename the remaining self-energy C1PI = D†1PI as

D1PI = −ΣΨ , (D.3.32a)
C1PI = −Σ†Ψ . (D.3.32b)

The self-energy ΣΨ hence takes the form

ΣΨ = Σ†Ψ PL + ΣΨ PR . (D.3.33)

As an aside, notice that

Σc
Ψ = Σ∗Ψ PL + ΣT

Ψ PR , (D.3.34)

so that the condition (D.3.13) is in terms of ΣΨ equivalent to

ΣΨ = ΣT
Ψ , (D.3.35)

where we ignore the momentum argument, since for ΣΨ, as being a function of p2, the change
of sign in (D.3.13) does not matter.

The chiral components A, B, C, D of the full propagator GΨ can be now expressed as

A = DT
Ψ , (D.3.36a)

B = DΨ , (D.3.36b)
C = ΣΨD

T
Ψ = DΨ ΣΨ , (D.3.36c)

D = Σ†ΨDΨ = DT
Ψ Σ†Ψ , (D.3.36d)

where we denoted

DΨ ≡
(
p2 − ΣΨ Σ†Ψ

)−1
. (D.3.37a)

Notice that due to the symmetricity of ΣΨ we have

DT
Ψ =

(
p2 − Σ†Ψ ΣΨ

)−1
, (D.3.37b)

so that there is no need to introduce independent denotations (e.g., DΨL, DΨR, in analogy with
DL, DR, (D.2.24)) for the two quantities (D.3.37). This time the commutation relation of DΨ

with ΣΨ reads

ΣΨD
T
Ψ = DΨ ΣΨ (D.3.38)

and the commutation relation of DΨ with γµ is again of course trivial.
Like in the previous section, it is again useful to define

DΨ ≡
(
p2 −ΣΨ Σ†

Ψ

)−1 = DΨ PL +DT
Ψ PR . (D.3.39a)

Note that since

Dc
Ψ ≡

(
p2 −Σ†

Ψ ΣΨ

)−1 = DT
Ψ PL +DΨ PR , (D.3.39b)



Fermion propagator 253

we again do not need to introduce two independent denotations for the two quantities (D.3.39),
in contrast to the Dirac case (D.2.26). The commutation relation (D.3.38) translates in terms of
DΨ as

ΣΨ Dc
Ψ = DΨ ΣΨ . (D.3.40)

Commutation relation with γµ is this time non-trivial:

γµ DΨ = Dc
Ψ γ

µ , (D.3.41a)
γµ Dc

Ψ = DΨ γ
µ . (D.3.41b)

Expressions of the full propagator

The full propagator of the field Ψ,

GΨ =
(
/p−ΣΨ

)−1
, (D.3.42)

can be again expressed in terms of ΣΨ, with the chiral projectors shown explicitly, as

GΨ =
(
/p+ ΣΨ

)
DT

Ψ PL +
(
/p+ Σ†Ψ

)
DΨ PR , (D.3.43)

which is analogous to the expression (D.3.22) of the free propagator SΨ. Using the definition
(D.3.39) it also possible to express GΨ in terms of ΣΨ in more compact way, with the chiral
projectors “hidden”:

GΨ =
(
/p+ Σ†

Ψ

)
DΨ (D.3.44a)

= Dc
Ψ

(
/p+ Σ†

Ψ

)
, (D.3.44b)

in analogy with the expression (D.3.23) for SΨ.

Propagators in the Nambu–Gorkov doublet space

Let us introduce some denotation for the components of the self-energy ΣΨ in the Nambu–
Gorkov doublet space Ψ:

ΣΨ =
(

ΣL ΣD
ΣT
D ΣR

)
, (D.3.45)

where the components ΣL, ΣR are symmetric matrices, so that the ΣΨ is symmetric too. Let us
also introduce some denotation for the corresponding blocks of DΨ:

DΨ = (p2 − ΣΨ Σ†Ψ)−1 (D.3.46a)

=
(
p2 − (ΣL Σ∗L + ΣD Σ†D) −(ΣL Σ∗D + ΣD Σ∗R)
−(ΣT

D Σ∗L + ΣR Σ†D) p2 − (ΣR Σ∗R + ΣT
D Σ∗D)

)−1

(D.3.46b)

≡
(

DL DM

D†
M DT

R

)
. (D.3.46c)
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It is possible to invertDΨ, (D.3.46b), explicitly, i.e., to express the blocksDL, DR, DM in terms
of ΣL, ΣR, ΣD. One can use for this purpose the formula for the block-wise inversion(

A B
C D

)−1

=

( (
A−BD−1C

)−1 −
(
A−BD−1C

)−1
BD−1

−D−1C
(
A−BD−1C

)−1
D−1 +D−1C

(
A−BD−1C

)−1
BD−1

)
(D.3.47a)

=

(
A−1 +A−1B

(
D − CA−1B

)−1
CA−1 −A−1B

(
D − CA−1B

)−1

−
(
D − CA−1B

)−1
CA−1

(
D − CA−1B

)−1

)
,

(D.3.47b)

holding provided A and D are square matrices; one can choose the appropriate form of the
inversion according to which of the inversions

(
A − BD−1C

)−1
, D−1 or

(
D − CA−1B

)−1
,

A−1 do exist and which do not. However, for general ΣL, ΣR, ΣD the explicit forms of DL,
DR, DM would not be neither very elegant nor illuminating. Nevertheless, in order to get some
feeling about it, we are going to do it for two special cases: We consider vanishing the Dirac
self-energy ΣD and non-vanishing Majorana self-energies ΣL, ΣR, and vice versa:

• Let both ΣL = 0, ΣR = 0. Then

DL = (p2 − ΣD Σ†D)−1 , (D.3.48a)

DR = (p2 − Σ†D ΣD)−1 , (D.3.48b)
DM = 0 . (D.3.48c)

Note that in this case the form of DL, DR in terms of ΣD coincides with the definition
(D.2.24) of DL, DR in the context of a Dirac field.

• Let ΣD = 0. Then

DL = (p2 − ΣL Σ†L)−1 , (D.3.49a)

DR = (p2 − Σ†R ΣR)−1 , (D.3.49b)
DM = 0 . (D.3.49c)

We have seen that in both cases DM = 0. This is not a coincidence. One can see from
(D.3.46) clearly that DM is proportional to the off-diagonal blocks of p2 − ΣΨ Σ†Ψ (both of
which are related to each other only by the Hermitian conjugation):

DM ∝ ΣL Σ∗D + ΣD Σ∗R . (D.3.50)

This should be understood as

ΣL Σ∗D + ΣD Σ∗R = 0 ⇒ DM = 0 . (D.3.51)
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Let us finally show how the relation (D.3.38) is translated in terms of the Nambu–Gorkov
blocks (D.3.46):

DL ΣL +DM ΣT
D = ΣLDT

L + ΣDDT
M , (D.3.52a)

DT
R ΣR +D†

M ΣD = ΣRDR + ΣT
DD

∗
M , (D.3.52b)

DM ΣR +DL ΣD = ΣLD∗
M + ΣDDR . (D.3.52c)

Diagrammatics

The line corresponding to the 1PI propagator ΣΨ is

〈ΨΨ̄〉1PI =
Ψ Ψ

= −i
(
Σ†Ψ PL + ΣΨ PR

)
(D.3.53a)

= −iΣΨ . (D.3.53b)

Notice that it has no arrows, as the field Ψ is real. The lines corresponding to the chiral compo-
nents of ΣΨ (i.e., corresponding to the fields ψL, ψR) are

〈ψLψ̄R〉1PI =
ψL ψR

= −i ΣD PR , (D.3.54a)

〈ψRψ̄L〉1PI =
ψR ψL

= −i Σ†D PL , (D.3.54b)

〈ψR(ψ̄R)c〉1PI =
ψR ψR

= −i Σ†R PL , (D.3.54c)

〈(ψR)cψ̄R〉1PI =
ψR ψR

= −i ΣR PR , (D.3.54d)

〈ψL(ψ̄L)c〉1PI =
ψL ψL

= −i ΣL PR , (D.3.54e)

〈(ψL)cψ̄L〉1PI =
ψL ψL

= −i Σ†L PL . (D.3.54f)

The full propagator GΨ is

〈ΨΨ̄〉 =
Ψ Ψ

= i
(
/p+ ΣΨ

)
DT

Ψ PL + i
(
/p+ Σ†Ψ

)
DΨ PR (D.3.55a)

= i
(
/p+ Σ†

Ψ

)
DΨ = iDc

Ψ

(
/p+ Σ†

Ψ

)
, (D.3.55b)
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again without the arrows. The chiral components without /p are

〈ψLψ̄R〉 =
ψL ψR

= i
(
ΣDDR + ΣLD∗

M

)
PL

= i
(
DL ΣD +DM ΣR

)
PL , (D.3.56a)

〈ψRψ̄L〉 =
ψR ψL

= i
(
DR Σ†D +DT

M Σ†L
)
PR

= i
(
Σ†DDL + Σ†RD

†
M

)
PR , (D.3.56b)

〈ψL(ψ̄L)c〉 =
ψL ψL

= i
(
ΣLDT

L + ΣDDT
M

)
PL

= i
(
DL ΣL +DM ΣT

D

)
PL , (D.3.56c)

〈(ψL)cψ̄L〉 =
ψL ψL

= i
(
DT
L Σ†L +D∗

M Σ†D
)
PR

= i
(
Σ†LDL + Σ∗DD

†
M

)
PR , (D.3.56d)

〈ψR(ψ̄R)c〉 =
ψR ψR

= i
(
Σ†RD

T
R + Σ†DDM

)
PR

= i
(
DR Σ†R +DT

M Σ∗D
)
PR , (D.3.56e)

〈(ψR)cψ̄R〉 =
ψR ψR

= i
(
DT
R ΣR +D†

M ΣD
)
PL

= i
(
ΣRDR + ΣT

DD
∗
M

)
PL (D.3.56f)
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and proportional to /p are

〈ψLψ̄L〉 =
ψL ψL

/p = i /pDL PR , (D.3.57a)

〈ψRψ̄R〉 =
ψR ψR

/p = i /pDR PL , (D.3.57b)

〈(ψL)cψ̄R〉 =
ψL ψR

/p = i /pD∗
M PL , (D.3.57c)

〈ψR(ψ̄L)c〉 =
ψR ψL

/p = i /pDT
M PL , (D.3.57d)

〈(ψR)cψ̄L〉 =
ψR ψL

/p = i /pD
†
M PR , (D.3.57e)

〈ψL(ψ̄R)c〉 =
ψL ψR

/p = i /pDM PR . (D.3.57f)

D.4 Relations between the Dirac and Nambu–Gorkov fields

The Nambu–Gorkov formalism Ψ is more general than the more usual ψ one, as it releases all
the special assumptions made when working with ψ. Therefore the quantities written in terms of
ψ must be expressible in terms of Ψ. And vice versa, the quantities written in the Ψ basis should
be expressible in the ψ basis in the special case of n = m and with the invariance under (D.1.17).
This section is devoted to the problem of translating quantities from one basis to the other.

D.4.1 Basic relations

We start by stating the basic relations between the fields ψ and Ψ:

Ψ = P ψ + P̄ † ψc , (D.4.1a)
ψ = P † Ψ , (D.4.1b)

where we introduced the quantity P as

P ≡
(
PL
PR

)
, (D.4.2a)
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so that

P̄ =
(
PR, PL

)
, (D.4.2b)

P † =
(
PL, PR

)
, (D.4.2c)

P̄ † =
(
PR
PL

)
. (D.4.2d)

Taking into account the definition of P , the relations (D.4.1) can be seen rather directly from the
explicit expression of Ψ and ψ in terms of ψL, ψR, Eqs. (D.3.1) and (D.2.1), respectively.

The quantities (D.4.2) satisfy

P †P = 1 = P̄ P̄ † , (D.4.3a)
P̄P = 0 = P †P̄ † , (D.4.3b)

as well as the relation

P † = P c . (D.4.4)

In practical calculations one may find useful the expressions

PP̄ =
(

0 PL
PR 0

)
=

1
2
(σ1 − iγ5σ2) , (D.4.5a)

P̄ †P † =
(

0 PR
PL 0

)
=

1
2
(σ1 + iγ5σ2) , (D.4.5b)

PP † =
(
PL 0
0 PR

)
=

1
2
(1− γ5σ3) , (D.4.5c)

P̄ †P̄ =
(
PR 0
0 PL

)
=

1
2
(1 + γ5σ3) . (D.4.5d)

We will occasionally call the quantities (D.4.2) the projectors, although, strictly speaking, only
their combinations PP † and P̄ †P̄ are true projectors.

D.4.2 Propagators

From the above considerations one can infer the relations between the full propagators GΨ and
Gψ:

GΨ(p) = P Gψ(p) P̄ + P̄ †Gc
ψ(−p)P † , (D.4.6a)

Gψ(p) = P †GΨ(p) P̄ † , (D.4.6b)

as well as the relations between the self-energies ΣΨ and Σψ:

ΣΨ(p) = P̄ †Σψ(p)P † + P Σc
ψ(−p) P̄ , (D.4.7a)

Σψ(p) = P̄ ΣΨ(p)P . (D.4.7b)

Notice that the “Majorana” symmetries (D.3.12) and (D.3.13) of these expressions for GΨ(p)
and ΣΨ(p), respectively, are evident upon taking into account the relation (D.4.4). Explicitly we
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can write GΨ(p) and ΣΨ(p) in terms of the chiral components of the most general forms (D.2.6)
and (D.2.7) of Gψ(p) and Σψ(p), respectively, as

GΨ(p) =
(
/p(AT

LL PL +ALL PR) AT
RL PR +ALR PL

AT
LR PL +ARL PR /p(AT

RR PR +ARR PL)

)
, (D.4.8a)

ΣΨ(p) = −
(
/p(aLL PL + aT

LL PR) aLR PR + aT
RL PL

aRL PL + aT
LR PR /p(aRR PR + aT

RR PL)

)
. (D.4.8b)

Assume now that the self-energy Σψ(p) has the special form (D.2.22):

Σψ = Σ†D PL + ΣD PR . (D.4.9)

The matrix expression (D.4.8b) for ΣΨ then acquires the form

ΣΨ =
(

0 Σψ PR + Σc
ψ PL

Σψ PL + Σc
ψ PR 0

)
, (D.4.10)

which is expressible in the form (D.3.33),

ΣΨ = Σ†Ψ PL + ΣΨ PR , (D.4.11)

with ΣΨ given in terms of ΣD as

ΣΨ =
(

0 ΣD
ΣT
D 0

)
. (D.4.12)

Notice that this corresponds to the general form (D.3.45) of ΣΨ up to the missing Majorana
components ΣL, ΣR.

Similarly can be treated the full propagators. Assuming the Gψ(p) to be of the form (D.2.30)

Gψ =
(
/p+ ΣD

)
DR PL +

(
/p+ Σ†D

)
DL PR , (D.4.13)

corresponding to Σψ of the form (D.4.9), we find GΨ(p) to be

GΨ =

(
/p(DT

L PL +DL PR) (ΣDDR)PL + (Σ†DDL)TPR
(ΣDDR)TPL + (Σ†DDL)PR /p(DR PL +DT

R PR)

)
. (D.4.14)

Comparing this with the expression (D.3.43) for GΨ we find

DΨ =
(
DL 0
0 DT

R

)
, (D.4.15)

which is just a special case of (D.3.46c) with vanishing Majorana component DM .

D.4.3 Vertex

Full vertex

Although this appendix is predominantly devoted to the fermion propagators, it is worth spending
few words here also about the fermion-fermion-gauge boson vertex, due to applications in the
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main text. The full three-point function in question has in both bases ψ, Ψ the same general
structure

〈Aµψψ̄〉 ∼ Gψ(p′) Γµψ(p′, p)Gψ(p) , (D.4.16a)

〈AµΨΨ̄〉 ∼ GΨ(p′) ΓµΨ(p′, p)GΨ(p) . (D.4.16b)

We omit here the gauge boson propagators as well as the gauge indices at the vertex functions,
as they are irrelevant for the present discussion.

We will now derive the relation between the proper vertices Γµψ(p′, p), ΓµΨ(p′, p), like we did
before for the self-energies Σψ(p), ΣΨ(p). Taking into account the expression (D.4.1a) of Ψ in
terms of ψ and the properties of the charge conjugation, we arrive at

GΨ(p′) ΓµΨ(p′, p)GΨ(p) =
P Gψ(p′) Γµψ(p′, p)Gψ(p) P̄ + P̄ †Gc

ψ(−p′) Γµc
ψ (−p,−p′)Gc

ψ(−p)P † .
(D.4.17)

In deriving it one must also take into account properly the definition of the Fourier transform and
be consistent with assignments of the momenta in both terms on the right-hand side of (D.4.17),
as well as the fact that 〈Aµψψ̄c〉 = 〈Aµψcψ̄〉 = 0 due to assumed Dirac character of the field
ψ.82 On the other hand, we may also use the expression (D.4.6a) of GΨ(p) in terms of Gψ(p) to
arrive at

GΨ(p′) ΓµΨ(p′, p)GΨ(p) =
P Gψ(p′) P̄ ΓµΨ(p′, p)P Gψ(p) P̄ + P̄ †Gc

ψ(−p′)P † ΓµΨ(p′, p) P̄ †Gc
ψ(−p)P † .

(D.4.18)

(Again, the “cross terms”, proportional to Gc
ψ(p′) . . . Gψ(p), Gψ(p′) . . . Gc

ψ(p), are not consid-
ered for similar arguments.) We can now compare the two expressions (D.4.17), (D.4.18) and
use again the projectors (D.4.2): First we multiply the them from left by P † and from right by P̄ †

and then from left by P̄ and from right by P . The projectors project out two separate equations:

P̄ ΓµΨ(p′, p)P = Γµψ(p′, p) , (D.4.19)

P † ΓµΨ(p′, p) P̄ † = Γµc
ψ (−p,−p′) . (D.4.20)

This implies that the ΓµΨ(p′, p) in terms of Γµψ(p′, p) is given by

ΓµΨ(p′, p) = P̄ † Γµψ(p′, p)P † + P Γµc
ψ (−p,−p′) P̄ . (D.4.21a)

Conversely, one can now easily obtain expression for Γµψ(p′, p) in terms of

Γµψ(p′, p) = P̄ ΓµΨ(p′, p)P (D.4.21b)

by applying the projectors (D.4.2) on (D.4.21a) and taking into account the relations (D.4.3).

82It is unnatural to assume that the propagator is invariant under phase transformation, while at the same time the
vertex is not.



Fermion propagator 261

Bare vertex and generators

The formulæ (D.4.21) can be now exploited by considering the bare vertices

Γµψ(p′, p)
∣∣
bare

= gγµtψ , (D.4.22a)

ΓµΨ(p′, p)
∣∣
bare

= gγµtΨ , (D.4.22b)

where tψ , tΨ are the symmetry generators of the symmetry G in question in the respective bases
(recall that we suppress the gauge indices) and g is a gauge coupling constant. This corresponds
to the interaction Lagrangian

L = gψ̄γµtψψAµ (D.4.23a)

= g
1
2
Ψ̄γµtΨΨAµ (D.4.23b)

and to the symmetry transformation

G : ψ −→ [ψ]′ = eiθtψ ψ , (D.4.24a)
G : Ψ −→ [Ψ]′ = eiθtΨ Ψ . (D.4.24b)

Upon plugging the bare vertices (D.4.22) into (D.4.21) we arrive at the generator tΨ ex-
pressed in terms of tψ:

tΨ = P tψ P
† − P̄ † t̄cψ P̄ , (D.4.25)

and vice versa:

tψ = P † tΨ P . (D.4.26)

Since tψ is in general a linear combination of only 1 and γ5 (or, equivalently, PL and PR), we
can write the matrix form of tΨ, (D.4.25), as

tΨ =
(
tψ PL − t̄cψ PR 0

0 tψ PR − t̄cψ PL

)
. (D.4.27)

The Lagrangian (D.4.23) in the basis ψ can be also expressed in the chiral bases ψL, ψR as

L = gψ̄Lγ
µtψLψLAµ + gψ̄Rγ

µtψRψRAµ , (D.4.28)

where tψL , tψR do not contain any γ5. It corresponds to the symmetry transformations

G : ψL −→ [ψL]′ = eiθtψL ψL , (D.4.29a)
G : ψR −→ [ψR]′ = eiθtψR ψR . (D.4.29b)

The generators tψ and tψL , tψR are related to each other by

tψ = tψL PL + tψR PR . (D.4.30)

Now we can express the generator tΨ in terms of tψL , tψR as

tΨ =
(
tψL PL − tTψL PR 0

0 tψR PR − tTψR PL

)
. (D.4.31)
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D.5 Diagonalization of the Dirac propagator

Regarding the application in the main text (namely in chapter 7) we will now consider diagonal-
ization of the propagator Gψ of the Dirac field ψ, introduced in section D.2. We will not do it in
full generality but rather restrict ourselves to the special case discussed in section D.2.2.

D.5.1 Diagonalization

Consider the Dirac self-energy Σψ of the form (D.2.22). Using the bi-unitary transformation
(which is a special case of the more general singular value decomposition) we can diagonalize
its part ΣD as83

ΣD(p2) = V †(p2)M(p2)U(p2) , (D.5.1)

where U , V are some unitary matrices and M is a diagonal, real, non-negative matrix:

M(p2) = diag
(
M1(p2),M2(p2), . . . ,Mn(p2)

)
. (D.5.2)

It is convenient to introduce unitary matrix

X(p2) ≡ V †(p2)PL + U†(p2)PR , (D.5.3)

as it will allow us to write more compact formulæ, without the necessity to use explicitly the
chiral projectors PL, PR. It can be used to diagonalize Σψ as

Σψ(p2) = X̄†(p2)M(p2)X†(p2) , (D.5.4)

where X̄ ≡ γ0X
†γ0. Then the propagator Gψ can be diagonalized as

Gψ(p) = X(p2)
/p+M(p2)
p2 −M2(p2)

X̄(p2) . (D.5.5)

(This expression is correct, since the matrices in the nominator and denominator commute with
each other, as they are both diagonal.)

The spectrum is easily revealed by looking for the poles of the propagator Gψ(p). Thus,
taking into account its diagonalized form (D.5.5), we have to solve the pole equation

det
(
p2 −M2(p2)

)
= 0 . (D.5.6)

Due to the diagonality of M(p2) we have det
(
p2 − M2(p2)

)
=
∏n
i=1

(
p2 − M2

i (p2)
)

and
consequently the equation (D.5.6) decouples into n partial pole equations

p2 −M2
i (p2) = 0 (i = 1, . . . , n) . (D.5.7)

We will for the sake of simplicity assume that each partial pole equation (D.5.7) has exactly one
solution p2 = m2

i ,

m2
i −M2

i (m2
i ) = 0 , (D.5.8)

83We now indicate explicitly the momentum dependencies, as they are going to be important for the present discussion.
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which is necessarily non-negative due to reality of M(p2).
We can now expand the function M2

i (p2) about p2 = m2
i as

M2
i (p2) = M2

i (m2
i ) + (p2 −m2

i )M
2′
i (m2

i ) +O
(
(p2 −m2

i )
2
)

(D.5.9)

(where M2′
i (m2

i ) is the derivative of M2
i (p2) with respect to p2 at m2

i ), so that the left-hand side
of the pole equation (D.5.7) reads

p2 −M2
i (p2) = (p2 −m2

i )
(
1−M2′

i (m2
i )
)

+O
(
(p2 −m2

i )
2
)
. (D.5.10)

Thus the asymptotic behavior of (p2 −M2
i (p2))−1 around p2 = m2

i reads

1
p2 −M2

i (p2)
−−−−−→
p2→m2

i

1
1−M2′

i (m2
i )

1
p2 −m2

i

+ regular terms . (D.5.11)

We now make the simplifying assumption, consistent with our systematic neglecting of the wave-
function renormalization throughout the text, that the derivative M2′

i (m2
i ) vanishes:

M2′
i (m2

i ) = 0 . (D.5.12)

Under this assumption we can write the asymptotic behavior of the full propagator Gψ(p),
(D.5.5), for the momentum going on-shell as84

Gψ(p) −−−−−→
p2→m2

i

Ui(p) Ū i(p)
p2 −m2

i

+ regular terms , (D.5.13a)

Gψ(−p) −−−−−→
p2→m2

i

−Vi(p) V̄i(p)
p2 −m2

i

+ regular terms , (D.5.13b)

where we denoted

Ui(p) ≡ X(m2
i ) ei ui(p) , (D.5.14a)

Vi(p) ≡ X(m2
i ) ei vi(p) (D.5.14b)

and their Dirac conjugate defined in the usual way as Ū = U†γ0, V̄ = V†γ0 (interpretation of
these symbols is discussed more below in section D.5.2). The symbol ei is the i’th canonical
basis vector of n-dimensional flavor vector space, i.e., with the j’th component given by (ei)j =
δij . Symbols ui(p), vi(p) are the standard bispinor solutions of the momentum-space Dirac
equation85

(/p−mi)ui(p) = 0 , (D.5.15a)
(/p+mi) vi(p) = 0 . (D.5.15b)

Having defined the momentum-dependent matrices V (p2), U(p2) (Eq. (D.5.1)), it is now
useful to define their momentum-independent counterparts Ṽ , Ũ in such a way that their elements
on position i, j are given by

(Ṽ )ij = (V (m2
i ))ij , (D.5.16a)

(Ũ)ij = (U(m2
i ))ij , (D.5.16b)

84There is no summation over the fermion index i. Any summations over the fermion indices will be always denoted
explicitly.

85We suppress the polarizations indices in Eqs. (D.5.15) as well as sums over them in Eqs. (D.5.13).
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i.e., explicitly

Ṽ =


V11(m2

1) V12(m2
1) · · · V1n(m2

1)
V21(m2

2) V22(m2
2) V2n(m2

2)
...

. . .
...

Vn1(m2
n) Vn2(m2

n) · · · Vnn(m2
n)

 , (D.5.17a)

Ũ =


U11(m2

1) U12(m2
1) · · · U1n(m2

1)
U21(m2

2) U22(m2
2) U2n(m2

2)
...

. . .
...

Un1(m2
n) Un2(m2

n) · · · Unn(m2
n)

 . (D.5.17b)

We can also for convenience define the constant matrix X̃ as

X̃ ≡ Ṽ †PL + Ũ†PR . (D.5.18)

Obviously, for constant (momentum-independent) U , V we have Ṽ = V , Ũ = U and conse-
quently X̃ = X . In this case the matrices Ṽ , Ũ and X̃ are also unitary, which need not to be true
in general.

D.5.2 Interpretation of the U , V symbols

Let us add a brief comment on how to interpret the symbols Ui, Vi. Assume for that purpose that
the self-energy ΣD is a constant (i.e., momentum-independent) matrix, i.e., effectively a mass
matrix in the Lagrangian. Then the plane-wave solutions to the Dirac equation(

i/∂ −Σψ

)
ψ = 0 (D.5.19)

with positive and negative energy (we assume p0 > 0) read

ψ+(x) = U(p) e−ip·x , (D.5.20a)
ψ−(x) = V(p) e+ip·x , (D.5.20b)

where the quantities U ,V satisfy(
/p−Σψ

)
U(p) = 0 , (D.5.21a)(

/p+ Σψ

)
V(p) = 0 . (D.5.21b)

Now using Σψ = X̄†MX† withM = diag(m1, . . . ,mn) (i.e., momentum-independent version
of Eq. (D.5.4)) we arrive at

U(p) =
∑
i

X ei ui(p) ≡
∑
i

Ui(p) , (D.5.22a)

V(p) =
∑
i

X ei vi(p) ≡
∑
i

Vi(p) , (D.5.22b)

which (for momentum-independent X) coincides with definitions (D.5.14). Thus, we can un-
derstand the symbol Ui(p) (Vi(p)) as the polarization vector of the fermion (antifermion) of i’th
flavor with mass mi, or as a generalization of the usual polarization vector ui(p) (vi(p)) in the
case of multicomponent fermion field ψ.
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E Nambu–Gorkov formalism for scalars

In this appendix we redo for scalars the analysis done in the previous appendix for fermions,
although this time in much more modest way. That is to say, we consider an unspecified number
of complex scalar fields and look for a notation (scalar version of the Nambu–Gorkov formalism),
allowing for a compact treatment of their propagators and other quantities.

E.1 Nambu–Gorkov doublet

Consider n complex scalar fields φi, i = 1, . . . , n, organized into the n-plet φ:

φ ≡

 φ1

...
φn

 . (E.1.1)

Assume that the theory containing this multi-component field φ is non-invariant under the phase
transformation

U(1) : φ −→ [φ]′ = eiθ φ , (E.1.2)

at this moment regardless whether due to explicit or spontaneous symmetry breaking. In any
case, non-invariance under (E.1.2) means that apart from the propagators of the type 〈φφ†〉,
invariant under (E.1.2), there will be also non-vanishing propagators of the type 〈φφT〉, non-
invariant under (E.1.2).

In order to treat this situation, we introduce, similarly to the case of fermions (section D.3 of
previous appendix), the Nambu–Gorkov field Φ for scalars, defined in terms of the field φ as

Φ ≡
(

φ
φc

)
. (E.1.3)

Here φc is the charge conjugate of φ, defined as86

φc ≡ φ†T =

 φ†1
...
φ†n

 . (E.1.4)

Thus, Φ is explicitly given as

Φ =
(

φ
φ†T

)
=



φ1

...
φn
φ†1
...
φ†n


. (E.1.5)

86This time, in contrast to fermions, we do not dedicate a separate appendix to the charge conjugation of scalars.
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Notice that charge conjugation of Φ is given as

Φc =
(
φc

φ

)
, (E.1.6)

or in other words, it is just a linear combination of Φ itself:

Φc = σ1Φ . (E.1.7)

where σ1 operates in the two-dimension Nambu–Gorkov space. Compare this relation with
analogous Majorana condition (C.1.1) for fermions.

E.2 Free Lagrangian

Assume that the free Lagrangian of the field φ is

Lfree = (∂µφ)†(∂µφ)− φ†M2
φφ , (E.2.1)

where M2 is a Hermitian n × n matrix. Notice that we assume for simplicity, regarding the
applications in the main text, that the free Lagrangian (E.2.1) is actually invariant under the
phase transformation (E.1.2). In terms of the new field Φ it acquires the form

Lfree =
1
2
(∂µΦ)†(∂µΦ)− 1

2
Φ†M2

ΦΦ , (E.2.2)

where

M2
Φ ≡

(
M2
φ 0

0 M2T
φ

)
. (E.2.3)

The free propagator of the field φ,

iDφ = 〈φφ†〉0 , (E.2.4)

corresponding to the Lagrangian (E.2.1), reads of course

Dφ =
(
p2 −M2

φ

)−1
. (E.2.5)

The corresponding free propagator of the field Φ,

iDΦ = 〈ΦΦ†〉0 , (E.2.6)

is easily expressed in terms of Dφ as

DΦ =
(
Dφ 0
0 DT

φ

)
. (E.2.7)



Nambu–Gorkov formalism for scalars 267

E.3 Propagators

Consider now the full and 1PI propagators of the Nambu–Gorkov field Φ:

iGΦ = 〈ΦΦ†〉 (E.3.1a)

=
(
〈φφ†〉 〈φφc†〉
〈φcφ†〉 〈φcφc†〉

)
(E.3.1b)

≡ i
(
A B
C D

)
(E.3.1c)

and

− iΠΦ = 〈Φ Φ†〉1PI (E.3.2a)

=
(
〈φφ†〉1PI 〈φφc†〉1PI

〈φcφ†〉1PI 〈φcφc†〉1PI

)
(E.3.2b)

≡ −i
(
a b
c d

)
, (E.3.2c)

respectively. Notice that both propagators indeed include the components invariant under (E.1.2)
(i.e., the diagonal entries in the matrix forms (E.3.1b), (E.3.2b)), as well as the components non-
invariant under (E.1.2) (the off-diagonal entries). Notice also that the expressions (E.3.1), (E.3.2)
diagrammatically correspond to

Φ Φ

=


φ φ φ φ

φ φ φ φ

 , (E.3.3)

Φ Φ

=


φ φ φ φ

φ φ φ φ

 . (E.3.4)

The condition (E.1.7) for Φ induces the following conditions for the propagators:

GΦ = σ1G
T
Φ σ1 , (E.3.5a)

ΠΦ = σ1 ΠT
Φ σ1 . (E.3.5b)

Imposing these conditions on the matrix forms (E.3.1c) and (E.3.2c) we find

B = BT , (E.3.6a)
C = CT , (E.3.6b)
D = AT (E.3.6c)
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and

b = bT , (E.3.7a)
c = cT , (E.3.7b)
d = dT , (E.3.7c)

respectively.
Moreover, one can assume that the propagators are Hermitian:

GΦ = G†Φ , (E.3.8a)

ΠΦ = Π†
Φ . (E.3.8b)

This yields

A = A† , (E.3.9a)
C = B† , (E.3.9b)
D = D† , (E.3.9c)

and

a = a† , (E.3.10a)
c = b† , (E.3.10b)
d = d† . (E.3.10c)

As a result of the two conditions (E.3.5) and (E.3.8) we obtain

GΦ =
(

A B
B† AT

)
, (E.3.11)

ΠΦ =
(

a b
b† aT

)
, (E.3.12)

where

A = A† , (E.3.13a)
B = BT , (E.3.13b)

and

a = a† , (E.3.14a)
b = bT . (E.3.14b)

E.4 Another basis

The relation (E.1.7) resembles the Majorana condition (C.1.1) for fermions. Indeed, while Ma-
jorana fermion field is a real field, so is also the scalar field Φ, satisfying condition (E.1.7). This
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can be seen more clearly in another basis. The complex field φ can be decomposed into its real
and imaginary part

φ =
1√
2
(φR + iφI) (E.4.1)

in such a way that

φc =
1√
2
(φR − iφI) . (E.4.2)

Now we can define a new, strictly real field Φ′ in terms of φR, φI :

Φ′ ≡
(
φR
φI

)
. (E.4.3)

It is now straightforward to see that the fields Φ and Φ′ are actually related by the linear trans-
formation

Φ = UΦ′ , (E.4.4)

where

U ≡ 1√
2

(
1 i
1 −i

)
(E.4.5)

is a unitary matrix. Now in terms of Φ′ the condition (E.1.7) just reads

Φ′c = Φ′ . (E.4.6)

As we do not use the basis Φ′ extensively in the main text, we do not present here expression
for the propagators and other quantities in its terms. Nevertheless, let us, just for curiosity,
observe how the free Lagrangian (E.2.2) looks in it:

Lfree =
1
2
(∂µΦ′)†(∂µΦ′)−

1
2
Φ′†M2

Φ′Φ
′ , (E.4.7)

where

M2
Φ′ = U†M2

ΦU (E.4.8a)

=
1
2

(
M2
φ +M2T

φ i(M2
φ −M2T

φ )
−i(M2

φ −M2T
φ ) M2

φ +M2T
φ

)
. (E.4.8b)

Notice that mass matrix M2
Φ′ in the strictly real basis Φ′ is not only Hermitian, but also real, due

to Hermiticity of M2
φ .
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