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1 Introduction

In standard textbook Quantum Mechanics every physical system corresponds to a Hilbert space.
The states of a system are unit rays in the corresponding Hilbert space, transformations of closed
systems are described by unitary operators acting on the states, and measurements correspond to
complete sets of orthogonal projectors, each projector corresponding to a measurement outcome.
Born’s statistical formula provides the outcome probability as the expectation of the correspond-
ing projector in the state of the system. This formalism can be generalized to the case of open
systems by including the environment in the dynamical description. It is then possible to describe
any phenomenon in quantum mechanics in terms of unitary transformations and von Neumann
or Lüders measurements. Despite this fact, a convenient formalism for the field of Quantum
Information [1, 2] is rather provided by the notions of statistical operator, channel, and positive
operator valued measure (POVM). One of the advantages in using such tools is that they provide
an effective description of physical devices avoiding a detailed account of their implementation
in terms of unitary interactions and von Neumann measurements. This concise description is
extremely useful when dealing with optimization problems, like state estimation [3], where one
can looks for the optimal measurement among all those allowed by quantum mechanics.

A recent trend in Quantum Information is to consider transformations, rather than states,
as carriers of information e.g. in gate discrimination [4, 5, 6, 7, 8], programming [9], teleporta-
tion [10, 11, 12] and tomography [13, 14], along with multi-round quantum games [15], standard
quantum algorithms [16, 17, 18] and cryptographic protocols [19, 20, 21]. This new perspective
requires an appropriate description not only of state processing, but more generally of transfor-
mation processing. Such processing is obtained through more general physical devices—what
we call Quantum Networks—that are made of composition of elementary circuits. A Quantum
Network can be used to perform a huge variety of different tasks like transformations of states
into channels, channels into channels, and even sequences of states/channels into channels. How-
ever, describing a large quantum network in terms of channels and POVMs is very inefficient.
Indeed, if one needs to optimize a quantum network for some task, one is forced to carry out
a cumbersome elementwise optimization. For this reason, having new notions that generalize
those of channels and POVMs is crucial. Luckily enough, a general treatment of Quantum Net-
works on the same footing as states, channels, and POVMs is possible, both for the deterministic
and the probabilistic case.

In this paper we review the aforementioned unified framework along with some of its most
relevant applications. Our approach is based on a generalization of the Choi isomorphism that
allows us to represent any Quantum Network in terms of a suitably normalized positive operator.
This general theory is reviewed in Chapter 2, where we also provide some basic results of linear
algebra that are needed in order to prove most results of the general theory. Following the expo-
sition of Refs. [22, 23], we will introduce the notion of Quantum Network from a constructive
point of view that consists in looking at networks as a result of composition of elementary cir-
cuits. We will begin by considering deterministic Quantum Networks, and then we will extend
the results to the probabilistic case.

The Chapters from 3 to 9 are devoted to the applications of the developed formalism. The
first application that we consider is the optimization of Quantum Tomography, where we will
derive the optimal networks for tomographing states, transformations and measurements. The
material of this Chapter was published in Refs [24, 25].
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In Chapter 5, based on Ref. [26], we discuss the concept of quantum cloning of a transfor-
mation. While cloning of quantum states has been subject of many works, cloning of a transfor-
mation was never treated before. In particular, a general no-cloning theorem for transformations
and the derivation of the optimal cloning network for a unitary transformation are shown.

Quantum Learning of a transformation is another task that is possible to analyse within the
new theory of Quantum Networks. Suppose that a user is provided withN uses of an undisclosed
transformation T today, and he needs to reproduce the same transformation on an unknown state
provided tomorrow. The most general strategy the user can follow, is to exploit the N uses of
T into a Quantum Network today, in order to store the transformation on a quantum memory.
Tomorrow, the user will use the quantum memory to program a retrieving channel that reproduces
T . In Chapter 6 we will review Ref. [27], in which the optimal learning network for a unitary
transformation is derived. The most relevant result here is that the optimal storing of a unitary
can be achieved by making use only of a classical memory.

The optimal inversion of a unitary transformation is the subject of Chapter 7. We will derive
the optimal network that realizes this task considering two different scenarios and we will prove
that the ultimate performances in the inversion of a unitary are achieved by an estimate and
prepare strategy. These results were published in Refs [27, 28].

In Chapter 8, based on Ref. [29], we consider the tradeoff between information and distur-
bance in estimating a unitary transformation. We suppose that we have a black box implementing
an unknown unitary transformation, with the restriction that the On the one hand, we may try to
identify the unknown unitary on the other hand, we may want to use the black box on a variable
input state. Since the two tasks are in general incompatible, there is a trade-off between the
amount of information that can be extracted about a black box and the disturbance caused on its
action: we cannot estimate an unknown quantum dynamics without perturbing it. In Chapter 8
we find the optimal scheme that introduces the minimum amount of disturbance for any given
amount of extracted information.

The last application we consider regards Quantum Networks that replicate measurements.
We will study the problem of optimal learning and cloning of von Neumann measurements. In
particular we will show how the optimal learning from 3 uses can be achieved only by a sequential
strategy. These results are the subject of Refs. [30, 31], and are presented in Chapter 9.

Two appendices close this work: in the first one we introduce the notion of channel fidelity
[32], which is frequently used in the applications and in the second one we review some basic
results from group representation theory, with special emphasis on the decomposition of tensor
product representations.
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2 Quantum Networks: general theory

In this chapter we expose the general theory of Quantum Networks that was developed in [22,
23, 28]. We will start the presentation with some preliminary results of linear algebra, with
emphasis on the Choi isomorphism. This theorem will allow us to represent quantum networks
in terms of positive operators which are subject to a normalization constraint. A key point of
the formalism is the notion of link product of operators that translates the physical link between
quantum networks into the mathematical language.

After this fully mathematical section we recall some basic notions of ordinary quantum me-
chanics (states, quantum operations and POVMs) that we will use as a testbed for the mathemat-
ical tools previously introduced.

Section 2.4 is is focused on the definition of Quantum Network as a set of linear maps linked
together; in the following sections the Choi representation of Quantum Networks is introduced
first for the deterministic case and then for the probabilistic case.

In the final section the link product of operators will be used to express the link of quantum
Networks.

2.1 Linear maps and linear operators

Let us start with some notational remarks: we denote as L(H) the set of linear operators A onH
while L(Ha,Hb) denotes linear transformation from Ha to Hb. The dimension of space Ha is
denoted by da. We denote as L(L(Ha),L(Hb)) the set of linear mapsM from L(Ha) to L(Hb).
Given a map M ∈ L(L(Ha),L(Hb)) we refer to L(Ha) as the input space of M while L(Hb)
is called the output space. We make use of the following notation:

• Supp(A) denotes the support of A and Rng(A) denotes the range of A;

• T denotes transposition and ∗ denotes complex conjugation;3

• A−1 denotes the inverse of an operator A ∈ L(H); if Supp(A) is not the whole H, then
A−1 will denote the inverse on its support.4

Within this presentation (unless explicitly mentioned) the Hilbert spaces are assumed to be
finite dimensional. In order to avoid confusion when the number of Hilbert spaces proliferates
we adopt this convention:

• Hab...n := Ha ⊗Hb ⊗ · · · ⊗ Hn where a, b, . . . , n are integer numbers;

• Aab...n means A ∈ L(Hab...n);

• |n〉a means |n〉 ∈ Ha;

• Tra denotes partial trace over Ha;

• Ta denotes partial transposition over Ha.

3Both transposition and complex conjugation are meant with respect to a fixed orthonormal basis.
4More precisely A−1 denotes the Moore-Penrose generalized inverse.
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Given an operator A ∈ L(Ha) and a Hilbert space Ha′ isomorphic to Ha Ha′
∼= Ha, it is

possible to define

Aa′ := Ta→a′AaTa→a′ (2.1)

where Ta→a′ =
∑

k |k〉a′ 〈k|a and {|k〉a}, {|k〉a′} are orthonormal bases forHa andHa′ respec-
tively. The above procedure is implicit whenever we make a change of label Aab...n → Aa′b′...n′

It is possible to define the following isomorphism between L(Hb,Ha) and Ha ⊗Hb

A =
∑
n,m

〈n|A |m〉 |n〉 〈m| ↔ |A〉〉 =
∑
n,m

〈n|A |m〉 |n〉 |m〉 (2.2)

where {|m〉}({|n〉}) is a fixed orthonormal basis in Hb(Ha). In the following we implicitly
choose such a basis in every Hilbert space. The double-ket notation |A〉〉 is used to stress that
the vector lives in a tensor product of Hilbert spaces (from a quantum mechanical perspective,
|A〉〉 is proportional to a pure bipartite state) We will use the notation |A〉〉ab with the meaning
|A〉〉 ∈ Hab = Ha ⊗Hb.

By making use of Eq. (2.2) it is possible to prove that the following identities hold

A⊗B|C〉〉 = |ACBT 〉〉 (2.3)
A ∈ L(Ha,Hc), B ∈ L(Hb,Hd), C ∈ L(Hb,Ha).

Trb[|A〉〉〈〈A|ab] = AA† Tra[|A〉〉〈〈A|ab] = ATA∗ (2.4)

Tra[Aab(|I〉〉〈〈I|ac)] = ATc

bc (2.5)
〈〈I|acAab|I〉〉ac = Tra[Aab] (2.6)

for da 6 dc, |I〉〉ac =
da∑

n=1

|n〉a |n〉c

|I〉〉abcd = |I〉〉ac|I〉〉bd (2.7)
(〈〈I|ac ⊗ Ibd)|A〉〉abcd = (〈〈I|ac ⊗ Ibd)(Aab ⊗ Icd)|I〉〉abcd = |Tra[A]〉〉bd (2.8)

Through this isomorphism it is possible to translate the inner product in H⊗H into the Hilbert-
Schmidt product in L(H)

〈〈A|B〉〉 = Tr[A†B] (2.9)

2.1.1 Choi isomorphism

The following theorem, which is a generalization of the one in Refs. [33, 34, 35], introduces
an isomorphism between linear maps and linear operators which is a a foundation stone of the
theory of Quantum Networks.

Theorem 2.1 (Choi isomorphism) Consider the map C : L(L(H0),L(H1)) → L(H0 ⊗ H1)
defined as

C : M 7→M10 M10 := M⊗I0(|I〉〉〈〈I|00) (2.10)

where I0 is the identity map on L(H0). Then C defines an isomorphism between L(L(H0),
L(H1)) and L(H0 ⊗H1). The operator M = C(M) is called the Choi operator of M.
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Proof. To prove the thesis we will provide an explicit expression for the inverse map C−1 :
L(H0 ⊗H1) → L(L(H0),L(H1)). Let us define

[C−1(M)](X) = Tr0[(I1 ⊗ (X0)T )M10]; (2.11)

it is easy to verify that [C−1(M)](X) = M(X).
Suppose X0 = |i〉 〈j|0; we have

Tr0[(I1 ⊗ (|i〉 〈j|0)
T )M10] = Tr0[(I1 ⊗ (|j〉 〈i|0)M⊗I0(|I〉〉〈〈I|00)] =

= 〈i|0 (M⊗I0(|I〉〉〈〈I|00)) |j〉0 =

= 〈i|0 (
∑
m,n

M(|n〉 〈m|0))⊗ |n〉 〈m|0) |j〉0 =

= M(|i〉 〈j|0). (2.12)

From [C−1(M)](|i〉 〈j|) = M(|i〉 〈j|) for any |i〉 〈j| it follows [C−1(M)](X) = M(X) for any
X by linearity. �

Corollary 2.1 (Operator-sum representation) Let M be in
L(L(H0),L(H1)); then there exist {Ai|Ai ∈ L(H0,H1)} and {Bi|Bi ∈ L(H0,H1)} such that

M(X) =
∑

i

AiXB
†
i Tr[A†iAj ] = λiδij Tr[B†iBj ] = µiδij . (2.13)

λi, µi ∈ R and δij is the Kronecker delta.

Proof. Exploiting Th. 2.1 we can write the action of M as M(X) = Tr0[(I1 ⊗ (X0)T )M10]
where M10 is the Choi operator of M. Now consider the singular value decomposition of M10,
M =

∑
i |Ai〉〉〈〈Bi|01, 〈〈Ai|Aj〉〉 = Tr[A†iAj ] = λiδij , 〈〈Bi|Bj〉〉 = Tr[B†iBj ] = µiδij ; If we

insert this decomposition into Eq. (2.11) we have

M(X) = Tr0[(I1 ⊗ (X0)T )
∑

i

|Ai〉〉〈〈Bi|] =

=
∑

i

Tr0[(I1 ⊗ (X0)T )(I1 ⊗ (Ai)T )|I〉〉〈〈Bi|] =

=
∑

i

Tr0[(I1 ⊗ (AiX)T
0 )|I〉〉〈〈Bi|] =

∑
i

Tr0[|I〉〉〈〈Bi|I1 ⊗ (AiX)T
0 ] =

=
∑

i

Tr0[|I〉〉〈〈BiX
†A†i |] =

∑
i

Tr0[|I〉〉〈〈I|(AiXB
†
i )1 ⊗ I0]

=
∑

i

AiXB
†
i (2.14)

where we used Eq. (2.2) and the cyclic property of the trace. �
Th. 2.1 provides an extremely powerful representation of linear maps between operator spaces
in terms of just one linear operator acting on a bigger Hilbert space. The following results will
show how the properties of a linear map M translates into the properties of its Choi operator.
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Lemma 2.1 (Trace preserving condition) Let M be in L(L(H0),L(H1)) and M ∈ L(H0 ⊗
H1) be its Choi operator. Then we have

Tr[M(X)] = Tr[X] ∀X ∈ L(H0) ⇔ Tr1[M01] = I0 (2.15)

Proof. If we insert Eq. (2.11) into Eq.(2.15) we get

Tr[M(X)] = Tr[(I1 ⊗ (X)T )M10] = Tr0[(X)T Tr1[M01]] =

= Tr[X] = Tr[XT ] ∀X ∈ L(H0). (2.16)

Since Tr[AB] = Tr[A] ∀A ⇔ B = I we have that Eq. (2.16) holds if and only if Tr1[M01] =
I0. �

Lemma 2.2 (Hermitian preserving condition) Let M be in
L(L(H0),L(H1)) and M ∈ L(H1 ⊗H1) be its Choi operator. Then we have

M(X)† = M(X†) ⇔ M†
01 = M01 (2.17)

Proof. If we take the adjoint in Eq. (2.11) we have

M(X)† = Tr0[(X)†TM†
01] = (2.18)

If M† = M clearly we have M(X)† = M(X†). On the other hand if
Tr0[(X)†TM†

01] = Tr0[(X)†TM01] for all X then [C−1(M†
01)](X) = [C−1(M01)](X) for all

X and so C−1(M01) = C−1(M†
01) that implies M = M† �

Lemma 2.3 (Completely-positive condition) Let M be in
L(L(H0),L(H1)) and M ∈ L(H1 ⊗H1) be its Choi operator. Then we have

M⊗I2(X) > 0 ∀X ∈ L(H0 ⊗H2) ⇔ M01 > 0 (2.19)

WhereH2 is an Hilbert space of arbitrary dimension. A linear map that satisfies condition (2.19)
is called completely positive (CP).

Proof. If M ⊗ I2(X) > 0 for all X ∈ L(H0 ⊗ H2) then clearly M ⊗ I0(|I〉〉〈〈I|) =
M > 0. On the other hand, suppose that M > 0. Then M can be diagonalized in this way
M =

∑
i |Ai〉〉〈〈Ai| and the operator-sum representation of M becomes

M(X) =
∑

i

AiXA
†
i . (2.20)

If we introduce an auxiliary Hilbert space H2 we have

M⊗I2(X) =
∑

i

(Ai ⊗ I2)X(A†i ⊗ I2) > 0 ⇔ X > 0 (2.21)

The operator-sum decomposition in Eq. (2.20) is called canonical Kraus form. �
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2.1.2 The link product

Given two linear maps M ∈ L(L(H0),L(H1)) and N ∈ L(L(H1),L(H2)) it is possible to
consider the composition

C := N ◦M : L(H0) → L(H2) N ◦M(X) := N (M(X)) ∀X ∈ L(H0).

Since we can represent M and N with the corresponding Choi operators M and N , it is
reasonable to ask how the Choi operator C of the composition C can be expressed in terms of M
and N . Consider the action of C on an operator X ∈ L(H0)

C(X) = Tr1[(I2 ⊗ Tr0[(I1 ⊗XT
0 )M ]T )N ] =

= Tr0[(I2 ⊗XT
0 ) Tr1[(I2 ⊗MT1

01 )(I0 ⊗N12)]]; (2.22)

if we compare Eq. 2.22 with Eq. 2.11 we get

C(C) = Tr1[(I2 ⊗MT1
01 )(I0 ⊗N12)] = N ∗M. (2.23)

where we introduced the notation N ∗M for the expression Tr1[(I2 ⊗MT1
01 )(I0 ⊗N12)].

If we consider maps such that their input and output spaces are tensor product of Hilbert
spaces it is possible to compose these maps only through some of these spaces. For example if
we have M ∈ L(L(H0 ⊗ H2),L(H1 ⊗ H3)) and N ∈ L(L(H3 ⊗ H5),L(H4 ⊗ H6)) it is
possible to define the composition

N ?M := (N ⊗ I1) ◦ (M⊗I5). (2.24)

Following the same steps as before we have that

M∈ L(L(H0 ⊗H2),L(H1 ⊗H3)) ↔M ∈ L(H0 ⊗H2 ⊗H1 ⊗H3)
N ∈ L(L(H3 ⊗H5),L(H4 ⊗H6)) ↔ N ∈ L(L(H3 ⊗H5 ⊗H4 ⊗H6))

N ?M↔ N ∗M = Tr3[(I456 ⊗MT3
0123)(I012 ⊗N)]. (2.25)

The above results suggest us the following definition

Definition 2.1 (Link product) Let M be an operator in L(
⊗

i∈IHi) and N be an operator in
L(
⊗

j∈JHj) where I and J are two finite set of indexes. Then the link product N ∗M is an
operator in L(HI\J ⊗HJ\I) defined as

N ∗M := TrI∩J[(IJ\I ⊗MTI∩J)(II\J ⊗N)] (2.26)

where A \ B := {i ∈ A|i /∈ B} and HA :=
⊗

i∈AHi

Remark 2.1 It is worth noting that if I ∩ J = ∅ we have N ∗ M = N ⊗ M while if I = J
N ∗M = Tr[MTN ];

The previous discussion is summarized by the following theorem.
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Theorem 2.2 (Composition of linear maps) Let inM, outM, inN , outN be four sets of indeces
such that inM ∩ outN = ∅.
Let M be map in L(L(

⊗
i∈inM

Hi),L(
⊗

j∈outM
Hj), N be map in

L(L(
⊗

i∈inN
Hi),L(

⊗
j∈outN

Hj) and M ∈ L(
⊗

n∈inM∪ outM
Hm),

N ∈ L(
⊗

n∈inN∪ outN
Hn) be their respective Choi operators. Then the Choi operator of the

composition

M ?N := (IinN \(inN∩ outM) ⊗M) ? (IoutM\(outM∩ inN ) ⊗N ) (2.27)

is given by

C(M ?N ) = M ∗N (2.28)

We conclude this section with some properties of the link product

Lemma 2.4 (Properties of link product) Let M1,M2,M3 M4 be operators in L(
⊗

i∈I1
Hi),

L(
⊗

i∈I2
Hi), L(

⊗
i∈I3

Hi) and L(
⊗

i∈I4
Hi) respectively. Then we have

• If N1 is an operator on L(
⊗

i∈I1
Hi) (αN1 + βM1) ∗M3 = α(N1 ∗M3) + β(M1 ∗M3)

for any α, β ∈ C

• M1 ∗M2 = M2 ∗M1.

• If M†
1 = M1 and M†

2 = M2 then (M1 ∗M2)† = M1 ∗M2.

• If I1 ∩ I2 ∩ I3 = ∅ then (M1 ∗M2) ∗M3 = M1 ∗ (M2 ∗M3)

• If M > 0 and N > 0 then M ∗N > 0.

Proof. The first four properties trivially follow from the definition. To prove the last property
consider the maps C−1(M) and C−1(N). Since M and N are positive C−1(M) and C−1(N)
are completely positive and also C−1(M) ? C−1(N) is completely positive. Then C(C−1(M) ?
C−1(N)) = M ∗N is positive. �

2.2 Diagrammatic representation of linear maps

It is useful to provide a pictorial representation of linear maps and their composition. We will
sketch a linear map M : L(H0 ⊗ · · · ⊗ Hn) → L(H0′ ⊗ · · · ⊗ Hn′) as box with n input wires
on the left m output wires on the right as in Fig. 2.1.

Using this representation the composition in Eq. (2.24) can be sketched as follows
0

M

1

2 3

N

4

5 6

. (2.29)
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0

n n’

0’

M

Figure 2.1. Pictorial representation of a linear map M : L(H0 ⊗ · · · ⊗ Hn) → L(H0′ ⊗ · · · ⊗ Hn′); the
input wires are labelled according to the labeling of the Hilbert spaces.

or equivalently

0

M

1 5

N

4

2 3 6 . (2.30)

We do not draw wires corresponding to one dimensional Hilbert spaces. We will sketch a
map M : C → L(H0) with a one dimensional input as follows

 '!&M 0
, (2.31)

where we use the label M instead of M. In a similar way we represent maps M : L(H0) → C
that have one dimensional output space

0 "%#$M (2.32)

2.3 States, Channels and POVMs

In the ordinary description of Quantum mechanics each physical system is associated with a
Hilbert space H (that we will assume to be finite-dimensional) and the states of the system are
represented by positive operators with unit trace ρ ∈ L(H)ρ > 0,Tr[ρ] = 1. Deterministic
transformations of states are described by linear maps C : L(H0) → L(H1) that have to be

• completely positive C ⊗ I2(ρ) > 0 for all ρ ∈ L(H0 ⊗H2);

• trace preserving Tr[C(ρ)] = 1 for all ρ ∈ L(H0),Tr[ρ] = 1

Deterministic transformations of states are called quantum channels. Thanks to Th. 2.1 and lem-
mas 2.1 and 2.3 of the previous section we know that a quantum channel C ∈ L(L(H0),L(H1))
can be represented by its Choi operator C ∈ L(H0 ⊗H1) that satisfies C > 0 and Tr0[C] = I1
It is worth noting that the action C(ρ) = Tr0[(I1 ⊗ ρT )C] can be rewritten in terms of the link
product as

C(ρ) = C ∗ ρ  '!&ρ C . (2.33)
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where the state ρ is interpreted as the Choi operator of a preparation device, that is a channel ρ̃
from a one dimensional Hilbert space to L(H0)

ρ̃ : C → L(H0) ρ̃(λ) = λρ ∀λ ∈ C
C(ρ̃) = (ρ̃⊗ IC)(1⊗ 1) = ρ̃(1) = ρ (2.34)

Another relevant case is the one in which the output space is one dimensional. In this case we
have a channel C : L(H0) → C that receives a state ρ as an input and outputs the normalization
C(ρ) = Tr[ρ]; it is easy to verify that its Choi operator is C(C) = I and so we have

Tr[ρ] = ρ ∗ I  '!&ρ "%#$I . (2.35)

We can then rewrite the normalization condition Tr1[C01] = I0 of the Choi operator of a quantum
channel C ∈ L(L(H0),L(H1)) in the following way

C01 ∗ I1 = I1 (2.36)

A relevant class of channels are the isometric channels, that are defined as follows

V : L(H0) → L(H1) V(ρ) := V ρV † (2.37)

V ∈ L(H0,H1), V †V = I0. (2.38)

The following theorem [36,37] states that every quantum channel can be realized as an isometric
channel on a larger system

Theorem 2.3 (Stinespring dilation theorem) Let C : L(H0) → L(H1) be completely positive
trace preserving linear map. Then there exist an ancillary Hilbert space HA and an isometry
V : L(H0) → L(H1 ⊗HA), V †V = I0 such that

C(ρ) = TrA[V(ρ)] = TrA[V ρV †]  '!&ρ C =
 '!&ρ

V "%#$I
(2.39)

V is called Stinespring dilation of the channel C

Proof. Let C be the Choi Jamiołkowsky operator of C and define HA = Supp(C∗0′1′) (we
introduced two auxiliary Hilbert spaces H0′ and H1′ and defined C0′1′ according to Eq. (2.1)).
Now consider the operator

V : H0 → H1 ⊗HA V := I1 ⊗ C
1
2∗
0′1′ |I〉〉11′T0→0′ (2.40)

where T0→0′ =
∑

k |k〉0′ |k〉0; By using Lemmas 2.1 and 2.3 together with Eqs. (2.3, 2.5, 2.6) it
is easy to verify that V is an isometry

V †V = T0′→0〈〈I|11′(I1 ⊗ C
1
2 T

0′1′)(I1 ⊗ C
1
2∗
0′1′ |I〉〉11′T0→0′ =

= T0′→0 Tr1′ [CT
0′1′ ]T0→0′ = I0, (2.41)
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and that

TrA[V ρV †] = TrA[(I1 ⊗ C
1
2∗
0′1′)(|I〉〉11′T0→0′)ρ(T0′→0〈〈I|11′)(I1 ⊗ C

1
2 T

0′1′)] =

= Tr0′1′ [(I1 ⊗ CT
0′1′)(I

′
0 ⊗ |I〉〉〈〈I|11′)(I11′ ⊗ ρ′0)] =

= Tr0′ [Tr1′ [(I1 ⊗ CT
0′1′)(I

′
0 ⊗ |I〉〉〈〈I|11′)](I1 ⊗ ρ′0)] =

= Tr0′ [C
T0′
0′1 (I1 ⊗ ρ′0)] = C ∗ ρ = C(ρ) �

Remark 2.2 The Stinespring dilation of a channel is generally non unique. We now prove that
the isometric dilation given by Eq. (2.40) has minimum ancilla dimension. Suppose that there
exists an isometric dilation W : H0 → H1 ⊗HB such that dB = dim(HB) < dim(HA) = dA.
Each isometric dilation of a channel C provides operator-sum representation of C as follows
C(ρ) = TrA[WρW †] =

∑dB

n=1 〈n|WρW † |n〉 :=
∑dB

n=1KnρK
†
n where |n〉 is an orthonor-

mal basis in HB . From the operator sum representation it is possible to recover the Choi
operator C of C as follows C(C) =

∑dB

n=1(Kn ⊗ I)|I〉〉〈〈I|(K†
n ⊗ I) =

∑dB

n=1 |Kn〉〉〈〈Kn|.
Since 〈〈Kn|Km〉〉 = 〈n|V †V |m〉 = 〈n|m〉 = δnm, the vectors |Kn〉〉 are linearly indepen-
dent and this leads to the contradiction dim(Supp(C)) = dim(Span{|Kn〉〉}) = dB < dA =
dim(Supp(C∗)) = dim(Supp(C)). The isometric dilation defined in Eq. (2.40) is called mini-
mal Stinespring dilation

The probabilistic counterpart of a quantum channel is the quantum operation. A quantum op-
eration is a completely positive linear map E ∈ L(L(H0),L(H1)) which is trace non-increasing
Tr[E(ρ)] 6 1 for any state ρ. The Choi Jamiołkowski operator E of a quantum operation E satis-
fies the condition E 6 E where E is the Choi operator of a quantum channel. A set of quantum
operation {Ei} that sum up to a channel C is called a Quantum Instrument5 and it is represented
by a set of positive operator Ei such that

∑
iEi = C; the index i labels the possible classical

outcomes of the instrument. The action of a Quantum Instrument is written as∑
i

Ei(ρ) =
∑

i

ρ ∗ Ei
 '!&ρ Ei . (2.42)

and the probability that the Quantum Operation Ei takes place is pi = Tr[(I⊗ρ)Ei]. A Quantum
Instrument with one-dimensional output space is called POVM and is represented by a set of
positive operator Pi such that

∑
i Pi = I; the elements Pi of a POVM are called effects. The

link product

Tr[ρPT
i ] = ρ ∗ Pi

 '!&ρ *-+,Pi . (2.43)

gives the probability pi of the outcome i and coincides with the usual Born rule

pi = Tr[ρPi] (2.44)

if we make the substitution Pi ↔ PT
i . We conclude this section with a theorem [38, 37] that

provides a realization scheme for Quantum Instruments in terms of a deterministic evolution on
a bigger system followed by a measurement on the ancilla.

5For simplicity we restricted ourselves to the case of a finite number of outcomes. The generalization to an arbitrary
outcome space Ω can be obtained by defining a measure EB that associate to any event B ⊆ Ω a quantum operation EB

such that EΩ is a Quantum channel.
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Theorem 2.4 (Realization of Quantum Instruments) Let {Ei},
Ei ∈ L(L(H0),L(H1)) be a Quantum instrument. Then there exist an Hilbert space HA, a
channel C ∈ L(L(H0),L(H1 ⊗HA)) and a POVM {Pi}, Pi ∈ L(HA) such that

Ei(ρ) = TrA[C(ρ)(I1 ⊗ Pi)]  '!&ρ Ei =
 '!&ρ

C *-+,Pi

(2.45)

Proof. Let us define C :=
∑

i Ei and let C be the Choi operator of C and Ei be the Choi
operator of Ei. Since C is a quantum channel, we can consider its minimal Stinespring dilation
V : H0 → H1 ⊗HA,
HA = Supp(C). Now we introduce the POVM {Pi ∈ L(HA)} Pi = C−

1
2 TET

i C
− 1

2 T (clearly∑
iEi = IA and P †i = Pi). It is easy to verify that

TrA[C(ρ)(I1 ⊗ Pi)] = TrA[V ρV †(I1 ⊗ Pi)] =

= TrA[(I1 ⊗ C
1
2∗
0′1′)(ρ0′ |I〉〉〈〈I|11′)(I1 ⊗ C

1
2 T

0′1′)(Ii ⊗ Pi)] =

= TrA[(ρ0′ |I〉〉〈〈I|11′)(I1 ⊗ ET
i )] = Ei(ρ) (2.46)

2.4 Quantum Networks: constructive approach

In this section we introduce the formal definition of Quantum Network. Within our approach
a Quantum Network is obtained by assembling elementary circuits linking outputs of a circuit
to inputs of another circuit; we consider “elementary circuits” channels, quantum operations,
effects or state preparations each of them represented with the corresponding linear map. The
restriction that we can connect only outputs with inputs and that we cannot have closed loops
ensures causality (see Remark 2.4) and motivates the following definition

Definition 2.2 (Quantum Network) A quantum network R is a linear map corresponding to
directed acyclic graph (DAG) in which

• each arrow is labeled with a non negative integer number n (two different arrows cannot
have the same label);

• an arrow with label n represents an Hilbert space Hn;

• each vertex is labelled with a non negative integer number i (two different vertexes cannot
have the same label);

• each vertex i represents a completely-positive trace non-increasing map Ci ∈ L(Hini ⊗
Houti) (HA =

⊗
k∈AHk) where ini is the set of incoming arrows at vertex i and outi is

the set of outgoing arrows at vertex i;

• an arrow between two vertices’s i and j corresponds to the composition Cj ? Ci of the
linear maps Ci and Cj
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Figure 2.2. Graphical representation of a quantum network. The directions of the arrows represent the flow
of quantum information in the network, that is quantum systems travelling from a vertex to another. Free
incoming arrows represent input systems entering the network while free outgoing arrows represent output
systems of the network.

• we remove some vertices’s with no incoming arrows (sources) and some vertices’s with
no outgoing arrows (sink). The free incoming arrows remaining represent input systems
entering the network while the free outgoing arrows carry the output systems.

If Ci is a channel for each vertex i R is called a deterministic quantum network. If Ci is a trace
decreasing for some vertex i, R is called a probabilistic quantum network.

Fig. 2.2 provides a typical example of a quantum network.

Remark 2.3 It is worth noting that the same Quantum Network can be realized in different ways
as a sequence of maps

R(N) = C1 ? C2 ? · · · ? CN = C′1 ? C′2 ? · · · ? C′N (2.47)

and this fact reflects different possible physical implementation of the same network. In this work
we are not interested in the inner structure of a network but only in its properties as a linear map
from input spaces to output spaces. Because of this, whenever we introduce a Quantum Network
R(N), we actually mean an equivalence class of sequence of maps that give the same overall
operatorR(N), i.e. we consider the two sequences of maps C1?C2? · · ·?CN and C′1?C′2? · · ·?C′N
in Eq. 2.47 as the same object.

Remark 2.4 The condition that the graph is acyclic means that no closed path is allowed. This
requirement ensures that causality is preserved, since the flow of quantum information induces a
causal order inside the network and a closed path would correspond to a time-loop. It is worth
stressing that in our representation a physical closed loop in the lab, that is taking the output
of a device and then sending it as an input to the same device, corresponds to many uses of the
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Figure 2.3. Two possible total orderings of the network in Fig. 2.2.

same transformation

C
→ C C . . . C . (2.48)

In this work we use the convention that a vertex in a network or a box in a circuit represents a
single use of a physical device.

Any direct acyclic graph is naturally endowed with a partial ordering� among the vertices’s,
which is the causal ordering induced by the flow of quantum information (see Remark 2.4); we
say that vertex i causally precedes vertex j (i � j ) if there exists a directed path from i to j. It
is possible to prove that for a directed acyclic graph the partial ordering � can be extended, in a
generally non unique way, to a total ordering 6 (See Fig. 2.3).

Each vertex in the network corresponds to a step of a computation and the relation i � j
means that step j cannot be performed before step i. If two vertexes are incomparable this means
that the two steps can be run in parallel; extending the partial ordering to a total ordering consists
in arbitrarily fixing an ordering among parallel computational steps that is compatible with the
partial ordering �.

Since each vertex i in a quantum network corresponds to a linear map Ci and any arrow
between two vertexes corresponds to a composition, we can exploit the diagrammatic represen-
tation that we introduced before and represent a quantum network in a circuit form

0

C1

1

C2

4

C3

6

C4

9 10 12

C6

13

2 7 C5 11

3 8
5

; (2.49)
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where the free incoming/outgoing arrows are now substituted by free input/output wires; The
flow of quantum information is from left to right and the numbering of the boxes is chosen
accordingly.

To avoid drawing crossing wires, it is possible to enlarge each box by tensoring with the
identity map i.e.

n
Ci

m

k =

n

Ci

m

k k Ci → Ci ⊗ Ik (2.50)

in this way the network takes the shape of a chain
0

C1

1

C2

4

C3

6

C4

9 10 12

C6

13

2 5 5 5 11

3 3 8 8
C5

8

7

; (2.51)

we can further lighten the diagram by merging the internal wires connecting two boxes

Ci Ci+1

n

m

l

= Ci Ci+1Ai (2.52)

HAi = Hn ⊗Hm ⊗Hl.

In this way the circuit 2.51 becomes

0

C1

1

C2

4

C3

6

C4

9 10 12

C6

13

A1 A2 A3 A4
C5 A5 .

(2.53)

The previous considerations can be summarized in the following

Lemma 2.5 (Circuit form for Quantum Networks) Any quantum network R with N vertexes
is equivalent to a concatenation of N completely positive trace non increasing linear maps

R = C1 ? C2 ? · · · ? CN (2.54)

0

C1

1 2

C2

3

A1 A2 · · ·

2N − 2

CN

2N − 1

AN−1

where Ci : L(Ha ⊗HAi−1) → L(Hb ⊗HAi
).
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Remark 2.5 In Eq. (2.54) we chose to attach one free incoming and one free outgoing wire to
each map Ci. This is our standard representation of quantum network; we can without loss of
generality sketch any quantum network in this way, since network in which some input/output
wires are missing (like in 2.53) are just special cases. We can stress, if present, a tensor product
structure Ha = ⊗jHaj

of the Hilbert space carried by a free input/output wire a, by drawing as
many wires as the number of factors in the tensor product, for example

0

C1

1 2

C2

3

A1 =

01

C1

1 2

C2

31

02 A1 32 ;

where H0 = H01 ⊗H02 and H3 = H31 ⊗H32 . We also choosed to label the free input/output
wires with increasing integer numbers; in this way the Hilbert spaces of the input wires are
labeled with even numbers while the output ones correspond to odd numbers. We can define the
overall input space of the network as Hin =

⊗N
i=1H2i−2 and Hout =

⊗N
j=1H2i−1

Lemma 2.5 reveals the equivalence between a Quantum Network and a sequence of N chan-
nels with memory; if we stretch and rearrange the input and the output wires

0

C1

1 2

C2

3 4

C3

5

A1 A2 =

1

0 C1 A1

C2

3

2 A2

C3

5

4

from a Quantum Network we get a sequence of memory channels from the left side to the right
side. Since a Quantum Network is a sequence of linear maps, it can be considered as a linear map
from L(Hin) to L(Hout). It is then possible to define the Choi operator of a Quantum Network

C(R(N)) = R(N), (2.55)

where we add the superscript (N) to record the number of vertex in the network i.e. R(N) denotes
a quantum network with N vertexes.

2.5 Deterministic Quantum Networks

The main aim of the following sections will be to inspect the structure of the Choi operator of a
Quantum Network. In this section we consider the deterministic case while the probabilistic case
will be discussed in the next section. Specializing Lemma 2.5 a deterministic Quantum Network
R(N) can be presented as a concatenation of N quantum channels Ci; then the Choi operator of
R(N) is given by the link product of the Ci’s. This structure leads to a peculiar normalization
constraint for RN .

Theorem 2.5 (Normalization Condition) Let R(N) be a deterministic Quantum Network and
RN ∈ L(

⊗2N−1
i=0 Hi) (we use the labeling introduced in Lemma 2.5 and Remark 2.5) be its Choi

operator. Then R(N) > 0 and satisfies the following condition

Tr2N−1

[
R(N)

]
= I2N ⊗R(N−1) (2.56)
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C1 C2 · · · CN

"%#$I = C1 C2 · · · CN−1 ⊗ "%#$I

where R(N−1) ∈ L(
⊗2N−1

i=0 Hi) is the Choi operator of the reduced Quantum Network with
N−1 vertexes and CN−1 is a quantum channel such that C(CN−1) := CN−1 = TrAN−1 [CN−1].

Proof. Since R(N) is a quantum Network with N vertexes, we can express it in terms of a
concatenation of N channels

R(N) = C1 ? C2 ? · · · ? CN (2.57)
Ci : L(H2i−2 ⊗HAi−1) → L(H2i−1 ⊗HAi) HA0

∼= HAN
∼= C.

Let Ci ∈ L(
⊗

k∈Ii
Hk be the Choi of Ci where we introduced the set Ii := {2i − 2, Ai−1, 2i −

1, Ai}; we notice that Ii ∩ Ij ∩ Ik = ∅ for all i, j, k = 1, . . . , N and so, exploiting Lemma 2.4,
we have

R(N) = C1 ∗ C2 ∗ · · · ∗ CN . (2.58)

Since CN is channel in L(L(H2N−2 ⊗ HAN−1),L(H2N−1)) its Choi-Jamiołkowsky operator
satisfies Tr2N−1[CN ] = I2N−2 ⊗ IAN−1 then we have

Tr2N−1[R(N)] = C1 ∗ C2 ∗ · · · ∗ CN−1 ∗ Tr2N−1[CN ] =
= C1 ∗ C2 ∗ · · · ∗ (CN−1 ∗ I2N−2 ⊗ IAN−1) =
= C1 ∗ C2 ∗ · · · ∗ TrAN−1 [CN−1]⊗ I2N−2 =

= C1 ∗ C2 ∗ · · · ∗ CN−1 ⊗ I2N−2 =

= RN−1 ⊗ I2N−2 (2.59)

C1 · · · CN−1 CN

"%#$I = C1 · · · CN−1

"%#$I

"%#$I
=

= C1 · · · CN−1

"%#$I

�

Corollary 2.2 Let RN ∈ L(Hout ⊗Hin) ( Hin =
⊗N

i=1H2i−2 and Hout =
⊗N

j=1H2i−1) be
the Choi operator of a deterministic Quantum Network R(N) . Then R(N) satisfies

Tr2k−1[R(k)] = I2k−2 ⊗R(k−1), 1 6 k 6 N (2.60)

where R(0) = 1, R(k) ∈ L(Houtk
⊗Hink

), Hink
=
⊗k−1

i=0 H2i, Houtk
=
⊗k−1

i=0 H2i+1.

Proof. Eq. (2.60) can be obtained by recursively applying Eq. (2.56). �
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Remark 2.6 We want to stress that Eq. (2.60) reflects the causal ordering of the Quantum
Network. This property translates the fact that information can be transmitted from system i
to a system j if i < j but not to a system j′ < i. Consider the Network R(2) ∈ L(L(H0 ⊗
H2),L(H0 ⊗H2))

0

C1

1 2

C2

3

We will now prove that the condition that no information flows from 2 to 1 is equivalent to
Tr3[R

(2)
0123] = I2 ⊗ R

(1)
01 . The condition that there is no flow of information from 2 to 1 can

be expressed by saying that upon application of the memory channel represented by R(2) to
a general input state ρ02, the partial state in 1 does not depend on the local state in 0 i.e.
Tr3[σ13] = Tr3[Tr02[(ρT

02 ⊗ I13)R
(2)
0123]] = A(Tr0[ρ02]) for a fixed channel A. If Tr3[R

(2)
0123] =

I2 ⊗ R
(1)
01 we have Tr3[σ13] = Tr3[Tr02[(ρT

02 ⊗ I13)R
(2)
0123]] = Tr02[(ρT

02 ⊗ I13)R
(1)
013 ⊗ I2] =

Tr0[(Tr2[ρT
02]⊗ I1)R

(1)
013] = A(Tr0[ρ02]) if we define A := C−1(R(1)).

On the other hand let us suppose that Tr3[Tr02[(ρT
02⊗ I13)R

(2)
0123]] = A(Tr0[ρ02]) for a fixed

A . In particular if ρ02 = τ0 ⊗ ω2 we have Tr3[Tr02[(τT
0 ⊗ ωT

2 ) ⊗ I13)R
(2)
0123]] = Tr0[(τT

0 ⊗
I1) Tr2[(ωT

2 ⊗ I10) Tr3[R
(2)
0123]]] = Tr0[(τT

0 ⊗ I1)A01] = A(Tr0[τ0]), where C(A) = A01 =
S(ω2)) and S = C−1(Tr3[R

(2)
0123]). Since A is a constant we have S(ω2) = A01 for all ω,

that implies C(S) = I2 ⊗ A01. The Quantum Network R(2) when considered as channel from
L(L(H02)) to L(L(H13)) has the properties of a semicausal channel as discussed in Refs. [39,
40]

The recursive normalization condition (2.60) and the positivity constraint characterize the Choi
Operator of a deterministic Quantum Network. The following theorem tells us that a positive
operator satisfying Eq. (2.60) is the Choi operator of a deterministic Quantum Network.

Theorem 2.6 (Realization of deterministic Quantum Networks) Let RN ∈ L(Hout ⊗ Hin)
(Hin =

⊗N
i=1H2i−2 and Hout =

⊗N
j=1H2i−1) be a positive operator satisfying Eq. (2.60).

ThenR(N) is the Choi operator of a deterministic Quantum NetworkR(N) given by the concate-
nation of N isometries followed by a trace on an ancillary space: for every state ρ ∈ L(Hin)
one has

R(N)(ρ) = TrAN
[V (N) · · ·V (1)ρV (1)† · · ·V (N)†] (2.61)

0

V1

1 2

V2

3

A1 A2 · · ·

2N − 2

VN

2N − 1

AN−1 AN "%#$I

where V i ∈ L(L(H2k−2⊗HAk−1),L(H2k−1⊗HAk
)) andHAk

is an ancillary space,HA0 = C
(in Eq. (2.61) we omitted the identity operators on the Hilbert spaces where the isometries do
not act).

Proof. Define HAk
= Supp(R(k)∗) and

V (k) = I2k−1 ⊗R(k) 1
2∗R(k−1)− 1

2∗ |I〉〉(2k−1)(2k−1)′T(2k−2)→(2k−2)′ (2.62)
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where Tn→m =
∑

i |i〉m 〈i|n.

Using Eq. (2.60) one has V (k)†V (k) =
(
R(k−1)∗)− 1

2 Tr2k−1[R(k)∗]
(
R(k−1)∗)− 1

2 = I2k−2 ⊗
IAk−1 that is V (k) is an isometry. Now consider W (N) = V (N) · · ·V (1), which goes from Hin

to Hout ⊗ HAN
; From Eq. 2.62 we have W (N) = (Iout ⊗ (R(N)∗)

1
2 )|I〉〉(out)(out)′ ⊗ Tin→in′

and Theorem 2.3 tells us that W (N) is an isometric dilation of RN and so

RN (ρ) = TrAN
[W (N)ρW (N)†] = TrAN

[V (N) · · ·V (1)ρV (1)† · · ·V (N)†]. (2.63)

�

Corollary 2.3 The minimal dimension of the ancilla spaceHAk
is dim(Supp(R(k))) in Theorem

2.6

Proof. Consider the isometries W (k) = V (k) · · ·V (1) where V (i) are defined according to
Eq. 2.62. Theorem 2.3 tells us that W (k) is an isometric dilation of Rk with minimal ancillary
space; then it is not possible to choose an ancillary space HBk

with dim(HBk
) < dim(HAk

) =
dim(Supp(R(k))). �

Remark 2.7 The maximum dmax := max16k6N dAk
provides an upper bound on the com-

plexity of the Network in terms of quantum memory. Indeed, the Stinespring dilation theorem
preserves coherence up to the last step; for example it can happen that some ancillary degrees
of freedom are used only up to a step k < N and then the isometries V (k+1), . . . , V (N) act only
trivially on them. In this case one can trace out some degrees of freedom before the last step. This
deeper analysis of resources can be performed only by inspecting the structure of the isometries
V (k).

Remark 2.8 We stress that the set of the Choi operators is a convex set; indeed, imposing linear
constraints (like the one in Eq. 2.60) on a given convex set (like the set of positive operators)
does not spoils the convexity.

Theorems 2.5 and 2.6 provide a one to one correspondence between the set of deterministic
Quantum Networks (considered as equivalence classes of different implementations as pointed
out in Remark 2.3) and the set of positive operators satisfying the normalization (2.60)

R(N)

C1 C2 · · · CN

↔
R(N) > 0
such that

Tr2k−1[R(k)] = I2k−2 ⊗R(k−1)

;

following the same terminology introduced in Refs. [22, 23] we call the Choi operators of a
Quantum Network Quantum Combs6. This result (and its generalization to the probabilistic
case) allows to represent every Quantum Networks in terms of a single positive operator sub-
jected to linear constraints. This is extremely relevant for applications. Indeed, optimizing a

6Whenever we want to stress the distinction between deterministic and probabilistic case we use the terms determin-
istic Quantum Combs and probabilistic Quantum Combs respectively.



Quantum Networks: general theory 295

Quantum Network by separately optimizing each device is extremely demanding. Thanks to this
representation the optimization problem is reduced to an optimization problem over a convex
set of suitably normalized positive operators. Moreover we notice that through Eq. (2.62) we
are provided with an explicit expression of a Quantum Network that is represented by a given
quantum comb R(N).

This allows us to formulate an algorithm for designing optimal Quantum Networks for a
given task (e.g. cloning, discrimination, estimation):

1. Choose a suitable figure of merit F for the task of interest.

2. Find the positive operator R(N) satisfying constraint in Eq. (2.60) and optimizing F .

3. Set R(0) = 1 and IA0 = 1.

4. For k = 1 to k = N do the following:

(a) Calculate Iink
⊗ R(k) = Troutk

[C], where IH (TrH) denotes the identity (partial
trace) over all Hilbert spaces but H;

(b) define V (k) as in Eq. (2.62).

5. The optimal network is given by the concatenation of the V (k)’s in Eq. (2.61)

2.6 Probabilistic Quantum Network

The aim of this section is to provide the equivalents of Theorems 2.5 and 2.6 for the case in
which probabilistic Quantum Network are considered. We remind that a probabilistic Quantum
Network R(N) is equivalent to a concatenation of N completely positive trace non increasing
linear maps7

R(N) = C1 ? CN ? · · · ? CN .

Theorem 2.7 (Sub-normalization condition) Let R(N) be a probabilistic Quantum Network.
andR(N) ∈ L(

⊗2N−1
i=0 Hi) be its Choi-Jamiolkowski operator; then there exists a Choi operator

S(N) of a deterministic Quantum Network such that

0 6 R(N) 6 S(N), (2.64)

Proof. The proof is by induction. For N = 1 the probabilistic quantum Network is just
a quantum operation and we know that its Choi operator E(1) is upper bounded by the Choi
operator of a Quantum Channel, i.e. of a deterministic Quantum Network with 1 vertex. Now
suppose that the statement holds for N − 1. Since R(N) = C1 ? CN ? · · · ? CN we have RN =
C1 ∗C2 ∗ · · · ∗CN where Ci 6 Ci for some Ci which is the Choi operator of a quantum channel.
Exploiting the induction hypothesis we have that C1 ∗ C2 ∗ · · · ∗ CN−1 := D 6 D where is the
Choi of a deterministic Quantum Network. Exploiting Lemma 2.4 we have

R(N) = D ∗ CN 6 D ∗ CN 6 D ∗ CN := S(N) (2.65)

that proves the statement. �
7This definition includes deterministic networks as a special case.
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Theorem 2.8 (Realization of probabilistic Quantum Networks) Let R(N) ∈ L(
⊗2N−1

i=0 Hi)
be a positive operator satisfying Eq. (2.64). Than this is the Choi-Jamiołkowsky operator of a
probabilistic Quantum Network R(N), consisting of N isometric channels followed by an effect
on an ancillary space. For any ρ ∈ L(Hin) we have

R(N)(ρ) = TrAN
[(V (N) · · ·V (1))ρ(V (1)† · · ·V (N)†)E] (2.66)

0

V1

1 2

V2

3

A1 A2 · · ·

2N − 2

VN

2N − 1

AN−1 AN "%#$E

where V i ∈ L(L(H2k−2⊗HAk−1),L(H2k−1⊗HAk
)) andHAk

is an ancillary space,HA0 = C
(in Eq. (2.66) we omitted the identity operators on the Hilbert spaces where the V (k)’s and E do
not act).

Proof. Let S(N) be the Choi operator of a deterministic Quantum Network such that R(N) 6
S(N). Now we defineHAk

and V (K) for S(N) as in Eq. (2.62) andE = S(N)∗− 1
2R(N)∗S(N)∗− 1

2 ;
It is easy to verify that

TrAN
[(V (N) · · ·V (1))ρ(V (1)† · · ·V (N)†)E] =

= TrAN
[(Iout ⊗ (S(N)∗)

1
2 )(ρin′ ⊗ |I〉〉〈〈I|(out)(out)′)(Iout ⊗ (S(N)∗)

1
2 )·

· (Iout ⊗ S(N)∗− 1
2R(N)∗S(N)∗− 1

2 )] =

= TrAN
[(Iout ⊗ ρT

in)R(N)] = R(N)(ρ)

Remark 2.9 Theorem 2.8 says that any probabilistic Quantum Network can be split into a co-
herent part (sequence of isometries) and a final effect on an ancillary space.

Thanks to theorems 2.7 and 2.8 we can represent any probabilistic Quantum Network in terms
of a positive operator i.e. its probabilistic Quantum Comb. We now introduce the Quantum
Network analogue of Quantum Instruments and POVMs; both of them will be exploited in the
applications.

Definition 2.3 (Generalized Instrument) A Generalized Instrument is a set of probabilistic
Quantum Networks {R(N)

i } whose sum is a deterministic Quantum Network R(N)
Ω =

∑
iR

(N)
i .

The index i represents the classical outcome of the Network8.

For Generalized Instruments the following analogue of Th. 2.4 holds:

Theorem 2.9 (realization of Generalized Instruments) Let
{R(N)

i ,R(N)
i ∈ L(L(Hin),Hout)}, R(N)

Ω =
∑

iR
(N)
i be a Generalized Instrument. Then there

8As we did when we introduced the concept of Quantum Instrument, we restrict ourselves to the case of finite number
of outcomes. The generalization to an arbitrary outcome space Ω can be obtained by defining a measure RB that
associates to any event B ⊆ Ω a probabilistic Quantum NetworkRB such thatRΩ is a deterministic Quantum Network.
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exist an Hilbert space HAN
, a deterministic Quantum Network S(N) ∈ L(L(Hin),L(Hout ⊗

HAN
)) and a POVM {Pi, Pi ∈ L(HAN

)} such that for any ρ ∈ L(Hin) we have

R(N)
i (ρ) = TrAN

[(S(N)(ρ))Pi]] (2.67)
0

V1

1 2

V2

3

A1 A2 · · ·

2N − 2

VN

2N − 1

AN−1 AN *-+,Pi

Proof. The Proof is the same as in Th. 2.8; we just define S(N) = V1 ? · · · ? VN , where the
HAk

’s and V (i)’s are defined as in Eq. (2.62) (now R
(N)
Ω plays the role of R(N)) and

Pi = R
(N)− 1

2∗
Ω R

(N)
i R

(N)− 1
2∗

Ω . (2.68)

It is easy to verify that

TrAN
[(S(N)(ρ))Pi] = TrAN

[(V (N) · · ·V (1))ρ(V (1)† · · ·V (N)†)Pi] =

= TrAN
[(Iout ⊗ (R(N)∗

Ω )
1
2 )(ρin′) ⊗ |I〉〉〈〈I|(out)(out)′)(Iout ⊗ (R(N)∗

Ω )
1
2 )·

· (Iout ⊗R
(N)∗− 1

2
Ω R

(N)∗
i R

(N)∗− 1
2

Ω )] =

= TrAN
[(Iout ⊗ ρT

in)R(N)
i ] = R(N)

i (ρ)
(2.69)

�
A relevant class of Generalized Instrument is the the following

Definition 2.4 (Quantum Tester) A Quantum Tester is a Generalized Instrument {RN
i } such

that dim(H0) = dim(H2N−1) = 1.

Theorem 2.10 (normalization of Quantum Tester) Let {R(N)
i } be a quantum Tester. Then∑

i

R
(N)
i := R

(N)
Ω = R

(N−1)
Ω ⊗ I2N−2

Tr2k−1[R
(k)
Ω ] = I2k−2 ⊗R

(k−1)
Ω , 2 6 k 6 N − 1

Tr1[R
(1)
Ω ] = 1 (2.70)

Proof. Since dim(H2N−1) = 1 and applying Theorem 2.5 to R(N)
Ω we have R(N) = Tr2N−1

[R(N)] = I2N−1 ⊗R
(N−1)
Ω . Clearly Tr1[R

(1)
Ω ] = I0 = 1 since dim(H0) = 1.

Theorem 2.11 (realization of Quantum Tester)Let {R(N)
i } be a quantum Tester. Then {R(N)

i }
can be realized by a deterministic Quantum Network {S(N)} with dim(H0) = 1 followed by a
POVM on H2N−1

|Ψ〉〉
?>89

1 2

V2

3

A1 A2 · · ·

2N − 2

VN

*-+,Pi

AN−1 (2.71)
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Proof. This result comes immediately from theorem 2.9 by relabeling HAN
= H2N−1.

Since dim(H0) = 1 the first isometry is just the preparation of the pure state |Ψ〉〉 := (I1 ⊗
R

(1)∗ 1
2

Ω )|I〉〉11′ = |R(1)∗ 1
2

Ω 〉〉. �

Remark 2.10 By making the substitution
2N − 2

VN

*-+,Pi

AN
→

2N − 2

P̃i

=<:;AN

the realization scheme 2.71 can be rewritten as

|Ψ〉〉
?>89

1 2

V2

3

A1 A2 · · ·

2N − 2

P̃i

=<:;AN−1 (2.72)

A special class of Quantum Testers is the one in which N = 2; this class has been indepen-
dently introduced in Ref. [41] under the name Process-POVM.

Corollary 2.4 (characterization of Quantum 2-Testers) Let {R(2)
i ,R(2)

i ∈L(L(H1),L(H2))}
be a Quantum Tester with two vertexes. Then we have∑

i

R
(2)
i = ρ1 ⊗ I2 (2.73)

where ρ is a state in L(H1). {R(2)
i } can be split into a preparation of a pure state |√ρ〉〉 ∈

H1 ⊗H1′ and a POVM {Pi} on the space H2 ⊗H1′ (H1′ = Supp(ρ))

|√ρ〉〉
?>89

1 2

Pi

=<:;1′ . (2.74)

Proof. Eq. (2.73) comes from from Eq. (2.60) and Eq. (2.70). The realization (2.74) is just a
special case of (2.72) with A1 = 1′.

2.7 Connection of Quantum Networks

A Network of Quantum transformations can be used to achieve many different tasks. We can
imagine to use it as a programmable device which implements different transformations on some
inputs depending on the quantum state of the program (see Fig. 2.4). Moreover, the program
itself of the Quantum Network can be a quantum channel rather then a state (Fig. 2.5): during
the computation the network call a variable channel as a subroutine. More generally a Quan-
tum Network can call several different channels at different times and even another Quantum
Network. These kind of situation occur for example when multiple round Quantum games are
considered; in this scenario the overall outcome of the game depends on the strategies chosen by
the players that can be modeled as Quantum Networks (Fig. 2.6).

Another relevant case are Quantum Algorithms: they can be thought of as Quantum Networks
calling N uses of a quantum oracle (Fig. 2.7). All the possible uses of a Quantum Network are
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program

programmed transformation

Figure 2.4. A Quantum Network with two vertexes used as a programmable device.

programmed transformation
program

Figure 2.5. A Quantum Network calls a quantum channel as subroutine.

then equivalent to the connection of the network to another quantum network. Connecting two
network R(N) and S(M) means composing the corresponding graphs by joining some of the
free outgoing arrows of a network with free incoming arrows of the other in such a way that
the final network R(N) ? S(M) is still a directed acyclic graph9; we adopt the convention that if
two vertexes i ∈ R(N) and j ∈ S(M) are connected by joining two arrows, the two arrows are
identified with the same label (see Fig. 2.8). As we said in Section 2.4, a directed acyclic graph
is endowed with a partial ordering among the vertexes that can be extended to a total ordering.
Given two quantum networks RN and SM there is a priori no relative ordering between the
vertexes of RN and the vertexes of SM . However, since we require that the final network is still
a directed acyclic graph, it is possible to define a total ordering among the vertexes in the union
set RN ∪ SM . This allows us to sketch the composition of two quantum networks in the circuit
form

2

C2

11

1 10
C6 ?

0

C1

2 4

C3

6

C4

9 11

C6

13

12
=

9As pointed out in Remark 2.4 this condition is necessary in order to avoid time loops
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Alice’s strategy

Bob’s strategy

Figure 2.6. A multi-round two party game: Alice’s strategy is represented by the Quantum Network A
and Bob’s strategy is represented by the Quantum Network B. The outcome of the game can be seen as th
interlinking of the two networks.

calls of the oracle

Figure 2.7. A Quantum algorithm realized by a Quantum Network in which N uses of the oracle are
inserted.

=
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=
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1
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9 1012
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13

C5 . (2.75)
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We now want to determine the Choi operator of the composite networkR(N) ?S(M) in terms
of the Choi operators R(N) and S(M) of the networks R(N) and S(M). From Eq. (2.75) it is
clear that the combined network can be obtained by combining the linear maps Ci, then its Choi
operator will be the link product of all the Ci. We have then the following

Theorem 2.12 (Link of two Quantum Networks) Let R(N) and S(M) be two Quantum Net-
works and R(N) ∈ L(

⊗
i∈RHi), S(M) ∈ L(

⊗
j∈SHj) be their Choi operators where we de-

fined R and S the set of the free arrows of R(N) and S(M) respectively. If R ∩ S is the set of
connected arrows then

C(R(N) ? S(M)) = R(N) ∗ S(M) (2.76)

Proof. This result is an immediate consequence of Lemma 2.4.

Remark 2.11 A relevant case of composition is the one in which we connect a quantum network

S
(4)

0

3

4

6

8

7
9 12

13

1

3

4

6

2

11

R
(2)

2

5

10
5

1

2

11

1

0

3

4

6

2 5

8

7
9

10

11
12

13

1

2

3

4

5

6

S
(4)

=

R
(2)

Figure 2.8. The scheme represents the connection of two quantum networks; the arrows that we are going
to connect have the same labels.
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R(N) with a quantum tester {T (N+1)
i } in this way:

T (N+1)
i︷ ︸︸ ︷

|Ψ〉〉
?>89 D2

C1 C2

· · ·
Pi

=<:;
CN︸ ︷︷ ︸

(2.77)

R(N)

The composite network R(N) ? T (N+1)
i has only a classical outcome, i.e. the the index i. The

link product R(N) ∗ T (N+1)
i gives the probability to obtain output i:

p(i|R(N)) = R(N) ∗ T (N+1)
i = Tr[R(N)T

(N+1)T
i ] (2.78)

Eq. (2.78) can be interpreted as a generalized version of the Born rule: R(N) plays the role of a
quantum state while the set {T (N+1)T

i } is the analogue of a POVM. A quantum tester represents
the most general measurement process we can perform on a Quantum Network; Eq. (2.78) tells
us that two Quantum Networks R(N) and S(N) that have the same Choi Jamiołkowski operator,
give the same probability distribution for all testers T (N+1): this means thatR(N) and S(N) are
experimentally indistinguishable.
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3 Quantum Tomography

Calibration of physical devices is the basis of any experimental procedure, especially in quantum
information, where the reliability of the processes involved in the computation is crucial. Quan-
tum Tomography is the complete determination of physical devices in a purely experimental
manner (by relying on some well established measurement instruments), without using detailed
theoretical knowledge of its inner functioning. Originally introduced for determine the quantum
state of radiation [42, 43, 44], Quantum Tomography soon became the standard technique in the
measuring the fine details of any quantum device. In this chapter we will present a systematic
theoretical approach to optimization of Quantum Tomography of finite dimensional systems, as
it was introduced in [24,25]. The optimization of a tomographic procedure involves two aspects:
i) optimization of the experimental setup and ii) optimization of the data processing, that is the
classical processing of the measurement outcomes. Our approach is based on the notion of infor-
mationally complete measurement [45]. The optimization of the data processing [46, 47] relies
on the fact that the operators describing an informationally complete measurement are generally
linearly dependent, thus allowing different expansions coefficients. For state tomography the op-
timization of the setup consists in finding the best informationally complete POVMs. However,
when the more general scenario of quantum process tomography is considered, the optimization
problem involves the choice of the input state as well (we are in the framework of the so called
ancilla assisted process tomography [48, 49]); for this reason we will take advantage of the gen-
eral theory of Quantum Networks that will allow us to optimize both the input state and final
POVM at the same time.

We will begin by introducing Quantum Tomography of states and the key concepts that are
needed in order to cope with the optimization. Then, thanks to the tools developed in Chapter
2 we will generalize this setting from quantum states to Quantum Networks. Finally, we will
provide the optimal scheme for Quantum Tomography of states, channels and POVMs.

3.1 State tomography

Tomographing an unknown state ρ of a quantum system means performing a suitable POVM
{Pi} in such a way that ρ is completely determined by the probability distribution

pi = Tr[ρPi]. (3.1)

Completely determining a quantum state means being able to predict the expectation value 〈A〉 =
Tr[ρA] for any operator A, in terms of the probabilities pi, i.e.

〈A〉 = Tr[ρA] =
∑

i

pif(i, A) ∀A, ρ ∈ L(H) (3.2)

where f(i, A) denotes suitable expansion coefficients10. The function f : (i, A) 7→ f(i, A) is
called data processing since it represents the processing of the outcomes i of the measurement
{Pi} in order to recover 〈A〉

10we assumed a linear reconstruction of the expectation value, that is we are considering linear quantum tomography.
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From Eq. (3.2) we get:

Tr[ρA] =
∑

i

pifi[A] =
∑

i

Tr[ρPi]fi[A] =

= Tr

[
ρ
∑

i

fi[A]Pi

]
∀A, ρ ⇔ A =

∑
i

fi[A]Pi ∀A (3.3)

that is it is possible to expand any A over the used POVM {Pi}. When the expansion (3.3) holds
for for all the operators in L(H), we have that Span{Pi} = L(H) and we say that the POVM
{Pi} is informationally complete. Informationally completeness of the POVM is equivalent to
the condition [50, 51]

Supp(F ) = H⊗H F =
∑

i

|Pi〉〉〈〈Pi| (3.4)

where we exploit the isomorphism (2.2). A set of vectors |vi〉 ∈ H such that Supp(F ) = H,
F =

∑
i |vi〉 〈vi| is called frame11 and the operator F is called frame operator. Given a frame

{|vi〉} it is possible to introduce a set of vectors {|ui〉}, called dual frame, such that∑
i

|vi〉 〈ui| = I. (3.5)

If the |vi〉 are linearly dependent the dual frame {|ui〉} is not unique. The expansion (3.3) can be
rephrased in terms of the |Pi〉〉 in the following way:

|A〉〉 =
∑

i

f(i, A)|Pi〉〉. (3.6)

and if we introduce a dual frame |Di〉〉 (
∑

i |Pi〉〉〈〈Di| = I) we have

|A〉〉 =

(∑
i

|Pi〉〉〈〈Di|

)
|A〉〉 =

∑
i

〈〈Di|A〉〉|Pi〉〉 ⇒ fi[A] = 〈〈Di|A〉〉

〈A〉 = Tr[ρA] = 〈〈ρ|A〉〉 =
∑

i

〈〈Di|A〉〉〈〈ρ|Pi〉〉 (3.7)

We requested that the POVM has to be informationally complete because we have no prior infor-
mation about the state ρ of the system, i.e. ρ can be an arbitrary normalized positive operator in
L(H). However, we can suppose that the state ρ belongs to a given subspace A ⊆ L(H); in this
case the only operators we need to expand are the ones in A since Tr[A′ρ] = 0 for all A′ ∈ A⊥.
Then the set {Pi} is required to span onlyA. Exploiting the isomorphism (2.2), if ρ ∈ A ⊆ L(H)
and Span{Pi} = A, we have that |ρ〉〉 ∈ VA, where we defined H ⊗H ⊇ VA := Span{|Pi〉〉}.
If we denote with QA the projector on VA then Eq. (3.7) becomes

|A〉〉 =

(∑
i

|Pi〉〉〈〈Di|

)
|A〉〉 =

∑
i

〈〈Di|A〉〉|Pi〉〉 ⇒ fi[A] = 〈〈Di|A〉〉

〈A〉 =
∑

i

〈〈Di|QA|A〉〉〈〈ρ|QA|Pi〉〉. (3.8)

11in this presentation we are restricting ourselves to the finite dimensional case.
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The condition that the POVM spans the subspaceA can be rephrased in terms of the correspond-
ing frame operator; it is possible to prove that

Span{Pi} = A ⇔ Supp(F ) = VA. (3.9)

First we notice that Eq. (3.9) can be rephrased as

Span{|Pi〉〉} = Supp(F ); (3.10)

we will verify both the inclusions Span{|Pi〉〉} ⊆ Supp(F ) and Span{|Pi〉〉} ⊇ Supp(F ). Since
any vector |X〉〉 ∈ H ⊗ H can be decomposed as |X〉〉 = |Y 〉〉 + |Z〉〉 where |Y 〉〉 ∈ VA and
|Z〉〉 ∈ V⊥A (VA = Span{|Pi〉〉}), we have

F |X〉〉 =
∑

i

|Pi〉〉〈〈Pi|(|Y 〉〉+ |Z〉〉) =
∑

i

|Pi〉〉〈〈Pi||Y 〉〉 = 0 ⇒

⇒
∑

i

|〈〈Pi|Y 〉〉|2 = 0 ⇒ 〈〈Pi|Y 〉〉 = 0 ∀i⇒ |Y 〉〉 = 0 ⇒

⇒ |X〉〉 ∈ V⊥A ⇒ Ker(F ) ⊆ (Span{|Pi〉〉})⊥ ⇒ Span{|Pi〉〉} ⊆ Supp(F ).

On the other hand, let F−1 be the inverse of F on its support; since F † = F we have F−1F =
ISupp(F ) = FF−1; then it follows

|X〉〉 ∈ Supp(F ) ⇒ |X〉〉 = F−1F |X〉〉 = FF−1|X〉〉 =
∑

i

〈〈Pi|F−1|X〉〉|Pi〉〉 =

=
∑

i

ci|Pi〉〉 ⇒ |X〉〉 ∈ Span |Pi〉〉 ⇒ Supp(F ) ⊆ Span{|Pi〉〉}.

We now need a criterion that quantifies how well our tomographic procedure estimates the
expectation 〈A〉 of an observable A. As we have previously shown, a tomographic procedure
involves two steps:

• the measurement process which is described by the infocomplete POVM {Pi} or equiva-
lently by the frame |Pi〉〉;

• the processing of the outcomes which is described by the dual |Di〉〉.

That being so, the optimization problem consists in finding the best POVM {Pi} and the best
dual |Di〉〉 according to a given figure of merit. Suppose now that the POVM is fixed and that
every repetition of the experiment is independent; if the experimental frequencies are νi := ni

N
(ni is the number of outcomes i occurred, andN is the total number of repetitions), the estimated
expectation 〈̃A〉 is then

〈̃A〉 =
∑

i

f(i, A)νi ; 〈A〉 (3.11)

where the symbol ; means that, by the law of large numbers, the left hand side converges in
probability to the right hand side. A good figure of merit for the data processing strategy is the
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statistical error in the reconstruction of expectations, i.e. the variance of the random variable
〈̃A〉. Since the variance of the mean is proportional to the variance of the distribution [52], the
statistical error occurring when the processing in Eq. (3.11) is used, can be written as:

δ(A) :=
∑

i

|f(i, A)− 〈A〉|2νi (3.12)

Averaging the statistical error over all possible experimental outcomes we have

δ(A) :=
∑

k

(∑
i

|f(i, A)− 〈A〉|2ν(k)
i

)
mk =

=
∑

i

|f(i, A)− 〈A〉|2
(∑

k

ν
(k)
i mk

)
=
∑

i

|f(i, A)− 〈A〉|2pi (3.13)

where the index k labels different experimental outcomes (i.e. a possible set of frequencies) and
mk is the multinomial distribution

mk =
N !∏
l n

(k)
l !

∏
l

p
Nν

(k)
l

l (3.14)

that gives the probability that the experiment gives the frequencies {ν(k)
l } for each outcome l. In

terms of ρ, Pi and Di Eq. (3.13) becomes

δ(A) =
∑

i

|f(i, A)− 〈A〉|2pi =
∑

i

|〈〈Di|A〉〉 − 〈〈ρ|A〉〉|2〈〈ρ|Pi〉〉 =

=
∑

i

|〈〈Di|A〉〉|2〈〈ρ|Pi〉〉 − |〈〈ρ|A〉〉|2; (3.15)

where we used Eq. (3.7) in the last equality. In a Bayesian scheme the state ρ is assumed to be
randomly drawn from an ensemble S = {ρn, pn} of state ρn with prior probability pn. If we
average the quantity δ(A) over S we get

δ(A)S :=
∑

n

(∑
i

|〈〈Di|A〉〉|2〈〈ρn|Pi〉〉 − |〈〈ρn|A〉〉|2
)
pn =

=
∑

i

|〈〈Di|A〉〉|2〈〈ρS |Pi〉〉 −
∑

n

|〈〈ρn|A〉〉|2pn (3.16)

where ρS =
∑

n pnρn. Moreover, a priori we can be interested in some observables more than
other ones, and this can be specified in terms of a weighted set of observables G = {Am, qm},
with weight qm > 0 for the observables Am. Averaging over G we have

δ(A)S,G :=
∑
m

(∑
i

|〈〈Di|Am〉〉|2〈〈ρS |Pi〉〉 −
∑

n

|〈〈ρn|Am〉〉|2pn

)
qm =

=
∑

i

〈〈Di|G|Di〉〉〈〈ρS |Pi〉〉 −
∑
n,m

|〈〈ρn|Am〉〉|2pnqm (3.17)
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where G =
∑

m qm|Am〉〉〈〈Am|. Since only the first term of Eq. (3.17) depends on Pi and Di,
the figure of merit is finally given by:

η :=
∑

i

〈〈Di|G|Di〉〉〈〈ρS |Pi〉〉 (3.18)

If ρn ∈ A for all n thenQA|ρn〉〉 = |ρn〉〉 for all n; then, reminding Eq. (3.8), Eq. (3.17) becomes

η =
∑

i

〈〈Di|QAGQA|Di〉〉〈〈ρS |QA|Pi〉〉. (3.19)

Then, the optimization problem consists in finding the POVM Pi and the dual Di that minimize
η. In the following section we generalize this scenario from quantum states to quantum networks.
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4 Quantum Network Tomography

At the beginning of this chapter we said that Quantum Tomography consists in the determination
of a physical device by means of experiments that produce classical information. If the physical
device is a preparator of quantum system the experiments we can perform in order to determine
its state are described by POVMs; on the other hand, if the physical device is a Quantum Network,
the experiments are described by Quantum Testers, that are the generalization of the POVMs (see
Remark 2.11). In analogy with what we did for the POVMs in the previous section it is possible
to introduce informationally complete tester, that is a quantum tester {Πi,Πi ∈ L(⊗2N

k=1Hk)}
such that the probabilities pi = Tr[ΠT

i R] are sufficient to completely characterize the (generally
probabilistic) Quantum Network R (equivalently, to completely characterize its Choi operator
R ∈ L(⊗2N−2

k=1 Hk)). This condition can be rephrased by saying that the probabilities pi =
Tr[ΠT

i R] allow to evaluate Tr[TR] for all T ∈ L(⊗2N−2
k=1 Hk):

Tr[TR] =
∑

i

f(i, T )pi =
∑

i

f(i, T ) Tr[ΠT
i R]. (4.1)

Following the same line as in Eq. (3.3) we can say that a tester {Πi} is informationally complete
when

Span{ΠT
i } = L(⊗2N−2

k=1 Hk) (4.2)

The following result proves that informationally complete testers actually exist

Theorem 4.1 (informationally complete quantum testers) Let {Pi, Pi ∈ L(⊗2N−2
k=1 Hk)} be

an informationally complete POVMs. Then the tester Πi = (d1d2 · · · d−1
2N−2P

T
i is information-

ally complete.

Proof. SincePi is informationally complete we have Span{Pi} = Span{ΠT
i } = L(⊗2N−2

k=1 Hk).
Then the set Πi is informationally complete. Moreover

∑
i Πi = (d1d2 · · · d2N−2)−1I and

clearly (d1d2 · · · d2N−2)−1I satisfies Eq. (2.60). �
The condition that {ΠT

i } span the whole L(⊗2N−2
k=1 Hk) can be relaxed if we know that the

Quantum Network R lies in a subspace A of L(⊗2n
i=kHk). A relevant case is the one in which

we know that R is a deterministic network; in this case the set {Πi} is required to span only the
subspace D spanned by deterministic combs D := Span{R|R satisfies Eq. (2.60)}.

If {Πi} is an informationally complete tester the set {|Πi〉〉} is a frame and we can write the
expansion

|T 〉〉 =
∑

i

〈〈∆i|T 〉〉|Πi〉〉 (4.3)

where we introduced the dual |∆i〉〉. It is then straightforward to generalize Eq. (3.18)

η =
∑

i

〈〈∆i|G|∆i〉〉〈〈RS |Πi〉〉. (4.4)

where we introduced an ensemble of quantum network S := {Rn, pn} and a weighted set of
observables G := {Tm, qn}, and we defined RS =

∑
n pnRn, G =

∑
m qm|Tm〉〉〈〈Tm|.
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If Rn ∈ A for all n it is possible to write an analogous of Eq. (3.19)

η =
∑

i

〈〈∆i|QAGQA|∆i〉〉〈〈RS |QA|Πi〉〉 (4.5)

where QA is the projector on VA (|Rn〉〉 ∈ VA for all n).
The analogy between Eqs. (4.4,4.5) and Eqs. (3.18,3.19) tells us that the optimization of

Quantum state tomography and the optimization of Quantum network tomography consist in
minimizing the same figure of merit; the only difference is that {Πi} is tester instead of a POVM
and it must satisfy the constraint (2.70).

4.1 Optimal quantum tomography for states, effects and transformation

In this section we will show how to perform the optimization of quantum tomographic setups for
(finite-dimensional) states, channels and effects, according to the figure of merit defined in Eqs.
(4.4,4.5). As we pointed out in Section 3.1, optimizing quantum tomography can be divided
in two main steps; the first optimization stage involves a fixed detector, and only regards the
data processing, namely the choice of the dual ∆i used to determine the expansion coefficients
f(i, T ) for a fixed T . As we will prove in the following, the optimal dual ∆i is independent of
T , and only depends on the ensemble S. The second stage consists in optimizing the detector,
which is represented by a POVMs for the case of state tomography and by a Quantum 2-tester
when the more general case of transformation is concerned.

Remark 4.1 It is worth noting that the optimization of the 2-tester covers both the choice of the
best input state for the transformation and the choice of the best final measurement. Even if at a
first sight one could think to carry this two optimization separately, thanks to the general theory
developed in Chapter 2, they can be rephrased as a single optimization problem over a set of
suitably normalized positive operators.

4.1.1 Optimization of data processing

In this section we provide the optimization of the dual frames (i.e. of the data processing) for the
general case of quantum networks; this derivation is new and is a generalization of the one used
in [47].

Let us fix the tomographing device, which is described by the frame |Πi〉〉, and let us minimize
Eq. (4.4) over the possible data processing strategies, i.e. over all the possible duals {|∆i〉〉}. We
notice that at this stage it is irrelevant whether Πi is a quantum tester or a POVM. Let us introduce
the operator

X =
∑

i

|Πi〉〉〈〈Πi|
〈〈RS |Πi〉〉

(4.6)

Since |Πi〉〉 is a frame, F =
∑

i |Πi〉〉〈〈Πi| is invertible and then also X is invertible. We now
introduce the set {|∆̃i〉〉} defined as follows:

|∆̃i〉〉 := X−1 |Πi〉〉
〈〈RS |Πi〉〉

. (4.7)
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It is easy to verify that {|∆̃i〉〉} is a dual:

∑
i

|∆̃i〉〉〈〈Πi| = X−1
∑

i

(
|Πi〉〉〈〈Πi|
〈〈RS |Πi〉〉

)
= X−1X = I. (4.8)

Before proving that {|∆̃i〉〉} is the optimal dual we need to prove the following lemma

Lemma 4.1 Let {|Πi〉〉} be a frame and {|∆̃i〉〉} be defined as in Eq. (4.7). Then, for any dual
{|∆i〉〉} we have

∑
i

〈〈RS |Πi〉〉|∆̃i〉〉〈〈Ki| = 0 (4.9)

where |Ki〉〉 = |∆i〉〉 − |∆̃i〉〉.

Proof. For any dual |∆i〉〉 we have
∑

i |Πi〉〉〈〈∆i| = I . Then, using Eq. (4.7) we have

∑
i

〈〈RS |Πi〉〉|∆̃i〉〉〈〈Ki| =
∑

i

〈〈RS |Πi〉〉|∆̃i〉〉〈〈∆i| −
∑

i

〈〈RS |Πi〉〉|∆̃i〉〉〈〈∆̃i| =

= X−1
∑

i

|Πi〉〉〈〈∆i| − X−1
∑

i

|Πi〉〉〈〈Πi|
〈〈RS |Πi〉〉

X−1 = X−1 −X−1XX−1 = 0

�

Theorem 4.2 (Optimal dual) Let {|Πi〉〉} be a frame and {|∆̃i〉〉} be defined as in Eq. (4.7).
Then, for any dual {|∆〉〉} we have

∑
i

〈〈∆i|G|∆i〉〉〈〈RS |Πi〉〉 >
∑

i

〈〈∆̃i|G|∆̃i〉〉〈〈RS |Πi〉〉 (4.10)

i.e. the dual {|∆̃i〉〉} minimizes Eq. (4.4)

Proof. From Lemma 4.1 we have:

0 = Tr

[
G

(∑
i

〈〈RS |Πi〉〉|∆̃i〉〉〈〈Ki|

)]
=
∑

i

〈〈Ki|G|∆̃i〉〉〈〈RS |Πi〉〉 =

=
∑

i

〈〈∆̃i|G|Ki〉〉〈〈RS |Πi〉〉.
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It is now easy to verify that∑
i

〈〈∆i|G|∆i〉〉〈〈RS |Πi〉〉 =
∑

i

(〈〈∆̃i|+ 〈〈Ki|)G(|∆̃i〉〉+ |Ki〉〉)〈〈RS |Πi〉〉 =

=
∑

i

〈〈∆̃i|G|∆̃i〉〉〈〈RS |Πi〉〉+
∑

i

〈〈∆̃i|G|Ki〉〉〈〈RS |Πi〉〉+

+
∑

i

〈〈Ki|G|∆̃i〉〉〈〈RS |Πi〉〉+
∑

i

〈〈Ki|G|Ki〉〉〈〈RS |Πi〉〉 =

=
∑

i

〈〈∆̃i|G|∆̃i〉〉〈〈RS |Πi〉〉+
∑

i

〈〈Ki|G|Ki〉〉〈〈RS |Πi〉〉 >

>
∑

i

〈〈∆̃i|G|∆̃i〉〉〈〈RS |Πi〉〉

�

Corollary 4.1 If |∆i〉〉 is the optimal dual Eq. (4.4) can be rewritten as:

η =
∑

i

〈〈∆i|G|∆i〉〉〈〈RS |Πi〉〉 = Tr[X−1G] (4.11)

where X was defined in Eq. (4.6).

Proof. By making use of Eq. (4.7) we have:

∑
i

〈〈∆i|G|∆i〉〉〈〈RS |Πi〉〉 = Tr

[(∑
i

|∆i〉〉〈〈∆i|〈〈RS |Πi〉〉

)
G

]
=

Tr

[(
X−1

∑
i

|Πi〉〉〈〈Πi|
〈〈RS |Πi〉〉

X−1

)
G

]
= Tr

[
X−1G

]

Remark 4.2 It is worth noting that the optimal dual does not depend on the set of the observ-
ables {Tm, qm}. On the other hand, the optimal dual depends on the ensemble {Rn, pn} through
RS that appears in the definition of X .

Remark 4.3 We derived the optimal dual for the case in which the ensemble {Rn} spans the
whole L(⊗2N−2

k=1 Hk). When we consider the case Rn ∈ A for all n, the inverse of X becomes
the inverse on its support and Eq. (4.11) becomes

η = Tr[X−1QAGQA]. (4.12)

4.1.2 Optimization of the setup

In this section we address the problem of the optimization of the tester {Πi} that represents
the experimental setup performing the measurement process on the unknown device we want
to tomograph. We will analyze the case in which the unknown device is a Quantum Operation
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R : L(H0) → L(H1) represented by its Choi operator R ∈ L(H0⊗H1); within this framework
the experimental setup is represented by a Quantum 2-tester Πi ∈ L(H0 ⊗H1)

|ρ〉〉
?>
89

0
R

1

Pi

=<
:;A︸ ︷︷ ︸

Πi . (4.13)

We notice that the special case dim(H0) = 1 corresponds to tomography of states while dim(H1)
= 1 corresponds to tomography of effects. In order to avoid a cumbersome notation we will per-
form the optimization for the case dim(H0) = dim(H1) = d; however, the generalization to the
case dim(H0) 6= dim(H1) is straightforward. We now need to make two assumptions about the
ensemble of quantum operations {Rn, pn} and the weighted set of observables {Tn, qn}:

• the average quantum operation is the maximally depolarizing channel RS(ρ) = I for any
ρ, whose Choi operator is RS = d−1I0 ⊗ I1;

• the weighted set G = {Tm, qm} of observables is such that
G =

∑
m qm|Tm〉〉〈〈Tm| = I01; this happens for example when the set {Tm} is an or-

thonormal basis, whose elements are equally weighted.

With this assumption Eq. (4.11) becomes

η = Tr[X−1] = Tr

(∑
i

d|Πi〉〉〈〈Πi|
Tr[Πi]

)−1
 (4.14)

We now prove that we can impose the covariance w.r.t. SU(d)×SU(d) on the tester. Let Πi be
the optimal quantum tester and ∆i the corresponding optimal dual; we define

Πi,U,V := (U0 ⊗ V1)Πi(U
†
0 ⊗ V †1 )

∆i,U,V := (U0 ⊗ V1)∆i(U
†
0 ⊗ V †1 ) (4.15)

where U0 ∈ L(H0), V1 ∈ L(H1) are unitary matrices with determinant equal to 1, i.e. they are
two instances of the defining representation of SU(d). It is easy to check that ∆i,U,V is a dual
of Πi,U,V ; in fact we have

∑
i

∫
dU dV |Πi,U,V 〉〉〈〈∆i,U,V | =

∫
dg dhWU,V

(∑
i

|Πi〉〉〈〈∆i|

)
W †

U,V

= d−1I ⊗ I (4.16)

where we definedWU,V ∈ L(H010′1′), WU,V = U0⊗V1⊗U∗0′⊗V ∗1′ . We now prove that Πi,U,V

and ∆i,U,V give the same value of η as Πi and ∆i:∫
dU dV

∑
i

d〈〈∆i,U,V |∆i,U,V 〉〉Tr[Πi,U,V ] =
∑

i

d〈〈∆i|∆i〉〉Tr[Πi] = η
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Because of this, we can w.l.o.g. optimize over the set of covariant testers; the condition
that the covariant tester is informationally complete w.r.t. the subspace of transformations to be
tomographed will be verified after the optimization.

Exploiting Theorem B.3 we have∫
dU dVΠi,U,V =

∫
dU dV (U ⊗ V )Πi(U† ⊗ V †) = I01

Tr[Πi]
d2

; (4.17)

A generic covariant tester is then obtained by Eq. (4.15), with operators Πi becoming “seeds” of
the covariant tester and now being required to satisfy only the normalization condition12∑

i

Tr[Πi] = d (4.18)

in such a way that∑
i

∫
dU dVΠi,U,V = d−1I01 (4.19)

satisfies the normalization (2.73). Because of the normalization (4.19) we have that |ρ〉〉 = 1√
d
|I〉〉

in Eq. (2.74) that is, 1√
d
|I〉〉 is the optimal input state for the quantum operations Rn.

With the covariant tester Eq. (4.14) becomes

η = Tr[X̃−1], (4.20)

where

X̃ =
∑

i

∫
dU dV

d|Πi,U,V 〉〉〈〈Πi,U,V |
Tr[Πi,U,V ]

=
∫

dU dV WU,V XW †
U,V . (4.21)

Applying Theorem B.3 and exploiting the decomposition of U ⊗U∗ (see Section B.3.5) we have

X̃ = P pp +AP qp +BP pq + CP qq, (4.22)

P pp = P p
00′ ⊗ P p

11′ P qp = P q
00′ ⊗ P p

11′

P pq = P p
00′ ⊗ P q

11′ P qq = P q
00′ ⊗ P q

11′
(4.23)

having posed P p
ab = d−1|I〉〉〈〈I|ab, P q

ab = Iab − P p
ab and

A =
Tr[XP qp]
Tr[P qp]

=
1

d2 − 1

{∑
i

Tr[(Tr1[Πi])2]
Tr[Πi]

− 1

}
,

B =
Tr[XP pq]
Tr[P pq]

=
1

d2 − 1

{∑
i

Tr[(Tr0[Πi])2]
Tr[Πi]

− 1

}
, (4.24)

C =
Tr[XP qq]
Tr[P qq]

=
1

(d2 − 1)2

{∑
i

dTr[Π2
i ]

Tr[Πi]
− (d2 − 1)(A+B)− 1

}
.

12this is the analogous of covariant POVM normalization in [1, 53]
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The identities in Eq. (4.24) can be obtained by making use of the identities (2.7) and (2.8)
We can now rewrite Eq. (4.20) as

Tr[X̃−1] = 1 + (d2 − 1)
(

1
A

+
1
B

+
(d2 − 1)

C

)
. (4.25)

Without loss of generality we can assume the operators {Πi} to be rank one. In fact, suppose
that Πi has rank higher than 1. Then it is possible to decompose it as Π =

∑
j Πi,j with

Πi,j rank 1. The statistics of Πi can be completely achieved by Πi,j through a suitable coarse
graining. For the purpose of optimization it is then not restrictive to consider rank one Πi, namely
Πi = αi|Ψi〉〉〈〈Ψi|01, with

∑
i αi = d and ||Ψi〉〉|2 = 1. Notice that all multiple seeds of this

form lead to testers satisfying Eq. (4.19). Since Πi = αi|Ψi〉〉〈〈Ψi|, exploiting Eq. (2.4) we have

Tr[(Tr0[αi|Ψi〉〉〈〈Ψi|01])2] = α2
i Tr[(ΨiΨ

†
i )

2] = α2
i Tr[Ψ†

iΨiΨ
†
iΨi] =

α2
i Tr[(Ψ†

iΨiΨ
†
iΨi)T ] = α2

i Tr[(ΨT
i Ψ∗

i )
2] = Tr[(Tr1 αi|Ψi〉〉〈〈Ψi|)2] ⇒ A = B

Tr[(αi|Ψi〉〉〈〈Ψi|)2] = α2
i Tr[|Ψi〉〉〈〈Ψi|)2] = α2

i ⇒ C =
d2 − 1
1− 2A

(4.26)

Eq. (4.25) becomes then

η = Tr[X̃−1] = 1 + (d2 − 1)
(

2
A

+
(d2 − 1)2

1− 2A

)
(4.27)

where

0 6 A =
1

d2 − 1

(∑
i

αi Tr[(ΨiΨ
†
i )

2]− 1

)
6

1
d+ 1

<
1
2

. (4.28)

Since η is a differentiable function of A, the minimum can be determined by deriving Eq. (4.27)
with respect to A, obtaining

A =
1

d2 + 1
; (4.29)

the corresponding value of η is

η = d6 + d4 − d2. (4.30)

This bound is achieved by a single seed Π0 = d|Ψ〉〉〈〈Ψ|, with

Ψ = [d−1(1− β)I + β|ψ〉〈ψ|] 1
2 (4.31)

where β = [(d+ 1)/(d2 + 1)]1/2 and |ψ〉 is any pure state; the optimal tester is then

Π0,U,V = (U ⊗ V )d|Ψ〉〉〈〈Ψ|(U† ⊗ V †) (4.32)

1√
d
|I〉〉

?>
89

0
Rn

1

dΠ0,U,V

=<
:;A
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We now have to verify that the set Π0,U,V is informationally complete. Exploiting Th. B.3 we
have that

F =
∫

dU dV |Π0,U,V 〉〉〈〈Π0,U,V | =
∫

dU dVWU,V d
2|Ψ〉〉|Ψ〉〉〈〈Ψ|〈〈Ψ|W †

U,V =

=
⊕

µ,ν∈{p,q}

Iµν ⊗
Tr[|Ψ〉〉|Ψ〉〉〈〈Ψ|〈〈Ψ|Pµν ]

Tr[Pµν ]
. (4.33)

From the definition of Ψ given in Eq. (4.31) we have that Tr[|Ψ〉〉|Ψ〉〉〈〈Ψ|〈〈Ψ|Pµν ] 6= 0 for all
ν, µ and thus F is invertible.

We now consider two relevant cases in which Rn ∈ V ⊆ L(H01):

• channels: C = Span{R ∈ L(H01)|Tr1[R] = I0} = {R ∈ L(H01)|Tr1[R] = λI0, λ =
d−1 Tr[R] ∈ C};

• unital channels: U = Span{R ∈ C|Tr0[R] = I1}= {R ∈ L(H01)|Tr0[R] = λI1,Tr1[R]
= λI0, λ = d−1 Tr[R] ∈ C}.

It is easy to prove that

VC := {|R〉〉|R ∈ C} = Ker(P qp) (4.34)

exploiting Eq. (2.7) and Eq. (2.8):

P qp|R〉〉 =
(
I00′ −

|I〉〉〈〈I|00′
d

)
⊗ |I〉〉〈〈I|11′

d
|R〉〉010′1′ =

1
d
|Tr1[R]〉〉00′ |I〉〉11′ −

Tr[R]
d2

|I〉〉00′ |I〉〉11′ = 0 ⇔ Tr1[R] =
Tr[R]
d

I0. (4.35)

In a similar way we have

(P qp + P pq)|R〉〉 =
1
d
|I〉〉00′ |Tr0[R]〉〉11′ +

1
d
|Tr1[R]〉〉00′ |I〉〉11′ − 2

Tr[R]
d2

|I〉〉00′ |I〉〉11′

=
1
d

((
Tr1[R]− Tr[R]

d
I

)
0

⊗ I1 + I0 ⊗
(

Tr0[R]− Tr[R]
d

I

)
1

)
⊗ I0′1′ |I〉〉010′1′ =

= 0 ⇔
(

Tr1[R]− Tr[R]
d

I

)
0

⊗ I1 + I0 ⊗
(

Tr0[R]− Tr[R]
d

I

)
1

= 0 ⇔

⇔ Tr1[R] =
Tr[R]
d

I0, Tr0[R] =
Tr[R]
d

I1 (4.36)

that is

VU = Ker(P qp + P pq). (4.37)

From Eq. (4.34) and Eq. (4.37) it follows

QC = P pp + P pq + P qq QU = P pp + P qq. (4.38)
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Inserting Eq. (4.38) into Eq. (4.12) we have

ηC = Tr[X̃−1QC ] = Tr[P pp +B−1P qp + C−1P qq]

ηU = Tr[X̃−1QU ] = Tr[P pp + C−1P qq] (4.39)

(X̃−1 is the inverse on the support of X ). Reminding Eq. (4.26) the two figures of merit become

ηC = 1 + (d2 − 1)
(

1
A

+
(d2 − 1)2

1− 2A

)
ηU = 1 + (d2 − 1)

(
(d2 − 1)2

1− 2A

)
. (4.40)

and the minima can be determined by derivation with respect to A thus leading to

ηC = d6 + (2
√

2− 3)d4 + (5− 4
√

2)d2 + 2(
√

2− 1) for A = 1√
2(d2−1)+2

ηU = (d2 − 1)3 + 1 for A = 0.

The same results for quantum operation and for unital channels have been obtained in [54] in
a different framework. The optimal tester for the two cases under examination have the same
structure as in Eq. (4.32) where now in Eq. (4.31) we have β = [(d+ 1)/(2 +

√
2(d2 − 1))]1/2

for channels and β = 0 for unital channels. Since β = [(d + 1)/(2 +
√

2(d2 − 1))]1/2 implies
Tr[|Ψ〉〉|Ψ〉〉〈〈Ψ|〈〈Ψ|Pµν ] 6= 0, we have that optimal tester for channel tomography spans the
whole L(H01) (i.e. F is still invertible on the whole H010′1′ ).

In the case of unital channel we have |Ψ〉〉 = d−
1
2 |I〉〉 that leads to

Tr[|I〉〉|I〉〉〈〈I|〈〈I|Pµν ] = 0 if ν 6= µ. The frame operator becomes

F =
∫

dU dV |Π0,U,V 〉〉〈〈Π0,U,V | =
∫

dU dVWU,V d
2|Ψ〉〉|Ψ〉〉〈〈Ψ|〈〈Ψ|W †

U,V =

=
∫

dU dVWU,V |I〉〉|I〉〉〈〈I|〈〈I|W †
U,V = P pp + P qq. (4.41)

Since Supp(F ) = Supp(P pp + P qq) = VU , the optimal tester spans the whole U as required.
The same procedure can be carried on when the operatorG in Eqs. (4.11) (4.12) has the more

general form G = g1P
pp + g2P

qp + g3P
pq + g4P

qq , where P νµ are the projectors defined in
(4.22). In this case Eq. (4.25) becomes

Tr[X̃−1G] = g1 + (d2 − 1)
(
g2
A

+
g3
B

+
(d2 − 1)g4

C

)
, (4.42)

which can be minimized along the same lines previously followed. G has this form when opti-
mizing measuring procedures of this kind: i) preparing an input state randomly drawn from the
set {UρU†g}; ii) measuring an observable chosen from the set {UhAU

†
h}.

With the same derivation, but keeping dim(H0) 6= dim(H1), one obtains the optimal to-
mography for general quantum operations. The special case of dim(H0) = 1 (one has P q

00′ =
0, P p

00′ = 1 in Eq. (4.22)) corresponds to optimal tomography of states and gives

η =
1
d

+
d2 − 1
A

(4.43)
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with A = 1
d2−1

(∑
i

d Tr[P 2
i ]

Tr[Pi]

)
. If we assume w.l.o.g that Pi is rank one we get A = d(d − 1)

and the optimal value of η is

η =
1
d

(
d3 − d2 + 1

)
(4.44)

(compare with Ref. [47]). This bound is simply achieved by a covariant POVM

P0,V = V d |ψ〉 〈ψ|V † 〈ψ|ψ〉 = 1 (4.45)

 '!&ρn
1 2534P0,V

where |ψ〉 is any pure state.
On the other hand the case dim(H1) = 1 (P q

11′ = 0, P p
11′ = 1) gives the optimal tomography

of effects. The optimal value of η turns out to be

η =
(
d3 − d2 + 1

)
. (4.46)

and is achieved by a covariant tester {Π0,U} through following scheme

Π0,U = U |ψ〉 〈ψ|U† 〈ψ|ψ〉 = 1 (4.47)

1√
d

?>
89

1 "%#$E

1′ 2534dΠ0,U

where |ψ〉 is any pure state. It is worth noting that both in the case of effects and in the case
of states the derivation of the optimal tester is the same. The only difference is that for states
we assume the average state ρS equal to I/d,while for effects we assumed ES = I . The as-
sumption ES =

∑
n pnEn = I can be interpreted by saying that we are considering a set of

effects {Ẽn = pnEN} that form a POVM; from this perspective the scheme (4.47) represents
the optimal tomography of a POVM.

4.1.3 Realization scheme for the optimal tomography

In this section we illustrate a possible realization scheme for the optimal tomography of transfor-
mation in Eq. (4.32) that can be useful for an experimental realization. The first step is to prove
the equality

1

dΠ0,U,V

=<
:;A

= |Ψ〉〉

?>

89

B1

d|U〉〉〈〈U |
=<:;1

A

B2 d|V 〉〉〈〈V |
=<:;

: (4.48)
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we have

|Ψ〉〉〈〈Ψ|B1B2 ∗ d|U〉〉〈〈U |B11 ∗ d|V 〉〉〈〈V |B2A = U ⊗ V d2|Ψ〉〉〈〈Ψ|U† ⊗ V † = dΠ0,U,V

(4.49)

Exploiting a result proved in [55] we also have that the continuous measurement |U〉〉〈〈U | can be
realized by applying a random unitary before a (discrete) Bell measurement, that is

1

d|U〉〉〈〈U |
=<
:;A

=

1
U

Bell
=<
:;A

: (4.50)

Combining the scheme (4.50) with the scheme (4.48) we get:

|Ψ〉〉

?>

89

B1
U

Bell
=<
:;

1
d |I〉〉

?>
89

0
R

1

A

B2
V

Bell
=<
:;

. (4.51)

Referring to Eq. (4.51) the bipartite system carrying the Choi operator of the transformation is
indicated with the labels 1 and A. We prepare a pair of ancillary systems B1 and B2 in the joint
state |Ψ〉〉〈〈Ψ|, then we apply two random unitary transformations U and V to B1 and B2, finally
we perform a Bell measurement on the pair 1 B1 and another Bell measurement on the pair
A B2.

The scheme proposed is feasible using e. g. the Bell measurements experimentally realized
in [56].
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5 Cloning a Unitary Transformation

The no-cloning theorem [57] is one of the main results in Quantum Information, and it is the
basis of the security of quantum cryptography. Although the cloning of quantum states has been
extensively studied [58,59,60,61] the cloning of transformation is quite a new topic. This chapter
reviews Ref. [26] where the cloning of a quantum transformation was introduced and the optimal
network that clones a single use of a unitary transformation was derived. Cloning a single use of
a transformation T means exploiting a single use of T inside a quantum network, in such a way
that the overall transformation is as close as possible to two uses of T

0

C1

1
T

2

C2

3

4 A1 3′︸ ︷︷ ︸
'

0
T

3

4
T

3′

R

(5.1)

Cloning quantum transformations can be used for copying quantum software with a limited
number of uses, and in other informational contexts, e.g. in the security analysis of multi-round
cryptographic protocols with encoding on secret transformations. We can consider for example
this alternative version of the BB84 [62] protocol. Bob prepares the maximally entangled state
2−

1
2 |I〉〉 of two qubits and sends one half of the system to Alice. Alice perform either a unitary

from the set A1 = {σµ} (where σ0 = I and σ1,2,3 are the three Pauli matrices) or a unitary
from the rotated set A2 = {Uσµ}, where U is a unitary in SU(2). Then Alice sends back is
portion of the system to Bob that finally measures either the Bell basis {2− 1

2 |σµ〉〉} or the rotated
basis {2− 1

2 |Uσµ〉〉}. After they publicly announce their choice of basis and discarded the cases
in which they took different choices. they use the values of µ as a secret key. A natural attack to
this protocol is the quantum cloning (see Fig. 5.1).

Cloning an undisclosed transformation is a challenging task not only from a quantum-theory
perspective but even classically. Indeed, the following result holds:

Theorem 5.1 (no-cloning for transformations) Let O1 and O2 be two quantum or classical
transformations and let p 6 1/2 denote the minimum of the worst case error probability in
discriminating between them. ThenO1 andO2 cannot be perfectly cloned by a single use unless
p = 0 (perfect discrimination) or p = 1/2 (i.e. O1 = O2)

Proof. The proof is simple: if perfect cloning is possible, we can get three copies, perform three
times the minimum error discrimination, and use majority voting to decide the most likely be-
tweenO1 andO2 with worst case error probability p′ = p2(3−2p). Since p is the minimum error
probability, it must be p ≤ p′, whose acceptable solutions are only p = 0 and p = 1/2. Vicev-
ersa, if O1 and O2 can be perfectly distinguished (i.e. p = 0), then they can be perfectly cloned
by a classical strategy based on discrimination and subsequent re-preparation of the correspond-
ing transformation. This result can be generalized to an arbitrary number of transformations:

Corollary 5.1 Let {Oi}, i = 1, . . . , N a set of transformations. Then perfect cloning is possible
iff either Oi = Oj for all i, j or {Oi}, i = 1, . . . , N are perfectly discriminable by a single use
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−
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2 σµU
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~

Eve
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c)

to Alice

=

=

Eve Eve

Bob

a) Alice
b)

Figure 5.1. Alternative version of the BB84 protocol with a possible eavesdropping. a) Bob prepares the
state 2−

1
2 |I〉〉 and send one half of it to Alice. Eve prepares the same state as Bob, intercepts the portion of

system addressed to Alice and performs the channel C1. Then Eve send one half of the outcome to Alice.
b) Alice applies Uσµ to her portion of system and send it back to Bob. c) Eves intercepts the portion of
system addressed to Bob and performs the channel C2; if the quantum network C1 ? C2 is a cloning network
Eve obtains a state which is the same that Bob has and that is as close as possible to 2−

1
2 |Uσµ〉〉.

Remark 5.1 It is worth noting that this result for N > 2 is non trivial also for classical trans-
formations. Consider the following permutations of the set {1, 2, 3, 4} 13

σ1 =
(

1 2 3 4
2 1 3 4

)
, σ2 =

(
1 2 3 4
1 2 4 3

)
, σ3 =

(
1 2 3 4
1 2 3 4

)
; (5.2)

there is no way to perfectly discriminate among them by evaluating the permutations on a single
element.

The existence of a no-cloning theorem immediately rises the problem of finding the opti-
mal cloners: In the following section we will derive the optimal network which produces two
approximate copies of a completely unknown unitary transformation U ∈ SU(d).

13we use the following notation: the first row contains the elements {1, 2, 3, 4} , and the second row contains the
images under the permutation of the elements above.



Cloning a Unitary Transformation 321

5.1 Optimal cloning of a Unitary transformation

Exploiting the general theory developed in chapter 2 the cloning network R (see Eq. (5.1) ) can
be represented by means of its Choi operator R that has to satisfy the constraint (2.60), that is

Tr35[R] = I2 ⊗R(1) Tr1[R(1)] = I04. (5.3)

When we insert the unitary channel U in the network R we obtain the network

CU := R ? U (5.4)

whose Choi operator is

CU = R ∗ |U〉〉〈〈U | = 〈〈U∗|R|U∗〉〉 (5.5)

As a figure of merit we use the channel fidelity (see Appendix A) between CU and and the two
uses U ⊗ U of unitary channel, averaged over all the unitaries in SU(d):

F :=
1
d4

∫
SU(d)

dUF(CU ,U ⊗ U) =
1
d4

∫
SU(d)

dU〈〈U |〈〈U |CU |U〉〉|U〉〉 = (5.6)

=
1
d4

∫
SU(d)

dU〈〈U |〈〈U |〈〈U∗|R|U∗〉〉|U〉〉|U〉〉.

The following Lemma exploits the symmetry of Eq. (5.6) and simplifies the structure of the
optimal network:

Lemma 5.1 The optimal cloning network maximizing the channel fidelity (5.6) can be assumed
without loss of generality to satisfy the commutation relation

[R, V ⊗2
04 ⊗ V ∗1 ⊗W2 ⊗W ∗⊗2

35 ] = 0 ∀V,W ∈ SU(d) . (5.7)

Proof. Let R be optimal. Then consider the average

R =
∫

dV dW (V ⊗2
04 ⊗ V ∗1 ⊗W2 ⊗W ∗⊗2

35 )R(V ⊗2
04 ⊗ V ∗1 ⊗W2 ⊗W ∗⊗2

35 )†; (5.8)

exploiting the properties of the Haar measures (see Definition B.7) we have

F =
1
d4

∫
dU〈〈U |⊗2〈〈U∗|R|U∗〉〉|U〉〉⊗2 =

=
1
d4

∫
dU〈〈V UW †|⊗2〈〈V ∗U∗WT |R|V ∗U∗WT 〉〉|V UW †〉〉⊗2 =

=
1
d4

∫
dU〈〈U |⊗2〈〈U∗|R|U∗〉〉|U〉〉⊗2 (5.9)
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that is R and R give the same value of F . From Theorem B.3 we have that R satisfies Eq. (5.7).
Finally, we verify that R satisfies Eq. (5.3):

Tr35[R] =

= Tr35

[∫
dV dW (V ⊗2

04 ⊗ V ∗1 ⊗W2 ⊗W ∗⊗2
35 )R(V ⊗2

04 ⊗ V ∗1 ⊗W2 ⊗W ∗⊗2
35 )†

]
=

=
∫

dV dW (V ⊗2
04 ⊗ V ∗1 ⊗W2) Tr35 [R] (V ⊗2

04 ⊗ V ∗1 ⊗W2) =

=
∫

dV dW (V ⊗2
04 ⊗ V ∗1 ⊗W2)I2 ⊗R(1)(V ⊗2

04 ⊗ V ∗1 ⊗W2) =

= I2 ⊗
∫

dV (V ⊗2
04 ⊗ V ∗1 )R(1)(V ⊗2

04 ⊗ V ∗1 ) = I2 ⊗R
(1)

(5.10)

Tr1[R
(1)

] = Tr1

[∫
dV (V ⊗2

04 ⊗ V ∗1 )R(1)(V ⊗2
04 ⊗ V ∗1 )

]
=

=
∫

dV V ⊗2
04 Tr1

[
V ∗1 R

(1)V ∗1

]
V ⊗2

04 =
∫

dV V ⊗2
04 Tr1

[
R(1)

]
V ⊗2

04 =

=
∫

dV V ⊗2
04 I04V

⊗2
04 = I04 (5.11)

�
Exploiting Eq. (5.7) the figure of merit (5.6) becomes:

F =
1
d4
〈〈I|〈〈I|〈〈I|R|I〉〉|I〉〉|I〉〉. (5.12)

Thanks to the commutation relation (5.7), we can apply the decomposition (B.51) to the Choi
operator R:

R =
∑

ν,µ∈S

∑
i,j,k,l=±

T ν,i,j ⊗ Tµ,k,l ⊗ rik,jl
νµ (5.13)

where we notice that (rik,jl
νµ ) is a non negative matrix for any ν, µ.

The decomposition (B.44) induces the following identity

H⊗H⊗H = Hα+ ⊕Hα− ⊕Hβ− ⊕Hγ− (5.14)

that leads to

|I〉〉03|I〉〉45|I〉〉12 = |I〉〉(041)(352) =

= (Tα,+,+ ⊕ Tα,−,− ⊕ P β− ⊕ P γ−)⊗ I352|I〉〉(041)(352) =

= |Tα,+,+〉〉+ |Tα,−,−〉〉+ |T β,+,+〉〉+ |T γ,−,−〉〉 (5.15)
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Inserting Eq. (5.15) into Eq. (5.12) and reminding the decomposition (5.13) we have

F =
1
d4
〈〈I|〈〈I|〈〈I|R|I〉〉|I〉〉|I〉〉 =

=
1
d4

∑
i′

∑
ν′

〈〈T ν′,i′,i′ |

∑
ν,µ

∑
i,j,k,l=±

T ν,i,j ⊗ Tµ,k,l ⊗ rik,jl
νµ

∑
j′

∑
µ′

|Tµ′,j′,j′〉〉 =

=
1
d4

∑
ν

∑
i,j

dνr
ii,jj
νν (5.16)

where dν := dim(Hν).
We now express the normalization constraint in terms of the rik,jl

νµ . Taking the trace overH35

in Eq. (5.7) we get:

0 = [Tr35[R], V ⊗2
04 ⊗ V ∗1 ⊗W2] = [I2 ⊗R(1), V ⊗2

04 ⊗ V ∗1 ⊗W2] ⇒

⇒ [R(1), V ⊗2
04 ⊗ V ∗1 ] ⇒ R(1) := S =

∑
ν

∑
i,j

T ν,i,jsi,j
ν (5.17)

Reminding the decomposition (B.33) we have:

[Tr1[S], V ⊗2
04 ] = 0 ⇒ Tr1[S] = t+P

+ ⊕ t−P
− (5.18)

Comparing Eq. (5.17) and Eq. (5.18) we get:

Tr1[S] = Tr1[
∑

ν

∑
i,j

T ν,i,jsi,j
ν ] = t+P

+ ⊕ t−P
− ⇒

⇒ tidi =
∑

ν

dνs
i,i
ν i = ±. (5.19)

The normalization constraint Tr1[S] = I04 becomes then

Tr1[S] = t+P
+ ⊕ t−P

− = I04 ⇒ t+ = t− = 1 i = ±. (5.20)

Comparing now Eq. (5.17) with Eq. (5.13) we have

Tr35[R] = I2 ⊗ S ⇒ Tr35

R =
∑
ν,µ

∑
i,j,k,l

T ν,i,j ⊗ Tµ,k,l ⊗ rik,jl
νµ

 =

= I2 ⊗
∑

ν

∑
i,j

T ν,i,jsi,j
ν ⇒ si,i

ν =
∑

k

∑
µ

dµ

d
rik,ik
νµ (5.21)

Inserting Eq. (5.21) into Eq. (5.19) we obtain

tidi =
∑
νµ

∑
k

dν
dµ

d
rik,ik
νµ . (5.22)
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The normalization (5.20) becomes then

ddi =
∑
νµ

∑
k

dνdµr
ik,ik
νµ (5.23)

We are now ready to derive the optimal cloner:

Theorem 5.2 (optimal cloning network) For the fidelity (5.16) the following bound holds:

F 6 (d+
√
d2 − 1)/d3. (5.24)

The bound (5.24) can be achieved by a network as in Eq. (5.1) with:

• C1 : L(H04) → L(H1A1) is given by:

C1(ρ) =
∑
i,j

Tr4[PiρPj ]⊗ |i〉〈j| (5.25)

• C2 : L(H2 A1) → L(H35) is given by:

C2(σ) =
∑
i,j

d√
didj

Pi [〈i|σ|j〉 ⊗ I5]Pj . (5.26)

where HA1 = C2 and {|+〉 , |−〉} is an orthonormal basis of HA1 .
The resulting channel CU = R ? U is then given by

C′U (ρ) = C2 ? (U ⊗ IA1) ? C1(ρ)

=
∑
i,j

d√
didj

Pi

[
U Tr0E [PiρPj ]U† ⊗ I

]
Pj .

(5.27)

Proof. Consider the matrix (ai,k) :=
(∑

ν r
ik,ik
νν

)
: (ai,k) is non negative and the bound ai,k 6√

ai,iak,k holds. Then we have

F 6
1
d4

∑
i

√∑
ν

dνrνν
ii,ii

2

=
1
d4

(∑
i

√∑
ν

d2
ν

dν
rνν
ii,ii

)2

(5.28)

where ν labels the irreducible subspace of U ⊗U ⊗U∗ with minimum dimension, that is ν = α.
Exploiting the constraint (5.23) into Eq. (5.28) we get

F 6
1
d4

(∑
i

√
1
dα

∑
ν

d2
νr

νν
ii,ii

)2

6

6
1
d4

(∑
i

√
1
dα
did

)2

=
1
d4

(
√
d+ +

√
d−)2 (5.29)

Direct computation of Eq. (5.6) with CU as defined in Eq. (5.27) proves the achievability. �
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5.2 The optimal cloning network

In this section we discuss the inner structure of the optimal cloning network R = C2 ? C1. We
can extend C1 to a unitary interaction between the input systems H0,H4 and the memory Ha1 :
C1(ρ) = Tr0E [V (ρ ⊗ |0〉〈0|)V †], where |0〉 = (|+〉 + |−〉)/

√
2 ∈ M, and V is the controlled-

swap V = I ⊗ |+〉〈+|+ S ⊗ |−〉〈−|, S|φ〉|ψ〉 = |ψ〉|φ〉. Such an extension has a very intuitive
meaning in terms of quantum parallelism: for bipartite input |Ψ〉04 the single-system unitary U is
made to work on bothB andE by applying it to the superposition |Ψ〉04+S|Ψ〉04 and discarding
E.

On the other hand the channel C2 can be interpreted as an extension of optimal cloning of pure
states [59]: if C2 receives the state |ψ〉2|+〉A1 as an input, the output is C2(|ψ〉〈ψ| ⊗ |+〉〈+|) =
d/d+ [P+(|ψ〉〈ψ| ⊗ I)P+], which are indeed two optimal clones of |ψ〉. This means that realiz-
ing the optimal cloning of unitaries is a harder task than realizing the optimal cloning of states:
an eavesdropper that is able to optimally clone unitaries must also be able to optimally clone pure
states. This suggests that cryptographic protocols based on gates (such the alternativeBB84 pro-
tocol described at the beginning of the chapter) might be harder to attack than protocols based
on states.

Remark 5.2 It is worth notice that the optimal cloning network that we derived in the previous
sections, is not the optimal attack to the protocol in Fig. 5.1. We derived the optimal cloning
network for an arbitrary unitary of SU(d); an optimization for the restricted set A1 ∩ A2 of
unitaries involved in the protocol could in principle achieve better performances.
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6 Quantum learning of a unitary transformation

Quantum memory is a key resource for quantum information and computation and great exper-
imental efforts are in operation in order to realize it [63, 64, 65]. A quantum memory can be
used to store an unknown transformation; in this way Alice can transmit the transformation to
a distant Bob avoiding to send the physical device; Bob retrieves the transformation from the
quantum memory.

Quantum learning is an example of storing and retrieving of a transformation. Consider
the scenario in which Alice puts at Bob’s disposal N uses of a black box implementing an
unknown unitary transformation U = U · U†. Today Bob is allowed to exploit such uses at
his convenience, running an arbitrary quantum circuit that makes N calls to Alice’s black box.
Tomorrow, however, Alice will withdraw the black box and ask Bob to reproduce U on a new
input state |ψ〉 unknown to him. Alice will then test the output produced by Bob, and assign
a score that is as higher as the output is closer to U |ψ〉. More generally, Alice can ask Bob to
reproduce U more than once, i.e. to produce M > 1 copies of U .

Let us focus first on the case in which a single use of the black box is available today (N = 1)
and a single copy has to be produced tomorrow (M = 1). The only thing Bob can do today is
to apply the unknown unitary U to a known (generally entangled state) |Ψ〉〉 thus producing the
state

|ΨU 〉〉 := U ⊗ I|Ψ〉〉

|Ψ〉〉
?>
89

U
= |ΨU 〉〉

?>89
after that Bob can store the state |ΨU 〉〉 on a quantum memory. Tomorrow, when Alice will
provide the unknown state |ϕ〉, Bob can send both |ϕ〉 and |ΨU 〉〉 as input to a channel C whose
output state has to be as close as possible to U |φ〉:

0716|φ〉
C

|ΨU 〉〉
?>89

' 0716|φ〉 U .

When N > 1 uses of the black box are available, Bob has several option to encode the unknown
unitary into the state of the quantum memory: he can e.g. opt for a parallel strategy where U is
applied on N different systems, yielding

|ΨU 〉〉 = (U⊗N ⊗ I)|Ψ〉〉

|Ψ〉〉

?>

89

U
U

· · ·
U

= |ΨU 〉〉

?>

89
· · ·
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or for a sequential strategy where U is applied N times on the same system, generally alternated
with other known unitaries, yielding

|ΨU 〉〉 := (UVN−1 . . . V2UV1U ⊗ I)|Ψ〉〉

|Ψ〉〉
?>
89

U V1 U V2 · · · VN−1 U

· · ·
= |ΨU 〉〉

?>89 .

The most general storing strategy is described by a quantum network in which the N uses of the
transformation U are inserted (see also Fig. 2.7):

|ΨU 〉〉 := S ∗ |U〉〉〈〈U | ∗ · · · ∗ |U〉〉〈〈U |

|Ψ〉〉
?>
89

U
C1

U
C2

· · ·
CN−1

U
CN

· · ·︸ ︷︷ ︸ = |ΨU 〉〉
?>89 .

S

Quantum learning of a transformation can be seen as an instance of Quantum Programming
[9, 66, 67, 68, 69]: the retrieving channel is indeed an example of a programmable device that
uses the state |Ψ〉〉U as a program. The following result [9] tells us that a universal programmable
quantum channel with a finite dimensional program state, does not exists.

Theorem 6.1 (No Programming) There exists no universal programmable channel, that is a
quantum channel C : L(H0⊗HP ) → L(H1), where dim(H0) = dim(H1) = d and dim(HP ) <
∞, with the following property:

C(ρ⊗ σU ) = UρU† (6.1)

for all state ρ ∈ L(H0) and all unitaries U ∈ SU(d).

Proof. Consider an isometric dilation V of C and suppose that ρ is a pure state |ψ〉; we have

TrA[V (|ψ〉 〈ψ| ⊗ σU )V †] = U |ψ〉 〈ψ|U† (6.2)

Adding an auxiliary Hilbert space HP ′
∼= HP we have the identity

TrA′ [W |ψ〉 〈ψ| ⊗ |σ
1
2
U 〉〉〈〈σ

1
2
U |W

†] = TrAP ′ [V ⊗ IP ′(|ψ〉 〈ψ| ⊗ |σ
1
2
U 〉〉〈〈σ

1
2
U |)V

† ⊗ IP ′ ] =

= TrA[V (|ψ〉 〈ψ| ⊗ TrP ′ |σ
1
2
U 〉〉〈〈σ

1
2
U |)V

†] = TrA[V (|ψ〉 〈ψ| ⊗ σU )V †]

where we defined HA′ = HP ′ ⊗ HA and W = V ⊗ IP ′ ; then, w.l.o.g. we can consider a
pure program state |σ̃U 〉. Since U |ψ〉 〈ψ|U† is a pure state we must have W (|ψ〉 ⊗ |σ̃U 〉) =
U |ψ〉⊗ |τU 〉 for some pure state |τU 〉. First we prove that the state |τU 〉 does not depend on |ψ〉;
we have

〈σ̃U |σ̃U 〉〈ψ|ψ′〉 = (〈ψ| ⊗ 〈σ̃U |)W †W (|ψ′〉 ⊗ |σ̃U 〉) =

= 〈ψ| ⊗ 〈τU |U†U |ψ′〉 ⊗ |τ ′U 〉 = 〈τU |τ ′U 〉〈ψ|ψ′〉
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and so |τU 〉 = |τ ′U 〉 if if 〈ψ|ψ′〉 6= 0. On the other hand if 〈ψ|ψ′〉 = 0 we have

U 1√
2
(|ψ′〉+ |ψ〉)⊗ |τU 〉 = W ( 1√

2
(|ψ′〉+ |ψ〉)⊗ |σ̃U 〉) =

= W ( 1√
2
|ψ′〉 ⊗ |σ̃U 〉) +W ( 1√

2
|ψ〉 ⊗ |σ̃U 〉) =

= U 1√
2
|ψ′〉 ⊗ |τ ′U 〉+ U 1√

2
|ψ〉 ⊗ |τU 〉 ⇒ |τ ′U 〉 = |τU 〉 .

Now let U1 and U2 be two unitaries different up to a global phase; for arbitrary |ψ〉 we have

W |ψ〉 ⊗ |σ̃U1〉 = U1 |ψ〉 ⊗ |τU1〉
W |ψ〉 ⊗ |σ̃U2〉 = U2 |ψ〉 ⊗ |τU2〉 ;

if we take the scalar product of the previous two identities we get

〈σ̃U1 |σ̃U2〉 = 〈ψ|U†1U2 |ψ〉 〈τU1 |τU2〉.

If 〈τU1 |τU2〉 6= 0 we can write

〈σ̃U1 |σ̃U2〉
〈τU1 |τU2〉

= 〈ψ|U†1U2 |ψ〉

and since the left hand side of the equation does not depend on |ψ〉we have that also 〈ψ|U†1U2 |ψ〉
must not depend on |ψ〉. However, this is possible only if U†1U2 = λI for some λ ∈ C that
is U1 is equal to U2 up to a global phase which is contrary to the hypothesis. Then it must
be 〈τU1 |τU2〉 = 0 that implies 〈σ̃U1 |σ̃U2〉 = 0 that is, the programs of two distinct unitaries
must be orthogonal states; since there are infinite distinct unitaries in SU(d) we cannot have
dim(HP ) <∞. �

The case in which the program state σU is the output of a fixed quantum network in which N
uses of the unknown unitary U are inserted, corresponds to the learning scenario; since Theorem
6.1 proved that perfect programming is not possible, quantum learning can be realized only
approximately.14 That being so, the search for the optimal learning protocol deserves interest.

Moreover, we can think of quantum learning as an instance of quantum cloning of a trans-
formation as presented in the previous chapter15. In the learning case we have the additional
constraint that the N uses are provided before than the input states on which we want to apply
the M replicas. Let us focus on the N = 1,M = 2 case; the following two different scenarios

14Whether the optimal programming of unitaries coincides with the optimal Quantum Learning is still an open ques-
tion.

15Clearly this interpretation make sense only if the number of uses N is greater than the number of replicas M
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are possible:
0

C1

1
U

2

C2

3

0′ A1 3′︸ ︷︷ ︸
(6.3)

E
2

R

3

|Ψ〉〉
?>
89

0
U

1

C

2′ 3′

A1 M︸ ︷︷ ︸
(6.4)

L

The two networks in Eqs. (6.3) and (6.4) differ in their causal structure: in the learning
scheme the input state |ϕ〉 cannot influence the state |Ψ〉〉 which the unitary is applied to; on the
other hand, the general cloning scheme allows that the state |ϕ〉 can affect the input state of U .

As pointed out in Remark 2.6, different causal structures reflect into different normalization
of the Choi operators: for the the network E in Eq. (6.3) we have the constraint (see Eq. (5.3))

Tr33′ [E] = I2 ⊗ E(1) Tr1[E(1)] = I00′ , (6.5)

while for the learning scheme in Eq. (6.4) we have

Tr33′ [L] = I22′ ⊗ I1 ⊗ ρ Tr0[ρ] = 1, (6.6)

(ρ is the partial state of |Ψ〉〉).
It is easy to prove that the constraint (6.6) is stronger than the constraint (6.5). Suppose that

the operator E satisfies Eq. (6.6); then we have

Tr33′ [E] = I1 ⊗ (ρ0 ⊗ I22′) = I1 ⊗ E(1) Tr0[E(1)] = Tr0[ρ0 ⊗ I22′ ] = I22′ (6.7)

that coincides with Eq. (6.5) if we relabel 2 → 0, 1 → 2, 2′ → 0′ and 0 → 1.
This proves that the cloning scheme is more general than the learning scheme and contains

the latter as a special case. As a consequence we will show that the performances of the learning
network are indeed worse than the performances of the cloning network.

6.1 Optimization of quantum learning

In this section, based on Ref. [27] we derive the optimal quantum learning of an unknown unitary
randomly drawn from a group representation. The search of the optimal learning process can be
divided into two steps:

• optimizing the storing network S, that is the device that encodes the unknown transforma-
tion U into the state |ΨU 〉〉 of a quantum memory;
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ϕ 2N+2 2N+31 2 3 4
U U

S

RM

S RL =

Figure 6.1. The learning process is described by a quantum network L = S ? R in which the N uses of
U are plugged, along with the state |ϕ〉. The wires represent the input-output Hilbert spaces. The output of
the network S is stored in a quantum memory M , later used by the retrieving channel R

• finding the optimal retrieving channel C, that receives |ΨU 〉〉 and an unknown state |φ〉 as
input and emulates U applied to |φ〉.

An alternative to coherent retrieval is to estimate U , to store the outcome in a classical mem-
ory, and to perform the estimated unitary on the new input state. This incoherent strategy has the
double advantage of avoiding the expensive use of a quantum memory, and of allowing one to
reproduce U an unlimited number of times with constant quality. However, incoherent strategies
are typically suboptimal for the similar task of quantum cloning, and this would suggest that a
coherent retrieval achieves better performances. Surprisingly enough, we find that the incoherent
strategies already achieve the ultimate performance of quantum learning. We analyze the case in
which U is a completely unknown unitary in a group G, and we find that the performances of
the optimal retrieving machine are equal to those of the optimal estimation.

We will show that the solution has the following structure:

• apply the N of the unknown unitary in parallel on a suitable entangled state;

• estimate the unknown unitary by measuring the state of the quantum memory

• produce the estimated unitary M times where M is the number of replicas that are re-
quired.

6.1.1 Considered scenario: M = 1

We tackle the optimization of learning starting from the case M = 1.
Referring to Fig. 6.1, we label the Hilbert spaces of quantum systems according to the follow-

ing criterion: H2j−1 is the input of the j-th example of U , and H2j is the corresponding output.
We denote by Hi =

⊗N
j=1H2j−1 the Hilbert spaces of all inputs and by Ho =

⊗N
j=1H2j the

Hilbert spaces of all outputs of the N examples. Alice’s input state |ϕ〉 belongs to H2N+2, and
the output state finally produced by Bob belongs to H2N+3. All spaces Hj considered here are
d−dimensional, except the spaces H0 and H2N+1 which are one-dimensional, and are intro-
duced just for notational convenience.
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The Choi operator L ∈ L(Hi ⊗Ho ⊗H2N+2 ⊗H2N+3) of the learning network L satisfies
the normalization condition (2.60), that becomes

Tr2k−1[L(k)] = I2k−2 ⊗ L(k−1) k = 1, 2, . . . , N + 2 (6.8)

where L(N+2) = L, L(0) = 1, and L(k) ∈ L(Hj)2k−1
j=0 .

When we insert the N example in the learning board we obtain the network

CU = L ? U ? · · · ? U (6.9)

and then, according to Theorem 2.12, its Choi-Jamiołkowsky operator is given by

CU = L ∗ |U〉〉〈〈U |12 ∗ · · · ∗ |U〉〉〈〈U |(2N−1)(2N) =

= Tri,o
[
L
(
I2N+3 ⊗ I2N+2 ⊗ (|U〉〉〈〈U |⊗N )T

)]
= 〈〈U∗|⊗NL|U∗〉〉⊗N . (6.10)

We now need to introduce a figure of merit that quantifies how close the resulting channel
CU is to the original unitary transformation U . A reasonable choice is to maximize the channel
fidelity F (see Definition A.1 and the following lemmas) between CU and the target unitary
averaged over U :

F :=
∫
G

dUF(CU ,U) =
1
d2

∫
G

dU〈〈U |CU , |U〉〉) (6.11)

Inserting Eq. (6.10) into Eq. (6.11) we have

F =
1
d2

∫
G

dU〈〈U |(2N+3)(2N+2)〈〈U∗|⊗N
o i L|U

∗〉〉⊗N
o i |U〉〉(2N+3)(2N+2). (6.12)

The following lemma simplifies the search for the optimal learning network

Lemma 6.1 The operator L maximizing the fidelity (6.12) can be assumed without loss of gen-
erality to satisfy the following commutation relation

[L,U∗⊗N
o ⊗ V ⊗N

i ⊗ U2N+3 ⊗ V ∗2N+2] = 0 ∀U, V ∈ G. (6.13)

Proof. Let L be the Choi operator of the optimal learning network; if we define

L =
∫

dZ dW (Z∗⊗N
o ⊗W⊗N

i ⊗ Z2N+3 ⊗W ∗
2N+2)

†L(Z∗⊗N ⊗W⊗N ⊗ Z ⊗W ∗),

exploiting the properties of the Haar measure (see Definition B.7), we have

1
d2

∫
G

dU〈〈U |(2N+3)(2N+2)〈〈U∗|⊗N
o i L|U

∗〉〉⊗N
o i |U〉〉(2N+3)(2N+2) =

=
1
d2

∫
G

dU〈〈ZUW †|(2N+3)(2N+2)〈〈Z∗U∗WT |⊗N
o i L|Z

∗U∗WT 〉〉⊗N |ZUW †〉〉 =

=
1
d2

∫
G

dU〈〈U |(2N+3)(2N+2)〈〈U∗|⊗N
o i L|U

∗〉〉⊗N
o i |U〉〉(2N+3)(2N+2) (6.14)

that is L and L give the same value of F . L, thanks to Theorem B.3, enjoys the property (6.13).
Finally, it is easy to verify that L satisfies the constraint (6.8).
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6.1.2 Optimization of the storing strategy

Lemma 6.1 allows us to look for the optimal learning network among the ones that satisfy Eq.
(6.13).

Using Eq. (6.8) with k = N + 2 we have

Tr2N+3[L] = I2N+2 ⊗ L(N+1). (6.15)

The commutation (6.13) can be rewritten as

(U∗⊗N
o ⊗ V ⊗N

i ⊗ U2N+3 ⊗ V ∗2N+2)
†LU∗⊗N

o ⊗ V ⊗N
i ⊗ U2N+3 ⊗ V ∗2N+2 = L (6.16)

Taking the trace over H2N+3 in Eq. (6.16) and using Eq. (6.16) we get

Tr2N+3[U∗⊗N
o ⊗ V ⊗N

i ⊗ U2N+3 ⊗ V ∗2N+2)
†LU∗⊗N

o ⊗ V ⊗N
i ⊗ U2N+3 ⊗ V ∗2N+2] =

= Tr2N+3[L] ⇒ U∗⊗N
o ⊗ V ⊗N

i )†L(N+1)U∗⊗N
o ⊗ V ⊗N

i = L(N+1) ⇒
⇒ [L(N+1), U∗⊗N

o ⊗ V ⊗N
i ] = 0. (6.17)

We now prove that the commutation (6.17) implies that the parallel storage is optimal.

Lemma 6.2 (Optimality of parallel storage) The optimal storage of U can be achieved by ap-
plying U⊗N

o ⊗ I⊗N
i on a suitable input state |Ψ〉〉 ∈ Ho ⊗Hi.

Proof. According to Th. 2.6 the learning Network L can be realized as a sequence of isometries,
followed by a measurement on an ancillary space.

|L(1)∗ 1
2 〉〉

?>89
1 2

V2

3

A1 A2 · · ·

2N

VN+1

2N + 2

VN+2

2N + 3

AN M AN+2 "%#$I

︸ ︷︷ ︸ ︸ ︷︷ ︸
S R

The storing network is then represented by the isometric channel S := W(N+1) := W (N+1) ·
W (N+1)† where W (N+1) = V (N) · · ·V (1) = Io ⊗ L

(N+1)∗ 1
2

o′ i′ |I〉〉o o′ ⊗ Ti→i′ and HM =

Supp(L(N+1)∗ 1
2

o′ i′ ). The Choi Jamiolkowski operator of the storing network is then S = W (N+1)

|I〉〉〈〈I|i i′W
(N+1)† = |L(N+1)∗ 1

2 〉〉〈〈L(N+1)∗ 1
2 |o i o′ i′ When we connect the storing board with

the N copies of the unitary the final state on space HM becomes

|ΨU 〉〉〈〈ΨU | := S ∗ |U〉〉〈〈U |12 ∗ · · · ∗ |U〉〉〈〈U |(2N−1)(2N) =

= |L(N+1)∗ 1
2 〉〉〈〈L(N+1)∗ 1

2 |o i o′ i′ ∗ |U〉〉〈〈U |12 ∗ · · · ∗ |U〉〉〈〈U |(2N−1)(2N) =
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and exploiting Eq. (6.17) we have

|ΨU 〉〉 = 〈〈U∗|⊗N
o i |L

(N+1)∗ 1
2 〉〉o i o′ i′ = 〈〈I|⊗N

o i (UT⊗N

o ⊗ Ii)|L(N+1)∗ 1
2 〉〉o i o′ i′ =

= 〈〈I|⊗N
o i |(U

T⊗N

o ⊗ Ii)L(N+1)∗ 1
2 〉〉o i o′ i′ = 〈〈I|⊗N

o i |L
(N+1)∗ 1

2 (UT⊗N

o ⊗ Ii)〉〉 =

= 〈〈I|⊗N
o i (U⊗N

o′ ⊗ Ii′)|L(N+1)∗ 1
2 〉〉o i o′ i′ = (U⊗N

o′ ⊗ Ii′)〈〈I|⊗N
o i |L

(N+1)∗ 1
2 〉〉o i o′ i′

= (U⊗N
o′ ⊗ Ii′)|Ψ〉〉o′ i′ .

where we defined |Ψ〉〉o i o′ i′ = 〈〈I|⊗N
o i |L(N+1)∗ 1

2 〉〉o′ i′ . Then every storing board can be realized
applying (U⊗N

o′ ⊗ Ii′) to a suitable input state |Ψ〉〉 ∈ Ho′ i′ . �

Remark 6.1 It is possible to prove that the optimality of a parallel strategy is a common feature
of all the problems involving estimation of group transformations. However, the only covariance
(6.17) does not imply that the Quantum Network can be parallelized; a crucial aspect of the prob-
lem is that we have access to the physical transformation U and that the scheme (U⊗N ⊗ I)|Ψ〉〉
is physically realizable. We will see (see Chapter 9) that there are cases in which the quantum
storing network is covariant but it cannot be parallelized because the set transformationsRU we
want to learn, even if they are orbit of a group representation (e.g. RU = URIU

†), do not form
a group; In this case, an analogous of Eq. (6.17) holds but since we do not have physical access
to the unitaries U , the optimal network cannot be assumed to be parallel.

Optimization of learning is then reduced to finding the optimal input state |Ψ〉 and the optimal
retrieving channel R. The fidelity can be computed substituting L = R ∗ S in Eq. (6.12),
and using the relation 〈〈U |〈〈U∗|⊗N (R ∗ S)|U〉〉|U∗〉〉⊗N = 〈〈U |R|U〉〉 ∗ 〈〈U∗|⊗NS|U∗〉〉⊗N =
〈〈U |R|U〉〉 ∗ |ΨU 〉〉〈〈ΨU |, which gives

F =
1
d2

∫
G

〈〈U |〈Ψ∗
U |R|U〉〉|Ψ∗

U 〉 dU. (6.18)

The following lemma further simplifies the structure of the optimal input state for storage

Lemma 6.3 (Optimal states for storage) The optimal input state for storage can be taken of
the form

|Ψ〉〉 =
⊕

j

√
pj

dj
|Ij〉〉 ∈ H̃ , (6.19)

where pj are probabilities, H̃ =
⊕

j(Hj ⊗Hj) is a subspace ofHo⊗Hi carrying the represen-

tation Ũ =
⊕

j(Uj ⊗ Ij), Ij being the identity in Hj , and the index j labelling the irreducible
representations Uj contained in the decomposition of U⊗N .

Proof. Let us consider the local state

ρ := Tri′ [|Ψ〉〉〈〈Ψ|] = Tri′ [〈〈I|⊗N
o i |L

(N+1)∗ 1
2 〉〉〈〈L(N+1)∗ 1

2 |o i o′ i′ |I〉〉⊗N
o i ] =

= Tri′ [L
(N+1) 1

2
o′ i′ 〈〈I|⊗N

o i |I〉〉〈〈I|o i o′ i′ |I〉〉⊗N
o i L

(N+1) 1
2

o′ i′ ] =

= Tri′ [L
(N+1) 1

2
o′ i′ |I〉〉〈〈I|o′ i′L

(N+1) 1
2

o′ i′ ]
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It is easy to prove that ρ ∈ L(Ho′) is invariant under U⊗N :

U⊗NρU†⊗N = U⊗N Tri′ [L
(N+1) 1

2
o′ i′ |I〉〉〈〈I|o′ i′L

(N+1) 1
2

o′ i′ U†⊗N =

= Tri′ [(U⊗N ⊗ Ii′)L
(N+1) 1

2
o′ i′ |I〉〉〈〈I|o′ i′L

(N+1) 1
2

o′ i′ (U†⊗N ⊗ Ii′)] =

= Tri′ [L
(N+1) 1

2
o′ i′ (U⊗N ⊗ Ii′)|I〉〉〈〈I|o′ i′(U†⊗N ⊗ Ii′)L

(N+1) 1
2

o′ i′ ] =

= Tri′ [L
(N+1) 1

2
o′ i′ (Io′ ⊗ UT⊗N )|I〉〉〈〈I|o′ i′(U†⊗N ⊗ Io′)L

(N+1) 1
2

o′ i′ ] =

= Tri′ [(Io′ ⊗ UT⊗N )L(N+1) 1
2

o′ i′ |I〉〉〈〈I|o′ i′L
(N+1) 1

2
o′ i′ (U†⊗N ⊗ Io′)] =

= Tri′ [L
(N+1) 1

2
o′ i′ |I〉〉〈〈I|o′ i′L

(N+1) 1
2

o′ i′ ] = ρ

Decomposing U⊗N into irreducible representations (irreps) we have U⊗N =
⊕

j(Uj ⊗ Imj ),
where Imj is the identity on anmj-dimensional multiplicity space Cmj . Reminding theorem B.2,
ρ must have the form ρ =

⊕
j pj(Ij/dj ⊗ ρj), where ρj is an arbitrary state on the multiplicity

space Cmj . Since |Ψ〉〉 is a purification of ρ, there exists a basis in which we have |Ψ〉〉 = |ρ 1
2 〉〉 =⊕

j

√
pj/dj |Ij〉〉|ρ

1
2
j 〉〉, which after storage becomes |ΨU 〉〉 =

⊕
j

√
pj/dj |Uj〉〉|ρ

1
2
j 〉〉. Hence,

for every U the state |ΨU 〉〉 belongs to the subspace H̃ =
⊕

j(H
⊗2
j ⊗ |ρ

1
2
j 〉〉) '

⊕
j H

⊗2
j . �

6.1.3 Optimization of the retrieving channel

In this section we optimize the retrieving channel R; exploiting some symmetries of R we can
prove that the optimal retrieval is achieved by a measure and re-prepare strategy.

Thanks to Lemma 6.3 we can restrict our attention to the subspace H̃, and consider retrieving
channels R from (H2N+2 ⊗ H̃) to H2N+3. The normalization of the Choi operator is then

Tr2N+3[R] = I2N+2 ⊗ I eH . (6.20)

The following lemma tells us that the optimal retrieving channel can be chosen among the co-
variant ones:

Lemma 6.4 We can require without loss of generality that the operatorRmaximizing the fidelity
(6.18) satisfies the commutation relationR,U2N+3 ⊗ V ∗2N+2 ⊗

⊕
j

(U∗j ⊗ Vj)

 = 0 ∀U, V ∈ G. (6.21)

where
⊕

j(U
∗
j ⊗ Vj) acts on H̃.

Proof. The proof consists in the same averaging argument that was used in the proof of Lemma
6.1. �

According to Eq. (B.16), the representation U ⊗ U∗j can be decomposed as

U2N+3 ⊗ U∗j =
⊕

K∈irrepS(U⊗U∗j )

(
UK ⊗ I

m
(j)
K

)
(6.22)
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and in a similar way we have

V ∗2N+2 ⊗ Vj =
⊕

L∈irrepS(V ∗⊗Vj)

(
V ∗L ⊗ I

m
(j)
L

)
. (6.23)

Combining Eq. (6.22) and Eq. (6.23) we have

U2N+3 ⊗ V ∗2N+2 ⊗

⊕
j

(U∗j ⊗ Vj)

 =
⊕

j

(
(U ⊗ U∗j )⊗ (V ∗ ⊗ Vj)

)
=

=
⊕
K,L

(UK ⊗ VL ⊗ ImKL
) (6.24)

where ImKL
is given by ImKL

=
⊕

j∈PKL

(
I
m

(j)
K

⊗ I
m

(j)
L

)
, where PKL is the set of values of j

such that the irrep UK ⊗ V ∗L is contained in the decomposition of U2N+3 ⊗ V ∗2N+2 ⊗ U∗j ⊗ Vj .
Inserting the decomposition (6.24) into Eq. (6.21) we haveR,⊕

K,L

(UK ⊗ VL ⊗ ImKL
)

 = 0 (6.25)

that thanks to Theorem B.2, leads to the decomposition

R =
⊕
K,L

(IK ⊗ IL ⊗RKL) (6.26)

where RKL is a positive operator on the multiplicity space
CmKL =

⊕
j∈PKL

(
Cm

(j)
K ⊗ Cm

(j)
L

)
The decomposition (6.22) induces the following decomposition of Hilbert spaces

H⊗Hj =
⊕

K∈irrepS(U⊗U∗j )

(
HK ⊗ Cm

(j)
K

)
(6.27)

that allows us to write

I ⊗ IJ =
⊕

K∈irrepS(U⊗U∗j )

(
IK ⊗ I

m
(j)
K

)
. (6.28)

From Eq. (6.28) we have

|I〉〉 ⊗ |IJ〉〉 =
⊕

K∈irrepS(U⊗U∗j )

(
|IK〉〉 ⊗ |I〉〉m(j)

K

)
(6.29)

that leads to the following identity:

|I〉〉|Ψ∗〉 =
⊕

j

√
pj

dj
|I〉〉|Ij〉〉 =

⊕
j

⊕
K∈irrepS(U⊗U∗j )

√
pj

dj
|IK〉〉|Im(j)

K

〉〉

=
⊕
K

⊕
j∈PKK

√
pj

dj
|IK〉〉|Im(j)

K

〉〉 =
⊕
K

|IK〉〉|αK〉 ,
(6.30)
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where |IK〉〉 ∈ H⊗2
K and |αK〉 ∈ CmKK is given by

|αK〉 =
⊕

j∈PKK

√
pj/dj |Im(j)

K

〉〉. (6.31)

Exploiting Eqs. (6.26) and (6.30) the fidelity (6.18) can be rewritten as

F =
∑
K

dK

d2
〈αK |RKK |αK〉 . (6.32)

We now prove that the optimal retrieving consists in a measure and re-prepare channel; we
split the derivation into two parts.

Lemma 6.5 For the fidelity in Eq. (6.32) the following bound holds

F 6
∑
K

(∑
j∈PKK

m
(j)
K
√
pj

)2

d2
(6.33)

where we remind that m(j)
K is the dimension of the multiplicity space Cm

(j)
K and that where PKK

is the set of values of j such that the irreducible representation UK ⊗ V ∗K is contained in the
decomposition of U ⊗ V ∗ ⊗ U∗j ⊗ Vj .

Proof. Taking the trace over H2N+3 into Eq. (6.21) givesTr2N+3[R], V ∗2N+2 ⊗

⊕
j

(U∗j ⊗ Vj)

 = 0; (6.34)

reminding the decomposition (6.22) and exploiting Theorem B.2 we can write

Tr2N+3[R] =
⊕

j

Ij ⊗

(⊕
L

IL ⊗ r
(j)
L

)
(6.35)

where r(j)L is a positive operator acting on Cm
(j)
L .

Comparing Eq. (6.26) traced over H2N+3 with Eq. (6.35) we have

⊕
L

⊕
j

Ij ⊗ r
(j)
L

⊗ IL =
⊕

L

(⊕
K

Tr2N+3[IK ⊗RKL]

)
⊗ IL ⇒

⇒
⊕

j

Ij ⊗ r
(j)
L =

⊕
K

Tr2N+3[IK ⊗RKL] (6.36)

Let us now denote with Pj the projector on Hj with PK the projector on HK and with P (j)
K the

projector on Cm
(j)
K : we can then rewrite the decomposition (6.28) as Pj ⊗ I =

∑
K PK ⊗ P

(j)
K
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Projecting both the two sides of Eq. (6.36) on Hj ⊗ Cm
(j)
L we get

Ij ⊗ r
(j)
L = (Pj ⊗ P

(j)
L )

⊕
K

Tr2N+3[IK ⊗RKL](Pj ⊗ P
(j)
L ) =

=
⊕
K

Tr2N+3[(Pj ⊗ I2N+3 ⊗ P
(j)
L )IK ⊗RKL(Pj ⊗ I2N+3 ⊗ P

(j)
L )]

=
⊕
K

Tr2N+3

∑
Q

(PQ ⊗ P
(j)
Q ⊗ P

(j)
L )IK ⊗RKL

∑
G

(PG ⊗ P
(j)
G ⊗ P

(j)
L )


=
⊕
K

Tr2N+3[IK ⊗Rj
KL]. (6.37)

where we used the notation Rj
KL = (P (j)

K ⊗ P
(j)
L )RKL(P (j)

K ⊗ P
(j)
L ). Taking the trace over Hj

in Eq. (6.37) leads to

Trj [Ij ⊗ r
(j)
L ] = Trj

[⊕
K

Tr2N+3[IK ⊗Rj
KL]

]
⇒

⇒ djr
(j)
L = Trj 2N+3

[⊕
K

IK ⊗Rj
KL

]
=

= Tr
(
L

KK⊗m
(j)
K )

[⊕
K

IK ⊗Rj
KL

]
=
∑
K

dK Tr
m

(j)
K

[
Rj

KL

]
(6.38)

where Tr
(
L

KK⊗m
(j)
K )

denotes the trace over
⊕

K HK ⊗ Cmj
K = Hj ⊗H2N+3.

Exploiting Eq. (6.35) into the normalization (6.20) we obtain

Tr2N+3[R] =
⊕

j

Ij ⊗

(⊕
L

IL ⊗ r
(j)
L

)
= I2N+2 ⊗ I eH ⇒ r

(j)
L = I

m
(j)
L

(6.39)

that together with Eq. (6.38) gives

I
m

(j)
L

=
∑
K

dK

dj
Tr

m
(j)
K

[
Rj

KL

]
(6.40)

that for L = K implies the bound

Tr[Rj
KL] 6

djm
(j)
K

dK
(6.41)

Reminding Eq. (6.31), for the fidelity (6.32) we then have the bound

F =
∑
K

dK

d2

∑
j,j′∈PKK

√
pjpj′

djdj′
〈〈I

m
(j)
K

|RKK |Im(j′)
K

〉〉 6 (6.42)

≤
∑
K

dK

d2

 ∑
j∈PKK

√√√√pj〈〈Im(j)
K

|R(j)
KK |Im(j)

K

〉〉

dj


2

6
∑
K

(∑
j∈PKK

m
(j)
K
√
pj

)2

d2
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having used the positivity of RKK for the first bound and Eq. (6.41) the second. �
It is now easy to prove the following

Theorem 6.2 (Optimal retrieving strategy) The optimal retrieving of U from the memory state
|ΨU 〉〉 is achieved by measuring the ancilla with the POVM PÛ = |ηÛ 〉〉〈〈ηÛ | given by |ηÛ 〉〉 =⊕

j

√
dj |Ûj〉〉, and, conditionally on outcome Û , by performing the unitary Û on the new input

system

R0716|ΨU 〉〉
=

Û

0716|ΨU 〉〉 2534PÛ

↑ (6.43)

(the arrow represents the communication of the classical outcome of the measurement).

Proof. We now prove that the measure and prepare strategy described above achieves the
bound (6.33). First, the Choi operator of the measure-and-prepare strategy has the form Rest =∫

G
|Û〉〉〈〈Û |(2N+3)(2N+2) ⊗ |η∗

Û
〉〉〈〈η∗

Û
|dÛ . Using Eq. (6.30) with |Ψ∗〉〉 replaced by |η∗I 〉〉 and

applying theorem B.3 we have

Rest =
∫

G

|Û〉〉〈〈Û | ⊗ |η∗
Û
〉〉〈〈η∗

Û
|dÛ =

=
∫

G

|ÛV 〉〉〈〈ÛV | ⊗ |η∗
ÛV
〉〉〈〈η∗

ÛV
|dÛ dV̂ =

=
∫

G

U ⊗ V T ⊗ Ũ∗ ⊗ Ṽ †|I〉〉〈〈I| ⊗ |η∗I 〉〉〈〈η∗I |U† ⊗ V ∗ ⊗ ŨT ⊗ Ṽ dÛ dV̂ =

=
∫

G

U ⊗ V T ⊗ Ũ∗ ⊗ Ṽ †
⊕
KL

|Ik〉〉〈〈IL| |βK〉 〈βL|U† ⊗ V ∗ ⊗ ŨT ⊗ Ṽ dÛ dV̂ =

=
⊕
K

IK ⊗ IK ⊗ |βK〉 〈βK |

where Ũ∗ ⊗ Ṽ † =
⊕

j Uj ⊗ Vj and |βK〉 =
⊕

j∈PKK

√
dj |Im(j)

k

〉〉. Eq. (6.32) then becomes

Fest =
∑
K

|〈αK |βK〉|2

d2
=

(∑
j∈PKK

m
(j)
K
√
pj

)2

d2
. (6.44)

�
By making use of the above result it is easy to optimize the input state for storing. In fact,
such a state is just the optimal state for the estimation of the unknown unitary U [70], whose
expression is known in most relevant cases. For example, when U is an unknown qubit uni-
tary in SU(2), learning becomes equivalent to optimal estimation of an unknown rotation in
the Bloch sphere [71]. For large number of copies, the optimal input state is given by |Ψ〉〉 ≈√

4/N
∑N/2

j=jmin

sin(2πj/N)√
2j+1

|Ij〉〉, with jmin = 0(1/2) for N even (odd), and the fidelity is
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F ≈ 1−(2π2)/N2. Remarkably, this asymptotic scaling can be achieved without using entangle-
ment between the set of N qubits that are rotated and an auxiliary set of N rotationally invariant
qubits: the optimal storing is achieved just by applying U⊗N on a the optimalN -qubit state [71].
Another example is that of an unknown phase-shiftU = exp[iθσz]. In this case, for large number
of copies the optimal input state is |Ψ〉〉 =

√
2/(N + 1)

∑N/2
m=−N/2 sin[π(m+1/2)/(N+1)]|m〉

and the fidelity is F ≈ 1 − 2π2/(N + 1)2 [72]. Again, the optimal state can be prepared using
only N qubits.

6.1.4 Generalization to the M > 1 case

Our result can be extended to the case where the user must reproduce M > 1 copies of the
unknown unitary U . In this case, there are two different notions of optimality induced by two
different figures of merit, namely the single-copy and the global fidelity. In the following we will
examine both cases.

6.1.5 Optimal learning according to the single-copy fidelity

Let CU be the M -partite channel obtained by the user, and C(i)
U,Ω be the local channel C(i)

U,Ω(ρ) =
Trī[CU (ρ ⊗ Ω)], where ρ is the state of the i-th system, Ω is the state of the remaining M − 1
systems, and Tr1̄ denotes the trace over all systems except the i-th. The local channel C(i)

U,Ω

describes the evolution of the i-th input of CU when the remaining (M − 1) inputs are prepared
in the state Ω. Since we can be interested in some replicas more than in other ones, we can
imagine to associate a weight qi (

∑
i qi = 1) to each of the M copies; in this way the figure of

merit becomes:

F (s) =
∫

dU
∑

i

qiF(C(i)
U,Ωi

,U). (6.45)

Of course, the fidelity between C(i)
U,Ωi

and the unitary U cannot be larger than the optimal fidelity
of Eq. (6.33); moreover the optimal fidelity depends neither on qi nor on Ωi. Therefore, the
measure-and-prepare strategy presented in Theorem 6.2 is optimal also for the maximization of
Eq. (6.45), which do not decrease with increasing M .

6.1.6 Optimal learning according to the global fidelity

The optimization carried on for the case M = 1 can be extended to the maximization of the
global fidelity between CU and U⊗M

F (g) =
∫

dUF(CU ,U⊗M ) =
1

d2M

∫
dU〈〈U |⊗M 〈〈U∗|⊗NL|U〉〉⊗M |U∗〉〉⊗N (6.46)

just by replacing U with U⊗M in all derivations. Indeed, the role of the target unitary U in
our derivations is completely generic: we never used the fact that the unitary emulated by the
machine was equal to the unitaries provided in the examples. Therefore, following the same
proofs for the case M = 1 it is immediate to see that also for the case of M > 1 copies with
global fidelity the optimal strategy for storing consists in the parallel application of the examples
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on an input state of the form of Lemma 6.3 and that the optimal strategy for retrieving consists
in measuring the optimal POVM PÛ and in performing Û⊗M conditionally on outcome Û . Note
that in this case the coefficients {pj} in the optimal input state of Lemma 6.3) generally depend
on M .

Remark 6.2 Since we never used the fact that the N examples are identical, all the previous re-
sults hold even when the input (output) uses are not identical copies U⊗N (U⊗M ), but generally
N (M ) different unitaries, each of them belonging to a different representation of the group G.
For example, if G = SO(3) the N examples may correspond to rotations (of the same angle and
around the same axis) of N quantum particles with different angular momenta. Of course, the
same remark also holds when the M output copies.

6.2 Comparison with the cloning

Let us now focus on the optimal learning according to the global fidelity for the N = 1 and
M = 2 case Specializing Eq. (6.19) the optimal state for storage becomes Ψ = 1√

d
|I〉〉 and the

optimal learning board is

Û

Û

1√
d
|I〉〉

?>
89

U
d|Û〉〉〈〈Û |

=<
:;

_ _ _ _ _ _�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�_ _ _ _ _ _

. (6.47)

The maximum value of the fidelity is given by replacing
⊕

j(U
∗
j ⊗ Vj) with U∗ ⊗ V and

U2N+3 ⊗ V ∗2N+2 with U2N+3 ⊗ V ∗2N+2 ⊗ U2N+5 ⊗ V ∗2N+4 in the previous derivation. From
the decomposition (B.44) we have that mα = 2,mβ = 1,mγ = 1,(mγ = 0 if d = 2); inserting
these values into Eq. (6.44) we get

F
(g)
N=1,M=2 =

1
d4

∑
ν

(mν)2 =

=
6
d4

for d > 2, or
5
d4

for d = 2 (6.48)

The learning with N = 1 and M = 2 can be compared with the optimal cloner 1 → 2 we
derived in chapter 5. The maximum value of the fidelity was (see Eq: (5.24))

F (clon)(d+
√
d2 − 1)/d3 (6.49)

which is much higher than F (g). This result stresses the difference between cloning and learn-
ing: since in the learning scenario we have to apply the unitary to a fix input state, we cannot
exploit the full computational power of the unitary channel U and we cannot achieve the same
performance of the optimal cloner.
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7 Inversion of a unitary transformation

In this chapter we consider the problem of finding the Quantum Network that realizes the optimal
inversion of a unitary transformation. Let us suppose that we are provided with a single use of
unitary transformation U = U ·U† but we need to apply its inverse U−1 = U† ·U on an unknown
state |ϕ〉16. The most general strategy we can follow in order to achieve this task is to exploit the
single use of U in a quantum network such that the resulting channel is as close as possible to
target unitary U−1:

0716|ϕ〉 0

C1

1
U

2

C2

3

A1
' 0716|ϕ〉 0

U−1
3

(7.1)

︸ ︷︷ ︸
G

If the use of the unitary U is available only today while the state |ϕ〉 on which we need to
apply the inverse U−1 will be provided tomorrow, we cannot apply the scheme in Eq. (7.1) and
the best we can do is to apply a learning strategy (see Chapter 6):

|Ψ〉〉
?>
89

0
U

1

C
0716|ϕ〉 2

R

3

A1 M︸ ︷︷ ︸
' 0716|ϕ〉 0

U−1
3

(7.2)

L

We encountered the same situation when we compared the cloning and the learning of a
unitary transformation. The Choi-Jamiołkowsky operators of G and L satisfy the conditions:

Tr3[G] = I2 ⊗G(1) Tr1[G(1)] = I0, (7.3)
Tr3[L] = I2 ⊗ I1 ⊗ ρ Tr0[ρ] = 1, (7.4)

that coincide with Eqs. (6.5) and (6.6) by defining H0 ⊗H0′ := H0 and H3 ⊗H3′ := H3.
As we noticed when we compared the learning and the cloning strategies, the constraint (7.4)

is stronger than the constraint (7.3), and this means that the learning scheme in Eq. (7.2) can be
interpreted as a special case of the scheme in Eq. (7.1).

In principle, one could expect that the strategy (7.1) allows to achieve better performances
that the learning scheme (7.2). However, as we will see in the next sections, the optimal inversion
is achieved by a measure and re-prepare strategy which is a special case of quantum learning.

7.1 Learning scenario

In this section we show that it is possible to extend the results of chapter 6 to the optimal learning
of the inverse of an unknown unitaryU . Then we can consider the more general scenario in which

16the generalization to the general case with N uses and and M replicas of the inverse is work in progress.
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N > 1 uses of the unitary are available and M > 1 replicas have to be produced. The figure
of merit is than the averaged channel fidelity between the inverses U−1⊗M and the resulting
replicas L ? U ? · · · ? U :

F =
1

d2M

∫
G

〈〈U†|⊗M 〈〈U∗|⊗N L |U†〉〉⊗M |U∗〉〉⊗N dU (7.5)

as obtained by substituting U with U†⊗M in the target of Eq. (6.12). From this expression the
commutation (6.13) becomes

[L, V ⊗M ⊗ U∗⊗M ⊗ U∗⊗N
o ⊗ V ⊗N

i ] = 0 (7.6)

Therefore, the optimal inversion is obtained from our derivations by simply substitutingU2N+3 →
V ⊗M and V2N+2 → U⊗M . Accordingly, the optimal inversion is achieved by measuring the op-
timal POVM PÛ on the optimal state |ΨU 〉〉 and by performing Û†⊗M conditionally on outcome
Û .

Focusing on the N = 1,M = 1 case the optimal network is:

Û−1

1√
d
|I〉〉

?>
89

U
d|Û〉〉〈〈Û |

=<
:;

_ _ _ _ _ _�
�
�
�
�
�
�

�
�
�
�
�
�
�_ _ _ _ _ _

. (7.7)

The maximum value of F for this case is obtained by substituting
⊕

j(U
∗
j ⊗Vj) with U∗⊗V

and U2N+3⊗V ∗2N+2 with V2N+3⊗U∗2N+2 in the main derivation. Reminding the decomposition
(B.41) we have that mp = mq = 1 and thus Eq. (6.44) gives

F =
1
d4

∑
ν

(mν)2 =
2
d2

(7.8)

Remark 7.1 The optimal “learning of the inverse” of a unitary transformation provides the
optimal approximate realignment of reference frames in the quantum communication scenario
considered in Ref. [73], proving the optimality of the “measure-and-rotate" strategy conjectured
therein. In that scenario, the storing state |Ψ〉〉 serves as a token of Alice’s reference frame, and is
sent to Bob along with a quantum message |φ〉. Due to the mismatch of reference frames, Bob re-
ceives the decohered state σφ =

∫
G
|ΨU 〉〉〈〈ΨU |⊗U |ϕ〉〈ϕ|U† dU , from which he tries to retrieve

the message |ϕ〉 with maximum fidelity f =
∫

dϕ 〈ϕ|R′(σϕ)|ϕ〉dϕ, where R′ is the retrieving
channel and dϕ denotes the uniform probability measure over pure states. The maximization of
f is equivalent to the maximization of the channel fidelity F ′ =

∫
G
〈〈U†|〈〈Ψ∗

U |R′|U†〉〉|Ψ∗
U 〉〉dU ,

which is the figure of merit for optimal inversion. It is worth stressing that the state |Ψ〉〉 that
maximizes the fidelity is not the state |Ψlik〉〉 =

⊕
j

√
dj/L|Ij〉〉, L =

∑
j d

2
j that maximizes the

likelihood [74]. For M = 1 and G = SU(2), U(1) the state |Ψ〉〉 gives an average fidelity that
approaches 1 as 1/N2, while for |Ψlik〉〉 the scaling is 1/N . On the other hand, Ref. [73] shows
that for M = 1 |Ψlik〉〉 allows a perfect correction of the misalignment errors with probability of
success p = 1 − 3/(N + 1), which is not possible for |Ψ〉〉. The determination of the best input
state to maximize the probability of success, and the study of the probability/fidelity trade-off
remain open interesting problems for future research.
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7.2 Supermap scenario

In this section we will review the derivation of Ref. [28] of the optimal inversion of a unitary
transformation according to the scheme (7.1); since the quantum network G can be interpreted
as a supermap G : L(H1,H2) → L(H0,H3) that maps the unknown unitary transformation
U ∈ L(H1,H2) into another transformation G(U) := G ? U ∈ L(H0,H3) we call the scheme
(7.1) the supemap scenario for the inversion of a unitary transformation.17

In order to make a meaningful comparison, we choose as figure of merit the averaged channel
fidelity as we previously did in the learning scenario:

F =
∫

SU(d)

dUF(G,U)

=
1
d2

∫
SU(d)

dU〈〈U†|30〈〈U∗|21G|U†〉〉30|U∗〉〉21 (7.9)

The following lemma holds:

Lemma 7.1 The operator G maximizing the fidelity (7.9) can be assumed without loss of gener-
ality to satisfy the commutation relation

[G,U3 ⊗W2 ⊗ U1 ⊗W0] = 0 ∀V,W ∈ SU(d) . (7.10)

Proof. The proof consists in the standard averaging argument (see e.g. Lemma 6.1): Let G be
optimal. Then take its average G =

∫
dU dW (U3⊗W2⊗U1⊗W0)G(U3⊗W2⊗U1⊗W0)†:

it is immediate to see that G satisfies Eqs. (7.10) and (7.3) and has the same fidelity as G. �
Thanks to Theorem B.3 and reminding the decomposition (B.33) G can be decomposed as

C =
∑

µ,ν∈S

aµνPµ
31 ⊗ P ν

20, (7.11)

where S = {+,−}, P±ij is the projector onto the symmetric/antisymmetric subspace of Hi⊗Hj

, and aµν > 0 ∀µ, ν. Moreover, using Eq. (7.11) the fidelity (7.9) becomes

F =
1
d2
〈〈I|30〈〈I|21G|I〉〉30|I〉〉21

=
1
d2

∑
ν∈S

aννdν , dν = Tr[P ν ], (7.12)

while the normalization (7.3) can be rewritten as
∑

µ∈S a
µνdµ = 1,∀ν ∈ S. The last equality

implies the bound F = 1
d2

∑
µ∈S a

µµdµ 6 2/d2, which is achieved if and only if aµν = δµν

dµ
,

that is, if and only if

G =
P+

31 ⊗ P+
20

d+
+
P−31 ⊗ P−20

d−

=
∫

SU(d)

dÛ |Û†〉〉〈〈Û†|30 ⊗ |Û∗〉〉〈〈Û∗|21. (7.13)

17Clearly, also the learning network can be thought as a supermap; however, whenever in this chapter we use the term
supermap, we refer to the scheme (7.1).
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We have then proved that the learning and the supermap scenarios achieves the same value
of F . Contrary to what one could expect there is no coherent strategy that achieves better perfor-
mances than the measure and re-prepare learning scheme in Eq. (7.7).
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8 Information-disturbance tradeoff in estimating a unitary transformation

One of the key features of Quantum Mechanics is the impossibility of extracting information
from a system without producing a disturbance on its state; this is the basis of the indeterminism
of Quantum Mechanics and of quantum cryptography. However, a quantitative expression of the
tradeoff between information and disturbance is generally a non trivial issue, and it has been the
subject of numerous papers [76,77,78,79,80,81,82,83,84] since Heisenberg’s γ-ray microscope
thought experiment [75].

On the other hand, the case of extracting information from a black box without affecting
the transformation it is expected to perform, has not been considered yet. More precisely, we
consider the problem of both applying the black box to an arbitrary input state and estimating its
transformation within the same use. Similarly to the case of state estimation, the information-
disturbance tradeoff for channels is interesting for security analysis of two-way quantum crypto-
graphic protocols [85, 86]. An information-disturbance problem in the estimation of the state of
a quantum system can be split into two parts;

• making a measurement which supplies information about the state of the system;

• comparing the state of the system before the measurement with the state after the measure-
ment.

Suppose we are provided with a system which is in an unknown state ρn randomly drawn
from an ensemble {pnρn} (pn is the probability of getting the state ρn); we want to estimate the
parameter n and compare the state after the measurement with the state before the measurement.
The right tool for describing such a process which has both a classical (the result of the measure-
ment) and a quantum (the final state) output is a quantum instrument {Tn̂} (see Section 2.3). The
quantum instrument {Tn̂} with probability p(n̂|n) = Tr[Tn̂(ρn)] outputs the classical outcome
n̂ (that is an estimate of n) and the quantum state ρ′n = Tn̂(ρn)/Tr[Tn̂(ρn)]: the closer n̂ is to n
the greater is the information and the closer ρ′n is to ρn the less is the disturbance.

The previous framework can be generalized to the case of channels. Consider a quantum
network C that can be linked with a single use of an unknown channel En randomly drawn from
a set {En}. We want the network C to provide us with an estimate n̂ of n, but without affecting
the output E(ρ) on the input state ρ

 '!&ρ 0 1
En

2 3

A1
'  '!&ρ 0

En

3
(8.1)

︸ ︷︷ ︸
C → n̂

We notice that the resulting map C ? En behaves like a quantum instrument; since En is a
channel (i.e. a deterministic map) we have that C is actually a generalized instrument {Cn̂} (see
2.3).

Obviously, if we are interested only in gathering information on the unknown channel, the
optimal device is the one suggested by channel estimation [70]: we apply locally the channel to
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the best (according to some prior information) bi-partite state σ and then we perform a suitable
measurement Pi. In this case we neglect the action of the channel on the input state of the
circuit E(ρ). On the other hand, if we are not interested at all in gathering information about the
channel E , the best circuit board simply consists in applying E to ρ. Between these two extremal
situations one can ask what is the maximum amount of information that is possible to gather
without violating a disturbance threshold.

In this chapter we review Ref. [29] derived the best generalized instrument which achieves
this task when the unknown channel is a unitary transformation, for any possible information-
disturbance rate.

8.1 Optimization of the tradeoff

We now address the information-disturbance problem in the unitary case. Suppose we are pro-
vided with an unknown unitary gate V ∈ SU(d) picked randomly according to the Haar dis-
tribution; we now look for the best generalized instrument {RV ∈ L(L(H02)

⊗4
i=0Hi)},∫

dVRV = RΩ (V ∈ SU(d)) which performs the best estimation of the group parameter V
without affecting too much the performance of the unknown gate.

We now introduce two figures of merit in order to quantify the disturbance and the informa-
tion gain. Minimization of the disturbance can be expressed by maximizing the channel fidelity
F (defined in Eq. A.1) between the average resulting channel

∫
dVRV ? U = RΩ ? U and the

input unitary U :

F(RΩ ? U ,U) =
1
d2
〈〈U |03〈〈U∗|12RΩ|U〉〉03|U∗〉〉12. (8.2)

A reasonable choice for the figure of merit is the group average of the fidelity (8.2):

F (RΩ) :=
∫

dUF(RΩ ? U ,U) =
1
d2

∫
dU〈〈U |03〈〈U∗|12RΩ|U〉〉03|U∗〉〉12. (8.3)

Now we need an expression to evaluate the amount of information gathered. The probability
of outcome V when the input state of the network is ρ ∈ B(H0) has the following expression

p(V |U, ρ) = Tr3[RV ? U(ρ0)]. (8.4)

In our derivation we assume ρE = d−1I0 since this condition arises in two relevant cases:

• when the input system is prepared in a maximally entangled state with some ancillary
system; this is the scenario in the protocols of Ref. [85]

• when the input system is prepared at random in one of the states of an ensemble (pi, ρi),
with the property ρE =

∑
i piρi. This is the case of the protocol of Ref. [86]

With this assumption Eq.(8.4) becomes

p(V |U) =
1
d

Tr3[(RV ∗ U)I0] =
1
d

Tr03[〈〈U∗|RV |U∗〉〉]. (8.5)
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Now we need a payoff function c(U, V ) which quantifies the error of estimating V when the
unknown unitary is U : taking inspiration from the previous definition of disturbance, a good
choice is again the channel fidelity, that is

c(U, V ) := F(UV) =
1
d2
〈〈U |V 〉〉 =

1
d2
|Tr[UV †]|2. (8.6)

Then the information gain is given by

G(RV ) :=
∫
dUdV p(V |U)c(U, V ) =

=
1
d3

∫
dUdV Tr03[〈〈U∗|12RV |U∗〉〉12]|〈〈U |V 〉〉|2 (8.7)

The following lemma allows us to restrict to a specific class of generalized instruments.

Lemma 8.1 For any generalized instrument {RV ′},
∫

dV ′RV ′ = RΩ′ there exists another gen-
eralized instrument {RV },

∫
dVRV = RΩ such that

RV = (V0 ⊗ V ∗1 ⊗ I23)RI(V0 ⊗ V ∗1 ⊗ I23)†

= (I01 ⊗ V T
2 ⊗ V †3 )RI(I01 ⊗ V T

2 ⊗ V †3 )†. (8.8)
F (RΩ′) = F (RV ) (8.9)
G(RV ′) = G(RV ) (8.10)

Proof. This result is a straightforward application of the averaging argument for covariant
POVMs [1]. Let R′V be optimal; then let us consider

RV :=
∫

dW (W0 ⊗W ∗
1 ⊗ I23)RW †V (W †

0 ⊗WT
1 ⊗ I23) (8.11)

exploiting the properties of the Haar measure dW it is easy to verify thatRV enjoys the properties
(8.8), (8.9) and (8.10). �

Since RΩ =
∫
dV RV , and reminding Eq. (8.8) we have

RΩ =
∫
dV (V0 ⊗ V ∗1 ⊗ I23)RI(V0 ⊗ V ∗1 ⊗ I23)†. (8.12)

Applying Theorem B.3 we get [RΩ,W0⊗W ∗
1 ⊗V2⊗V ∗3 ] = 0 and the normalization conditions

Tr3[RΩ] = R
(1)
01 ⊗ I2, Tr1[R(1)] = I0 become trivially

Tr[RI ] = d2. (8.13)

Theorem B.3 and decomposition (B.42) allow us to rewrite the two figures of merit in the
following way:

F = Tr[RFRI ], G = Tr[RGRI ] (8.14)

RF =
1

d2(d2 − 1)
(I0123 + d2P p

01 ⊗ P p
23 − P p

01 ⊗ I23 − I01 ⊗ P p
23)

RG =
1

d2(d2 − 1)

((
1− 2

d2

)
I03 ⊗ I12 + I03 ⊗ P p

12

)
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where P p
ij = d−1|I〉〉〈〈I|ij is the projector on the one-dimensional invariant subspace of Vi⊗V ∗j .

Clearly we cannot independently optimize the two figures of merit. What we can do is to fix
a value of G and then maximize F . We now prove that this approach is equivalent to fixing a
disturbance-gain rate 0 6 p 6 1 and maximize the convex combination:

pG+ (1− p)F = Tr[(pRG + (1− p)RF )RI ] (8.15)

Let fix the value G = G; now let us suppose that RI(p′) maximize the combination p′G+ (1−
p′)F with p′ such that p′ Tr[RI(p′)G] = G. Clearly RI(p′) achieves the maximum value of F
since any other greater value of F would increase pG+ (1− p)F . This explain why the optimal
information disturbance tradeoff can be obtained by maximizing Eq. (8.15).

Since the only restrictions onRI are positivity and the normalization given by Eq. (8.13), the
optimal choice for the operator RI is to take it proportional to the projector on the eigenspace of
pRG + (1− p)RF corresponding to the maximum eigenvalue; this projector can be shown [80]
to be

RI = |χ〉 〈χ| (8.16)

|χ〉 = x|I〉〉03|I〉〉12 + y|I〉〉01|I〉〉23 x, y ∈ R+

Reminding Eq. (8.8) we get RV = |χV 〉 〈χV | with |χV 〉 = x|V 〉〉03|V ∗〉〉12 + y|I〉〉01|I〉〉23.
Normalization condition (8.13) implies that x and y obey

d2x2 + d2y2 + 2xyd = d2 (8.17)

We notice that we correctly have just one free parameter which will depend on the tradeoff ratio
p. Fidelity and gain can be calculated in terms of the parameters x and y, getting the following
expressions

F = 1− d2 − 2
d2

x2 G =
2− y2

d2
(8.18)

We note that when x = 0, y = 1, we have RV = |I〉〉〈〈I|01 ⊗ |I〉〉〈〈I|23 for all V , that is the
generalized instrument is the identity map. In this case the performance of the unknown unitary
is not affected at all and the channel fidelity reaches its maximum F = 1. On the other hand
the information gain takes its minimum value G = 1

d2 which corresponds to random guessing
U . The opposite case x = 1, y = 0 clearly gives the minimum value F = 2

d2 and the maximum
G = 2

d2 , which is the same given by the optimal estimation.
Using Eq. (8.17), we can easily express G as a function of x; then, upon eliminating x, we

can express F as a function of G:√
(d2 − 2)(2− d2G) =

√
(d2 − 1)F − 1−

√
1− F . (8.19)

It seems useful to introduce the variables 0 6 I,D 6 1:

I =
G−Gmin

Gmax −Gmin
D =

Fmax − F

Fmax − Fmin
(8.20)

where Gmax = 2d−2, Gmin = d−2, Fmin = 2d−2 and Fmax = 1. Expression (8.19) can be
rewritten in terms of D and I:

d2(D − I)2 − 4D(1− I) = 0; (8.21)

the plot of Eq. (8.21) is reported in Figure 8.1.
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Figure 8.1. Plot of the lower bound D(I) of the disturbance, corresponding to Eq. (8.21), for various value
of d: solid line, d = 2; dashed line, d = 3;dotted line , d = 4.

8.2 Realization scheme for the optimal network

We now inspect the structure of the optimal network. Theorem 2.9 tells us that the generalized
instrument can be realized by

• a deterministic network S : B(H02) → B(H13 ⊗HA2);

• a POVM {PV = R
− 1

2
Ω RV R

− 1
2

Ω } on the ancilla space H0′1′2′3′ .

The deterministic network S can be realized, according to Theorem 2.6, as a product of two
isometries W (1) : H0 → H0 A1 and W (2) : H2 A1 → H3 A2 , S = Z · Z†, Z = W (2)W (1).

Inserting Eq. (8.16) into Eq. (8.12) we have

RΩ = AP p
01 ⊗ P p

23 +B P q
01 ⊗ P q

23,
1
d

Tr23[RΩ] = R(1) = aP p
01 + bP q

01 (8.22)

A = x2 + d2y2 + 2dxy = d2 − (d2 − 1)x2 B =
x2

(d2 − 1)
(8.23)

a =
A

d
, b =

d2 − 1
d

B a+ (d2 − 1)b = d

(8.24)

The explicit expression of W (1) is given by specializing Eq. (2.62)

W (1) = (I1 ⊗R
(1) 1

2∗
1′0′ )(|I〉〉11′ ⊗ T0→0′) = (8.25)

=
1√
d

(y|I〉〉1′0′ ⊗ T0→1 + x|I〉〉11′ ⊗ T0→0′) (8.26)
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If we input a pure state |ψ〉 in the first isometry, we will have as the output the superposition
1√
d

(y|I〉〉1′0′⊗( |ψ〉 )1 + x|I〉〉11′ ⊗ |ψ〉0′).
The explicit expression for the second isometry is given by:

W (2) = I3 ⊗RΩ

1
2
0′1′2′3′R

(1)− 1
2

1′0′ |I〉〉33′T2→2′ (8.27)

Thanks to Eq. (2.68) the POVM on the ancilla space (0′1′2′3′) can be written as

PV = |ηV 〉 〈ηV | |ηV 〉 = R
− 1

2
Ω |χV 〉 (8.28)

Isometry W (2) together with the POVM {|ηV 〉 〈ηV |} can be rewritten as a quantum instrument
{TV : B(H21′) → B(H3) where the maps {TV } are defined as TV (ρ)=〈ηV |W (2)ρW (2)† |ηV 〉}.
Explicit calculation gives:

〈ηV |W (2) =
√
dV0′→3〈〈V |21′ (8.29)

we notice that the final instrument {TV } does not depend on the parameters x and y.
Summarizing, the quantum network realizing the optimal information disturbance tradeoff in

estimating a unitary transformation is as follows:

0

W(1)

1
U

2

d|V 〉〉〈〈V |
=<
:;

3

0′

1′
V

(8.30)

• The first isometry W (1) prepares a coherent superposition
1√
d

(y|I〉〉1′0′⊗( |ψ〉 )1 + x|I〉〉11′ ⊗ |ψ〉0′) which is tuned by the parameters x and y (that
is by p in Eq. (8.15 ));

• the unitary U acts locally on system 1;

• at the end the instrument {TV } is applied: {TV } can realize either an estimate-and-
reprapare strategy, or a teleportation protocol.

We now give a look to the complete action of the optimal circuit when the input is a pure
state |ψ〉:

|ψ〉 → 1√
d

(y|I〉〉1′0′⊗( |ψ〉 )1 + x|I〉〉11′ ⊗ |ψ〉0′) →

→ 1√
d

(y|I〉〉1′0′⊗(U |ψ〉 )2 + x|U〉〉21′ ⊗ |ψ〉0′) →

→ yU(|ψ〉)3 + xTr[V †U ]V (|ψ〉)3. (8.31)

We remark that the optimal device essentially combines two strategies:
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1. applying the unknown unitary U to the state |I〉〉, measuring the state |U〉〉, and then per-
forming the estimated transformation V on the input state ψ. This is a measure and re-
prepare strategy which is optimal if y = 0, x = 1 (that is we are interested only in the
information gain)

2. Applying U on the input state and then outputting U |ψ〉 (in our scheme this last step
involves a teleportation protocol). This is clearly an optimal strategy if x = 0, y = 1, that
is if we are interested only in leaving the action of U unaffected.

Surprisingly, the analytical expression of the tradeoff curve given in Eq. (8.21) is the same
as the one for the estimation of a maximally entangled state [80]. It is worth noting that this is
not a trivial consequence of the isomorphism 2−

1
2 |U〉〉 ↔ U ; indeed, this mathematical corre-

spondence cannot be implemented by a physical invertible map. Once a unitary U is applied to
the maximally entangled state 2−

1
2 |I〉〉 it is possible to retrieve the transformation U only proba-

bilistically (this is the problem of the quantum learning discussed in chapter 6). Because of this
reason there is no operational relation between the information disturbance tradeoff for unitary
transformation and for maximally entangled states (the former is not a primitive of the latter and
viceversa).

Besides its fundamental relevance, the information disturbance tradeoff for transformations
is interesting as a possible eavesdropping for cryptographic protocol in which the secret key
is encoded into a transformation. However this is not the case of the protocols [85, 86] where
orthogonal unitaries are used and the security of the protocol is not based on the information
disturbance tradeoff studied here. On the other hand the tradeoff we considered is an effective
attack to the alternativeBB84 protocol introduced in chapter 5. However, this alternative version
of the BB84 protocol just involves two nonorthogonal unitaries; in principle, the tradeoff curve
for a restricted of unitaries could be more favorable to the eavesdropper.
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9 Learning and cloning of a measurement device

As we stressed in the introduction the recent trend of quantum information is to consider transfor-
mations as information carriers. Unlike what we did in all the previous chapters, in the present
one we will not deal with unitary transformations but with measurements. We will consider
quantum networks that, upon the insertion of N uses of an undisclosed measurement device,
reproduce M approximate replicas of it.

When a measurement is an intermediate step of a quantum procedure its outcome can influ-
ence the following operations. This feed forward of the classical outcome can be conveniently
described using a quantum system into which the outcome is encoded into perfectly distinguish-
able orthogonal states. In this sense a quantum measurement with only classical outcomes can
be seen as a channel, which first measures the input system and based on the outcome prepares a
state from a fixed orthogonal set.

In order to achieve this task different scenarios can be considered:

N →M cloning18: The measurement device and the states we want to measure are available
at the same time;

10
9
8

7 0 *-+,Ei

1 2 *-+,Ei

3 4 *-+,Ei

5

6

'

10 *-+,Ei

9 *-+,Ei

8 *-+,Ei

7 *-+,Ei

6 *-+,Ei

(9.1)

(the double wire carries the classical outcome of the measurement).

N → M learning: we can use the measurement device N times today and we want to
replicate the same observables on M systems that will be provided tomorrow

10
9
8
7

?>89
0 *-+,Ei

1 2 *-+,Ei

3 4 *-+,Ei

5 6
'

10 *-+,Ei

9 *-+,Ei

8 *-+,Ei

7 *-+,Ei

6 *-+,Ei

(9.2)

18The term cloning of observables has been used in Ref. [87] referring to state cloning machines preserving the
statistics of a class of observables.
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N →M hybrid: we have to produce the replicas at different times

8 10

7 0 *-+,Ei

1 2 *-+,Ei

3 4 *-+,Ei

5 9

6
'

10 *-+,Ei

9 *-+,Ei

8 *-+,Ei

7 *-+,Ei

6 *-+,Ei

(9.3)

In the following we will consider some specific scenarios and compare their performances.

9.1 Formulation of the problem

In the following we will restrict ourselves to von Neumann measurement, i.e. sharp non degen-
erate POVMs:

Ei = |i〉 〈i| (9.4)

where {|i〉}d
i=1 is an o.n.b. of the Hilbert space H. We notice that all the POVMs of this kind

can be generated by rotating a reference POVM {|i〉 〈i|}d
i=1 by arbitrary elements of the SU(d)

group as follows

E
(U)
i = U |i〉 〈i|U† U ∈ SU(d). (9.5)

The classical outcome i of the POVM will be encoded into a quantum system by preparing the
state |i〉 from a fixed orthonormal basis, which is the same for each POVM {E(U)

i }. Within this
framework the measurement device is modeled as the following measure-and-prepare quantum
channel E(U) : L(H) → L(H)

E(U)(ρ) =
∑

i

Tr[E(U)
i ρ] |i〉 〈i| (9.6)

that measure the POVM {E(U)
i } on its input state and outputs the state |i〉 〈i| if the outcome is i.

The channel E(U) is represented by its Choi operator

E(U) =
∑

i

E
(U)
i

T
⊗ |i〉 〈i| =

∑
i

U∗ |i〉 〈i|UT ⊗ |i〉 〈i| (9.7)

The N uses of the measurement device are then represented by the tensor product E(U)
01 ⊗ · · · ⊗

E
(U)
2N−2 2N−1 where the input and the output space of the k-th use of the measurement device are

denoted by 2k − 2 and 2k − 1 respectively. We introduce the following notation:

Hor :=
N⊗

k=1

H2k−2, Hcl :=
N⊗

k=1

H2k−1. (9.8)
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Since we want the replicating network R to behave as M copies of the POVM {E(U)
i } upon

insertion of the N uses E(U), we have that R is actually a generalized instrument {Ri} where i
is the M -tuple of outcomes (i1, . . . , iM ). The overall resulting POVM is then

G
(U)
i = (Ri ∗ E(U)

01 ∗ · · ·E(U)
2N−2 2N−1)

T (9.9)

Ri = L(Hor ⊗Hcl ⊗Hre) Hre =
M⊗

k=1

H2N+k−1

where H2N+k−1 denotes the input space of the k-th replica.
Our task is to find the network Ri such that G(U)

i is as close as possible to to M uses of
{E(U)

i }, i.e

{G(U)
i } ' {E(U)

i1
⊗ E

(U)
i2

⊗ · · · ⊗ E
(U)
iM
} := {E(U)

i }. (9.10)

In order to quantify the performances of the replicating network, we need to introduce a criterion
which quantify the closeness between two POVMs. the following lemma provides such a tool:

Lemma 9.1 (distance criterion for POVM) Let Σ := {1, . . . , d} be a finite set of events and
{Pi ∈ L(H)} and {Qj ∈ L(H)} be two POVMs. Consider now the quantity

F :=
1
d

∑
i

Tr[PiQi] (9.11)

and suppose that either {Pi} or {Qj} is a von Neumann measurement. Then F = 1 ⇔ Pi =
Qi∀i

Proof. If {Pi} is a von Neumann measurement we have Pi = |i〉 〈i| where |i〉 is an orthonormal
basis of H. Then we have Qi = Pi ⇒ Qi = |i〉 〈i| and

F =
1
d

∑
i

Tr[PiQi] =
1
d

∑
i

Tr[|i〉 〈i|] = 1 (9.12)

On the other hand if F = 1 we have

d =
∑

i

Tr[PiQi] =
∑

i

〈i|Qi |i〉 =
∑
ij

〈i|Qj |i〉 −
∑
i 6=j

〈i|Qj |i〉 =

= Tr

∑
j

Qj

−∑
i 6=j

〈i|Qj |i〉 = d−
∑
i 6=j

〈i|Qj |i〉 ⇒
∑
i 6=j

〈i|Qj |i〉 = 0

Since Qj > 0
∑

i 6=j 〈i|Qj |i〉 = 0 ⇒ 〈i|Qj |i〉 ∀i 6= j which implies Qj = αj |j〉 〈j| with
αj > 0. Finally the condition

∑
j αj |j〉 〈j| = I implies αj = 1 and thus Qj = Pj . �

Assuming that the unknown POVM {E(U)
i } is randomly drawn according to the Haar distri-

bution, we choose the quantity:

F :=
∫

dUF({G(U)
i }{E(U)

i }) (9.13)
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as a figure of merit.
After fixing one of the possible scenarios (N →M cloning, learning or hybrid) our task is to

find the optimal generalized instrumentRi maximizing the quantityF :=
∫
dUF({G(U)

i }{E(U)
i }).

9.2 Symmetries of the replicating network

Here we exploit the symmetries of the figure of merit (9.13) to simplify the optimization problem.
The first simplification relies on the fact that some wires of the network carry only classical
information, representing the outcome of the measurement.

Lemma 9.2 (Restriction to diagonal networks) The optimal generalized instrument {Ri}, with∑
iRi = RΩ maximizing Eq. (9.13), can be chosen to satisfy:

Ri =
∑

j

R′i,j ⊗ |j〉 〈j| , (9.14)

where j = (j1, . . . , jN ), |j〉 := |j1〉1 ⊗ · · · ⊗ |jN 〉2N−1 ∈ Hcl, 0 6 R′i,j ∈ L(Hor ⊗Hre) and∑
j is a shorthand for

∑d
j1,...,jN=1.

Proof. Let {Ri} be a generalized instrument. Let us define {R̃i} as

R̃i :=
∑

j

〈j|Ri |j〉 ⊗ |j〉 〈j| |j1〉1 ⊗ · · · ⊗ |jN 〉2N−1 . (9.15)

We now prove that {R̃i} is a generalized instrument: reminding Eq. (9.7), we have∑
i

R̃i =
∑

i

∑
j

〈j|Ri |j〉 ⊗ |j〉 〈j| =
∑

j

〈j|RΩ |j〉 ⊗ |j〉 〈j| =

= RΩ ∗

∑
j1

|j1〉 〈j1| ⊗ |j1〉 〈j1|

 ∗ · · · ∗

∑
j1

|jN 〉 〈jN | ⊗ |jN 〉 〈jN |

 =

= RΩ ∗ E(I) ∗ · · · ∗ E(I) (9.16)

where the link is performed on the spaceHcl. The operator in Eq. (9.16) is the Choi-Jamiołkowsky
of a deterministic quantum network with the same normalization of RΩ. Finally we show that
{Ri} and {R̃i} when linked with the N uses of E(U) produce the same replicas {G(U)

i }:

G
(U)
i = (Ri ∗ E(U)

01 ∗ · · ·E(U)
2N−2 2N−1)

T
=

= (
∑

j

(〈j|or U
†⊗N 〈j|cl)Ri(U⊗N |j〉or |j〉cl)

T

=

= (
∑

j

(〈j|or U
†⊗N 〈j|cl)R̃i(U⊗N |j〉or |j〉cl)

T

=

= (R̃i ∗ E(U)
01 ∗ · · ·E(U)

2N−2 2N−1)
T
. (9.17)
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�
We now exploit the form of Eq. (9.14) to simplify the expression of the fidelity in Eq. (9.13) as
follows:

F :=
∫

dUF({G(U)
i }{E(U)

i }) =

=
1
dM

∫
dU
∑
i,j

〈i|re U
T⊗N 〈j|or U

†⊗N
R′i,jU

∗⊗N |i〉re U
⊗N |j〉or . (9.18)

The following lemma exploits the symmetry properties of Eq. (9.18) and simplifies the struc-
ture of the R′i,j :

Lemma 9.3 (Restriction to covariant networks) The operators R′i,j that maximize Eq. (9.18)
can be chosen to satisfy the commutation relation

[R′i,j , U
⊗N
or ⊗ U∗⊗M

re ] = 0 (9.19)

Proof. The proof consists in the same averaging argument we used in proving lemmas 5.1 , 6.1
and 8.1 �
The commutation relation (9.19) allows us to rewrite the figure of merit has:

F =
1
dM

∫
dU
∑
i,j

〈i|re 〈j|or R
′
i,j |i〉re |j〉or (9.20)

Another symmetry of our figure of merit is related to the possibility of relabeling the out-
comes of a POVM. We shall denote by σ the element of Sd, the group of permutations of d
elements as well as the linear operator that permutes the elements of basis {|i〉} according to this
permutation (σ |i〉 ≡ |σ(i)〉).

Lemma 9.4 (Relabeling symmetry) Without loss of generality we can assume that the opera-
tors R′i,j that maximize Eq. (9.18) satisfy the relation

R′i,j = R′σ(i),σ(j) (9.21)

where we shortened σ(i) ≡ (σ(i1), . . . , σ(iM )), σ(j) ≡ (σ(j1), . . . , σ(jN )).

Proof. Without loss of generality we can suppose that the R′σ(i),σ(j)’s satisfy Eq. (9.19). Let us
then define

R̃′i,j =
1
d!

∑
σ∈Sd

R′σ(i),σ(j) (9.22)

This corresponds to a valid instrument {R̃′i}, because it is a convex combination of instruments
obtained fromRσ(i),σ(j) by relabeling the outcomes of the inserted and replicated measurements
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by permutation σ. Let us now evaluate the figure of merit for this new instrument:

F (R̃′i,j) =
1
dM

∑
i,j

〈i| 〈j| R̃′i,j |i〉 |j〉 =
1

dMd!

∑
i,j

〈i| 〈j|

(∑
σ∈Sd

Rσ(i),σ(j)

)
|i〉 |j〉 =

=
1

dMd!

∑
i,j

〈i| 〈j|

(∑
σ∈Sd

σ⊗N ⊗ σ⊗MR′σ(i),σ(j)σ
⊗N ⊗ σ⊗M

)
|i〉 |j〉 = (9.23)

=
∑

σ∈Sd

∑
i,j

〈σ(i)| 〈σ(j)|R′σ(i),σ(j) |σ(i)〉 |σ(j)〉 = F (R′i,j) (9.24)

where the identity (9.23) follows from the commutation relation (9.19) with U = U∗ = σ. It is
easy to prove that R̃′i,j satisfies Eq. (9.21).

�

Remark 9.1 It is worth notice that the properties (9.14), (9.19) and (9.21) induce the following
structure of the replicated POVMs:

G
(U)
σ(i) = (Uσ)⊗M

G
(I)
i (σU†)

⊗M
(9.25)

The advantage of using the above symmetry is in the reduction the number of independent
parts of the generalized instrument. Let us define the equivalence relation between strings i and
i′ as

i ∼ i′ ⇔ i = σ(i′), (9.26)

for some permutation σ. Thanks to Eq. (9.21) there are only as many independent Ri,j as there
are equivalence classes among sequences i, j. For the simplest case M = N = 1 and arbitrary
dimension d > 2, there are only two classes, which we denote by xx and xy. The reason is that
for any couple i′, j′ there is a permutation σ such that σ(1) = i′ and σ(2) = j′, thus the classes
are defined by the conditions i = j or i 6= j, respectively. For all the cases where M + N = 3
(e.g. N = 1,M = 2 or N = 2,M = 1), the vectors i and j have three components. Then,
there are four or five equivalence classes depending on the dimension d being two or greater than
two, respectively. We denote these equivalence classes by xxx, xxy, xyx, xyy, xyz and the set
of these elements by C3

d . In the general case, it is clear that the cardinality of classes is given by
the number of disjoint partitions of a set with cardinality M +N , with number p of parts p 6 d.
For M + N > d, this number is known as Bell number BM+N , and is recursively defined as
follows

Bk+1 :=
k∑

j=0

(
k

j

)
Bj . (9.27)

In the case M + N < d the solution is provided by the sum for k = 1, . . . , d of numbers of
disjoint partitions of a set with N + M elements into k subsets, which is the sum of Stirling
numbers of the second kind S(M + N, k). The Stirling numbers are given by the following
formula

S(n, k) :=
1
k!

k∑
j=0

(−1)j

(
k

j

)
(k − j)n, (9.28)
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thus providing the following expression for the cardinality of classes CM+N
d

CM+N
d =

d∑
k=1

1
k!

k∑
j=0

(−1)j

(
k

j

)
(k − j)n. (9.29)

Exploiting Lemma 9.4 we can write the optimal generalized instrument as follows

Sx,y := R′i,j = R′σ(i),σ(j), (9.30)

where (x,y) is a couple of strings of indices that represents one equivalence class. We will
denote by L the set of equivalence classes L := {(x,y)}. The figure of merit can finally be
written as follows

F =
1
dM

∑
(x,y)∈L

n(x,y)〈Sx,y〉, (9.31)

where n(x,y) is the cardinality of the equivalence class denoted by the couple (x,y), and
〈Sx,y〉 = 〈i| 〈j|R′i,j |i〉 |j〉 for any string i, j in the equivalence class denoted by (x,y). As
a consequence of Schur’s lemmas, the condition of Eq. (9.19) implies the following structure for
the operators Sx,y (see Appendix B for the details)

Sx,y =
⊕

ν

P ν ⊗ rν
x,y, (9.32)

where ν labels the irreducible representations in the Clebsch-Gordan series of U⊗M
out ⊗ U∗⊗N

in ,
and P ν acts as the identity on the invariant subspaces of the representations ν, while rν

x,y acts
on the multiplicity space of the same representation. In the simplest case M +N = 2 we have

Ra,b = P prp
a,b + P qrq

a,b, (9.33)

where P p and P q are defined in Eq. (B.42). and rp
a,b and rq

a,b are non-negative numbers. In the
case M + N = 3, with M,N 6= 0 we have two different decompositions, depending whether
d > 2 or d = 2. When d > 2, we have (see Eq. (B.51))

Rx,y = Pα ⊗ rα
x,y + P βrβ

x,y + P γrγ
x,y. (9.34)

When d = 2 we have that dim(Hγ,−) = 0 and the decomposition (9.34) becomes

Rx,y = Pα ⊗ rα
x,y + P βrβ

x,y. (9.35)

9.3 Optimal learning

In this section we derive the optimal quantum learning of a von Neumann measurement; we will
consider the following scenarios:

• 1 → 1 learning

• 2 → 1 learning

• 3 → 1 learning

• 1 → 2 learning
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9.3.1 1 → 1 case

Consider the case in which today we are provided with a single use of a measurement device, and
we need a replica to measure a state that will be prepared tomorrow; this scenario is described
by the following scheme

2

?>
89

0 *-+,E(U)
1

(9.36)

Using the labeling as in Eq. (9.36) and exploiting the results of Section 9.2 for the caseM+N =
2, we have

L = {(x, x), (x, y)},
Ri210 = |i〉 〈i|1 ⊗Rx,x20

+ (I − |i〉 〈i|)1 ⊗Rx,y20

Ra,b = P prp
a,b + P qrq

a,b, (a, b) ∈ L (9.37)

Exploiting the identity 〈i| 〈j|P p |i〉 |j〉 = δij1/d, and considering that n(x, x) = d and n(x, y) =
d(d− 1), the figure of merit in Eq. (9.31) for the can be rewritten as

F =〈Rx,x〉+ (d− 1)〈Rx,y〉 =∑
ν∈{p,q}

(
rν
x,x∆ν

x,x + (d− 1)rν
x,y∆ν

x,y

)
, (9.38)

where ∆p
x,x = 1

d , ∆p
x,y = 0, and ∆q

a,b = 1−∆p
a,b. Let us now write the normalization conditions

for the generalized instrument in terms of operators Ri,j . We have that that RΩ :=
∑

iRi has to
be the Choi operator of a deterministic quantum network and must satisfy Eq. (2.60), that is

RΩ = I2 ⊗ I1 ⊗ ρ Tr[ρ] = 1, ρ > 0. (9.39)

The commutation relation (9.19) implies [ρ, U∗] = 0 that by Schur’s lemmas gives

ρ =
I

d
. (9.40)

Now, exploiting Eqs. (9.37) and (9.40), Eq. (9.39) becomes

I1 ⊗Rx,x + (d− 1)I1 ⊗Rx,y =
I

d
(9.41)

Substituting the expression of Eq. (9.33) in Eq. (9.41), we obtain

rp
x,x + (d− 1)rp

x,y = rq
x,x + (d− 1)rq

x,y =
1
d
. (9.42)

From the constraint (9.42) the following bound follows

F =
∑

ν

(
rν
x,x∆ν

x,x + (d− 1)rν
x,y∆ν

x,y

)
≤

∑
ν∈{p,q}

∆
ν (
rν
x,x + (d− 1)rν

x,y

)
=
d+ 1
d2

, (9.43)
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where ∆
ν

:= maxij ∆ν
i,j . The bound (9.43) is achieved by

rq
x,x = rp

x,y = 0, rp
x,x =

1
d
, rq

x,y =
1

d(d− 1)
,

which corresponds to generalized instrument

Ri = |i〉 〈i|1 ⊗
1
d
P p + (I − |i〉 〈i|)1 ⊗

1
d(d− 1)

P q, (9.44)

that replicates the original Von Neuman measurement as follows

G
(U)
i = Ri ∗ E(U)

10

T
=

1
d(d− 1)

U |i〉 〈i|1 U
† +

d2 − d− 1
d2(d− 1)

I. (9.45)

The optimal learning strategy can be realized by the following network

2

dRi

=<

:;1
d |I〉〉〈〈I|

?>
89

0
E(U)

1

A1

(9.46)

9.3.2 2 → 1 case

We now consider the case in which we have two uses of E(U) at our disposal

4

?>
89

0 *-+,E(U)
1 2 *-+,E(U)

3
(9.47)

Exploiting the symmetries introduced in Section 9.2 we have

L = {(x, xx), (x, xy), (x, yx), (x, yy), (x, yz)}

Ri =
∑
j,k

|j〉 〈j|3 ⊗ |k〉 〈k|1 ⊗R′i,jk (9.48)

[R′i,jk, U4 ⊗ U∗2 ⊗ U∗0 ] = 0 (9.49)

R′i,jk =


Rx,xx if i = j = k
Rx,xy if i = j 6= k
Rx,yx if i = k 6= j
Rx,yy if j = k 6= i
Rx,yz if i 6= j 6= k 6= i.

(9.50)
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The figure of merit (9.20) becomes

F =
1
d

∑
(a,bc)∈L

n(a, bc)〈Ra,bc〉. (9.51)

Let us now consider the normalization condition of the following generalized instrument R∑
i

Ri = I4 ⊗ I3 ⊗ S210 Tr2[S] = I1 ⊗ ρ0. (9.52)

Exploiting Eq. (9.48) we have∑
i

Ri =
∑
i,j,k

|j〉 〈j|3 ⊗ |k〉 〈k|1 ⊗R′i,jk = I4 ⊗ I3 ⊗ S210∑
i,k

|k〉 〈k|1 ⊗R′i,jk = I4 ⊗ S210, ∀j

∑
i

R′i,jk = I4 ⊗ 〈k|S210 |k〉1 , ∀j, k (9.53)

Exploiting the property (9.21) we have

I4 ⊗ 〈k|S210 |k〉1 =
∑

i

R′i,jk =
∑

i

R′σ(i),σ(j)σ(k) =

= I4 ⊗ (〈k|σ)S210(σ |k〉1) ∀j, k. (9.54)

This finally implies∑
i

R′i,jk = I4 ⊗ T20 ∀j, k Tr20[T ] = 1. (9.55)

Eq. (9.55) implies that the optimal strategy can be parallelized
4

?>

89

0 *-+,E(U)
1

2 *-+,E(U)
3 (9.56)

Eq. (9.56) induces a further symmetry of the problem:

Lemma 9.5 The operator R′i,jk in Eq. (9.48) can be chosen to satisfy:

R′i,jk = SR′i,kjS ∀k, j (9.57)

where S is the swap operator S |k〉2 |j〉0 = |j〉2 |k〉0.



362 Quantum Networks: General Theory and Applications

Proof. The proof consists in the standard averaging argument. let us define Ri,jk := 1
2 (R′i,jk +

SR′i,kjS). It is easy to prove that {Ri,jk} satisfies the normalization (9.55) and that gives the
same value of F as R′i,kj . �
Eq. (9.57) together with the decomposition (9.34) gives

σzr
α
a,bcσz = rα

a,cb rβ
a,bc = rβ

a,cb rγ
a,bc = rγ

a,cb (9.58)

where σz =
(

1 0
0 −1

)
and we used the property (B.47).

Considering that n(x, xx) = d, n(x, xy) = n(x, yx) = n(x, yy) = d(d−1), and n(x, yz) =
d(d− 1)(d− 2), and that SRx,xyS = Rx,yx, the figure of merit in Eq. (9.31) can be written as

F =〈Rx,xx〉+ (d− 1)〈Rx,yy〉+ 2(d− 1)〈Rx,xy〉+
(d− 1)(d− 2)〈Rx,yz〉 =

=
∑

ν

Tr[∆ν
x,xxr

ν
x,xx + (d− 1)∆ν

x,yyr
ν
x,yy+

2(d− 1)∆ν
x,xyr

ν
x,xy + (d− 1)(d− 2)∆ν

x,yzr
ν
x,yz] (9.59)

where

∆ν
a,bc := TrHν [|ijk〉 〈ijk|], (9.60)

and i, jk is any triple of indices in the class denoted by a, bc. Notice that in the case d = 2 the
last term in the sum of Eq. (9.59) is 0. In particular, by direct calculation we have

∆α
x,xx =

(
2

d+1 0
0 0

)
, ∆α

x,xy =
1
2

(
1

d+1
1√

d2−1
1√

d2−1
1

d−1

)
, ∆α

x,yx = σz∆α
x,xyσz

∆α
x,yy = ∆α

x,yz = 0,

∆β
x,xx =

d− 1
d+ 1

, ∆β
x,xy =

d

2(d+ 1)
,

∆β
x,yy = 1, ∆β

x,yz =
1
2
,

∆γ
x,xx = ∆γ

x,yy = 0, ∆γ
x,xy =

d− 2
2(d− 1)

, ∆γ
x,yz =

1
2
. (9.61)

The commutation relation (9.19) implies [I4 ⊗ T20, U
∗
4 ⊗ U2 ⊗ U0] = 0 and taking the trace on

H4 we get

[T20, U0 ⊗ U2] = 0, (9.62)

which by theorem B.2 and the decomposition (B.33) implies T20 = t+P
+ + t−P

−. The nor-
malization Tr20[T ] = 1 becomes d+t+ + d−t− = 1 and Eq. (9.55) becomes∑

(a,bc)∈L

n(a, bc)
d2

(
rα
a,bc ⊗ Pα + rβ

a,bcP
β + rγ

a,bcP
γ
)

=

I4 ⊗ (t+P+ + t−P
−) =

t+(|+〉 〈+| ⊗ Pα + P β) + t−(|−〉 〈−| ⊗ Pα + P γ), (9.63)
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independently of j, k. This in turn implies that

t+ =
∑

(a,bc)∈L

n(a, bc)
d2

〈+| rα
a,bc |+〉 =

∑
(a,bc)∈L

n(a, bc)
d2

rβ
a,bc

t− =
∑

(a,bc)∈L

n(a, bc)
d2

〈−| rα
a,bc |−〉 =

∑
(a,bc)∈L

n(a, bc)
d2

rγ
a,bc

0 =
∑

(a,bc)∈L

n(a, bc)
d2

〈±| rα
a,bc |∓〉 (9.64)

where we exploited the decomposition (B.44). Let us now introduce the notation

sν
x,xx := rν

x,xx sν
x,xy := (d− 1)rν

x,xy

sν
x,yx := (d− 1)rν

x,yx sν
x,yy := (d− 1)rν

x,yy

sν
x,yz := (d− 2)(d− 1)rν

x,yz. (9.65)

Exploiting Eq. (9.50) and Eq. (9.58) the constraint (9.64) becomes

sα
x,xx + sα

x,yy =
(
t+ 0
0 t−

)
sβ

x,xx + sβ
x,yy = t+

sγ
x,xx + sγ

x,yy = t−

sα
x,xy + σzs

α
x,xyσz + sα

x,yz =
(

(d− 1)t+ 0
0 (d− 1)t−

)
2sβ

x,xy + sβ
x,yz = (d− 1)t+

2sγ
x,xy + sγ

x,yz = (d− 1)t− (9.66)

and the figure of merit (9.59) becomes

F =
∑

ν

∑
(a,bc)∈L

Tr[∆ν
a,bcs

ν
a,bc] (9.67)

We are now ready to derive the optimal learning network; we will proceed as follows: i) first we
will maximize the value of F for a fixed value of t+ (remember that t− = (1− d+t+)/d−) and
then ii) we will find the value of t+ that maximize F . The figure of merit can be rewritten as:

F = Fα + Fβ + Fγ (9.68)

where

Fν =
∑

(a,bc)∈L

Tr[∆ν
a,bcs

ν
a,bc]. (9.69)



364 Quantum Networks: General Theory and Applications

We now maximize Fβ and Fγ for the case d > 3. Reminding the expressions (9.61) for the ∆ν
i,jk

we have:

Fβ =
∑

(a,bc)∈L

Tr[∆β
a,bcs

β
a,bc] 6

max(∆β
x,xx,∆

β
x,yy)t+ + max(∆β

x,xy,∆
β
x,yz)(d− 1)t+ =

∆β
x,yyt+ + ∆β

x,yz(d− 1)t+ =

t+ +
d− 1

2
t+ =

d+ 1
2

t+ (9.70)

and

Fγ =
∑

(a,bc)∈L

Tr[∆γ
a,bcs

γ
a,bc] 6

max(∆γ
x,xx,∆

γ
x,yy)t− + max(∆γ

x,xy,∆
γ
x,yz)(d− 1)t− =

∆γ
x,yz

d− 1
2

t− =
d− 1

2
t−. (9.71)

where we used the normalizations constraints (9.67). The upper bounds (9.70) and (9.71) can
be achieved by taking

sβ
x,xx = sβ

x,xy = sβ
x,yx = sγ

x,xx = sγ
x,xy = sγ

x,yx = 0,

sβ
x,yy = t+, sβ

x,yz = (d− 1)t+,

sγ
x,yy = t−, sγ

x,yz = (d− 1)t−.

For d = 2 the irreducible representation denoted by γ and the x, yz class do not exist and the
optimization yields sβ

x,xy = d−1
2 t+.

Let us now consider Fα (in this case there is no difference between d > 3 and d = 2);
reminding the expression of the ∆α

i,jk we have:

Fα =
∑

(a,bc)∈L

Tr[∆α
a,bcs

α
a,bc] =

Tr[∆α
x,xxs

α
x,xx] + Tr[2∆α

x,xys
α
x,xy] =

Tr

[(
2

d+1 0
0 0

)
sα

x,xx +

(
1

d+1
1√

d2−1
1√

d2−1
1

d−1

)
sα

x,xy

]
6

2
d+ 1

t+ + Tr

[(
1

d+1
1√

d2−1
1√

d2−1
1

d−1

)
sα

x,xy

]
, (9.72)

the bound can be achieved by taking

sα
x,xx =

(
t+ 0
0 t−

)
. (9.73)
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Let us now focus on the expression Tr[∆α
x,xys

α
x,xy]. The normalization constraint (9.66) for

the operator sα
x,xy can be rewritten as:(

2sα,+,+
x,xy + sα,+,+

x,yz sα,+,−
x,yz

sα,−,+
x,yz 2sα,−,−

x,xy + sα,−,−
x,yz

)
= (d− 1)

(
t+ 0
0 t−

)
(9.74)

which implies

sα,+,−
x,yz = sα,−,+

x,yz = 0

sα,+,+
x,yz + 2sα,+,+

x,xy = (d− 1)t+
sα,−,−

x,yz + 2sα,−,−
x,xy = (d− 1)t−. (9.75)

Then we have

Tr[∆α
x,xys

α
x,xy] =

sα,+,+
x,xy

d+ 1
+

sα,+,−
x,xy√
d2 − 1

+

sα,−,+
x,xy√
d2 − 1

+
sα,−,−

x,xy

d− 1
6

sα,+,+
x,xy

d+ 1
+ 2

√
sα,+,+

x,xy sα,−,−
x,xy

√
d2 − 1

+
sα,−,−

x,xy

d− 1
6 (9.76)

(d− 1)t+
2(d+ 1)

+

√
(d− 1)t+t−√

d+ 1
+
t−
2

(9.77)

where we used the positivity of the operator sα
x,xy for the inequality (9.76) and the normalization

(9.75) for the second inequality (9.77). The upper bound in Eq. (9.77) can be achieved by taking

sα
x,xy =

(d− 1)
2

(
t+

√
t+t−√

t+t− t−

)
(9.78)

We can now write the figure of merit as:

F = Fα + Fβ + Fγ =

=
(d− 1)t+
2(d+ 1)

+

√
(d− 1)t+t−√

d+ 1
+
t−
2

+
d+ 1

2
t+ +

d− 1
2

t− =

=
d2 + 3d
2(d+ 1)

t+ +

√
(d− 1)t+t−√

d+ 1
+
d

2
t− (9.79)

The last step of the optimization can be easily done by making the substitution t− = d−1
− (1 −

d+t+) in Eq. (9.79) and then maximizing F = F (t+). We will omit the details of the derivation
and we rather show a plot (Fig. 9.1) representing the value of F depending on the dimension
With the optimal learning network the replicated POVM has the following form:

G
(U)
i =

dF − 1
d− 1

U |i〉 〈i|U† +
1− F

d− 1
(9.80)
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Figure 9.1. Optimal learning of a measurement device: we present the value of F for different values of
the dimension d. The squared dots represent the optimal learning from a single use (1 → 1 learning) while
the round dots represent the optimal learning from two uses (2 → 1 learning).

9.3.3 3 → 1 case

In this section we consider a learning network exploiting 3 uses of the measurement device and
produces a single replica:

6

?>
89

0 *-+,E(U)
1 2 *-+,E(U)

3 4 *-+,E(U)
5

. (9.81)

In order to simplify the problem we restricy ourselves to the qubit case, that is we set d = 2. The
derivation of the optimal learning network turns out to be very cumbersome althogh it follows
the same lines as for the 2 → 1 case. The 3 → 1 scenario deserves interest because the optimal
strategy does not allow for a strategy using the 3 uses of the measurement device in parallel.

Let us consider the normalization condition for the generalizd instrument {Ri}:∑
ijkl

|jkl〉 〈jkl|531 ⊗R′i,jkl = I65 ⊗ S43210

Tr4[S] = I3 ⊗ T210 (9.82)

This implies∑
i

R′i,jkl = I6 ⊗ 〈kl|S43210 |kl〉31 ∀j,

〈kl|Tr4[S] |kl〉 = 〈l|T |l〉1 ∀k. (9.83)
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From the relabeling symmetry R′i,jkl=R
′
σ(i),σ(j)σ(k)σ(l) we have 〈kl|S |kl〉=〈σ(k)σ(l)|S|σ(k)

σ(l)〉, and consequently

〈kl|Tr4[S] |kl〉31 =
1
d2

Tr431[S] =: T̃20, ∀k, l. (9.84)

This fact along with Eq. (9.82) allows us to conclude that

Tr4[S] =Tr4

[∑
kl

|kl〉 〈kl|31 ⊗ 〈kl|S43210 |kl〉

]
=∑

kl

|kl〉 〈kl|31 ⊗ T̃20 = I31 ⊗ T̃20 (9.85)

that implies that we can exploit the first two uses in parallel. We notice that in general 〈kl|S |kl〉
= 〈σ(k)σ(l)|S |σ(k)σ(l)〉 does not imply that 〈kl|S |kl〉 = S̃ is independent of k, l, but only
that 〈kl|S |kl〉 = S̃ab, where a, b denotes the equivalence class of the couple (k, l). Conse-
quently, we cannot in general assume that all the examples can be used in parallel. In fact, the
optimal learning network has the following causal structure

?>

89

0 *-+,E(U)
1 6

2 *-+,E(U)
3 4 *-+,E(U)

5
. (9.86)

where the state of system 4 depends on the classical outcome on system 3 and 1. The optimal
fidelity achieves the value F ' 0, 87 (we remind that for the 1 → 1 case we had F = 0, 75 while
for the 2 → 1 case we had F = 0, 81).

Remark 9.2 One can wonder whether without assuming any symmetry it is possible to find a
non-symmetric parallel strategy {Ri} that achieves the optimal value of F . However we remind
that for any strategy {Ri} we can build a symmetric one with the same normalization, that
is without spoiling the parallelism, and giving the same fidelity. Since the optimal symmetric
network cannot be parallel, we have that any other optimal network has to be sequential as well.

As we pointed out in Remark 6.1 the optimality of the parallel strategy is a common feature of the
tasks involving group transformation. On the other hand, if the set of transformation considered
is covariant under a group representation but does not form a group, the parallelism cannot be
proven: the set of channels in Eq. (9.7) falls in the latter case. A similar situation arises in the
Grover algorithm [17], that can be rephrased as the estimation of an unknown unitary from the
set {Un = I − 2 |n〉 〈n|}; also in this case the unitaries {Un} do not a group and the optimal
algorithm, as it was proved in Ref. [89], cannot be parallelized.

Quantum channel discrimination is a typical example of a task in which the optimality of
sequential strategies easily arises. In Ref. [7] it was found that discrimination of unitary channels
can be optimally performed in parallel, but as shown in Refs. [8, 90], there exist examples of
non-unitary channels that can be better discriminate by sequential strategies.
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9.3.4 1 → 2 case

Our goal in this scenario is to create two replicas of the measurement after it was used once
(1 → 2 learning).

3

2

?>
89

0 *-+,E(U)
1 (9.87)

Using the symmetries we introduced in Section 9.2 we have

L = {(xx, x), (xx, y), (xy, x), (xy, y), (xy, z)}

Rij =
∑

k

|k〉 〈k|1 ⊗R′ij,k (9.88)

[R′ij,k, U3 ⊗ U2 ⊗ U∗0 ] = 0 (9.89)

R′i,jk =


Rxx,x if i = j = k
Rxx,y if i = j 6= k
Rxy,x if i = k 6= j
Rxy,y if j = k 6= i
Rxy,z if i 6= j 6= k 6= i.

(9.90)

and the figure of merit becomes

F =
1
d2

∑
(ab,c)∈L

n(ab, c)〈Rab,c〉 (9.91)

The commutation relations of Rab,c with U3 ⊗ U2 ⊗ U∗0 is very similar to the one in Eq. (9.49)
for the 2 → 1 case, because U∗ ⊗ U ⊗ U has same invariant subspaces as U ⊗ U∗ ⊗ U∗. This
enables us to write

Rab,c = Pα ⊗ rα
ab,c + P βrβ

ab,c + P γrγ
ab,c (9.92)

The following lemma introduces an additional symmetry property of the generalized instrument
{Rij}.

Lemma 9.6 The operators Rab,c in Eq. (9.92) can be chosen to be satisfy

Rab,c = SRba,cS ∀a, b, c (9.93)

where S is the swap operator S |k〉2 |j〉3 = |j〉2 |k〉3.

Proof. See Lemma 9.5. �
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Remark 9.3 The symmetry (9.93) translates the possibility to exchange the inputs of the two
replicas (Hilbert spaces H2 and H3) together with exchanging the measurement outcomes cor-
responding to these two replicas.

Inserting the decomposition (9.92) into Eq. (9.93) and reminding Eq. (B.47) we have

rν
ab,c = rν

ba,c if ν = β, γ

rα
ab,c = σzr

α
ba,cσz (9.94)

Let us now consider the normalization constraint for the generalized instrument Rij ; since∑
i,j Rij has to be a deterministic network we have∑

ij

Rij = I321 ⊗ ρ0, Tr[ρ] = 1 (9.95)

where ρ has to be a positive operator. The commutation relation (9.89) implies [ρ, U ] = 0 and so
we have ρ = 1

dI0. Writing I3210 as
∑

k |k〉 〈k|1 ⊗ (Imα
⊗ Pα + P β + P γ) we can rewrite the

normalization conditions as follows∑
ij

R′
ν
ij,k =

1
d
Imν . (9.96)

If we use the following definitions

sν
xx,x := rν

xx,x sν
xx,y := (d− 1)rν

xx,y

sν
xy,x := (d− 1)rν

xy,x sν
xy,z := (d− 1)(d− 2)rν

xy,z
(9.97)

the normalization becomes

sν
xx,x + sν

xx,y + 2sν
xy,x + sν

xy,z =
1
d
, if ν = β, γ

sα
xx,x + sα

xx,y + sα
xy,x + σzs

α
xy,xσz + sα

xy,z =
1
d
Imα (9.98)

where we used the relabeling symmetry. Let us now express the figure of merit in terms of the
sν

ab,c:

F =Fα + Fβ + Fγ (9.99)

Fν =
1
d

Tr[∆ν
xx,xs

ν
xx,x + 2∆ν

xy,xs
ν
xy,x + ∆ν

xx,ys
ν
xx,y + ∆ν

xy,zs
ν
xy,z]]

where ∆ν
ab,c are the same as the ∆ν

a,bc in Eq. (9.61) taking into account the change of Hilbert
space labelling from H0,H2,H4 to H2,H3,H0. The maximization of Fβ and Fγ is simple and
yelds

Fβ =
1
d2

Fγ =
1

2d2
(9.100)

sβ
xx,x = sβ

xy,x = sβ
xy,y = sβ

xy,z = 0

sγ
xx,x = sγ

xx,y = sγ
xy,x = sγ

xy,y = 0,

sβ
xx,y = sγ

xy,z =
1
d2
.

(9.101)
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Let us now consider the maximization of Fα. Inserting the explicit expression of the ∆α
ab,c into

Eq. (9.99) we have

dFα =Tr
[(
sα,+,+

xx,x sα,+,−
xx,x

sα,−,+
xx,x sα,−,−

xx,x

)(
2

d+1 0
0 0

)]
+

Tr

[(
sα,+,+

xy,x sα,+,−
xy,x

sα,−,+
xy,x sα,−,−

xy,x

)( 1
d+1

1√
d2−1

1√
d2−1

1
d−1

)]
=

=
2sα,+,+

xx,x

d+ 1
+
sα,+,+

xy,x

d+ 1
+
sα,−,−

xy,x

d− 1
+

2sα,+,−
xy,x√
d2 − 1

6

6
2

(d+ 1)

(
1
d
− 2sα,+,+

xy,x

)
+
sα,+,+

xy,x

d+ 1
+
sα,−,−

xy,x

d− 1
+ 2

√
sα,+,+

xy,x sα,−,−
xy,x

d2 − 1
6

6
5d− 3

2d(d2 − 1)
−

3sα,+,+
xy,x

d+ 1
+ 2

√
sα,+,+

xy,x

2d(d2 − 1)
(9.102)

where in the derivation of the bound (9.102) we used the positivity of sα
xy,x and the constraints

(9.98). The upper bound (9.102) can be achieved by taking

sα
xx,x =

(
1
d − 2a 0

0 0

)
sα

xy,x =

 a
√

1
2da√

1
2da

1
2d

 ,

sα
xy,z = sα

xx,y = 0 (9.103)

where we defined a := sα,+,+
xy,x . Eq. (9.102) gives the value of Fα as a function of a; the

maximization of Fα(a) with the constraint 0 6 a 6 1
d is easy and gives

Fα =
4(2d− 1)

3d2(d2 − 1)
for a =

d+ 1
18d(d− 1)

. (9.104)

and then for d > 3 we have

F = Fα + Fβ + Fγ =
3d2 + 4d+ 4

√
d2 − 1− 3

2d2(d2 − 1)
∼ 3

2d2
. (9.105)

For d = 2 the invariant subspace Hγ does not appear and the fidelity becomes F = Fα + Fβ =
7+2

√
3

12 .
In the next section we consider a different scenario which is less restrictive than the learning

scheme we have considered up to now. Similarly to what we had when comparing the optimal
cloning and the optimal learning of a unitary, relaxing the constraints of the network allows to
achieve better pefomances

9.4 Optimal cloning

In this section we turn our attention to the cloning scenario. As we previously discussed, this
scheme is less restrictive than the learning one, since we allow both the M states to be measured
and the N uses of the measurement device to be available at the same time.
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We consider the case in which we are provided with a single use of the measurement device
and we want to produce two replicas:

0 2 *-+,EU
3

1 (9.106)

We can require for the optimal 1 → 2 cloning network the same symmetries we had for the 1 → 2
learning network. The set L in this case is L = {(x, xx), (x, xy), (x, yx), (x, yy), (x, yz)}. Then
the figure of merit becomes

F =
∑

ν

∑
(a,bc)∈L

Tr[∆ν
a,bcs

ν
a,bc] (9.107)

where ∆ν
a,bc, sν

a,bc are the same as in section 9.3.4. The normalization condition for the 1 → 2
cloning scenario is different from the 1 → 2 learning. Instead of Eq. (9.96) we have∑

i,jk

|i〉 〈i|3 ⊗R′i,jk = I3 ⊗ S210 Tr2[S] = I10 (9.108)

which implies the following

I10 =dTr2[Rx,xx +Rx,yy]+
d(d− 1) Tr2[Rx,xy +Rx,yx +Rx,yz]. (9.109)

From the commutation [Ra,bc, U
∗
2 ⊗ U1 ⊗ U0] it follows that [Tr2[Ra,bc], U1 ⊗ U0] and then,

exploiting the decomposition (B.33) we have

t+P
+ + t−P

− =dTr2[Rx,xx +Rx,yy]+
d(d− 1) Tr2[Rx,xy +Rx,yx +Rx,yz]. (9.110)

and finally by Eq. (9.109) t+ = t− = 1. Exploiting the decomposition Ra,bc =
∑

ν P
ν ⊗ rν

a,bc

along with Eq. (B.49), the normalization constraint (9.110) becomes

P± =P±
∑

ν

∑
(a,bc)∈L

Tr2[P ν ⊗ sν
a,bc] =

1
d±

∑
(a,bc)∈L

(dαs
α,±,±
a,bc + dδ±s

δ±
a,bc)P

±, (9.111)

where δ+ = β and δ− = γ. Exploiting the relabeling symmetry (9.21) and the permutation
symmetry (9.93) we have

d+ = dα

∑
(a,bc)∈L

sα,+,+
a,bc + dβ

∑
(a,bc)∈L

sβ
a,bc, (9.112)

d− = dα

∑
(a,bc)∈L

sα,−,−
a,bc + dγ

∑
(a,bc)∈L

sγ
a,bc. (9.113)
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If we introduce the notation

sβ
a,bc :=

(
sβ

a,bc 0
0 0

)
sγ

a,bc :=
(

0 0
0 sγ

a,bc

)
Π+ =

(
1 0
0 0

)
Π− =

(
0 0
0 1

)
(9.114)

the normalization constraints (9.112) and (9.113) can be rewritten as

Π+

 ∑
ν,(a,bc)∈L

dνs
ν
a,bc

Π+ = d+

Π−

 ∑
ν,(a,bc)∈L

dνs
ν
(a,bc)

Π− = d−. (9.115)

In order to solve the optimization problem we have to find the set r := {rν
` , ` := (a, bc) ∈ L, ν ∈

{α, βγ}}, rν
` ∈ L(C2), rν

` > 0 subjected to the constraint (9.115) that maximizes the figure of
merit (9.107); we will denote as M the set of all the r satisfying Eq. (9.115). Since the figure of
merit (9.107) is linear and the set M is convex, a trivial result of convex analysis states that the
maximum of a convex function over a convex set is achieved at an extremal point of the convex
set. We now give two necessary conditions for a given r to be an extremal point of M. Let us
start with the following

Definition 9.1 (Perturbation) Let s be an element of M. A set of hermitian operators z := {zν
` }

is a perturbation of s if there exists ε > 0 such that

s + hz ∈ M ∀h ∈ [−ε, ε] (9.116)

where we defined s + hz := {sν
` + hzν

` |h ∈ [−ε, ε]}.

By the definition of perturbation it is easy to prove that an element s of M is extremal if and only
if it admits only the trivial perturbation zν

` = 0 ∀`, ν. We now exploit this definition to prove two
necessary conditions for extremality.

Lemma 9.7 Let s be an extremal element of M. Then sν
` has to be rank one for all `, ν.

Proof. Suppose that there is a sν′

`′ =
(
a b
c d

)
∈ s which is not rank one; then there exist ε

such that z := {0, . . . , 0, zν′

`′ , 0, . . . , 0}, zν′

`′ =
(

0 1
1 0

)
is an admissible perturbation. �

This lemma tells us that w.l.o.g. we can assume the optimal s to be a set of rank one matrices.
Let us now consider a set s such that sν

` is rank one for all `, ν; any admissible perturbation z of
s must satisfy

zν
` = cν` s

ν
` cν` ∈ R (9.117)

Π+

∑
ν,`

dνc
ν
` s

ν
`

Π+ = Π−
(∑

ν

dνc
ν
` s

ν
`

)
Π− = 0. (9.118)
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where the constraint (9.117) is required in order to have sν
` + hzν

` > 0, while Eq. (9.118) tells
us that s + hz satisfies the normalization (9.115). Let us now consider the map

f : L(C2) → C2 f(A) :=
(

Π+AΠ+

Π−AΠ−

)
f

(
a b
c d

)
=
(
a
d

)
exploiting this definition Eq. (9.118) becomes∑

ν,`

cν` f(sν
` ) =

(
0
0

)
. (9.119)

Suppose now that the set r has N > 3 elements; then {f(rν
` )} is a set of N > 3 vectors of C2

that cannot be linearly independent. That being so, there exists a set of coefficients {cν` } such
that

∑
ν,` c

ν
` f(sν

` ) = 0 and then zν
` = cν` s

ν
` is a perturbation of r. We have then proved the

following lemma

Lemma 9.8 Let s be an extremal element of M. Then s cannot have more than 2 elements.

Lemma 9.7 and Lemma 9.8 provide two sufficient conditions for extremality that allow us to
restrict the search of the optimal s among the ones that satisfy

s = {sν′

`′ , s
ν′′

`′′ } rank(sν′

`′ ) = rank(sν′′

`′′ ) = 1

Πi

∑
ν,`

dνs
ν
`

Πi = di i = +,− (9.120)

The set of the admissible s is small enough to allow us to compute the value of F for all the
possible cases. It turns out that the best choice is to take

s = {sα
xx,x, s

α
xy,x}

sα
xx,x =

(
9d+−1

9d 0
0 0

)
sα

xy,x =

 1
9d

√
d−

3d√
d−

3d
d−
d

 ;

the corresponding value of F is

F =
4
3d

(9.121)

which is much higher then the maximum value (9.105) achieved by the 1 → 2 learning scheme.
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10 Conclusion

The aim of this work was twofold. The first part was devoted to present a unified description of
Quantum Networks in terms of their Choi operators. The core result of this approach are Theo-
rem 2.5 and Theorem 2.6 that prove the isomorphism between the set of deterministic Quantum
Networks and a set of suitably normalized positive operators. This result can be then generalized
to probabilistic Networks. The second key ingredient of the theory is the notion of link product
(see Definition 2.1) that allows us to express the composition of quantum networks in terms of
their Choi operators (Theorem 2.12).

In the second part of the work, we made use of this formalism to solve some relevant opti-
mization problems. The representation of Quantum Networks as positive operators is extremely
efficient in handling tasks that involve manipulation of transformations like process tomography
(Chapter 3) and cloning, learning and inversion of transformations (Chapters 5, 6 and 7).

Even if the tools provided by the general theory of Quantum Networks simplify a lot many
scenarios, it is also true that in order to analytically carry on the optimization we had to make
a clever use of the symmetries of the various problems. The full power of the general theory
reveals itself when combined with the techniques provided by the group representation theory
(Appendix B): this happy marriage lies at the core of the results achieved in the optimization
problems involving unitary transformations.

However, in many problems in quantum information theory like for example in channel dis-
crimination [6, 7, 8], we cannot exploit such strong symmetry properties; the general theory of
quantum network is still powerful [7] but the results from group theory cannot be applied. A
possible way out (in some cases the only one) is the numerical approach. The set of the admis-
sible Choi operators of Quantum network with fixed causal structure, is a convex set of positive
operator. It is then possible to implement computer routines [96, 97] that solve the semidefinite
program corresponding to the optimization problem in exam.
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A Channel Fidelity

This short appendix has the purpose to introduce the channel fidelity as a notion of distance
between quantum channels. This definition was introduced in [32] and discussed in [91] In
the following we will review the definition of channel fidelity and some of its most relevant
properties.

Definition A.1 (Channel Fidelity) Let C ∈ L(L(H)a,L(H)b) and D ∈ L(L(H)a,L(H)b) be
two quantum channels and C and D be their Choi-Jamiołkowsky operators. We call channel
fidelity the following expression

F(C,D) := f

(
C

da
,
D

da

)
(A.1)

where f is the state fidelity f(ρ, σ) := |Tr[
√
σ

1
2 ρσ

1
2 ]|2.

The channel fidelity enjoys many properties inherited by the state fidelity:

Lemma A.1 (Properties of channel fidelity) The channel fidelity F defined in definition A.1
enjoys the following properties:

• 0 ≤ F(C,D) ≤ 1, and F(C,D) = 1 if and only if C = D.

• F(C,D) = F(D, C) (symmetry).

• For any two isometric channels V and W (i.e., V(ρ) = V ρV † and W(ρ) = WρW † with
isometry V and W ), F(V,W) = (1/d2)|Tr (U†V )|2.

• For any 0 < λ < 1, F(C, λD1 +(1−λ)D2) ≥ λF(C,D1)+(1−λ)F(C,D2) (concavity).

• F(C1 ⊗ C2,D1 ⊗D2) = F(C1,D1)F(C2,D2) (multiplicativity with respect to tensoring).

• F is invariant under composition with unitary channels, i.e., for any unitary channel U ,
F(U ? C,U ?D) = F(C,D).

• F does not decrease under composition with arbitrary channels, i.e., for any channel R,
F(R ? C,R ?D) ≥ F(C,D).

Proof. See Ref. [32] �
The following lemma provides a physical interpretation of the channel fidelity F(A,B) between
two channels A and B (one of them unitary) as the fidelity between the output states of A and B
uniformly averaged over all input pure states.

Lemma A.2 Let A ∈ L(L(H)a,L(H)b) and B ∈ L(L(H)a,L(H)b) be two channels and let
us define d = dim(Ha). If either A or B is a unitary channel we have

F :=
∫

dϕf(A(|ϕ〉 〈ϕ|),B(|ϕ〉 〈ϕ|)) =
d

d+ 1
F(A,B) +

1
d+ 1

(A.2)

where |ϕ〉 ∈ Ha, dϕ is the normalized (
∫

dϕ = 1) Haar measure over the set of pure states and
f is the state fidelity.
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Proof. First we notice that we can parametrize each vector |ψ〉 ∈ Ha as U |0〉 where |0〉
is a fixed vector and U is a unitary operator on Ha; with this parametrization the measure dϕ
becomes the usual Haar measure dU of SU(d). The left hand side of Eq. (A.2) now becomes:

F =
∫

dUf(A(U |0〉 〈0|U†),B(U |0〉 〈0|U†)). (A.3)

Now suppose that B is a unitary channel B = V · V †. Eq. (A.3) becomes:

F =
∫

dUf(A(U |0〉 〈0|U†),B(U |0〉 〈0|U†)) =

=
∫

dUf(A(U |0〉 〈0|U†), V U |0〉 〈0|U†V †) =

=
∫

dU 〈0|U†V †( I ⊗ 〈0|UT )A(I ⊗ U∗ |0〉)V U |0〉 =

= Tr
[
(V † ⊗ I)A(V ⊗ I)

(∫
dUU ⊗ U∗(|0〉 |0〉 〈0| 〈0|)U† 〈0|UT

)]
(A.4)

Reminding Theorem B.3 and the decomposition (B.42) we have∫
dUU ⊗ U∗(|0〉 |0〉 〈0| 〈0|)U† 〈0|UT =

1
d(d+ 1)

|I〉〉〈〈I|+ 1
d(d+ 1)

I (A.5)

that leads to

F =
1

d(d+ 1)
Tr
[
(V † ⊗ I)A(V ⊗ I)|I〉〉〈〈I|

]
+

1
d(d+ 1)

Tr
[
(V † ⊗ I)A(V ⊗ I)

]
=

=
1

d(d+ 1)
Tr [A|V 〉〉〈〈V |] +

1
d+ 1

=
d

d+ 1
F(A,B) +

1
d+ 1

(A.6)

�
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B Elements of Group Representation Theory

This Appendix is an introduction to the basic tools of group representation theory that are needed
in this work. The key results of the appendix are the Schur’s lemma B.2 and the Theorem B.2
that allow us to decompose an operator that commutes with a unitary representation of a group.
The last section of this appendix is devoted to the decomposition of some relevant tensor product
representations. All the results in this appendix are presented without proofs; a more exhaustive
presentation can be found for example in [92, 93, 94, 95].

B.1 Basic definitions

Definition B.1 (Group) A group G is a set of elements with a law of composition that assigns
each ordered couple of elements g1, g2 ∈ G another element g1g2 of G. This composition law
has to satisfy the following requirements:

g1(g2g3) = (g1g2)g3 ∀g1, g2, g3 ∈ G (B.1)
∃e ∈ G : ge = eg = g ∀g ∈ G (B.2)

∀g ∈ G∃g−1 ∈ G : gg−1 = g−1g = e. (B.3)

If G has a finite number of elements we say that G is a finite group.

Typical examples of groups are

• GL(n,R): the set of n× n real invertible matrices with matrix multiplication;

• Sn: the group of permutation of n objects (the composition is the successive operation of
permutations);

• U(1): the set 1× 1 unitary matrices with matrix multiplication;

• SU(d): the set of d× d unitary matrices with determinant 1 with matrix multiplication;

A relevant class of groups are Lie groups

Definition B.2 (Lie Group) A group G which is a differentiable manifold and such that the
maps

(g1, g2) → g1g2, g1 → g−1
1 (B.4)

are smooth, is a Lie group. If G (as a manifold) is compact, we say that G is a compact Lie
group.

GL(n,R), U(1), SU(d) are Lie groups but only U(1) and SU(d) are compact. From now on
we restrict to the case of finite group and compact Lie groups.

Definition B.3 (Unitary Representation) Let G be a group and H a Hilbert space. A unitary
representation of G onH is a map g → Ug from G to set of bounded linear operator B(H) such
that:

Ug is unitary ∀g ∈ G (B.5)
UgUh = Ugh∀g, h ∈ G (B.6)

Ue = I. (B.7)
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Definition B.4 (Equivalent Representation) Let {Ug | g ∈ G} be a unitary representation of
G onH and {Vg | g ∈ G}be a unitary representation of G onK. We say that {Ug} is equivalent
to {Vg} if there exists an isomorphism T : H → K such that

TUg = VgT ∀g ∈ G (B.8)

T †T = IH TT † = IK (B.9)

The isomorphism T is often called intertwiner.

Remark B.1 The notion of representation makes a bridge between group theory and quantum
physics. Indeed, the action of a group on an Hilbert space induces a transformation on the set of
quantum states S(H)

ρ→ UgρU
†
g ρ ∈ S(H). (B.10)

Definition B.5 (Invariant Subspace) Let {Ug | g ∈ G} a unitary representation of G on H
and let K ⊆ H, be a subspace of H. We say that K is invariant with respect to G if

Ug(K) ⊆ H ∀g ∈ G (B.11)

Definition B.6 (Irreducible Representation) Let {Ug | g ∈ G} a unitary representation of G
on H and let K ⊆ H, be an invariant subspace. We say that {Ug} is irreducible in K if there
exists no proper subspace V of K that is invariant with respect to G. A subspace carrying an
irreducible representation is called irreducible subspace.

Lemma B.1 (Subrepresentation) Let {Ug} be a unitary representation of G onH andK be an
invariant subspace of H. The restriction {Ug|K} of {Ug} on K is still a representation and it is
called a subrepresentation of {Ug}.

Finite groups and compact lie groups share a very relevant feature that is called complete
reducibility, that is, any representation can be decomposed as a discrete sum of irreducible rep-
resentations.

Theorem B.1 (Complete Reducibility) Let G be a finite group or a compact Lie group and
{Ug} a unitary representation of G on a Hilbert space H. Then there exists a discrete set of
irreducible unitary subrepresentations {Ug|Hk

} such that

Ug =
⊕

k

Ug|Hk
,

⊕
k

Hk = H (B.12)

Let {Ug} be a reducible, as opposed to irreducible, representation of a group G on a Hilbert
space H. Suppose now that there are only two invariant subspaces H1 and H2 (H = H1 ⊕H2)
with dimensions n and m respectively. Then Theorem B.1 says that for all g ∈ G, Ug can be
written in a block diagonal form

Ug =

(
U

(1)
g 0
0 U

(2)
g

)
(B.13)
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where U (1)
g is a n× n submatrix and U (2)

g is a m×m submatrix.
It can happen that in the decompositionU =

⊕
k Uk (we omit the index of the group element)

Uk is equivalent to Ul for some k 6= l; that being so, it is usual to rewrite the decomposition in
this way:

U =
⊕

µ∈irrepS(U)

mµ⊕
i=1

Uµ,i (B.14)

where irrepS(U) represents the set of equivalence classes of irreducible representations con-
tained in the decomposition of (U) and i labels different representations in the same class; mµ

is the number of different equivalent irreducible representations in the same class and it is called
multiplicity. Likewise we write:

⊕
k

Hk = H
⊕

µ∈irrepS(U)

mµ⊕
i=1

Hµ,i (B.15)

There is an isomorphism between the spaces
⊕mµ

i=1Hµ,i andHµ⊗Cmµ whereHµ is an abstract
Hilbert space of dimension dµ (dim(Hµ,i) = dim(Hµ,j) for all i and j). If we denote with Tµ

ij

the intertwiner connecting the equivalent representation Uµ,i and Uµ,j it can be written in the
simple form Tµ

ij = Idµ ⊗|i〉 〈j| where {|i〉} is an o.n.b. for the space Cmµ and Idµ is the identity
on the abstract space Hµ. Thanks to this isomorphism it is possible to rewrite the decomposition
B.12 in this way

Ug =
⊕

µ∈irrepS(U)

Uµ
g ⊗ Imµ , H =

⊕
µ∈irrepS(U)

Hµ ⊗ Cmµ (B.16)

It is customary to call Hµ representation space and Cmµ multiplicity space.

B.2 Schur lemma and its applications

Lemma B.2 (Schur) Let {Ug} and {Vg} two irreducible representations of the same group G
on Hilbert spaces H and K respectively. Let O : H → K an operator such that such that
OUg = VgO for all g ∈ G. If {Ug} and {Vg} are equivalent then O = λT , where T is the
isomorphism defined in Definition B.4 and λ ∈ C. If {Ug} and {Vg} are not equivalent, then
O = 0

The Schur lemma is a powerful tool for inspecting the structure of operators commuting with a
group representation.

Theorem B.2 (Characterization of the Commutant) Let {Ug} be a unitary representation of
a group G and O ∈ B(H) an operator such that [O,Ug] = 0 for all g ∈ G. Then

O =
⊕

µ∈irrepS(U)

Idµ ⊗Oµ (B.17)
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A typical example of operator in the commutant of a representation is the group average of an
operator. Suppose that {Ug} is a unitary representation of a finite group G on an Hilbert space
H and O ∈ B(H). Then we can define

O =
1
|G|

∑
g∈G

UgOU
†
g (B.18)

where |G| is the cardinality of G. Eq. (B.18) can be generalized to the case of Lie groups but to
do this we need a preliminary definition

Definition B.7 (Invariant measure) Let G be a Lie group. A measure µL(dg) on G is called
left invariant if µL(gB) = µL(B) for any g ∈ G and any region B ⊆ G. A measure µr(dg) on
G is called right invariant if µL(Bg) = µL(B) for any g ∈ G and any region B ⊆ G.

Any Lie group can be endowed with a right invariant measure and a left invariant measure.
When this to measures coincide the group is called unimodular; in this work we consider only
unimodular group so we can talk about invariant measure without any misunderstanding. When
the Lie group is compact (as it is always the case in this presentation) the invariant measure can
be normalized in this way∫

G

dg = 1. (B.19)

Now we can define the group average for the case of (compact unimodular) Lie groups:

O =
∫
G

dgUgOU
†
g (B.20)

As a consequence of Theorem B.2 we have

Theorem B.3 (Group average of an operator) Let {Ug} be a unitary representation of a finite
(compact) group on an Hilbert space H. Let O be an operator in B(H) and O its group average
(as defined in Eq. B.18 for the finite case and in Eq. B.20 for the compact case). Then we have

[O,Ug] = 0 ∀g ∈ G (B.21)

O =
⊕

Idµ ⊗
TrHµ [PµOPµ]

dµ
(B.22)

where Pµ is the projector on Hµ ⊗ Cmµ and TrHµ denotes the partial trace over Hµ.

B.3 Relevant decompositions

In this section we will give some results about the decomposition into irreducible representations
for
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B.3.1 The symmetric group Sn

Sn is the group of permutation of n objects. It can be proved that the number of inequivalent
irreducible representation of Sn is given by the number of partition of n.19 It is useful to associate
each partition ν = (νi) of n with a Young diagram. A Young diagram is a collection of boxed
arranged in left aligned rows, the row lengths not increasing from the top to the bottom; as an
example consider the partition

n = 11 ν = (4, 3, 3, 1) (B.23)

The corresponding Young diagram has the following shape

(B.24)

The usefulness of this pictorial representation will be more evident in the following section

B.3.2 Decomposition of SU(d)⊗n

At the beginning of this chapter SU(d) was defined as the group of d×d unitary matrices U with
determinant equal to 1. This definition identifies SU(d) with its smallest-dimensional faithful
irreducible representation: this representation is usually called the defining representation. .
Then SU(d)⊗n will denote the unitary representation {U⊗n} over the Hilbert spaceH⊗n where
dim(H) = d. In this section we will use both SU(d)⊗n and U⊗n with the same meaning.

Let now consider the action of Sn on factorized vectors:

s · (|ψ〉1 ⊗ · · · ⊗ |ψ〉n) = |ψ〉s−1(1) ⊗ · · · ⊗ |ψ〉s−1(n) s ∈ Sn; (B.25)

this action can be extended by linearity to the whole H⊗n leading to a representation of Sn

over H⊗n. This representation of Sn commutes with the representation SU(d)⊗n and it can
be proved20 that the irreducible subspaces of these two representations are the same. Each irre-
ducible representation Uν in the decomposition U⊗n =

⊕
ν Uν ⊗ Imν is then in correspondence

with a Young diagram ν.
From a Young diagram one can obtain a Young tableaux filling the empty boxes with the

integers numbers from 1 to n; a standard Young tableau is a tableau in which the numbers in
each row grow from left to right and the numbers in each column grow from top to bottom e.g.

1 2 5 7
3 4 8
6 9 11

10

1 3 4 7
2 5 6
8 10 11
9

19A partition of an integer n is a way of writing n as a sum of positive integers.
20This result is the Schur-Weyl duality. The aim of this section is to introduce (without claiming to be rigorous) some

consequence of this theorem that are exploited for proving many results of Quantum Information Theory.
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Given an irreducible representation Uν in the decomposition of SU(d)⊗n, the dimension mν

of the corresponding multiplicity space is given by the number of admissible standard Young
tableaux associated to the Young diagram corresponding to Uν .

The following combinatorial procedure gives the dimension of Hν :

• Given the Young diagram ν number the rows and the columns with integer numbers
1, 2, . . . , n from top to bottom for the rows and 1, 2, . . . ,m from left to right for the
columns;

• associate each box b of ν with the expression lb
hb

where:

lb = d+ j − i (B.26)

d = dim(H), j is the column which the box b belongs to and i is the row which i belongs
to;

hb = 1 + r + s (B.27)

r is the number of boxes to the right of b in the same row and s is the number of boxes
below it in the same column;

• Finally we have

dim(Hν) =
∏
b

lb
hb

(B.28)

We notice that when the number of rows is greater than n there will be at least one box b for
which we have hb = 0; such diagrams correspond to the mapping g → 0 for all g ∈ SU(d) and
can be discarded in the decomposition of SU(d)⊗n.

Since each irreducible representation of SU(d) appears in the decomposition of U⊗n for
some n, then it is possible to establish the correspondence

Irreducible representations of SU(d) ↔ Young diagrams
with at most d− 1 columns

A relevant example is the defining representation which corresponds to the Young diagram made

of a single box
This 1 to 1 correspondence allows to deal with decomposition of tensor product of irreducible

representation of SU(d) in a diagrammatic way. If {Uα} and {Uβ} are two irreducible represen-
tations of SU(d) we associate their tensor product representation {Uα ⊗ Uβ} with the product
α × β of the corresponding Young diagrams α and β. The following procedure provides the
expansion of the product of two Young diagrams as a sum of Young diagrams.

Expansion algorithm for Young diagram
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• Write the product of two Young diagrams α and β labelling successive rows of β with
indexes a, b, . . . as follows:

×
a a a
b (B.29)

• At each stage add boxes a . . . a , b . . . b from β to α one at a time checking that:

– the created diagrams ν have no more than d columns

– boxes with the same label must not appear in the same column

– when the the created tableaux is read from left to right and from top to bottom the
sequence of letters a, b, . . . must be such that any any point of the sequence the num-
ber of b’s occurred is not bigger than the number of a’s, the number of c’s occurred
is not bigger than the number of b’s etc.

• Two diagrams ν, µ of the shame shape are considered different only if the labeling is
different.

Finally we can write the expansion

α× β =
∑

ν

∑
i

νi (B.30)

where ν labels diagram with different shape and i labels different diagrams with the same shape.
It is worth noting that the product of Young diagrams, as defined by means of the previous
expansion, enjoys the following properties:

α× β = β × α (α× β)× γ = α× (β × γ) (B.31)

Each diagram νi in the expansion (B.30) corresponds to an irreducible representation in the
decomposition Uα ⊗ Uβ =

∑
ν

∑
i Uν,i; diagrams with the same shape represent equivalent

representations and the number of diagrams with the same shape but with different labeling
gives the dimension mν of the multiplicity space. Finally we have the following correspondence

α× β =
∑

ν

∑
i

νi ↔ Uα ⊗ Uβ =
∑

ν

Uν ⊗ Cmν (B.32)

The following examples will clarify the previous discussion

B.3.3 U⊗U

The admissible Young diagrams for SU(d)⊗2 are

ν+ = ν=
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with dim(H+) = d(d+1)
2 and dim(H−) = d(d−1)

2 . The admissible standard Young tableaux are

ν+ = 1 2 ν− =
1
2

thus we have m+ = m− = 1 and the decomposition becomes:

U ⊗ U = U+ ⊗ U− U+ ∈ B(H+), U− ∈ B(H−). (B.33)

H+ and H− can be proved to be the symmetric and the anti-symmetric subspace of H ⊗ H
respectively. If {|i〉 i = 1, . . . , d} is a basis for H it is possible to find a basis for H+ and H−;
we have

H+ = Span
{
|n+〉 :=

1√
2
(|i〉 |j〉+ |j〉 |i〉), i, j = 1 . . . d

}
(B.34)

H− = Span
{
|n−〉 :=

1√
2
(|i〉 |j〉 − |j〉 |i〉), i, j = 1 . . . d

}
. (B.35)

Exploiting Eqs. (B.34, B.35) it is easy to check that H+ and H− are invariant subspaces of
SU(d)⊗2. We introduce

P+ =
∑

n

|n+〉 〈n+| P− =
∑

n

|n−〉 〈n−| (B.36)

P+ is the projector on the symmetric subspace and P− is the projector on the antisymmetric
subspace.

We notice that the expansion of the product × would lead to the same decomposition
for U ⊗ U .

B.3.4 U⊗U⊗U

The admissible Young diagrams for SU(d)⊗3 are

α = β = γ = .

with dim(Hα) = d(d+1)(d−1)
3 , dim(Hβ) = d(d+1)(d+2)

6 dim(Hγ) = d(d−1)(d−2)
6 . We notice

that for d = 2 dim(Hγ) = 0 and the representation labelled by γ does not appear in the decom-
position. The admissible standard Young tableaux are

α1 =
1 2
3 α2 =

1 3
2 β = 1 2 3 γ =

1
2
3
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thus we have mα = 2, mβ = mγ = 1 and the decomposition becomes:

U ⊗ U ⊗ U = Uα ⊗ Imα ⊕ Uβ ⊕ Uγ

Uα ∈ B(Hα), Uβ ∈ B(Hβ), Uγ ∈ B(Hγ), Imα ∈ Cmα = C2. (B.37)

An equivalent way to decompose U ⊗ U ⊗ U is through the expansion of the product ×
×

B.3.5 U⊗U∗

Let us start with a preliminary definition

Definition B.8 (conjugate representation) Let {Ug} be a unitary representation of a group G.
Then it is possible to define its conjugate representation {U∗g } in this way:

U∗g = UT
g−1 ∀g ∈ G (B.38)

It is straightforward to notice that the conjugate of the defining representation U of SU(d) is the
one formed by the complex conjugate matrices U∗. The Young diagram corresponding to the
representation U∗ is the one corresponding to a column of d− 1 boxes

U∗ ↔ ...

 d− 1 boxes (B.39)

It is worth noting that for d = 2 both U and U∗ are represented by the Young diagram made of a
single box. This agree with the fact that the defining representation U of SU(2) and its conjugate
U∗ are equivalent; Indeed for all U ∈ SU(2) we have

CU = U∗C C =
(

0 1
−1 0

)
(B.40)

The easiest way to the decompose of U ⊗ U∗ is exploiting the Young diagrams formalism
and the expansion algorithm:

U ⊗ U∗ ↔ × ...
=

...

⊕ ...
↔ Up ⊕ Uq (B.41)

where Up ∈ B(Hp) and Uq ∈ B(Hq) dim(Hp) = 1, dim(Hq) = d2 − 1. An explicit form for
the projectors on Hp and Hq can be given:

P p = d−1|I〉〉〈〈I| P q = I ⊗ I − P p. (B.42)



386 Quantum Networks: General Theory and Applications

B.3.6 U⊗U⊗U∗

We can decompose the representation U ⊗ U ⊗ U as follows. First, as we showed previously,
U ⊗ U can be decomposed as U+ ⊕ U− and so we have U ⊗ U ⊗ U∗ = (U+ ⊕ U−) ⊗ U∗ =
(U+ ⊗ U∗)⊕ (U− ⊕ U∗). We now further decompose U+ ⊗ U∗ and U− ⊕ U∗:

U+ ⊗ U∗ ↔ × ...
= ...

⊕
...

↔ Uβ,+ ⊕ Uα,+

U− ⊗ U∗ ↔ × ...
= ...

⊕
...

↔ Uγ,− ⊕ Uα,−

(B.43)

Then the following decomposition holds:

U ⊗ U ⊗ U∗ = Uα,+ ⊕ Uα,− ⊕ Uγ,− ⊕ Uβ,+ (B.44)

dim(Hα,+) = dim(Hα,−) = d,

dim(Hβ,+) = d
d2 + d− 2

2
, dim(Hγ,−) = d

d2 − d− 2
2

We notice that for d = 2 the subspace dim(Hγ,−) = 0 Since Uα,+ and Uα,− are equivalent
representations the decomposition (B.44) can be rewritten as

U ⊗ U ⊗ U∗ = Uα ⊗ Imα ⊕ Uγ ⊕ Uβ Imα ∈ B(C2) (B.45)

where we relabeled Hβ,+ = Hβ , Hγ,− = Hγ and Hα,+ ⊕Hα,− = Hα ⊗ C2. We now provide
two basis for Hα,+ and Hα,−

Hα,+ = Span

{
|kα,+〉 :=

1√
2(d+ 1)

(|I〉〉02 |k〉1 + |I〉〉12 |k〉0)

}

Hα,− = Span

{
|kα,−〉 :=

1√
2(d− 1)

(|I〉〉02 |k〉1 − |I〉〉12 |k〉0)

}
. (B.46)

where we introduced the labeling H⊗H⊗H := H0 ⊗H1 ⊗H2 and |k〉i means |k〉 ∈ Hi. We
notice the properties

S |kα,+〉 = |kα,+〉 S |kα,−〉 = − |kα,−〉 (B.47)
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where S is the swap operator S |ψ〉0 |φ〉1 = |φ〉0 |ψ〉1 In terms of these two basis the isomorphism
between Hα,+ and Hα,− has the following form:

Tα,+,− =
∑

k

|kα,+〉 〈kα,−| . (B.48)

From Eqs. (B.43) and (B.46) we can derive the expression for the projectors on Hβ and Hγ :

P β = P+ ⊗ I2 − Tα,+,+ P γ = P− ⊗ I2 − Tα,−,− (B.49)

Tα,+,+ =
∑

k

|kα,+〉 〈kα,+| Tα,−,− =
∑

k

|kα,−〉 〈kα,−| . (B.50)

Tα,+,+ is the projector on Hα,+ and Tα,−,− is the projector on Hα,−.
Exploiting Theorem B.2 any operator O satisfying the commutation [O,U ⊗U ⊗U∗] can be

decomposed as

O =
∑
ν∈S

∑
i,j=±

T ν,i,joi,j
ν oi,j

ν ∈ R (B.51)

where S = {α, β, γ}, T β,+,− = T β,−,+ = T β,−,− = 0, T γ,+,− = T γ,−,+ = T γ,+,+ = 0,
T β,+,+ = P β and T β,+,+ = P β .

B.3.7 U⊗U⊗U⊗U (2-dimensional case)

Expanding the product × × × × leads to the decomposition

⊕ ⊕ ⊕ ⊕ ⊕

U⊗4 = Ua ⊕ Ub ⊗ Imb
⊕ Uc ⊗ Imc (B.52)

dim(Ha) = 5 dim(Hb) = 3 dim(Hc) = 1

Cmb = C3 Cmc = C2

Since we are considering the case d = 2, U and U∗ are equivalent and the decomposition (B.52)
can be generalized to the cases in which one or more U is replaced with U∗. For example we
have:

U∗ ⊗ U ⊗ U ⊗ U = (C ⊗ I⊗3)Ua ⊕ Ub ⊗ Imb
⊕ Uc ⊗ Imc (C ⊗ I⊗3) (B.53)

where C was defined in Eq. (B.40).



388 Quantum Networks: General Theory and Applications

References

[1] A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, North Holland, Amsterdam
(1982)

[2] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University
Press, Cambridge (2000)

[3] C. W. Helstrom, Quantum Detection and Estimation Theory, Academic Press, New York (1976)
[4] A. Acín, Phys. Rev. Lett. 87, 177901 (2001)
[5] G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, Phys. Rev. Lett. 87, 270404 (2001)
[6] M. F. Sacchi J. Opt. B 7, S333 (2005)
[7] G. Chiribella, G. M. D’Ariano, P. Perinotti, Phys. Rev. Lett. 101, 180501 (2008)
[8] A. W. Harrow, A. Hassidim, D. W. Leung, J. Watrous, Phys. Rev. A 81, 032339 (2010)
[9] M. A. Nielsen, I. L. Chuang Phys. Rev. Lett. 79, 321 (1997)

[10] S. F. Huelga, J. A. Vaccaro, A. Chefles, and M. B. Plenio, Phys. Rev. A 63, 042303 (2001)
[11] S. D. Bartlett, W. J. Munro Phys. Rev. Lett. 90, 117901 (2003)
[12] Y.-F. Huang, X.-F. Ren, Y.-S. Zhang, L.-M. Duan, G.-C. Guo, Phys. Rev. Lett. 93, 240501 (2004)
[13] Y. S. Weinstein, T. F. Havel, J. Emerson, N. Boulant, M. Saraceno, S. Lloyd, D. G. Cory, J. Chem.

Phys. 121(13), 6117-6133 (2004)
[14] J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K. Langford, T. C. Ralph, A. G. White,

Phys. Rev. Lett. 93, 080502 (2004)
[15] G. Gutoski and J. Watrous, Proc. of the 39th Annual ACM Symposium on Theory of Computation,

565 (2007).
[16] Proc. R. Soc. Lond. A 439, 553-558 (1992).
[17] Grover L.K. Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, 212

(1996)
[18] P. Shor, SIAM Rev. 41, pp. 303-332 (1999).
[19] H. P. Yuen, quant-ph/0207089.
[20] G. M. D’Ariano, D. Kretschmann, D. M. Schlingemann, R. F. Werner, Phys. Rev. A 76 032328 (2007).
[21] S. Pirandola, S. Mancini, S. Lloyd, and S. L. Braunstein, Nature Physics 4, 726 - 730 (2008).
[22] G. Chiribella, G. M. D’Ariano, P. Perinotti, Phys. Rev. Lett. 101, 060401 (2008)
[23] G. Chiribella, G. M. D’Ariano, P. Perinotti, Phys. Rev. A 80, 022339 (2009)
[24] A. Bisio, G. Chiribella, G. M. D’Ariano, S. Facchini, and P. Perinotti, Phys. Rev. Lett. 102, 010404

(2009).
[25] A. Bisio, G. Chiribella, G. M. D’Ariano, S. Facchini, and P. Perinotti, IEEE Journal of Selected Topics

in Quantum Electronics 15 1646 (2009)
[26] G. Chiribella, G. M. D’Ariano, P. Perinotti, Phys. Rev. Lett. 101, 180504 (2008)
[27] A. Bisio, G. Chiribella, G. M. D’Ariano, S. Facchini, P. Perinotti Phys. Rev. A 81, 032324 (2010)
[28] A. Bisio, G. Chiribella, G. M. D’Ariano, P. Perinotti, Phys. Rev. A 83, 022325 (2011)
[29] A. Bisio, G. Chiribella, G. M. D’Ariano, P. Perinotti, Phys. Rev. A 82, 062305 (2010).
[30] A. Bisio, G. M. D’Ariano, P. Perinotti, M. Sedlák, Physics Letters A 375, 3425-3434 (2011).
[31] A. Bisio, G. M. D’Ariano, P. Perinotti, M. Sedlák, (accepted in Phys. Rev. A). arXiv:1103.5709
[32] M. Raginsky Phys. Lett. A 290, 11 (2001)
[33] J. de Pillis, Linear Transformations Which Preserve Hermitian and Positive Semidefinite Operators,

Pacific J. of Math. 23, 129 (1967)



References 389

[34] M.-D. Choi, Lin. Alg. and Appl. 10, 285 (1975)
[35] A. Jamiołkowski Rep. Mod. Phys. 3, 275 (1972)
[36] W. F. Stinespring, Proc. Amer. Math. Soc. 6, 211 (1955)
[37] G. Chiribella, G. M. D’Ariano, P. Perinotti J. Math. Phys. 50, 042101 (2009)
[38] M. Ozawa. J. Math. Phys. 25, 79 (1984)
[39] T. Eggeling, D. Schlingemann, R. F. Werner, Europhys. Lett. 57, 782-788 (2002).
[40] M. Piani, M. Horodecki, P. Horodecki, R. Horodecki Phys. Rev. A 74, 012305 (2006)
[41] M. Ziman, Phys. Rev. A 77, 062112 (2008).
[42] D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, Phys. Rev. Lett. 70, 1244 (1993).
[43] K. Vogel and H. Risken, Phys. Rev. A 40, 2847 (1989).
[44] G. M. D’Ariano, C. Macchiavello, and M. G. A. Paris, Phys. Rev. A 50, 4298 (1994)
[45] P. Busch, Int. J. Theor. Phys. 30, 1217 (1991).
[46] G. M. D’Ariano and P. Perinotti, Phys. Rev. Lett. 98, 020403 (2007).
[47] A. J. Scott, Phys. A 39, 13507 (2006).
[48] G. M. D’Ariano, P. Lo Presti, Phys. Rev. Lett. 86, 4195 (2001).
[49] W. Dür and J. I. Cirac, Phys. Rev. A 64, 012317 (2001).
[50] R. J. Duffin, A. C. Schaeffer, Trans. Am. Math. Soc. 72, 341 (1952).
[51] P. G. Casazza, Taiw. J. Math. 4, 129 (2000)
[52] G .Casella, R. L. Berger, Statistical Inference, Duxbury Press (2001).
[53] G. M. D’Ariano. P. Perinotti, M. F. Sacchi, J. Opt.B: Quantum and Semicl. Optics 6, S487 (2004)
[54] A. J. Scott, J. Phys. A 39, 13507 (2006)
[55] G. Chiribella, G. M.D’Ariano, D. M. Schlingemann, Phys. Rev. Lett. 98, 020403 (2007)
[56] P. Walther, A. Zeilinger, Phys. Rev. A 72, 010302(R) (2005)
[57] W. K. Wootters, W.H.Zurek, Nature 299, 802 (1982)
[58] V. Buzek, M. Hillery, Physics World 14, 25 (2001).
[59] R. Werner, Phys. Rev. A 58, 1827 (1998)
[60] J. Fiurasek, R. Filip, N. J. Cerf Quant. Inform. Comp. 5, 583 (2005).
[61] V. Scarani, S. Iblisdir, N. Gisin, and A. Acín, Rev. Mod. Phys. 77, 1225 (2005)
[62] C. H. Bennett, G. Brassard, Proceedings IEEE Int. Conf. on Computers, Systems and Signal Process-

ing, Bangalore, India (IEEE New York, 1984), pp. 175-179
[63] R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy, A.

Kuzmich, Nature Physics 5, 100 (2009)
[64] A. I. Lvovsky, B. C. Sanders, W. Tittel Nature Photonics 3, 706 - 714 (2009)
[65] B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, E. S. Polzik Nature 432, 482 - 486 (2004)
[66] G. Vidal, L. Masanes, J. I. Cirac Phys. Rev. Lett. 88, 047905 (2002)
[67] M. Ziman, V. Buzek Phys. Rev. A 72, 022343 (2005)
[68] G. M. D’Ariano, P. Perinotti Phys. Rev. Lett. 94, 090401 (2005)
[69] M. Micuda, M. Jezek, M. Dusek, J. Fiurasek Phys. Rev. A 78, 062311 (2008)
[70] G. Chiribella, G. M. D’Ariano, M. F. Sacchi, Phys. Rev. A 72 042338 (2005)
[71] G. Chiribella, G. M. D’Ariano, P. Perinotti, M. F. Sacchi, Phys. Rev. Lett. 93 18053 (2004)
[72] V. Buzek, R. Derka, S. Massar, Phys. Rev. Lett. 82, 2207 (1999)
[73] S. D. Bartlett, T. Rudolph, R. W. Spekkens, P. S. Turner, New J. Phys. 11, 063013 (2009)



390 Quantum Networks: General Theory and Applications

[74] G. Chiribella, G. M. D’Ariano, P. Perinotti, M. F. Sacchi, Phys. Rev. A 70, 062105 (2004)
[75] W. Heisenberg, Zeitsch. Phys. 43, 172 (1927).
[76] M. O. Scully, B.-G. Englert, and H. Walther, Nature 351, 111 (1991).
[77] C. A. Fuchs and A. Peres, Phys. Rev. A 53, 2038 (1996).
[78] K Banaszek, Phys. Rev. Lett. 86, 1366 (2001) .
[79] M. Ozawa, Ann. Phys. 311, 350 (2004).
[80] M. F. Sacchi, Phys. Rev. Lett. 96, 220502 (2006).
[81] F. Sciarrino, M. Ricci, F. De Martini, R. Filip, and L. Mišta Jr., Phys. Rev. Lett. 96, 020408 (2006).
[82] L. Maccone, Phys. Rev. A 73, 042307 (2006).
[83] D. Kretschmann, D. Schlingemann and R. F. Werner, IEEE Trans. Inf. Theory 4, 1708 (2008).
[84] F. Buscemi, M. Hayashi, M. Horodecki, Phys. Rev. Lett. 100, 210504 (2008).
[85] K. Boström, T. Felbinger, Phys. Rev. Lett. 89, 187902 (2002).
[86] M. Lucamarini, S. Mancini, Phys. Rev. Lett. 94, 14051 (2005).
[87] A. Ferraro, M. Galbiati, M. G. A. Paris, J. Phys. A 39, L219-L228 (2006).
[88] S. Boyd, L. Vanderberghe, Convex Optimization Cambridge University Press, Cambridge (2004)
[89] C. Zalka Phys. Rev. A 60, 2746 (1999)
[90] G.Wang, M. Ying. Phys. Rev. A 73, 042301 (2006)
[91] V. P. Belavkin, G. M. D’Ariano, M. Raginsky J. Math. Phys. 46, 062106 (2005)
[92] W. Fulton and J. Harris, Representation theory: a first course, Springer, (1996)
[93] H. F. Jones, Groups, Representations and Physics Taylor and Francis (1990)
[94] W. Fulton, Young tableaux : with applications to representation theory and geometry Cambridge

University Press, Cambridge (1997)
[95] A. O. Barut, R. Raczka, Theory of group representations and applications World Scientific, Singapore

(1986)
[96] M. Grant, S. Boyd, http://cvxr.com/cvx/
[97] J. Watrous, private communication (2010)



Giulio Chiribella received the M.Sc. degree and the PhD in physics
from the University of Pavia in 2003 and 2006 respectively. From 2006
to 2009 he was post-doc fellow of Dipartimento di Fisica "A. Volta"
of Università degli Studi di Pavia. Since 2009 he is senior postdoc at
Perimeter Institute of Theoretical Physics. He was one of the founders
of the theory of quantum combs. Recently he proposed an operational
axiomatization of Quantum Mechanics, which has received much in-
terest at numerous international conferences. His research interests are:

Quantum information processing, quantum optics, quantum estimation, foundations of quantum
Mechanics, algebraic and group theoretical methods.

Alessandro Bisio received the M.Sc. degree and the PhD
in physics from the University of Pavia in 2007 and 2010
respectively. Since 2010 he is a post-doc fellow of Di-
partimento di Fisica "A. Volta" of Università degli Studi di
Pavia. His research interests are: Quantum Information Pro-
cessing, Quantum Optics, algebraic and group theoretical meth-
ods and foundations of Quantum Mechanics.

Giacomo Mauro D’Ariano is full professor of Quantum Information
and Quantum Optics at the University of Pavia. Fellow of the Opti-
cal Society of America, Member of the Lombard Academy of Science
and Letters, member of the Center for Photonic Communication and
Computing of the Department of Electrical and Computer Engineer-
ing of Northwestern University (Evanston IL), with which he regularly
collaborates since 1994. In Pavia he created the research group QUIT
(Quantum Information Theory), which is scientifically very active at the

international level. He conceived and developed the method of quantum homodyne tomography
as the first quantitative technique to determine experimentally the state of radiation, technique
now very popular. He then generalized the method to arbitrary quantum system and arbitrary
ensemble average, achieving a universal measurement method. He conceived and developed the
first experimental technique for the complete quantum characterization of a measuring apparatus
or of the transformation of a device. He introduced a novel theoretical method to deal with co-
variant measurements and transformations, which has recently lead him and his research team to
the solution of the long-standing problems of phase-estimation and broadcasting of mixed states
of qubits. He was one of the founders of the theory of quantum combs. Recently he proposed an
operational axiomatization of Quantum Mechanics, which has received much interest at numer-
ous international conferences.



Paolo Perinotti received the M.Sc. degree in physics from the Uni-
versity of Pavia in 1999 and the PhD in physics from the University of
Milan in 2002. From 2002 to 2006 he was INFM (Istituto Nazionale
di Fisica della Materia) post-doc fellow. From 2006 to 2011 he was
post-doc fellow of Dipartimento di Fisica "A. Volta" of Università degli
Studi di Pavia. He is presently Research Associate at University of
Pavia. He was one of the founders of the theory of quantum combs.
Recently he proposed an operational axiomatization of Quantum Me-

chanics, which has received much interest at numerous international conferences. His research
interests are: Quantum Information and Quantum Mechanics of Measurements and Open Sys-
tems, Quantum estimation, discrimination and tomography of states and devices, and logical
foundations of quantum mechanics.


	Introduction
	Quantum Networks: general theory
	Linear maps and linear operators
	Choi isomorphism
	The link product

	Diagrammatic representation of linear maps
	States, Channels and POVMs
	Quantum Networks: constructive approach
	Deterministic Quantum Networks
	Probabilistic Quantum Network
	Connection of Quantum Networks

	Quantum Tomography
	State tomography

	Quantum Network Tomography
	Optimal quantum tomography for states, effects and transformation
	Optimization of data processing
	Optimization of the setup
	Realization scheme for the optimal tomography


	Cloning a Unitary Transformation
	Optimal cloning of a Unitary transformation
	The optimal cloning network

	Quantum learning of a unitary transformation
	Optimization of quantum learning
	Considered scenario: M=1
	Optimization of the storing strategy
	Optimization of the retrieving channel
	Generalization to the M > 1 case
	Optimal learning according to the single-copy fidelity
	Optimal learning according to the global fidelity

	Comparison with the cloning

	Inversion of a unitary transformation
	Learning scenario
	Supermap scenario

	Information-disturbance tradeoff in estimating a unitary transformation
	Optimization of the tradeoff
	Realization scheme for the optimal network

	Learning and cloning of a measurement device
	Formulation of the problem
	Symmetries of the replicating network
	Optimal learning
	1 1 case
	2 1 case
	3 1 case
	1 2 case

	Optimal cloning

	Conclusion
	Acknowledgment
	Channel Fidelity
	Elements of Group Representation Theory
	Basic definitions
	Schur lemma and its applications
	Relevant decompositions
	The symmetric group Sn
	Decomposition of SU(d)n
	U U
	U U U
	U U*
	U U U*
	U U U U (2-dimensional case)


	References

