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486 An Introduction to Quantum Optomechanics

1 Introduction

Quantum optomechanics, and the related field of quantum electromechanics, seek to control
the quantum mechanical interaction between electromagnetic radiation and bulk mechanical res-
onators. The subject has roots in early attempts to develop gravitational radiation detectors using
the elastic deformations of large high Q mechanical resonators [1] and optical interferometers
with moving end mirrors [2]. Pioneering theoretical work was performed by Braginsky [3],
Caves [4] and others. The field has undergone rapid development over the last decade with the
separate development of new methods for fabricating small bulk mechanical resonators of vari-
ous forms; nano-scale beams coupled to microwave cavities [5], photonic-phononic crystals [6],
toroidal optical micro-resonators [7], doubly clamped beams with integrated mirrors [8] and
drumhead capacitors in superconducting microwave resonators [9]. A variety of optomechani-
cal [10] and electromechanical [11,12] systems have been developed to enable the measurement
and control of these mechanical elements, both fitting in to the broader picture of the study of
mechanical systems in the quantum regime [13].

Classical optomechanics is an already well developed field of optical engineering and micro-
electromechanical systems (MEMS) form an essential component of a great deal of high tech-
nology, from iPhones to sensors. The key new element of quantum optomechanics is the ability
to prepare one or more bulk flexural modes of a mechanical resonator in a well-defined quantum
state (the ground state, for example), to subsequently manipulate this state coherently, and to
make quantum-limited measurements of the displacement or energy of the resonator. Typically,
this is done by coupling the mechanical resonator to the electromagnetic field either at optical
frequencies or at microwave frequencies. This enables both cooling of the mechanical modes
of interest, and quantum-limited measurement and control of their motion. These three steps —
state preparation, coherent control and quantum measurement — are required of any quantum
technology [14], as depicted in Fig. 1.1. The motivation for such work ranges from fundamental
tests of quantum mechanics [15] and studies of novel nonlinear and dissipative quantum physics,
to extremely precise force and mass sensing [16, 17, 18, 19, 20, 21, 22], and even to applications
in quantum information processing [23, 24].

Quantum control of vibrational motion was first achieved in ion traps [25]. However, there
is a key difference in the theoretical description of trapped ions and the new class of optome-
chanical and electromechanical systems. In the case of trapped ions, the dynamics is described
entirely in terms of Schrödinger’s equation for the trapped ions as the elementary mechanical
units, coupled by Coulomb forces. In the case of optomechanical systems, however, the descrip-
tion is not given in terms of the quantum dynamics of the atomic constituents of the mechanical
resonators. While this would be possible in principle, in practice it is impossible. Instead, an
effective quantisation is performed on elastic vibrational modes of the bulk material. As we de-
scribe below, we are typically interested only in long-wavelength (low-energy) bulk modes of
the material. The theory begins with the wave equation for elastic excitations of the bulk, and by
defining a set of orthonormal modes. These are then quantised directly, very much like quantis-
ing a scalar field. The implicit assumption is that these collective degrees of freedom factor out
of the other microscopic vibrational degrees of freedom (short-wavelength phonon modes, for
instance), which are then included in the description as a source of dissipation and decoherence.
This approach, typical of the emerging field of engineered quantum systems, has a parallel in the
theory of superconducting quantum circuits where the description is not given in terms of BCS
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Fig. 1.1. The three elementary enabling steps required for quantum control.

theory and quantum electrodynamics (although again, that is possible in principle), but rather is
given by first deriving the classical circuit equations, backing out a Hamiltonian and then directly
quantising the relevant collective canonical coordinates (typically charge on an effective capac-
itor and flux through an effective inductor). This approach goes back to Leggett [26, 27] and is
used extensively in the new field of superconducting circuit QED [28].

The study of mechanical systems near the quantum limit encompasses systems having a wide
range of size and frequency [13]. In order to study these mechanical resonators, some auxiliary
system is required to measure and control them. This auxiliary system may take the form of an
electrical circuit (“quantum electromechanics”), an optical cavity (“quantum optomechanics”),
or even an atomic system [29]. In the latter case, direct coupling of a BEC to a mechanical
oscillator [30], and coupling of cold atoms in an optical lattice to a membrane, mediated by light,
has been demonstrated [31]. Experimental realizations of optomechanical and electromechanical
systems shall be discussed in Sec. 4 and 5, respectively. Both types of systems face related
issues of state preparation (Sec. 6), coherent control (Sec. 7) and quantum-limited measurement
(Sec. 8). Beyond this, nonlinear and many-body optomechanics both provide interesting systems
to study, and they are described in Sec. 9 and Sec. 10, respectively.
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2 Classical Mechanical Resonators

2.1 Continuum Mechanics

Before embarking on a quantum description of the dynamics of a mechanical resonator, we shall
briefly review how its dynamics would be described classically. The focus shall be on vibrations
of a rigid body, rather than on translation or rotation in space. The classical, lossless dynamics
of a mechanical resonator is described, within continuum mechanics, by a space- and time-
dependent displacement field. Focusing on the lowest-lying (fundamental) mode of the resonator,
for small excitation amplitudes the vibration may be described as a linear (harmonic) oscillator,
and the motional state may then be described by a single representative position coordinate and
a single representative momentum coordinate.

Continuum mechanics is an accurate description of long-wavelength vibrations, and so allows
the determination of the fundamental spatial modes of a mechanical system. The description is
valid provided that the wavelengths under consideration are large compared with the interatomic
spacing of the underlying crystal lattice. In this approach, one often makes the assumption of
a linear relationship between the stress and strain fields. We shall focus on translational waves
(rotationally-propagating waves have much higher frequencies, and are difficult to detect and
actuate). These may be classified as; longitudinal (propagation and displacement in the same
direction), transverse (displacements orthogonal to the propagation direction), or torsional (ro-
tational displacements with translational propagation). In three-dimensional structures we are
usually interested in longitudinal waves (breathing modes), while in two dimensions and in one
dimension we usually focus on transverse waves of low frequency, as these are relatively easy to
actuate and detect.

A displacement field u(r, t) can be described by the strain tensor [32],

Sαµ (r) =
1
2

(
∂uα
∂xµ

+
∂uµ
∂xα

)
. (2.1)

Assuming linear response, the material may be described by an elastic tensor Eµαβν , having 36
independent parameters. The elastic tensor can be greatly simplified depending on the symme-
tries of the underlying crystal lattice. The stress tensor, in terms of the symmetrized elastic tensor
cµναβ , is then

Tµν =
3∑

α,β=1

cµναβSαβ . (2.2)

The above describes a static scenario; the dynamics are given by,

ρ
∂2u (r, t)
∂t2

= ∇ · T + f (r, t) , (2.3)

where f describes some externally applied force distribution. In an isotropic solid, one may de-
rive wave equations, describing the possibility of longitudinal, transverse and torsional waves.
In an anisotropic solid, assuming wave solutions, we may calculate three phase velocities, corre-
sponding to a longitudinal mode and two transverse modes.

The calculation of wave propagation in restricted geometries with imposed boundary con-
ditions, material anisotropy and material inhomogeneity is complicated, and one must resort to
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Oscillation Equation Ansatz Dispersion

Longitudinal ρ ∂2u
∂t2

= E ∂2u
∂z2 u(z, t) = u0e

i(qz±ωt+φ) ω =
p

E/ρ q

Torsional ρ ∂2θ
∂t2

= G ∂2θ
∂z2 θ(z, t) = θ0e

i(qz±ωt+φ) ω =
p

G/ρ q

Transverse ρA ∂2u
∂t2

= T ∂2u
∂z2 − EI ∂4u

∂z4 u(z, t) = u(z)e−iωt ; ω2 = T
ρA

q2 + EI
ρA

q4

u(z) = e±qz, e±iqz

Tab. 2.1. Wave equations for linear elastic one-dimensional structures. The wave equation describing
flexural modes applies for a prismatic beam due to bending, neglecting rotational inertia and shear. Setting
the time-derivative to zero, this reduces to the well-known beam-bending formula of Euler-Bernoulli theory.
Note that u is the translational/rotational displacement of the beam, z is the direction of propagation of the
oscillation, ρ is the material density, E is the Young’s modulus, G is the shear modulus, A is the cross-
sectional area, T is the longitudinal tension, I is the second moment of area about the axis of bending, ω is
the angular frequency of oscillation, and q is the wavevector of the oscillation.

numerical techniques. There are also nonlinear effects associated with larger deflections from
equilibrium.

However, the equations of motion in simple cases are readily derived from first principles;
those for linear one-dimensional structure are summarised in the Table 2.1, and the corresponding
allowed spatial modes are given in Table 2.2 [32]. Note that for transverse vibrations there
are restoring forces both due to the bending rigidity of the resonator and due to tension. The
component due to bending rigidity is dealt with using the Euler-Bernoulli theory of beams. The
transverse vibrations of a cantilever or a doubly-clamped beam are particularly important cases,
and one may numerically solve for the allowed wavevectors using the equations in Table 2.2,
with the results

βn ≡ qnl = 1.875, 4.694, . . . , βn ≡ qnl = 4.730, 7.853, . . . , (2.4)

Wave Wavevectors Spatial mode

Longitudinal qn = nπ/l, n = 1, 2, .. un(z) = u0n cos (nπz/l) , n odd;

un(z) = u0n sin
`

nπz
l

´
, n even.

Torsional qn = nπ/l, n = 1, 2, .. θn(z) = θ0n cos (nπz/l) , n odd;

θn(z) = θ0n sin
`

nπz
l

´
, n even.

un(z) = an (cos qnz − cosh qnz)

Transverse cos qnl cosh qnl ∓ 1 = 0 † +bn (sin qnz − sinh qnz)

bn = cos qnl+cosh qnl
sin qnl−sinh qnl

an for cantilever
bn = cosh qnl−cos qnl

sin qnl−sinh qnl
an for doubly-clamped beam

Tab. 2.2. Spatial modes of linear elastic one-dimensional structures subject to doubly-clamped boundary
conditions. The wavevectors are those allowed subject to clamped boundary conditions at±l/2 for longitu-
dinal and torsional waves, and at 0, l for transverse waves. † The minus sign corresponds to doubly-clamped
boundary conditions, and the plus sign corresponds to cantilever boundary conditions (clamped at one end
and free at the other end).
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BC Force distribution keff meff

Cantilever Point load at end 3EI/l3 0.24m

Distributed load 8EI/l3 0.65m

Doubly-clamped Point load at centre 192EI/l3 0.38m

Distributed load 384EI/l3 0.77m

Tab. 2.3. Effective spring constants and effective masses for one-dimensional structures.

Shape Wave equation Ansatz Dispersion

Rectangular ∂2u
∂t2

= T
ρh
∇2u− D

ρh
∇4u u(x, y, t) = X(x)Y (y)eiωt ω2 = T

ρh
q2 + D

ρh
q4

Circular ∂2u
∂t2

= T
ρh
∇2u− D

ρh
∇4u u(r, θ, t) = R(r)Θ(θ)eiωt ω2 = T

ρh
q2 + D

ρh
q4

Cylindrical ρ ∂2u
∂t2

= K∇2u u(r, θ, z, t) = R(r)Θ(θ)Z(z)eiωt ω =
p

K/ρq

Spherical ρ ∂2u
∂t2

= K∇2u u(r, θ, φ, t) = R(r)Θ(θ)Φ(φ)eiωt ω =
p

K/ρq

Tab. 2.4. Wave equations for transverse waves in linear two-dimensional and three-dimensional structures
[33]. Note that h is the width of the plate,∇4 is the biharmonic operator, D = Eh3/12, and K is the bulk
modulus.

respectively. Often, the tensile contribution is negligible, and then one may determine the vibra-
tion frequency using the dispersion relation of Table 2.1, with the results

ωn = β2
n

√
E

ρ

t

l2
, ωn = β2

n

√
E

ρ

r

2l2
, (2.5)

for a beam of rectangular cross-section (thickness t) and for a beam of circular cross-section
(radius r), respectively.

We wish to describe each mode as a simple harmonic oscillator with a single position coor-
dinate and a single momentum coordinate, and with an effective spring constant and an effective
mass. The spring constant may be calculated by calculating the static deflection due to a particu-
lar force distribution, and the effective mass follows from the known resonance frequency. These
are shown in Table 2.3 for the fundamental mode of a flexural resonator, subject to different force
distributions.

Two-dimensional and three-dimensional structures of interest include rectangular plates (such
as graphene membranes), circular plates (such as microtoroidal resonators), and large cylinders
and spheres (such as resonant-mass gravitational wave detectors). The appropriate wave equa-
tions are given in Table 2.4, while the corresponding spatial mode solutions may be found in
engineering textbooks [33].

We have thus far neglected the role of dissipation. Indeed, in a distributed structure, the
problem of dissipation becomes the problem of attenuation; a strain wave propagating with the
wave vector q is described by the attenuation constantA = q/2Q. However, since we are dealing
with standing waves rather than traveling waves, the form of the spatial modes is unaffected. We
will discuss dissipation in Sec. 3.4.
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2.2 Classical Harmonic Oscillators

We have seen above that, via a continuum mechanics description, a particular vibrational mode
may be regarded as a single harmonic oscillator. This may be seen more directly from energetic
considerations [32]. We now demonstrate this for the important case of a long, thin doubly-
clamped beam. Assume that the neutral axis of the beam is aligned along the z axis, with its
ends clamped at z = 0 and z = L, and that the displacement of the neutral axis is in the x
direction. The displacement of the neutral axis is given by u(z, t) ≡ A(t) u(z) where A(t) is
a time-dependent amplitude and u(z) is a dimensionless spatial mode profile defined such that
u(L/2) ≡ 1. The spatial mode structure and eigenfrequencies of a mechanical resonator may be
calculated, as described in Sec. 2.1. The kinetic energy associated with the flexural motion of the
beam is given by

K =
1
2

∫
V

ρ

[
∂u(z, t)
∂t

]2

dV =
1
2
ρAȦ2

∫ L

0

[u(z)]2 dz = η1
1
2
MȦ2, (2.6)

where V is the volume of the beam, ρ is its density, A is its cross-sectional area, and M ≡ ρAL

is its physical mass. For the fundamental mode of the beam, η1 ≡ 1
L

∫ L
0

[u(z)]2 dz = 0.38. The

strain in the beam is assumed to be along the z axis and has amplitude
∣∣∣x∂2u(z,t)

∂z2

∣∣∣. The potential
energy associated with this strain is given in terms of a strain field ε(x, y, z, t) as

U =
1
2

∫
V

E [ε(x, y, z, t)]2 dV

=
E

2

∫ +t/2

−t/2
dx

∫ +w/2

−w/2
dy

∫ L

0

dz x2

[
∂2u(z, t)
∂z2

]2

= η1
1
2
Mω2

mA2, (2.7)

where E is the elastic modulus of the beam, w is the width of the beam and t is the thickness of
the beam. Now we consider the representative position coordinate of the beam to be x ≡ A(t).
The Lagrangian equation of motion corresponding to Eqs. (2.6) and (2.7) is then

ẍ+ ω2
mx = 0. (2.8)

This equation describes simple harmonic motion at the resonance frequency ωm ≡
√
k/m,

where m is the effective mass of the resonator and k is its effective spring constant. These effec-
tive parameters depend upon the force distribution assumed, with two cases quoted in Table 2.3.

The corresponding classical Hamiltonian is

HS =
p2

2m
+

1
2
kx2, (2.9)

where p is a representative momentum coordinate. Such a description is generally valid, though
the effective parameters depend on the system considered, and both on the mode under consid-
eration and the nature of the driving.

2.2.1 Damped Harmonic Oscillator

Any macroscopic mechanical resonator will interact with other degrees of freedom, includ-
ing other particle and quasi-particle modes, and defects. The precise temperature, amplitude
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and frequency-dependence of dissipation in macroscopic mechanical resonators is not well un-
derstood, though it is believed that effective two-level systems associated with fluctuating de-
fects [34] play a significant role [35, 36, 37], as does phonon tunneling through the mechanical
supports [38, 39, 40]. As far as the mechanical resonator dynamics are concerned, this results in
dissipation and noise. Dissipation results in the mechanical resonator achieving thermodynamic
equilibrium with its environment. Because of the associated noise, the representative position
coordinate of the fundamental mode, assuming linear damping, obeys a stochastic differential
equation known as a Langevin equation,

mẍ(t)+mω2
mx(t) = −m

∫ t

−∞
dt′γ (t− t′) ẋ(t′)−

∫ t

−∞
dt′∆k(t−t′)x(t′)+F (t), (2.10)

where γ(t − t′) is the damping kernel, ∆k(t − t′) is the spring constant shift kernel, and F (t)
is a force describing both the noise due to the bath and any driving force. We may write F (t) =
FN (t) + FD(t) where FN (t) is a zero-mean stochastic force describing the noise due to the
environment and FD(t) is a driving force. The first two terms on the right-hand-side describe
the out-of-phase and the in-phase response, respectively, of the environment to the mechanical
motion. Assuming a memoryless damping kernel and a negligible frequency shift, we have the
more familiar form,

mẍ(t) +mγẋ(t) + kx(t) = F (t). (2.11)

In the steady-state, we may take the Fourier transform of both sides of Eq. (2.11) to find x(ω) =
χ(ω) · F (ω) where the so-called mechanical susceptibility is given by

χ(ω) =
1

m (ω2
m − ω2 − iγω)

. (2.12)

Assuming that the oscillator is undriven, FD(t) ≡ 0, and that it is underdamped, γ2 < 4mk,
the transient solution for the mean position of the damped harmonic oscillator described by
Eq. (2.11) is

〈x(t)〉 = e−γt/2
[
Ae+iω

′
mt +Be−iω

′
mt

]
where ω′m =

√
ω2
m −

γ2

4
, (2.13)

with A and B determined from the initial conditions. Typically, ωm � γ in systems of interest
to us here, and we will often approximate that ω′m ≈ ωm. If the oscillator is driven harmonically
by FD(t) = F0 sinωdt, the steady-state solution to Eq. (2.11) is

〈x(t)〉 =
F0

m

√
γ2ω2

d + (ω2
m − ω2

d)
2

sin (ωdt+ φ) . (2.14)

where

φ = arctan
(

γωd
ω2
d − ω2

m

)
. (2.15)

Plots corresponding to Eq. (2.14), in the limit ωm � γ, are shown in Fig. 2.1.
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Fig. 2.1. (a) Magnitude and (b) phase response of a classical harmonic oscillator subject to a driving force
F0 at a frequency ωd, in the limit ωm � γ. In this limit (the “high-Q” limit), a plot of 〈x(t)〉2max will be
approximately Lorentzian.

2.2.2 Position and Force Noise

In considering mechanical systems near the quantum limit, one is typically more interested in
the noise properties of the undriven response than in the driven response. The force and position
correlation functions are defined by

GF (τ) = limt→∞ 〈F (t+ τ), F (t)〉 , Gx(t) = limt→∞ 〈x(t+ τ), x(t)〉 , (2.16)

respectively, where 〈Q(t+ τ), Q(t)〉 ≡ 〈Q(t+ τ)Q(t)〉 − 〈Q(t+ τ)〉 〈Q(t)〉. Then the force
and position noise spectra are

SF (ω) ≡ 1√
2π

∫ +∞

−∞
dteiωtGF (t), Sx(ω) ≡ 1√

2π

∫ +∞

−∞
dteiωtGx(t), (2.17)

respectively. From Eq. (2.11), these noise spectra are related by

Sx(ω) =
SF (ω)
m2

1
(ω2
m − ω2)2 + γ2ω2

. (2.18)

It is conventional to define the quality factor of a resonator by Q = ω′m/γ ≈ ωm/γ. In the
high-Q limit, Eq. (2.18) becomes

Sx(ω) =
SF (ω)
4m2ω2

m

1
(ωm − ω)2 + (γ/2)2

. (2.19)

Consider the case where the source of noise is thermal excitation. The classical equipartition
theorem gives mω2

m

〈
x2

〉
= kBT , where

〈
x2

〉
may be calculated by inverting Eq. (2.17). The

assumption of a stochastic force delta-correlated in time leads to the force noise spectrum,

SF (ω) = 2mkBTγ, (2.20)



494 An Introduction to Quantum Optomechanics

Fig. 2.2. Position noise spectra of classical (unbroken lines) and quantum (dashed lines) harmonic oscilla-
tors subject to a white noise force at a variety of temperatures. In the high-temperature limit, kBT � ~ωm,
the classical spectrum closely approaches the quantum spectrum. However, in the low-temperature limit,
kBT � ~ωm, the quantum spectrum is bounded below by the zero-point fluctuations of the oscillator,
while the classical spectrum decreases towards zero.

describing a white noise process [41]. Then Eq. (2.11) describes classical Brownian motion, and
the position noise spectrum of the oscillator becomes

Sx(ω) =
kBTγ

2mω2
m

1
(ωm − ω)2 + (γ/2)2

. (2.21)

In experiments, one typically measures a spectrum related to Sx(ω). Hence Eq. (2.21) allows
one both to define an effective temperature for a resonator, and may also be used as a basis
for calibrating measured position noise spectra. Plots corresponding to Eq. (2.21) are shown in
Fig. 2.2; the damping rate γ as defined corresponds to the full-width at half-maximum of the
position noise spectrum.

2.2.3 Ensemble of Classical Resonators

Alternatively, a stochastic system may be described by the deterministic evolution of its proba-
bility distribution. An ensemble of classical resonators subject to thermal noise may be described
by a probability distribution P (x, p) that evolves according to a Fokker-Planck equation,

∂P

∂t
= mω2

mx
∂P

∂p
− p

m

∂P

∂x
+

∂

∂p

[
γpP + 2mkBTγ

∂P

∂p

]
. (2.22)

This equation may be obtained from first principles [41]. Alternatively, one can calculate the
equations of motion for an arbitrary function of the stochastic position and momentum, using
Eqs. (2.11) and (2.20), which can then be used to obtain Eq. (2.22) [42]. The first two terms
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describe the Hamiltonian dynamics given by Liouville’s equation, the third term describes dissi-
pation and the fourth term describes fluctuations. The steady-state solution is Gaussian,

P (x, p) =
ωm

2πkBT
exp

[
−1

2

(
mω2

m

kBT
x2 +

1
mkBT

p2

)]
. (2.23)

This distribution has a variance in position of V (x) = kBT/mω
2
m, and a variance in momentum

of V (p) = mkBT ; both being proportional to temperature.

2.3 Nonlinear Classical Oscillators

Nanomechanical resonators also offer the prospect of novel studies of nonlinear dynamics. Even
in the classical regime, a variety of phenomena can be explored. One may consider resonators
that are nonlinear due to their inherent mechanical nonlinearity [43], or their being subject to
nonlinear potentials [44] or nonlinear driving [45].

2.3.1 The Duffing Oscillator

A range of nonlinear mechanical resonators, most notably strongly-driven doubly-clamped beams
and clamped membranes, may be described by Duffing or Duffing-like equations. This intrinsic
nonlinearity is due to extension of the beam (membrane) under flexure. To account for nonlinear
effects in the doubly-clamped beam, one must include a correction due to beam extension in the
energies of Eqs. (2.6) and (2.7). One does so by replacing the line element of the neutral axis of
the beam, dz, by the element of arc

dl =
√
dz2 + [du(z, t)]2 ≈ dz +

1
2

[
∂u(z, t)
∂z

]2

dz. (2.24)

The appropriate corrections to the energies of Eqs. (2.6) and (2.7) lead to the corresponding
Lagrangian equation of motion acquiring a cubic term,

ẍ+ ω2
mx+ ω2

mk3x
3 = 0. (2.25)

Adding driving and linear damping, we have the driven, damped Duffing equation,

mẍ+mγẋ+mω2
mx+mω2

mk3x
3 = F (t). (2.26)

For k3 > 0 (k3 < 0), the cubic term describes a stiffening (softening) nonlinearity, corresponding
to an increase (decrease) in the resonance frequency at large amplitudes. For intrinsic mechanical
nonlinearities, one would always expect a stiffening nonlinearity. Since the equation of motion
is cubic, the corresponding Hamiltonian is quartic.

One may calculate the quasi-harmonic steady-state response to the drive F (t) = F0 cosωdt
[46]. Assuming a solution of the form x(t) =

(
A0e

iωdt +A∗0e−iωdt
)
/2, where A0 ≡ a0e

iφ0 ,
we can write[

ω2
m − ω2

0 +
3ω2

mk3

4
a2
0 + iωdγ

]
a0 =

F0

m
e−iφ0 . (2.27)
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Fig. 2.3. Steady-state response of a damped, driven Duffing oscillator. The steady-state amplitude squared
(as a ratio to the critical amplitude squared) is plotted against the scaled detuning (as a ratio to the critical
scaled detuning). The response is shown for a range of driving strengths, below, at and above the critical
driving strength.

Now approximating ωd = ωm (1 + δ) where |δ| � 1 and writing E ≡ a2
0 and κ = 3k3/4,

Eq. (2.27) may be decoupled into an amplitude equation and a phase equation as

E3 − 4δ
κ
E2 +

[
1

Q2κ2
+

4
κ2
δ2

]
E − F 2

0

κ2m2ω4
m

= 0, (2.28)

tanφ0 =
1
Q

1 + δ

2δ − κE
. (2.29)

The critical point, corresponding to dδ
dE = 0, is given by the scaled detuning, amplitude squared

and driving strength, respectively,

δc =
√

3
2Q

, Ec =
2√
3κQ

,
Fc
m

=

√
8
√

3ω4
m

9κQ3
. (2.30)

The steady-state response, shown in Fig. 2.3, curve tilts towards higher frequencies at larger
drive powers if k3 > 0, a phenomenon known as frequency pulling. Above the critical point, one
observes bistability. These stable states are known as attractors or fixed points; and the basins
of attraction of each are delineated by a separatrix curve. Noise-induced switching between the
basins of attraction is then possible.

2.3.2 The Parametric Oscillator

Another prototypical nonlinear oscillator is the parametric oscillator. A mechanical paramet-
ric resonator may be created by modulating the resonator’s effective spring constant at some
multiple of its mechanical resonance frequency. With the spring constant modulation ∆k(t) =
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∆k0 sinωpt and driving FD(t) = F0 cos (ωdt+ φ), the resonator is described by the damped,
driven Mathieu equation,

mẍ+mγẋ+ (k + ∆k0 sinωpt)x = F0 cos (ωdt+ φ) . (2.31)

In order to analyse Eq. (2.31), we define the composite position-velocity variable [45], α ≡
dx
dt +iΩ∗x, defined in terms of the generalized frequency, Ω ≡

[√
1− 1

4Q2 + i
2Q

]
ωm. Inverting

this definition, we find

x =
α− α∗

i(Ω + Ω∗)
and ẋ =

Ωα+ Ω∗α∗

Ω + Ω∗
. (2.32)

Substituting Eq. (2.32) into Eq. (2.31), the result is

dα

dt
= iΩα+ i

∆k0

m
sinωpt

α− α∗

Ω + Ω∗
+
F0

m
cos (ωdt+ φ) . (2.33)

This equation exhibits resonances at the parametric driving frequencies ωp = 2ωm/n where n is
an integer.

The resonance at 2ωp is commonly employed for parametric amplification of a drive signal.
Assuming that the oscillator is driven on resonance, ωd = ωm, we expect a solution of the form
α = A0e

iωmt. Substituting this into Eq. (2.33) with ωp = 2ωm, retaining terms oscillating at
+ωd, and assuming a high-Q oscillator such that Ω + Ω∗ = 2ωm and Ω− ωm = iωm

2Q to a good
approximation, we have

A0 = F0
Qωm
k

[
cosφ

1 + Q∆k0
2k

+ i
sinφ

1− Q∆k0
2k

]
. (2.34)

Using Eq. (2.32), we can write x(t) = X1 cosωmt + X2 sinωmt where X1 = ImA0/ωm and
X2 = ReA0/ωm. The parametric gain for quadrature i is then

Gi(φ) ≡
|Xi|pump on

|Xi|pump off

=

 cos2 φ(
1 + Q∆k0

2k

)2 +
sin2 φ(

1− Q∆k0
2k

)2


1/2

. (2.35)

The gain is phase-sensitive, being a maximum (and greater than one) at φ = π/2, and a minimum
(and less than one) at φ = 0. At ∆k0 = 2k

Q , the response diverges. Accordingly, one can map out
the regions of stable and unstable behaviour over the range of pump frequency ωp and pumping
strength ∆k0 [47].
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3 Quantum Mechanical Resonators

3.1 Quantum Description

A classical continuum approach provides an accurate description of the vibrational dynamics
of a solid in the long-wavelength limit, that is, where the wavelength of the mode of interest
is much larger than the lattice spacing. We can give an effective quantum description of the
long-wavelength modes by treating the elastic wave as a scalar field and imposing appropriate
commutation relations. Alternatively, we can consider the mode of interest as a damped har-
monic oscillator with a single representative coordinate pair, and then quantize the representative
coordinate.

As an example we will consider the case of the transverse displacement of a doubly-clamped
rectangular beam. We will choose coordinates so that z runs along the beam, and the displace-
ment u(z, t) is transverse to the beam, as shown in Fig. 3.1. As given in Table 2.1, the transverse
displacement field is described by

ρA
∂2u

∂t2
= T

∂2u

∂z2
− EI

∂4u

∂z4
. (3.1)

If we make the harmonic ansatz, u(z, t) = u(z)e−iωt and u(z) = e±qz, e±iqz , we get the
dispersion relation

ω2 =
T

ρA
q2 +

EI

ρA
q4. (3.2)

The spatial modes of the system are determined by the boundary conditions,

cos qnl cosh qnl ∓ 1 = 0, (3.3)

and we write them as

un(z) = an (cos qnz − cosh qnz) + bn (sin qnz − sinh qnz) , (3.4)

with the appropriate coefficients given in Table 2.1. The frequency of each spatial mode is then
given by Eq. (2.5). The displacement field may then be written as

u(z, t) =
∑
n

Bnun(z, t) +B†nu
∗
n(z, t). (3.5)

u(z,t)

z

t

l

Fig. 3.1. The coordinate system for transverse vibrations of a doubly-clamped mechanical resonator
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We now pass to a quantum description by defining the quantum displacement field,

û(z, t) =
∑
n

bnun(z, t) + b†nu
∗
n(z, t), (3.6)

with commutation relations, [bn, b†m] = δn,m. We shall now review some basic features of the
quantum harmonic oscillator.

3.2 States of the Quantum Harmonic Oscillator

3.2.1 Quantum Harmonic Oscillator

Much as the electromagnetic field was introduced as a classical field and it was eventually real-
ized that one must quantize the electromagnetic field to explain certain physical phenomena, one
might also expect that a quantum description of the dynamics of a macroscopic mechanical res-
onator would become necessary in particular limits. The displacement field is analogous to the
electromagnetic vector potential. Both vector fields obey a wave equation, and the imposition of
boundary conditions yields a spectrum of discrete modes. The quanta of our quantized mechan-
ical resonator are, of course, phonons; the quantized normal mode vibrations of the underlying
crystal lattice. Near the quantum limit, one is most interested in low-frequency phonons. These
lowest-lying vibrational modes have long wavelengths compared with the inter-atomic spacing,
and hence a continuum mechanics description is valid.

Nonetheless, assuming that quantum mechanics does indeed apply to a macroscopic mechan-
ical resonator, the fundamental mode may be treated as a quantum harmonic oscillator. Initially
we consider just the closed quantum sytem (that is, no dissipation or environment-induced noise);
the theory of open quantum systems shall be introduced in Sec. 3.3. The Hamiltonian takes the
form of Eq. (2.9),

HS =
p̂2

2m
+

1
2
kx̂2, (3.7)

with the Schrödinger picture canonical commutation relation [x̂, p̂] = i~ imposed. Consequently,
Heisenberg’s uncertainty principle is manifest as the requirement ∆x∆p ≥ ~/2. The uncertainty
in an operator is defined in terms of its variance as ∆Q ≡ [V (Q)]1/2, where the variance itself
is defined by V (Q) ≡ 〈Q̂2〉 − 〈Q̂〉2.

In quantum physics, it is conventional to introduce the lowering and raising operators of the
harmonic oscillator as

a =
√
mωm
2~

x̂+ i

√
1

2~mωm
p̂, a† =

√
mωm
2~

x̂− i

√
1

2~mωm
p̂, (3.8)

respectively. Eigenvalues of the lowering operator are then given by

α ≡
√
mωm
2~

x+ i

√
1

2~mωm
p, (3.9)

where x and p correspond to the mean position and momentum, respectively, of the associated
eigenstate, termed a coherent state. The corresponding commutation relations are [a, a†] = 1
and [a, a] = [a†, a†] = 0, and the harmonic oscillator Hamiltonian becomes

HS = ~ωm
[
a†a+

1
2

]
. (3.10)
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The offset term, corresponding to the zero-point energy, makes no contribution to the Hamilto-
nian dynamics, and hence is often omitted.

The Heisenberg picture position and momentum operators are given, in terms of the Schrödinger
picture operators considered earlier, by the transformations

x̂(t) = e−iHSt/~x̂e+iHSt/~, p̂(t) = e−iHSt/~p̂e+iHSt/~. (3.11)

The results of these transformations are

x̂(t) = cosωmt x̂−
1

mωm
sinωmt p̂, p̂(t) = mωm sinωmt x̂+ cosωmt p̂, (3.12)

and they satisfy the commutation relations

[x̂(t), x̂(t′)] =
i~

mωm
sin (ωmt′ − ωmt) , (3.13)

[p̂(t), p̂(t′)] = i~mωm sin (ωmt′ − ωmt) , (3.14)
[x̂(t), p̂(t′)] = i~ cos (ωmt′ − ωmt) . (3.15)

One may then introduce the dimensionless Heisenberg picture position and momentum quadra-
tures, X̂(t) and P̂ (t), as

X̂(t) =
x̂(t)√

~/2mωm
, P̂ (t) =

p̂(t)√
~mωm/2

, (3.16)

with the corresponding commutation relations[
X̂(t), X̂(t′)

]
=

[
P̂ (t), P̂ (t′)

]
= 2i sin (ωmt′ − ωmt) ,[

X̂(t), P̂ (t′)
]

= 2i cos (ωmt′ − ωmt) . (3.17)

The Hamiltonian for a harmonic oscillator takes the form

HS(t) =
~ωm

4
[X̂2(t) + P̂ 2(t)]. (3.18)

Then one can introduce the Heisenberg picture raising and lowering operators, a(t) and a†(t), in
analogy with Eq. (3.8),

a(t) =
1
2
[X̂(t) + iP̂ (t)], a†(t) =

1
2
[X̂(t)− iP̂ (t)]. (3.19)

having the commutation relations

[a(t), a†(t′)] = eiωm(t′−t), [a(t), a(t′)] = [a†(t), a†(t′)] = 0. (3.20)

The Hamiltonian of the harmonic oscillator takes the form of Eq. (3.10), again now with explic-
itly time-dependent operators. Alternatively, one may obtain all Heisenberg picture operators
using transformations of the form of Eq. (3.11). In particular, raising and lowering operators
are related as a = a(t)e−iωmt and a† = a†(t)e+iωmt. Eq. (3.10) and (3.19) demonstrate the
equivalence between the position and momentum quadratures defined here, and the amplitude
and phase quadratures generally referred to in quantum optics [48].
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3.2.2 States of the Quantum Harmonic Oscillator

The energy eigenvalues of the Hamiltonian of Eq. (3.10) are

En = ~ωm
(
n+

1
2

)
, (3.21)

with the associated eigenvectors |n〉 being the so-called number or Fock states. They contain
exactly n quanta (in our case, phonons). The operator n̂ = a†a is identified as the number
operator; thus 〈n̂〉 gives the expected number of phonons in a particular mode.

An important class of states of the harmonic oscillator are the so-called coherent states. They
are quasi-classical in the sense that they exhibit the minimum uncertainty product allowed by
Heisenberg’s uncertainty principle, and they are also the eigenstates of a driven harmonic oscil-
lator. In terms of a number state basis, a coherent state is given by

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 , (3.22)

with number expectation 〈n̂〉 = |α|2 and number variance V (n) = |α|2.
An undriven harmonic oscillator maintained at some temperature T is said to be in a thermal

state, with a density matrix given by

ρ =
(
1− e−~ωm/kBT

) ∞∑
n=0

|n〉 〈n| e−n~ωm/kBT , (3.23)

with the “phonon number” being given by a Bose-Einstein distribution as

n̄ ≡ 〈n̂〉 =
1

e~ωm/kBT − 1
≈ kBT

~ωm
(kBT � ~ωm), (3.24)

and the phonon number variance being given by V (n) = n̄ (1 + n̄). One could also consider a
(coherently) displaced thermal state.

The quantum ground state corresponds to n̄ = 0 and has a Gaussian wavefunction with a
half-width of

∆xZP =
√

~
2mωm

, (3.25)

termed the zero-point uncertainty for a harmonic oscillator. The larger the zero-point uncertainty
is, the easier it is to detect the quantum fluctuations of the resonator. For this reason, in order to
reach the quantum limit, it would appear desirable to have a resonator with a small mass and a
small frequency. However, one must consider the thermal occupation given by Eq. (3.24). In the
absence of auxiliary cooling mechanisms, one would expect the mode temperature to equilibrate
with the ambient temperature. Then to reach the quantum ground state we must require that

~ωm � kBT. (3.26)

This is a very demanding requirement. Typically, bulk refrigeration is inadequate and auxiliary
cooling mechanisms are required. Thus, in order to observe quantum states of macroscopic
mechanical resonators, we demand that they have low masses and high frequencies.
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Once it is possible to cool a mechanical resonator to its quantum ground state and to make
quantum-limited measurements of the resonator, one may consider the quantum mechanics of
the mechanical resonator itself. The most immediate task is then the generation and detection of
quantum states of the resonator. Such experiments are guided by instances of quantum harmonic
oscillators in other physical systems; namely, in optical and microwave fields, and the motional
states of cold, trapped atoms and ions. In the case of a trapped ion, in contrast with the case of
an electromagnetic field, the associated frequencies are not sufficiently high that we may neglect
thermal noise, and one must explicitly address the problem of cooling the atom or ion.

Fock, coherent and squeezed states of motion of a harmonically-bound ion have been cre-
ated [49], as has a Schrödinger cat state [50]. Such states are created by appropriately tuning an
incident laser, and the motional state of the ion is reconstructed by tomography. Alternatively,
the motion of a single atom may be detected using the spatial variation of the atom-cavity cou-
pling [51]. More recently, motional entangled states of two ions have been demonstrated using
internal states [52], as well as the direct, controllable coupling of the quantized motional states
through Coulomb coupling [53]. In the case of atomic ensembles, cooling to the motional ground
state to form a Bose-Einstein condensate (BEC) has been demonstrated [54], as have squeezed
states [55], and measurement back-action from an optical field onto an atomic ensemble has
been observed [56]. Recently, high-frequency mechanical resonators have been prepared and
measured in their ground states [57,59,58], truly ushering in an age of quantum nanomechanics.

3.2.3 Quantum Phase-Space Distribution Functions

The number states provide a complete basis for the states of the quantum harmonic oscillator.
However, alternative representations are often preferable for the analysis and visualization of
a wide variety of states. Representations over position and momentum, over position and mo-
mentum quadratures, or over complex amplitudes, are referred to as phase-space distribution
functions [60]. In the latter case, they are referred to as coherent state representations [48].

The most well-known phase-space distribution is the Wigner function [61], defined in terms
of position and momentum by

W (x, p, t) =
1

2π2~

∫
dξ

∫
dη

~
2
χS(ξ, η)e−iξx−iηp, (3.27)

where χS(ξ, η) is the symmetrically-ordered characteristic function,

χS(ξ, η) = Tr
[
ρeiξx̂+iηp̂

]
. (3.28)

The Wigner function may be conveniently expressed over position and momentum as

W (x, p, t) =
1
π~

∫
dx′ 〈x+ x′| ρ |x− x′〉 e−2ix′p/~, (3.29)

where x′ = η~/2, or over position and momentum quadratures as

W (X,P, t) =
1
2π

∫
dX ′ 〈X +X ′| ρ |X −X ′〉 e−iX

′P . (3.30)

where X ′ = (2mωm/~)x′. The Wigner functions for a number of well-known quantum states
are depicted in Fig. 3.2 and tabulated in Table 3.1.
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Fig. 3.2. Wigner functions in terms of position and momentum quadratures in a rotating frame, W (X, P, t),
for: (a) the quantum ground state of a harmonic oscillator; (b) a coherent state with X0 = 2, P0 =
2 (α = 1 + i); (c) a squeezed state with squeezing parameter 2r = 0.7; (d) a Fock (“number”) state
with 4 quanta; (e) a thermal state with kBT = ~ωm; (f) a coherent state superposition (“Schrödinger cat”
state) with amplitudes α =

√
2 and phase separation of 2φ = π.

Integrating the Wigner function over different phase-space coordinates, it is seen that the
distribution functions over quadratures and complex amplitudes are related to the distribution
function over position and momentum of Eq. (3.27) by

2~W (x, p, t) = 4W (X,P, t) = W (α, α∗, t). (3.31)

Now different conventions for operator ordering in the characteristic functions lead to different

Ground State Coherent State Squeezed State
1
2π e

− 1
2 (X2+P 2) 1

2π e
− 1

2 [(X−X0)
2+(P−P0)

2] 1
2π e

− 1
2 [X2e2r+P 2e−2r]

nth Fock State Thermal State “Cat” State
1
2πLn

(
X2 + P 2

)
e−

1
2 (X2+P 2) 1

2π tanh ~ωm

2kBT
e
− 1

2 (X2+P 2) tanh ~ωm
2kBT 1

2 (WC1 +WC2 +Wint)

Tab. 3.1. Wigner functions in terms of position and momentum quadratures, W (X, P, t), for the ba-
sic quantum states shown in Fig. 3.2. Note that the coherent state is centred at (X0, P0), the squeezed
state is centred at the origin and the squeezing is of the P quadrature with a magnitude determined
by r, Ln is the nth Laguerre polynomial, and T is the temperature of the thermal state. For the
cat state, WC1(C2) are coherent states with X0 = 2α cos φ and P0 = ±2α sin φ, and Wint =
1
π

cos [2α sin φ (X − α cos φ)] exp
ˆ
− 1

2
(X − 2α cos φ)2 − 1

2
P 2

˜
is an interference term. Note that α

is the amplitude of each coherent state and 2φ is the phase between them.
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distribution functions. The characteristic function corresponding to the Wigner function in a
coherent state basis is

χS(z, z∗) = Tr
[
ρeza

†−z∗a
]
, (3.32)

where z = −η′ + iξ′ with ξ′ = ξx̂/X̂ and η′ = ηp̂/P̂ . The associated Wigner function directly
gives (symmetrically-ordered) position, momentum and quadrature moments,

〈
ama†n + a†nam

〉
=

∫
dα αnα∗mW (α, α∗, t). (3.33)

The P function, also known as the Glauber-Sudarshan or diagonal P representation [62,63],
corresponds to a normally-ordered characteristic function,

χN (z, z∗) = Tr
[
ρeza

†
e−z

∗a
]
. (3.34)

Accordingly, it directly gives normally-ordered moments.

〈
a†man

〉
=

∫
d2αα∗mαnP (α, α∗). (3.35)

The P function is a highly singular representation, such that the density operator may be ex-
pressed as

ρ(t) =
∫
P (α, α∗, t) |α〉 〈α| d2α. (3.36)

The Q function [64, 65] corresponds to an anti-normally-ordered characteristic function,

χA(z, z∗) = Tr
[
ρe−z

∗aeza
†
]
, (3.37)

and is simply given by the matrix elements of the density operator in a coherent state basis,

Q(α, α∗, t) =
〈α| ρ(t) |α〉

π
. (3.38)

The Q function directly gives anti-normally-ordered moments,

〈
ama†n

〉
=

∫
d2αQ(α, α∗, t)αmα∗n. (3.39)

Both the Wigner function and the Q function correspond to Gaussian convolutions of the P
function. A complete set of relationships between the distribution functions in different phase-
spaces may be derived using Eqs. (3.9) and (3.31).
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3.3 Damped Quantum Harmonic Oscillator

To treat dissipation and noise in mechanical systems near the quantum limit, an open quan-
tum systems approach is necessary [66, 67]. Indeed, the ubiquitous thermal state described by
Eq. (3.23) arises as the result of coupling an oscillator to an environment at some finite tempera-
ture. An open quantum systems approach involves considering our system, with few degrees of
freedom, to be coupled to an environment (also known as a “bath” or “reservoir”) composed of
many degrees of freedom.

In general, such an approach leads to an understanding of the processes of decoherence and
einselection [68, 69], and the ability to describe quantum measurement and control [70]. De-
coherence describes the effectively irreversible delocalisation of quantum correlations between
components of the system to the environment; it is responsible for the effective suppression of
macroscopic quantum superpositions. Decoherence is a ubiquitous phenomenon [71] that oc-
curs very rapidly [72], and is a simple consequence of the principle of superposition and the
unitary evolution of the coupled system and environment. Einselection, short for environment-
induced superselection, describes the emergence of quasi-classical preferred states, called pointer
states, of the system, being those that are least sensitive to becoming entangled with the envi-
ronment [73]. In the limit of very weak coupling to the environment, energy eigenstates of the
system are selected [74], while for a harmonic oscillator weakly coupled to an environment, the
coherent states emerge as the pointer states [73].

For the moment, however, we shall simply assume that our system is just the quantum har-
monic oscillator and that the effect of the environment is encapsulated by a simple linear momen-
tum damping term. Also, here we shall consider just the evolution of particular system operators,
rather than the evolution of the system density matrix.

3.3.1 Quantum Langevin Equation

Combining Heisenberg’s equations corresponding to Eq. (3.7) for the position and momentum
operators, and assuming linear momentum damping and a stochastic force F̂ (t), we have the
coupled system of equations

m ˙̂x(t) = p̂(t), (3.40)
˙̂p(t) = −mω2

mx̂(t)− γp̂(t) + F̂ (t). (3.41)

Combining these, we can write a quantum Langevin equation having the same form as Eq. (2.11),

m¨̂x(t) +mγ ˙̂x(t) + kx̂(t) = F̂ (t). (3.42)

Strictly speaking, it is a quantum stochastic differential equation for the position operator in the
Heisenberg picture.

3.3.2 Quantum Noise Spectra

Taking the Fourier transform of both sides of Eq. (3.42) yields the mechanical susceptibility of
Eq. (2.12). One may define correlation functions and noise spectra as in Eq. (2.16) and (2.17),
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though the ordering of operators is now significant since, in general, observables at different
times will not commute. The unsymmetrized noise spectrum of some observable Q̂ is given by

SQ(ω) =
∫ +∞

−∞
dteiωt

〈
Q̂(t)Q̂(0)

〉
≡ S̄Q(ω) + S̃Q(ω). (3.43)

The symmetrized noise spectrum is

S̄Q (ω) =
SQ (+ω) + SQ (−ω)

2
=

1
2

∫ +∞

−∞
dteiωt

〈{
Q̂(t), Q̂(0)

}〉
, (3.44)

and the anti-symmetrized noise spectrum is

S̃Q (ω) ≡ SQ (+ω)− SQ (−ω)
2

=
1
2

∫ +∞

−∞
dteiωt

〈[
Q̂(t), Q̂(0)

]〉
. (3.45)

The position and force noise spectra for a quantum harmonic oscillator are still related as per
Eq. (2.18), provided that the spectra are defined consistently.

The force noise spectrum may be expanded in terms of transitions between initial |i〉 and final
|f〉 environment eigenstates [75],

SF (ω) = 2π
∑
i,f

pi

∣∣∣〈f | F̂ |i〉∣∣∣2 δ (Ef − Ei − ~ω) , (3.46)

where it is assumed that the environment density matrix is diagonal in its eigenstate basis and pi
is the population of the ith environmental eigenstate. Here ω < 0 corresponds to emission by the
environment, and ω > 0 corresponds to absorption by the environment. Note that SF (ω) is not
symmetric with respect to ω since pi usually decreases with Ei. Considering two energy eigen-
states of the environment in equilibrium, the ratio between the negative and positive frequency
noise is set by temperature as

SF (−ω)
SF (+ω)

= e−~ω/kBT . (3.47)

Considering instead transitions between system eigenstates, number states in the case of a
quantum harmonic oscillator, Fermi’s golden rule gives the upward and downward transition
rates in terms of the negative and positive frequency force noise,

Γn−1→n =
n

2~mωm
SF (−ωm), Γn→n−1 =

n

2~mωm
SF (+ωm). (3.48)

Accordingly, the number state distribution pn evolves according to the rate equation

ṗn = Γn−1→npn−1 + Γn+1→npn+1 − (Γn→n+1 + Γn→n−1) pn. (3.49)

The time-evolution of the expected energy of the oscillator, 〈E(t)〉 =
∑∞
n=0 ~ωm

(
n+ 1

2

)
pn(t),

is then given by

d

dt
〈E(t)〉 = D − γ 〈E(t)〉 , (3.50)
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where

D =
1

2m
S̄F (ωm), γ =

1
~mωm

S̃F (ωm), (3.51)

describe momentum diffusion and momentum damping, respectively. The former depends on the
symmetrized noise spectrum, while the latter depends on the anti-symmetrized noise spectrum.
From Eq. (3.47) and (3.51), one can write down the quantum fluctuation-dissipation theorem
[76],

S̄F (ω) = mγ~ω coth
~ω

2kBT
= 2mγ

[
~ω
2

+
~ω

e~ω/kBT − 1

]
. (3.52)

From Eq. (3.51) and (3.52), it follows that S̄F (ω)/S̃F (ω) = coth (~ω/2kBT ), such that the
environment temperature is a measure of the asymmetry of the quantum noise.

In the high-temperature limit, Eq. (3.52) reduces to the classical white noise spectrum of
Eq. (2.20). From Eq. (2.18), the position noise spectrum of a quantum harmonic oscillator is

S̄x(ω) =
~ω

2mω2
m

γ

(ωm − ω)2 + (γ/2)2

[
1
2

+
1

e~ω/kBT − 1

]
. (3.53)

The distinction from the classical case is that Eq. (3.53) enforces a lower limit on the position
noise spectrum, as shown in Fig. 2.2, corresponding to the zero-point fluctuations of the oscilla-
tor.

3.3.3 Quantum Langevin Equation Revisited

In quantum optics, however, one expects an equation of motion for the damped harmonic oscil-
lator of the form

ȧ(t) = −iωma(t)−
γ

2
a(t) +

√
γain(t), (3.54)

where ain(t) is the input noise operator defined as

ain(t) =
1√
2π

∫ +∞

−∞
dωeiω(t−t0)a0(ω). (3.55)

Here a0(ω) is the input field at some initial time t = t0, defined such that the input noise
commutation relation is [ain(t), a

†
in(t

′)] = δ (t− t′). As we shall see in Sec. 3.3.4, Eq. (3.54)
corresponds to Eq. (3.42) in the high-Q limit and after a “rotating-wave approximation” has been
made. The input ensemble most closely resembling a classical white noise process is described
by

〈a†in(t)ain(t
′)〉 = n̄ δ(t− t′), (3.56)

with n̄ being a measurement of the environment temperature as per Eq. (3.24). A quantum
Wiener process is then defined by A (t, t0) =

∫ t
t0
ain(t′)dt′, such that

[
A (t, t0) , A† (t, t0)

]
=

t − t0 and
〈
A†(t, t0)A(t, t0)

〉
= n̄ (t− t0). We also specify that the distribution of A (t, t0) is

Gaussian; that is, the density operator describing the ensemble of input modes is given by the
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thermal state of Eq. (3.23). Note that Eq. (3.54) may be derived using a microscopic model of
the system and its environment [42].

The solution to Eq. (3.54) is

a(t) = a(0)e−i(ω0−iγ/2)t +
√
γe−i(ω0−iγ/2)t

∫ t

0

dt′ei(ω0−iγ/2)t′ain(t′). (3.57)

The average amplitude is clearly then

〈a(t)〉 = 〈a(0)〉e−i(ω0−iγ/2)t. (3.58)

The mean energy is determined by

〈a†(t)a(t)〉 = 〈a†(0)a(0)〉e−γt

+ γe−γt
∫ t

0

dt1

∫ t

0

dt2e
−i(ω0+iγ/2)t1ei(ω0−iγ/2)t2〈a†in(t1)ain(t2)〉. (3.59)

To proceed further, we need to use the result∫ t1

0

dt′
∫ t2

0

dt′′f∗(t′)f(t′′)〈a†in(t
′)ain(t′′)〉 =

∫ min(t1,t2)

0

dt′|f(t)|2 n̄, (3.60)

such that

〈a†(t)a(t)〉 = 〈a†(0)a(0)〉e−γt + n̄(1− e−γt) (3.61)

In the steady-state, 〈a†(t)a(t)〉 → n̄, which indicates the approach to thermal equilibrium.
The position noise spectrum for the quantum optics Langevin equation may be calculated by

first taking the Fourier transform of Eq. (3.54),

a(ω) =
√
γ

i (ωm − ω) + γ/2
ain(ω), (3.62)

with operators in the frequency domain being defined by,

a(t) =
1
2π

∫ ∞

−∞
dωe−iωtã(ω). (3.63)

and input noise correlations in the frequency domain being

〈a†in(ω
′)ain(ω)〉 = n̄δ(ω − ω′), (3.64)

〈ain(ω′)a†in(ω)〉 = (n̄+ 1)δ(ω − ω′). (3.65)

The analysis of the steady-state of quantum Langevin equations in the frequency domain leads to
the input-output formalism of open quantum systems [77, 78]. The position noise spectrum may
then be calculated using Eq. (3.62), as

S̄x(ω) =
~

2mω
γ

(γ/2)2 + (ωm − ω)2

[
1
2

+
1

e~ω/kBT − 1

]
. (3.66)

Comparison with Eq. (3.53) shows that the noise spectrum is the same in the vicinity of the
resonance frequency.



Quantum Mechanical Resonators 509

In terms of the Heisenberg picture position operator of Eq. (3.12), Eq. (3.54) and its Hermi-
tian conjugate may be written as the coupled system of equations,

m ˙̂x(t) = p̂(t)− γ

2
mx̂(t) +

√
γmx̂in(t), (3.67)

˙̂p(t) = −mω2
mx̂(t)−

γ

2
p̂(t) +

√
γp̂in(t). (3.68)

Comparing Eq. (3.68) with Eq. (3.41), it is clear that the damped harmonic oscillator of quantum
optics has position damping (and the associated noise) in addition to the momentum damping of
Eq. (3.41). Combining Eqs. (3.67) and (3.68), one finds

m¨̂x(t) + γm ˙̂x(t) +mω2
mx̂(t) +

γ2

4
mx̂(t) =

√
γ

[mγ
2
x̂in(t) + 2p̂in(t)

]
. (3.69)

The position and momentum damping combine to give the same effective momentum damping
as in Eq. (3.42), and there is an additional frequency shift. The noise spectrum of the input noise
terms on the right-hand-side of Eq. (3.68) may be calculated as

S̄F (ω) = 4mγ
[

~ω
2

+
~ω

e~ω/kBT − 1

]
+
mγ3

4ω2

[
~ω
2

+
~ω

e~ω/kBT − 1

]
. (3.70)

In the high-Q limit, this is the result we have in Eq. (3.52) with the replacement γ → γ/2. This
is due to the factor of two difference between the damping rate as conventionally defined in a
Brownian motion Langevin equation, as compared with a quantum optical Langevin equation.
One may numerically verify that, in the high-Q limit, the dynamics described by Eq. (3.69)
approach those described by Eq. (3.42).

3.3.4 Master Equations

In general, to reproduce the full quantum dynamics of a system using the quantum Langevin
equation approach, one must solve a hierarcy of moment equations to all orders. An alternative
is to write down an equation describing the evolution of the system density operator, and we now
consider approaches for doing this.

Formally, an open quantum system evolves on the composite Hilbert space of the system
and environment, H = HS ⊗HE , and we denote the density operator defined on this space by
ρ(t). Given a separable initial state, ρ(0) = ρS(0) ⊗ ρE(0), the exact evolution of the reduced
density operator of the system, ρS(t) = TrE ρ(t) where TrE [. . .] denotes the trace over the
environmental degrees of freedom, is given by

ρS(t) = TrE
{
U(t) [ρS(0)⊗ ρE(0)] U†(t)

}
, (3.71)

where U(t) = e−iHt/~ is the unitary evolution operator corresponding to the composite system-
environment Hamiltonian H .

In general, it is not possible to calculate the exact dynamics according to Eq. (3.71), and we
must approximate to make the problem tractable. There are two common approaches, one being
based on the Liouville-von Neumann equation and the other based on the use of path integrals.

In the former approach, one obtains a time-local, first-order differential equation for the re-
duced density operator of the system, known as a master equation. This is the quantum analogue
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of a classical Fokker-Planck equation. Indeed, under certain conditions, a master equation can
be mapped onto a Fokker-Planck equation for a corresponding quantum phase-space distribution
function of the type discussed in Sec. 3.2.3.

In the latter approach, the evolution of the system is expressed in terms of a path integral, or
propagator [79]. The evolution of the reduced density matrix of the system may be expressed
as a path integral in terms of the so-called Feynman-Vernon influence functional. Historically,
the path integral approach was widely used in the development of the theory of open quantum
systems: prominent examples include the mapping between different environment models [80],
the formulation of quantum Brownian motion [81] and of macroscopic quantum tunneling [82],
and the discussion of continuous measurement [83]. However, due to the greater generality, the
calculations tend to be more complicated than those required in the master equation approach.

3.3.5 Born-Markov Master Equation

The Born-Markov master equation is an equation that is both widely applicable and mathemati-
cally tractable, and its derivation is now outlined [67]. Both the well-known quantum Brownian
motion master equation and the quantum optics master equation shall emerge as special cases.
Suppose that the system is described by the Hamiltonian HS , the environment is described by
HE , and the system-environment interaction is described by HI . Moving to an interaction pic-
ture with respect to HS + HE , the time-evolution of the density matrix is described by the
Liouville-von Neumann equation,

d

dt
ρ(t) = − i

~
[HI(t), ρ(t)] . (3.72)

This equation may be formally integrated iteratively, and then by tracing over the environmental
variables and assuming, without loss of generality, that TrE [HI(t), ρ(0)] = 0,

d

dt
ρS(t) = − 1

~2

∫ t

0

dt′TrE [HI(t), [HI(t), ρ(t′)]] . (3.73)

The assumptions of weak coupling to the environment, a “large” environment and an initial
product state justify the so-called Born approximation, that the system and the environment do
not become entangled and that the environmental state is unaffected by its interaction with the
system, ρ(t) = ρS(t)⊗ ρE(0).

It is possible to now make the Markov approximation without the form of the system-
environment interaction being specified [66], but it shall prove more useful to do so. Assuming
that the interaction takes the bilinear form

HI =
∑
i

Si ⊗ Ei, (3.74)

where Si are system operators and Ei are environment operators, with environmental correlation
functions

Cij(t− t′) ≡ TrE [Ei(t− t′)EjρE(0)] , (3.75)
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then Eq. (3.73) leads to

d

dt
ρS(t) = − 1

~2

∫ t

0

dt′
∑
i,j

{Cij(t− t′) [Si(t)Sj(t′)ρS(t′)− Sj(t′)ρS(t′)Si(t)]

+Cji(t′ − t) [ρS(t′)Sj(t′)Si(t)− Si(t)ρS(t′)Sj(t′)]} . (3.76)

The Markov approximation is that the environment operators are correlated over time-scales
short compared with the time-scale for the decay of the system [84]. Accordingly we make the
replacement ρS(t′) → ρS(t) in Eq. (3.76), extend the lower limit on the integral to minus infinity,
and make the replacement t′ → τ ≡ t− t′. Then transforming back to the Schrödinger picture,
the Born-Markov master equation is

d

dt
ρS(t) = − i

~
[HS , ρS(t)]− 1

~2

∑
i

{[Si, BiρS(t)] + [ρS(t)Ci, Si]} , (3.77)

where

Bi =
∫ ∞

0

dτ
∑
j

Cij(τ)Sj(−τ), Ci =
∫ ∞

0

dτ
∑
j

Cji(−τ)Sj(−τ), (3.78)

and Cij(τ) are sharply-peaked environmental correlation functions. Henceforth, we shall only
be interested in the reduced density operator of the system, and so the “S” subscript shall be
dropped.

The so-called Lindblad form of the master equation ensures the positivity of the density
matrix [85], and it may be derived from a Born-Markov master equation by making a rotating-
wave approximation [66]. The rotating-wave approximation means that we neglect dynamics
fast compared with system dynamics. In its most general form, a Lindblad master equation is
given by

d

dt
ρ(t) = − i

~
[HS , ρ(t)] +

1
2

∑
i,j

γij

{[
Si, ρ(t)S

†
j

]
+

[
Siρ(t), S

†
j

]}
, (3.79)

where γij forms the decoherence matrix. Diagonalizing this matrix leads to

d

dt
ρ(t) = − i

~
[H ′

S , ρ(t)] +
1
2

∑
k

γk

[
2Lkρ(t)L

†
k − L†kLkρ(t)− ρ(t)L†kLk

]
, (3.80)

where Lk are called Lindblad operators and H ′
S is the renormalized system Hamiltonian. When

the Lindblad operators are Hermitian they correspond to physical observables, and Eq. (3.80) can
be written as

d

dt
ρ(t) = − i

~
[H ′

S , ρ(t)]−
1
2

∑
k

γk [Lk, [Lk, ρ(t)]] . (3.81)

The second term on the right-hand-side then describes decoherence without dissipation.
Typically, the environment of an open quantum system is modeled as a thermal ensemble of

non-interacting harmonic oscillators, ρE(0) = e−βHE/Tr
[
e−βHE

]
where

HE =
∑
i

(
p̂2
i

2mi
+

1
2
miω

2
i q̂

2
i

)
, (3.82)
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with q̂i and p̂i denoting the position and momentum, respectively, of the ith environmental oscil-
lator. This provides a good generic model for a dissipative environment; indeed, in the limit of
weak coupling to the environment it may be shown that any environment may be mapped onto
an oscillator environment [80]. It is also tractable; in the path integral approach the Feynman-
Vernon influence functional may be explicitly evaluated, and in the master equation approach,
the correlation functions may be evaluated.

Eq. (3.82) describes the environment for the two types of master equation of particular inter-
est, corresponding to quantum Brownian motion and quantum optical systems. These equations
differ in the form of the system-environment interaction due to the fact that a rotating-wave ap-
proximation is made in the latter case. It is often said that the quantum optical master equation
is derived in the weak damping limit, while the quantum Brownian motion master equation is
derived in the slow system limit. Although this is true, these regimes can certainly overlap, and
both approximations will often be valid.

3.3.6 Quantum Brownian Motion Master Equation

In the case of quantum Brownian motion, it is assumed that a single system position coordinate
couples linearly to the position of each environmental oscillator, such that

HI = x̂⊗
∑
i

ciq̂i ≡ x̂⊗ E, (3.83)

where E is an effective environment operator. The effective environmental correlation function
is C(τ) = ν(τ)− iη(τ), where the so-called noise and dissipation kernels are

ν(τ) = ~
∫ ∞

0

dωJ(ω) coth
~ω

2kBT
cosωτ, η(τ) = ~

∫ ∞

0

dωJ(ω) sinωτ, (3.84)

respectively, and the spectral density of the environment is

J(ω) =
∑
i

c2i
2miωi

δ (ω − ωi) . (3.85)

Substituting Eq. (3.84) and (3.85) into Eq. (3.77) and (3.78), transforming all operators back
to the Schrödinger picture, and assuming that our “system” under consideration is a harmonic
oscillator with the Hamiltonian of Eq. (3.10), the master equation describing quantum Brownian
motion with a harmonic oscillator system is

d

dt
ρ(t) = − i

~

[
p̂2

2m
+

1
2
kx̂2 +

1
2
mw̃2x̂2, ρ(t)

]
(3.86)

− iγ

~
[x̂, {p̂, ρ(t)}]− D

~2
[x̂, [x̂, ρ(t)]]− f

~
[x̂, [p̂, ρ(t)]] ,

where the frequency shift and momentum damping are given by

ω̃2 = − 2
~m

∫ ∞

0

dτη(τ) cosωmτ, γ = − 1
~mωm

∫ ∞

0

dτη(τ) sinωmτ, (3.87)



Quantum Mechanical Resonators 513

respectively, and the momentum normal-diffusion and anomalous-diffusion coefficients, are

D =
∫ ∞

0

dτν(τ) cosωmτ, f =
1

~mωm

∫ ∞

0

dτν(τ) sinωmτ, (3.88)

respectively. The momentum normal-diffusion coefficient describes the monitoring of x̂ and so
decoherence in the position basis. Note that Eq. (3.87) is not completely positive on short time-
scales, though this is not problematic provided that one does not attempt to interpret the equation
on such time-scales.

In order to evaluate the coefficients in Eq. (3.87), one must assume some form for the spectral
density of Eq. (3.85). An ohmic spectral density, J(ω) ∝ ω, with a high-frequency cut-off,
Λ � ωm, of the Lorentz-Drude form is often assumed,

J(ω) =
2mγ0

π

ωΛ2

Λ2 + ω2
. (3.89)

The coefficients may then be evaluated as γ = γ0Λ2/
(
Λ2 + ω2

m

)
,D = ~mγωm coth (~ωm/2kBT )

and ω̃2 = −2γΛ, while f is assumed to be negligibly small. Considering the high-temperature
limit, kBT � ~ωm, one obtains the famous Caldeira-Leggett master equation [81],

d

dt
ρ(t) = − i

~

[
p̂2

2m
+

1
2
m

(
ω2
m − 2γΛ

)
x̂2, ρ(t)

]
(3.90)

− iγ

~
[x̂, {p̂, ρ(t)}]− 2mγkBT

~2
[x̂, [x̂, ρ(t)]] .

In the limit of very weak damping, one may write down a Fokker-Planck equation for the corre-
sponding Wigner function [86], W ≡W (x, p, t), as

∂W

∂t
= − ∂

∂x
(pW ) +mω2

m

∂

∂p
(xW ) (3.91)

+ 2γ
∂

∂p
(pW ) +mγωm~ coth

~ωm
2kBT

∂2W

∂p2
.

3.3.7 Quantum Optical Master Equation

In the quantum optical case, it is again assumed that a single system position coordinate cou-
ples linearly to the position of each environmental oscillator, though one additionally makes a
rotating-wave approximation on this coupling,

HI = x̂⊗
∑
i

ciq̂i
RWA−→ HI =

~
2m

∑
i

ci√
ωmωi

(
a⊗ b†i + a† ⊗ bi

)
=

∑
i

ci
2

(
x̂⊗ q̂i +

1
m2ωmωi

p̂⊗ p̂i

)
, (3.92)

where a and bi are the annihilation operators corresponding to the system oscillator and the
ith environmental oscillator, respectively. The approximation is that we may neglect dynamics
fast on the time-scale of system dynamics. Generally speaking, this approximation is not as
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well justified in the description of a mechanical resonator as it is in an optical setting, though
discrepancies become negligible in the high-Q limit.

One may proceed with the derivation of the master equation from Eq. (3.92), by compar-
ing Eq. (3.92) with Eq. (3.74), calculating the environment correlation functions according to
Eq. (3.75), and substituting into the Born-Markov master equation of Eq. (3.77). Alternatively,
we could simply use the Lindblad form of Eq. (3.79), or make a rotating-wave approxima-
tion directly on Eq. (3.87) and neglect the level shift and anomalous diffusion terms. Then the
Schrödinger picture quantum optics master equation is

d

dt
ρ(t) = − i

~

[
p̂2

2m
+

1
2
kx̂2, ρ

]
− γmωm

4~
coth

~ωm
2kBT

[x̂, [x̂, ρ(t)]]− i
γ

4~
[x̂, {p̂, ρ(t)}]

− γ

4~mωm
coth

~ωm
2kBT

[p̂, [p̂, ρ(t)]] + i
γ

4~
[p̂, {x̂, ρ(t)}] . (3.93)

The second and third terms describe momentum diffusion and damping, while the fourth and
fifth terms (not present in quantum Brownian motion) describe position diffusion and damping.
The additional terms are sufficient to ensure the positivity of Eq. (3.93). The corresponding
Fokker-Planck equation for the Wigner function is that of Eq. (3.92), but with the added position
damping and diffusion,

∂W

∂t
= − ∂

∂x
(pW ) +mω2

m

∂

∂p
(xW ) + 2γ

∂

∂p
(pW ) +mγωm~ coth

~ωm
2kBT

∂2W

∂p2

+ 2γ
∂

∂x
(xW ) +

~γ
mωm

coth
~ωm
2kBT

∂2W

∂x2
. (3.94)

In terms of the (Heisenberg picture) quadratures of Eq. (3.16), Eq. (3.93) is

d

dt
ρ(t) = − i

~

[
~ωm

4

(
X̂2 + P̂ 2

)
, ρ

]
− γ

4
(n̄+ 1/2)

[
X̂(t),

[
X̂(t), ρ

]]
− γ

4
(n̄+ 1/2)

[
P̂ (t),

[
P̂ (t), ρ

]]
− i

γ

8

[
X̂(t),

{
P̂ (t), ρ

}]
+ i

γ

8

[
P̂ (t),

{
X̂(t), ρ

}]
, (3.95)

where n̄ is the thermal occupation of the environment, given by a Bose-Einstein distribution
evaluated at the frequency of the system harmonic oscillator. In terms of the Schrödinger picture
raising and lowering operators of Eq. (3.8), it takes the familiar form

d

dt
ρ(t) = − i

~
[
~ωma†a, ρ

]
(3.96)

+ γ (n̄+ 1)
(
aρa† − 1

2
a†aρ− 1

2
ρa†a

)
+ γn̄

(
a†ρa− 1

2
aa†ρ− 1

2
ρaa†

)
.

Using Eq. (3.47) and (3.52), this may be expressed as

d

dt
ρ(t) = − i

~
[
~ωma†a, ρ

]
+ Re [SF (+ωm)]

(
aρa† − 1

2
a†aρ− 1

2
ρa†a

)
+ Re [SF (−ωm)]

(
a†ρa− 1

2
ρaa† − 1

2
aa†ρ

)
. (3.97)
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More general forms of quantum optics master equation are sometimes quoted, accounting for
level shifts and/or a phase-dependent bath [48]. Also, one may rewrite the master equations
of Eq. (3.93) and (3.97) in the interaction picture by replacing each Schrödinger picture sys-
tem operator with its Heisenberg picture equivalent, and by removing the harmonic oscillator
Hamiltonian terms.

3.4 Dissipation via Phonon Tunneling

Nanomechanical resonators are primarily damped by excitation of short-wavelength phonon
modes in bulk material that provides the support for the beam [87]. This may be treated us-
ing standard methods for bosonic baths. For very small beams, with large surface area to volume
ratios, the low temperature dissipation may also be influenced by two-level systems correspond-
ing to elastic defects in the beam [88]. We will neglect this source of dissipation and focus on
the dissipation due to the supports, following the phonon-tunnelling model of Wilson-Rae [87].
Experiments have verified the validity of this theory [39, 40].

The elastic energy of the flexural mode decays through inducing stresses in the bulk material
at the supports of the beam. This can be treated as weak phonon tunnelling in the limit that
k0d� 1 where k0 is the wavevector of the flexural mode and d is the length scale for the contact
area between the beam and the support. In this limit we can approximate the Hamiltonian for the
system by

H = ~ω0b
†
0b0 + ~(b0 + b†0)

∫
dq ξ(q)

[
b(q) + b†(q)

]
+

∫
dq ~ω(q)b†(q)b(q), (3.98)

where b0 annihilates a phonon in the mechanical resonator flexural mode with mode function
u0(r) = u(q0, r) and the coupling constant determines the bath spectral density function,

J(ω) = 2π
∫
dq|ξ(q)|2δ [ω − ω(q)] . (3.99)

Under the weak tunnelling approximation this is given by

J(ω) ≈ π

2ρ2
sω0ω

∫
dq

∣∣∣∣∫
S

dr2
[
u0(r) · σq(r)− uq(r) · σ0(r)

]
· n̂

∣∣∣∣2×δ[ω−ω(q)], (3.100)

where uq(r) and σq(r) are the displacement and stress fields associated with bulk phonon modes
while u0(r) and σ0(r) are the corresponding fields for the beam resonator mode, S is the contact
area between the beam and the support while ρs is the density of the support substrate. Careful
fabrication can be used to engineer this spectral density to a considerable degree [89].

If we further assume that the mechanical frequency is very high compared to the typical
time scale of the tunnelling interaction, we may assume a master equation taking the form of
Eq. (3.97) with γ = J(ω0).
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4 Quantum Optomechanical Systems

In optomechanical systems, an optical field is used for the measurement and control of the me-
chanical resonator. The optical field is usually confined within a cavity, providing resonant en-
hancement of the field strength and sensitivity to mechanical displacements.

4.1 Optomechanical Couplings

An optical field may couple to a mechanical resonator through the effects of radiation pressure,
via optical gradient forces, via the Doppler effect, or via photothermal forces. Radiation pres-
sure is a scattering force that arises due to the reflection of light, which of course, has some
momentum associated with it. Optical gradient forces (also known as dipole forces) arise from
the spatial variation of optical intensity. The Doppler effect is typically very weak [90], requir-
ing a mirror with a strong dependence of reflectivity on wavelength [91]. Further, photothermal
effects, arising from temperature gradients induced by the uneven absorption of light, are inher-
ently dissipative [92]. Thus, for the consideration of quantum optomechanical systems, we shall
focus on radiation pressure and optical gradient forces.

Radiation pressure was first demonstrated experimentally over one hundred years ago [93,
94]. The static effect of radiation pressure on an optomechanical cavity is bistability [95]. The
dynamic effect of radiation pressure, associated with a finite cavity lifetime, is a frequency shift
and a modified damping of the mechanical resonator [96, 97].

The simplest optomechanical system in which radiation pressure provides the dominant op-
tomechanical coupling is a Fabry-Pérot cavity in which one of the mirrors is mechanically com-
pliant, as depicted in Fig. 4.1(a). This coupling is typically dispersive, meaning that the primary
effect of the mechanical motion is to shift the resonance frequency of the optical cavity. A mi-
cromechanical cavity or waveguide, in which the optical field is confined within the structure
having the mechanical degree of freedom, also leads to the same type of radiation pressure cou-
pling. Within dielectric waveguides, an optomechanical coupling can arise from photoelastic
scattering and electrostriction. This coupling may also be employed for excitation [98] or for
cooling [99].

The other type of forces that we shall consider are optical gradient forces. They have long
been utilized for the manipulation of small particles via optical tweezers [101]. Large optical in-
tensity gradients often exist outside the tightly confined field of a microcavity. This field is known

Fig. 4.1. (a) An optomechanical Fabry-Pérot cavity. (b) An optomechanical “membrane-in-the-middle”
cavity. Reprinted by permission from McMillan Publishers Ltd: Nature [100], copyright 2008.
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as an evanescent field, and placing a mechanical resonator in this field leads to the possibility of
large optical gradient forces [102]. These evanescently-coupled optomechanical systems typi-
cally exhibit both a dispersive and reactive coupling. The primary effect of the reactive coupling
is to modify the cavity damping rate.

4.1.1 Dispersive Coupling

We first consider the optomechanical coupling in the simplest case, a Fabry-Pérot cavity in which
one of the mirrors is mechanically compliant. The motion of the mechanical resonator will
change the length of the optical cavity, and so change the cavity’s resonance frequency. Thus, the
coupling is readily calculated by determining the dependence of the cavity resonance frequency
on the displacement of the mechanical component [103, 104]. It will turn out that the same form
of Hamiltonian coupling can emerge for a nanomechanical resonator coupled to a microwave
circuit, or for a membrane in a cavity that couples to an optical field by spatial modulation of the
cavity’s refractive index.

Suppose that the Hamiltonian of the coupled system is

H = ~ωc(x)a†a+ ~ωmb†b, (4.1)

where a and b are the annihilation operators for the cavity mode and the mechanical mode,
respectively, and x is the displacement of the mechanical mode. A resonant cavity mode must
have nλn = 2L for some integer n, where λn is the wavelength of the relevant optical mode and
L is the length of the cavity. Then the resonance frequency of the cavity is ωc = nπc/L. Now
allowing some displacement such that the new cavity length is L + x, the resonance frequency
of the cavity is

ωc(x) =
nπc

L+ x
= ωc

[
1− x

L

]
, (4.2)

and the Hamiltonian of Eq. (4.1) becomes

H = ~ωca†a+ ~ωmb†b− ~κa†ax where κ =
ωc
L
. (4.3)

This coupling has units of s−1m−1. One can write x = ∆x
(
b+ b†

)
, to get the single photon

optomechanical coupling,

κ0 = ωc
∆x
L
, (4.4)

with the associated Hamiltonian being

H = ~ωca†a+ ~ωmb†b− ~κ0a
†a

(
b+ b†

)
. (4.5)

Alternatively, this radiation pressure coupling may be rigorously derived by quantizing an elec-
tromagnetic field with time-varying boundary conditions [105]. A Hamiltonian of this form
applies not only to optomechanical Fabry-Pérot cavities, but also to micromechanical cavities,
such as a microtoroidal cavity where the length L may be identified as the circumference of the
microtoroid. Evanescently-coupled optomechanical systems will also give rise to a dispersive
shift of the cavity resonance frequency. Indeed, such couplings can be made very large as the
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effective length in the coupling κ can be much smaller than the physical dimensions of the cavity
involved.

As the cavity must be of the order of the wavelength the coupling has a natural upper bound.
The micro-mechanical resonator in the optomechanical Fabry-Perot experiment of Aspelmeyer
[106] had an effective mass ofm = 145ng and a resonant frequency of ωm = 2π×947kHz. The
ground state uncertainty is then ∆0 = 2.4 × 10−16m. The cavity length was L = 2.5mm and
the optical cavity resonance frequency was ωc = 2π × 2.82 × 1014 giving an effective vacuum
coupling strength of about κ0 = 2π × 2.7 Hz. Stronger couplings have been obtained in other
systems, such as by the Painter group at Caltech using optomechanical crystal structures [107].
They obtained a coupling as high as κ0 = 2π × 4× 105 Hz.

A situation commonly encountered is where the cavity is strongly driven to some large co-
herent amplitude α ≡ 〈a〉. Suppose that the cavity is driven at a frequency ωd, detuned from the
cavity resonance by δd ≡ ωc − ωd and with an input power Pin. It is assumed that the optome-
chanical coupling is sufficiently weak that |κx| � δd or γc/2 at all times. Then if the cavity
damping is given by γc, the number of photons in the cavity in the steady-state is

nc ≡ |α|2 =
Pin
~ωd

γc
γ2
c + 4δ2d

. (4.6)

Assuming that the phase of the drive is set such that the steady-state amplitude α is real, then in
a rotating frame and a displaced picture with a→ α+ â, the Hamiltonian is

H = ~δdâ†â+ ~ωmb†b− ~κ |α|2 x+ ~g
(
â+ â†

)
x, (4.7)

where the effective optomechanical coupling is now written as

g ≡ κα =
ωc
L

√
Pin
~ωd

√
γc

γ2
c + 4δ2d

. (4.8)

The regime of strong optomechanical coupling (g > γc, γm) leads to the emergence of optome-
chanical normal-mode splitting [108].

It shall prove useful to distinguish two distinct regimes of operation of optomechanical sys-
tems: the adiabatic regime (also known as the “bad-cavity” limit) where γc � ωm, and the
resolved-sideband regime (also known as the “good-cavity” limit) where ωm � γc. In the latter
case, the effects of dynamical back-action (associated with the finite cavity lifetime) are more
pronounced.

An alternative system consists of a partially transparent dielectric membrane between the
mirrors of a rigid Fabry-Pérot cavity; a “membrane-in-the-middle” setup [100]. This is depicted
in Fig. 4.1(b). In this case, the resonance frequency of the cavity depends periodically on the
position of the membrane x as [109]

ωc(x) =
c

L
cos−1

[
|r| cos

4πx
λd

]
, (4.9)

where r is the reflectivity of the membrane. Most importantly, at an extremum of ωc(x), the op-
tomechanical coupling is proportional to the position squared, as ~ 1

2ω
′′
c (0)x2a†a. In the rotating-

wave approximation, the coupling is proportional to the phonon number operator, such that the
Hamiltonian is

H = ~ωc(0)a†a+ ~ωmb†b+ ~ω′′c (0)(∆x)2
(
b†b+

1
2

)
a†a. (4.10)
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x

Fig. 4.2. A “membrane-in-the-middle” optomechanical system based on an intracavity dielectric membrane.
The cavity frequency, ω(x), varies as the membrane is displaced from equilibrium [110].

Then the possibility of the measurement and conditional generation of Fock states, and the ob-
servation of quantum jumps, emerges in these systems.

4.1.2 Coupling via Refractive Index Modulation

The third implementation we will consider, pioneered by the Harris group [110], is based on the
spatial modulation of the refractive index of the cavity using a suspended SiN membrane, which
vibrates like a drum head, in the middle of a Fabry-Perot cavity, see Fig. 4.2.

The dielectric membrane displacement modulates the cavity frequency ω(x). We again ex-
pand this to lowest non-zero order in x. This gives an interaction which is linear in x if ω(x) has
a maximum slope at x = x0 or quadratic in x if ω(x) corresponds to an extremum at x = x0.
The linear case gives the standard radiation pressure coupling withG0 ∼ 10−3Hz. The quadratic
case gives an interaction Hamiltonian of the form

H = ~ωca†a+ ~ωmb†b+ ~
χ

2
a†a(b+ b†)2. (4.11)

In [111] the optomechanical coupling is χ = 10Hz for an incident power of 10µW. In the inter-
action picture, we neglect rapidly oscillating terms and write

HI = ~ωca†a+ ~ωmb†b+ ~χa†ab†b. (4.12)

The important point here is that the interaction commutes with the phonon number operator, b†b,
suggesting that one can use this to make a quantum nondemolition (QND)measurement [112] of
the energy of the mechanical resonator. We will discuss this in more detail in Sec. 8.5.

4.1.3 Dispersive Coupling: Sideband Transitions

From a semi-classical perspective, the cavity field experiences a periodic modulation of the de-
tuning (frequency modulation). To see this, we can move to an interaction picture for the me-
chanical resonator to obtain the Hamiltonian,

Hom = ~G0a
†a(be−iωmt + b†eiωt). (4.13)
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Fig. 4.3. The cavity spectrum due to a periodic modulation of the cavity detuning by the mechanical
resonator results in sidebands at multiples of the mechanical frequency, ωm. Each peak has the same
linewidth as the cavity (κ) and an amplitude determined by Bessel functions.

If the mechanical resonator is driven into a steady-state oscillation with amplitude β(t) =
β0e

−iωmt, we can make the semi-classical replacement b→ β. The semi-classical cavity Hamil-
tonian is then

Hsc = ~ωca†a+ ~∆(t)a†a, (4.14)

where

∆(t) = G0(βe−iωmt + β∗eiωt) ≡ D cos(ωmt), (4.15)

where we have taken β to be real for convenience and define D = 2G0β as the modulation
amplitude. We can solve the Heisenberg equation of motion for the classical field amplitude α(t)
to obtain,

α(t) = α(0)e−iωct−i(D/ωm) sin(ωmt). (4.16)

This periodic function can be expanded as a Fourier series in terms of Bessel functions. Using a
Jacobi-Anger expansion, we find

a(t) = a(0)e−iωct
∞∑

n=−∞
Jn(D/ωm) einωmt. (4.17)

:make Thus if we now weakly drive the cavity we should expect to see a spectrum that has peaks
at ω = ωc ± nωm; that is, the cavity acquires sidebands at multiples of ωm. These peaks will
have the width of the cavity decay rate κ. If ωm > κ the sidebands can be resolved as distinct
sidebands, as shown in Fig. 4.3. This is called the “resolved sideband” or “good cavity” limit.

Another way to increase the optomechanical coupling is to drive the cavity so that a large
steady state amplitude can build up. The small phase shift induced by the optomechanical cou-
pling then appears as a displacement of the cavity field amplitude. We can describe this by
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linearising the quadratic radiation pressure interaction, resulting in an interaction that is linear in
the cavity field amplitude.

The master equation of a driven cavity, in the interaction picture at the cavity driving fre-
quency, is given by

dρ

dt
= −iδ[a†a, ρ]− iε[a+ a†, ρ] + κD[ρ], (4.18)

where D[A]ρ = AρA† + A†Aρ/2 + ρA†A/2 and δ = ωc − ωD. The steady-state amplitude of
the cavity field is the coherent state with amplitude

α0 = − iε

κ/2 + iδ
. (4.19)

If we now include a weak optomechanical radiation pressure coupling, we expect the cavity
field to remain near a coherent state. Accordingly, we make the canonical transformation to a
displaced picture by a→ α0 + ā and expand the Hamiltonian of Eq. (4.5) (now in an interaction
picture) to linear order in a, a†. We find

H = ~δā†ā+ ~ωmb†b− ~G0(α0ā
† + āα∗0)(b+ b†)− ~G0|α0|2(b+ b†). (4.20)

The last terms is a linear constant force acting on the mechanics and will impart a small displace-
ment of the mechanical resonator’s equilibrium position. It shall be ignored, and we will work
with the quadratic interaction, ~g(a+ a†)(b+ b†), where we have fixed the phase of the driving
field to make α0 real and dropped the bars for convenience. The new coupling rate g = −G0α0

is now enhanced by a factor that is the square root of the steady-state photon number inside the
cavity.

The sideband spectrum motivates an approximation scheme based on driving the system with
a laser detuned exactly to one or the other sideband, in the resolved-sideband limit. Starting with
linearised interaction Hamiltonian,

H = ~δa†a+ ~ωmb†b+ ~g(a† + a)(b+ b†), (4.21)

we move to (another) interaction picture for both the cavity and the mechanics,

H = ~g(ae−iδt + a†eiδt)(be−iωmt + b†eiωmt). (4.22)

If we now drive the cavity on the blue sideband δ = −ωm, such that ωD = ωc + ωm, and make
the rotating-wave approximation (assuming g < ωm), we can approximate the interaction via the
blue sideband Hamiltonian,

Hb = ~g(ba+ b†a†). (4.23)

Such a Hamiltonian excites both the cavity and the mechanics via Raman transitions that down
convert laser pump photons to the cavity resonance and simultaneously emits a phonon into the
mechanics. Quadratic Hamiltonians of this kind are known as two-mode squeezing interactions
[113].

If we tune the laser to the red sideband such that δ = ωm, and then ωD = ωc − ωm, the
approximate Hamiltonian under the same assumptions as above is

Hr = ~g(ba† + b†a). (4.24)
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Fig. 4.4. A diagram representing the red (left) and blue (right) sideband transitions.

This process excites cavity photons by a Raman process that absorbs a mechanical phonon and
a laser photon. This kind of process can cool the mechanics. A diagrammatic representation of
the red and blue sideband processes is given in Fig. 4.4.

Finally, we could choose “two-tone” driving, simultaneously exciting the red and blue tran-
sitions [114]. In that case the effective Hamiltonian is

Hrb = ~g(a+ a†)(be−iφ + b†eiφ) (4.25)

where φ is the relative phase of two driving fields. This Hamiltonian commutes with a quadrature
of the mechanical position operator, and thus implements a quantum nondemolition measurement
of such a quadrature. Which quadrature is measured is determined by the choice of φ.

4.1.4 Dissipative Coupling

One can also consider the situation in which the motion of the mechanical resonator modulates
the damping rate of the cavity, instead of or in addition to, modulating the resonance frequency
of the cavity. Accounting for both, the Hamiltonian coupling is [115]

H = −~κa†ax− i~

[
1

2γc

√
γc

2πρ

∑
i

(
a†bi − b†ia

)]
dγc
dx

x, (4.26)

where ρ is an environmental density of states, and bi is the annihilation operator of the ith envi-
ronmental mode. Such couplings have been investigated experimentally in evanescently-coupled
optomechanical systems [116].

4.2 Macro-optomechanical Systems

Optomechanical systems have a long history, dating back to early attempts at gravitational wave
detection. An interferometric gravitational wave detector is formed from a Michelson interfer-
ometer, with a resonant Fabry-Pérot cavity in each arm, as shown in Fig. 4.5. The end-mirrors
are suspended from wires and, in the absence of optical fields, behave as free masses. The field
of a gravitational wave produces tidal forces, and so should change the interferometer arm-length
difference. The recombined light output from the interferometer is proportional to the arm-length
difference as a fraction of the interferometer length, referred to as the gravitational wave strain.
Clearly, the suspended end-mirrors and the cavity field form a very large optomechanical system.
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Fig. 4.5. Schematic of the setup of an interferometric gravitational wave detector. Figure reproduced
from [117].

The interferometers of LIGO [118] have reached an astounding displacement sensitivity of
10−18m [119]. Beyond searches for gravitational waves, feedback cooling of the suspended
end-mirrors of LIGO has been demonstrated [120]. The enhancement of the gravitational wave
observatory GEO600 using squeezed light has been demonstrated [121]. A number of experi-
ments have been conducted on small-scale optomechanical systems formed from a suspended
free mass. In general, the optical field will provide a harmonic potential and a damping of the
mechanical mode; forming a so-called optical spring. The direct observation of an optical spring
effect in a detuned Fabry-Pérot cavity has been achieved [122]. A stable radiation-pressure domi-
nated trap for a macroscopic mirror has been created from two frequency offset laser fields [123],
and feedback cooling of a suspended gram-scale mirror has been demonstrated [124, 125].

4.3 Micro-optomechanical Systems

As for electromechanical systems, to enter the quantum regime, we need to consider smaller and
faster mechanical systems. Here, we consider micro-optomechanical systems. Again, experi-
mental progress in this field is largely driven by applications, particularly in sensing technology.

Micro-optomechanical Fabry-Pérot cavities have incorporated silicon mechanical resonators
[126, 127] or commercial micro-cantilever probes with mirror coatings applied [128]. Mechani-
cal resonators have also been formed from free-standing Bragg mirrors [129], or Bragg mirrors
coated onto silicon nitride resonators [130]. Membrane-in-the-middle systems have employed
both commerical [100] and stoichiometric [131] membranes. Micromechanical waveguides and
cavities are usually formed from silica, silicon [132] or silicon nitride [133].

Actuation of the mechanical component of a micro-optomechanical system may be required
for calibration of the optical displacement transducer or for cooling of the mechanical resonator.
Actuation to higher amplitudes is required to create an oscillator for sensing applications, or to
observe nonlinear dynamics. Optical actuation is typically achieved by frequency-modulation of
an optical field at near the mechanical resonance frequency. In general, both photothermal ef-
fects and radiation pressure effects will contribute to the actuation, though typically one wishes
to engineer the system such that the contribution from dissipative photothermal processes is neg-
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Fig. 4.6. Experimental setup for the back-action cooling of a micromechanical resonator in a cryogenic
environment. The Fabry-Pérot cavity is driven on its red-detuned sideband for cooling, with the detuning
provided by an acousto-optic modulator. The displacement is independently monitored by a resonant probe
of the cavity, locked to a reference cavity by the Pound-Drever-Hall technique. The reflection of the resonant
probe is monitored via homodyne detection. Reprinted by permission from McMillan Publishers Ltd:
Nature Physics [130], copyright 2009.

ligible. In low-frequency applications, the use of a piezoelectric drive is feasible [134]. Optical
gradient forces in evanescent fields have also been used for actuation [133,132,135]. A variation
of this technique has used gradients produced by electric fields [136].

4.3.1 Fabry-Pérot Cavities

In optomechanical Fabry-Pérot cavities, shot-noise-limited displacement sensing based on ho-
modyne detection [137] or on frequency-modulation detection [138] have been demonstrated.
An experimental setup for such a system is depicted in Fig. 4.6. Feedback cooling with actua-
tion via modulation of the radiation pressure of light [126,128], via electrostatic actuation [139],
and via piezoelectric actuation [134] have all been demonstrated. Back-action cooling of a mi-
cromechanical cantilever via photothermal pressure [140], and of a micro-mirror via radiation
pressure [127, 129] have been achieved. Resolved-sideband radiation pressure back-action cool-
ing has been achieved in a cryogenic environment [130]. The same group has demonstrated
strong optomechanical coupling, and the associated normal-mode splitting [108].

Strong dispersive optomechanical coupling and cooling has also been demonstrated in the
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Fig. 4.7. A microtoroid optomechanical system. (a) An optical field is confined in the microtoroid cavity.
(b) Light is coupled into and out of the cavity using a tapered fiber. The radiation pressure of light in a
whispering gallery mode of the microtoroid exerts a radiation pressure force on the structure (c), and so can
amplify or damp the oscillation of a mechanical mode (d). Reprinted figure with permission from [149].
Copyright 2005 by the American Physical Society.

membrane-in-the-middle system [100]. A subsequent experiment exploited avoided crossings of
the transverse optical modes of the cavity to realize couplings linear, quadratic and quartic in the
membrane displacement [141]. The tunability is attained in situ by adjusting the tilt and position
of the membrane. This technique allowed much stronger quadratic coupling. Membrane-in-
the-middle systems with stoichiometric silicon nitride membranes have also been created, with
higher-order mechanical modes cooled by selectively probing individual antinodes using the field
of a Fabry-Pérot cavity [131]. A related group of experiments uses centre-of-mass motional
modes of an ensemble of cold atoms as the mechanical resonator. Sub-wavelenght positioning
of the ensemble has facilitated tunable linear and quadratic couplings [142]. Ponderomotive
light squeezing [143] and motional sideband spectroscopy have also been demonstrated in this
system [144].

Taking these systems to their limit, one can imagine that the mechanical oscillator be sup-
ported optically rather than mechanically [146, 145]. Indeed, millikelvin feedback cooling of
the high-frequency centre-of-mass motion of an optically trapped microsphere in vacuum was
recently demonstrated [147]. One could even imagine extending such experiments to the domain
of living organisms [148].

4.3.2 Micromechanical Cavities and Waveguides

Another class of optomechanical systems is formed by micromechanical cavities and waveg-
uides. Here the optical field is confined within the structure that possesses the mechanical de-
gree of freedom. Perhaps the most well-known example is the microtoroidal cavity [150, 151],
with the optical component being the whispering gallery mode of the toroid and the mechanical
modes being formed by the breathing modes or crown modes of the microtoroid surface. This
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is depicted in Fig. 4.7. A tapered optical fiber is used to excite the optical modes in the micro-
toroid through evanescent coupling. Then the radiation pressure of the confined light exerts a
force on the toroid which may be used to drive mechanical motion. Radiation-pressure-induced
oscillations [149, 152] and back-action cooling have both been demonstrated [153]. The mo-
tion of the microtoroid can be transduced through intensity modulation of the input optical field
that is operated at the full-width at half-maximum of the cavity transmission spectrum, or by
phase modulation of a resonant optical probe. Subsequent experiments demonstrated resolved-
sideband cooling of the mechanical mode, starting from room temperature [154], and then with
cryogenic pre-cooling [156] down close to the quantum ground state [155]. A modified, spoked
design has facilitated cooling to 1.7 quanta, with pulsed optical excitation revealing coherent
state swapping between the mechanical and the optical mode. Mechanical nonlinearities have
been observed [157], optomechanically induced transparency has been demonstrated [158], and
crystalline microtoroid cavities have been studied [159].

Resolved-sideband cooling of a microspherical cavity mode has also been demonstrated
[160]. The mechanical oscillations of a deformed silica microsphere are coupled to optical
whispering-gallery modes that can be excited and detected by free-space evanescent coupling.
An extension of these experiments would be to an optically levitated nanosphere [161].

An electrically-controlled microtoroid has been created, with electrical control via a sharp
electrode above the microtoroid and a grounded flat electrode beneath it [136]. The microtoroid
is polarized by a dc voltage, and a radio-frequency voltage creates a gradient force for driv-
ing. Feedback cooling has been demonstrated in this system. Regenerative amplification and
linewidth narrowing via delayed electrical feedback has been achieved [162], as has feedback-
enhanced sensitivity [163] and amplification via optical backaction [164].

Mechanical oscillation and cooling actuated by optical gradient forces has been demonstrated
in a strongly-coupled pair of concentric silica disks with a nano-scale gap [165]. The possibility
of phonon laser action in a coupled microtoroid system has been studied [166]. Here, the system
consists of two evanescently-coupled microtoroids, driven and monitored via a common tapered
fiber.

A variation on these systems is where the micromechanical element is an optical waveguide
rather than a cavity. One example of such a micromechanical waveguide is a single-mode beam
that may be driven by evanescent coupling to the substrate and transduced by monitoring the
transmission through it [132, 167]. High-amplitude operation of a bistable mechanical resonator
that forms part of a ring resonator has been demonstrated, along with its demonstration as a
non-volatile mechanical memory [168].

Evanescently-coupled pairs of micromechanical waveguides have also been demonstrated,
taking the form of adjacent beams [169, 170] or rings [171]. If the waveguides are patterned
with an array of etched holes, the optical modes can be localized, forming a so-called zipper
cavity [172]. The in-plane differential motion of the beams is strongly coupled to the optical
cavity field. Coherent mixing of mechanical excitations has been demonstrated in the zipper
cavity and the double-microdisk resonator [173].

Further, a planar, doubly-clamped silicon “optomechanical crystal” has been demonstrated
that is capable of co-localizing and strongly dispersively coupling photons and phonons [174].
Again, a tapered fiber allows actuation and detection of the motion of the resonators in these
experiments. Although photonic crystals are well-known, phononic crystals have also been
developed recently [175]. More recently, laser cooling of a mechanical mode in such an op-
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Fig. 4.8. Microdisk cavity eva-
nescently coupled to microme-
chanical waveguide. Reprinted
by permission from McMillan
Publishers Ltd: Nature Photon-
ics [133], copyright 2007.

Fig. 4.9. Microtoroid cav-
ity evanescently coupled to
nanomechanical waveguide.
Reprinted figure with permission
from [116]. Copyright 2009 by
the American Physical Society.

Fig. 4.10. Microtoroid evanes-
cently coupled to nanomechani-
cal resonators. Reprinted by per-
mission from McMillan Publish-
ers Ltd: Nature Physics [135],
copyright 2009.

tomechanical crystal, surrounded by a “phononic shield”, to its quantum ground state has been
achieved [58]. An occoupancy of 0.85 quanta was observed for a 3.68 GHz mode. The same
group has demonstrated electromagnetically-induced transparency [176] and motional sideband
spectroscopy [177] in these systems. Experiments have also been performed with two-dimensional
optomechanical crystals [178], and with electrically-controllable cavity optomechanical systems
formed by a suspended photonic crystal defect cavity [180]. The latter system potentially pro-
vides a platform for the interconversion of weak microwave and optical signals.

4.3.3 Evanescently-Coupled Optomechanical Systems

Yet another type of optomechanical system is formed by those devices in which the optical
field is evanescently coupled to the mechanical resonator. A dielectric mechanical resonator
in an electric field will experience a polarization. Thus, in a non-uniform electric field, it will
experience a dipole force. In the case where the electric field is provided by the evanescent field
of an optical microcavity, the dielectric will experience a time-averaged polarization, and so an
optical dipole force. It is then attracted to the high field of the cavity. The subsequent mechanical
motion changes the optomechanical coupling. In general, this leads to a dispersive and a reactive
optomechanical coupling, resulting in a frequency shift and a modified damping, respectively, of
the mechanical motion.

The spatial variation of this force has been measured in a system composed of a movable,
tapered fiber waveguide evanescently-coupled to an optical microdisk resonator [133]. Both
dispersive and reactive optomechanical couplings have been demonstrated in a smaller system
composed of a microdisk separated from a vibrating nanomechanical waveguide [116]. An array
of silicon nitride nanomechanical resonators has been evanescently-coupled to a microtoroid,
with strong dispersive coupling demonstrated [135]. In such a similar system, but with a single
nanomechanical resonator, transduction with an imprecision far below the standard quantum
limit has been achieved [181]. Images of these devices are shown in Figs. 4.8-4.10.
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Fig. 4.11. (a) Schematic of resonant optical detection scheme for mechanical oscillator in optomechanical
Fabry-Pérot cavity. (b) Amplitude and phase response of resonant input light to changes in cavity length.
For a resonant input laser, the phase response is optimally sensitive to cavity length changes, while the
amplitude response is insensitive to first-order. Optimal sensitivity of the amplitude response to changes
in cavity length is obtained by probing with the laser tuned to the half-maximum of the amplitude re-
sponse. The resulting displacement spectral density allows one to determine the effective temperature of
the mechanical oscillator, as well as its resonance frequency and quality factor. Figure adapted from [187].
Reprinted with permission from AAAS.

4.4 Transduction of Optomechanical Systems

Mechanical motion may be detected through the amplitude or phase modulation of the probe light
transmitted through, or reflected by, the cavity. This is depicted schematically in Fig. 4.11(a). As
seen in Fig. 4.11(b), the optimal sensitivity to phase modulation is attained by probing the cav-
ity on resonance. Optimal sensitivity to amplitude modulation is attained by probing the cavity
at the full-width at half-maximum of its resonance peak. The output is typically a Lorentzian
noise spectral density of the type shown in Fig. 4.11(b), which may be converted to a displace-
ment noise spectral density by careful calibration. Such calibration may be performed using a
frequency-modulated drive or by temperature control.

These transduction techniques require that the probe light is locked to a stable frequency
with respect to the equilibrium cavity resonance frequency. Such locking may be achieved by
locking the laser to an adjustable, but stable, Fabry-Pérot reference cavity. A locking technique
commonly used is the Pound-Drever-Hall technique [182].

Perhaps the simplest possible detection technique involves monitoring the intensity transmit-
ted or reflected by an optomechanical Fabry-Pérot cavity; this detects the amplitude modulation
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System Optomechanical Optomechanical Membrane-in- Microtoroid
Fabry-Pérot Fabry-Pérot the-middle

Ref. [127] [130] [100] [156]
ωm/2π 814kHz 945kHz 134kHz 65.1MHz

∆x (m) 7.37× 10−18 4.55× 10−16 1.25× 10−15 1.14× 10−16

√
Sx (mHz−1/2) 4.0× 10−19 2.6× 10−17 5.5× 10−16 1.5× 10−18

√
Sx/

p
SSQL

x 0.87 0.48 1.0 5.5√
SxSF Unobserved Unobserved Unobserved 220~

2

System Micromechanical Optomechanical Evanescently coupled
waveguide crystal nanomechanics

Ref. [132] [174] [181]
ωm/2π 8.87MHz 2.25GHz 8.3MHz

∆x (m) 3.28× 10−14 3.36× 10−15 1.65× 10−14

√
Sx (mHz−1/2) 1.8× 10−14 1.1× 10−17 2.5× 10−16

√
Sx/

p
SSQL

x 67.4 7.5 0.08√
SxSF Unobserved Unobserved Unobserved

Tab. 4.1. Comparison of experiments demonstrating sensitive displacement detection in nano- and micro-
optomechanical systems. Note that ∆x is the standard quantum limit as given by Eq. (8.7), Sx is the
measurement imprecision of the transducer, SSQL

x is the standard quantum limit on the noise added by the
measurement given by Eq. (8.6), and SxSF is the imprecision-back-action product of Eq. (8.4).

of the probe light. Several experiments have used this detection technique [183, 140, 128, 134,
100]. However, this technique requires an off-resonant probe, and is surpassed in detection sen-
sitivity by phase-sensitive schemes. However, an interesting variation of this technique, by de-
tecting the non-uniform optical intensity produced by an illuminated resonator above a Schottky
contact has allowed transduction of a very small resonator [184].

The majority of experiments on optomechanical systems near the quantum limit employ
phase-sensitive displacement detection schemes. A comparison of these experiments is pro-
vided in Table 4.1. Recently, transduction using multiple cavity modes has also been considered
theoretically [185].

Phase-sensitive detection may be achieved using the error signal from the Pound-Drever-Hall
locking technique [123], or more commonly, via homodyne detection of the reflected or trans-
mitted probe light [126, 137, 130]. The input light is split at a beamsplitter into a local oscillator
and a probe beam. The probe beam enters the optomechanical cavity, and the reflected optical
field experiences a phase shift related to the displacement of the mechanical degree of freedom.
This reflected field is then mixed with the local oscillator field at a balanced beamsplitter, photon
counting is performed at each output and the intensity difference is monitored. If the local oscil-
lator is strong and the probe field is weak, then the output is proportional to a quadrature of the
reflected optical field. This is simply optical homodyne detection.

We now consider quantum limits to the continuous measurement of the position of a mechan-
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ical resonator using an optical field. Obviously, the precision of the measurement is limited by
photon shot noise. The measurement imprecision due to this noise can be reduced by increasing
the intensity of the probe light. However, there is another fundamental source of noise in this
measurement, the back-action of the probe light on the resonator being measured. This may
be attributed to radiation pressure fluctuations, and at sufficiently high probe powers, the total
position measurement uncertainty will be dominated by this back-action [186]. Note that this
quantum back-action has not been directly observed since this uncertainty is masked by ther-
mal fluctuations in existing experiments. The standard quantum limit for position measurement
arises when the uncertainties due to the imprecision and the back-action are equal, subject to the
requirements specified in Sec. 8.1.

The position measurement imprecision due to photon shot noise in an optomechanical system
is readily derived. We assume that the the probe is resonant with the cavity at its equilibrium
length, and we consider phase-sensitive detection. The phase shift of the reflected probe, at a
detuning ω from the equilibrium cavity resonance (attributed to the mechanical motion), is given
by

δφ(ω) = 2πF δx(ω)
λd

, (4.27)

where δx(ω) is the component of mechanical motion at ω, λd is the wavelength of the light used
to probe the motion and F is the cavity finesse, giving the number of reflections in the cavity
before a photon escapes. The shot noise of the light at the detuning ω is

δφ(ω) =
1√
nc(ω)

where nc(ω) =
Pin
~ωd

γ2
c

γ2
c + 4ω2

(4.28)

is the rate of photons exiting the cavity at the detuning ω, with Pin being the laser input power.
Now the cavity damping rate, in terms of the finesse, is γc = (1/F)(c/L), and the optomechan-
ical coupling is κ = ωd/L. A signal-to-noise ratio of one between Eqs. (4.27) and (4.28) leads
to the position measurement imprecision [188],

Sx(ω) = 4
~ωd
Pin

(
γc/2
κ

)2
[

(γc/2)2 + ω2

(γc/2)2

]
. (4.29)

Heisenberg’s uncertainty principle demands that there is an associated back-action force, and
that the spectral density of this force satisfies the inequality of Eq. (8.4). Thus the back-action
force noise spectral density must satisfy

SF (ω) ≥ ~2

16
Pin
~ωd

(
κ

γc/2

)2 [
(γc/2)2

(γc/2)2 + ω2

]
. (4.30)

The total added noise, referred back to the mechanical resonator, is given by the measurement
imprecision noise and the contribution due to back-action fluctuations,

Stot
x (ω) = Sx(ω) + |χ(ω)|2 SF (ω), (4.31)

where χ(ω) is the mechanical susceptibility given in Eq. (2.12). The total measurement uncer-
tainty is minimized at a particular input power. Assuming that the detector satisfies the criteria
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Fig. 4.12. Measurement uncertainties versus input power in an optical displacement detection scheme. The
total added noise (purple curve) of the transducer has a contribution from both the intrinsic noise of the
detector (blue curve) and the added noise due to the back-action of transducer fluctuations on the measured
system (red curve). The detector noise decreases with increasing input power, while the back-action noise
increases with increasing input power. There is an optimal input power at which the contribution from the
detector noise and the back-action noise are equal, and this gives rise to the standard quantum limit on
position detection.

discussed in Sec. 8.1, the total added noise at this input power is referred to as the standard
quantum limit for the measurement of position of a harmonic oscillator,

SSQL
x (ω) =

~
m

√
(ω2
m − ω2)2 + γ2

mω
2
. (4.32)

This function attains its maximum value at the mechanical resonance frequency, at which we
have

SSQL
x (ωm) =

~
mγmωm

. (4.33)

The detector imprecision noise, quantum back-action noise, and total added noise are plotted in
Fig. 4.12, as a function of the input power.

It is important to note that, by injecting a squeezed state into the unused port of an interfer-
ometer, one can decrease the shot noise uncertainty at the expense of increasing the radiation
pressure uncertainty, or vice versa [186]. This allows the power required to reach the standard
quantum limit to be lowered. Furthermore, squeezed states can in fact be used to beat the stan-
dard quantum limit [189]. In this sense, the standard quantum limit is not a fundamental limit,
though quantum tricks are required to circumvent it.
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5 Quantum Electromechanical Systems

5.1 Macro-electromechanical Systems

Resonant-mass gravitational wave detectors [190] typically take the form of large cylinders
weighing up to several tonnes and operated cryogenically [191, 192]. The normal-mode oscilla-
tions of these masses are usually detected electrically, and so they form macro-electromechanical
systems.

One class of transducers, often referred to as parametric transducers [193], employs capac-
itive or inductive coupling to radio-frequency circuits [194] or microwave cavities [195, 196].
Another class of transducers employ capacitive or inductive coupling to a SQUID-based cir-
cuit [197], with the SQUID functioning as a linear amplifier. SQUID-based detectors became
the most widely used on operating resonant-mass gravitational wave detectors [198, 199, 200].
In a related series of experiments on prototype systems, back-action evading measurement of a
mechanically compliant capacitance bridge was demonstrated [201, 202, 203].

Beyond measurement, back-action cooling [196] and feedback cooling have been achieved
[204] on full-scale systems. However, it is unlikely that resonators on this scale could be cooled
to the quantum ground state. Much smaller and higher frequency mechanical resonators are
required.

5.2 Nano-electromechanical Systems

Indeed, small mechanical structures have been long been fabricated using semiconductor pro-
cessing techniques [205], though technological progress has allowed a gradual scaling down
of feature sizes achievable, culminating in the fabrication of high-frequency, high-quality-factor,
doubly-clamped nanomechanical resonators from silicon [206]. Such small resonators may be in-
tegrated with electrical circuits for measurement and control, resulting in nano-electromechanical
systems.

A variety of more exotic nanoelectromechanical systems were soon created [207], and sub-
sequent studies of doubly-clamped nanomechanical resonators were performed in silicon car-
bide [208, 209], aluminium nitride [210], silicon nitride [211], aluminium [212], diamond [213]
and gold [214]. Scaling down further, individual platinum and silicon [215] nanowires could
be fabricated. The ability to tune mechanical resonance frequencies (and to some extent, qual-
ity factors) through tension has been demonstrated using capacitive coupling [216] and chip-
bending [217].

In the domain of molecular materials, doubly-clamped carbon nanotube resonators have been
fabricated [218]. Subsequently, tunable slack [219] and taut [220] resonators were created. More
recently, carbon nanotube resonators having high quality factors [221] and graphene electrome-
chanical resonators have been demonstrated [222]. A torsional pendulum based on an individual
carbon nanotube has also been fabricated [223].

In order to drive the mechanical resonator, magnetomotive, electrostatic or piezoelectric ef-
fects may be utilised. In magnetomotive actuation [224], the axis of the beam is oriented perpen-
dicular to the magnetic field generated by a solenoid. Applying an alternating electrical current
along the beam, generates a Lorentz force F = IL × B on it that is proportional to the current
and the magnetic field strength. Thus the beam is driven transverse to both its axis and to the
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field direction.
For electrostatic actuation, a gate electrode drives the nanoresonator into motion [225, 219].

One applies a dc voltage Vg and an ac voltage V acg at the frequency ωm to the gate electrode,
which induces a driving force due to the displacement-dependent gate capacitance Cg . The

external force is given by F (t) = 1
2
dCg

dx

[
V 2
g + 1

2V
ac2

g + 2VgV acg cosωmt+ 1
2V

ac2

g cos 2ωmt
]
.

Electrical field gradients may also be used for the actuation of a dielectric mechanical resonator
[226]. A static voltage polarizes the dielectric resonator and subjects it to an attractive force
towards maximum field strength that can be modulated at high frequency.

The piezoelectric effect is the generation of mechanical strain in response to an applied elec-
tric field. The piezoelectric actuation of a mechanical resonator by a voltage applied across in-
tegrated semiconductor junction has been demonstrated [227]. A dc voltage tunes the depletion
region width, and so allows tuning of the mechanical resonance.

5.2.1 Transduction

Perhaps the simplest method for sensitively detecting the motion of a nanomechanical resonator
is magnetomotive detection [224]. In magnetomotive detection, the motion of the nanomechani-
cal resonator through a transverse magnetic field generates an electromotive force across the ends
of the resonator that is readily detected. Magnetomotive detection has recently been extended to
an array of uncoupled mechanical resonators [228]. However, this technique is inherently dissi-
pative, and so inappropriate for experiments close to the quantum regime.

Alternative approaches include monitoring the modulation of a capacitively-coupled radio-
frequency circuit or microwave cavity, or monitoring the modulation of the transport through
a coupled quantum transport device. Coupling to, or integration with, Josephson junction cir-
cuits has also been employed for displacement detection. Mechanical resonances may also
be observed directly by microscopy; examples include scanning probe microscopy [233] and
radio-frequency scanning tunneling microscopy [234]. Very recently, the mechanical motion of
a nanowire cantilever has been measured via time-resolved fluorescence and photon-correlation
measurements of the emission from an embedded nitrogen-vacancy defect [179]. The most suc-
cessful techniques for near quantum-limited detection employ coupling to quantum transport
devices, microwave circuits or Josephson-junction devices, and they shall be discussed in the
following sections.

5.2.2 Coupling to Quantum Transport Devices

Quantum transport devices may be used for ultra-sensitive displacement detection since the
nanoresonator’s motion typically induces a change in the transport device’s conductance that can
be directly measured. The transport device may be capacitively-coupled to, or integrated into,
the mechanical resonator. If the transport device is capacitively-coupled, the nanoresonator must
be held at some non-zero voltage with respect to the gate. If the transport device is integrated
into it, the resonator must be capacitively-coupled to an electrode at some non-zero voltage with
respect to it. A comparison of experimental achievements is given in Table 5.1.

Alternatively, such transducers may function via a displacement-dependent tunneling to the
nanoresonator. Completely self-sensing nanomechanical resonators can be operated on the basis
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System Ultracryogenic Ultracryogenic Ultracryogenic Cryogenic Cryogenic
RF-SSET integrated tunnel junction off-board self-sensing

DC SQUID QPC QPC

Ref. [229] [230] [214] [231] [232]
ωm/2π 21.8MHz 2.0MHz 43.1MHz 5.2kHz 1.5MHz

∆x (m) 24× 10−15 133× 10−15 9× 10−15 284× 10−15 10× 10−15

√
Sx (mHz−1/2) 3× 10−16 10−14 2.3× 10−15 3× 10−16 3× 10−12

√
Sx/

p
SSQL

x 3.9 36 42 > 100 > 104

√
SxSF 15~

2
Unobserved 3400~

2
Unobserved Unobserved

Tab. 5.1. Comparison of experiments demonstrating sensitive displacement detection using quantum trans-
port devices or circuits based on Josephson junctions. Note that ∆x is the standard quantum limit as given
by Eq. (8.7), Sx is the measurement imprecision of the transducer, SSQL

x is the standard quantum limit on
the noise added by the measurement given by Eq. (8.6), and SxSF is the imprecision-back-action product
of Eq. (8.4).

of piezoresistive or piezoelectric effects. In low-frequency mechanical resonators, the modula-
tion of the conductance may be monitored directly. For high-frequency mechanical devices, one
may either configure the transport device as a mixer or use a radio-frequency device.

Capacitively-coupled single-electron transistors (SETs) have been used for sensitive dis-
placement detection. High-frequency detection has been demonstrated using a normal-state SET
configured as a mixer [235] and by a radio-frequency superconducting SET (RF-SSET) [236].
Operation as a mixer is obtained by modulating the SET conductance at a frequency offset from
the mechanical drive frequency, such that there is a signal at the difference frequency. The
nanomechanical resonator is held at a fixed voltage, and its motion changes the local potential
at the island of the SET, and so modulates the transport through it. As the nanomechanical res-
onator voltage is increased, the SET becomes more sensitive to displacements, ultimately being
limited by its shot noise, but the back-action on the nanomechanical resonator is increased. One
must find an optimal compromise between the two. The back-action of a SSET has also been
measured and used to cool the nanoresonator, with the system shown in Fig. 5.1 [229]. A vari-
ation of this scheme uses an off-board quantum point contact (QPC) capacitively-coupled to the
tip of a cantilever [231].

The displacement of carbon nanotube resonators has been detected by the modulation of
the current through it. High-frequency transduction is achieved by operating the nanotube as a
mixer [219], though recent experiments have transduced the motion using the dc current through
it [237]. Similar experiments have been performed on nanowires with integrated field-effect
transistors [238]. This transduction is possible by capacitively-coupling the nanotube to a gate
electrode held at a constant voltage. The motion of the nanotube modifies its capacitance to the
gate electrode, giving rise to a change in the gate-induced charge on the nanotube, and modifying
its conductance.

A completely different approach uses the displacement-dependent tunneling of electrons to
the nanomechanical resonator itself in order to transduce its motion. High-frequency displace-
ment detection has been demonstrated in this manner using a radio-frequency circuit [214].

Fully self-sensing integrated transduction of nanomechanical resonators has been demon-
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Fig. 5.1. Displacement detection of a
nanomechanical resonator via a capacitively-
coupled superconducting single-electron tran-
sistor. Reprinted by permission from McMillan
Publishers Ltd: Nature [229], copyright 2006.

Fig. 5.2. Piezoelectric displacement detection of a
micromechanical resonator with an integrated, piezo-
electric quantum point contact. Reprinted with permis-
sion from [232]. Copyright 2002, American Institute of
Physics.

strated using piezoresistive [239] and piezoelectric effects [240]. The piezoresistive effect de-
scribes the change in the resistance of a material due to an applied strain. Thus, displacement
detection may be performed by monitoring the modulation of resistance associated with the strain
induced by oscillation of a mechanical resonator. Again, this is achieved at high-frequency by
operating the mechanical resonator as a mixer [241, 242].

The piezoelectric effect is the generation of electrical fields in response to an applied strain,
again leading to modulation of the conductance throught the resonator. Piezoelectric transduc-
tion was demonstrated at low-frequency using micromechanical resonators with integrated field-
effect transistors [243], and at high-frequency using a resonator with an integrated quantum point
contact operated as a mixer, as depicted in Fig. 5.2 [232]. A macroscopic mechanical resonator,
driven by electrical back-action due to the piezoelectric effect has also been demonstrated [244].
The back-action of electrons tunneling through a radio-frequency quantum point contact, leading
to vibrations of the host crystal, was observed. The transport through the quantum point contact
couples to vibrational modes via the piezoelectric effect, modifying the current. High-frequency
motion was transduced by embedding the quantum point contact in an RF circuit.

5.2.3 Coupling to Microwave Circuits

Capacitively coupling a moving mechanical resonator to a radio-frequency or microwave circuit
changes the total capacitance of the circuit, and so modulates its resonance frequency. An input
electrical signal will also be modulated, and the reflected or transmitted signal may be used to
acquire information about the mechanical motion. Such systems are essentially equivalent to the
optomechanical Fabry-Pérot cavities to be discussed in Sec. 4. However, displacement detection
is also possible here using a DC electrical circuit [226], and this technique has been extended to
an array of mechanical resonators [248].

Sensitive displacement detection has been demonstrated using a nanomechanical resonator
integrated into a superconducting coplanar microwave cavity [245], of a micromechanical res-
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System Resonant-mass Nanomechanics Nanomechanics Nanomechanics Micromechanical
GWD with supercond. with microwave with microwave membrane with

cavity µwave cavity cavity and JPA cavity (BAE) LC and JPA

Ref. [196] [245] [246] [247] [59]
m 0.45kg 2pg 11pg 2.2pg 48pg

ωm/2π 700Hz 240kHz 1.04MHz 5.57MHz 10.56MHz

∆x (m) 1.6× 10−19 4.2× 10−15 8.6× 10−16 2.6× 10−14 4.1× 10−15

√
Sx 3× 10−17 2× 10−13 4.8× 10−15 8.1× 10−15 ?

√
Sx/

p
SSQL

x 29.7 27.4 0.41 1.3∗ ?√
SxSF Unobserved 3000~

2
Unobserved 180~

2
10 ~

2

Tab. 5.2. Comparison of experiments demonstrating sensitive displacement detection of a mechanical res-
onator using a microwave or radio-frequency electrical circuit. JPA denotes Josephson parametric ampli-
fier, BAE denotes a back-action evading measurement. *The measurement sensitivity quoted for the BAE
scheme refers to the detector imprecision for the measurement of a quadrature. Note that ∆x is the standard
quantum limit as given by Eq. (8.7),

√
Sx in mHz−1/2) is the measurement imprecision of the transducer,

SSQL
x in is the standard quantum limit on the noise added by the measurement given by Eq. (8.6), and SxSF

is the imprecision-back-action product of Eq. (8.4).

onator coupled to a radio-frequency electrical circuit [249], and a micromechanical membrane
as one plate of a capacitor in a lumped-element superconducting LC resonator [9]. Experimen-
tal achievements are compared in Tab. 5.2. Typically, transduction via phase-sensitive electrical
detection is best achieved by probing the cavity on resonance. The Hamiltonian electrome-
chanical coupling takes the form −~κa†ax, where κ = −∂ωc/∂x, analogous to the dispersive
radiation pressure coupling of cavity optomechanics. In some circumstances, there may also
be a significant coupling to the position squared. A variation on this approach is to place a di-
electric mechanical resonator between the plates of a capacitor in a lumped-element microwave
circuit [250].

The measurement imprecision can be reduced by measuring with a larger input power, stronger
coupling and minimal added noise. The last issue may be addressed using a Josephson paramet-
ric amplifier to measure the output microwave field [246]. Continuous, broadband back-action
evading measurement of a quadrature of the nanomechanical motion has been demonstrated, us-
ing the setup depicted in Fig. 5.3 [247]. This is achieved by probing the cavity on two resolved
sidebands. The sensitivity of the back-action evading measurement is limited by the power han-
dling of the stripline resonator and the noise floor of the microwave detector circuit. Beyond
monitoring mechanical motion, low-noise amplification of weak microwave signals has been
demonstrated in these systems [251].

The quantum description of these systems is obtained using an equivalent circuit to capture
the dynamics of collective circuit variables; the charge Q on the capacitor and the flux Φ through
the inductor. The effective Hamiltonian is

H =
p̂2

2m
+
mω2

m

2
x̂2 +

Φ̂2

2L
+

Q̂2

2C(x̂)
+ e(t)Q̂, (5.1)

where x̂, p̂ are the effective canonical displacement and momentum coordinates for the mechan-
ical resonator mode of interest, m is the effective mass, L is the circuit inductance and C(x̂) is
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Fig. 5.3. Experimental setup for back-action evading measurement of a quadrature of a nanomechanical
resonator using a superconducting microwave cavity. The microwave cavity (here represented by an LC
tank circuit) is driven at two tones, corresponding to driving on the blue- and red-detuned sidebands of the
cavity. The detuning corresponds to the mechanical resonance frequency. Reprinted by permission from
McMillan Publishers Ltd: Nature Physics [247], copyright 2010.

the position-dependent circuit capacitance. Driving of the circuit has been is included as the last
term. Driving with an AC voltage is described by writing e(t) = e0 cos(ωDt).

We now expand the capacitance to linear order around its equilibrium position (taken to be
x = 0) for the mechanical displacement,

H =
p̂2

2m
+
mω2

m

2
x̂2 +

Φ̂2

2L
+

Q̂2

2C0
− β

2C0
Q̂2x̂+ e(t)Q̂, (5.2)

where

β =
1
C0

dC(x)
dx

∣∣∣∣
x=0

, (5.3)

which has units of inverse length. We now define bosonic annihilation operators for the circuit
resonator and the mechanical resonator by

a =

√
ωcL

2~
Q̂+

i√
2~ωcL

Φ̂, (5.4)

b =
√
mωm
2~

x̂+
i√

2~mωm
p̂, (5.5)

respectively, and write the Hamiltonian of Eq. (5.2) as

H = ~ωca†a+ ~ωmb†b+ ~
G0

2
(b+ b†)(a+ a†)2 + ~ε(eiωDt + e−iωDt)(a+ a†), (5.6)

with

G0 =
βωc
2

∆x, (5.7)

where ∆x is given by Eq. (3.25). If we now go into an interaction picture at the driving frequency
and neglect rapidly rotating terms in the interaction we find that

H = ~∆a†a+ ~ωmb†b− ~G0a
†a(b+ b†) + ~ε(a+ a†), (5.8)

where ∆ = ωc−ωD. The interaction thus has the same form as the radiation pressure interaction
in Eq. (4.5).
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Fig. 5.4. A phase qubit coupled to a suspended film bulk acoustic resonator. (a) The coupling is mediated
by a capacitive coupling Cc and piezoelectric voltages induced by the mechanical motion. (b) Schematic
of the system, with an electrical circuit used to model the mechanical resonator. (c) Pulse sequence used
to bring the qubit into resonance with the mechanical mode. Reprinted by permission from McMillan
Publishers Ltd: Nature [57], copyright 2010.

5.2.4 Coupling to Josephson Junction Devices

Another class of electromechanical systems is formed by coupling a nanomechanical resonator
to, or integrating a nanomechanical resonator into, a nonlinear circuit based on the Josephson
junction. One such device consists of a micromechanical resonator integrated into one arm of a
dc SQUID [230]. The current through the SQUID loop depends on the magnetic flux through it,
such that it is possible to detect small changes in the area of a loop due to the motion of a flexural
resonator in a static magnetic field. The backaction of the SQUID on the mechanical resonator,
and so its frequency and quality factor, may be tuned via the bias current and applied magnetic
flux [252].

Coupling of a nanomechanical resonator to a superconducting qubit, in the form of a Cooper
pair box charge qubit, has also been demonstrated [253]. The coupling results in a dispersive shift
of the nanomechanical frequency, and the magnitude of this shift allows mechanical spectroscopy
of the superconducting qubit, including the observation of Landau-Zener interference effects.
Parametric amplification of a nanoresonator, mediated by a Cooper pair box qubit, has also been
achieved [254].

Conversely, a mechanical resonator has been resonantly coupled to a superconducting qubit,
in the form of a phase qubit, in which the qubit has been used to read-out the mechanical resonator
[57]. Here, the mechanical component is an aluminium nitride film bulk acoustic resonator
sandwiched between aluminium electrodes, as shown in Fig. 5.4. The resonator expands and
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contracts in the direction perpendicular to the electrodes, and in so doing generates a piezoelectric
signal that capacitively couples it to an adjacent phase qubit. In order to probe the mechanical
resonator, the qubit was prepared in its ground state, and then tuned into resonance with the
mechanical resonator for a short interval. In this experiment, the qubit was observed to remain in
its ground state, providing evidence that the mechanical resonator is in its quantum ground state.
Time-domain control allows one to coherently transfer quanta the mechanical resonator, resulting
in the creation of an entangled qubit-mechanical state and a single-phonon mechanical state. This
achievement was chosen as Science magazine’s “Breakthrough of the Year” in 2010 [255].
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6 State Preparation

6.1 Cooling of Mechanical Systems

The first step in a quantum control protocol is to prepare the system, here a simple harmonic
oscillator, in a ‘known’ state. If a quantum state is indeed perfectly known it is a state of zero
entropy, that is to say, a pure state. In practice no state can be known with total certainty and
we need to give some figure of merit for how well we can do. In the case of a simple harmonic
oscillator the target state is typically the ground state from which other states can be reached
by unitary control, displacement and squeezing. A good figure of merit is either the occupation
probability for the ground state or, more usually, the average number of excitations present in the
mode, n̄. For a simple harmonic oscillator with fundamental frequency ω0 in thermal equilibrium
at temperature T , the average number of excitations is given by a Bose-Einstein distribution,

n̄ =
(
e~ω/kBT − 1

)−1

. (6.1)

For example, a 10 MHz resonator at a temperature of 4K has n̄ = 5.5× 104, while at a temper-
ature of 10mK it would have n̄ = 136. A 1 GHz resonator at 4 K will have n̄ = 550, and at 10
mK it would have n̄ = 0.9. Mechanical resonator frequencies typically scale inversely with the
size of the resonator (see Sec. 2.1), so to get very high frequencies we typically need to move
to nano-scale systems. In a land mark experiment, O’Connell et al. [256], using a dilatational
micromechanical resonator with a frequency of 6 GHz at 25 mK achieved n̄ = 0.07; we describe
below how this was measured. Typical mechanical resonators have fundamental frequencies be-
tween 1 − 100MHz, such that passive cooling in a dilution fridge is inadequate for preparing
them near the ground state.

Clearly cooling must be an irreversible process. The key is to use a laser to drive transitions to
remove a phonon and dump the energy into a spontaneously emitted optical or microwave photon.
As the electromagnetic field at optical frequencies is essentially at zero temperature at laboratory
temperatures, this process can be very efficient. This idea is the basis of laser cooling and has led
to many important discoveries in atomic physics over the last four decades, including the ability
to create a Bose Einstein condensate in a dilute atomic gas [257], and prepare single trapped ions
in a vibrational ground state of the trap [25]. Optical cooling of a bulk mechanical resonator was
first reported in three separate papers in the same issue of Nature in 2006 [106, 258, 259].

An important variation on the idea is to use a resonator for the electromagnetic field. A
coherent pump field can then be used to drive Raman transitions that absorb one pump photon
and one phonon to excite the cavity mode at its resonance frequency. This photon can then be
rapidly damped from the cavity field, see Fig. 4.4. The process is called red side-band cooling
as the pump field is detuned below the cavity resonance by an amount equal to the mechanical
frequency. We describe the process in some detail below. Teufel et al. [9] used this process to
cool a micro-mechanical resonator using a microwave cavity. At mK temperatures the microwave
cavity has a mean thermal photon occupation of the order of n̄c ∼ 0.09, providing the low
temperature heat bath required for cooling. Before we describe this process in detail we need to
make briefly review the quantum description of a weakly damped simple harmonic oscillator.

A macroscopic mechanical resonator, in the absence of driving, will tend to a thermal state.
By virtue of typical mechanical resonator frequencies, typical cryogenic temperatures are ususally
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System Ultracryogenic Cryogenic Cryogenic Ultracryogenic Ultracryogenic
resonant-mass micromechanical microtoroid nanoresonator FBAR

GWD Fabry-Pérot

Ref. [192] [130] [156] [229] [57]
m 2260kg 4.3ng 10ng 0.68pg 0.66ng

ωm/2π 923Hz 945kHz 65.3MHz 21.9MHz 6.175GHz

nf 2.3× 106 1.2× 105 770 25 0.07

Tab. 6.1. Comparison of experiments demonstrating cooling of a mechanical mode by bulk refrigeration.
Note that nf denotes the lowest achieved occupation of the mechanical mode.

insufficient to achieve quantum ground-state cooling. A notable exception is the suspended film-
bulk acoustic resonator recently demonstrated [57]. The observed occupancies achievable in a
variety of systems are shown in Table 6.1. Thus, in general, auxiliary cooling mechanisms are
required; such mechanisms may be classified as active feedback or passive back-action cooling
schemes.

In feedback cooling, the motion of the resonator is measured, and a feedback force is applied
in opposition to the motion. Feedback cooling of a small mechanical resonator was first demon-
strated over fifty years ago [260, 261]. If the feedback force is proportional to the velocity as
F (t) = −gmẋ(t), then the modified mechanical susceptibility is, c.f. Eq. (2.12),

χ(ω) =
1

m [ω2
m − ω2 − i (γ + g)]

. (6.2)

The associated reduction in effective temperature is Tfb

T = γ
γ+g . This mechanism is sometimes

referred to as cold damping, since it effectively introduces an additional viscous force without
the associated thermal noise. Naturally, the achievable cooling is diminished by noise in the
feedback loop, and is potentially limited by measurement back-action.

Back-action cooling describes the cooling of a system by simply allowing it to interact with
some auxiliary system in a controlled manner. The auxiliary system is biased or driven such
that it preferentially absorbs energy from the system to which it is coupled. This technique is
analogous to the Doppler cooling [262] or resolved sideband cooling [263,264] of trapped atoms
and ions. No explicit measurement process is involved, though the auxiliary system must be
damped into a heat bath at a lower temperature, such that the process is irreversible. Cooling
of a mechanical resonator via the back-action of a coupled transport device [229] and via the
back-action of a driven microwave or optical cavity have been demonstrated [140, 129, 127, 153,
154, 265]. The latter approach, in particular, appears to be a promising route to ground-state
cooling [156, 130, 266].

6.2 Cooling in Optomechanical Systems

The other key issue for the development of quantum optomechanics is cooling. There have been
many demonstrations of cooling in optomechanical systems, using both active feedback and
passive back-action cooling. The relevant experiments are compared in Tables 6.2 and 6.3. The
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System Cryogenic kg-scale gram-scale Micromechanical Cryogenic
resonant-mass pendulum in pendulum in Fabry-Pérot nanomechanical

GWD optical spring optical spring cantilever

Ref. [204] [120] [124] [126] [134]
Feedback Electrical EM RP RP Piezo

m 1100kg 2.7kg 1g 190µg 322pg

ωm/2π 900Hz 140Hz 1.018kHz 1.859MHz 2.6kHz

nf 4000 234 1.4× 105 8.3× 104 2.3× 104

Tab. 6.2. Comparison of experimental demonstrations of feedback cooling in electromechanical and op-
tomechanical systems. Note that “Feedback” refers to the actuation mechanism: “EM” = Electromagnetic,
“RP” = Radiation pressure. Further, nf denotes the final occupation of the cooled mechanical mode.

most successful approach has been back-action cooling based on radiation pressure [267], and
the theory underlying this technique is also discussed here.

6.2.1 Active Feedback Cooling

A variety of feedback cooling experiments are compared in Table 6.2. The cooling may be
actuated using the radiation pressure of a modulated laser [126, 124]. At low-frequency, piezo-
electric [134] or electromagnetic [120] actuation may be employed. For the optomechanical
case [268, 269], in principle, quantum ground-state cooling is achievable in the limit of large
feedback gain, ideal homodyne detection and very large input power. These are demanding re-
quirements, however. Nonetheless, it is believed that optomechanical feedback cooling may still
be more effective than back-action cooling in the bad-cavity limit [270].

6.2.2 Passive Back-Action Cooling

A variety of back-action cooling experiments using radiation pressure are compared in Table 6.3.
These experiments are closely related to the experiments demonstrating back-action cooling of
nanomechanical resonator using resonant microwave circuits. Back-action cooling based on ra-
diation pressure allows, in principle, cooling to the quantum ground state if one is in the resolved-
sideband regime [271,272]. Table 6.3 includes systems that are in the resolved-sideband and adi-
abatic regimes. As is to be expected, the most effective cooling has been achieved with systems
operating in the resolved-sideband regime. It should be noted that back-action cooling based
on photothermal pressure has also been demonstrated [140]. An alternative approach to radia-
tion pressure cooling based on a dispersive couplings, is to cool using a reactive coupling [115].
There, it has been shown that ground-state cooling is possible, in principle, even when one is not
in the resolved-sideband regime.

6.2.3 Radiation Pressure Back-action Cooling: Classical Picture

The origin of radiation pressure back-action cooling may be understood in a classical framework.
In an optomechanical cavity, the light moves the mirror, which alters the optical resonance fre-



State Preparation 543

System gram-scale Micromech. Microtoroid Micromech. Cryogenic
pendulum in Fabry-Pérot membrane-in- microtoroid
optical spring -the-middle

Ref. [123] [127] [154] [100] [156]
m 1g 190µg 10ng 40ng 10ng

ωm/2π 172Hz 814kHz 73.5MHz 134kHz 65.1MHz

ωm/γc 0.016 0.775 22.97 2.86 3.43

nf 108 2.6× 105 5900 1100 63

System Cryogenic Cryogenic Ultracryogenic Cryogenic
microsphere micromech. spoked optomechanical

Fabry-Pérot microtoroid crystal
Ref. [160] [130] [273] [58]
m 41ng 43ng 10ng 311fg

ωm/2π 118.6MHz 945kHz 78MHz 3.68GHz
ωm/γc 4.0 0.8 11 1.05× 105

nf 37 32 1.7 0.85

Tab. 6.3. Comparison of experiments demonstrating radiation pressure back-action cooling in cavity op-
tomechanics. The ratio ωm/γc determines whether or not the system is in the resolved-sideband regime.
Note that nf denotes the final thermal occupation of the mechanical mode.

quency of the cavity, and so the circulating intensity, leading back to a change in the radiation
pressure force on the mirror. The radiation pressure force responds to the mirror motion with
some time lag due to the time taken for photons to leak out of the cavity, meaning that the optical
field can perform some net work on the mirror.

In a detuned cavity, a static radiation pressure force arises from the dependence of the stored
energy on the cavity length. The number of photons in a cavity driven at a frequency ωd at a
power Pi, with a damping rate γc, and detuned from a nearby resonance by δd ≡ ωd − ωc(L), is

nc =
Pi

~ωd
γc

γ2
c + 4δ2d

. (6.3)

The half-maxima of this peak are at δd = ±γ/2. Suppose that the nearest resonance frequency is
ω0, corresponding to the cavity length L0, such that ω0 = nπc/L0. The detuning due to a change
in the cavity length is then δL = ω0 − ωc(L) = ω0

(
1− L0

L

)
. The corresponding intracavity

power is Pcav = nc~ωdc/L. Thus, from Eq. (6.3), we have

Pcav = Pin
c

L

γ

γ2 + 4
[
ωd − L0

L ω0

]2 . (6.4)

This is plotted in Fig. 6.1, as a function of the cavity length L, centred on the length correspond-
ing to the cavity being on resonance with the drive. About some detuned operating point, the
linearized force is proportional to

(
dPcav
dL

)
x, where x is the displacement from the operating

point.
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Fig. 6.1. Intracavity optical power as a function of cavity length L. It is assumed that the cavity is driven
at a frequency ωd, and has a nearby resonance at ω0 corresponding to the cavity length L0. The intracavity
power is a maximum at the length L = ω0L0/ωd, corresponding to resonance with the driving field. The
intracavity power has half-maxima at the cavity lengths L = ω0L0/ (ωd ± γ/2).

The intracavity power essentially gives the steady-state radiation pressure force on the mirror.
If the mirror is on the left-hand-side of the peak, then as the mirror approaches resonance, the
force is smaller than expected due to the time lag associated with the cavity lifetime, and larger
than expected when the mirror retreats. Thus

∮
F dx < 0, and the mirror does work on the field,

such that it is damped. The opposite is true if the mirror is on the right-hand-side of the peak; net
work will be done on the resonator, and its motion will be amplified.

6.2.4 Radiation Pressure Back-Action Cooling: Quantum Picture

A quantum description of the cooling process is more easily discussed in the frequency domain.
Classically, modulation of the cavity resonance frequency by mechanical motion (with an am-
plitude x0) is described by the evolution of the cavity mode amplitude as α̇ = −i(ωc + κx0

cosωmt)α. This equation integrates to

α(t) = exp
[
−i

(
ωct+

κx0

ωm
sinωmt

)]
= e−iωct

+∞∑
k=−∞

Jk

[
κx0

ωm

]
e−ikωmt, (6.5)

where the second equality follows from the Jacobi-Anger expansion. Thus the cavity spectrum
acquires sidebands spaced by ωm, with strength |Jk (κx0/ωm)|2. It is usually suffiient to con-
sider just the lower and upper sidebands, known as the red (or “Stokes”) and blue (or “anti-
Stokes”) sidebands, respectively. The presence of asymmetric sidebands, due to one sideband
being closer to the cavity resonance than the other, implies a net energy transfer between the
optical and mechanical modes. This sideband asymmetry is achieved by driving the cavity be-
low or above resonance. A large asymmetry, and so a large energy transfer, is achieved in the
resolved-sideband regime, with cooling achieved by driving below the resonance frequency. In
fact, optimal cooling in the resolved-sideband regime is achieved by tuning the driving frequency
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Fig. 6.2. Density of states in optomechanical systems, as a function of frequency, in the resolved-sideband
regime (ωm >> γc). These are shown for: (a) blue-detuned driving of the cavity; (b) red-detuned driving
of the cavity; and (c) blue- and red-detuned driving of the cavity. The dominant Raman scattering processes
are indicated by arrows. Figure adapted from [187]. Reprinted with permission from AAAS.

to the red sideband of the cavity by an amount corresponding to the mechanical resonance fre-
quency. In this case, the Raman process that involves a quantum being emitted by the mechanical
mode is favoured. These considerations are depicted in the plot of mode density as a function of
frequency in Fig. 6.2.

The quantum theory of radiation-pressure back-action cooling of mechanical systems has
been developed by a number of authors [271, 272]. The key result is that ground-state cooling
is only possible in the resolved-sideband regime. It is assumed that the Hamiltonian coupling
takes the form of Eq. (4.3), and that the cavity is driven with some power Pin at a detuning ∆d

(including a radiation-pressure-induced frequency shift). Then it may be shown, by adiabati-
cally eliminating the cavity modes, that, in the weak coupling regime, the mechanical resonator
experiences a cooling rate (A−) and a heating rate (A+), given by [272]

A∓ = 16κ2 (∆x)2
Pin
~ωd

γc
4∆2

d + γ2
c

γc

4 (∆d ± ωm)2 + γ2
c

. (6.6)
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The dynamical radiation pressure back-action thus provides a damping rate Γ, and a frequency
shift ∆ωm to the mechanical resonator. These are given by

Γ = A− −A+

= 16κ2 (∆x)2
Pin
~ωd

γc
4∆2

d + γ2
c

[
γc

γ2
c + 4 (∆d + ωm)2

− γc

γ2
c + 4 (∆d − ωm)2

]
, (6.7)

∆ωm = 16κ2 (∆x)2
Pin
~ωd

γc
4∆2

d + γ2
c

[
∆d + ωm

γ2
c + 4 (∆d + ωm)2

+
∆d − ωm

γ2
c + 4 (∆d − ωm)2

]
. (6.8)

Solution of the corresponding master equation yields the steady-state occupation of the me-
chanical mode, which is, neglecting a small coherent shift,

nf =
γmni +A+

γm + Γ
. (6.9)

Assuming that the cooling rate is large compared with the intrinsic mechanical damping rate,
Γ � γm, we have

nf =
γm
Γ
ni + ñf where ñf = −4 (∆d + ωm)2 + γ2

c

16ωm∆d
. (6.10)

Now we consider the limit to cooling associated with the back-action; that is, the second
term in Eq. (6.10). It is important to note that the first term may impose a limit to cooling,
but this cannot be optimized further by simply varying the drive detuning. Now we seek to
minimize the final occupation, nf , with respect to this drive detuning, ∆d. The appropriate limit

is ñL = 1
2

(√
1 + γ2

c/4ω2
m − 1

)
, corresponding to the detuning ∆d = − 1

2

√
γ2
c + 4ω2

m. In the
adiabatic regime, ωm � γ, the optimal detuning is ∆d = −γc/2, with the lowest occupation
achievable being

ñL ≈
γc

4ωm
� 1, (6.11)

analogous to the Doppler limit of atomic physics. In the resolved-sideband regime, where the
the cavity field cannot respond instantaneously to the mechanical motion, the asymmetry in the
cooling and heating rates is more pronounced. For 4ω2

m � γ2
c , the optimal detuning is ∆d =

−ωm, and the lowest occupation achievable is

ñL =
γ2
c

16ω2
m

� 1. (6.12)

That is, the regime ωm � γc allows ground-state cooling of the mechanical mode. However,
different practical limitations may arise in different physical systems. The effects of pump noise
with some finite correlation time [274] and of thermal occupation of the cavity and strong op-
tomechanical coupling [275] have been considered. Indeed, a mechanical resonator in an op-
tomechanical system has yet to be cooled to its quantum ground state.
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6.3 Cooling in Electromechanical Systems

Cooling of the mechanical resonator of an electromechanical system may be achieved using
feedback cooling or back-action cooling. There are proposals for feedback cooling of a nanome-
chanical resonator using a coupled single-electron transistor [276] or microwave cavity [277],
though such proposals have proven difficult to implement. However, electromechanical feed-
back cooling of a resonant-mass gravitational wave detector has been demonstrated [204].

Back-action cooling has proven somewhat more successful. It has been demonstrated using
a microwave cavity coupled to a resonant-mass gravitational wave detector [196], and more re-
cently, using radio-frequency electrical circuits coupled to micromechanical resonators [249] and
superconducting microwave cavities with embedded nanomechanical resonators [265, 266]. The
first ground state cooling using this technique used a micromechanical membrane as one elec-
trode of a capacitor in a lumped-element superconducting resonant cavity. Following demon-
strations of strong coupling and normal-mode splitting [278], cooling to the ground state was
achieved [59]. Transduction in the latter case was performed using a Josephson parametric am-
plifier.

The principle in all these experiments is the red-detuned driving of the circuit or cavity. Op-
timal cooling is achieved by driving the cavity at its full-width at half-maximum of its resonance
(in the bad-cavity or adiabatic limit, where the mechanical resonance is less than the cavity
damping), or at a sideband corresponding to the mechanical resonance (in the good-cavity limit,
also known as the resolved-sideband regime, where the mechanical resonace is greater than the
cavity damping). Preparation and detection of mechanical resonators in their quantum ground
states has recently been achieved [59, 58]. Here, the cooling was limited by thermal excitation
of the microwave cavity, heating due to the dissipative mechanical bath, and non-thermal force
noise. These back-action cooling experiments are compared in Table 6.4.

Back-action cooling of a nanomechanical resonator was also demonstrated by coupling to
an appropriately biased superconducting single-electron transistor [229]. A variety of other pro-
posals for back-action cooling exist: examples include via coupling to a double-dot carbon nan-
otube [279], via laser cooling of an embedded quantum dot [280], via electron-phonon coupling
in metallic nanowires [281], via current flow through a superconducting nanowire [282], or via

System Micromechanical Cryogenic Ultracryogenic Ultracryogenic Ultracryogenic
resonator resonant-mass nanomechanical nanomechanical micromechanical

GWD resonator resonator membrane

Ref. [249] [196] [265] [266] [59]
m 2.45µg 1500kg 6.2pg 2pg 48pg

ωm/2π 7kHz 713Hz 1.525MHz 6.37MHz 10.56MHz

ωm/γc 0.02 0.01 6.6 12.9 52.8
nf 108 105 140 4 0.34

Tab. 6.4. Comparison of experiments demonstrating back-action cooling via a radio-frequency or mi-
crowave circuit. The ratio ωm/γc determines whether or not the system is in the resolved-sideband regime.
Note that nf denotes the final thermal occupation of the mechanical mode.
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coupling to a superconducting qubit [283, 284, 285].

6.4 Resolved Sideband Cooling in Optomechanics

The theory of ground state cooling of a mechanical oscillator has been developed in a number of
contexts, including resolved sideband cooling in optomechanics [286]. We will adopt a simpler
approach using the quantum stochastic differential equations and focusing on the physics of
the anti-Stokes process given in the scheme of Fig. 4.4. We first define the electromagnetic
cavity mode operators a, a† to be distinguished from the mechanical resonator’s operators b, b†.
In Sec. 4.1.3 we derived the linearised optomechanical coupling Hamiltonian in an interaction
picture

H = ~g(ab† + a†b). (6.13)

The equations of motion, in such a picture and with dissipation and fluctuations included, are

da

dt
= −κ

2
a− igb+

√
κain, (6.14)

db

dt
= −γ

2
b− iga+

√
γbin, (6.15)

where γ is the mechanical resonator’s linewidth and κ is the electromagnetic resonator’s linewidth.
We need to ensure that the photon emitted into the cavity mode is lost to the zero temperature

heat bath in the multimode field outside the cavity. In this limit, we may perform an adiabatic
elimination of the cavity field. Assuming that κ >> γ, g we regard the electromagnetic mode as
slaved to the mechanical mode, so that on the time-scale of the mechanical dynamics, the cavity
field amplitude is stationary. Accordingly, we solve for the cavity amplitude operator,

a→ −2ig
κ
b+

2√
κ
ain. (6.16)

Substituting the cavity field from Eq. (6.16) into the equation of motion for the mechanical mode,
Eq. (6.15),

db

dt
= −Γ

2
b− i

√
γomain +

√
γbin, (6.17)

where the optomechanical and total damping rates are, respectively,

γom =
4g2

κ
, (6.18)

Γ = γ + γom. (6.19)

Assuming that the optomechanical damping is into a bath with thermal occupation n̄p, and that
the intrinsic damping is into a bath with thermal occupation n̄m, then it is easy to show that the
steady-state mean phonon number in the mechanical system is given by

〈b†b〉ss =
γom
Γ
n̄p +

γ

Γ
n̄m. (6.20)
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For optical frequencies at room temperature, or for microwaves at mK temperatures, we may set
n̄p = 0,

〈a†mam〉ss =
γ

Γ
n̄m. (6.21)

Clearly, cooling requires Γ >> γ. The full theory shows there is heating due to residual Stokes
scattering (the blue sideband coupling).

A number of groups have reported cooling to very close to the quantum ground state using
sideband cooling. In optics, the Kippenberg group reported n̄ = 9 [287], while the Painter group
reported n̄ = 0.85 of a 3.68 GHz resonator. In the microwave domain, the Schwab group has
reported n̄ = 3.8 [288], and Teufel et al. [289] has reported n̄ = 0.34.
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7 Coherent Control

Along with state preparation the next key element for quantum technology is the ability to coher-
ently control the system. Coherent control is described by unitary evolution. Imperfections arise
from dissipation and dephasing in the system to be controlled, as well as from noise in the clas-
sical control lines. How serious a problem these pose is really question of time-scales. Often we
can couple a classical control signal so strongly to the quantum target that the coherent control is
so fast that we need not concern ourselves with non-unitary effects. There are a variety of ways
we can coherently control the quantum state of macroscopic mechanical resonators, including
harmonic and parametric driving, and control via single photons.

7.1 Harmonic Driving

We begin with the case of harmonic driving. The potential energy contribution of a classical
driving force on a mechanical resonator is

Hdrive = F(t)x = ~f(t)(b+ b†), (7.1)

where we have introduced the notation

f(t) =
F(t)√
2~mω0

. (7.2)

Usually the force has a carrier frequency near the oscillator resonance, F(t) = f(t) sin(ωDt),
where f(t) is a slowly-changing envelope on average with a stochastic component. That is,
f(t) = f0(t) + η(t) where η(t) is a zero mean noise. Including the driving term gives the
equation of motion

db

dt
= −iω0b(t)−

γ

2
b(t)− if(t) sin(ωDt) +

√
γbin(t). (7.3)

We now go to an interaction picture defined by bI(t) = b(t)eiωDt, giving

dbI
dt

= −iδbI(t)−
γ

2
bI(t)− if(t) sin(ωDt)eiωDt +

√
γbI,in(t), (7.4)

where δ = ω0 − ωD. Typically we are interested in times such that ωDt >> 1. Then we can
drop the rapidly rotating terms (the rotating wave approximation again), to find

dbI
dt

= −iδbI(t)−
γ

2
bI(t) +

f(t)
2

+
√
γbI,in(t). (7.5)

We now work exclusively in the interaction picture, so we drop the subscript I . The quantum
stochastic differential equation for a driven, damped harmonic oscillator is generically of the
form

db

dt
= −iδb(t)− γ

2
b(t) + ε(t) +

√
γbin(t), (7.6)
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where ε(t) has the units of frequency. Now suppose that the drive is intended to be constant
in this picture, but is subject to zero-mean noise. Then we can take the classical average and
auto-correlation as

ε(t) = ε0, (7.7)
ε(t), ε(t+ τ) = G(τ), (7.8)

where A,B ≡ AB −A B. Note that these quantities are independent of t, a condition known as
stationarity. The steady-state amplitude is

〈b〉ss =
−ε0

iδ + γ/2
. (7.9)

The steady-state response to the force can be most easily calculated in the frequency domain:

b̃(ω) =
√
γb̃in(ω) + ε̃(ω)
γ/2 + i(δ − ω)

, (7.10)

where ε̃(ω) is the Fourier transform of ε(t). Assuming that ε0 = 0, so that the oscillator is subject
only to a classical fluctuating force, the steady-state photon number is

〈b̃†(ω)b̃(ω)〉 =
1
2π

∫ ∞

−∞
dω

γN + 2πSf (ω)
γ2/4 + (δ − ω)2

, (7.11)

where Sf (ω) is the spectrum of the driving force.

7.2 Parametric Driving

Parametric driving of a mechanical resonator is driving such that the mechanical resonance fre-
quency is periodically modulated, typically via modulation of the spring constant. The Hamilto-
nian becomes explicitly time-dependent,

H(t) =
p̂2

2m
+
mωm(t)2

2
x̂2. (7.12)

If we write ωm(t) = ωm(1 + ε sin(2Ωt + φ)), and assume the modulation depth ε is small we
can use the approximate Hamiltonian,

H(t) =
p̂2

2m
+
mω2

m

2
x̂2 +mω2

mε sin(2Ωt+ φ)x̂2. (7.13)

Writing this in terms of mechanical annihilation and creation operators,

H = ~ωmb†b+ ~r sin(2Ωt+ φ)(b+ b†)2, (7.14)

where r = ωmε/2. If we now move to an interaction picture at frequency Ω and keep only
time-independent terms (a rotating wave approximation), we find

H = ~∆b†b− i~
(
χ

2
b2 − χ∗

2
b†2

)
(7.15)



552 An Introduction to Quantum Optomechanics

where χ = reiφ and ∆ = ωm − Ω.
This Hamiltonian leads to an amplification of one quadrature and a deamplification of the

other quadrature, and so produces squeezed states. On resonance, the Heisenberg equation of
motion is

db

dt
= χ∗b†. (7.16)

If we fix the phase so that χ is real, and define the quadrature operators, X̂ = b + b† and
Ŷ = −i(b− b†), the solution to Eq. (7.16) and its hermitian conjugate may be written as

X̂(t) = X̂(0)eχt, (7.17)
Ŷ (t) = X̂(0)e−χt. (7.18)

Note that the canonical commutation relations, [X̂(t), Ŷ (t)] = 2i, are preserved. The X-
quadrature is amplified while the Y-quadrature is attenuated. The variances are likewise am-
plified and attenuated,

〈∆X̂2(t)〉 = eχt, (7.19)
〈∆Ŷ 2(t)〉 = e−χt, (7.20)

where we have assumed that the system starts in the ground state,
〈
∆X̂2(0)

〉
=

〈
∆Ŷ 2(0)

〉
≡

1. The variance in the Y-quadrature is reduced below unity, producing a squeezed state [291].
Such a device is known as a degenerate parametric amplifier (DPA). Note that the ground state
level is determined by χ = 0; it is then conventional to subtract off this level to define the
normally-ordered variances

〈: ∆X̂2 : 〉 = 〈∆X̂2〉 − 1, (7.21)
〈: ∆Ŷ 2 : 〉 = 〈∆Ŷ 2〉 − 1. (7.22)

One then easily sees that, assuming
〈
∆X̂

〉
=

〈
∆Ŷ

〉
= 0,

〈: ∆X̂2 : 〉 = 〈b2 + b† 2 + 2b†b〉, (7.23)

and similarly for the Y-quadrature. Since the creation operators appear to the left of the an-
nihilation operators in this expression, it is referred to as a normally-ordered moment. While
it may seem purely conventional to define normally-ordered moments, the motivation comes
from the nature of homodyne detection in quantum optics, where all measurements ultimately
become photon counting measurements. The statistics of these measurements are determined
completely by normally-ordered moments. A similar situation can arise in microwave quantum
circuits where linear amplifiers and IQ mixers are used in place of beam splitters and photode-
tectors [292].

The dynamics as it stands is unbounded and cannot reach a steady state. When dissipation
is included a steady state is possible provided that the parametric driving does not exceed the
critical value of κc = µ where µ is the damping rate for energy in the mechanical resonator. This
is known as the “below threshold” condition.
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The calculation of the quadrature variances is the first step in understanding how parametric
driving is manifest as noise reduction. The next step is to compute how this translates into the
statistics of the displacement transducer signals. If the mechanical resonator is coupled to a
transducer it is necessarily an open system and we need to include dissipation and the associated
quantum noise in the calculation. We will assume that the optomechanical cavity is also driven
coherently on either the red, blue or simultaneously both sidebands [293]. The cavity field,
or more precisely, the field leaking from the cavity will be used to transduce the mechanical
squeezing.

Suppose that the cavity is driven on one sideband. Then setting Ω = 2ν and transform-
ing to an interaction picture with respect to H1

0 = ~ωd1a†a + ~νb†b, using the rotating wave
approximation, leads to

H1
I = ~δ1a†a+ ~gX (t) a†a+ ~

(
E∗1a+ E1a

†) + ~
(
χ∗b2 + χb†2

)
, (7.24)

where δ1 = ωc − ωd1 is the detuning between the cavity resonance and the drive, and X (t) =
be−iνt + b†eiνt.

Alternatively, following Clerk et al. [114], suppose the cavity is driven on two sidebands.
This allows a back-action evading measurement of one quadrature of the nanoresonator’s motion.
Now transforming to an interaction picture with respect to H2

0 = ~ωca†a + ~νb†b, and again
setting Ω = 2ν and using the rotating wave approximation,

H2
I = ~gX (t) a†a+ ~(E∗1ae−iδ1t

+ E1a
†eiδ1t) + ~(E∗2ae−iδ2t + E2a

†eiδ2t) + ~
(
χ∗b2 + χb†2

)
, (7.25)

where δ2 = ωc − ωd2.
The last terms in both Eqs. (7.24) and (7.25) are the same form as the DPA below threshold.

By driving the cavity on these sidebands, the cavity field on resonance couples to the slowly-
varying quadratures of the mechanical resonator motion. For the cavity driven on one sideband,
the Hamiltonian (7.24) leads to the quantum Langevin equations,

ȧ(t) = −iδ1a(t)− iE1 −
µ

2
a(t) +

√
µain(t)− ig

[
b(t)e−iνt + b†(t)eiνt

]
a(t), (7.26)

ḃ(t) = −2iχb†(t)− iga†(t)a(t)eiνt − γ

2
b(t) +

√
γbin(t). (7.27)

where 〈
a†in (t) , ain (t′)

〉
= δ (t− t′) , (7.28)〈

b†in (t) , bin (t′)
〉

= Nmδ (t− t′) , (7.29)

with Nm as the thermal occupancy of the mechanical bath mode at the mechanical resonance
frequency,

Nm =
[
exp

(
~ν
kTm

)
− 1

]−1

, (7.30)

and Tm being the effective mechanical bath temperature.
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Assuming the condition for resolved sidebands,

|δ1| >> µ, (7.31)

solutions to (7.26)-(7.27) can be approximated by

a(t) = a0(t) + a+(t)e−iνt + a−(t)eiνt, (7.32)
b(t) = b0(t), (7.33)

where the subscripts + and − denote sidebands above and below, respectively, the cavity drive
frequency. Substituting this into Eqs. (7.26)-(7.27) and equating frequencies,

ȧ0(t)=−iδ1a0(t)− iE1 − ig
[
a+(t)b†0(t) + a−(t)b0(t)

]
− µ

2
a0(t) +

√
µao,in(t),(7.34)

ȧ+(t)=−i(δ1 − ν)a+(t)− iga0(t)b0(t)−
µ

2
a+(t) +

√
µa+,in(t), (7.35)

ȧ−(t)=−i(δ1 + ν)a−(t)− iga0(t)b
†
0(t)−

µ

2
a−(t) +

√
µa−,in(t), (7.36)

ḃ0(t)=−2iχb†0(t)− ig
[
a†0(t)a+(t) + a0(t)a

†
−(t)

]
− γ

2
b0(t) +

√
γbo,in(t). (7.37)

Driving the cavity on either on the first blue or the first red sideband means the other sideband
will be far from resonance. We may then neglect the off-resonant sideband. If the cavity is driven
on its first blue sideband,

ωd = ωc + ν, (i.e. δ1 = −ν) , (7.38)

We now neglect a+(t) and assuming g << µ, |δ1| , |E1| and, without loss of generality, that E1

is real and positive, the steady-state of the blue sideband component s
〈
ab0(t→∞)

〉
= E1/ν.

Then Eqs. (7.36) and (7.37), (dropping sideband subscripts) gives

ȧ(t) = −µ
2
a(t)− igb†(t) +

√
µain(t), (7.39)

ȧ†(t) = −µ
2
a†(t) + igb(t) +

√
µa†in(t), (7.40)

ḃ(t) = −γ
2
b(t)− 2iχb†(t)− iga†(t) +

√
γbin(t), (7.41)

ḃ†(t) = −γ
2
b†(t) + 2iχ∗b(t) + iga(t) +

√
γb†in(t), (7.42)

where the linearised coupling is g =
∣∣g 〈

ab0(t→∞)
〉∣∣. This can be described by the effective

Hamiltonian

Hb = ~
(
χ∗b2 + χb†2

)
+ ~g

(
ab+ a†b†

)
. (7.43)

Assuming stability, the steady-state is a Gaussian state of zero amplitude with fluctuations
fully characterised by its correlation matrix. The system is stable provided that

|χ| < −g
2

µ
+
γ

4
. (7.44)
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We now Fourier transform the system to obtain

− D


ain(ω)
a†in(−ω)
bin(ω)
b†in(−ω)

 = Ab


a(ω)
a†(−ω)
b(ω)
b†(−ω)

 , (7.45)

where D denotes the damping matrix

D =


√
µ 0 0 0

0
√
µ 0 0

0 0
√
γ 0

0 0 0
√
γ

 , (7.46)

and the dynamical matrix in the frequency domain is

Ab =


iω − µ

2 0 0 −ig
0 iω − µ

2 ig 0
0 −ig iω − γ

2 −2iχ
ig 0 2iχ∗ iω − γ

2

 . (7.47)

The column vectors in (7.45) will be denoted by abin(ω) and ab(ω), respectively.
The output field from the cavity is related to the intracavity field by

aout(ω) =
√
µa(ω) + ain(ω), (7.48)

bout(ω) =
√
γb(ω) + bin(ω). (7.49)

This may be written, using Eq. (7.45), as

about(ω) = Dab(ω)− abin(ω) = −
(
DA−1

b D + 1
)

abin(ω). (7.50)

To incorporate the effects of internal losses in the cavity, the total damping due to both internal
losses and out-coupling of the field would be included in Eqs. (7.39)-(7.42), but only the compo-
nent due to out-coupling of the field would be included in the boundary condition of Eq. (7.50).
This would lead to a slight reduction in the magnitude of the squeezing attainable.

In a similar way we can treat red sideband driving,

ωd = ωc − ν, (i.e. δ1 = +ν) . (7.51)

The oscillation of the red sideband of the driving field is off-resonance and accordingly we ne-
glect a−(t). Assuming g << µ, |δ1| , |E1| and E1 real and positive, we solve Eq. (7.34) for
the steady-state amplitude at the red sideband drive frequency, 〈aro(t→∞)〉 = −E1/ν. From
Eqs. (7.35) and (7.37), (again dropping sideband subscripts),

ȧ(t) = −µ
2
a(t) + igb(t) +

√
µain(t), (7.52)

ȧ†(t) = −µ
2
a†(t)− igb†(t) +

√
µa†in(t), (7.53)

ḃ(t) = −γ
2
b(t)− 2iχb†(t) + iga(t) +

√
γbin(t), (7.54)

ḃ†(t) = −γ
2
b†(t) + 2iχ∗b(t)− iga†(t) +

√
γb†in(t), (7.55)
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where, equivalently to above, g = −g 〈aro(t→∞)〉. The effective Hamiltonian is

Hr = ~
(
χ∗b2 + χb†2

)
+ ~g

(
a†b+ ab†

)
. (7.56)

The stability conditions are now

|χ| < g2

µ
+
γ

4
, |χ| < γ + µ

4
, (7.57)

We have,

arout(ω) = Dar(ω)− arin(ω) = −
(
DA−1

r D + 1
)

arin(ω), (7.58)

where

Ar =


iω − µ

2 0 ig 0
0 iω − µ

2 0 −ig
ig 0 iω − γ

2 −2iχ
0 −ig 2iχ∗ iω − γ

2

 . (7.59)

Driving on the red and the blue sidebands the Hamiltonian of Eq. (7.25) gives

ȧ(t) = −iE1e
iδ1t − iE2e

iδ2t − µ

2
a(t) +

√
µain(t)

− ig
[
b(t)e−iνt + b†(t)eiνt

]
a(t), (7.60)

ḃ(t) = −2iχb†(t)− iga†(t)a(t)eiνt − γ

2
b(t) +

√
γbin(t), (7.61)

with the input noise correlation functions (7.28)-(7.29). Assuming that we are in the resolved
sideband regime,

|δ1| , |δ2| >> µ, (7.62)

the same assumption, (7.32)-(7.33), should solve Eqs. (7.60)-(7.61). Substituting, equating fre-
quency components and also assuming δ1 = −ν and δ2 = +ν (corresponding to driving on both
the red and blue sidebands), we have

ȧ0(t) = −ig
[
b(t)a−(t) + b†(t)a+(t)

]
− µ

2
a0(t) +

√
µa0,in(t), (7.63)

ȧ+(t) = −igb(t)a0(t)− iE1 +
(
iν − µ

2

)
a+(t) +

√
µa+,in(t), (7.64)

ȧ−(t) = −igb†(t)a0(t)− iE2 −
(
iν +

µ

2

)
a−(t) +

√
µa−,in(t), (7.65)

ḃ0(t) = −2iχb†(t)− ig
[
a†0(t)a+(t) + a†−(t)a0(t)

]
− γ

2
b(t) +

√
γbin(t). (7.66)

Setting E1 = Ee−iψ and E2 = −Eeiψ where E is real, and assuming g << µ, E , we have the
steady-state amplitudes at the drive frequencies

〈
abr+ (t→∞)

〉
= Eeiψ/ν and

〈
abr− (t→∞)

〉
=

Ee−iψ/ν. The phase variable ψ is the relative phase between the two cavity driving amplitudes.
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Then Eqs. (7.63) and (7.66), with the corresponding Hermitian conjugate equations and again
dropping sideband subscripts, lead to

ȧ(t) = −ig
[
b(t)e−iψ + b†(t)eiψ

]
− µ

2
a(t) +

√
µain(t),

(7.67)

ȧ†(t) = ig
[
b(t)e−iψ + b†(t)eiψ

]
− µ

2
a†(t) +

√
µa†in(t),

(7.68)

ḃ(t) = −2iχb†(t)− igeiψ
[
a(t) + a†(t)

]
− γ

2
b(t) +

√
γbin(t), (7.69)

ḃ†(t) = 2iχ∗b(t) + ige−iψ
[
a(t) + a†(t)

]
− γ

2
b†(t) +

√
γb†in(t), (7.70)

where the optomechanical coupling is g = G0

∣∣〈abr+ (t→∞)
〉∣∣ = G0

∣∣〈abr+ (t→∞)
〉∣∣. The

system is stable provided that

χ <
γ

4
. (7.71)

Note that this stability threshold is more stringent than that, Eq. (7.44), for the red sideband drive,
but less stringent than that, Eq. (7.71), for the blue sideband drive. The effective Hamiltonian is

Hbr = ~
(
χ∗b2 + χb†2

)
+ ~g

(
a+ a†

) (
be−iψ + b†eiψ

)
. (7.72)

The second term has the form of a back-action evading measurement of a quadrature of the
mechanical resonator motion; which quadrature is measured depends on the relative phase of
the two cavity drives (and ultimately, on the local oscillator phase of the output microwave field
homodyne detection). Physically, the Raman processes corresponding to the injection of a photon
at the cavity resonance and the absorption or emission of a phonon by the mechanical resonator
are both possible and occur at the same rate.

Given the system is stable, we may Fourier transform Eqs. (7.67)-(7.70) and apply the usual
boundary conditions to find

abrout(ω) = Dabr(ω)− abrin(ω) = −
(
DA−1

br D + 1
)

abrin(ω), (7.73)

where the dynamical matrix is now

Abr =


iω − µ

2 0 −ige−iψ −igeiψ
0 iω − µ

2 ige−iψ igeiψ

−igeiψ −igeiψ iω − γ
2 −2iχ

ige−iψ ige−iψ 2iχ∗ iω − γ
2

 . (7.74)

We now calculate the variances in the quadrature phase amplitudes of the mechanical res-
onator,

X ′
m = be−iφ + b†eiφ, (7.75)
Y ′m = −i(be−iφ − b†eiφ), (7.76)
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where φ is a variable phase reference. The normally ordered variances are,

SX′
m

= 〈: X ′
m, X

′
m :〉

= e−2iφ
〈
b2

〉
+ e2iφ

〈
b†2

〉
+ 2

〈
b†b

〉
, (7.77)

SY ′
m

= 〈: Y ′m, Y ′m :〉
= −e−2iφ

〈
b2

〉
− e2iφ

〈
b†2

〉
+ 2

〈
b†b

〉
. (7.78)

These may be calculated by writing quantum Langevin equations for all second moments of the
nanoresonator and cavity operators, and solving for their expectations in the steady-state.

With χ real, the optimally squeezed quadrature is Y ′m with φ = −π/4, irrespective of the
driving conditions, provided that we setψ = π/4 for the two sideband drive case. Any quadrature
may be optimally squeezed through suitable choice of the phase of the parametric driving; with
Arg [χ] = −π/2 (+π/2) the position (momentum) quadrature is squeezed. We will give the
results for χ real and the squeezed (Y ′m) quadrature. For driving on the blue, red, and blue and
red sidebands we find that,

SbY ′
m

=
2

[
µ(Nmγ − 2χ)(γ + µ+ 4χ)− 4g2(Nmγ − µ− 2χ)

]
[(γ + µ+ 4χ)(µγ + 4µχ− 4g2)]

, (7.79)

SrY ′
m

=
2(Nmγ − 2χ)(4g2 + µγ + µ2 + 4µχ)

(γ + µ+ 4χ) (4g2 + µγ + 4µχ)
, (7.80)

SbrY ′
m

=
2Nmγ − 4χ
γ + 4χ

. (7.81)

At the threshold of Eq. (7.57), assuming 4g2 < µ2, for the red sideband drive,

SrY ′
m

= −1
2

8g2 + 2γµ+ µ2

4g2 + 2γµ+ µ2
+Nm

γµ(8g2 + 2γµ+ µ2)
(4g2 + γµ)(4g2 + 2γµ+ µ2)

. (7.82)

For all driving conditions, at threshold and in the adiabatic limit, SY ′
m
→ − 1

2 +Nm and the noise
in the conjugate quadrature (X ′

m) diverges, as expected [291] .
The squeezing of a quadrature of the cavity field (SX′

c
or SY ′

c
) is given by Eq. (7.77) or (7.78)

with the replacement b→ a. Here we quote the results for the red sideband driving,

SrY ′
m

= SrX′
c
+

2µ(n0
mγ − 2χ)

4g2 + γµ+ 4µχ
, (7.83)

such that at the threshold (7.57), assuming 4g2 < µ2,

SrY ′
m

= SrX′
c
− 1

2
+

γµ

4g2 + γµ
Nm. (7.84)

Thus squeezing of the internal cavity field implies squeezing of a mechanical resonator quadra-
ture provided that

Nm <
4g2 + γµ

2γµ
. (7.85)

In an experiment we are primarily interested in how the output field from the cavity reflects
the squeezing of the mechanical resonator. As discussed in Sec. 8.2, this requires that the cavity
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field act as a good transducer for the mechanical resonator, and that requires that the cavity
field is rapidly damped, for in that case the output field responds immediately to changes in the
mechanical displacement. Then we can perform an adiabatic elimination of the intracavity field.
The details for the parametrically driven mechanical resonator discussed in this section are given
in [293].

7.3 Single Photon Driving

Thus far we have been exclusively concerned with driving the optical system with a coherent laser
source. however the ongoing development of single photon sources for quantum information
processing [294] suggests these sources will soon be available for optomechanics. In the case
of microwave nanomechanics, intracavity single photons sources are already well developed for
experiments in circuit quantum electrodynamics [295, 296]. In fact one can coherently generate
some very non classical states of a microwave cavity, such as cat states, and these can be used to
control the mechanical resonator directly.

We begin with a short review of single photon states. In the continuum limit we define the
positive frequency operator for the multi-mode field input to the cavity mode (a), at the input
mirror, as

ai(t) = e−iΩat
1√
2π

∫ ∞

−∞
dωai(ω)e−iωt (7.86)

where

[ai(ω1), a
†
i (ω2)] = δ(ω1 − ω2) (7.87)

Only some finite bandwidth, B, of these modes are excited around the carrier frequency Ωa. The
multi-mode single photon state is then defined by [297]

|1〉 =
∫ ∞

−∞
ν(ω)a†i (ω)|0〉. (7.88)

Normalisation requires that
∫∞
−∞ dω|ν(ω)|2 = 1. This state has zero average field amplitude

〈a(t)〉 = 0, but

〈a†(t)a(t)〉 ≡ n(t) = |ν(t)|2, (7.89)

where ν(t) is the Fourier transform of ν(ω). For example, if a single photon is prepared in a
single-sided cavity at time t = t0 with cavity decay rate γ, the mode function ν(t) is given by
the exponential

ν(t) =
{ √

γe−γ(t−t0)/2 t ≥ t0,
0 t < t0.

(7.90)

Let us now consider an optomechanical cavity driven on the red sideband in the linearised
regime; see Eq. (6.13). If we now add an extra single photon pulse on top of the coherent driving
field, how does the system respond? If we assume that before the single photon pulse is added the
system has reached a steady state, then the single photon pulse will push it way from the steady
state, but it will eventually relax. Interesting dynamics will result, however, if the optomechanical
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coherent source

single photon source

circulator

photodetector

Fig. 7.1. A single photon optomechanical system. A single-sided opto-mechanical cavity of (right; depicted
as a FabryPerot cavity with a moving end mirror) is driven by both a single-photon pulse and a continuous
wave (CW) coherent pump source. Reproduced from [298].
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Fig. 7.2. The response of the intracvity mean photon number, above the coherent steady state value, versus
time of a single optomechanical cavity driven near the first red sideband, for different values of the linearised
coupling rate g. Reproduced from [298].

coupling over this time is big enough to enable the coherent exchange between cavity photon and
mechanical phonon.

This question was addressed by Akram et al. [298]. The approach taken was to include the
actual single photon source, and treat the optomechanical cavity as a cascaded system [299,300].
The source was modelled as a one-sided cavity that, at t = 0, is prepared in a single photon state
using one of the intracavity methods currently used [301], see Fig. 7.1. The emission rate of the
single added photon from the cavity is proportional to the photon number in the cavity in the
displaced picture, so one needs to compute 〈a†a〉 as a function of time.

The results are shown in Fig. 7.2. As the linearised optomechanical coupling strength is
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increased we begin to see oscillations in the intracavity photon number. The minima corresponds
to times when the excitation resides in the mechanical resonator as a phonon. The experimental
signature of coherent photon-phonon exchange would thus be oscillations in the single photon
detection rate outside the cavity. of course in order see this the large coherent amplitude at
the driving laser frequency would first need to be filtered out. Note that as the optomechanical
coupling increases the system does not return to a zero photon state as the residual excitation on
the blue sideband heats the optomechanical system.
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8 Quantum Measurement

8.1 A Quick Introduction

The problem of measurement of an individual quantum system lies at the heart of quantum me-
chanics. Quantum mechanics introduces into measurement the concepts of probabilistic mea-
surement outcomes [302] and the projection postulate (or “wavefunction collapse”) [303]. How-
ever, the lack of experimentally accessible individual quantum systems prohibited the experi-
mental study of this problem until relatively recently [304].

The projection postulate states that an ideal measurement of an observable will project the
state of the system being measured onto an eigenstate of the measured observable. Thus one may
speak of the conditional dynamics of a system, being conditioned on some known measurement
record. This may be expressed in terms of a model for a system interacting with a meter [305], in
the more abstract language of measurement operators, operations and effects [306], or as a sum
over histories using a path integral approach [307,83]. However, the key point is that all of these
formulations reproduce the same correlation functions for system observables [308].

Suppose that one seeks to measure an observable X having a continuous spectrum x, and
particular measurement outcomes are denoted by r. Recall that measurement operators Mr are
defined such that the probability of the measurement outcome r and the post-measurement con-
ditional state of the system are given by

P (r) = Tr
[
ρ(t)M†(r)M(r)

]
, ρr(t+) =

M(r)ρ(t)M†(r)
Pr

, (8.1)

respectively. The unconditional (non-selective) evolution is

ρ(t+) =
∫ +∞

−∞
P (r)ρr(t+)dr =

∫ +∞

−∞
M(r)ρ(t)M†(r)dr. (8.2)

Through Heisenberg’s uncertainty principle, quantum mechanics also demands the necessity
of measurement back-action on the measured system [309,310]. It also places limits on the vari-
ances of conjugate variables for any quantum state [311], and places limits on the certainty with
which canonically conjugate variables can be simultaneously known [312]. For the uncertainty
in the position and momentum of a particle,

∆x ·∆p ≥ ~
2
. (8.3)

This is a straightforward consequence of the lack of commutativity of the position and momen-
tum operators in quantum mechanics.

In the context of measurement, an observable that is canonically conjugate to the measured
observable must be perturbed by the measurement. Quantitatively, the added position noise
spectral density due to a position measurement (or “imprecision”) Simp

x (ω) and the associated
back-action force noise spectral density Sba

F (ω) are constrained by

Simp
x (ω)Sba

F (ω) ≥ ~2

4
. (8.4)
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It may be readily derived for simple physical systems, though a rigorous derivation is possible
by considering conditional dynamics under a sequence of measurements [304]. Using Eq. (2.12)
on resonance, we have

Simp
x (ωm)Sba

x (ωm) ≥ ~2

4m2γ2ωm
. (8.5)

The total added noise of the measurement is a minimum when there is an equal uncertainty
arising from the measurement imprecision and from the added noise due to the back-action of
the detector; that is, when Simp

x (ωm) = Sba
x (ωm). Then the so-called standard quantum limit on

the noise added by the measurement is

SSQL
x (ωm) =

~
mγωm

. (8.6)

The uncertainty due to the detector imprecision is then half of Eq. (8.6), multiplied by the me-
chanical bandwidth (γ). The result is the standard quantum limit [313],

∆xSQL =
√

~
2mωm

. (8.7)

It is important to note, however, that this limit is not really fundamental; it can, at least in princi-
ple, be circumvented via coherent quantum noise cancellation [314]. It is also worth noting that
this limit is numerically equivalent to the zero-point uncertainty quoted earlier in Eq. (3.25).

8.1.1 Conditional Dynamics

The conditional dynamics of a measured system may be described by specifying appropriate
measurement operators, as in Eq. (8.1). Continuous measurement may be formulated as the limit
of a sequence of discrete measurements [315]. Consider small time intervals of length ∆t, with
a weak measurement in each such interval having a strength proportional to the time interval.
Now define the Gaussian measurement operator corresponding to the measurement outcome
r, a Gaussian-weighted sum of projectors onto the eigenstates of X , describing an unbiased
measurement subject to Gaussian noise, by

M(r) = 4

√
4k∆t
π

∫ +∞

−∞
exp

[
−2k∆t(x− r)2

]
|x〉 〈x| dx, (8.8)

where k is the “strength” of the measurement. If ∆t is sufficiently small then this Gaussian is
broader than the system state, ψ(x), and the measurement outcome has the probability distribu-
tion,

P (r) =

√
4k∆t
π

exp
[
− 4k∆t (r − 〈X〉)2

]
. (8.9)

Taking the continuous limit, ∆t → 0, substituting Eqs. (8.8) and (8.9) into Eq. (8.1), and nor-
malizing, one obtains the stochastic Schrödinger equation,

|ψ(t+ dt)〉 =
[
1− i

~
H dt− k (X − 〈X〉)2 dt

+4k (X − 〈X〉) (dy − 〈X〉 dt)
]
|ψ(t)〉 , (8.10)
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where the measurement record increment is given by dr = 〈X〉 dt + dW/
√

8k, with dW be-
ing the infinitesimal increment of a Wiener process. As the observer integrates dr, the state
progressively collapses. Now |ψ(t)〉 corresponding to a particular realization of the Wiener pro-
cess is referred to as a quantum trajectory [316]. One may also write down the corresponding
(stochastic) conditional master equation [317],

dρ = − i

~
[H, ρ]− k [X, [X, ρ]] dt+

√
2k (Xρ+ ρX − 2 〈X〉 ρ) dW. (8.11)

A generalized Lindblad form of diffusive measurement master equation under Gaussian noise
with detection efficiency η, is

dρ = − i

~
[H, ρ] dt+ 2kD [X] ρ dt+

√
2ηkH

[
Xeiφ

]
ρ dW, (8.12)

where the dissipative superoperator is defined as

D [X] ρ ≡ XρX† − 1
2
X†Xρ− 1

2
ρX†X, (8.13)

and the so-called measurement superoperator is

H [X] ρ = Xρ+ ρX† −
〈
X +X†〉 ρ. (8.14)

The associated measurement record increment is

dr =
〈
X +X†〉 dt+

dW√
2ηk

. (8.15)

If X is Hermitian, then Eq. (8.12) is equivalent to Eq. (8.11). In quantum optics, such a diffu-
sive measurement master equation may be derived as the limit of a conditional master equation
describing quantum counting on a field mixed with a strong coherent local oscillator [42]. Then
Eq. (8.12) is the homodyne detection master equation.

From Eq. (8.12), the conditional dynamics of any system operator A may be evaluated as

d 〈A〉 = − i

~
〈[A,H]〉 dt+ k

〈
2X†AX −X†XA−AX†X

〉
dt

+
√

2ηk
〈
X†A+AX − 〈A〉

〈
X +X†〉〉 dW. (8.16)

In particular, if X is Hermitian,

d 〈A〉=− i

~
〈[A,H]〉 dt−k 〈[X, [X,A]]〉 dt+

√
2ηk [〈{X,A}〉−2 〈X〉 〈A〉] dW. (8.17)

Further, if the system under consideration is a harmonic oscillator, the initial state is Gaussian,
and one considers the measurement of position, X ≡ x̂, then the system evolution is fully
specified by quantum stochastic differential equations for the first and second moments [318].
The result is damping of the position variance, and a corresponding diffusion of the momentum
at a rate required by the uncertainty principle. In the case of a dissipative measurement of a
harmonic oscillator, X ≡ a, as defined in Eq. (3.8), the measurement record is related to a
quadrature of the harmonic oscillator, and the measurement is referred to as homodyne detection.
Both measurements select coherent states, though the system relaxes to the ground state in the
case of a dissipative measurement.
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8.1.2 Quantum Non-Demolition Measurement

Heisenberg’s uncertainty principle states that canonically conjugate observables cannot be known
simultaneously with arbitrary precision, but this does not exclude the possibility that one observ-
able may be known with arbitrary precision [319]. For the case of continuous measurement,
however, only particular observables can be monitored with arbitrary precision due to the effect
of measurement back-action feeding back into the measured observable. Observables on which
no perturbing measurement back-action acts are termed quantum non-demolition (QND) observ-
ables, and the corresponding measurements are called QND measurements [320]. Some progress
has been made towards their implementation [321], particularly in the field of optics [322] and
more recently in cavity QED [323].

A sufficient condition for a QND measurement is [304]

[X,H] = 0, (8.18)

where X is the observable to be measured and H is the composite system-meter Hamiltonian. In
the Heisenberg picture a QND observable obeys [X(t), X(t′)] = 0. Generally, any constant of
the motion of the system is a QND observable, and Eq. (8.18) reduces to [X,HI ] = 0 where HI

is the system-meter interaction Hamiltonian.
For a free mass, the QND observables are momentum and energy. Energy and phase are one

pair of QND observables for the harmonic oscillator, while another pair of QND observables
for the harmonic oscillator are the slowly-varying quadratures defined by Eqs. (3.12) and (3.16).
For a harmonic oscillator, the standard quantum limit is applicable when one seeks to monitor
the position of a resonator, that is, when one monitors the amplitude and phase of the oscillation
simultaneously. A sensitivity better than the standard quantum limit is achievable if one monitors
only one quadrature.

A QND measurement of the energy of a harmonic oscillator can be achieved by the Unruh-
Braginsky interaction [324],HI = KQ̂x̂2, where Q̂ is a meter coordinate. A number of schemes
may be considered to measure a slowly-varying quadrature of an oscillator [325]. In one, the
transducer must be coupled to both its position and momentum and both couplings must be
modulated sinusoidally, such as

HI = KX̂(t)Q̂ = K

√
2mωm

~
cosωmt x̂ Q̂−K

√
2

~mωm
sinωmt p̂ Q̂. (8.19)

In principle, a two-transducer measurement could be avoided by making a stroboscopic mea-
surement, though experimental imperfections in such a scheme would be problematic. Another
alternative is to modulate the coupling of a single weakly-coupled position or momentum trans-
ducer and filter the output [326]. For a position transducer, the required interaction is

HI = KQ̂x̂ cosωmt =
1
2
K

√
~

2mωm
Q̂

[
X̂(t) + cos 2ωmt X̂(t) + sinωmt P̂ (t)

]
, (8.20)

while for a momentum transducer, the required interaction is

HI =
K

mωm
Q̂p̂ sinωmt

=
K

2

√
~

2mωm
Q̂

[
X̂(t)− cos 2ωmt X̂(t)− sin 2ωmt P̂ (t)

]
. (8.21)
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Averaging over a measurement time τ >> 2π/ωm, and ensuring that the back-action forces have
negligible frequency components at ±2ωm, the achievable uncertainty is ∆x/

√
ωmτ , where ∆x

is the standard quantum limit of Eq. (8.7).

8.1.3 Quantum-limited Measurement

Given that the standard quantum limit exists for a continuous position measurement, the question
remains as to how one attains it. Most measurement systems include an amplifier, and so the
quantum limit to amplification is also relevant.

A linear, phase-insensitive amplifier must, by the laws of quantum mechanics, add noise to
any signal that it amplifies [327]. Loosely speaking, this is due to the zero-point fluctuations
associated with the uncorrelated internal modes of the amplifier. For a phase-insensitive linear
amplifier, whose input and output are single bosonic modes, the added noise referred to the input
A, in units of number of quanta, must obey the inequality

A ≥ 1
2

∣∣1∓G−1
∣∣ , (8.22)

where G is the amplifier gain in units of number of quanta and the upper (lower) sign refers to
a phase-preserving (-conjugating) amplifier. Thus a high-gain, phase-insensitive linear amplifier
must add at least a half-quantum of noise at the input. For a phase-sensitive amplifier we have
an uncertainty principle for the noise added to each quadrature. The noise temperature of an
amplifier is defined as Tn ≡ ~ω/

[
kB ln

(
1 +A−1

)]
, such that, for a high-gain amplifier, TN →

~ω/kB ln 3.
The criteria that must be met in order to achieve quantum-limited detection (that is, at the

standard quantum limit) may be obtained by considering a general linear coupling to a detector
[328]. One considers a linear detector with an input characterized by the operator F̂ that interacts
with the system position coordinate as HI = −AF̂ · x̂, and with an output characterized by the
operator Î . The detector output noise spectrum is given by δItot(ω) = δI0(ω) + Aλ(ω)x(ω),
where the first term describes intrinsic fluctuations in the detector output and the second term
describes the amplified fluctuations of the oscillator. The quantum constraint on the detector
noise is [329]

S̄I(ω)S̄F (ω) ≥ ~2

4
{Re [λ(ω)− λ′(ω)]}2 +

{
Re

[
S̄IF (ω)

]}2
, (8.23)

where λ(ω) and λ(ω′) are the forward and reverse gain of the detector, respectively, and S̄I(ω),
S̄F (ω) and S̄IF (ω) are the symmetrized noise spectra of the detector output, input and correla-
tion. Thus, if the detector has non-zero gain and no positive feedback, there must be a minimum
amount of back-action and output noise.

A quantum-limited detector with no reverse gain, λ′(ω) ≡ 0, then satisfies

S̄I(ω)S̄F (ω) =
~2

4
{Re [λ(ω)]}2 +

{
Re

[
S̄IF (ω)

]}2
, (8.24)

the minimum amount of back-action and output noise. This implies a tight connection between
the detector input and output. Using spectral decompositions of the noise, it may be shown that
Eq. (8.24) leads to the ideal noise condition

〈f |I| i〉 = α 〈f |F | i〉 , (8.25)



Quantum Measurement 567

for some complex α for each pair of detector eigenstates |i〉 and |f〉 contributing to the noise
spectra. Then Eq. (8.24) and (8.25) lead to the requirements

|α(ω)|2 =
S̄I(ω)
S̄F (ω)

, tan [Arg α(ω)] = −~
2

Re λ(ω)
Re S̄IF (ω)

. (8.26)

A non-vanishing gain implies Im α 6= 0 such that the set of all |i〉 contributing to the noise has
no overlap with the set of all final |f〉, and a quantum-limited detector cannot be in equilibrium.

The total noise in the detector output, referred back to the oscillator, may be calculated from
a quantum Langevin equation analogous to Eq. (2.10) as

Sx,tot(ω) ≡ SI,tot(ω)
A2λ2

= Sx,d(ω) +
γm

γm +A2γ
Sx,t, (8.27)

where Sx,t is the intrinsic position noise of Eq. (3.53) evaluated on resonance, and the detector
contribution to the noise is

Sx,d(ω) =
S̄I

|λ|2A2
+A2 |χ(ω)|2 S̄F −

2Re
[
−λ∗χ∗(ω)S̄IF

]
|λ|2

≥ 2 |χ(ω)|

[√
S̄I S̄F / |λ|2 −

Re
[
λ∗e−iφ(ω)S̄IF

]
|λ|2

]
, (8.28)

where the arguments of the noise spectra and gain have been dropped on the right-hand-side for
the sake of brevity, χ(ω) is the mechanical susceptibility of Eq. (2.12) with the total damping
γ ≡ γm + γ(ω), and φ(ω) = Arg [−χ(ω)]. The bound is achieved by balancing the intrinsic
and back-action noises at the coupling strength,

A2
opt =

√
S̄I(ω)

|λ(ω)χ(ω)|2 S̄F (ω)
. (8.29)

Reaching the quantum limit also requires a detector with ideal noise properties as given by
Eq. (8.24), where for a detector with a large power gain,

Sx(ω) ≥ 2 |χ(ω)|

√(
~
2

)2

+
[
S̄IF
λ

]2

− cos [φ(ω)] S̄IF
λ

 . (8.30)

This is minimized via the cross-correlation
S̄IF (ω)
λ(ω)

=
~
2

cotφ(ω), (8.31)

with the resulting noise

Sx,d(ω) |min = lim
T→0

Sx,t. (8.32)

That is, the minimum displacement noise due to the detector is the noise due to a zero-temperature
bath. This result is compatible with the linear amplifier constraint of Eq. (8.22).

It is now possible to clearly state that the requirements to reach the quantum limit are: a
quantum-limited detector as per Eq. (8.25), the optimal coupling of Eq (8.29), and the optimized
detector cross-correlator of Eq. (8.31). Optimizing the coupling at the oscillator resonance, it
may be shown that the detector raises the oscillator temperature by half the zero-point energy.
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8.2 The Transducer Problem

How do we measure the temperature of a mechanical resonator? In Sec. 3.3 we saw that if
we had access to the noise power spectrum of the displacement amplitude we could find the
temperature though its area. So the question becomes, how do we transduce the mechanical
displacement? We have already discussed the optomechanical and electromechanical systems
designed for this purpose, and now describe one such measurement quantitatively, being a phase-
dependent measurement of the field leaking out of an optomechanical cavity.

The key to answering this question is to realise that the radiation pressure interaction leads to
a phase modulation of the field due to the oscillating displacement of the mechanical resonator.
This suggests that a displacement transducer can be based on a phase dependent measurement,
such as homodyne or heterodyne detection, of the field amplitude leaving the optical or mi-
crowave resonator. For a good measurement of the mechanical displacement we need to ensure
that minimal noise are added by the phase measurement of the field. This is much easier for
optical fields than for microwave fields.

The quantum theory of homodyne and heterodyne detection is given in [330]. In the opti-
cal case homodyne detection is done by coherently adding the output field from the cavity with a
strong local oscillator field having a carrier frequency equal to the cavity resonance. This is easily
done using a beam splitter. The two output fields from the beam splitter then fall on photodetec-
tors which produce a photocurrent proportional to the intensity of the field. This “square-law”
detector does the multiplying of amplitudes required for homodyne detection. The appropriately
normalised photocurrent is then a classical stochastic process given by the stochastic differential
equation

J(t) ∝ κ
√
η〈aeiθ + a†e−iθ〉c +

√
κξ(t) (8.33)

where θ is the phase difference between the local oscillator and the signal, and 0 < η ≤ 1 is the
quantum efficiency. It is a measure of the fraction of the signal intensity that actually contributes
to the current due to imperfections in the detection scheme.

The simplest model of a mechanical transducer is obtained by considering the linearised ra-
diation pressure interaction in the resolved sideband limit with homodyne detection of the output
field. For simplicity we will neglect mechanical damping here although it is easily included. Red
sideband excitation, with a damped field is the same situation that we need for good cooling and
the quantum stochastic differential equations are given by (see Sec. 6.4),

da

dt
= −κ

2
a− igb+

√
κain, (8.34)

db

dt
= −iga. (8.35)

Assuming that κ � g we solve for the cavity amplitude operator in terms of the mechanical
amplitude,

a = −2ig
κ
b+

2√
κ
ain, (8.36)

and substituting into Eq. (8.35), we have

db

dt
= −Γ

2
b− i

√
Γain, (8.37)
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where the optomechanical damping rate is

Γ =
4g2

κ
. (8.38)

The homodyne current optical field in the adiabatic limit is obtained by the replacement of
Eq.(8.36),

J(t) = −2ig
√
η〈beiθ − b†e−iθ〉c +

√
κξ(t), (8.39)

where ξ(t) is white noise and the subscript c is to remind us that this particular increment is a
conditional dynamics and depends on the entire history of the observed process up to this point.
If we choose θ = π/2, we find that the normalised current, J̄ ≡ J/(2g

√
η), is

J̄(t) = 〈b+ b†〉c +
1√
Γη
ξ(t). (8.40)

The ideal transducer limit then corresponds to η → 1 and Γ →∞. In this limit the noise power
spectrum of the homodyne current faithfully reflects that quantum dynamics of the mechanical
resonator. In the case of optical homodyne detection, the quantum efficiency can be as high as
η = 0.9. The measurement rate, Γ, is in fact the laser cooling rate for the resolved sideband
cooling scheme. The transducer thus adds a white noise floor to the noise power spectrum of the
mechanical displacement.

In the case of microwave systems, phase-dependent detection of the field is done quite dif-
ferently due to the lack of photon counting devices at microwave frequencies. In this case a
nonlinear mixing element called an IQ mixer is used. An IQ mixer is better described, using the
quantum theory, as heterodyne detection [331]. IQ mixers cannot function with the low powers
that must be measured, and a phase-insensitive preamplifier must be added. This effectively de-
grades the quantum efficiency of detection by adding a significant level of thermal noise to the
input signal to the IQ mixer. A possible solution is to use phase-dependent amplifiers such as
Josephson parametric amplifiers [332, 333].

8.3 Weak Force Detection

One of the primary applications of nanomechanical systems (or indeed, macromechanical sys-
tems in the case of gravitational wave detectors) is weak force detection. The weak force itself
may arise from many things, including an electronic or nuclear spin, or a single electronic charge.
The fundamental problem is to determine how big the force must be in order to see its effect on
the displacement of the resonator from equilibrium in the presence of noise.

What is the minimum detectable force? We can get an idea of the problem by considering
a single simple harmonic oscillator subject to a constant impulsive force. The situation is illus-
trated in Fig. 8.1. Here we sketch a phase space representation of an oscillator initially prepared
in a thermal state. The circles are intended to indicate contours of a phase space probability
distribution. Of course, no such distribution exists for quantum systems, but we can define var-
ious quasi-probability densities such as the Wigner function. In the figure, an impulsive force
displaces the state in the momentum direction. If this displacement is at least as big as the uncer-
tainty in momentum then in principle the force can be detected. If the oscillator is in a thermal
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Fig. 8.1. An oscillator is subject to an impulsive force which displaces the state in the momentum direction
in phase space. For this to be detectable it must displace the state by more than the uncertainty in the
momentum direction. Reproduced from [351].

state with mean excitation number n̄, the variance in momentum and position are, respectively,

∆x =
(

~
2mωm

)1/2√
2n̄+ 1, (8.41)

∆p = (2m~ωm)1/2
√

2n̄+ 1. (8.42)

If the a constant force f0 acts for a time τ � ωm, much less than the resonator frequency, we
find a condition on the minimum detectable force,

f0 ≥
∆p
τ

√
2n̄+ 1. (8.43)

Clearly, it is advantageous to cool the resonator, but a fundamental limit is imposed by the zero
point noise.

In practice we do not usually have an impulsive force, but rather a time-varying force with
some stochastic component. Thus we need to consider a damped, continuously-driven mechani-
cal resonator. Recall that the two-time correlation function for the displacement signal is

Gx(τ) = 〈x(t)x(t+ τ)〉t→∞, (8.44)

and the noise power spectrum of this signal

Sx(ω) =
1
2π

∫ ∞

−∞
dτe−iωτGx(τ), (8.45)

The steady state uncertainty in the position is

〈x2〉ss =
∫ ∞

−∞
dωSx(ω), (8.46)
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that is to say, the total noise power. Note that Sx(ω) has units of m2Hz−1.
In Sec. 8.2 we consider phase sensitive detection schemes that correspond to a measurement

of

〈x̃(ω)〉 =
∫ ∞

−∞
dt〈x(t)〉e−iωt (8.47)

The sensitivity of the measurement will then depend on noise at frequency ω. For a sensitive
measurement of displacement we need

|〈x̃(ω)〉|2 ≥ SX(ω) (8.48)

We are thus led to define a fine force sensitivity in terms of
√
Sx(ω),

Sf (ωm) = k
√
Sx(ωm) (8.49)

which has units of N.Hz−1/2 where k is the spring constant. Very good atomic force microscopy
can achieve a room temperature sensitivity of a few hundred aNHz−1/2 [334]. Rugar et al.
[335] achieved a landmark detection of a single electron spin using a magnetic force microscopy
method with an equivalent force sensitivity of 0.8 aNHz−1/2 at a temperature of 1.6K. In the
microwave domain 0.5 aNHz−1/2 was achieved at 15mK [336].

8.4 Nonlinear metrology.

One of the main applications of micromechanical resonators is as inertial sensors where the
objective is to detect a small acceleration [337]. A typical device uses a silicon piezoelectric
transducer. Another approach might be based on the Duffing nonlinearity. If a beam is stressed
it can shift to a higher or lower fundamental resonance frequency. If this frequency shift can
be transduced the weak stresses can be detected. In this section we consider the possibility of
high-precision metrology using nanomechanical resonators [338].

The measurement objective is to estimate a single parameter of the Hamiltonian of a sys-
tem [339]. The precision with which the parameter can be determined depends on the initial
state of the system, the nature of the Hamiltonian describing the system’s evolution, and the
measurements to be performed on the system. Usually one assumes that system quanta are cou-
pled independently to the parameter leading to equations of motion that are linear in the field
variables. In that case, the optimal precision in a parameter estimate scales as 1/n, where n
is the number of system quanta used in the measurement, a scaling known as the Heisenberg
limit [340]. To reach this with linear coupling requires an entangled initial state [341]. If one
does not use entangled states, a linear coupling can only reach a 1/n1/2 scaling, the so-called
shot-noise limit or the standard quantum limit. Boixo et al. [338] have shown that that quantum
parameter estimation with scaling better than 1/n can be attained by using a coupling to the
parameter that is nonlinear in field variables.

Woolley et al. [342] consider two parallel, flexural nanomechanical resonators, each with an
intrinsic Duffing nonlinearity and with a switchable, electrostatically-actuated beamsplitter-like
coupling between them. The measurement proceeds as follows: one mechanical resonator is
excited into a large-amplitude coherent state, the beamsplitter interaction is pulsed on so that the
coherent-state excitation is split equally between the two resonators, the mechanical resonators
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Fig. 8.2. Quantum circuit representation of nonlinear mechanical resonator interferometer. The input me-
chanical resonator modes experience a pulsed beamsplitter-like interaction, evolve according to a nonlinear
Hamiltonian, and the beamsplitter-like interaction is then pulsed on again. We assume that measurements
can be made of either the X or the Y quadrature, of one or both output modes (denoted “+” and “−”).
Though not shown in the circuit, we have also considered the effect of dissipation accompanying the non-
linear evolution. Reproduced from [342].

evolve independently under the nonlinearities (and standard linear dissipation), the beamsplitter
interaction is pulsed in the same way again, and a homodyne measurement of the mechanical
resonator quadratures is performed. As depicted in Fig. 8.2, this scheme effectively realizes a
nonlinear interferometer [343].

Each mechanical resonator in the pair will be treated as a thin bar of length l and lateral width
a, and we quantise the fundamental mode of vibration of each mechanical resonator in the lat-
eral direction. Each fundamental mode is described by a position-momentum pair, xi-pi, where
i = a, b labels the resonators. With a time-dependent capacitive coupling dependent on the dis-
placements from the equilibrium positions, C(xa, xb), and Duffing nonlinearities characterized
by coefficients χi (i = a, b), the system can be described classically by a Hamiltonian

Hcl =
1
2
mω2x2

a +
p2
a

2m
+

1
2
mω2x2

b +
p2
b

2m

+ P (t)
1
2
C(xa, xb)V 2

0 +
1
4
χamω

2x4
a +

1
4
χbmω

2x4
b , (8.50)

where P (t) specifies the coupling voltage pulses.
We assume that the mechanical resonators are capacitively coupled to nearby bias conducting

surfaces in such a way that for small displacements, the capacitance can be expanded as

C(xa, xb) = C0

(
1 +

fx2
a + fx2

b + 2xaxb
d2

+ · · ·
)
. (8.51)

Here C0 is the capacitance when the oscillators are at their equilibrium positions. The capacitive
coupling must be balanced so that there is no net force on the resonators when the coupling
is switched on (i.e., no linear terms in the expansion). This leaves the quadratic terms as the
dominant effect of the coupling. In the quadratic terms, d ' 100 nm is a characteristic lateral
separation between the resonators and the other conducting surfaces and f is a factor of order
unity. Both d and f depend on the specific design of the capacitive coupling. Provided

C0V
2
0 /2mωd

2 ≡ κ� ω , (8.52)
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we can neglect the renormalization of the resonator frequencies during the pulsing of the capac-
itive coupling, retaining only the coupling between the resonators. With these assumptions, the
capacitive term in the Hamiltonian (8.50) can be replaced by P (t)C0V

2
0 xaxb/d

2, which gives
rise to the desired beamsplitter coupling. The parameter κ, introduced in Eq. (8.52), characterizes
the strength of the beamsplitter coupling.

Transforming to an interaction picture and using the rotating-wave approximation, we find
the Hamiltonian

H = ~γ(a†a)2 + ~β(b†b)2 + ~κP (t)(a†b+ ab†) , (8.53)

where a, b are the annihilation operators for the relevant mechanical modes,

γ ≡ 3
4
ωχa∆0 , β ≡ 3

4
ωχb(∆x)2 , (8.54)

with ∆0 =
√

~/2mω. Then the evolution of the density matrix describing the state of the two
mechanical resonators is given by

ρ̇(t) = − i

~
[H, ρ] +

Γa
2

(2aρa† − a†aρ− ρa†a) +
Γb
2

(2bρb† − b†bρ− ρb†b) . (8.55)

We will use the scheme to estimate the nonlinear coefficient γ of oscillator a, assuming
that oscillator b has no nonlinearity (β = 0). Other operating conditions are possible and yield
similar results. We consider a fiducial evolution time t = 10−3 s, so that Γit = 4.7, meaning
that the effects of dissipation are large, but not overwhelming, and we consider a fiducial initial
phonon number n = 107, so that the nonlinear phase shift nγt is about 1 rad. We investigate
values within about an order of magnitude of these fiducial values. Notice that a phonon number
n = 107 corresponds to an oscillation amplitude ∆x

√
2n = 1 nm. This amplitude is close to the

value we assumed for ac, not by accident, but because the two oscillation amplitudes quantify,
one for free oscillations and one for forced oscillations, the same measure of the relative strengths
of the nonlinearity and the damping.

We are thus estimating the nonlinear coefficient γ of oscillator a. Other operating conditions
are possible, but we focus on this one as a representative possibility in this section.

We phrase our results in terms of the precision in estimating the related dimensionless pa-
rameter γt, with t regarded as fixed. The uncertainty in an estimate of γt based on multiple
measurements of a quantity Z—in our case, Z is one of the output quadratures—can be calcu-
lated from

δ(γt) = tδγ = t
∆Z

|d〈Z〉/dγ|
=

∆Z
|d〈Z〉/d(γt)|

, (8.56)

where ∆Z is the uncertainty in Z. In the case of no damping and again making the short-time
approximation, the quadrature variances all take on coherent-state values, i.e., ∆X±,∆Y± → 1.
The precision of the estimate of γt thus becomes

δX±(γt) =
1

n3/2| sinnγt|
, δY±(γt) =

1
n3/2| cosnγt|

. (8.57)

These sensitivities oscillate with the fringes produced by the nonlinear phase shift nγt, but they
all have the same basic scaling of 1/n3/2 with phonon number. This scaling beats the 1/n scaling
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achievable with a linear Hamiltonian and is consistent with the general result [344] for nonlinear
Hamiltonians and initial product states. The factor of n enhancement compared with the standard
quantum limit for linear Hamiltonians is a consequence of the rapidly oscillating fringes in the
expectation values of the output quadratures.

From an experimental perspective, the strong damping regime is most relevant. In this
regime, the quadrature variances have coherent-state values, and the derivatives of the expec-
tation values lead to sensitivities

δX±(γt) =
Γat eΓat/2

n3/2(1− e−Γat)| sin[nγ(1− e−Γat)/Γa]|
(8.58)

δY±(γt) =
Γat eΓat/2

n3/2(1− e−Γat)| cos[nγ(1− e−Γat)/Γa]|
. (8.59)

The improved 1/n3/2 sensitivity scaling survives in the presence of dissipation, but the absolute
sensitivity is degraded, and the fringes become more widely separated. For feasible damping
rates, the sensitivity is worsened by less than an order of magnitude, but if the damping is further
increased, the sensitivity diverges, reflecting the absence of signal in the quadrature expectation
values.

Figure 8.3 shows the measurement precision for measurements of theX+ and Y+ quadratures
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Fig. 8.3. Precision δ(γt) for measurements of the X+ and Y+ quadratures as a function of the nonlinearity
γ, expressed as the nonlinear phase shift nγt, for the choices n = 107, β = 0, t = 10−3 s, and Γa = Γb =
Γ. Zero damping and moderate damping cases are shown for each quadrature. For zero damping, fringe
boundaries are located at nγt = mπ/2, with the fringes based on measurements of conjugate quadratures
displaced by π/2. Dissipation leads to an overall reduction in sensitivity, and the fringes become more
widely spaced. Reproduced from [342].
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Fig. 8.4. Precision δ(γt) for measurements of the X+ and Y+ quadratures as a function of mean phonon
number n in the initial coherent state, for the choices γ = 10−4 s−1, β = 0, t = 10−3 s, Γa = Γb = Γ.
Plots for three values of the damping constant Γ are shown for each quadrature. These plots correspond to
the regime nγt < 1. From the log-log plots, we see that δX+ ∝ n−5/2 and δY+ ∝ n−3/2. The extra n−1

factor for measurement of the X+ quadrature is due to the precision improving as one moves away from
the very poor sensitivity near the central fringe boundary. Reproduced from [342].

as a function of the nonlinearity γ and for two values of the damping rate Γ = Γa = Γb.
Fringe boundaries are located at nγt = mπ/2; those based on measurement of the X+ and Y+

quadratures are displaced by π/2. As the damping rate increases, the overall sensitivity worsens,
and the fringes become more widely spaced. These effects can be traced back to the reduced-
amplitude and reduced-frequency oscillations of the quadrature expectations as a function of the
nonlinear phase shift.

The scaling of the measurement precision as a function of n is plotted in Fig. 8.4. Here n
is chosen so that nγt < 1. The precision associated with measurement of the Y+ quadrature
is then near its optimal value, away from its first fringe boundary at nγt = π/2, whereas the
precision associated with measurement of the X+ quadrature decreases rapidly as it falls from
the very poor sensitivity near its central fringe boundary at nγt = 0. From the log-log plot, we
can calculate that δX+ ∝ n−5/2 and δY+ ∝ n−3/2, though the extra n−1 in the n−5/2 scaling is
due to the sensitivity falling from the central fringe boundary, and the true scaling of the optimal
sensitivity achievable is n−3/2. The scaling behavior is maintained in the presence of feasible
levels of dissipation, although there is a marked deterioration in sensitivity.

8.5 Phonon Number Measurements

We now describe a method to count individual quanta in a mechanical resonator using homo-
dyne detection of the cavity field to which it is coupled [345]. Our model is based on the im-
plementation of the Harris group in which a vibrating membrane is inserted into a Fabry-Pérot
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J(t)
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Fig. 8.5. A phonon number measurement scheme. The mechanical motion of the intracavity membrane
modulates the phase of the field of a strongly driven cavity This is monitored using homodyne detection
and the measurement record is the current from the homodyne detection scheme. Reproduced from [345].

cavity [110,111]. As discussed in Sec. 4.1, if the membrane is located in an equilibrium position
for which the variation of cavity frequency is quadratic in the mechanical displacement, a phase
shift of the field proportional to the energy of the mechanical resonator can be engineered.

The measurement scheme is depicted in Fig. 8.5. The phonon number of the membrane
modulates the phase of the intracavity field which is driven by a coherent source. This phase shift
can be monitored using homodyne detection which gives a stochastic current as the measurement
record; see Eq. (8.40)).

We assume that the cavity field is close to a coherent state in its steady state, and linearize
the interaction Hamiltonian in Eq. (4.12),

HI = ~χ(ā+ ā†)b†b. (8.60)

This turns a phonon number dependent phase shift into a displacement of the cavity field. If b†b,
is replaced by a classical stochastic ‘birth-death’ process, n(t), representing phonons entering
and exiting the mechanical resonator, the cavity will respond as if it were being driven by a
fluctuating amplitude. In order to track this we need to monitor the field leaking out of the cavity
via homodyne detection.

The quantum description is via a master equation that includes the damping of the cavity and
the irreversible dynamics of the mechanical resonator,

dρ

dt
= − i

~
[HI , ρ] + κD[a]ρ+ γ(N̄ + 1)D[b]ρ+ γN̄D[b†]ρ, (8.61)

where N̄ is the mean thermal occupation of the mechanical resonator bath at frequency ωm From
the master equation we find the following equations of motion for the average field amplitude
and phonon number,

d〈a〉
dt

= −iχn̄b −
κ

2
〈a〉, (8.62)

dn̄b
dt

= −γ(n̄b − N̄), (8.63)
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where n̄b = 〈b†b〉. The solution is

n̄b(t) = n̄b(0)e−γt + N̄(1− e−γt), (8.64)

〈a(t)〉 = 〈a(0)〉e−κt/2 − iχ

{[
n̄b(0)− N̄

] e−γt − e−κt/2

κ/2− γ
+ N̄

1− e−κt/2

κ/2

}
. (8.65)

Thus the steady-state field in the cavity is 〈a〉ss = −2iχN̄/κ, in addition to the background field
amplitude of α0.

The mechanical damping rate, γ ∼ 1Hz, is much less than the field damping rate, κ ∼ 107

Hz. so we will set mechanical damping to zero. With this assumption we can solve the master
equation for the unconditional state, with initial condition,

ρ(0) =
∑
nm

Pnm(α, α′)(|n〉〈m|)b ⊗ (|α〉〈α|)a, (8.66)

where |α〉 is a coherent state for the cavity field. The solution is [113],

ρ(t) =
∑

nmαα′

Pnm(α, α′) exp
[
χ2

κ2
(n−m)2(1− κt/2− e−κt/2)

]
(8.67)

× exp
[
−iχ
κ

(n−m) (α− α∗) (1− e−κt/2)
]
(|n〉〈m|)(b) ⊗

(|αn(t)〉〈αm(t)|)(a)
〈αm(t)|αn(t)〉

,

where αn(t) and αm(t) are

αn(t) = −iχn
κ

(1− e−κt/2) + αe−κt/2, αm(t) = −iχm
κ

(1− e−κt/2) + αe−κt/2. (8.68)

For short times this may be written,

ρ(t) =
∑
nm

Pnm(α, α′) exp
[
−χ

2t2

8
(n−m)2

]
× exp

[
−iχt

2
(n−m) (α− α∗)

]
(|n〉〈m|)(b) ⊗

(|αn(t)〉〈αm(t)|)(a)
〈αm(t)|αn(t)〉

, (8.69)

We see that the mechanical resonator is rapidly diagonalised in its number basis, and the cavity
is driven to a mixture of coherent states. This reflects the fact that the coherent states are the
pointer basis states [346] for the cavity.

We now turn to the conditional dynamics of the system, conditioned on the stochastic homo-
dyne current record. This is given by the conditional stochastic quantum dynamics [330]

dρ = − i

~
[HI , ρ]dt+ γ(N̄ + 1)D[b]ρdt+ γN̄D[b†]ρdt

+ κD[a]ρdt+
√
κdWH[ae−i

π
2 ]ρ, (8.70)

where
H[a]ρ = aρ+ ρa† − Tr(aρ+ ρa†)ρ

is the measurement superoperator, and dW is the Wiener increment. This superoperator is zero
when acting on coherent states

H[a] (|α〉〈α|) = 0 (8.71)
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Fig. 8.6. The conditional moments and the corresponding conditional homodyne current versus time in
the good measurement limit. The top plot shows the conditional mean phonon number exhibiting random
telegram jumps as phonons enter and exist the resonator from the bath.

The effect of this is to localise the cavity field on coherent states, again reflecting the nature of
the pointer basis.

Using the stochastic master equation we can simulate the homodyne current and simultane-
ously compute conditional moments of the mechanical resonator. The conditional moments in
the good measurement limit, χ2/κ� γN̄ , are shown in Fig. 8.6.

As typical for an optomechanical measurement, the best situation will result when the field
is rapidly damped, and can be adiabatically eliminated. The resulting master equation for the
mechanical resonator alone is

dρb = γ(N̄ + 1)D[b]ρbdt+ γN̄D[b†]ρbdt

+ ΓD[b†b]ρbdt+
√

ΓH[b†be−i(θ+π/2)]ρbdW, (8.72)

where Γ ≡ 4χ2/κ. The last term in this equation drives the system to a (random) eigenstate of
phonon number. The corresponding homodyne current is given by

J(t) = −2ηχ〈b†b〉+
√
ηκξ(t), (8.73)

which clearly indicates that the measurement record can track the fluctuating phonon number.
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9 Nonlinear Optomechanics

The radiation pressure interaction is cubic in the amplitudes of the resonators involved which
means the resulting Heisenberg equations of motion are nonlinear. Currently the quantum dy-
namics resulting from this is not readily observable due to the small size of the single photon
coupling rate. This will change as new fabrication techniques are developed. In the optomechan-
ical crystal devices of the Painter group for example the single photon optomechanical coupling
rate is already around one MHz [107].

The inherent nonlinearity of the radiation pressure interaction can most easily be seen using
a canonical transformation. The simplest way to see this is to make a canonical transformation
on the original radiation pressure coupling Hamiltonian given in Eq. (4.5),

H̄ = eβa
†a(b−b†)He−βa

†a(b−b†). (9.1)

This is a photon number dependent displacement amplitude,

eβa
†a(b−b†)be−βa

†a(b−b†) = b+ βa†a. (9.2)

Applying Eq. (9.1) to the entire Hamiltonian, and writing β = κ0/ωm, yields

H̄ = ~ωca†a+ ~ωmb†b− ~
κ2

0

ωm
(a†a)2 (9.3)

In this new canonical picture, the interaction has been removed but the cavity field acquires
a Kerr nonlinearity, i.e. an intensity-dependent detuning of the cavity field. This can lead to
optical bistability if G0/ωm is large enough [291]. Typically, however, it is rather small.

Another route to nonlinearity is through the Duffing term in the elastic potential energy of
a bulk mechanical resonator. Treating the mechanical mode as a simple harmonic oscillator by
treating the elastic potential energy only to second-order in the displacement is a good approx-
imation in most experiments, in which the resonator is not driven. However, for mechanical
resonators subject to stress or strongly driven one may induce a significant quartic term in the
elastic potential energy. The nonlinear response of nanomechnical systems is already used in
classical sensing schemes [348, 347].

Kozinsky et al. [349] report an experiment that reveals the Duffing nonlinearity in a nanowire.
As shown there, it is posible to relate the Duffing nonlinearity to the critical amplitude ac. The
equation of motion with the Duffing term included is

ẍ+
ωo
Q
ẋ+ ω2

0(x+ αx3) = F cos Ωt, (9.4)

where

α =
2
√

3
9a2
cQ

, (9.5)

with Q being the quality factor. An equation of motion of this form implies that the Duffing
nonlinearity enters the Hamiltonian via a term like

HD =
mαω2

0

4
x4 (9.6)
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If we now write x = ∆x(b+ b†) where ∆x = ~/(2mω0), then the Hamiltonian takes the form

HD =
mαω2

0

4
(∆x)4(b+ b†)4. (9.7)

Terms of the form b†kbk
′
(k 6= k′) will oscillate rapidly in the interaction picture and can be

neglected. We can then write this using the highest-order normally-ordered term,

HD = ~χb† 2b2, (9.8)

where

χ =
3α~
8m

. (9.9)

In this form the Duffing nonlinearity looks like the self-Kerr nonlinearity in nonlinear optics
[291, 350]. For the platinum nanowire used by Kozinsky et al., the critical amplitude was found
to be ac = 2.68nm, with a quality factor of 1770 and a mass of approximately 5 × 10−17kg.
These numbers give a nonlinearity of χ ∼ 10−4s−1. This may appear small but the equivalent
number for the optical Kerr effect is many orders of magnitude smaller.

A driven, nonlinear mechanical resonator, in an interaction picture at the pump frequency
ωp, and assuming that ω0, ωp � χ in order to neglect rapidly oscillating contributions from the
quartic term, may be described by the Hamiltonian

HI = ~∆b†b+ ~χ(b†)2b2 + ~εp(b+ b†), (9.10)

where ∆ = ωm − ωp is the detuning of the resonator from the pump. Including dissipation, the
master equation in the interaction picture for the system is then given by

dρ

dt
= − i

~
[HI , ρ] +

γ

2
(n̄+ 1)(2bρb† − b†bρ− ρb†b) +

γ

2
n̄(2b†ρb− bb†ρ− ρbb†), (9.11)

where γ is the rate of energy loss from the resonator and n̄ is the mean phonon number in a bath
oscillator at frequency ω0. We will usually assume low temperature operation so that n̄ → 0.
As discussed in Sec. 8.3, this is the limit in which quantum limited force detection is possible
and should be achievable with new nanomechanical cooling techniques . The system has a steady
state, or fixed point, which can change stability as the driving field is varied. It is this dependence
of fixed point stability on driving field that can be used to amplify a weak driving signal.

Under certain conditions, the energy in the nanomechanical resonator as a function of the
driving intensity can exhibit multiple stable fixed points and hysteresis [350]. In the semiclassical
approximation, the equation of motion for the mean amplitude, α ≡ 〈a〉, is given by

α̇ = −iεp −
[
γ/2 + i(∆ + 2χ|α|2)

]
α. (9.12)

The fixed point (or semiclassical steady state) is defined by α̇ = 0, which corresponds to a
complex amplitude α0 must satisfy

Ip = n0

[
γ2

4
+ (∆ + 2χn0)2

]
, (9.13)
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Fig. 9.1. Plots of the mean vibrational excitation number of the nanomechanical resonator, n0 versus pump
field intensity, εp for γ = 2.0. The unstable branch shown in (a) is absent from (b) due to different values
of pump field detuning and dispersion. Reproduced from [351].

where Ip = ε2p is proportional to the pump power driving the nanomechanical resonator and
n0 = |α0|2 determines the average energy in the nanomechanical resonator by E = ~ω0n0.
Considered as a function of n0, Ip is a cubic with turning points at the values of n0 that satisfy

dIp
dn0

=
γ2

4
+ (∆ + 6χn0)(∆ + 2χn0) = 0. (9.14)

However, when we regard n0 as a function of the pump power, it is multi-valued and Eq. (9.14)
defines values at which the slope diverges, indicative of a change in stability.

In Fig. 9.1 we plot n0 versus the pump intensity εp for various values of ∆. Clearly under
some conditions n0 becomes a multi valued function of εp. In fact it can be shown that this will
occur for negative detuning, ∆ < 0. Not all the fixed point solutions are stable. To determine
stability we linearise the equations of motion around the fixed points by writing α(t) = α0 +
δα(t). The equations of motion for the fluctuation field δα(t) are then given by

d

dt

(
δα
δα∗

)
= M

(
δα
δα∗

)
, (9.15)

where

M =
(
−γ

2 − i(∆ + 4χn0) −iG
iG∗ −γ

2 + i(∆ + 4χn0)

)
, (9.16)

with G = 2χα2
0 and α0 being the solution to

α0

[γ
2

+ i(∆ + 2χn0)
]

= −iεp. (9.17)

Then we can write α0 =
√
n0e

iφ0 where

tanφ0 =
γ

2∆ + 4χn0
. (9.18)



582 An Introduction to Quantum Optomechanics

As we have taken εp as real, this is the phase shift of the resonator from the pump field.
The eigenvalues of the linearised motion determine stability. These are given by

λ± = −γ
2
± i

√
(∆ + 6χn0)(∆ + 2χn0) (9.19)

For stability the real parts of these eigenvalues must be negative. The fixed points are unstable
between the turning points of the state equation, Eq. (9.13). In Fig. 9.1(a) we show the unstable
fixed points as a dashed line. Note that from Eq. (9.14),

λ+λ− ≡ λ2 =
dIp
dn0

, (9.20)

and one of the eigenvalues vanishes at the turning points. The linearised analysis thus breaks
down at the bifurcation points.

This kind of nonlinear mechanical resonator can be used as a parametric amplifier. A detailed
quantum noise analysis is given in [351]. However a simple approach will show how this works.
We expect the effect of the quantum noise to be quite small unless the Duffing nonlinearity
becomes comparable to the bare mechanical frequency as in that case the anharmonicity on the
energy level spacing becomes very significant. Following a similar approach to that used in the
case of the single photon radiation pressure coupling, we make a canonical transformation to a
displaced resonator amplitude b̄ = b− β0 where α0 is the classical steady-state solution via

H̄I = eβ0b
†−β∗0 bHIe

−β0b
†+β∗0 b. (9.21)

The Hamiltonian in Eq. (9.10) is then approximated by the quadratic form,

H̄I = ~∆′b̄†b̄+ ~χ
[
(β∗0)2b̄2 + β2

0(b̄†)2
]
. (9.22)

This describes the nondegenerate parametric amplifier and produces squeezed states of the me-
chanical mode. The reduction in quadrature phase amplitude noise that characterises the non-
degnerate parametric amplifier is very useful for quantum metrology. Note, however, that the
strength of the parametric gain depends on where the steady-state is located on the curves shown
in Fig. 9.1.
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10 Many-Body Optomechanics

The integration of many nanomechanical systems into a single superconducting microwave cav-
ity would be an obvious extension of current experiments. It may also be possible to couple
many optomechanical resonators together using the optomechanical crystal structures pioneered
by the Painter group [107]. In the case of nanomechanics, the common cavity mode leads to an
all-to-all coupling, while in the optomechanical case one can have nearest neighbour coupling
of distinct cavity modes via photon tunnelling. In both cases the inherent nonlinearity of the
radiation pressure interaction leads to highly nonlinear many-body systems.

Holmes et al. [352] have considered the case of many nanomechanical resonators coupled
to a common microwave cavity. The classical dynamics exhibits a rich bifurcation structure
including Hopf bifurcations to multiple limit cycles and even synchronisation when the cavity
is driven by a coherent driving field. The classical dynamical system is described by a complex
field amplitude α which in the semiclassical limit may be regarded as the mean field α = 〈a〉,
and dimensionless displacement xi and momentum yi variables for each mechanical element.
Assuming a coupling of the form

∑
i gixi|α|2, we see that the equations of motion may be

expressed in terms of collective variables,

dα

dt
= −iδα− iε− iαX − κα, (10.1)

dX

dt
= ωY − γX, (10.2)

dY

dt
= −ωX − G

2
|α|2 − γY, (10.3)

where ε is the coherent driving amplitude of the microwave cavity and X , Y and G are the
collective variables

X =
1
N

∑
j

gjxj , (10.4)

Y =
1
N

∑
j

gjyj , (10.5)

G =
1
N

∑
j

g2
j , (10.6)

for a collection of N identical nanomechanical oscillators.
Although there are regions of the parameter space where stable critical points exist, periodic

motion plays a major role in the dynamics for both the cases of identical and non-identical res-
onators. If the mechanical resonators are identical, even if their couplings are nonidentical, they
will synchronize, in phase, to form a single effective mechanical mode. However, the synchro-
nized motion exhibits multi-stable behaviour. synchronization of identical mechanical resonators
may be described via amplitude equations. If, on the other hand, the mechanical resonators nat-
urally oscillate at different frequencies, desynchronization can occur. To analyze this Holmes et
al. consider the synchronization between different frequency groups. The resonators can then be
attracted to out-of-phase solutions that oscillate at much greater amplitudes.
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For all of the bifurcations that occur, a scaled version of the cavity forcing ε, which is tunable
in an experiment, can be thought of as the bifurcation parameter. The natural time-scale of the
system, given by the amplitude decay rate κ of the common cavity mode, provides the scaling and
we introduce: a new time parameter t′ = κt; re-scaled nano-mechanical variablesX ′ = X/κ and
Y ′ = Y/κ; and dimensionless coupling constants δ′ = δ/κ, ε′ = ε/κ, ω′ = ω/κ, γ′r = γ/κ,
G′ = G/κ2, and ω̄′ =

√
ω′2 + γ′2. If the uncoupled mechanical resonators are identical then

the oscillators synchronize. This is a natural consequence of linear damping and the fact that
each oscillator experiences the same forcing.

The synchronized motion can then be represented in collective variables which, suppressing
the use of primes, gives the following equations of motion,

dα

dt
= −(1 + iδ)α− iαNX − iε, (10.7)

d2X

dt2
= −ω̄2X − Gω

2
|α|2 − 2γ

dX

dt
. (10.8)

From a dynamical point of view ε
√
NG acts as one parameter and in fact both N and G could

be removed by scaling. So if the number of resonators is increased, smaller values of the driving
are necessary to achieve the same effect.

Periodic orbits and multiple periodic orbits can exist, if the weakly forced oscillators are
sufficiently weakly damped. This multi-stable behaviour, resulting from the play-off between
weak damping and cavity forcing, has been noted elsewhere [353, 354, 355]. Holmes et al.
[352] used the method of “amplitude equations”. This relies on defining a slow time which is
proportional to the weak damping, τ = γt, and on assuming that the forcing is on the order of
the square root of the damping, ε =

√
γ ε̄. Then the cavity amplitude is naturally of the same

order as the forcing and we can obtain equations for the slowly varying amplitude A(τ) where,

X = X0 +
[
A(τ)eiω̄τ + c.c.

]
= X0 + 2|A(τ)| cos(ω̄τ + θ) , (10.9)

with X0 being the critical point of the system which is O(ε2).
For blue detuning, δ < 0, one can obtain a single equation for the amplitude,

dA

dτ
= −A+Gε̄2NAF (N |A|, ω, δ) , (10.10)

where F (Nr, ω, δ) is a complex function. This equation describes both nonlinear damping and a
Kerr-like nonlinear detuning. Not surprisingly this leads to multistability and Hopf bifurcations
to multiple limit cycles.

In the case of non-identical oscillators synchronisation can still occur for some parameter
values. The model cannot be reduced to the standard Kuramoto model for synchronisation;
nonetheless stable synchonized orbits do exist.
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11 Conclusions

In this review we have been primarily concerned with the measurement and control of the quan-
tised motion of bulk mechanical resonators via electromagnetic fields. While the discussion has
focused on micron and sub-micron scale devices treated as a single unit, it is important to keep
in mind that these systems involve the collective motion of a very large number of atoms. Exper-
imental evidence shows that we can indeed prepare, control and measure the collective quantum
dynamics of such systems.

Indeed, it is not essential to restrict the discussion to small mechanical resonators. In the
LIGO experiments we potentially need to account for the quantum motion of kilogram scale
mirrors separated by many kilometres [2]. It may soon be possible to cool to the quantum ground
state the relative motion of two gram scale mirrors, in a LIGO like configuration separated by at
least meters [124]. The traditional identification of the quantum-classical divide with the micro-
macro divide is rapidly becoming invalid. Optomechanical systems may be the vanguard of
a new approach to quantum mechanics in which large scale hybrid systems are engineered to
perform a specific function that naturally occurring systems could never provide.

Now that ground-state cooling and near quantum-limited measurement of mechanical motion
have been demonstrated in a few systems, the task remains to generalize these techniques to
different and more versatile systems. Many fundamental tasks in quantum state engineering
remain, and there are many interesting problems in nonlinear and many-body optomechanical
systems. Of course, there is also potential for application in sensing and quantum information
processing.

There is nothing in quantum mechanics to suggest that there is any limit to how large and
complex a device can be before it fails to be described by quantum mechanics. Of course it will
not be easy to develop the technology to control the quantum probability amplitudes of such sys-
tems. One thing will always remain the case: no matter how large and how complex a quantum
system becomes, its quantum character will be revealed by comparing classical stochastic con-
trol signals with classical stochastic measurement records. The classical-quantum border will
remain, but where we put it will be a function of our engineering capability alone.
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[94] P. Lebedev. Untersuchungen über die Druckkräfte des Lichtes. Annalen der Physik (Leipzig), 6:433,

1901.
[95] A. Dorsel, J. D. McCullen, P. Meystre, E. Vignes, and H. Walther. Optical bistability and mirror

confinement induced by radiation pressure. Physical Review Letters, 51:1550, 1983.
[96] V. B. Braginsky, A. B. Manukin, and M. Yu. Tikhonov. Investigation of dissipative ponderomotive

effects of electromagnetic radiation. Soviet Physics JETP, 31:829, 1970.



590 An Introduction to Quantum Optomechanics

[97] M. Dykman. Heating and cooling of local and quasilocal vibrations by a nonresonance field. Soviet
Physics Solid State, 20:1306–1311, 1978.

[98] G. Bahl, J. Zehnpfennig, M. Tomes and T. Carmon. Stimulated optomechanical excitation of surface
acoustic waves in a microdevice. Nature Communications 2:403, 2011.

[99] G. Bahl, M. Tomes, F. Marquardt and T. Carmon. Observation of Spontaneous Brillouin Cooling.
arXiv:1109.2084.

[100] J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris. Strong
dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature, 452:72–75,
2008.

[101] A. Ashkin. Acceleration and Trapping of Particles by Radiation Pressure. Physical Review Letters,
24:156–159, 1970.

[102] D. Van Thourhout and J. Roels. Optomechanical device actuation through the optical gradient force.
Nature Photonics, 4:211–217, 2010.

[103] A. F. Pace, M. J. Collett, and D. F. Walls. Quantum limits in interferometric detection of gravitational
radiation. Physical Review A, 47:3173–3189, 1993.

[104] G. J. Milburn, K. Jacobs, and D. F. Walls. Quantum-limited measurements with the atomic force
microscope. Physical Review A, 50:5256, 1994.

[105] C. K. Law. Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation.
Physical Review A, 51:2537–2541, 2008.
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