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This is the third part of a three-volume introductory couabeut integrable systems of in-
teracting bodies. The emphasis is put onto the method ofriddynamic Bethe ansatz.
Two kinds of integrable models are studied. Systems ofriinieelectrons, forming a part of
Condensed Matter Physics, involve the Hubbard lattice tnaidelectrons with short-ranged
one-site interactions (Sect. 20) and the s-d exchange Komdtel (Sect. 21), describing the
scattering of conduction electrons on a spimpurity. Methods and basic concepts used
in Quantum Field Theory are explained on the integrdble- 1)-dimensional sine-Gordon
model. We start with the classical description of the modebéct. 22, analyze its finite en-
ergy field configurations (soliton, anti-soliton and breatf) and show its classical integrabil-
ity. The model is quantized by using two schemes: the cordb(®ect. 23) and Lagrangian
(Sect. 24) quantizations. The scattering matrix of the-&ieedon theory is derived at the full
guantum level in the bootstrap scheme and is compared t@agsical limit in Sect. 25. The
parameters of the scattering matrix are related to thoskeofEagrangian by calculating the
ground-state energy in an applied magnetic field in two w&gmnformal perturbation theory
and Thermodynamic Bethe ansatz (Sect. 26). The relatioheo$ine-Gordon theory to the
XXZ Heisenberg model, which provides a complete solutiothefsine-Gordon model in a
finite volume, is pointed out in Sect. 27. The obtained resaile applied in Sect. 28. to the
derivation of the exact thermodynamics for the (symmetrie)-component Coulomb gas;
this is the first classical two-dimensional fluid with exgcblvable thermodynamics.
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CONDENSED MATTER: MODELS OF ITINERANT ELECTRONS
20 Hubbard model

The Hubbard model [1] has long been the most important moéem of strongly interacting
electrons in a solid. It is investigated in connection whik tetal-insulator transition of Mott
type [2]. This model represents a lattice version of thes})farmion gas withy-function pair
interactions, studied in Sect. 10. The 1D Hubbard model wh&d using the Bethe ansatz by
Lieb and Wu [3]; for a reminiscence and some new rigorousit®ssee Ref. [4]. The topic has
been summarized in the monograph [5].

20.1 Hamiltonian and its symmetries

We start with a general set-up for electrons with spire {1, |}, formulated on a periodic
chain of atomic site$ = 1,2,..., L. In the framework of the second quantization,dkt and
¢, be creation and annihilation operators of an electron of spat sitel, satisfying the usual
anticommutation relations

{Claa Cl’a’} = {Cjaa CI/G-/} = Oa {Cjaa Cl’a’} = §ll’§aa’ . (201)

The chain periodicity is ensured by setting, 1, = ¢1,. For electrons with spier € {1, ]},
we define the local occupation number operatgr = c;f c1, and the total number operator

N, = >, Ms. The number operator of all electronsNé = NT + Nl The operators of the
components of the total spin are defined as follows

Stor = Z Yo de (@, a=ay,z (20.2)

l 1o'0"=T,]

where{c} are the usual Pauli matrices. Explicitly, we have

Stet = B Z (021011 + CLCH) )

!
1

S‘?ot = Z Z (C}Tcll — leClT) y (203)

l
z 1 T T

Stet = B Z (CnclT - Cucll) :

!

The spin operators generate a representation of su(2)ralgéts,,, 5°,] = i€apySe- Itis
useful to introduce the ladder operatst§, = S, + 1S, which have the explicit forms

ST=>cha,  ST=> . (20.4)

l l

They obey the sl(2) commutation relations

[Stt)t’ St?)t} = 2Stzot7 [Sézotv Stj(:)t] = iSit- (20.5)
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The vacuum state vect(fi), corresponding to the empty lattice, is defined by

cs10) =0 fori=1,...,Lando =T, |. (20.6)
The basis of the space of states is generated by applyingeh@an operator$c2'g} to |0). For
N electrons, we introduce the ordered coordinates (I1,...,Iy) with [; < ;41 and spin
componentg = (o1,...,0n) suchthav; < o,41 if [; = [;41. The space of states is spanned
by all linear combination of Wannier states:

Loy=c .. -, 10). (20.7)

For N; electrons with spin up and/; electrons with spin down, the total number of Wannier
states is(]@) (Aﬁ) Thus, the dimension of the Wannier space is

i XL: (1\171) (]\L’i) - (20.8)

Ni=0N,;=0
The same number can be obtained directly by noting that elachiasitel = 1,..., L has
four states, namely the empty stéf, the spin-up statelTT|0>, the spin-down state}'l|0> and

the fully occupied spin-up plus spin-down stafgcmm; due to the Pauli exclusion principle,
electrons of the same spin cannot occupy the same site.
The one-body kinetic energy of electrdiiss composed of nearest-neighbour hopping terms,

L
T = —tz Z (c}acH_lg + cjﬂaclg). (20.9)
=1 o=1,]

In what follows, energies will be measured in unitg 6f 1. The interaction energy of electrons

V' is approximated by only short-range contributions fronessiloubly occupied by electrons
with opposite spins,

L
V=2c)» nyng. (20.10)
T
1=1

Since the electrons possess the same charge, the usuahvardie Hubbard model corresponds
to the repulsive Coulomb coupling constant 0. However, instead of electrons we can consider
the spinless fermions which are distinguished by the chi@wgecomponent plasma), so that the
Coulomb attraction between-a charge and- charge at the same site leads to the attractive
Hubbard model witle < 0. The Hubbard Hamiltonian is given iy = H(c) =T + V.

Now we show that the numbers of up-spin electrfsz}s: >, 7t and down-spin electrons

N = 3", ny, are conserved, i.e.
[H, NU] -0, o=11, (20.11)

together with the obvious relatio[mVT,Nl] = 0. With regard to 20.1), the local occupation
number operators satisfy the relations

|:nl0'a CLG-/:| = 6[]@50'0"01];0/ . (2012)
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The summation of this equation ovie= 1, ..., L leads to a couple of the Hermitian conjugate
equations

(Novcly| = bl [Novior]| = =G00rcior. (20.13)
Consequently,

{Ng,cja,ckgl} = {Na,cjg,} Chor + c}a/ {Ng,ckgl} =0. (20.14)

This equality implies immediately the conservation la@6.0]). Since the total number of
electronsis given by = N;+ N, and thez-componentof the total spin i8¢,, = (N —N,)/2,
these quantities are conserved as well,

[H, N} = [H,5%,]=0. (20.15)

In the canonical approach, we fix the numbafrsof up-spin electrons andy; of down-spin
electrons. In the grand-canonical formalism, the contaniables are the external magnetic field
h > 0 (hencen; > n|) and the chemical potentialof particles. The Hamiltonian then reads

H(c,h) = H(c) — 2hSZ,. (20.16)

Due to the conservation law2@.15, the Hamiltoniand{ (¢) and H (¢, h) possess the common
set of eigenstates.

For a bipartite chain witl. = even number of sites, the set of lattice sites can be diviated i
two subsetsA = {1,3,5,...} andB = {2,4,6, ...}, such that there is no hopping betweén
sites orB sites. Then, the unitary transformatioil HU with U = expl[ir >, 4 (niy + n4))]
leavesH unchanged, except for the replacemént> —T'.

For the bipartite chain, the 1D Hubbard model possesses manynetries based on the
particle-hole transformations. Let us first introduce thelé” fermion operators

a}a =y, Al = c}a, forl € Aando € {71, |},

20.17
—Clgy Al = —czfa, forl € Bando € {1, }. ( )

al, =
Under this transformation, the Hamiltonia20(16 and the particle numbers are changed to
H(c,h) — 2¢(L — N) + H(c,—h), Ny -L—-N;, N —L-N|. (20.18)

In this way the more than half-filled cag&” > L) is mapped onto the less than half-filled case
(N < L). If the transformationZ0.17 is made only for spin-up electrons, i.e.

af, =cp,  ap=cf,, forleA4, (20.19)
a’;T — _ClT7 alT = —C;T, fOI’l (S Ba .

we find
H(c,h) = h(N — L)+ ¢N + H(—¢,h), Ny —L—-N;, N, —N,.  (20.20)

This symmetry makes a link between the repulsive and aitteaetubbard models.
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20.2 Nested Bethe ansatz

The Fock eigenstates of the Hubbard model whttelectrons, M with spin down andV — M
with spin up, are expressible as follows

INM) =" oy o (@1, ) gy el o0 10), (20.21)
{0} {zx}

where}_, , denotes summation over all!/[M!(N — M)!] possible spin configurations. Due
to the ant|commutat|on relations between the Fermion dpesathe amplitudes are totally
antisymmetric under simultaneous exchange of spin ancesga@bles:

Voo ..oon (ZQ1, -+, TQN) = sign(Q) Yo, ..on (1, .., TN), (20.22)

where@ = (Q1,Q2,...,QN) is an element of the symmetric grods;. The antisymmetry
property £0.22 implies that the summation over spin configurationi®.27 is redundant and
we can set

NI
N, M) = m Ziﬁgl on (@1, N)cllgl~-~clNUN|O>, (20.23)

{zk}
where(oq, ..., o) is an arbitrary configuration af/ electrons with spin down andl — M elec-

trons with spin up. Inserting20.23 into the eigenvalue equatidii(c)|N, M) = E(c)|N, M),
we obtain the “first quantized” version of the Schrodingguaion for the wavefunction:

N
—Z Z wal,,,UN(xl,...,xj—i—e,...,xN)

j=1le=%£1

+2cZ§(xj,xk)wal,,,UN(xl,...,xN) = E()VYo,. .on(T1,...,2N). (20.24)

j<k

e N = 2: In the case of two electrons, the Schrodinger equag0r?g takes the form

- 1/10'10'2 (fEl - 1,1'2) - wo'lo'z (.Tl + 11 $2) - 1/10'10'2 (xlaxQ - 1)
Vo 00 (X1, T2 + 1) + 2¢6(21, 22) Yoy 00 (X1, 2) = By, 0p (21, 22).  (20.25)
Let@ = (Q1,Q2) € S, be a permutation of the labels of particle coordinates whifines the
ordering secto:g; < x¢2 of mutual particle positions.
Whenxz, < x5 Orxz; > 22, (20.25 reduces to the Schrodinger equation for free electrons

on the chain and its solution is a superposition of plane waVhe nested Bethe ansatz form for
the fermion wavefunction, see Eqs. (7.4)-(7.5), reads

Voros (T1,T2) = Z sign(QP)Avq, 0. (kp1, kp2) exp< ZkPaZCQa> ) (20.26)

PeSy

wherek; andk, are electron momenta. The substitution of this ansatz info £0.25 with
1 # 2o leads to the total momentuhii and energy given by

K = ki + ko, E = —2(cosky + cosksz). (20.27)
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Whenzx; = x4, the electrons occupy the same site and scatter with onb@mndthe Bethe
ansatz for the wavefunctior2Q.26 requires the scattering to be purely elastic, so that the mo
mentak; and ko are individually conserved (the electrons either keep @harge their mo-
menta). The scattering process is determined by two camgitiFirstly, we have to “match” the
wavefunction defined in the two sectdps= (1,2) and@ = (2,1) whenz; = o = z. This
yields the conditions

Adlt‘fz (kla k2) - Adlt‘fz (kQa kl) = AUzt‘fl (k27 kl) - AUzt‘fl (klv kQ) (2028)
Secondly, the Schrddinger equati@®(25 has to be fulfilled for:; = 252 = 2, which implies

- e_ikl AO’10’2 (k17 k2) + e_iszO'la'z (k21 kl) + eisza'gal (kla k2)
_elkl AU20'1 (k27 kl) - elk2A0102 (kla k2) + elklAdlth (kQa kl)
+eilk1A0'20'] (k17k2) - eilk2AG'20'1 (k21 )

)]

+2[c+ (cosky + cosk2)|[Aviop (K1, k2) — Agyoy (Ko, K1 = 0. (20.29)

With the aid of Egs. 20.28§ and @0.29 we can express any two of the four unknown
amplitudes in terms of the other two. Simple algebra gives

Agsos (kay k1) = Y ST (k1 ko) Aoy oy (R, k2), (20.30)
01,05
wheres is the two-particle scattering matrix with elements

sinky —sinky o0, ic poios. (20.31)

. . . ’ / . . . ’
sinky —sinky +ic 9192 sink; —sinky +ic %9192

0102 —
o2 (R ) =

Here,l andP are the identity and permutation operators, respectivigdg natural parameteri-
zation of moment# by rapidities\ is

sink = A\, E(X) = arcsin \; (20.32)

since the physical range @fis over a perio®, k(\) is a two-sheeted function with branch
points at\ = +1. Within this parameterization, the-matrix (20.3]) can be expressed as

S1a(A = A1 — Ag) =

— T 20.33
A +ic +/\+ Prz. ( )

This matrix has the form of th8-matrix for the Heisenberg model (7.57) with the elements of
the rational type
A ic

aN =1 b=

d(\) =0, (20.34)

characteristic for the XXX Heisenberg chain.
We impose periodic boundary conditions on the wavefunction

1/]0102 (071'2) = 1/10'10'2 (L, xg), 1/10102 (ZCl,O) — 1/10102 (ZCl,L);
1/10102(171'2) = 1/]0102 (L + 1,1‘2), 1/10102 (xl’ 1) = 1/10102 (ZCl,L + 1) (2035)
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Inserting the Bethe ansat2(.26 into these conditions yields

eXp(ikplL) AUQ20Q1 (kP27 kPl) = AG'Qla'Qg (kP17 kPQ), (2036)

where the permutationB, ) € S, are arbitrary. Choosin@ = (2, 1), one gets the eigenvalue
problem

exp(ikp1L) Agios(kp2,kp1) = Aoyo,(kp1,kp2)
> Sot7t (kpa, kp1)Agi oy (kpa,kpr).  (20.37)

0'170'2

In the sector of both electrons with spin up, it follows frome texplicit form of theS-matrix

(20.37) that the boundary conditions corresponds to those of &eaibns:
exp(ik, L) =1 n=1,2. (20.38)

Similarly as in the case of the Heisenberg chain, the wavebeusmust be distinct; # ko, in
order to prevent the nullity of the wavefunction. The sansiltas obtained in the sector of both
electrons with spin down.

In the sector of one electron with spin up and the other onle syitn down, the diagonalized
form of Eq. £0.37 has the form

gimr (10 _(3ESEEE 0
0 1 0 1

Ay (kp2,kp1) — Aj (kp2, kp1)
= 0 20.39
) (ATL(’CPmkPl) + Ay (kp2, kp1) ( )

This eigenvalue equation has two possible solutions. Tise dolution, corresponding to the
coefficientsAd;| (kpz, kp1) = —A 1 (kp2, kp1), reads

Ap1 — Apo +ic

exp(ikplL) = )\Pl — /\PQ — ic.

(20.40)

IntroducingA; = (sin k; +sin k2) /2, Eq. 20.4Q can be re-expressed in a more symmetric way

. A — Aq +ic
wherec’ = ¢/2. It follows from (20.4Q thatexp(iky L) exp(ika L) = 1. ThusA; is determined
by the condition

2
H “atid (20.42)
it — A\ — i

The second solution t620.39, which corresponds toly (kps,kp1) = Ajq(kp2,kp1) =
Ay (kp1, kp2), is equivalent to the previous on2Q(3§.
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e Arbitrary N: The generalization of the above scheme\Melectrons is straightforward. The
Bethe ansatz for the solutiamof the Schrodinger equation in the ordering sec@owith zg; <
TQ2 <... SIQNiS

Vor0g..on (T1,T2,...,TN) = Z sign(QP)Asq 000..00x (kP1, kP2, .. kPN)
PeSN

N
X exp <i > kpaa:Qa) . (20.43)
a=1

Substituting this ansatz into the Schrodinger equat&h?j for the caser,, # x,, (n,m =
., N;n # m), the total momentum and energy of the Hamiltonf(xr) is obtained in the
usual form

N N
K=Y kn,  E=-2% coshp. (20.44)
n=1 n=1

The Bethe ansatz wavefunctia20(43 is by construction antisymmetric under simultaneous
exchange of spin and space variables. This fact assureskinédinger equatior20.29 to be
satisfied when three or more electrons are occupying the sémeThe only non-trivial case
to consider is the presence of two electrons on the same Qg the single valuedness of
the wavefunction and solving the matching conditions at(hgector boundaries, one gets the
nearest-neighbour electron scattering between the ardp#t

A o (ko kg ) ZS”“’J b ko)A oror (o sk ), (20.45)

J

where the two-particlé-matrix is given by 20.3J.
We impose periodic boundary conditions on the wavefunction

’L/Jg]“_gN(,CCl,..., 0 ,...,.’L'N) :wgl.“UN(.Tl,..., L ,...,{EN),
” " 20.46
Yoy on(@1yeo oy 1 o0 ZN) = Voy. on (1, L+ 1, 2N), ( )
where the underbraced particle position= 1,..., N. Inserting the Bethe ansat2q.43 into

these conditions yields

Asos..oonog kP2, ... kpn,kp1) = exp(—ikpiL)
XAG’Qla’Qg...aQN (kP17 kPQv ) kPN) (2047)

These equations coincide with the fermion boundary comnkti9.10) in the generalized Bethe
ansatz, while the scattering formul20(45 is identical to (9.12). We can therefore apply the
QISM procedure explained in Sect. 9, working with the wesght, ¢ andd defined in 20.34.

In the sector withV, = M (M < N/2) spin-down electrons and/; = N — M spin-up
electrons, we introduc@/ auxiliary spectral parameters;, ..., Ay;. Using the shiftA, —
A, —ic in the set of equations (9.35), these parameters are detedrby

)\ +1c —Ag—i—lc
= =1,..., M. 20.48
HA H Ao —Ag—ic’ T (20.48)

(hze)
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The quantization condition for momenta (9.37) now becomes

M B .
explikM\)L] = [ 22—="°  pn=1,...,N. (20.49)

Since the dispersion relations for smalare
E(X) = arcsin A ~ A, e(A\) = =21 = A2 ~ =24 )\, (20.50)

the low density limit of the Hubbard model is equivalent te giroblem of spin% fermions with
o-function interactions, see Egs. (10.27) and (10.28).

20.3 Ground-state properties of the repulsive Hubbard mode

In the ground state of the repulsive regime> 0, all rootsk,, (or A\,) and A, of the Bethe
equations20.49 and 0.49 are real. Sincé(\) is a two-sheeted function, we shall keep in the
formalism thek-variable rather than the spectral parameter sin k. Taking the logarithm of
the Bethe equations we arrive at

M
koL = 2ml,—Y 60(2(sink, —Aa)), n=1,...,N; (20.51)
a=1

N M

> 0(2Aa —sink,)) = 2mJa+ Y 0(Aa—Ag), a=1,...,M, (20.52)
n=1 B=1

wherel,, J, are integers or half-integers afiflz) = 2arctan(xz/c). Quantum numbers,
and J, are densely packed around 0 in the ground state, hence #@lemomentumik, =
2r/L)(3,, In+>", Ja) = 0. Theroots{k,, } are known as charge momenta grid, } as spin
rapidities.

20.3.1 Fredholm integral equations for distribution functions

We consider the thermodynamic lindit N, M — oo, with the fixed particle densities= N/L
andn; = M/L. The continuoug’s andA’s are distributed symmetrically around zero, with the
densities(k) = p(—k) ando(A) = o(—A) between some limits-q and+@Q, respectively. The
normalizations

q Q

n=n;+n; = / dk p(k), n; = / dAo(A) (20.53)
—q -Q

imply implicit relationships between the densities of ygirsand down-spin electrons and the

integration limits, Integral equations satisfied by theribsition functions are obtained by mak-

ing the continualization 0f20.5) and 0.52 and consequently by taking the derivatives of the

continuum equations with respecti@ndA:

1 Q
p(k) = o + cos k/ dAay(sink — A)o(A), (20.54)
T -Q
q Q
o(A) = / dkay (A —sink)p(k) — / dA az(A — Ao (N), (20.55)
—q -Q
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wherea,,(z) = m=(nc’)/[2? + (nc')?]. These equations determine the distribution functions
also beyond their limits, i.ep(k) for |k| > ¢ ando(A) for [A] > Q. In such caseg(k) and
o(A) represent the hole distributions&t= 0.

It is convenient to pass from the above canonical ensemhlestgrand-canonical one, with
the magnetic fieldh and the chemical potential of particles as the control variables. The
ground-state energy per site of the Hamiltoni2@.(§ is expressible as

E, q Q
=7 = / dk (—2cosk — h)p(k) + 2h/ dAo(A). (20.56)
—q -Q
Let us introduce a coupled pair of dressed energfies = ¢(—k) ande; (A) = e;(—A) which
satisfy the integral equations

Q
e(k) = —2cosk—p—h+ / dAai(sink — A)er (A), (20.57)
-Q
q Q
e1(A) = 2h+ / dkay (A —sink) cosk e(k) — /Q dA" az(A — A)er(A'). (20.58)
—q _

The integration limitstg and+(Q are the points at which the dressed energies change sige; the
conditions determine the limitg and @ as functions of the magnetic fieldand the chemical
potentialy. In particular,

<0 for|k| <gq,
e(q) = 0, e(k){ 2o for}kI>Z (20.59)
and, similarly,
<0 for|A|l <@,
ac =0 aw{ 30 oS (20.60)

To document that oyt is consistent with the general definition of the chemicaéptal, we
first add to and subtract from ER@.56 the termu ff‘q dk p(k), then express—2cosk — 1 —
h) by using Eqg. 20.5% and finally expresg(\) in the integralffq dk e(k)p(k) by using Eq.
(20.59, to obtain

By = = [ dke(h)L+ N + {Qh/Q dAo(A)
2m —q -Q
q Q
+ /_q dk /_Q dAay(sink — A) cosk [e(k)o(A) — p(k)el(A)]} ) (20.61)

It can be readily shown that the expression between curkeckbts vanishes. With regard to the
Gibbs relationFy = —PL + uN, the pressure is given by

1 q
P=—a 7qdke(k) (20.62)

and the parameteris indeed the chemical potential.
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Using the response of the ground state to a perturbatiomibeashown that(k) ande; (A)
are related to elementary low-lying excitations. In theecatcharge (spinless) excitations of
particle type, we take a particle fromto k, > ¢, or alternatively from—q to k£, < —q. This
excited state has the energy change and the momentum given by

AE(k) = e(k,),  K(k,) =21 / " ko). (20.63)

Charge excitations of hole type correspond to taking agarfiom0 < k;, < qto g+ 27/L, or
alternatively from—¢ < kj, < 0to —¢ — 27/ L. This state is characterized by

AE(ky) = —e(kn),  K(kp) =2n /kq dk p(k). (20.64)

Similarly, we can generate spin excitations by taking aiplarfrom+q@ to |A,| > @ or creating
ahole afA;| < Q. The corresponding excited states are characterized by

A

AEA,) = ea(Ay), K(Ay) = 27r/ dAo(A); (20.65)
Q
Q
AE(Ay) = —e(An), K(Ah):27T/A dAo(A). (20.66)

20.3.2 Ground-state phase diagram

Different phases at zero temperature are most easily faehtiia the integration limitg and@
in the integral equation20.59, (20.55 and @0.57, (20.58. The physical range af is [0, 7]
and that of@ is [0, oo|. Before establishing the classification of phases, we dissame values
of the limits¢ and/or@ which are of special interest.

The case; = 0 automatically implies) = 0 and we have an empty systgm = 0). The
opposite case = 7 (@ is arbitrary) implies that the band is half filled, i.e. th&s@ne electron
per site(n = 1). This can be seen by applyir‘)(’g’:T dk to both sides of Eq.20.59, defining the
function fa(z) = a1(x — A) + a1(x + A) which possess the symmetfy (x) = fa(—z) and
finally using the identities

/ dk cosk fa(sink) = 2/ dk cosk fa(sink) = 0. (20.67)
—T 0

Here, the second equality can be proved via the substititient — £'.

For@ = 0 (¢ is arbitrary), the ground state is completely magnetized= n,n; = 0). In
the limiting casel — oo, applying [~ dA to Eq. 0.59 and using thay ™ dA a,(A) =1,
we obtain

o 1 /9 n
ny :LmdAa(A) - 5/qdk;p(k) -2 (20.68)

i.e. the magnetization is zero or, equivalently:= 0.
Based on this brief analysis, we recognize five distinct phasthe(y, i) plane.
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e Phase Iy = 0, @ = 0; empty band.

This phase corresponds to an empty lattige= n; = 0. The dressed energies i20.57
and @0.58 must be positive, which implies that

h<—2—p  (n<-—2). (20.69)

e Phase Il < ¢ < 7, Q = 0; partially filled, spin polarized band.

This region of parameters corresponds to the particle dessietween the empty lattice
and the half-filled band) < n < 1, with completely polarized sping,; = n andn| = 0.
The integral equations for the dressed energies simplify to

e(k)
e(A) = 2+ /q dkay (A —sink) cosk e(k) > 0. (20.71)

—4q

—2cosk — pu— h, e(+q) =0, (20.70)

The requirement(+q) = 0 implies the relation

cosq = —%(u +h). (20.72)
Since—1 < cos ¢ < 1, we have the following conditions

h>-2—p (n < =2), h<2-—p. (20.73)

The positiveness af; (A) implies that

cosk — cosq
()2 +sin®k’

c [1
hzhc(q):—/ dk cosk
0

™

(20.74)

According to 0.59, the distribution ofk roots is constanf(k) = 1/(27), soqg = mn.
In the limit ¢ — oo, we can express the critical field value of the figldq) as a function
of the particle density as follows

2 in(2
[n B sm(2 ™)

™

} +0(1/c*). (20.75)

e Phase lll.g = 7, Q = 0; half filled, spin polarized band.

For this case, we have the half-filled band= 1 with completely polarized spins,; =
n = 1 andn; = 0. The integral equations for the dressed energies are sekm@ititly:

e(k) = —2cosk —p—h, (20.76)

al(A) = 20— 4Re\/1— (A —ic)2 + 2c. (20.77)
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Here, we used the formula

/

g 1 c
dk2cos? k — = 4Re\/1 — (A —ic)2? — 2c. 20.78
/ cos™ k — (@2 T (smk = A2 Re ( ic') c ( )

—T

The energy signs(k) < 0 ande; (A) > 0 lead to the conditions

h>2—pu, h>he=2y1+(c)? —c¢, (20.79)
whereh,. is the critical field 20.74 taken aiy = 7, h. = h.(7).

Phase IV < ¢ < 7, 0 < @ < oo; partially filled and magnetized band.

This region corresponds < n < 1 and0 < n; < n/2. The analytic results can be
obtained only foth = 0 (n; = ny = n/2), in the limit of small densities ~ 0 and close
to half-filling n =~ 1.

Phase Vi = 7, 0 < Q < oo; half filled, partially magnetized band.

This phase correspondsiio= 1 and0 < n| < 1/2. The integral equations for the dressed
energies become

Q

e(k) = —2cosk—pu—h-+ / dAai(sink — A)eg (A), (20.80)
-Q
e1(A) = 2h—4Rey/1— (A —icd")2 + 2¢
Q
—/ dA ax(A — A)er (A). (20.81)
-Q

The inequality (k) < 0 appliesto alk € [—m, 7]. Inthe interior of Phase (k) is strictly
negative for all values df, includinge(£7) < 0. The equalitye(+7) = 0 determines the
boundary between Phases IV and V. It is important to notethtieaparticle density, = 1

in the whole region V. Therefore, for a fixed value/gfincreasing: by a small amount
does not change. This is an evidence that all eigenenergies of the Hubbandilttaian
with one additional particle are separated from the grostate energy by a finite gap.
This unconventional state of the electron system, driveinedy by electron-electron in-
teractions, is known as a Mott insulator [2]. The proof tie balf filled Hubbard model
is an insulator is usually based on the discontinuity of thengical potentials

wu—(c,h) = Eo(L;e,h) — Eo(L — 1;¢,h), (20.82)
s (e, h) = Eo(L+ 1;¢,h) — Eo(L; ¢, h), '
whereEy(N; ¢, h) is the ground-state energy 8f electrons on the chain df sites. The
chemical potential._ (¢, h) is related to the half filled ground state. Having the explici
formof e(k), itis determined by the boundary conditigq:=m) = 0 between Phases IV and
V; for h = 0, this will be done in the next Sec. 20.3.3. The chemical gakn, (¢, h) is
the energy necessary to add one extra electron into the lhedf diround state. Fot = 0,
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Fig. 20.1. Ground-state phase diagram for non-interaalagtrons as a function of chemical potenjial
and magnetic field > 0.

the symmetry relation20.18 implies Ey(2L — N;c¢,0) = 2¢(L — N) + Eo(N;c,0).
ChoosingV = L — 1 we arrive afuy (¢, 0) + p—(c,0) = 2¢, i.e. the gap is determined by

gap = 4 (¢,0) — u—(c,0) = 2¢ — 2u_(c,0). (20.83)

The ground state phase diagram in theh) plane is pictured in Fig20.1for non-interacting
electrons ¢ = 0, the system is conducting and the insulator Phase V is dbaedtin Fig.20.2
for interacting electron&: = 2).

20.3.3 Analytic results for zero field and half filled band

The absolute ground state corresponds to the zeroifield) (QQ — oo) and the half-filled band
n =1 (¢ = 7). In this case, the integral equations for the distributiamctions and the dressed
energies can be solved by Fourier series techniques.

Let us first consider the cage= 0 (Q — o), the electron density is not fixed. From Eq.
(20.59 we obtain

olw) = / dA exp(—iwA)o(A)
q
= / dk p(k) exp (—iwsink — '|w]) — 6(w) exp(—c|w]), (20.84)
—q
where we used that the Fourier transformugfx) is a,, (w) = exp(—nd’|w|). Expressing ex-
plicitly 6(w) and Fourier transforming back we find

a 1 1
O e el (20.85)

q
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Fig. 20.2. Ground-state phase diagram for interacting: 2) Hubbard electrons as a function of chemical
potentialy, and magnetic field > 0. The critical fieldh. is given by 0.79, 1 = 2 — h. andpu— is given
by (20.95.

Inserting this relation into the rhs of EQRQ.59 for p(k) results in the integral equation

q
p(k) = % +cosk / dk R(sink — sin k') p(k"), (20.86)
—q
where
[ dw exp(—iwz)
Rlz) = /,Oo 27 1+ exp(clw|)’ (20.87)

The integral equations for the dressed enerdl®5() and £0.59 can be solved in an analogous
way, with the final result

1 1 cosk
a(h) = /_qdk%msh%(/\_smk)e(k), (20.88)
q
e(k) = —2cosk—pu—+ / dk’ cosk’ R(sink — sin k")e(k’). (20.89)
—q

If moreover the band is half fille; = =), the application of the Fourier method for periodic
functions leads to the root densities

p(k) = % +cosk /_ ;—:Jof“jz Zi;((tirf)k) = po(k), (20.90)
o(A) = [ g—;}% exp(—iwA) = gp(A), (20.91)
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Fig. 20.3. Charge gaf at half filling versus the coupling strengttof electrons.

where.J, is the Bessel function. The ground state energy per 20 is obtained in the form

B * dw Jo(w)J1(w)
ey = 4/0 o T+ el (20.92)
The dressed energies are obtained in a similar way and read
B * dw Jy (w) cos(wsin k)
e(k) = 2cosk — 4/0 5 L+ exp(cw) (20.93)
* dw Jy (w) cos(Aw)
A) = =2 — 20.94
c1(A) /0 w  cosh(dw) ( )
The boundary condition between Phases IV and¥/r) = 0 determines
( 0)—2—4/md—”& (20.95)
HAGE) = o w l+exp(cw)’ '

Inserting this solution into20.83, the gap for the repulsive Hubbard model at half filling is
given by

gap = —4 + 2c+ 8/ dw_ Niw) (20.96)

o w l+exp(ew)’

The dependence of the charge gap on the couplisgictured in Fig.20.3 It is seen that the
Mott transition from conductor to insulator occurs at theiad critical valuec,. = 0.

As the values of the integration limits= 7 and@ — oc are on the border of their phys-
ical values, low-lying excitations are only of hole typeedegs. 20.69 and 0.6§9. Charge
(spinless) hole excitations, called holons or antihol@rs, gaped. Spin (charge neutral) hole
excitations, called spinons, are gapless.
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20.3.4 Expansions around special points

e Zero field, almost half filled band: When the magnetic field = 0 and the electron density
n is slightly below 1, the integral equations for the root dgng(k) and the dressed energfk)
can be solved by using an iterative procedure [6]; in whdb¥ed, we shall study only(k). For
h = 0, Eq. (20.86 implies thatp(k) exhibits, besides the reflection symmep(ys) = p(—k),
also the following symmetry

p(r — k) = —p(k) + l (20.97)

™

For ¢ slightly smaller thanr, the integral in 20.86 can be re-expressed as follows

/q dk' R(sink — sink')p(k') = /Oq dk' Rk, K )p(k') = /07r dk' R(k, k) p(K')
—q
- /0 "R RO K plr — ), (20.98)
whereR (k, k') = R(sink — sink’) + R(sink + sink’). The symmetry20.97 implies that
Jo dK'R(k, K)p(K') = [ dk'R(k,k')/(27). Thus we rewrite Eq.20.89 as
p(k) = po(k) — cosk /Oﬁq dk' Rk, k) p(m — k'), (20.99)

wherepy (k) is the root density at half filling, see Eq2d.90. This equation can be treated
iteratively and the functions under consideration can lpapged in powers of small difference
m — q. However we prefer to use as the smallness parameter thatidevof the electron density
from one

q T—q
0= 1—n=1—/ dk p(k) :2/ dk p(m — k). (20.100)
—q 0

Considering the expansions

T—q=>_ad",  pk) = pu(k)s" (20.101)
n=1 n=0

in Eqg. (20.99 and taking in the integration Taylor expansions arokhe 0, we obtain the first
few terms in the form

a1 = [2po(m)] 7L, p1(k) = — cos kR(sink),
a = —2R(0)a 2] pa(k) =0, (20.102)
as = 4a3R%*(0) — aip(7)/3, p3(k) = —a?cos kR’ (sink)/6.

The ground state energy per site is then given by

q
eo(n) = —2/ dk cosk = eo(1) — pi_(c,0)8 + “10‘1 T 53 4 0@sY), (20.103)

—q
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wherepn_(c,0) is theh = 0 chemical potential at the transition to half-filling given {20.95
and

B e wJp(w)
a; =1 2/0 dw T+ oxp(ew) (20.104)
The chemical potential as a function of the density is given b
- 88607(1”) = p_(c,0) — a2a16% + O(8%). (20.105)
The inversion of this relation implies
1
n(p) ~1— —(c,0) — p. 20.106
(1) o VH (c,0) —p ( )

e Zero field, low density: For small densitiesa < 1, or equivalently smaly < , the integral
equation forp(k) (20.86 becomes

q
p(k) = 2i + cosk/ dk' R(k, k") p(K"). (20.107)
m 0
This equation can be treated iteratively in close analodly #g. 20.99. Using the expansions
o0 ~ ) 1 o0 ~ )
q= Z amnt,  plk) = 5+ Z i (k)n, (20.108)
j=1 j=1
we have
a =, p(k) = coskR(sink),
iz = —2m2R(0), pa2(k) =0, (20.109)

asz = 4m3R?(0), ps(k) = n% coskR"(sink)/6.

Note that these coefficients can be obtained from the on@9id @2 by settingp (k) = 1/(2)
and then assuming thaj (k) = p,; (7 — k). The ground state energy per site is given by

eo(n) = —2 /q dk cosk = —2n + %27# +0(n%). (20.110)
—q
The dependence of the chemical potential on the densityvislfrom
= 6%0—7(;1) = -2+ 7%n* + 0(n?). (20.111)
Inverting this relation we arrive at
n(p) ~ %\/m (20.112)

o Half filled band, non-zero field: Now we consider the half filled case= 1 (¢ = ) in the
coupled integral equation2@.54 and @0.59. Using that/"_dka}(A — sink)cosk = 0, the
equation foro(A) reads

o(A) + /_Z AN as(A — N)o(N) = /j %al(/\ — sink). (20.113)
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The ground-state energy per si9(56 is written as follows

Q 7r
eo = —h +/ dAo(A) [2h — 2/ dk a; (A — sin k) cos? k} . (20.114)
—-Q —r

To establish the relationship between the magnetic fieddd the integration limif) of A’s,
we change infinitesimall) — @ + AQ. The energy change is given by

T

Aeo = 2AQ0(Q) [2h—2 /

—T

dk a;(Q — sin k) cos? k}

Q 7
—|—/ dA Ao (A) {Qh - 2/ dkay (A — sin k) cos? k] . (20.115)
-Q o

Here, the distribution changko (A) satisfies the differential equation

Q
Ac(A)+ / dA ax(A — AVAG(A) = —AQ0(Q) [az(A — Q) + as(A + Q)] .(20.116)

-Q
Proceeding analogously as in Sect. 14.2, we find that
Aeo
———— = 271P(Q) + hL(Q), 20.117
where the functiond.(A) and P(A) satisfy the integral equations
Q
L(A) +/ dA ax(A = AN)L(A) = 1, (20.118)
-Q
@ / / / " dk : 2
P(A) + dA ax(A = A)P(A) = Pl (A —sink) cos” k. (20.119)
-Q —

The extremal conditions for the energy minimuxa, /AQ = 0 implies that for a giverf) the
magnetic field is

27 P(Q)
h = . 20.120
L(@) (20:120)
The magnetization per site is given by
Q
lim —(SZ,)=2  s=n;—n| = 1_2/ dAo(A). (20.121)
L—oo L 2 -Q

Integrating Eq. 20.113 over A € [—o0, 00] and using thati; (0) = a2(0) = 1, we obtain the
exact relation

00 Q
/ dAo(A) +/ dAo(A) = 1. (20.122)
—o0 -Q

Consequently, another representation,adlternative t0 20.123, reads

—-Q 00 (o'}
s = dA o(A dAo(A) =2 dA o (A). 20.123
| ane >+/Q (A) /Q (A) (20.123)
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For@ = 0, we haves = 1 andh, = 2,/1 + (¢/)?2 — ¢. As follows from @0.79, the band is
spin polarized above this critical magnetic field (Phasg Il

At Q — oo, we haves = 0 andh = 0. Let us introduce the resolvent operatbto the
kernelay, (I + J)(I + a2) = (I + a2)(I +J) = I. The functionLy(A), determined by Eq.
(20.118 in the limit Q@ — oo, is constant:

1 A 1
Egs. £0.113 and @0.119 are solvable by using the Fourier method,
R o 1 ~ - 1 Jl (w)
G0(w) = 2 cosh(c'w) Jow), Pow) = 2cosh(dw) w (20.125)

In the second formula, we used the equality for Bessel fonsfi/y (w) + J2(w)]/2 = J1(w)/w.
The factorl/ cosh(c'w) is a meromorphic function af with simple poles at the points

wo=is(2n+1), nez (20.126)
C

The largeA asymptotic ofro(A) and Py (A) is determined by the pole aty. Using the residuum
theorem, we obtain

ot = 20 (E)n (28). i) = (F)ew (-50). orzn

where we used thak, (iz) = i"1,,(2).

Let @ be large, but not infinite, which corresponds to a small magfield » > 0. The
fundamental equations can be solved to the leading ordéeidéviation of) from infinity by
applying the Wiener-Hopf method [7, 8], in close analogyhwi&ect. 14. With regard to the
largeA asymptotic 20.127, we assume that the unknown functienand P scale like

™

o(Q+ 1) ~ %10 (%) e /T(z),  P(Q+az)~ %11 (Z) e/ (1), (20.128)
whereT (z) satisfies the Wiener-Hopf integral equation

T(z) + /OOO do’ J(z — 2 \T(a') = e ™/, 2z >0. (20.129)
The asymptotic form of.(A) is given by

LQ+2) ~ %U(I), Ulz) + /OOO Az’ J(@—)U() =1, =>0.  (20.130)

There exists a unique factorization of
B 1

1+ J(w)
by the functionsF'; (w) and F_ (w) which are analytic and nonvanishing in the half-plafies
andIl_, respectively. The symmetry(z) = J(—=z) implies F (w) = F_(—w). Thex — 07
limits of T'(z) andU (z) are expressible as

lim T(z) = F_(—ir/c), lim U(z) = F_(0) = F(0). (20.132)

z—0t z—0t

1+ o (w) = Fy (w)F_(w) (20.131)
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Consequently,

_2P(Q) _ (Y noye F(=in/e)
="t = h (—) e 7R/ AR (20.133)

From Eq. £0.123 we have
2 s .
_Z - —7mQ/c
s cIO ( c) e T(0). (20.134)

Finally, using the relations

7(0) = %F+(O)F_(—i7r/c), F2(0) = 1+ a2(0) = 2, (20.135)

the relationship betweenands is found in the form

h 771_]1(71'/0) 1
s = "To(r /o) +0 <Q) . (20.136)

20.4 Ground-state properties of the attractive Hubbard mocl

We now describe the ground state in the attractive regime 0, in the sector with fixedV
and M. Each of M A-roots remains on the real axis and form a bound state withviaxe
numbersk; andk,, such thatk; = k. In the thermodynamic limif. — oo, the corresponding
k-rapidities\ = sin k belong to the 2-string

A=A —id =sinky, Xo = A +ic =sinks. (20.137)

Since the momenturh is only defined modul@r, we can restrict ourselves e (k) ranging
between-r/2 and3x /2. Let us take the branch afcsin as—7/2 < Re(arcsinz) < 7/2. We
have two possibilities:

k1 = arcsin(A — ic’) B(A) = —4%e (VT=(A=icP) | (20.138)
ko = arcsin(A +ic’) K(A) = 2Re (arcsin(A — ic’)) ’ .

k1 = 7 — arcsin(A — ic’) E(A)

4Re ( 1— (A= ic’)2)
ko =7 — arcsin(A +ic’) ’ K(A)

. (20.139)
21 — 2Re (arcsin(A — ic’))

Here, the energyy and the total momenturk” were evaluated by using the formulés =
—2(cosky + cosks) andK = ky + ko. The bound state dispersion relations are

E(K) = +4/(c/)2 + cos2(K/2). (20.140)

The true bound state2(.13§ has negative energy. The anti-bound st2@ 139, which is an
excitation with respect to the bound state, has positiveggne
The remainingV — 2M ks are real. According to the Bethe equatio6.6)), they satisfy

M
knL =2ml, =Y 60(2(sink, —Ay)), n=1,...,N—2M. (20.141)

a=1
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Equations forA,, (a = 1,2,..., M), in which the complex conjugate pairs of wave numbers
kq,1 andk, o are eliminated, can be derived in analogy with séiﬁ-function fermions (Sect.
10.3.2). The final result is

M N—-2M
K(Aa)L =270 — > 0(Aa —Ag) — Y 60(2(Ag —sinky)), (20.142)
B=1 n=1

where the total momentum of the string p&ifA) is defined in 20.13§.

In the sector with the fixed (eved) = nL and zero magnetic field/ = N/2), no unbound
particles are present in the ground state. The distributfgrarticle A-roots,o(A), is restricted
to the interval—@Q, Q]. In the half filled case. = 1, which corresponds to the absolute ground
state,Q — oo. The integral equation far(A) then follows from 20.142:

o(A) = %K’(A) - /OO dA az(A — A)o(A). (20.143)

— 00

This equation can be solved by the Fourier method. Intergigtithe result coincides with the
previous oneZ0.97). Inserting this solution into the formula for the groundtstenergy per site

eo = / b dA o (A)E(A), (20.144)

where the energy of the string pdif(A) is defined by 20.138, we end up with the previous
result 0.9 with the substitutior: — |¢|.

Low-lying excitations at half-filling are basically of twypes. Firstly, particle and hole
excitations can be created in the fluid of bounded pairs. iB#gounbound particles can scatter
on the ground state fluid of bounded pairs. Dispersion alatfor these excitations are derived
in Sect. 11.5 of the monograph [9].

20.5 Thermodynamics with strings

The complete thermodynamics of the 1D Hubbard model wayettityy Takahashi [10]; for
a review, see e.g. Ref. [11]. The thermodynamic Bethe-ansathod resembles the one for
spin-% fermions withd-function interactions, defined on the continuous line Geet. 11 for the
notation).

There are three types string excitations which contributéé thermodynamics of the Hub-
bard model.

e Strings of A-roots: The A-roots can formn-strings(n = 1,2,...). For a givenn, real
numbersA? (a = 1,...,M,) denote the string centers. For the givesstring «, the
A-roots are distributed as follows

AT = A" id (n + 1 — 2r), r=1,...,n. (20.145)

[e3

The same type of excitations occurs in thiermion problem, in both repulsive (11.1) and
attractive (11.74) regimes.
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e Anti-bound A’ — k strings: In the attractive regime < 0, it was shown that the real
A-roots can form a bound state with tweroots. The bound stat®0.138 has an anti-
bound excitationZ0.139. More generally, in the Hubbard model there exist exatatiof

n (n =1,2,...) A'-roots and2n wave numberg. For a givem, A’ (o = 1,...,M))
denote the real string centers. For the givestring «, the A’-roots are distributed as in
(20.145:

N = AT i (i 1 2r), r=1,...,n. (20.146)

The correspondingn k-roots take values

kvt = —arcsin(A’L —inc’), k™2 = arcsin[A], —i(n — 2)],

knS = — kM2 k4 = arcsin[A’], —i(n — 4)c/],

kb = — kot - (20.147)
ey k=2 = arcsin[A’ +i(n — 2)c],

Erin=l = g — fr2n—2 kM2 = — arcsin(A’), + inc’).

The energy of this excitation is

E = 4Re (\/1 — (AT inc’)) . (20.148)

The anti-bound state20.139 corresponds to the special= 1 case. This case resembles
the pairs of fermions (11.73) in the attracti¥dermion problem. The excitations with
n > 1 have no counterparts in that problem. The numbensarfidA’ roots are constrained
by, nM, + >, nM = M.

¢ Real independentk-roots: The remainingV — 2M' (M’ = ", nM,) independent
k-roots, which are not bounded witk/-roots, are by analogy with fermions real. The
energy of root is £ = —2 cosk.

This classification of excited states is consistent withrthmber4” of eigenstates for the Hub-
bard Hamiltonian [12].

In close analogy with Sect. 11, the Bethe equati@®48 and 0.49 can be rewritten as
equations containing only real quantities, nam®ly- 2/’ of rootsk;, M’ of string centers\’,,
andM — M’ of string centers\?:

exp(ik;L) = H en(sink; —Al) H en(sink; — A, (20.149)
(n,a) (n,a)
2n
exp(i Z k°L) = exp (—L [arcsin(A’], — inc’) + arcsin(A", + inc)])
s=1
N—2M'

= — [ en(Ny—sink)) J] Enm(Ay —AF),  (20.150)
Jj=1 (m,B)
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N—2M'
I en(A2 —sink;) == J] Enm(AL - AZ). (20.151)
Jj=1 (m,B)

Taking the logarithm of these equations results in
kiL=2ml; — Y On(sink; — AL) — Y On(sink; — A"), (20.152)

(n,a) (n,o)

L [arcsin(A’), — inc) 4 arcsin(A”}, + inc’)] = 27J",

N—-2M'

+ > On(N —sinky) + > Oum(Ah - A, (20.153)
Jj=1 (m,B)
N—-2M'
D 0n(An —sink;) =27J0 + > Onm(AL — AF). (20.154)
Jj=1 (m,B)

Here,l;, JI and.J’,, are integers or half-odd integers, constrained by

[e3

2] < 5 (N =20 = 5%t M},

m=1

|Jol <& (L—N+2M =3 tymM),).

m=1

(20.155)

In the thermodynamic limit, let(k), o, (A) ando’, (A) be the particle distribution functions bf
roots,n-string A andA’ centers, respectively. The corresponding hole distioutiinctions will
be denoted ag(k), 5, (A) anda),(A). Egs. €0.152—(20.154 imply the following constraints
among the particle and hole distribution functions:

% = p(k) + p(k) — cosk i /OO dAa,(sink — A) [0, (A) + o, (AN)], (20.156)
n=1Y "
/ "k an(A— s E)p() = 50 (A) 43 A 5 o (A), (20.157)

m=1

1 1 T )
;%e < — (A—inc’)2> - /_F dk an, (A —sink)p(k)

=61(A) + ) Apm # 0l (A). (20.158)
m=1

The Gibbs free energy per site is given by

S, E_ N (20.159)
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where
7 - —2/:dk coskp(k) — <% 4%)
+4§:/dA8‘%e (\/m) o (M), (20.160)
=
% - /_: dkp(k)+§2n/dAa;(A), (20.161)
% _ in / dA [on(A) + o/, (A)] (20.162)
> = [ v+t - pinp-ping

+ Z /dA [(on + 0n) In(0y, + 1) — op Inoy, — 5y, In Gy,
n=1

S / dA [(0!, + &) In(o', + &) — o Ino’. — & In&"] . (20.163)
n=1

The variational conditiong = 0, under the constraint2(.15§—(20.158, implies an infinite set
of coupled equations for the ratipgp = exp(Se), 6,,/0n = 0y @nda), /o), = 1l,:

Be(k) = —pB(2cosk+ pu+h)
+§:1/_O:O dA a,(sink — A)In <%> (20.164)
In[l +7,(A)] = 2n8h— /_ "k an(A —sink)In[1 + e <M cos k
+ i Ay * In[1 4+ H(A)], (20.165)
[l +7,(A)] = 8 f:l;e ( 1— (A mcf)2) - QnM}

- / dk an(A —sink) In[1 + e 7<®)] cos k

+ 3 A #1417, (M), (20.166)
m=1

For the pressur® = —g we have the expression

BP = /W % In [1+ ¢~ 7<0)]

2T

+§:/°° %%( T (js_mc,P) In {1+77’;1(A)} : (20.167)
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Using matrix Egs. (11.29)—(11.33)and (11.47), the infinkain of coupled equation2@.164—
(20.166 is transformed to

_ = - 1+m(A)

Be(k) = PBr(k)+ /_OO dA s(sink — A)In (m) , (20.168)
Inm(A) = sxIn[l4na(A)]

- / dk s(A —sin k) In[1 + e #<®)] cos k, (20.169)
Inni(A) = sx=Infl+n5(A)]

- / dk s(A — sin k) In[1 4 %] cos k, (20.170)

Inn,(A) = sxln{l+n 1ML+ (A}, n=>2, (20.171)

Iy, (A) = sxIn{{14+mn,_ (M][1+n,,(A)]}, n =2, (20.172)

lim In "Z(A) — 26h, (20.173)

lim I (4) ”;’;(A) = 2B(c—p), (20.174)

wherex(k) is defined by
k(k) = —2cosk — 4/ dA s(sink — A)Re ( 1—(A— ic/)z) . (20.175)
These TBA equations can be solved numerically, or anallgticaspecial limits.

e The limit T'— 0: The last terms in Eqs20.169 and £0.17Q can be re-expressed as

2 . [ 14 e Pk
_ /ﬂ-/2 dk S(A — Sin k) In _m} cos k (20176)
and
" . [ 14 e
— /ﬂ_/2 dk S(A — Sin k) In _W} COS k, (20177)

respectively. The function(k) (20.179 satisfies the relation(k) — k(7 — k) = —4 cos k. Thus
for |k| < w/2 we havee(k) < e(m — k). Consequently, the last term iBQ.169 is negative and
the last one inZ0.17Q is positive. Defining

Ben(A) = 1Inn, (A), Bel (A) =Inn,(A), n=12,..., (20.178)

we find thates, €3, ... ande), €, ... are always positive, while the signs «ft) ande; (A) can
be either positive or negative. This fact is important in lingt of zero temperature. Let us
denote byt = +¢ andA = £Q the points at whick(k) ande; (A) change sign, respectively.
Knowing thate(k) < 0 for |k| < ¢ ande;(A) < 0 for |A| < @, using 0.164 and @0.165
taken ath = 1, we end up with the ground-state integral equations fors@energies20.57
and @0.58.
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e The limit ¢ — 0*: In this limit, we define
e_(A) = e(k = arcsinA), e+(A) = e(k =m —arcsinA), (20.179)

where|A| < 1 (we recall thaf arcsin A| < 7/2). The functions(z) (11.33) can be replaced by
5(z)/2inthe limitc — 0. The set of integral equation®@.16§—(20.174, considered with the
representation®(0.17§ and @0.177 of integrals ovek, then becomes

Bey = (—242)8 1—A2+%ln<1izi>, (20.180)
Iy = %m(l + ) + %m (%) , (20.181)
my, = %ln(l + ) + %m (%) , (20.182)
my, = %m (A4 7)) +10r1)],  n>2, (20.183)
Inn, = %hl [(1 +n,_1)(1+ n;H_l)] , n> 2, (20.184)
Tim. ln:" — 28h, (20.185)
fm 2 o, (20.186)

n—oo n

Egs. £0.183—(20.18§ are difference equations, their general solution reads

n -1,,—n

5 aw™ —a"tw _Bh

n — - 17 = ) = ;
= fe -1 f) =",

b2 — b—lz—n

-, z =ePH, (20.187)

/ 2
= -1
=9 -1,  gn) po—

wherea andb are free parameters. Substituting the general solution2@.180—(20.182 leads
to

efer = @ ele- = %L) T = exp (25@) ;

fQy’ x? f(1)’
14 e Pet 1 4 efe+
2(0)) — 2(0) = ) 20.188
FO=1rem 90 =115 ( )
The solution of these relations with respectitandb reads
I+ z7twz)(1 + 2= twz"1)
a =
(1+ 2w 12)(1 + x~tw=12-1)’
1 1 -1
po | (LFaw)(lt+awz) (20.189)
(I4+zwz=1)(1 4+ zw=1z71)

It is easy to derive from20.167 taken with¢’ = 0 that

5P — /’T % n [(1 +eg(2cosk+wh)) (1 1 Bl2cos k+u+h))} . (20.190)

—T
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This is the result for the pressure of free electrons on teereie chain.

e The limit ¢ — oo: In this limit ), = oo for all n = 1,2,.... The functions(z) becomes
infinitely wide. Similarly as for fermions witld-function interactions on the continuous line,
7, becomeA-independent and the TBA equations simplify to (11.58) whith solution (11.59).
Thus,

e(k) = —2cosk — u — % In(1+n1) = —2cosk — u — In[2 cosh(Bh)]. (20.191)

The pressure20.167 is given by

8P = / % In [1 n 2cosh(ﬁh)e5(“+2“’5k)} : (20.192)
Vs

—T
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21 Kondo effect

Dilute magnetic alloys are composed of a small amount of reagimpurities dissolved in

a non-magnetic metal. The impurities are represented kafifmel spins which interact with
the conduction-band electrons via a spin exchange. At lomp&ratures, where the standard
perturbation theory is not applicable, an anomalous stagte@f conduction electrons on the
impurities leads to many interesting phenomena known asdmelo effect [13]. There are
many microscopic models of dilute magnetic alloys, which eempletely integrable; see e.qg.
reviews [14, 15]. These include the— d exchange model and the degenerate exchange model
of a single impurity, introduced by Vousovskii [16] and ZefE7], the Anderson model and the
degenerate Anderson model [18, 19].

Here, we shall concentrate on the- d exchange (Kondo) model in an external magnetic
field H. At a given temperaturé&’, this model was solved by using the Bethe ansatz method
by Andrei [20] and Wiegmann [21]. The TBA equations are aratlin the ultraviolet regime
(large H or highT") and in the infrared regime (small or low T'). In the ultraviolet limit, the
impurity behaves like an almost free spin, its propertiesdascribed by an effective weakly
coupled theory. In the infrared limit, the impurity is corat@ly (s = %) or partially (s > %)
screened, its properties are described by another efégstinongly coupled) Fermi liquid theory.
The crossover from one regime to another, driven by the teatye of magnetic field, is known
as the Kondo effect.

21.1 Hamiltonian

The s — d exchange model describes the interaction of the condubtond of a 3D metal with
one impurity of arbitrary spir8 = (S%,5Y,5%) (the eigenvalues of* will be denoted by
s=—s,—s+1,...,s) localized at the origim = 0. In the second quantization, the conduction
band is described by the Hamiltonian

Hy =" excl,cxo, (21.1)
k,o

wherecy, (c;fw) is the annihilation (creation) operator of an electrorhviAburier momenturk,
energyex and spin% component € {—%, %}. The conduction band is coupled to the spin-
impurity via the exchange interaction

J J
_ 7 T — —0).-S= 2 § , 1 .
Hr = 5 E Ul (r=0)0,V,(r=0)-S= 5 ChpO oo’ Ckior - S, (21.2)

0,0’ K.k
o,o!

whereo = (0%, 0¥, 0%) denotes the Pauli matrices. Since the system is rotatioimgtriant, it
is useful to expand the electron annihilation and creatjperators in the basis of the spherical
functions:

00 l

00 l
Cko = Z Z lem(k/k)cklm,aa CLU = Z Z Yﬁn(k/k)clilm,a' (213)

=0 m=-1 1=0 m=—1
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We assume that from the angular modes onlysthrgave modes with = m = 0 have nonzero
coupling to the impurity; the consideration of higher oabihodes would lead to the so-called
Multi-Channel Kondo model.

Let us further restrict ourselves to momehtelose to the Fermi surfack,= kr + p with a
cut-off of the order ofr for new momenta, and consider the linear dispersion law

€} ~ EF + VED. (21.4)

The linearization is adequate only when all energy scaiks {&€mperature, magnetic field, ex-
citation energies, etc.) are small compared to the cuté@shsequently, only “universal quanti-
ties”, which characterize low-energy properties of theesysand are independent of the cut-off,
will be studied. We shift the energy hy:, setvy = 1 and leave in the free-electrdify only the
relevant electrons with= m = 0. Using the notatiomy.,. 1 .00,c = ¢po anchHp,OO,o_ = cl,,
the total Hamiltonian = H, + H; reads

J
H =) pclatps + 5 D chaOooyyor - S. (21.5)

p,o

o0’

This Hamiltonian is effectively one-dimensional. In theoodinate representation, () =
J dp exp(ipz)cp,, it takes the form

0 J
= — T — — f 1Cq’ . . .
H /dx 1200(96) . co () + 5 5(x) ; e ()0 gorcor(x) - S (21.6)
In the first quantization, the Schrodinger equation #electrons(o, 1), ..., (on, zn) and
one impurity attg = Owiths € {—s,—s+1,..., s} reads
N 8 J N
i) gy T B | Yerans(@nan) + 53 6()
Jj=1 : J=1
X Z (O'UjU; . Sss’) 1/101...0}...01\7;5’(1'17 e ,.’L'N) =0. (217)
0;75’

21.2 Electron-impurity and electron-electron scatteringmatrices
Let us first solve the Schrodinger EQ.1(7) for a single electron interacting with the impurity at

zo = 0:

<—i% — E) Vows(x) + %5($) Z(Uaa’ +Sesr )Voris (x) = 0. (21.8)

o’ s’

Thed-potential in this equation can be replaced by a smooth piatén (z) such that

glﬂ%VE(I) = %5(1‘) (21.9)
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The wavefunction is searched in the fop.. () = exp(ikz)A,s(z). SettingE = k, Eq.
(21.8 reduces to the ordinary differential equation

i%Aa;s (z) = Ve(z) Z(UUU’ “Sesr)Aprier (), (21.10)

o’ s’
whose explicit solution for thel-matrix reads

Aps(@) = > {exp [—ia .S / ' dx'%(w')} }Us Agroar (). (21.11)

i
o’,s’ Y o's

Taking the limite — 0 we find

5 J
Agis(w > 0) = Z (5’10)2,5, Agrier(z < 0), S1o = exp (—1501 : So) ) (21.12)

o’,s’

where the subscripts 1 and 0 correspond to the electron andngburity, respectively. The
scattering matrixS;o can be written in a more convenient form by using the expansio

SlO = exp (—i%al . SQ) = U)6 + 211)/0'1 . So, (2113)

wherew;, andw’ are some functions of. To find these functions we take advantage of the fact
that the total spimr /2 + S can acquire the values+ % ands — % In the former case, since

(Z+8)-(Z+8)w (%2+a-s+52)¢

2 2
_ (S + %) (s + g) y (21.14)

ando?y = 31, S%p = s(s + 1)y, we haves - Sy = sip. Similarly, if the total spin equals to
s — 3, wefindo - S = —(s + 1)4. Thusw andw’ are given by

J J 1
exp (—178) = wy + 2sw’, exp (1%) =wy —2(s+ 1w, (21.15)
Now we consider two electron in presence of the impurity figéd, = 0. The scattering
of electronj = 1,2 on the impurity0 is again described by the matr, defined forj = 1 in
(21.13. Due to absence of interaction terms between electronmsldgm of uniqueness arises in
the scattering of two electrons. Let the electrons be falydwam the impurity, sayr;, x2 < 0,

with the “kinetic” HamiltonianH = —i(d; + d2). We are allowed to consider a basis of free
antisymmetric eigenstates (the impurity state fixed)
Vorog(@1,32) = FTTRTD A 021 — 29) + (S124) 0,0, 0(x2 — 71)]

ei(k2m1+k1$2) [Aazale(:b? - xl) + (SIQA)Uzo'le(xl - .1'2)] : (2116)

Since HO(x1 — x2) = 0, this function is the solution of the Schrddinger equatwith the
eigenvaluell = ky + ko for any choice of the scattering matri¥;». This freedom is related to
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the degeneracy df in wave numberé; — k1 + p andk, — ko — p for anyp, which allows us
to sum freely the basis overto generateZ1.1§. Our motivation for the choice of;» comes
from the scattering of the two electrons by the impurity. fEhexist two different ways how to
go from the initial stater; < x5 < 0 to the final stat® < x5 < x;. The first path

71 <22 <0—-21 <0< 22 -0< 21 <29 =012 <1y
transformsA to S12510520 A. The second path
21 <22 <0 -2 <21 <0—>22<0< 21 > 0< 22 <14

transformsA to S20.519512 4. Because the result must be the same in both cases, we enthup wi
the spectral-independent YBE of type

512510520 = 520510512 (21.17)

This equation is fulfilled if we identifys;, with the permutation operator,
1
S12:P12: 5(14—0’10’2) (2118)

Note that the scattering matrices do not depend on the wanbenrsk;, andk,.

The extension of the formalism ¥ particles is straightforward. The scattering of the parti-
clej =1,..., N ontheimpurity0 is described by the matri%;, which is the obvious extension
of (21.13. The two-electron scattering matrices are agsin = P;,. The scattering matrices
satisfy two kinds of three-particle YBE:

SikSjoSk0 = SkoSjoSik  Jk=1,...,N, (21.19)
Sijlekl = Slelejk g k,l=1,...,N. (21.20)
The energy is the sum of electron momerfia= Z;VZI kj.
In order to apply QISM, we need YBE containing spectral patms. Our strategy is to
assume that YBEX1.19 and @1.2Q correspond to some special cases of the spectral-dependen
YBE
SikNSj A+ ) Sk(p) = Su(pw)Sju(A+w)Si(A) 4,k l=1,...,N. (21.22)

Eq. 21.19 is identified from 21.2]) if we setA = 0 and sayu = 1, Eq. 21.2Q is identified

from (21.29 if we setA = = 0. Thus,
Sjo = Sjo(Aj — Ao) = Sjo(1),
Sik = Sjk(Aj — Ax) = Sjx(0),

A simple choice of spectral parameters for the impurity dedteons is

No=-1,  A\=0 j=1,...,N. (21.24)

jk=1,...,N. (21.23)

Being motivated by the special= 1 case 21.13, the A-dependent electron-impurity scat-
tering matrix is assumed to be in the form

[S50(N]57 % = wo(N)d(5,05)d(s,8") + 20 (N)Tg, g - Sesr (21.25)
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(j =1,...,N). Taking into account the relation®X.19, theA = 1 case implies the “boundary”
conditions

1 . .
wh(1) = T [(s—i— 1)e_“]3/2 +SelJ(S+1)/2j| ’
U)/(l) _ 1 |:efiJs/2 _ eiJ(s+1)/2:| ) (2126)
2(2s+1)

Similarly, with regard to the special = 0 case 21.18, the \-dependent electron-electron scat-
tering matrix is searched in the form

(SN = wo(Nd(a,05)0(0k, 03) + w(\),07 - O (21.27)

’ .
Ujgk J

(j,k=1,...,N). The case\ = 0 implies the boundary conditions
wp(0) = = w(0) = =. (21.28)

It is convenient to introduce

a(A) =wo(N) +w(N),  b(A) =wo(A) —w(N), ¢(N) =2w(N),

a (/\) = w{)(/\) + w/(/\), b’(/\) = w/O(/\) _ w/(/\)7 C'(/\) _ 2w/(/\). (21.29)

~

We shall need the following boundary conditions

_ iy L 3\ ises2 LY sty
a(0) =1, a(l)_—2s+1 s+2 e + (s 5 )¢ . (21.30)
Substituting the scattering matric&d (25 and 1.27 into YBE (21.21) and £1.29, we obtain
the following equalities

h(\) = % _ ’C’Eii BV + (i) = h(A + 1), (21.31)

The general solution of these equation{3\) = A\/(—ig), whereg is a parameter. Taking
A =1, we find that

2 J
— % tan|Z@s+1)|. 21.32
9= 9511 “m{zx( s )} (21.32)

Simultaneously, we have

A _ —ig
B = T o) = oal)
VO) = -2, ) = —L (). (21.33)
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21.3 Inhomogeneous QISM

Let the system ofV electrons and one impurity be placed on the line of lengthmposing
periodic boundary conditions for the wavefunction leadd/teigenvalue equations for electron
momenta (see Sect. 9)

The operatofl'; is defined by
Tj ZT()\: /\j;/\o,...,/\N), (2135)

where the transfer matriX’ is the trace of the monodromy matri% in the auxiliary spin%
&-space,

T(X; A0, An) = Tre Te(M o, - - -, AN, (21.36)
and the monodromy matrix is the product of local Lax opeatone with index for the impu-
rity and N with indicesj = 1, ..., N for electrons:

72(/\, )\0, ey )\N) = LgN(/\ — /\N) N ~L§1(/\ — /\1)L§0(/\ — /\0) (2137)

As the generating vector of tHes + 1)2% -dimensional Hilbert space, we choose the tensor
product of local “up” vectors

1 1
1 0] 2
Q=¢ e @@ ", et = , ef=1. ) . (21.38)
~— ~~ 0 : :
0 1 N :
0/ 2s+1

The Lax operatolL, is the identity operator at each site, except #ttle site. In the case of
electrons, we have

et = (A=) ] + _
L,(A—X\y)e,) = < 0 B\ — A) ey, n=1,...,N. (21.39)
The Lax operator of the impurity can be represented ir¢tspace as
A=20) Bo(A— o)
Lo(h — xg) = [ @0 =0 21.40
0( 0) (70()\_)\0) 60(/\_)\0) ) ( )

where
ao(A = Xo) = wh(X — Xo)Io + 2w (X — Xo)SE,
ﬁo()\ — )\0) = 2’[1}/(/\ — /\o)sa,
’)/0()\ — )\0) = 2’[1}/(/\ — /\o)sa_,
50()\ — )\0) = wé(/\ — )\O)IO — 210/(/\ — /\0)88

(21.41)

The relevant operators,, o anddy act on the highest eigenvector of siif) as follows
ao()\ — )\0)68 = [(S + %) a’()\ — )\0) — (S — %) b/()\ — )\0)] 68,
Yo(A = Ao)eg =0, (21.42)
So(A=Xo)eg = [— (s —3) (A= Qo)+ (s + 5) '(A = Xo)] €.
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Representing the monodromy matrix in thspace as

) (AN Aoy AN) B(A Ao, AN)
TN A0, -5 An) = (C()\; A0y AN) DA A0y, AN) (21.43)
the triangle form of Lax operators impli€&2 = 0, AQ = ¢4 where
tA(/\;)\O,---,/\N) = |:(S+%) a/()\—)\o)— (S—§) bl(/\ /\0)]
N
<[] ax = M) (21.44)
n=1
andDS) = tp) where
tD(/\;)\(), ey /\N) = |:— ( — %) a'(/\ — /\0) + (S + %) bl(/\ — /\0):|
N
< [T o = An). (21.45)

Introducing Re¢,(A\) = PSe,(A) for the electron-electron scattering matrx1(27 in the

tensor product of auxiliary spu% ¢ andn spaces, the YBE for the monodromy matrix reads
R(/\ — ,u) [T(/\, )\0, ey )\N) ® T(/L; /\07 ceey /\N)]

= [T(1: Moy . AN) @ T(X Ao, AN)] ROA = p). (21.46)

This equation implies the “homogeneous” commutation r(#34)-(8.36) for the operators,

B, C'andD. In the spirit of the QISM, we search the eigenvectors of taagfer matrixI” =

A+ D, in the subspace witltv — M electrons with spin up andl/ electrons with spin down
(M < N/2),in the ansatz form

u}()\OM"a)\N;Ala"WAM) = HB(AOHAOva)\N)Q? (2147)

where theA-parameters are as-yet free. Commuting the operatasd D with all B’s in the
eigenvalue equatiofiy) = ¢ lead to the eigenvalues

M

Ao — A
t(/\;)\o,...,/\N;Al,...,A]u) = tA(/\;)\(),...,/\N)a_lﬁ
M
a(A—Aq)
oA Ao ) [ T2 (21.48)
=74

“Unwanted” terms, generated during the commutation prasedare removed i\’s satisfy the
system ofM coupled equations

M Ag—
tA(AOc;A()v"'v H bAﬁ—

=1
(ﬁ#a)
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=tp(Aai Ao, .., AN H b :25 a=1,...,M. (21.49)

(B#a)

Using the relations21.33, this system is equivalent to

Aa—)\o—ig(s+%) N (Aa—)\n—ig)_ M (Aa—Ag—ig)
Aa—A0+ig(s_l)nl;[1 rn )T L[ N R, i) (21.50)
(B#a)

Substituting here the values of spectral parameters fomtiperity and electrons21.24 and
using the substitution,, — gA, + ig/2, we end up with the Bethe equations for the rapidities
{A.} of the spin density waves:

Ao +i/2\N Ao +1/g +is M (A — A +i
= o P =1,...,M. (2151
<Aa—i/2> Ao +1/g—is ;;[1 Ao —Ag—i a=1,..., ( )

The system ofV eigenvalue equation&1.34 for the momentdk; } of the charge density waves
implies
M Ao +i/2

exp(ik;L) = exp(iJs/2) Ao —ij2

j=1,...,N. (21.52)
Note that the charge and spin sectors in the model decoupipletely. The energy is given by
N
E=> k. (21.53)
As the generating vectét hasSg = N/2 + s and each of\/ B-operators decreas, by one,
the totalz-spin projection is

S* = N/2— M + . (21.54)

Egs. @1.5)-(21.59 for the impurity spins = % were obtained in Refs. [20, 21], for arbitrary
spins in Refs. [22,23].
Taking the logarithm of Eqs2(.57 and 1.5 results in

kL = 27N, — Z )4 7] = den(k;), (21.55)
M

NOQ2Ay) =2mJo + Y 0(Aa — Ap) — 6p(Aa), (21.56)
B=1

whered(A) = 2arctan A is the two-particle scattering phase of the spin densityesal;
(integer for evenV) and.J,, (integer if M is odd and half odd integer i/ is even) are quantum
numbers of the system and

1

den(k) = =55, dup(A) =0 (A+g7")/s) (21.57)
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are respectively the one-electron charge and spin phaghe etattering by the impurity. With
respect to the Bethe EqR1(.55 and £1.56, the energyZ1.53 can be expressed as

, . , 1
E = EM 4+ B, E® = B + £ B, (21.58)
where
N M
27 27 TNM
O — E N, J O ——— Iy — 21.59
" L 7j=1 g " L a=1 L ( )

are the charge and spin parts of the host metal energy in #emabé of the impurity and

N M M
1
Bi= =Y danlky) + Y dp(Aa) = ZTsN + 3 dip(Aa) (21.60)
j=1

a=1 a=1

is the energy contribution of the impurity. Note that the rgiyecontribution due to the impurity
depends only on the spin subsystem.

21.4 Ground state

For fixed large values o and M, first we have to determine the configurationdétinct
quantum number$N; } and{.J,} which correspond to the ground state. In view of the above
energy analysis, in the thermodynamic limit this configiarais determined exclusively by the
host system of free fermions, and not by the impurity state.

e Since the integer§V;} in the charge energy of particldg™ (21.59 can take arbitrarily
large negative values, the charge energy spectrum is udledufnom below. This un-
boundedness of the spectrum does not affect the impuritipviAag the idea of the Fermi
cut-off of momenta, we assume that each of charge enelgi¥'s/ L does not exceed the
Fermi energyr = 7N/L, i.e. [N;| < N/2. ThusN; are successiv&' integers ranging
from —N/2to N/2 and we haveéZ® = 0 in the ground state.

e It can be shown from Eq2(L.56 that the number§.J,, } are bounded by- (N — M)/2 <
Jo < (N — M)/2; the boundaries=(N — M) /2 correspond to\ — +oo. The host
spin energyF,” (21.59 attains its minimum if the/, -sequence starts from the maximum
Jmax = (N — M) /2 and goes down by unit step:

N-M

Ja
2

—(a—1), a=1,...,M. (21.61)

The corresponding host spin part of the ground-state engrgy

fo;M_m_”)+¥§]

a=1
> 7N%  27(S5%)?

2

L

Sp_
E> =

2 1
- —I<MN—AF+—M

21.62
T 5 (21.62)

~N ——

2L+ L
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The A, solutions of Eq. 21.56 are real monotonous functions &f numbers. Thug\’s
are distributed between the maximak oo and minimalA = —@Q values. The minimal
value corresponds to the lowe$t;, = (N — 3M)/2. The absolute ground state with
M = N/2 (5% = 0) is identified with.Jy; = —N/4,i.e.Q = oc.

In the thermodynamic limit of the ground states are distributed continuously betweerd)
andoo, with the densitys(A); o(A) = 0 for A < —@Q. The state density(A) = J(A)/N is
related tar(A) via f/(A) = o(A). The continualization of the Bethe equatio24 66 results in

(20 = 21 f(A) + /Z AN O(A — N)o(A) — %@I)(A). (21.63)

The differentiation of this equation with respecttdeads to

o(A) = ar(A) + %aQS(A +1/g) - /OO AN as(A — N)o(A),  A>-Q, (21.64)
—-Q

1 n

v ey

(21.65)
The solution of the linear Eq2(.649 is the sum of the host metal and impurity contributions:

iai(A); (21.66)

o(A) =on(A) + N

the host metal and impurity ground-state densities satiefyntegral equations

on(A) = a1 (A) — /O; dA az(A — A)on(N), A> -0 (21.67)

o0

ai(A) AN az(A — Aoy(A), A > —Q. (21.68)
Q

azs(A+1/9) —/

The spin per particle
.. 1 o s
NS =3 /_Q dAo(A) + N (21.69)
can also be decomposed onto the host metal and impurity parts
1 1 oo oo
—Si == —/ dA on(A), M, =s —/ dA oi(A). (21.70)
N2 g -Q

Instead of considering the (local) ground state in the segtih the fixed magnetization of
electrons, we prefer to apply the magnetic fieldo the whole system and look for the absolute
ground state in the presence of this field.
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21.4.1 Zero magnetic field

If the external fieldH = 0, we have the ground state with = N/2 and@ = occ. The
integral Egs. 21.6% and @1.69 can be solved explicitly by the Fourier method. Using that
an(w) = e "*l/2 we obtain the following Fourier transforms of the host angimity densities

e_|w|/2 e_slwl

B 0; w):71+e*IWIe

—iw/g
R . (21.71)

frhw:

Inserting these results int@1.70 with @ = ~o leads to

1. - 1

Nsh =0, M;=s 5 (21.72)
The fact that the magnetization per electigjfy N = 0 was expected. Th2s-fold degenerate
ground state of the impurity means that the conductionlastdo not quench the impurity spin
s completely, they are only able to decrease the impurity bgih/2. The only exception is the
c?stes = % when the impurity spin is fully compensated and the impugityund state is a singlet
state.

21.4.2 Arbitrary magnetic field

In the leading order with respect iy N, the magnetism of non-interacting electrons is de-
termined by the minimization of the ground state ene2f.§2 plus the magnetic field term
—H S~7, giving

1 z H 1 Sp EF H2

Nsh e NEh > " Bep (21.73)

To obtain the explicit dependence of the impurity magnétra)/; on H, we introduce the

hole ground-state densigy(A). It is defined by an extension of the differential EQ1(64 for
the particle density(A) to the “forbidden” regiom\ < —@:

5(A) = a1 (A) + %azs(A +1/g) - /OO AN ax(A — N)o(N), A< -Q; (21.74)

(A) = 0for A > —@Q. To have the Fermi pointQ as the zero reference, we shift the particle
and hole densities as follows

r(A)=o(A—Q),  #(A)=a(A—Q), (21.75)

so thatr(A) = 0 for A < 0 and7(A) = 0 for A > 0. Let

oo 0
pT(w) = / dA exp(iwA)r(A), p(w) = / dA exp(iwA)7(A). (21.76)
0

— 00

Performing the Fourier transformation of the sum\e$hifted Eqgs. 21.64 and @1.74, we find

. 1 .
p~ (W) + (1 + e_l‘“') pt(w) =@ <e_‘"/2 + Ne—w—w/g) (21.77)
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We divide this equation byl + exp(—|w|)] and return to the original space, to obtain, in the
purely hole format, integral equations for the host metal iampurity hole densities

0
P (A) + /_ AN J(A — Ain(N) = m, A<, (21.78)
(M) + /0 AN J(A = A)R(A) = Su(A—Q+1/g), A<O, (21.79)

where

JA) = _/ dw 1 "y

o 27 T+ exp(w])

[ dw exp(=slw|) _a
Sas(A) = /_OO o Tren® (21.80)

Analogously, taking into account the relatid?il(73, the spin per particle

lg._1_ & il
NS =5P (0) + N (21.81)
can be decomposed in the hole format onto the following hetahand impurity parts
0 0
H [ aam@),  M—s—ig l/ dA 7 (A). (21.82)
2¢r ) o 22/

For the impurity with the spis = % we can derive the the impurity magnetic susceptibility
at H = 0 without knowing the explicit forms oA-densities. In the limitf — 0 (Q — o), we
should consider only the leading terms

1
2coshm(A — Q)

on the rhs of the integral Eq21.78 and 1.79. The host metal and impurity hole distributions
7 (A) and7; (A) thus differ from one another only by the facterp(7/g) and we have

- e—7r62-|—7r/\7 SI(A—Q+1/g) ~ e~ TQtTAtT/g (21.83)

M= H e (f) . (21.84)
4ew g
Defining the Kondo temperature
Tic = 255 exp (-f) , (21.85)
T g

which is assumed to be finite, the magnetic susceptibilit&efspin% impurity at zero temper-
ature is given by

o OM;

N o

For the impurity with an arbitrary spis, we study the regime in which the magnetic field is
small comparing the Fermi energy scalé,< ep. This condition means th&t* /N < 1 and

1
H=0 N 27TTK.

(21.86)
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Q@ > 1. ltis therefore sufficient to solve Eq21.79 in the leading order ofxp(—7Q), i.e.
() = exp(—7mQ)7® (A) wherei(¥) (A) is the solution of the Wiener-Hopf equation

0
FO(A) + / dA J(A = A O(A) = exp(rA), A <0. (21.87)
The relationship betweeH and( is yielded by the first relation in Eq2(1.82:
0
%Q) = exp(—7Q) / dA7FO(A). (21.88)
F —0

Eq. (21.87 can be solved by using the Wiener-Hopf method explaineckirt.S14; a slight
modification is due to the fact thaf's are negative. There exists a unique factorization of
1

———— =1+4exp(—|w|) = Fy(w)F_(w), 21.89

T p(—|w]) = Fiy (w)F-(w) ( )

whereF; (w) andF_ (w) are analytic and nonvanishing functions in the half-pldiesandII_,
respectively. They are related ;. (w) = F_(—w) (w € II}). The explicit forms ofFy (w)
read

/In ef|w,‘
Fi(w) :exp< /dil (1+ )) _ F(I@%)H (%) (21.90)

21 w—w £i0 ITi

where

. Fiw
:F1w+0> . (21.91)

e

e = (
Due to the equality’(§ + iz)I'( — iz) = 7/ cosh(rz) [67], f+(w) factorize the function

exp(—m|w|) = f4(w)f-(w). (21.92)

f+(w)(f-(w)) is analytic in the upper (lower) half-planes and has a cuigtbe lower (upper)
imaginary half-axis. The discontinuities of integer posvef f-functions on the imaginary half-
axes are given by

Disc f} (w) = F2iexp (—n|w| In ’gD sin (mn|w]) . (21.93)

The Fourier transform of the function

e™ forA <0,
g(A) = { 0 forA>0 (21.94)

is §(w) = 1/(iw + 7). The pole ofj(w) atw = ir € II. is removed by subtracting the residue
in the combination

N 1 . Fy(im

Fo(@)i(e) = —— [Fy(w) - Fa(im)] 4 07

w+m w+m

(21.95)
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Thus we have

o, Fr (im)F_(w) .

T (w) P (21.96)
The relation betweefl and( (21.88§ becomes
1/2
L exp(—7Q) <3) . (21.97)
2ep e

This formula motivates us to introduce the scale
1 1. (T om\ /2
Q--=-M <—H) . Ty = <—”> Tx. (21.98)
g 7 H e

Now we solve formally Eq. Z1.79 for the impurity hole distributior;(A) by using the
Wiener-Hopf technique outlined above. Substituting the seale 21.9§ into the rhs of Eq.
(21.79 and using the relations obeyed by the functidhgw) and f1 (w), we have

Fdw
/ L iwri0n (),

SQS(A - Q + 1/9)

oo 2T
2s (W 2s (W
plw) = +FJ(FQ(ZJ))£ (E}Q)”) exp (—i% In %) . (21.99)

The Fourier transform of the function under consideration

_f Sas(A—Q+1/g) forA <O,
9(A) = { 0 for A >0 (21.100)

0 00 /
. d .
/ dA e‘“A/ O ilw HOA (W,

Q>
~—~
&
N~—
I

—00 — 00 2

< dw’ 1
- el () PR S— 21.101
/_OO 2 G =m0 ( )

The poles ofj(w) atw = w’ + 10 € I1; are removed by subtracting the residues in the combina-
tion Fy (w)g(w). Consequently,

“ dw’ | Fi(w 410)F_(w)
/ P e =)

— (21.102)
oo 2m

From the integral representation of the impurity magnétrae)M; atT = 0 (21.82 we finally
obtain

1
Mi:S—

I
Val

2
1 i e I‘(l—i_lw) s 2s—1 —2iwIn(H/T
-5+ /mdwﬁ 25 (W) f25 7 (w)e 2w In(H/Tr) - (21.103)
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We see that the impurity magnetization is the universaltionof H /Ty . In dependence on the
value of the ratiad /Ty, it has two different series representations.

If H > Ty, the contour of integration envelops the lower half-plahe There is one pole
atw = —i0 and the branch cut of, (w) across the negative part of the imaginary axis, so that

L TG
Mi(H >Ty) = 8_27r3/2/0 dwTsm@wsw)

w

X (_)we—?w‘ﬂ(H/Tw. (21.104)
e

We introduce the “invariant charge{H /Ty ) > 0 which satisfies the Gell-Mann-Low equation
[25, 26]

1 1 H 1 1
———lnz=In{— = In[In(H/T --+.(21.105
> 75 nz n(TH), z ln(H/TH)+2ln2(H/TH) n(In(H/Tw)|+ ( )
Thus the formulaZ1.104 can be rewritten as
o (L4 AN
Mi(H>Ty)=s— / dt M sin(2wszt) | - e 2, (21.106)
273/2 0 t e

The consequent expansion in powerg oésults in

M(H >Ty)=s (1 +> an(s)z"> . (21.107)
n=1
This expansion is asymptotic.

If H < Ty, the integration contour envelops the upper half-pleine The contour can
be deformed to encircle the positive part of the imaginang ahere only singularities of the
integrand are situated. The analysis of the integraRth 03 then depends on whether the
impurity spins = % ors > 1.

Inthes = % case, the only singularities are the simple poles ofittienction at the points
w=i(n+1/2)(n=0,1,...)and we have

(1/2) . 1 & (_1)71 TL+1/2 n+1/2 H 2n+1
M, (H<Ty)= 2\/;7;0”[(”4_ 1/2) < o > <E> . (21.108)

This expansion is absolutely convergent.

In thes > % case, the cut of _ (w) across the positive part of the imaginary axis is relevant
and the poles of thE function give only exponentially small corrections. Inrtexof the invariant
chargez(H/Tw) < 0, now defined by

1 1 H
we obtain

(#) (L S o (s — 1/2)27 exp(~1/|z])
M, (H<TH)_( 2) <1+;1 n(s —1/2) >+O< NE] ),(21.110)
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where the coefficientsx,, } are the same functions of their arguments like in the highmatig-
field series21.107. This duality of the low and high magnetic-field series hasanterpart also
for T > 0: We shall show later that the temperature dependence di¢hmbdynamic quantities
for the impurity is dual in the casds > Tk andT < Tk.

21.5 Thermodynamics with strings

ForT # 0, we have to consider all possible solutions for spin rajgdiin the Bethe ansatz Egs.
(21.5). These equations resemble those derived for the isotkopicHeisenberg ring; without
saying it, we shall often adopt techniques and the notatimm Sect. 16.

For a large system, spin rapidity solutions foivfy, strings of lengths, = 1,2,..., con-
strained by>~ ", nM,, = M. Strings of order. are characterized hy/, different real centers
A% (e« =1,..., M,). The string corresponds to the set of spin rapidities withidigtant imag-
inary parts,

1
A&n,w:AZH(n; _T), r=1,...n (21.111)

The Bethe Eqgs.21.5]) can be transformed to the ones containing only the realgst@nters:

len(ADIY €n 26 (AL +1/g) = H HEnm — AT, (21.112)

m=1p3=1

where

HA+1 ”*1 7’—|—s)

. 21.113
Ati(2H —r—ys) ( )

671,25

In the format of string centers, the Bethe equations forted@aanomentaZ1.52 take the form

oo M,
exp(ik;L) = exp(iJs/2) H H en(AD). (21.114)

n=1a=1

Taking the logarithm of this and previous equations, we iobta

k;iL = 27N, — Z Z (A") + 7] — en (k) (21.115)
n=1a=1
and
oo M,
Nen(AZ) = 27‘—’]; + Z Z @nm(AZ - Agl) - 6n,28(AZ + 1/9)7 (21116)
m=1 =1

where the one-electron charge and string phases of thesogtby the impurity are given by

min(n,2s)

Js

den(k) === On2s( Z Ons2si1—20(A). (21.117)
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The quantum (integer or half odd integer) numbé&psare constrained by the inequalijty” | <
[N + M, + min(n,2s) —1]/2+n— Y °_, min(n, m)M,,.

In the thermodynamic limitV"-— oo, one may introduce density distributions fstring
particle and hole centers, (A) and g, (A), respectively. From Eq. 2(.11§ we obtain the
counting function

1 oo My,

W(A) = 5 [00(A) + 1onas(A+1/9) ~ = 0D Oun(A-AT)| . (2L118)

2m m=1 =1

It determines the constraint between thstring particle and hole densities via

dh"
on(A) + G, (A) T ( )
This set of constraints can be expressed in the matrix form as
> 1
Fn(A)+ Y Apm *0m(A) = an(A) + an2s(A+1/g), (21.120)
m=1 N
where
min(n,2s)
an2s(A) = D anjasr1-2r(A) = Ap g x s(A). (21.121)
r=1
The spin per particle is
1, 1 &
~5 =3 ;n/dA on(A). (21.122)

According to Eq. 21.115, the energy of the system in the presence of the magneticHiek:
S ¥ kj — HS*is given byE = Eh + EP — HS*, where

N 0o
27 1 N
ch _ = . —sp o _ 1
B = — ;NJ, ~E 7 ;/dAo—n(A) [0 (A) + 7). (21.123)
The free energy at temperatufe ' = E — T'S with S being the entropy defined by
(16.33), is the functional of-string particle densitie$o,(A)} and hole densitiegc,, (A)}.
The equilibrium state is determined by the variational éoowl § F' = 0, under the constraints
§Gn = — > 0o Apm * 60, implied by Eq. 21.12(. For excitation energies of-strings at a

m=1

givenT', defined by
_ oy Tt () _
we obtain an infinite TBA chain of coupled non-linear intdgrquations:
Tln[l +exp(e,/T)] = T Z Apm x In[1 + exp(—€,,/T)]
m=1

+Hn— L0, + ). (21.125)
™
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Applying the inverse matrixl—!, we obtain another form of these equations

en(A) = TsxIn[l+exp(en—1(A)/T)]In[1 + exp(ent1(A)/T))
_%TFarctan fexp(rA)] 6, lim L= H. (21.126)

The spin part of the free energy reads
1 [e’e} eF
__FSP — - = —
P n§:1: / dA {on [Hn (6 + ) — T'lnfL + exp(es /T)]}

+6,TInfl + exp(—en/T)]} ~H <% + %) . (21.127)

Eliminating &,, by using Eq. 21.120, the coefficient ofr,, vanishes by virtue of the TBA
equations21.125 and we find

%Fsp — —Ti/dA {an(A)—i—%an,Qs(A"’l/g)}

« 1 (1 + expl—en(A)/T]) — H (% + %) . (21.128)

This formula can be further simplified. Let us considerthe 1 case of Eq.21.125

Thn[l +exp(e/T)] = T Z (@m—1 4 @m+1) * In[1 + exp(—epn, /T)]

+H— 0, + ). (21.129)
Vs

Applying on this equationf”_dA s(A) and using the relatio(w)[an—1(w) + Gni1(w)] =
an(w), we obtain

Tz_:l/dA an(A)In (1 + exp[—en(A)/T]) + g
- T/dAs(A) In (1 + explea ()/7]) + . (21.130)

Similarly, considering the, = 2s case of Eq. Z1.125, applying on this equation the operation
ff‘;o dA s(A + 1/g) and using the equality(.123, we arrive at

T Z:l / dA ap2s(A+1/g)In (1 + exp[—e,(A)/T)) + Hs

= T/dA s(A+1/g)In (1 + expleas(A)/T]) + const. (21.131)
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Up to an irrelevant constant, the spin part of the free entxgs the form
1

NFSP = —T/dAs(A)ln(l—i—exp[el(A)/T])

—% /dAs(A+ 1/g)In (1 + expleas (A)/T1) . (21.132)
The spectrum of the charge subsystem is bounded from belaW; by —N/2. The thermo-

dynamics of N non-interacting spinless fermions with linear kinetic gyyeis described by the
partition function

N oo
1 2 2
ch - <% ar. _ e
Z x E exp( T2 LN;) = || [1+€Xp( TLn)]' (21.133)

{N;} n=-N/2
For largesr = wN/ L, the corresponding charge part of the free energy per electr
1 ch T o EF 7T2 T2
N =2 dk In[1 + exp(—k/T)] + 1 12 7r (21.134)

—eF

is half the free energy of a non-interacting electron gas at 0.

21.6 TBA for non-interacting electron gas

The split of the electron system onto the charge and spirystdias and the appearance of string
excitations in the spectrum are very special features ofaunalism, due to the presence of the
impurity. To discuss the thermodynamics of the impuritystfive have to understand how the
system of free spir%— electrons is described by the present TBA equations.

In the absence of the impurity, the constraints among thicpmand hole densitie2(.120Q
take the form

Fn(A) + i Ay % 0 (A) = an(A). (21.135)
m=1

Let TBA equations21.125, taken at the rapidity\, be differentiated with respect tb. Com-
paring with Eq. 21.135 and recalling that,,(A) = ¢’'(A)/(27), we get
1 0e,(A) . 1 0e,(A)
Un(A)_ 8/\ ’I’L(En(A)), Un( )_ 2€F 8/\
wheren(e) = [1 + exp(e/T)] ! is the Fermi distribution function. Since the densitiesand
&, must be positive, the energies(A) are decreasing functions af. The average number of
n-strings at temperatufg is given by

<Mn> . o0 - T 1+ exp [_ﬁn(—FOO)/T]
N = /m dAon(A) = 5 n <1 o [_Gn(_oo)/T]) : (21.137)

Let us now consider the spin part of the free energy in theratesef the impurity. From Eg.
(21.128 we have

" 2ep [1—n(en(A))], (21.136)

%ng = TT;/dAan(A) In[1—n (e ()] — g (21.138)
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Considering the equality,,,,, (A) = 6(A)bnm + O),,,,(A)/(27) in Eq. 21.125 and afterwards
differentiating this equation with respect Ag we obtain

1 den(A) T X,
2 OA 47@Zenm*ln(lJreXP[—en(A)/T]). (21.139)

m=1

an(A) =

Substituting this relation intd2(L.13§, the second term witl®" gives zero contribution because
© is an odd continuous function and we arrive at

1 o T

A =5 / " de 1n[1—n(e)]—g. (21.140)

1Y/ mine,

Since every, (A) is a decreasing function df, it holds thaté,, = maxe, (A) = ¢(—o0) and

€, = mine,(A) = ¢(c0). The most convenient way to establish the two limits is to TBA

equations21.126. For themax limit, setting A — —oo we have the coupled set of equations
_ T _ _ _ . En

e =~z nn@E)nE-1); @ =—co, lim —==H. (21.141)

n—oo N
The general solution of these second-order differencetemsas

az" — (az™)7!

€ =TIn (0} - 1), P, = -

(21.142)

zZ— 2
The parametersandz are determined by the = 0 andn — oo boundary conditions as follows
a =z =exp(H/2T), hence
sinh[(H/2T)(n + 1)]

P = T (i 2T

(21.143)

For themin limit, settingA — oo in (21.12§ we haves; — —ep < —T'. Takingn(e;) = 1, we
get the chain of equations féy,:

T €n
€ =5 n@E)n(@E-)];  n=23,..., lm S (21.144)
n—oo N,
The solution of this chain ig, = €,_1 = TIn(®?_; — 1) (n = 2,3,...), i.e. the minimum

e limit for n strings coincides with the maximumlimit for n — 1 strings. ForH = 0, the
expressionZ1.14( thus becomes

1 T [ ep w2 T2
Nth = de In[l +exp(—¢/T)) ~» —— — ——. (21.145)

For H # 0, with regard to Eq.21.73 we have

281: —ep

1 ep w2 T?  H?

—FP~ - - — 21.146

N 4 12¢ep  Ser ( )
The total (charge plus spin) host free energy per electradse

1 21?2 H?

Sl R (21.147)
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We see that while the magnetic susceptibilities of the hpist subsystem and the electron gas
coincide,x;” = xn = 1/(4er), the heat capacities differ from one another by the factar, tw
CiP = Cy/2 = T /(6ew). Thus the following important equalities hold:
Cf]p - 1 Oh . 271'2
Txy 2Txn 3

Such relations are typical for Fermi liquids.

(21.148)

21.7 Thermodynamics of the impurity

The free energy1.133 splits into the spin part of the host free enedgy’ and the impurity
free energyF; defined as follows

P = —T/iOO dA s(A)In (14 expler(A)/T]),
F = —T/OO dAs(A+1/g)In(1 + exp [eas(A)/T7). (21.149)

Our task is to derive the thermodynamics of the impurity msbaling regimer — oo, keeping
the temperature, and in particular the Kondo temperake3§, finite.
Let us shift everywhere the spectral paramater A + (1/7) In(nT/2er) and define

LA = & Ty,

e, (A) = Ten A —|— 1 Ser (21.150)
Then the TBA equation®(.126§ can be replaced by

€n(A) = sxInfl+exp(e, 4 (A))][1 + exp(e;, 1 (A))]

2ep T €, H
——= arctan [E exp(wA)} Ont, 77,11—{20 =T (21.151)

and the free energie21.149 are written as

o= _TL dAS<A+%1n%)1n(1+eXp[6’1(A)]),
oo 1. T ,

F = -T dAs { A+ —Tn = In(1+expeh, (M) (21.152)
oo K

SinceT <« ey, the main contribution to the integral comes from the region

Al~|=n— S
||] ]<< T

Within this region, the inhomogeneous= 1 term (2er /7T arctan|[(7T/2er) exp(mwA)] in
the TBA chain 21.15) may be substituted byxp(7A). We introduce the dimensionless func-
tions ¢, (A) = €, (A)]er—oo Which depend orfl/T. They satisfy the universal set of coupled
equations

Pn(A) = s+ In[1 + exp(n—1(A))][1 + exp(pn+1(A))] — exp(mA)dn1 (21.153)
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with the boundary conditions

po(A) = —oo, tim 22O (21.154)

Itis convenient to introduce the new functions

Cn(A) =1In (1 + explpn(A)]) (21.155)
for which the chain of coupled equations reads

Cn(A) =In {1 +exp [~dp1e™ + 5% (Co1(A) + Cria(A)] ), Co = 0. (21.156)
ThenF;, being a universal function df /T andT'/ Tk, is expressible as
F = T h dw exp (——1 E) %, (21.157)

whereC,, (w, H/T) is the standard Fourier transform®@f, (A, H/T').

It is instructive to deriveF; in the limits of high "/Tx — o0) and low ('/Tx — 0)
temperatures. With regard to the definition of the Kondo terafure 21.89, these limits cor-
respond to the weak-coupling— 0 and strong-coupling — oo regimes, respectively. When
T/Tk — oo, the integral representatio®].153 implies that

sinh(H/2T)(2s + 1)
sinh H/2T

FE(T > Tx) — —g In[1 4 exp(€2s/T)] = —T'In [ ] . (21.158)
This is the result for an isolated impurity with spirwhich indicates that, at high temperatures,
the impurity decouples from conduction electrons. In thpasgite limit7/Tx — 0, we find

sinh Hs/T
sinh H/2T |
This result is in full agreement with the€ = 0 finding (21.72 that in the ground state the
conduction electrons decrease the impurity sply 1/2.

If s = % andH/T < 1, the impurity part of the free energy can be expanded in ppwer

T/Tx [27]. It follows from Eqgs. 21.153 thatp;(A) — —exp(mA) asA — oo. This means
that the Fourier integral

KT <« Tx) — —gln[l + exp(€2s/T)] = —T'In [ (21.159)

Ci(w, H/T) = / dA exp(—iwA)In (1 + exp [¢1(A)]) (21.160)
is finite (analytic) in the upper half-plane € I1,. ForT < Tk, the contour of integration in
(21.15% envelopedl, and the integral can be evaluated via an infinite sequencesafues of
1/ cosh(w/2). The result is an expansion in powersiofTk:

T 2n-+1
1/2 TZ 1)"Cy(in(n 4+ 1/2), H/T) (TK) . (21.161)

To estimate’, (ir(n+1/2), H/T) for largen, we substitute thd — oo asymptotic ofp; (A) ~
—exp(mA) into (21.16Q and obtairCy (ir(n + 1/2), H/T) ~ n! for largen, i.e. the expansion
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(21.16) is the asymptotic one. To determine the expansion coeffiei@, (ir(n + 1/2), H/T),

we have to know the functiop, (A) in the whole range ol. The only exception is the leading
T — 0 coefficientC (ir /2, H/T') which can be found indirectly by the following reasonings.
We see from Eq.41.153 that the expressions for the free energy of the spin subsyand the

s = % impurity are similar and they coincide in the strong couglimit ¢ — co. Consequently,

Ci 26F
L 21.162
CP ~ 7Tk ( )

In the ground state Eq21.86 we found that the magnetic susceptibiliy= 1/(277x), hence

Ci - Cip 1 Cy 272

= _ - 2 21.163
Txi Txy® 2Txn 3 ( )
and we arrive at
A T 1 (H 2

The relation 21.163 is known as the Wilson-Nozieres formula for a Fermi liquid

To derive the thermodynamics of the impurity with sgirn> % first we have to analyze
the analytic properties of the Fourier transfo@(w, H/T) with n. = 2s > 1. In the limits
A — +o0, it holds thatp,, (A) = €, (A) = €,(A)/T. The asymptotic analysis ef,(A — +o0)

between Eqs.21.13§-(21.141) tells us that

2In®, forA — —oo,
Cn(A) = { 2In®,,_; for A — oo. (21.165)
Hence, in the neigbourhood ef= 0 the Fourier transform of’,, (A, H/T') can be expressed as

A In®,, In®,, 4 A
(@) = 2i —2 Dy (w), 21.166
Cnlw) = A== — 2055 T Dn(@) ( )

whereD,, (w) is finite atw = 0. D, (w) (n > 1) is expected to possess the following properties:

° f)n(w) has cuts along the imaginary axis, starting from= 0, in both lower and upper
half-planes.

e The discontinuities at the upper and lower cuts are dualérsémse that
Disc Dy, 41 (i|w|) = Disc Dy, (—i|w]). (21.167)

—lw|/2m
. Disc Dy, (—ilw|) = Bu(|w|, T/H) ('2‘"—|) , (21.168)
e
where B, (w, T/H

) is analytic in the whole plane except at the cuts and has z&ros
w=—-ir(2k+1) (k=

0,1,...).
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These properties af;, (w), which will be checked in special cases, allow us to perfogeeral
analysis of the free energy of the spimpurity by using the relation1.157%.

If ' > Tk, closing the integration contour in the lower half-plate, tut along the imaginary
axis leads to

sinh(H/2T)(2s + 1)
sinh H/2T

F(T >Tg) = —Tln[
+T / dtwt_texp(—2tlnT/TK). (21.169)
0 cos

Here, the poles of / cos(wt) are compensated by the zerosi; (2=t). The invariant charge
z(T/Tx) > 0is now defined by the Gell-Mann-Low equation

1 1 T 1 1
———Inz=In{— = In [In(T'/T; ---.(21.170
~ "5 nz n(TK), z ln(T/TK)+21n2(T/TK) n [In(T/Tk)] + ( )
The integral term inZ1.169 can be expressed by usiags follows
®  Bo(2mzt,T/H) = N
Tz/o A== exp(—2t — tInt) = ; Bn(T/H, s)z". (21.171)

If T < Tk, the integration contour in2(L.157 is closed in the upper half-plane. The main
contribution comes from the cut along the imaginary axisjevine contributions from the poles
of 1/ cosh(w/2) are exponentially small. Introducing the invariant chat¢E/Tx) < 0 via the
equation

1 1 T
we have

sinh(sH/T)

AT <Tk)=-Th [ sinh H/2T

] + i Bn(T/H,s —1/2)z". (21.173)
n=1

It is seen that, in analogy with the ground state, the higl-law-temperature logarithmic ex-
pansions are dual [28].

The above analysis is general. In what follows, we shallvéetlie leading orders of the
high-temperature and low-temperature expansions inldetai

21.7.1 High-temperature expansion

For high temperatures, the zeroth order§’gfA) are theirA — +oo asymptotics21.1695, i.e.

2In®, forA <0,

(0) _
Cn’ (M) = { 2In®,,_, forA > 0andn > 1. (21.174)

Since®2 =1+ &, 19,1, theseC,,’s satisfy the chain of equation21.15§. The way in
which the functionC; (A) vanishes ad — oo follows from then = 1 version of Eq. 21.156:

COA) = [1+® exp (—e™)]  for A >0. (21.175)
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In the next order, we set
Cn(A) = CO(A) + dn (D) (21.176)

with a small perturbatiod,,(A). We linearize Egs.41.15§ in d,, and go to thet Fourier space

df (w) = / Taa exp(—iwA)d, (A), d (W)= / ’ dA exp(—iwA)d,(A). (21.177)
0

— 00

Thus we obtain

CI)% — q)?zfl +
T T e = st tdan), n23, (21.178)
® _
<I>1<I>3d2 +<1ng2 = sx(ds+dy)+Y-, (21.179)
oF _
3,4 = sxdy +Y, (21.180)
2
where
Y — > —iwA s*C(O)(A) - -~ 1
e /0 e 1] ==
0 .
Y _ —iwA —e"A_ ~ —1
) = [ ane = () = oo 180

nearw = 0. By construction, the function of interefln(w) in (21.166 is related tod,, =
d} + d;, via

Dy(w) = dp(w) + O(W). (21.182)

Let us neglect the mutual influence of the regidns< 0 and A > 0 and leave in Egs.
(21.178-(21.18Q only terms with eithetl} or d;, . In this way we get

®2 _ _
T
o2 _
s = swdy +Ye (21.183)
2
and
2
3 f2(£ d:z_ = 5*(d:zll+d:zr+1)a
oF +
T = sedf Y (21.184)
2

We see thatl,, ;1 (w) = d,(—w) in the actual perturbation order, so the dual@y (167 takes
place.
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The recurrence equation21(.183 and ¢1.184 are identical to those obtained in the high-
temperature treatment of the XXX Heisenberg chain in Seé&2.1Their solution is
i, 2cosh(w/2) i
W) ==, o=

[¢n+1e_"|‘“|/2 - @n_le_("+2)|”|/2] . (21.185)

The discontinuity ofl,, (w), and thereforeﬁn(w), when passing through the point= 0 can be
evaluated with the aid of Eqs21.929 and @1.93. Forn = 2s, in the limit H/T' — 0 the final

result is
H\? 9 w
<?> —w ] (1—%1n|w|). (21.186)

This formula determines the function of interdst, (w,T/H) via (21.16§. The impurity part
of the free energy reads

- 2
Disc Do (—i|w|, H/T — 0) = §S(S +1)

_ _ slstl)
() :{ Tin(2s + 1) 551/2 F(T/Tx) forT > Tk, (21.187)
~Tn2s — TS ((T/Ty)  for T < Tx,
where
H? 1 2
= (1-—)- 2. 21.188
1@ =57 (1- ) - s (21.188)

21.7.2 Low-temperature expansion

The analysis of the chain of TBA equatior24(126§ for the Kondo model resembles that of TBA
equations for the antiferromagnetic XXX Heisenberg chaiéct. 16.3.2. From the structure of
TBA equations we deduce that aJl(A) with n > 2 are positive. Introducing] = (e1+|e1])/2,

in the small{” limit we have

Tl (1 + e“/T) ~e&, Th (1 + eE”/T) ~e, forn>2. (21.189)

o T = 0: We first consider the leadirij — 0 order,e,, = e\”. €\”’(A) is positive forA < —Q,
vanishes af\ = —(@) and is negative foA > —@. Using the smallF' expressionsZ1.189, the
TBA equations21.126 take the form

2
Ego) A) = —% arctan (e’”\) + 5% 6;0) (A),
() = sxeVT(A) + 55D (), (21.190)
6510) (A) = s=x eflozl(A) + 5% 65&)1(1&), n > 3.

The explicit solution of this infinite chain reads

O@A) = Hn-1)+ap1%eVT7(A)  n>2 (21.191)

o)

W) = -2 arctan (@) + L 4 (s ) v O () @21192)
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Taking into account that(w)a; (w) = —J(w), with .J defined in Eq. 21.80, 6(0)( A) satisfies
the integral equation

O + / AN J(A = AP (A = _%TF arctan (™) 4+ g (21.193)

We want to have as a reference the Fermi peii}, defined by 21.97. In the scaling limit
er — oo, the integral equatior2(l.193 becomes

0
e§°’(A—Q)+/ A J(A-A")el =—H\/7 ’TA+— A < 0.(21.194)

To solve this equation we apply the Wiener-Hopf analysisctiollows Eq. 21.87. Now the
Fourier transform of the rhs function

_f -H/£e™ + 4 forA <0,
9(A) = { 0 forA >0 (21.195)

e 1 H 1
a :—H — —_— .
§(w) Voriwrr  2iwt0

The poles ofj(w) atw = i0 andw = im are removed by subtracting residues in the combination

R € F+(17T) HF+(O) - ™ 1
Frllsl) = =0y ot st - TG owom 4199
Thus, using21.19), we obtain

H (> F_(w) —iwA—(n—1)|w|/2 _
DA-Q) = ~ 57 dw—(w—iO)(w—iw)e +(n—1)H (21.197)

foralln=1,2,....
e Small 7": In the next order of TBA equation21.126, the contribution of the exponentials
exp(—el)/T) with n > 2 is negligible. We have to substitut€” ™ — TIn(1 + e</7) in Egs.
(21.192 and £1.193, to obtain

en(A) = H(n — 1) + ap_1 # Tln [1 n efl<A>/T] . n>2 (21.198)
and

e1(A) + T/ dA" J(A = A)In [1 + e€1<A/>/T} = % orctan (e™) + g (21.199)
o 7r

We use the trick formula

Tln [1 + eﬂ(A)/T] — T [1 + e*‘ﬂ(A)‘/T] T er(A). (21.200)
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The zero point ok, temperature-depende@t-, can be substituted in the considefEebrder
by its T = 0 valueQ. Writing ¢; = e§°> + egl) in (21.199 and subtracting the linearized Eq.
(21.193, the first correctiomgl) satisfies the integral equation

e (A) + / " an - A0 = 1), (21.201)

— 00

where the inhomogeneous tetif\) is given by

I(A) = —T/ dA" J(A — A')In [1 tele WWT] . (21.202)
The dominant contribution tH(A) comes from the neighborhood of zerosef Expanding: (A)
aroundA = —Q, e1(A) ~ eg‘” (—Q)(A + @), the leadindl'-dependence af(A) reads

AV )
IAN)=—"r——JA+Q). (21.203)
6lei” (-Q)|
Hence
() T
6le; " (—Q)]
whereC'(A) satisfies the integral equation
-Q
C(A) + / dA J(A = N)C(AN) = —J(A+ Q). (21.205)
The free energy of the impurity2(.149 is expressed as
F(T, H) = _/ dA s(A +1/g)ens(A), (21.206)

whereess(A) is given by €1.198. Using the formulaZ1.200 and the relatiofias 1 (w)3(w) =
Sas(w) [see definition21.80], we find

B(T,H) — F(0,H) = —T/ dA Sas(A + 1/g)In |1 + e 16" AN/T

+ / “a Sas(A+1/g)efM (). (21.207)

The rhs of this equation is expressible as

[825(—624- 1/9) +/ dA Sas(A +1/9)C(A)

72T?
__ T
6l (—Q)|

Introducing the functior’’ (A) as the solution of the integral equation

— 00

V(A) + /Q AN J(A — AV (A) = Sau(A +1/g), (21.208)

o0
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the expression in the square bracket is nothingb(t Q). We conclude that in the leading
T-order

w272
6l (~Q)|
Comparing the integral equatio®¥.208 with (21.79 we see that’ (A) = 7(A + Q), i.e.

V(—Q) = 74(0). Using the analogy of (14.34) (the contour in now closetlin), Eqgs. 1.103
and @1.103 imply

F(T,H) - F(0,H) = V(-Q). (21.209)

[ee] dw/

S P(W)FL (W +i0) = V2Hnrxi(H/Ty),  (21.210)

R(0) = lim iwi(w) = /

|w|—o0

wherey; = OM;/0H is the susceptibility. To obtainﬁo),(—Q), we differentiate Eq. 21.194

with respect ta\ and then perform integration by parts in the integral o\z’e[ego)(—Q) = 0],
with the result

0

ego)/(A - Q) +/ dA J(A - A’)ego)/(A’ -Q)=-H 76 . (21.211)

— 00

Comparing this integral equation witBX.87 we find thatego)/(A — Q) = —H\/me/2F O (A),
ie. e (—Q) = —H/me/27®)(0). From 21.9§ we get

FO0) = lim it () = Fy (i) = \/g (21.212)
Consequently,
w2712

and we arrive at the Wilson-Nozieres formula for Fermi idgu

71'2
G (H/Tic) = 223 (H/Ti) (21.214)

valid for an arbitrary magnetic field.
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QUANTUM FIELD THEORY: SINE-GORDON MODEL
22 Classical sine-Gordon theory

In this section, the classical sine-Gordon theory is reegwlt is introduced as a continuum
(infinite dimensional) limit of a finite dimensional mecheal system. Then some related con-
tinuum field theories are discussed: the Klein-Gordon thesrthe non-interacting limit, the
sinh-Gordon theory as its analytical continuation and threasponding Euclidean counterparts.
Then we turn to the construction of the finite energy solgiohthe sine-Gordon theory [35].
We start with the static solutions: The soliton and the antiton. By boosting them up we can
interpret these solutions as moving particles. Statesnvihe particles can be generated by the
Backlund transformation. We construct two-particle $iolus and introduce the concept of time
shifts. Finally, general finite energy solutions are revadvand the integrability of the model is
shown.

22.1 Continuum limit of a mechanical system

Consider a mechanical system composedafoupled pendula in a vertical gravitational field
of strengthy:

i+1

N

Let us denote the angular coordinate of ittependulum byp;, its length byl and mass by..
Neighbouring pendula, placed at distancere coupled via a harmonic potential of tension
The Lagrangian of this finite-dimensional system is givef by

N N
L = Eyxin — Epot = Z BMZQ‘?B? - %k(@ — ¢i+1)2} - Zugl(l — cos ;). (22.1)
i—1

=1
We are interested in the continuum limit— 0 and N — oo, keeping the length of the system
L = Na fixed. For this purpose we introduce the continuum variable

i 2 l
p((i—1)a) = %; == (22.2)

3We have to specify also the boundary conditions: we can tekedtc, free, or the fixed one.
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and, in the continuum limit, set the scal#?3?/a = k3%a = 1. As the result, we obtain the
Lagrangian of the sine-Gordon theory

L L 1 ) 1 ) m2
L= de £ = dz |=(0rp)® — = (029)° — —-(1 — cosby)| , (22.3)
wheredyp = 0p/0t, 0, = Op/0x = lim,—o[p(x + a) — ¢(z)]/a and the speed of light is
normalized to 1. The minimality of the action

08 =0; Sle] = /dt/dxﬁ(g&,@t@,@ch) (22.4)

determines the equation of motion

oL oL oL 5 a9 ,
900r) + Oy 0n0) 95 (0 = 0,)p +V'(p) =0. (22.5)
If we normalize the action to be dimensionleas< 1), then the scalar fielgp and the parameter
b are also dimensionless anddetermines the energy scale.

Let us emphasize that, firstly, the finite-dimensional syskteas more parameters than the
continuum one and, secondly, the field theory is obtainedsasgular limitk — oo, N — oo of
a well-defined finite system. This singular limit would leadsingularities when we would like
to quantize the system.

O

22.2 Related models

Here we list some models which are related to the sine-Gaituzory.

22.2.1 Sinh-Gordon theory

If we analytically continue the parametier— ib, we obtain the Lagrangian of the sinh-Gordon
theory

L 9i0)? = L(0,0)2 = ™ (coshib 22.6
5—5( 1p) —5( 2 ¢) —b—g(COb ¢ —1). (22.6)
In contrast to the sine-Gordon theory, where the fieltves on a compact space (the circle), the
sinh-Gordon field lives on the non-compact full line. Thespwhere the fields take values is
usually called the target space. Thus the target space sfrteeGordon theory i§' while the
target space of the sinh-Gordon theoryRis These topologically different spaces will lead to
drastic differences between the models, both at the cilsmicl quantum levels.

22.2.2 Klein-Gordon equation

The parameteb in the sinh- or sine-Gordon theory can be interpreted as alicauconstant.
Indeed, taking thé — 0 limit in (22.6 we obtain a weakly coupled theory

1 m>2 m2h2
(0)* = 5(0up)* = 59" = =" = (22.7)

L= 2 2

DN =
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Forb = 0 the theory is actually free and we obtain the Klein-GordoreioThe method of the
least action gives the relativistic wave equation
(07 =07 +m*)p =Tap =0 (22.8)

as the equation of motion. It was discovered by Schrodiilgerder to describe the spectrum
of the Hydrogen atom (and rejected by himself as it wronglyreduced the fine-structube
The Klein-Gordon model is relativistically invariant whieneans that the equation of motion is
covariant under Lorentz transformation:

O, = Oy ' = (x —vt)y, t' = (t —vr)y, vl =V1—02 (22.9)
(Jv] < 1) and is invariant under spaeé = x + z, and timet’ = t + t, translations. The Lorentz
transformation takes a particularly simple form in the dityiparameterization

v = tanh A; ' = x cosh A — t sinh A, t' =t coshA — z sinh A, (22.10)

which is nothing but a hyperbolic rotation. Light-cone adioates diagonalize this transforma-
tion,

1
Ty = 5(15 + x); oy = e oy, (22.11)

22.2.3 Euclidean version

The Euclidean version of a relativistic field theory defingdte Lagrangian
1 1
L£=3(00p)" = 5(09)* = V() (22.12)

means an analytical continuation in the time coorditate y = it. The resulting Euclidean
actionSg is positive definite, if the potentidl is bounded from below:

S:/dt/dx£—> 8w = —/dy/dx{% [(0:0)% + (0,0)%] +V(¢)}. (22.13)

The Lorentz invariance translates in the continued themithé rotational invariance in the Eu-
clidean(z, y) plane.

22.3 Finite energy solutions

The sine-Gordon model with the potential
2
m
Vip) = 32
is also relativistically invariant. From its invarianceder time translations the conservation of
energy follows$

(1 — cos Bp) (22.14)

L
Blel = [ ao |30 + 5007 + V()] (22.15)

4For more details see http://en.wikipedia.org/wiki/Kl&iordon equation.
SPeriodic BC is understood.
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O\ v 0
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-V(9)

Fig. 22.1. Static solutions can be interpreted as the matiaparticle in thel = —V potential. Finite
energy configurations in the infinite volume limit interp@detween neighbouring minima bf.

This conserved energy of the field theory is a functional efftald configurations. The invari-
ance under space translations leads to the conserved mamémntctional:

L
Plp] = /0 dz [0:90:¢] - (22.16)

We are interested in configurations which have finite enengyraomentum.

22.3.1 One-particle solutions

Symmetries are useful in two respects: first, they give nsmhserved charges (which generate
the symmetries themselves), second, they map solutiorfeaduation of motion to other so-
lutions. By exploiting the relativistic invariance we caargrate time-dependent solutions from
the static ones.

The static equation reads as

O —2)p+V'(p) =0 — —8p+V'(p)=0. (22.17)

It is analogous to the Newton’s equation of motion for a gétin one-dimensional potential
U(r) = —(m?/b*)(1 — cosbr):
d?r , d?p
T
The coordinate of the one-dimensional motion is denoted While its time variable by-. The
correspondence reads as— ¢, 7 < x, U < —V. We can exploit the conservation of the
energy of the point particle= (1/2)(dr/dr)? + U(r) to integrate the static equation of motion

=V'(¢). (22.18)

R I
T_/i 2[e — U(r)] o / e Vo) + Zo. (22.19)

For the sine-Gordon potenti??2.14, we obtain the representation by elliptic integrals.
The infinite volume limit, however, simplifies considerably
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Fig. 22.3. The static anti-soliton solutign interpolates betwee2w /b and0.

The finiteness of the energy of the field configuratidfiy] < oo, requires thab,o — 0,
V(¢) — 0 asz — +oo. Taking a look at the movement of the analogue particle inlthe
potential, Fig.22.1, we can see that at negative and positive infinite times thticjmhas to be
on the top of the potential. That is the point where partsciiergy has to vanish,= 0, giving
rise to

(bp/2

s [ [ L (n(%)). e

The two-+ solutions
4 m(z—xzg) 4 —m(x—xzg)
ws(x) = 3 arctan (e 0 ) , ws(x) = 3 arctan (e 0 ) (22.21)

are called the soliton and the anti-soliton, respectivélye soliton interpolates betweénand
27 /b asx moves from—oo to oo, the anti-soliton interpolates oppositely. They are shawn
Figs.22.2and22.3 Clearly the sinh-Gordon potential has only one minimumttgs theory
does not allow for nontrivial static solutions.

We can use the energy functional of the sine-Gordon the2®yl§ to calculate the energy
of the solutions. Both solutions have the energy

Elps] = Elps] = i—? = M (22.22)
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which, from now on, we denote by/,. For static solutions the momentur22(1§ vanishes,
P = 0. Notice that the two static solutions are nonperturbativehe sense that they become
infinitely heavy in the weakly coupled limit— 0.

Since the equation of motion is relativistically invariastatic solutions can be viewed by
a moving observer. For the moving observer these stati¢cisnBiacquire a very specific time-
dependence:

oz, t) = ps ((x —vt)y) = %arctan (emV(z*”t*z")) , (22.23)

where we redefined, and, as beforey~! = /1 — v2. This provides a time dependent solution
of the equation of motion. The conserved ene2®.19 and momentum22.1§ of the moving
soliton configurationZ2.23 read

MQ Mo’U

Elpu((z —vt)y)] = Ew) = <=y, Plpal(a—vt))] = P(v) = 2 (22.24)

Clearly, these quantities are related to one another likedhativistic energy and momentum of

a moving particle whose velocity is For any relativistic particle the mass-shell condition is
satisfied

E(v)* — P(v)* = M3, (22.25)

whereM is the mass of the particle. As a consequence, momentum anglyeare not indepen-
dent and we can parameterize a moving relativistic partiglies rapidityd as

E(0) = My cosh 0, P(6) = Mysinh 0, v = tanh 6. (22.26)

The rapidity is a convenient parameter as the Lorentz toamsdtion 2.10 merely shifts its
valuef’ =6 + A.

The moving soliton and anti-soliton solutions behave likétary waves, i.e. waves that
travel alone keeping their shapes forever. That is why theycalled soliton and anti-soliton.
The soliton and the anti-soliton have localized energy itieasd, due to the non-linearity of the
sine-Gordon equation, they are dispersionless solutions.

The energy densities of the soliton and of the anti-solitentae same, the only difference
consists in their topological charge:

Qun =2 [ duptastian = 2 fo(oc) — (—o0)]. (22.27)

As time evolution is a continuous deformation of the field fogurations, the topological charge
is a conserved quantity in any one-dimensional field the@fighin our normalization, it takes

+1 for the soliton/anti-soliton solutions, respectively. ligms and anti-solitons are localized
objects which we treat as particles. This is also suggesteldir dispersion relation. Now we
analyze the interaction of these particles.

22.4 Scattering solutions, time shifts

In order to analyze the interaction of the soliton and aalit@n “particles”, we need some exact
solutions which contain more than just one particle. Beedhs sine-Gordon equatioB2.5 is
nonlinear, we cannot just simply add two solitons. But theyvemarkable so-called Backlund
transformation will exactly do this job [36].
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22.4.1 Backlund transformation

The Backlund transformation in its most “naive” form telis how to reconstruct the imaginary
partv of a holomorphic functiorf from its real pari.. Indeed, ifu is harmonic, i.e(8§+8§)u =

0, andu andwv satisfy the Cauchy-Riemann equatighs: = d,v andd,u = —0d,v, thenv is
harmonic too,(d2 + d;)v = 0. This situation appears for the Euclidean version of the-sin
Gordon theory whem = 0. The specialty about the sine-Gordon theory is that thistantion
can be extended to non-vanishimg The extension of this Backlund transformation allowsais t
generate a new solutiop, of the sine-Gordon equatio22.5 provided that an initial solution
1 is already known. We claim that i#; solves the sine-Gordon equation of motion

2
—9.0_p1 = mT sinbpy, Oy =0 + 9, (22.28)

and additionallyp, satisfies

2mo . b
Opp2 = Opp1+ ;s (5(%01 + <P2)) ;
2m . b
O—p2 = —0_p1+ o sin <—(<,01 — @2)) ) (22.29)
o 2

theny- also solves the sine-Gordon equation, wheis a free parameter. These equations are
of first order only and so they much easier to be solved thasitteeGordon equation itself. The
existence of the Backlund transformation, which is highdntrivial, is related to the magical
integrability property of the model.

22.4.2 Two-particle solutions

If we plug into the Backlund transformation the one-paetisolution 2.21), we obtain two-
particle solutions. Especially for two solitons, we get

4 v sinh(ma~y)
(2, 1) = = arctan [ Z2ERET) 22.30
Pss(,1) p et (cosh(mvtw) ( )
Similarly, the soliton—anti-soliton solution reads
4 sinh(muty)
(2, 1) = — arctan | SR 22.31
pss(7,1) p et (vcosh(mxw) ( )

Let us analyze this soliton—anti-soliton solution. Forragyotically large times, one of the ex-
ponential terms in

(22.32)

emvtv—ln’u _ e—mvtv—ln’u
emzy 4 g—may

4
vss(x,t) = 7 arctan

survives and the solution becomes the sum of two well-ségdizme-particle solutions. Say, for
asymptotically large negative times{ —oo, remote past) we can keep the”v*7~1"v term
alone. Then we can focus on the domains where the argumemgetaontrivially. They are
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Fig. 22.4. Schematic space-time diagram of the energy geoisihe soliton—anti-solitorp,; solution. In
the scattering process the particles acquire speed-depetiche advancé\t = —21n v/(mwv~y) showing
that their interaction is attractive.

located either for large negativeor for large positiver, where we can keep one exponential in
the denominator, too, and obtain:

putet) = oo ([oro(1=59)]0) +ee (Jo-o (1=5)] ).

At = 21 . (22.33)

muy

Thus we have a soliton and an anti-soliton approaching et with velocity—v andwv. For
asymptotically large positive times {~ oo, remote future), we have

Pss(T,t) ~ s ([w-i-v (L‘-i— %)} 7) + s ([x—v (t—|— %)] 7) . (22.34)

The velocities of the particles are not changed and we canprétA¢ > 0 as the time advance
experienced by the soliton in the potential of the antitealisee Fig22.4

Since for asymptotic times the two-particle solution isshen of well-separated one-particle
solutions, the energy of the state is simply the sum of thegarécle energies:

Elpss(x,t)] = Elps((x + vt)y) + Elps(z — vt)y)] = \/% = 2Mj cosh 6. (22.35)

The time advance indicates that the soliton—anti-solitb@raction is attractive and therefore
we can expect the formation of boundstates. Indeed, cantiranalytically the velocity — iu
in ¢ss we obtain the so-called breather solution

4 sin(mut~)
L sin(muty) 22.36
ou(z,t) b arctan (ucosh(mim)) 7 | |
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which is periodic in time and possesses one continuous @deam The energy (mass) of this
standing breather can be obtained from the energy fundtiona

Elpp] = myp = 7% = 2Mj cos ¥, (22.37)

whered is the imaginary rapidity — i at which the boundstate is formed.

22.4.3 Multiparticle solutions

The generic multiparticle solution can be obtained, in gple, by applying iteratively the
Backlund transformation and generating from isinparticle solution anV + 1 particle solu-
tion. We present the final result in the Hirota form [37]:

4 Sm(7)
= —arct 22.38
p = 3 arctan Re(r) ( )
where
N im
T = Z exp | — Zuj [xmcosth +tmsinh0; — z; — 5 €
{n;=0,1} Jj=1
tanh(6; — 6,)
9 i e S P . .
+ Z“ 11 1n< 5 > (22.39)
1<jJ
For states containing solitons andV — k anti-solitons we have to put = ... = ¢, = 1
andeg41 = ... = ey = —1. The sum runs over all possible values{gf|i = 1,... N}. The

parameted; is the rapidity of thejth particle, whilexz; denotes its location. The energy and
momentum of such state are given by

N N
Elg] =Y Mycoshf;,  Plg] =Y Mysinh;. (22.40)

=1 j=1

States of breather type are constructed as moving solittirsaliton boundstate®, = 6 +
i, 0; = 0 — 19).

Let us take a look at the structure of the generic solutiorthénremote past — —oo, the
solution is composed of well-separated non-interactintjgas of types soliton, anti-soliton and
breather, which have different velocities. This initiatst can be formally described by

A01)AB) - ABy),  01>0, > > Oy, (22.41)

Here, A denotes the type of the particlel = s for the soliton,A = s for the anti-soliton and
A = By for the breather{f;} represents the ordered set of rapidities. In the initiafigomation,
we ordered one-particle symbols according to their rapidlihe fastest is on the left. In the
remote futurg — oo, the particle content is the same even with the same ragiditixcept that
their ordering is just opposite:

A(@N)A(QN_l) s A(Gl), 0y >--->0Nn_1 > 0n. (2242)
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The only difference compared to the free motion consisthénacquired time shift (advance or
delay). The time shift of any particle is the sum of time shtfiey would acquire if they had
scattered only with one particular constituent. That ih# particle of type acquires a time
shift At;; on passing through particlg which can be extracted from the two-particle solution
vi;(x,t) by analyzing its asymptotic, then the total time shift is

Ati = > At (22.43)
i
This manifestation of the model integrability is called fhetorizability of the scattering process.

22.5 Integrability, conserved charges

The dispersionless nature of the solutions and the faetiiliyy of the scatterings are conse-
guences of integrability of the model [29, 30]. Integrapilineans the existence of an infinite
number of commuting conserved charges. In the sequel, wgzanaecessary requirements for
the existence of conserved “higher-spin” charges.

22.5.1 Conservation laws
Conserved charges originate from conservation laws ofdfma f
O KH* =n"0,K, =0, Ky — 0, K, =0, n = diag(1, —1). (22.44)

Indeed, integrating the time component of the conservertnuk’; over a space-like surface,
the resulting charge

Q :/ K(t, z)dz (22.45)
is conserved, i.e.

d d oo oo o0

EQ = E/ Ki(t,x)dx = / O Ky dr = / 0. K, dx =0, (22.46)

where we used that the currents vanish at space-like ifni€learly, not all conserved currents
lead to conserved charges: For a total derivafite = 9, K the integral vanishes by itself.
Sometimes it is better to work in light-cone coordinatese Thnservation laws for the current
light-cone components read as

1
0K +0-Ky =0,  Kip=g(K+K,) (22.47)

22.5.2 Conserved charges in the free theory

Let us come back to the original problem and try to find consgicharges for the sine-Gordon
theory. We start with the free theory

2 1(835(,0)2 =04p0_p — 040-p=0. (22.48)

L= 5

(Orp)

DN =
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From the equation of motion it follows thdt - = J_¢ = J_ and K. = 0 = J; will be
conserved:
(9+J_ + 8_J+ = 8+J_ = 8+(9_90 = 0. (2249)

In an analogous way, we can introduce the two-componenestr = (J_, J;) = (0,0, )
such that the following conservation law holds:

o_J, =0. (22.50)

According to our previous remark, these currents are notoggujate in the sense that they are
total derivatives. The conservation la .J_ = 0 is still useful as it shows that_ depends on
2_ only. Thus any differential polynomial of - will be conserved, too,

Oy [(™ T )@ ) -+ (0" _)] =0. (22.51)

Clearly, any statements made abdutan be directly generalized thby exchangingr « —,
so from now on we shall focus ahonly. As concerns currents which correspond to nontrivial
conserved charges, there exist infinitely many of them, tiseféw are

(T2 ()b (0-d)% (22.52)
We do not analyze them further, just note that there is aniiafget of the charges which are in
involution for the canonical Poisson bracket.
22.5.3 Conserved charges in the interacting theory

Now we want to extend the conserved charges to the integactise defined by:

£= %(3#)2—%(31@)2 V() =0400-0=V(p) — 01090 =V'(p).(22.53)

The relevant change is thdt = 9_¢ no longer depends an_ only:
O, J_ =0,0_p=V"(p) #0. (22.54)

Our strategy is the following. We start with a nonzero comsércurrent component of the free
theory, sayl, = (J_-)?/2, and try to extend it to a two-component curréfit, ©y) which
satisfies the conservation law

0+T5 + 0-0¢ = 0. (22.55)
This is actually not a hard job since
O To=J 0,0 =J V(p)=0_V(p) — ©Og=-V(p). (22.56)

After a similar calculation for/ we can see that the resulting conserved charges are notlting b
the light-cone components of the energy and momentum

Qulel =l £ Pl = [ {J0:02 + V(o) as (2257)
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From their transformation rules under Lorentz transforoma{22.10, Q11 — etrQyq, we
conclude that they have spiasl.

At the level of spin 3, we need to combine the two quantifiés)* and (9_.J_)? which
cannot be conserved separately. Our tactic is the same aeb#fe are looking for conserved
charges of the form

1
(T4 = ) a0 ), 92) — 0y Tyi+0-0;=0. (22.58)

Elementary calculation shows
01Ty = (J_)PV' + 20 _(0_J_)V" =0 [(J-)*V] +2J_(0_J_)(aV" —V).(22.59)

So a spin 3 conserved charge can exist provided that thetfateatisfies the condition
1
V-V =0 — V=ae?/Vo4pe Ve (22.60)
«

The corresponding integrable models are the sine-GordiamGordon and Liouvillgb = 0)
theories. The currerd, = —(J_)2V.
For the sine-Gordon theory, we obtain the following charges

2
Qualy] = /dw {%(Biwf - %(@90)4 + 7:—2(6&0)2(1 — cos bs@)} : (22.61)
The existence of higher spin charges is very important. Weshow in the quantum theory

that higher spin charges will force the scattering matrifaictorize. By extending the present
methodology one can construct higher spin charges in tieeGordon theory for each odd inte-
ger. Instead of following this route, we close the sectiorshgwing the existence of an infinite
number of charges in an abstract way.

22.5.4 Integrability of the sine-Gordon theory

We start by introducing su(2) valued gauge potentials

. A %3+<p 1 cosbp —isinbyp
A””(/\)_l<—§8_cp Y ’ At(/\)_ﬂ isinbpy —cosbp

where, for simplicity, we use dimensionless coordinaies> mx, t — mt. These matrices are
non-abelian gauge potentials, (x, ¢, A\) which define an su(2) valued field strendily,. The
field strength vanishes,

> . (22.62)

Fpy = 0, A — 0 Ax + [Aaca At] =0, (2263)

provided thaty satisfies the sine-Gordon equation of motion.
We define the quantity” as the solution of differential equations

0T (x,t, ) = Ay, t, )T (2, t, \), =zt (22.64)



Classical sine-Gordon theory 201
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Fig. 22.5. Space-time cylinder with nontrivial integraticontours for th&’(\, t) matrices.

A representation is possible in terms of the path orderedmemptial

(20)
T(x,t,\) = Pexp {/ Az, t)dx“} (22.65)
(

z0,t0)

for a curve from the pointid, to) to (x, t). The usual choice of the curve is

(:Eo,t) (Ivt)
T(xz,t,\) =T exp {/ A (o, t’)dt/} X exp {/ Ay, t)da:/} , (22.66)
( (

z0,t0) z0,t)

where we introduced time and space orderings. Due to theshviagi of the field strength,
T(z,t,\) does not depend on the path connecting the two points. Neslests it depends on
the starting point. To avoid this deficiency, we considerdime-Gordon theory with periodic
boundary condition, when by surrounding the space circta wioop at fixed time the matrix
T will depend only ort. One can show that the same quantity evaluated atticen be written

asT(\t') = GT(t,\)G~!, whereG = T exp {f((;()”’tt)/) At(zo,t”)dt”}, see Fig.22.5 As a
consequence Ti(\, t) will be time independent, thus expanding this quantity ill generate

an infinite number of conserved charges.
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23 Conformal quantization

There are certain ambiguities in how to quantize an infipitBinensional interacting system.

Different approaches lead to different quantization saberiypically we split the system into a

free part and a perturbation, which is supposed to be smittel case of the sine-Gordon theory,
there exist two choices for the free part. We can choose #eerfrassless boson

1 1
L=Ly=V(p) =5(09)" = 5(0e0)” = V(p),  V(p) =2u(1 - cosby), (23.1)
wherey = m?/(2b%). In this case the perturbation is organized in powerg.oAlternatively,
instead of the mass we can send the coupling constant to Zere:0. This decomposes the
Lagrangian into the Klein-Gordon theory

2 1 nb2n

m m2 > (=
£= 3000~ 5(0p) = T3t U, U =T D e 032)

N | =

2 2

and the perturbatiofi (¢) has a power expansion in As the first step, the free theory is quan-
tized and solved exactly and afterwards, the perturbasigakien into account. The perturbing
operator is made to be well-defined by its normal orderingatwhill change its parameters.
As the solved free theories are different by the normal dandsr the parameters of the quan-
tum theories will be different (scheme-dependent), toovexheless, the physically measurable
guantities have to coincide.

We present both approaches here since each has its own aglwani he first one is called
the conformal quantization scheme. It proves to be usefsihowing the quantum integrability
of the model and that the perturbative expansion of its fi@mtfunction can be mapped to that
of the two-dimensional Coulomb gas. The second quantizaiheme is the topic of Sect. 24.
Itis relevant in defining the scattering matrix and derivitsggundamental properties.

The conformal quantization scheme is established in thitige We first solve the free
model which is the scale invariant/conformal theory [3§, 3We analyze the theory on the
space-time cylinder first, afterwards we map the system ini@@onformal plane. Then we turn
to the analysis of the perturbation. The perturbing operaiibbe a well-defined scaling field in
the conformal field theory.

23.1 Massless free boson on the cylinder
We consider the free massless boson on both the cylinderhanfiifi plane [39]. As the two

cases have different canonical normalizations, we red#fmaction on the cylinder as follows

o L
S = g/ dt/ dz 0,00"0, = (+,—), (23.3)
—00 0

where we introduced a normalization parametemnd denoted the so-normalized field &y
(Thus forg = 1 we have® = ¢). As we intend to describe the sine-Gordon theory, the targe
space of the field is a circle of compactification radius 1/b. The periodic BC thus read

O(L,t) = D(0,t) + 27rm, m € Z, (23.4)
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where the winding humbet: counts how many times the field winds around the space-time
cylinder. It is a topological quantum number (soliton numipethe perturbed theory) which is
not changed by the continuous time evolution and labelsdifft sectors of the quantum theory.
In each sector, we expand the quantum field in Fourier compsiaes

2 )
Bz, 1) = Do(t) + %Tm:c + 3 @, (t)ezmen/E (23.5)
n#0

Not all components arelndependent Since the felglreal, we havé! = &, and®; = &_,

The orthogonality of the basdO dw ei?ren/Le=i2mam/L — [5. = can be used to write the
Lagrangian in the form

L{®, $,)] = ng <<1> d_, 47TL 3, _ > L29 [4”22#)2} (23.6)

The canonical momenta are defined in the standard WRY: 6L/6<i>n = Lg<i>_n. The reality
condition reads as;” = w_,. The Hamiltonian# = }_ m,,®,, — L takes the form

1 Lg [4n? 2
= m Z (7Tn7r,n + 477271292(1)"(1),”) + 79 {%] , (23.7)

where the canonical commutation relations g, 7,,,] = id,, . This shows that the Hamil-
tonian consists of independent harmonic oscillators witlqfiencies,, = 2wg|n|. Then = 0
frequency vanishes and needs a special care (see below).

To diagonalize the Hamiltonian, we introduce the creatioth @annihilation operators

b, = V;Tn(w@ﬁm_n), b 5] = G- (23.8)

This would lead to the complete solution of the spectral [mob The massless boson is, how-
ever, very special. The eigenfunction of the wave equatanaways be separated into a left
and a right moving component. To respect this we introduce

—1\/—b forn >0 _ —iy/nb_,, forn >0
{ iv/—nb forn <0 ’ n = { iv/—nbt forn<0 ° (23.9)
where the inherited commutation relations take the faréorform
[@n, Gm] = N0ntm, [Gn, Q] = Nt [Gn, am] = 0. (23.10)
The normal-ordered Hamiltonién

27 o c 1 Lg [47%(rm)?
H=— (,nn _nQp — ) — L 23.11
L = \" In+ 0-ntl T org™ +2[ L2 (23.11)

governs the time evolution of the various operators:

b= i[H, @) = 22— Bo(t) = By + ¢

23.12
o oh (23.12)

SHere,c stands for a constant coming from the normal ordering, whiibe later fixed toc = 1.
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2 .
an, =i[H, a,) = —i%nan — an(t) = ane 2t/ L, (23.13)

The Hilbert space can be built up from the vacuin defined by
anl0) =0,  a@p|0)=0, n>0, (23.14)

by the successive application of the creation operatorsanda_; as

k1 En  -Fi _k
a—nl PR a—nNa—ﬁl PR a7

0). (23.15)

5|

3

The vacuum has vanishing windimg = 0 and momentunr,|0) = 0.

The movement of the zero modsg is a free motion on the circle of radius Consequently
the eigenvalues af, can ben/r for anyn € Z not only for0. Thus the full Hilbert space of the
model contains states built over the ground-state of anpsec

k1 En ki _k
ainl .. s ainNaiﬁl [ a7

In,m), (23.16)

3

N
where the winding in this sector is and the momentum of the zero modernign, m) =
(n/r)|n,m). Clearlye!+®° generatesn,m) from the ground-state of the winding secter
We can also introduce formally an operafar whose eigenvalue is:: M|n,m) = m|n,m).
In analogy with®,, we also introduce its conjugate variablesuch that{¥, M] = i and
e™¥|n,0) = |n, m). With these operators the energy eigenvalues can be cadiftam

2 1 or | 1 rM\ >
H=— —nlp + 0—pnGn — — — |-—mnt 4 —
an>0<a o+ ont 12)+Ll4ﬁgwo+ wg(2)

(23.17)

Putting back these expressions idtfr, ¢) yields the complete time evolution of the system:

2
O(x,t) = Do+ ;T—zt + %TMCC

i 1 s2m s2m
E - i2n(z—t) = —ITn(w-ﬁ-t)) 23.18
" Virg nzo " (ane +ane ( )
and solves the theory on the space-time cylinder. Noticetiigaformulas are simplified signif-

icantly for the choicey = 1/(4x). There are further simplifications when we analyze the free
theory on the complex plane.

23.2 Massless free boson on the complex plane

The complete solution of a quantum theory in general meamsdkculation of all correlation
functions. It turns out that instead of working on the cyénaf circumferencd. it is advanta-
geous to map the system onto the scaleless plane, whererallles will simplify. To do so,
we consider the Euclidean version of the theory by analjyyicantinuing in the time variable
y = it and map the system via the exponential mapping to the plaey = { — 2 = VI,

as shown in Fig23.1 We also haver — iy = £ — z = e/ Z¢. As a consequence, the light-
cone coordinates become the holomorphic and anti-holonioigoordinates and we can use
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Fig. 23.1. Exponential mapping of the Euclidean space-tiglimder to the conformal plane. Equal time
slices on the cylinder become concentric circles on thegplan

the powerful complex analysis. The left and right mover paftthe field®(z, z) give rise to
holomorphicy(z) and anti-holomorphig(z) fields,®(z, z) = ¢(z) + ¢(z), where

1 z="
d(z) = —— | ¢o—iaplnz+i an— |,
VATg nZEZ n
n£0
é(2) L G0~z +iY (23.19)
Z) = —— | ¢o—iagnz+iy a,— |. .
varg AL
n£0

To have a compact notation we introduced the zero modes

M M
- _V“g%, G = — +V4WTT’

4= VArg 4dmg
®, U - ®, U
= \Arg— — —— = \4rg— 23.20
Po = \/4mg 3 rvirg Po = /47y 5 o Trg’ ( )
such that the non-vanishing commutatorsfagg ¢o] = [ao, ¢o] = —i. Considering these com-

mutation relations, together with those B8(10, we can calculate all correlation functions.

23.2.1 Operator Product Expansion

Products of operators are not well-defined in the quanturd fredory. In order to define them
properly, we need to introduce specific orderings. One o&lustderings is the time ordering,
which on the plane leads to the radial ordering (see Z3j):

_ [ (z1)e(z) i |z1] > |2,
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Assuming thatz;| > |z2| we can calculate the two-point function:

(O] R(¢(21)9(22))[0)
= ﬁ(m <—iaolnz1+i7§an%> <¢o+i§an%> |0)
1 21 (z\" —1
= I —lnzl—i—;ﬁ <z_1> zmln(zl—@). (23.22)

In the first step of the calculation, we omitted those opesatdhich annihilate the vacuum. In
the second step, in order to give meaning to the infinite suentoek into account the radial or-
dering|zz|/|z1| < 1. Since we shall consider only well-defined products of ofpesathe radial
ordering will not be written out explicitly; it will always é@understood if no other indication is
given. Combining the two chiral and¢ parts, we obtain the full correlation function:

(01D (21, 1) (22, 2)|0) = _% In(|z1 — 2|). (23.23)

We expect singular behavior whenever the operators arédedaat the same space-time point
z1 — 29 = 0. We face an infrared; — zo — oo singularity as well. This shows thatitself is
not a well defined field. Indeed, in the Lagrangian of the €Bogdon theory we have either the
derivative of® or its exponential function.

Let us analyze the derivatives, the chiral currents

J(z) = iy/4ngo.p(z) = Zanzfnfl,
J(2) = i\/Argd:p(2) =Y anz ", (23.24)

which are conserved at the quantum level, too,
0J(2) = 0:J(2) =0, 0J(2) = 0.J(2) = 0. (23.25)

Their correlation function is easy to calculate. We eithiffiecentiate the expressio28.22 or
directly use the definition

O ) Jwoy= 3 z7”71w7m71<0|anam|0>:zfQZn(%)nil. (23.26)
n=1

n>0,m<0

It stands to reason that the radial ordering makes the seoiegergent foriz| > |w|. This
function then can be analytically continued to a single gdlaorrelator

1
(z —w)?

(0[J(2)J (w)]0) = (23.27)

We can introduce another well-defined product of operat@msiely the normal ordered product

UnQm T m >0,

amay, Otherwise, (23.28)

LI (W) anam = {
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where the normal ordering means that the annihilation apesda,,,,m > 0} are put on the
right of the creation operators. We can decompose the fitdgositive and non-negative modes,
so thatJ(z) = Js(z) + J<(z). In this notation, the normal ordering is simply/(z).J(w) :=
J<(z)J(w)+J(w)J> (2). Its advantage consists in the fact that it is nonsingular-atw, where

it defines a well-behaving operator. Using that (z), J(w)] = 1/(z — w)? we can express the
radially ordered product in terms of the normal ordered pobdind the vacuum expectation
value:

1
(z — w)?

This is the Wick theorem.

There is an important notion in quantum field theory, the alted operator product expan-
sion (OPE). It expresses the fact that there is a basis ofdedilhed local operators and every
product of local operators can be expressed in terms of #ssbIn particular, in the previous
case we can write

J(z)J(w) = +:J(2)J(w) . (23.29)

J(z)7 (w) @_%PJr T (W) (w) s +(z = w) 2 T(w)dJ (w) : +
o - w)k% (W) T(w) 4. (23.30)
The general case has the following structure
Z CE (2 — w)* O (w), (23.31)

where only a finite number of negative exponents are prelettiis expansion all fields have a
definite scaling dimension.

23.2.2 Conformal transformations

The free massless boson is conformally invariant. This @asden by calculating its energy
momentum tensor

Ty = 90,90, — nwa DO P (23.32)

and observing that it is traceIeSE[; = Too — T11 = 0. Indeed, according to Noether’s theorem,
the coordinate transformatiart* — «# + d2* is a symmetry if and only if the currenf, =
T,,6x" is conservedg”j, = 0. Thus the scale transformatidn* = ex* is a continuous
symmetry. Since the stress tensor is also symmétiig,= To1, it has a factorizing form in
light-cone coordinates’, - =7 = 0andTy+ = Too £ (To1 + Tho) + T11-

Expressing the energy momentum tensor on the Euclideam jianolomorphic and anti-
holomorphic coordinates, the two nontrivial elementsBre = T'(z) and7:: = T(2). They
can be expressed in terms of the conserved chiral curreotlas/$

T(z) = % 2 J(2)J(z) = Zanf”*Q,
T(z) = % L J(2)J(2) =) Lpz "2 (23.33)
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The modesread &5, = >, ¢ @man—m Lo = >_,,o0@—nan + $a3. Together withL,,,
they form the symmetry algebra of the model, which is two carting copies of the algebra

(Lo, L] = (7 — m) Ly + f_Qn(nQ — 1)6pm (23.34)

with ¢ = 1. This algebra is called the Virasoro algebra ansl called its central charge. This is
the quantum version of the conformal symmetry algebra.

The conformal transformation on the plane can be writtenvasridependent — f(z) and
z — f(2) conformal transformations, and conservation of the enargmentum tensor follows
from this symmetryd.T(z) = 9.T(2) = 0. Due to Noether’s theorem, the infinitesimal version
of the conformal transformation— z + ¢(z) is generated by the conserved charge

Q= ?{ %T(z)e(z) (23.35)
271

itself; the integral is over the circle| = const. which is the image of the equal-time slice under

the exponential map. This charge implements the coordinatsformatior: — = + ¢(z) on

the fields by the equal-time commutator. Since the orderebfierators can be encoded into the

relative absolute value of their arguments, we can write

5OW) = [Q.0w) = ;- (ﬂiwf 7{@) dz (=)T(2)O(w)
= % dz e(2)T(2)O(w), (23.36)

where the radial ordering is understood everywhere. Inghedquation, we deformed the con-
tour to encloseav as the operator product is singular only for— w. Note that the integration
picks up only the singular terms of the OPE by residue the@231. We spell out the meaning
of these formulas. We can calculate the singular parB(ef and.J(w) by using

T (0) = s+ )

G- +0(1), (23.37)
where we used tha@lT'(z) = [J>(z) + J<(2)]J>(2) + J<(2)[J>(z) + J<(z)] and rewrote
the radially ordered expression in terms of contractioosnfmutators) and nonsingular normal
ordered expression. Plugging back this expression RBa3@ and performing the integration,
we obtain the transformation of the fieldw) under an infinitesimal conformal transformation
z— z+€(2):

0cJ(2) = [0.€(2)]J(2) + €(2)0.J (2). (23.38)

This is equivalent t023.24 and the transformation of the scalar fiéld(z) = ¢(z + €(z)) —
o(z) = €(2)0.¢(z). By iterating the infinitesimal transformation, the fieldz) changes under
the conformal transformation— w(z) as follows

h
J(z) = <Z—Z> J(w(2)), h=1. (23.39)
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Fields which transform themselves in this way for genérare called primary fields of weight
h. ThusJ(w) is a primary field of weight.. There are other primary fields in the theory which
are investigated in the next part.

Finally we note that not all fields are primary fields. Consitie energy momentum tensor
T'(z) as an example. One can easily check that

c 2T (w) n 0T (W)

T(2)T(w) = 2(z — w)l (z —w)? (z — w)

+0(1). (23.40)

This means that for “large” conformal transformatians> w(z) we have

< D wdw — 3(0%w)? /2

1) = @)+ 5 =Gy

(23.41)

In particular, this means that if we normalize the vacuunrgyn® zero on the plané?’(z)) =

0, then on the cylinder = exp(i2n¢/L) we have(T'(§)) = —c/24. Repeating the same
calculations forT'(z) and taking into account the normalization of the energy, Wwtaia the
normal-ordering contribution-¢/12 in (23.19, as was promised.

23.2.3 Primary fields

Recall that the scalar field itself is not a well-defined opmras its pair correlation functions
contain logarithms. In the action of the sine-Gordon theary have either its derivatives or
exponentials. We have already analyzed the derivativédsedd¢alar field. Now intend to analyze
the operators

Vin,m) (2, 2) =: ol B0 (2,2) Hi B Amg P (2,2) . . iad(2)+iad(2) . (23.42)
Here, we apply the parameterization m) and(q, ¢) in parallel, the connection between them
follows from the definitions

(I)(Za 2) = (b(z) + (;5(2), (I)(Za 2) = ¢(2) - 5(2)7 (23.43)

so thatg + ¢ = 2n/r andg — ¢ = 4mgmr. The singular part of the OPE can be calculated by
commuting the positive modes to the right:

0 - q Vn,m (waw)
TEWVormy (w:0) = 1 (2), Vi (w,0)] = =22
@ Vi) (W, @) 9 Vi ) (w, @)

2

oo, (23.44)

T(2)Vin,m) (w, )

(23.45)

8rg (2 —w) (z —w)

Similar formulas hold for the anti-holomorphic quantiti&®e see that/,, ,,)(z, z) is a primary
field of conformal weightsh,, ..., = ¢*/(87g) andh(,.,y = ¢*/(8mg) with respect to the
conformal energy momentum tensor. This field is transforfoethez — z + ¢(z) infinitesimal

conformal transformation as

0Vinm) (2, 2) = WV m) (2, 2)0-€ + €0, Vi m) (2, 2)- (23.46)
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If we exponentiate this transformation to a large> w(z), Z — w(z) conformal transformation,
the field will change as

O LAY L BV(w @) (23.47)
P\ 0z 0z T '
where we assumed that the anti-holomorphic transformsagorin parallel with the holomorphic
ones.
There is an interesting phenomenon in conformal theoribs:ldcal operators of the theory
are in one-to-one correspondence with the Hilbert spadeeofitodel. In the present case, if we
act with Vi, .,y (2, 2) on the vacuum and send the arguments to zero, we find

[n,m) = z.lifgo Vin,m) (2, 2)0). (23.48)

The fields which correspond t@_j_1|n, m) are proportional ta (9*J)V(,, ) :. Applying
iteratively this observation, we can generate all fieldsdoy state. In particulav(y ) is the
identity operator.

As the field® involves uncoupled harmonic oscillatagg, the commutator of a positive
mode with a negative mode is not an operator any metee® " = e®—netreltna-nl This
implies the relation

-

_ _ qd | ad _ _
Vig.a) (2, 2)Vig g (w,0) = (2 — w) 373 (2 — )37 : Vig.4)(2, 2) Vg g (w, ) : . (23.49)

Applying successively the same trick we can calculate alietators of primary fields:

(OVias a0 (21 20) Vw23, 20)10) = 63 0033 @)

X H(Zl — Zj) Zi:g H(Zl — Zj) Zi:g s (2350)

1<j i<j

whered(> ", ¢;) = 1 if the total charge vanishe$,, ¢; = 0, and zero otherwise. The charge
conservation comes from the fact that only the identity afmrhas non-vanishing vacuum ex-
pectation value.

Without making any relation to the already calculated spectof statesh, m € Z, we
could leave the spectrum gfs unknown and calculate just the correlation functioR3.5Q.
Demanding these correlation functions to be single valeesids two choices for the allowed
(n,m) pairs. The first choices € Z, m € Z is the subject of this work. The other choice
(n€Z,me27Z)U (n eZ+ %, m € 27 + 1) corresponds to the Thirring model of interacting
fermion fields.

23.3 Perturbation of the massless free boson: sine-Gordohéory

We can define the sine-Gordon theory on the space-time @ylesla perturbation of the already
solved massless free boson (conformal field) theory, sdy it 1:

1
L=1Ly—pu:coshp:= 3 [(0:2)* — (0:9)°] — 1 [Vir,0) + Viero] (23.51)
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where we used the already well-defined operatgs o) =: e*'=®(®% ;. The Hamiltonian of
the sine-Gordon model can be expressed as

L
H = HO + ,LL/ dx [‘/(1,0) (SC, t) + ‘/(—1,0) (Ia t)} 5 (2352)
0
where the unperturbed, conformal Hamiltonian is
2 - 1
Hy = T [Lo + Lo — ﬁ} . (23.53)

To be able to calculate its matrix elements, we map the gmation operators by the conformal
transformation, shown in Fig23.1, onto the plane. As the perturbation is a primary field, we
have

V(z,t) =V(E€) =V(z,2) (j—z)h <j—§>h =V(z,2) (—%z)h <%z)h .(23.54)

In polar (r, §)-coordinatesy = rel’ andz = re~?, the Hamiltonian takes the form

2w - 1
H = T{Lo-i-Lo—E

o 2(h—1) 27 . . . i
s (F) e [ V(@) 4 Vi ()] £ (2359)
0 m

The perturbation can be classified by its behaviour for lakgelf the perturbation gets
stronger { < 1) itis “relevant”, if the perturbation gets weakér & 1) it is “irrelevant”, while
for h = 1itis “marginal”’. An analogous classification of the pertatibns can be formulated in
terms of the dimension of the coupling constant. The dingnef the energy is 1H]| = 1, the
dimension of the volume is 1, [L] = —1, so the coupling has dimensigu = 2(1 — h).

An obvious way to calculate the spectrum of the sine-Gortentty is to use the Hamiltonian
perturbation theory. The result is an expansion of the gniargowers ofu, which is related by
dimensional arguments to an expansio#' —"):

1 . 2k(h—1)
B,y — — o il 23.56

whereE),,, is the conformal energy of the unperturbed stateand the coefficients; can be
calculated from the matrix elements of the perturbing ofper&vidently,

2w

T 46 o o
1= 27T<”|/ Gy [V(l,o)(eleve )+ V(—l,o)(eleve 19)} In) = 0. (23.57)
0

As concerns the ground-state, we can obtain formulas basttgerturbative expansion of the
partition function which are easier to evaluate.

There is another standard way of calculating the spectrugun@mtum theory. The idea is to
take the energy levels of the unperturbed theory below iceetaergy level and use their linear
combination in the variational method. This can be showne@tuivalent to diagonalize the
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Fig. 23.2. Schematic numerical spectrum of the sine-Gotleary in a finite volume.

interacting Hamiltonian on the truncated Hilbert space.isThethod is called the truncated
conformal space approach (TCSA) [40,41]. A typical nuradrgpectrum of the sine-Gordon
theory obtained in this way is show in Figuz8.2 All energy levels for large volume behave as

En(L) = Ey(00) —egL + O (e7™E) (23.58)

whereey is the bulk(L — oo) ground-state energy density. By analyzing the numericallte
for E,(c0), we can read off the masses of the excitations, which havet@spond to the
guantized versions of the soliton, the anti-soliton andainertain parameter range, to their
boundstates — the breathers.

23.3.1 Conserved charges

Now we analyze how the classical higher-spin charges casiveuhe quantization [42,43]. We
follow the same tactic as we did at the classical level: Wedrfind such deformations of the
critical conformal (unperturbed = 0) theory to an off-critical 4 # 0) theory which preserve
conservation laws. In the critical case, any different@pomials of the currenf is conserved,

0A(z) = 0, A(z) =: 0™ J(z)--- 0"V J(z2) : (23.59)

and similarly for A(z). This equation is an operator equation which is understocal weak
sense: itis valid for the correlator af(z) with any operato®. We are interested in higher-spin
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conserved charges, so we keep only those differential potyals which are not total derivatives
themselves. Just as in the classical case, the first few seead a

cJ(2)% S J(2)3 SJ(2)t L (0J(2)2 ;. (23.60)

Let us study first how the conservations are deformed offeatly, i.e. howA(z) acquires a
z-dependence whem # 0. We analyze a generic correlation function4(z) and differentiate
it with respect tcz:

Jd®@le=S0eH5T A(2)O

VARIO) = 0 gisas =07 (aaje Soe s
= (e MTA(2)0)e =0 %T«—s,)"A(z)@c. (23.61)

Here, (). denotes the connected correlator of the critical theorsgatinected diagrams in the
perturbative evaluation of the numerator are canceled éytnresponding terms from the de-
nominator. Since Eq2@3.67J) is valid for any operato® we can extract the operator equation

0A(2) =0 ’;—T(_SI)HA(Z), (23.62)

where the rhs is a perturbative expansion in the couplingtemn. Let us focus on the first order
term

0A(z) = ug/dwdu? V(w, w)A(z) + O(1?). (23.63)
The z dependence of the integral comes from the singular behafitbe OPE
OAV (’)AV
A(2)V (w, ) = —=_ ... 4+ ——L_ 4 regular terms. (23.64)
(z —w)* (z —w)

To evaluate the integral, we introduce the coordinates z +re'?, w = z +re~'¢ and integrate

overfé00 rdr 02” d¢. To avoid the singularity of the integrand, we have intraetlia regulariza-

tion parametet. This can be implemented by introducing into the integrdredgtep function
0(r? — %) = 0((z — w)(z — w) — €). This regulator is the only function &fin the integrand.
Since

0((z —w)(z —w) — ) = (z —w)d @ (|z — w|?), (23.65)
the only non-vanishing contribution to the integral conresif theOA}" term:
DA(z) = pOAY + O(p?). (23.66)

The first order perturbative correction is exact in most sa3dis can be seen by analyzing the
dimensions of each term in the perturbative expansion

DA(2) = pOy + 2Oy + -+ " Op 4 - - - (23.67)
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level of non-derivative level of derivative non-derivative
A operators Oﬁ‘}’ operators operators
I - 0 - 1%
2 J? 1 ov -
3 J3 2 o’V J2V
4 J1(0)? 3 PV;0(J?V) J3V

Tab. 23.1. The list of the operators at the first few levelghlibe critical conserved currentd, and its
possible counterpart®} . In representing the operators we used tHatoc JV .

If the dimension of4 is (s, 0) then in then'*-order term we must have
(s,1) = (n(1 = h) + ho,,n(l —h) + ho,) .

Clearly forn = 1 we have a solution in terms @, o« O4} whose dimension i€ + s — 1, h).
For a generic irrationdf in the sine-Gordon theory, however, we cannot have solsifienother
n > 1.

To summarize, we found that at any order of the perturbati@ory the conservation law
gets deformed as

DA(z) = poAy.

(23.68)

(23.69)

This will lead to an off-critical conserved charge onlyif'}” is a total derivativeO4} = 9B.
Our job is to find suchd’s which satisfy this requirement. To show the existencéefdtonserved
charges, it is sufficient to compare the dimensions ofAlemd AV spaces at ands — 1 levels.
This argument is called the counting argument [42,43]. Ti@iet form of the operators for
the first fews are shown in Tabl23.3.1 The operatod in Eq. (23.69 is a horizontal map. This
means that/? is mapped ont@V which is a total derivative, thug® as a conserved current has
an off-critical integrable deformation. This is not a suspras it corresponds to the off-critical
energy momentum tensor. The currefittis mapped also to non-derivativEV’, so it is not
conserved. But at level four, since the space of non devvafperators is only one-dimensional,
we can always take such a combination/6fand(0.J)? that the result is a total derivative. Thus
we can deduce the existence of a conserved current just bparamng the dimensions of the
spaces.

One can show that there is an infinite number of conservedebaso the sine-Gordon theory
is integrable at the quantum level, too.
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24 Lagrangian quantization

In this section, we quantize (preferentially) the sinh-@ortheory in the Lagrangian framework.
We consider this theory as the perturbation of the free madsdson (Klein-Gordon model),
which is quantized first. The potential is treated pertuvieat, it is supposed to be weak in the
sense that the particle spectrum of the free model is notgdwhnThis assumption is valid for
the sinh-Gordon theory, where the only particle exist alyea the Klein-Gordon model. In the
sine-Gordon case, however, additionally to the breathm golution, which is the analogue of
the sinh-Gordon particle, there are non-perturbativegestlike the soliton and the anti-soliton.
Nevertheless, our approach is based on general field tihesdiatvestigations and the conceptual
consequences are valid for any theory of quantum partieles) for the quantum counterparts
of the soliton and anti-soliton.

We start the section by introducing the quantum analogué®fctassical time shift, the
scattering phase. We show how they are related in the sessichl limit, which makes a bridge
between the classical and quantum descriptions [44]. Thetuw to the quantization of the
sinh-Gordon theory in the perturbative scheme: The freenkBordon part is quantized first
and then the interaction is taken into account in the interagicture. We introduce the notion
of asymptotic states and their scattering (S) matrix. Reédndormula links the S-matrix to the
correlation functions. It makes possible to derive the sirag symmetry of the S-matrix and
analyze its analytical structure [45].

24.1 Semi-classical considerations, phase shifts

We recall that the soliton and the anti-soliton are treatefdaaticles. The soliton feels the anti-
soliton as an attractive potential and so experiences adirifiewhen passing by it. We express
this time shift in a form which can be linked easily to the guam description.

Let us consider a classical particle of magsmoving in a localized potentidl (z), see
Fig. 24.1 The time shift is defined by comparing the motion in the ptiétio the free motion,

At = (tanal — tinitial)

— (tfinal — Tinitia . 24.1
|~ (tsnat — i), (24.0)

ree

The difference between the initial and final times can be agegbas

ty—t; = /I P /I ' %dx, p(z, E) = +/2m[E — V(x)], (24.2)

.ov(x)

i

whereuv(z) is the space-dependent velocity and we used the Hamiltaatiequof motionu(z) =

o —

D initial D final
V(x)

Fig. 24.1. Particle moves in a localized potential.
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<" R e—ipX
NN "> eipx T eipx NN ">

Xinitial — X final
V(x)

Fig. 24.2. Quantum mechanical wave function in a localizegptial. In the asymptotic regions we have
plane waves, while in the central region we might have botates. All information is contained in the
reflection and transmission coefficients.

%—I;(x). Thus for a given energk the time shift is

At(E) =0 /wf [p(z, E) — p(E)] dz. (24.3)

T

This is the quantity which we would like to link to the quantumechanical phase shift.

Let us now study the quantum mechanics of the particle indheespotential, see Fi@4.2
Since at large negative and positivéhe potential vanishes, we have plane wave solutions there
and the information on the potential is contained in the céifi@ and transmission coefficients.
Notice that at the quantum level we may have the reflectionedsas a discrete set of bound-
states. The effect of the interaction when the particle gzhskrough the potential is in the
transmission coefficiedf = exp(i20), or the phase-shiff. In order to make a link to the clas-
sical description, we calculate the transmission coefficiie the semi-classical approximation
h — 0. That is we solve the Schrodinger equation by separatieguiplitude and the phase as

H(p,2)¥(z) = E¥(z),  U(x,t) = Az, t)er S0, (24.4)

where it is supposed that the wave function oscillates dyicz, t) > h. (We usek = 1 from
now on). By expanding the Schrddinger equati@d.g in i one can show tha®(z, ¢) is the
classical action

S(x,t) :/ p(x’, E)dx’ + const. (24.5)

The phase shift can be obtained frdhby comparing to the free propagation:
Tf
25(8) = [l E) - ()] d, (24.6)

Comparing the phase shif24.6 to the classical time shif2@.3 we conclude that, in the semi-
classical approximation,

Opd(E) = %At(E). (24.7)
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We can integrate this equation from the threshold energlge§tattering solutions:

E E
0(E) = 6(FEwm) + 1 At(E')dE' = npm + 1 At(E')dE', (24.8)
2 E:p E:p
wheren g is the number of boundstates in the semi-classical appatiom
We expect that an analogous formula will be valid for the fiblglory as well [44]. Thus to
make correspondence to time shifts of Section 1, we needrtalince and calculate the scattering
matrix, which is the field theoretical analogue of the traission factor.

24.2 Quantization based on the Klein-Gordon theory

Referring to our previous discussion, we decompose theGidon theory into the free and
interaction parts as follows

2 2 b2n

O = 5000 =T =PV, V()= 5o Y e (249)
n=2 '

L= 2 2

N | =

The free part can be obtained for= 0,

2

1 1 m
Lo = 5(@900)2 - 5(395@0)2 - 7@(%, (24.10)

where the free nature of the field is emphasized by the notatjo First we quantize the free
part and subsequently define the sinh-Gordon QFT in thedictien picture.

24.2.1 Solving the free part

Itis easy to quantize the free massive boson. We proceednmlaisway we solved the massless
free boson in the previous section, but now we work on an iefiime. We define the conjugate
momenta to the fielgpy and require that only equal-time commutation relationarezero:

Lo .
=7 = Oy, 1), ' )] = —id(x — 2'). 24.11
Sy =7 = e (), pole! 0] = —id(e ) (24.11)
The Hamiltonian is obtained via the Legendre transfornmetip integratingr(9.v0) — Lo,
[e%e) 2
Hy = / E(ﬂ? + %(5)1300)2 + g e (24.12)

It generates the time evolution of any operatdria the equation of motio®, O = i[H,, O].
By expanding the fields in Fourier modes and plugging backéoHamiltonian, we recognize
uncoupled harmonic oscillators. Thus we can introduce thaton and annihilation operators

a(k,t) = it (k,t) + wk)o(k,t),  al(k,t) = ~ift(k,t) + w(k)po(k, 1),  (24.13)
wherew(k) = vk2 + m?2. Their non-vanishing commutation relation reads

[a(k,t),a’ (K, 1)] = (2m)2w(k)6(k — K'). (24.14)
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As the Hamilton takes the form

Ho= [ o @05 [ etk )+ alk.)al (0] (24.15)

the time dependence of the creation and annihilation oper&t determined exactly:' (k, t) =
af (k)™ anda(k,t) = a(k)e (¥t The Fock Hilbert space of the model is generated from
the lowest energy vacuuff) as

al (ky) - al (kp)|0) = |ky, -+ k), a(k)]0) = 0. (24.16)
Each state is an eigenstate of the energy and the momentuata)se
o 1 1 m?
HO - / : |:§ (atQOO)2 + §(az900)2 + 730(2):| . dl’,
P = / : OppoOepo = dx (24.17)

with the eigenvalue

Holky, .o kn) = w(ki)lky, - k), Plhy,- kn) =Y kilky, -+ ky). (24.18)
Here, we normalized the energy and the momentum of the vatmaaro. This can be achieved
by introducing the normal ordering: Creation operatoiig:) are put on the left of the annihila-
tion operators:(k').

The solution for the free quantum field is given by

o dk : ' . .
— —iw(k)t+ikz T iw(k)t—ikz
wo(z,t) /OO )2 (k) {a(k)e +a'(k)e } : (24.19)

The products of operators are well-defined only if we présca meaningful ordering. The time
ordering is defined by

;s | polm t)pe(a t') fort >,
T (po(z,t)po(2',t") = { ol P ypo(at) fort! =t (24.20)
The free Feynman propagator (Green’s function) is definédeasvo-point vacuum expectation
value of the time ordered product,

dwdk iefiwt12+ik112
(2m)% w? — k2 —m? + i€’

@W@MmhmwmeMEGwmmﬂ:/ (24.21)

wheret;; = t; —t; and similarly forz. The Wick theorem allows us to calculate any correlation
function as

(OIT (o(x1,t1) -+~ po(wan, tan)[0) = > { 11 G(tij,xij)} . (24.22)

all pairings \ all 7, j pairs

Thus the free model is solved completely and we are readyfioedde perturbation.
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24.2.2 Perturbation

The interacting theory is defined by the Lagrangiaf.9. After the Legendre transformation,
we obtain the Hamiltoniah

H:H0+H1:H0+b2/dx:U1(<p): (24.23)

which generates time evolution. In order to have a meanirghe evolution operator (with
finite matrix elements) we have to normal order the pertybimerator. This can lead to a change
(renormalization) of its parameters. We also suppose tieapérturbation does not change the
Hilbert space of the free model and tréat perturbatively.

In relativistic quantum field theories, we prefer to desetibre time evolution of the system
in the Heisenberg picture. In this picture, the Hamiltonigmerates time evolution only for
operators and vectors are time independent:

@(Iat) :eth(p(I,O)eith, |kla"'7kn;t> = |klaakn70> (2424)

The fact that state vectors are time independent is a méatif@s of Lorentz covariance.

For technical reasons, we can switch also to the interapiicinre. As the time evolution of
the free system has already been solved, it can be separanedfe complete Heisenberg time
evolution. We evolve the operators by the free-time evotu{generated by/,) and the vectors
by the so-called evolution operator.
engt

wo(x,t) = wo(x,0)e Hot |k1, - knst) = U(t,0)|k1, ..., kn; 0). (24.25)

Demanding the equivalence of all matrix elements in the tegcdptions we see théai(t,0) =
elflote=iHt The time derivative of/ (¢, 0) is given by

whereypy(t) is evolved with the free time evolution generatediby. As H;(t) and H,(t') do
not commute in general, the solution of this differentialiatipn can be written in terms of the
time-ordered exponential:

U(t,0) = T exp {—i/ot Hi (po(t)) dt’} , (24.27)

where we still have to fix the integration constant from thigahvalue.

The Heisenberg and interaction pictures coincide at agatertime. It is natural to choose
this reference time atoo. This choice is motivated by the fact that for asymptoticédirge
negative time particles (finite energy localized solutitraseling with different speeds) are well
separated and so their interactions vanish. Taking intowtcthe canonical normalization of
the fields[o(z, t), dr (2, t)] = i6(x — o), we cannot suppose the complete equality, but

, lim ¢(z,t) ~ . lim Z%gobn(x, t), (24.28)

where0 < Z < 1 is referred to as the wave function renormalization coristan

"Here we redefined’ to U; to avoid confusion with the time evolution operator.
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In the perturbed theory, we are interested in the correiditinctions of time ordered products
of Heisenberg operators. We can again switch from the Hbargrto the interaction picture by
using the evolution operatdf. As the result, we obtain

<O|T ((P(.Tl, tl) o '(P(.Tn, tn)) |0>
_ o|T (wo(xl,tl) 0 (Tn, ty) €Xp {—ifd:vdt[i; (cpo(x,t))}) |0) (24.29)
(0T (exp {—i [ dadt L1 (po(x,t))})]0) ’ '

which yields a complete definition of the model. The usual waproceed is to expand the
exponential,

N

exp{—i/dxdtﬁl (goo(x,t))} = i (_]\i])!N [/ dzdt L (wo(z,t)) (24.30)

N=0

and to calculate any quantity perturbatively in the couplionstant. At each order, we have to
calculate the vacuum expectation value of the time orderedyzts of free fields, which can
be done with the aid of the Wick theoref®4.22. The results can be represented in terms of
Feynman diagrams. For aApoint correlation function, these rules are formulatetthasimplest
way in the Fourier (momentum) space. They read as follows:

e Draw all topologically distinct diagrams with outer legs

» associate the propagatef—————- with each line

e introduce—im?2b?'~2 for each vertex ol legs (©2ika)
and demand the momentum, k; = 0 and energy . w(k;) = 0 conservations

e integrate over inner momenta, not fixed by momentum consens | %

o divide by the symmetry factor of the graph

These rules apply only when there are no normal orderingsd.agrangian. If we normal
order the perturbation operator, we are not allowed to dash sliagrams in which a line starts
and ends at the same vertex. These rules define the modelyzertaly, so we can compute all
correlation functions order by order.

It is instructive to compare the two types of rules and todatk how we can regularize the
theory. In the normal ordered case, one can show by simplicgithat there are no divergences
at all and so the theory is already well-defined. In the unm@adized case, let us analyze the
two-point propagator first. Immediately at one loop we facivergent integral shown in Fig.

24.3
/dwdk i _/A% 1 (24.31)
CmZw?—k2—m2+ie  Jo 20 RZ+m2 '
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@k

A4

Fig. 24.3. One-loop diagram contributing to the propagetan the left, while the diagram of its counter-
term is on the right.

which was regularized by introducing a momentum cutAoffBut then the propagator will de-
pend on this cut-off. To compensate this we adddependent counter-term into the Lagrangian,
namelysm?¢? /2 with

om? = —m?b? / ! L S (24.32)
0 27 VEk2%+ m?

Calculating other higher-point correlators at one loop we&v/a at the same divergenc24.3)).
Interestingly, the induced counter-term in the Lagrandg@n(2n — 2)-point correlation func-
tions isdm?2b2"2¢%" /(2n)!, i.e. it has exactly the same form as the original one. Thas th
divergences can be absorbed into the renormalization ohtes term:

2 2 2

= T (coshbp —1). (24.33)

:Vi(p) = 72 (coshbp — 1) :=V(p) — Ver(p) = —

We can calculate the renormalization of the mass order bgrdrdm the two-point propagator
and use the renormalized Lagrangian to evaluate any hjghiat-correlation functions, which
turn out to be finite. The fact that the form of the Lagrang&nat changed at the quantum level,
merely the coefficients are renormalized, implies that tengqum equations of motion have the
same structure as the classical ones. This shows that th&sirdon theory is integrable at the
guantum level, too.

The mass can be read off from the two-point function as the pbits Fourier transform.
Now we are going to derive formulas which connect the saatjematrix to the higher-point
correlation functions.

24.3 Scattering matrix, reduction formulas

Classically, the particle-type excitations are well seped and non-interacting at asymptotically
large times. This motivates us to adiabatically switch b# tnteraction for large times. We
suppose that

lim ¢(z,t) = lim Z%gogn/out (z,t), (24.34)

t—Foo t—Foo

whereZ takes care of the canonical normalization of the fields aedithit is understood in
the week sense, i.e. for the matrix elements of the operafmgmptotic annihilation/creation
operators can be defined in terms of the asymptotic fields\wriimg 24.13,

aas(k) _ 1/(1.%' eiw(k)t—ikw 5’; sDgs(x’ t),

aas(k)T _ —i/dxe_i”(k)t“kmgﬂpgs(w,ﬂ, (24.35)
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where the upperscript asymptotic “as” can be either {ih—~ —oo) or “out” (¢ — +oc) and
forg = fOrg — g0 f. These operators create the asymptotic states

k1, k) = a® (k)T - a®(k,)T]0). (24.36)

In order to avoid over-counting we order the “in” basiskas> k;.1 and the “out” basis oppo-
sitely k; < k;11. Asymptotic completeness means that both the initial aral §tates form a
complete set. Thus, they can be expressed in terms of eaghvidithe scattering matrix

Sg = (final|initial). (24.37)

As the time evolution of the states is described by the eimiuwdperatol/, the scattering matrix
is nothing but

S =U(co,—0) = Texp{—i/oo dt’ Hy (SDO(t/))}

— 00

T exp {i/dxdtﬁ;(cpo)}. (24.38)

This form implies that th&-matrix is unitary and commutes with model's symmetries.
The simplest nontrivial S-matrix element is

out<k3a k4|/€1, kg)in = S(kl, kglkg, k4)(2w)22w(k1)2w(k2)6(k1 — k4)§(/€2 — kg) (2439)

In a Lorentz invariant theory th&-matrix depends only on the relativistically invariant Man
delstam variables = (w1 + w2)? — (k1 + k2)?, t = (w1 — w3)? — (k1 — k3)? andu =
(w1 —wa)? — (k1 — k4)?, wherew; = w(k;). The last two variablesandu are not independent
of s in (1+1) dimensions.

The scattering matrix can be expressed in terms of the etioalfunctions via the so called
reduction formulas, which will be derived in what follows. eWirst express the asymptotic
creation (annihilation) operators in terms of the free gstgtic fields 24.35:

out (k3 kalk1, k2)in = out<k37k4|a’;rn(k1)|k2>in
= out(ks, kali / dxei“(k)t_””5t<p6“(w,t)|k2>in, (24.40)

wherek denotes the momentum we are manipulating, which in this isalse The asymptotic
fields can be expressediat —oo in terms of the interacting field2@.34. Using the identity
f(=00) = f(o0) = [72_ 9, f(t), the interacting field can further be expressed in terms @f th
disconnectedf(c0), and the connected contributions:

out (k3, ka1, k2)in = out<k37k4|alut(kl)|k2>in
Fout (3, ka[iZ 2 /d:v dt o, {eiw(k)t‘i’” ) so(:v,t)} |k2)in. (24.41)

In the connected piece from the second time derivative waiobt(k)? = k2 + m? andd? .
In the first term we replacé? by the second space derivatives, which is subsequenthetwic
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(s.ks (o3 kg

(00.ky, ko

Fig. 24.4. Four-point correlation function in the leadirrger Feynman graph.

integrated by parts. Dropping the surface terms (as thesfiaid vanishing at infinities) we
obtain

out (K3, ka|k1, k2)in = disconnected- 122 Doy (ks, ka|o(z, £)|k2)in, (24.42)
where
D=— / dzdte wW®tHikeg = _92 4+ 52 — m?2. (24.43)

Repeating the same procedure for each asymptotic creatioinilation operator we obtain the
final form of the reduction formula

out<k3a k4|/€1, kg)in = (27T)22w(k1)2w(k2)5(k1 — k4)6(k2 — k3)
+Z7*DaD3D2D1{0|T (2(1)(2)(3)9(4)) [0), (24.44)

wherep(i) stands forp(z;, t;), D; = D(xz — x;) and similarly fordJ;. The physical meaning
of the operatoD; is to truncate the correlation function and to put them oalislearly, in the
momentum spadel; picks up the residue of the pole of the propagator, whiletkierise Fourier
transformation puts the particle on the mass shell=+ k? = m?2. For initial states we obtain
the operatoD; = — [ dw; dt; elw(*)t—ikzi [, The only difference between the operatrs
andD; consists in the sign of the energy-momentum ve@tork). From this fact we can read
off the crossing symmetry of the scattering matrix,

S(k1, kalks, ka) = S(k1, ks|ka, ks), (24.45)

where the energy-momentum vector of the anti-particleis (—w(k), —k).

We have already developed the technique to calculate thelation functions. Using the
reduction formula, we can elaborate order by order the ex@a¢f matrix of the sinh-Gordon
theory. Let us calculate the four-point correlation fuaotat the leading order. The contribution
of the Feynman graph in Fi@4.4to the momentum space 4-point function is

G4({wi}, {kl}) = (—im2b2)(27r)26(w1 + Wwo — w3 — w4)6(k1 + ko — k3 — k4)
4 .
<J1 == ! (24.46)

2 _ 2
S k7 —m? 4 ie

The reduction formula multiplies each leg by the factdr— k? — m? and puts all momenta on
the mass shell? — k2 — m?. As the result, the amplitude is proportional to the prochfct
delta functions withv — w(k). Notice, however, that in the definition of ttlematrix (24.39
we have different delta functions. The relation is simply

6 (w(k1) + w(ke) —w(ks) — w(ka)) (k1 + ko — k3 — ka)

1
= m(Wﬁ — k3)d(ka — k). (24.47)
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Thus the scattering matrix in the leading ordeb is

b2 1

Stk kalks, ka) =1 =15 S m — 4y

(24.48)
where the unity is obtained from the disconnected part aaddpidity parameterizatioh =
m sinh § was used. We can calculate systematically also higherooiesctions [32, 33].

24.4 The analytic structure of the scattering matrix

In the previous section, we introduced the Feynman pertiarbaules for calculating the cor-
relation functions, which then can be used to calculate tlad¢tering matrix via the reduction
formula. Now, following [45], we analyze what sort of singtities can exhibit various terms in
the perturbative expansion and how they are summed up taipelarity of correlation functions
and the scattering matrix.

Let us analyze a Feynman diagramMfouter on-shell legs with momenia, . .., ky. The
leg-truncated amplitude can be calculated in the pertioh&teory as

L J
_ dv; dg; 2.2 2 -1
A= Z1:[1/ ok j[[l(wj pj —m” +ie), (24.49)

where(v;, ¢;) denotes one ok loop momenta, whiléw;, p;) denotes the energy and momentum
of one of J inner lines. As the theory is relativistically invarianetmplitude depends only on
the combinationsu(k;)w(k;) — k;k;. This property can be made explicit by introducing the
Feynman parameterization

—J

A H dl/idqi .
- / (27 ) /0 J (Z J Z j( J D m; 16) (2450)

and by evaluating thév;, ¢;) loop integrals. The UV divergences can be regularized by the
already introduced counter-terms or by normal orderinggéegurbation operator. Thus the
expression is finite provided > 0. In the physicak — 0 limit, however, singularities of the
integrand can cross the hyper-contour. These singularities can be avoided by oatisly
deforming the contour provided that the contour is not pattar the singularity is not localized

at the boundary of integration. Thus physical singulasitippear whenever

J
a; =0 or wJQ» —p? —m?=0 and 0 Zaj(w?- —p? - mJQ) =0, (24.51)

j=1
where; is bothd,, andd,,. These are the so-called Landau equations which formubate t
singularities of the Feynman diagrams. They have a cleasipalymeaning. To understand them
we shrink every line witho; = 0 to a point. The resulting graph is called the reduced graph.
Graphs which are transformed to the same reduced graph henaaime singularity structure.
The shrunk lines sum up to the exact vertex functions. Glearh reduced graph all particles
are on shell.
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Fig. 24.5. Generic closed loop. Lines are labeled by momenta

Let us consider a generic lodpin a reduced graph, see Fig4.5 We use the momentum
conservation at each vertex to express all inner momenénmstofp; as

A—-1
pe=p1+l, ps=pat+lo=pi+ili+la- - pA:p1+le. (24.52)
j=1

The total momentum is evidently conservéd; /; = 0. The Landau equation faf = p, reads
as

> upi =0 (24.53)

each loop

we have similar equations for the energy components, toten@am and Norton [46] have a nice
interpretation of these equations: The physical singugardf the correlation functiongf{ > 0)
correspond to such space-time diagrams in which all pagipropagate on shell, forward in
time, and interact with each other in space-time points miergy and momentum conserving
interactions. To visualize such a picture we draw for eacteifine a vectof«;w;, a;p;) of
lengtha;m. Lines witha = 0 are shrunk to a point. A space-time interaction point is eissed
with each vertex in the graph. The Landau equation guamaitti&t they are well defined, as
different paths define the same point.

The Cutkosky rules describe the discontinuity caused b guaphs. One has to calculate
the singularity of the graph as if it were a Feynman diagratwisth replacing the interaction
vertices by exact (all graphs summed up) vertices and thgagator by276 (w)d (w? —p* —m?).

Boundstates show up as singularities in the two-partiad¢teing matrix with purely imag-
inary relative rapidities. They also can be interpreted asdau singularities. In this case, if
sayf; = —iu; andfy = iug, the momenta are purely imaginapy = ig; = imsinu; and
the energy - momentum vectar,, ¢;) can be drawn in the two-dimensional Euclidean space,
where it has the lengt. Diagrams explaining the singularities of the scatteriragnx in this
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Fig. 24.6. Boundstate diagram on the left, a more complic@€=leman-Thun diagram on the right.

kinematics are called Coleman-Thun diagrams [47]. A botatdsliagram is shown on the left
of Fig. 24.6 Let us suppose that the pole of the scattering matrix aptar, that isu; = §
anduy = —4. Since at the space-time points the energy and momentunoasewed, the
momentum of the boundstate is zero and the energy is nothititsbmass

Mis = 2m cos g (24.54)

The boundstate has the same mass as the original particle-ifr /3. We can also check the
singularity of the boundstate diagram according to the @ski rules. As we have just one line
in the graph we obtain one delta function, which is the disowiity of a single pole singularity:

. Iz
SOlominss =175+ (24.55)
wherel is the exact three-point vertex.
There are other more complicated Coleman-Thun diagrakestiie one shown on the right
of Fig. 24.6 The divergence in this case is a second-order pole as weshapeopagators and
two loop integrals for the energy and momentum. The strenfithe pole is proportional to

F4S(Q37 Q4)
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25 Bootstrap quantization

Let us summarize what we learnt from the previous sectiontgeMo the quantum sinh-Gordon
theory. The Hilbert space of the theory can be identified with-interacting multiparticle states.
All scattering states for asymptotically large negative pasitive times consist of well-separated
localized particles which do not interact. The initial antafimultiparticle states are connected
by the scattering'-matrix, whose semiclassical limit is related to the timétsfihe scattering
matrix is unitary and satisfies crossing symmetry. Asorresponds to the amputed on-shell
correlation function, it is singular only when a Colemanditiype diagram can be drawn with
the given kinematics. Since the potential of the renormedliguantum sinh(sine)-Gordon theory
has the same form as the classical one, we expect that isabtegintegrability is also supported
by the analysis of Sect. 23, where we have shown the existdiigher-spin conserved charges.
Our next aim is to analyze additional requirements comimgnfthe existence of an infinite
family of conserved charges and to build up an axiomatic éaork [31,48,49] which eventually
leads to the complete solution for the sine-Gordematrix.

25.1 Asymptotic states, scattering matrix

First we set up a general background. The Hilbert space ahthgel is spanned by free multi-
particle states. For simplicity, we start with just one $inglativistic particle of mass:. (This
is what we expect in the quantum sinh-Gordon theory). Theehisdrelativistically invariant,
thus the dispersion relation can be written as

E(p) =w(p) = Vp*+m?,  E(p)*—p>=m’. (25.1)
Using the rapidity parameterization, we have
E(0) =w(f#) = mcoshd, p(6) = msinh(0). (25.2)

Light-cone components diagonalize the action of boostsande written as
(E £+ p)(0) = Q+1(0) = me™?. (25.3)

In an integrable theory these are the first members of an teffamily of conserved charges
which can be labeled by their spin Q, () = ge*?.

We suppose the asymptotic completeness, i.e. the asymptiial and final multiparticle
states span the Hilbert space. Introducing their abstraettion operators, an initial state, in
which the particles are ordered according to their ragdjtcan be written as

Al (01)--- Al (0,)]0) = |01, -+, 0n)in, 01 > - > Oy, (25.4)
where the fastest particle is on the left. In the final state
Alut(el)Alut(em)|O> = |91,"',9m>out, om > > 91, (255)

after all scatterings have been performed, the partickees@ered oppositely, i.e. the fastest one
is on the right. Both bases diagonalize the action of theiteffamily of conserved charges, e.g.

Qs|915"'79n>in = quesei 917"'59n>in- (256)
i=1
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The scattering matrix connects the two bases of the Hillpate, simply it relates the initial and
final states:

Sn—>m = 0ut<9/11'"19;7~L|911"'19n>in- (257)

Its absolute square describes the probability with whihittitial state evolves into the final
state.

25.2 S-matrix properties

Here we list all necessary requirements the S-matrix haatishg and their consequences.

25.2.1 Basic symmetries

As the scattering matrix is the time evolution operator ia thteraction picture, it is built up
from the interacting Hamiltonian. A direct consequencéssymmetry:S must commute with
the generators of symmetries, namely the conserved ch@rgéshus if we evaluate the charges
before and after the scattering, they have to coincide:

Zn: gee* = i gse*%. (25.8)
i=1 j=1

These are functionally independent polynomial equatians= e’) for an infinite number of
different values of the spis. They can be satisfied for a finite number{6f} and{¢’} only if

the two sets are completely equivaleft; } = {0’ }. In particular, the number of particles in the
initial and final states coincides, = m, i.e. there is no particle creation in integrable quantum
theories.

Conserved charges generate symmetry transformations.+at1, H generates a uniform
shift in time while P generates a uniform shift in space. Higher-spin chargegeher, generate
momentum dependent shifts in space-time [49]. Becausagillities are different, by acting
with a higher-spin charge we can spatially separate thecparihteractions and factorize the
multiparticle scattering amplitudes into the product ob tparticle scatterings:

S (01, -+, 0,) = H Sy _2(6:,6;). (25.9)
all (i,j) pairs

The full information about the multiparticle scatteringlisis contained in the two-particle elastic
scattering matrixSs .2 (61, 62) to which we shall restrict ourselves from now on. The Lorentz
invariance acts on the rapidity 8s— 6 + A and, as it is a model symmetry, we can write

Sa2(0h,02) = S(61 — 02). (25.10)
In a perturbative calculation the scattering matrix wilpgad on the Mandelstam variable
s=(E1+ Ey)? — (;m +p)? = 2m2(1 + cosh #), 0 =0, — 0. (25.11)

Calculating perturbatively the scattering matrix, tridependence comes from propagators of
the form (w? — k2 + s — m? + ie) 1. The perturbation theory also shows that the scattering
matrix has a cut just on the real axis, starting frem 4m? and its physical value can be taken
just above the cut when— 0.
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25.2.2 Unitarity

If we take the physical value of just below the cut (like in the-ie description), we would
obtain the time reversed process (anti-time ordering)ciyhlpy unitarity, must be the inverse
of the original process. Thus extending the definition of $hattering matrices to compléx
arguments, the requirement of unitarity reads as

S(6)S(—6) = 1. (25.12)

This relation is due to the fact that the two sides of the cetnaapped t@ and—0, respectively.

25.2.3 Crossing symmetry

We can analyze the crossed version of the scattering protesgsch the Mandelstam variable
is replaced by = 4m? — s. In the language of the generalized rapidity, it amountéochange
0 — im — . Thus the crossing symmetry reads as

S(6) = S(ir — 0). (25.13)

The symmetry can be deduced also from the partielanti-particle transformation which, in
the language of the rapidity, reads(ag®), p(6)) — (—w(0), p(9)) = (w(ir — 6), p(ir — 0)).

25.2.4 Maximal analyticity

The scattering matriX(6) is a meromorphic function of the rapidity variable on the sibgl
strip0 < Sm(#) < 7, having poles on the imaginary axis only. Each pole mustespond to
Coleman-Thun diagrams and can be either a boundstate oparesous threshold. The physical
value of the scattering matrix is given biyn._.o S(6 + ie) for Re(d) > 0 and for the crossed
process byim, .o S(0 + i(m — €) for Re(#) < 0.

25.2.5 Yang-Baxter equation

In general, when we have not just one type of particles (liieedoliton and anti-soliton in the
sine-Gordon theory), the factorization of the scatteriragrir provides severe restrictions. These
are the YB equations. As usual, they reflect thatthe 3 particle scattering can be factorized
in two inequivalent ways:

S12(912)513(913)S23 (923) - S23(923)513(913)S12 (912)a (2514)
which can be read off from Fi25.1

25.3 Solving the simplest models by bootstrap

Now we try to find the scattering matrices which satisfy albadrequirements.
The simplest solution is just

S(6) = 1. (25.15)

This scattering matrix corresponds to a meaningful themaypely to the free boson (the Klein-
Gordon theory).
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6i 6 63 6 & & 61 6

Fig. 25.1. The factorization of the — 3 particle scattering process.

As the next simplest case, we look for the solution of the féftf) = f(0)/f(—6), which
automatically satisfies unitarity. To fulfil the crossindatéon, we introduce the variable = ¢’
and demand(z) to be invariant under the transformation— —x~!. The simplest function
possessing this property fj§x) = a+x — 2z~ which includes a free parameterin the rapidity
variable, the solution reads as

sinh @ — isin «

S(6) = Smh0 fisma’ a> 0. (25.16)
The choice of realv > 0 ensures no singularity in the physical strip. The corredpunQFT is
a quantum integrable model with particles of one type onlg. dléim that the scattering matrix
corresponds to the sinh-Gordon theory if

b2

R + b2
We can check this result at the leading ordel irsing the resultd4.48 of the previous section.
The perturbative analysis was extended up to 3 loops [50bnaptete check can be obtained
only through the sine-Gordon theory. In order to analyzesthe-Gordon theory we analytically
continue in the coupling — ib.

The only particle of the sinh-Gordon theory correspondsiéoftindamental field excitation
of the sine-Gordon theory, which is the quantum analogué®breather; we shall denote this
“first” breather byB; . After the analytical continuation ity the relation between the parameters
of the Lagrangian and the scattering matrix takes the form —(7b?) /(87 — b?). Sincea < 0
we have a pole in the physical strip on the imaginary axés-at—i«. We interpret this pole as a
boundstate and associate to it a new particle in the specketios call it the second breathBs.

It is an asymptotic state which must be included into the éfillspace of the theory. A standing
Bs is composed of twd3; s with rapiditiesia/2 and—i« /2, thus its mass is simply

(25.17)

mp, = 2mp, cos % (25.18)

A moving B, particle with rapidityd is composed of on®; with rapidity 6 4 ia./2 and another
one with rapidityd — ia/2, which can be deduced from its momentumy, sinh 6. As the
conserved charges sum up, the generic sgiharge has its eigenval2e,e*? cos(sa/2) for the
By particle with rapidityd.

The scattering matrix oBy can be calculated by the bootstrap principle. Since higpar-
conserved charges shift the trajectories in a momenturercigmt way without altering the scat-
tering process, we can calculate tBgB; scattering as shown in Fig25.2 As a result, we
obtain

Sp.5. (0 —0) = Sp. 5, (9’ ' 1%) Sp. B (9’ . 1%) . (25.19)
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s a a
3 0+

Fig. 25.2. Bootstrap method to calculate the scatteringixaitthe boundstate from the scattering matrices
of its constituents.

Similar calculation yields
L e’
Sp.n, (0" — 0) = Sk, (9’ 0+ 15) S, 5, (9’ - 15) . (25.20)

One can ask the question whethgy is really a new particle? Indeed,$z, 5, = S, B, there
is no need to introducds, it can be simply identified withB;. Actually this happens for the
couplingae = —27r/3. This theory, the scaling Lee-Yang model [34,51], is camesis All poles
of the scattering matrix corresponds to boundstates.

If o £ —%’r, we have to consider the second breatBgas a new particle and include it into
the spectrum of the theory. Then we analyze the pole streicfz, 5, andSg,5,: To each
pole we have to associate either a boundstate or an anontal@shold (the Coleman-Thun
diagram). Once we managed to find all particles of the spectiy using this procedure, in
such a way that all singularities in all scattering matriaesexplained, the theory is solved. The
procedure is called the S-matrix bootstrap.

In the particular case of irrational, we cannot close the bootstrap program purely on the
boundstates having their origin in the first breatigr Thus the theory with S-matrix26.16
is not consistent if we do not include the soliton and the-aaliton. In the next subsection, we
start with the soliton and anti-soliton particles and cotegheir scattering matrix respecting its
consistencies.

25.4 The sine-GordonS-matrix

Now we want to push forward the boostrap procedure for thee&anrdon theory. We learnt from

the classical theory that there are in the spectrum twogbestivith the same mass, namely the
soliton and the anti-soliton. They carry different topdtag charges and in the quantum theory
they will form a doublet4; (: = +). Their scattering can be encoded into the scattering matrix

i i
SEL(0y — 62) 0= 62

which is a four by four matrix. The unitarity equation takbke form:
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SH (01 = 02)S[" (02 — 01) = 6757 (25.21)

In the case of the crossing symmetry we have to take into atd¢bat, as the names suggest, the
soliton is the anti-particle of the anti-soliton:

Sik(ir — 0) = SE(9), (25.22)

where the antiparticle df= + is denoted by = .

Now we use model’'s symmetries to restrict the possible favfrihe scattering matrix. We
suppose that the topological cha@e,,|+) = £|*) is conserved. This means that evaluating
the charge before and after the scattering we obtain the szsukt. In particular, for the scatter-
ing Sfjl(e) we must have + j = k + [. Similarly, the parity and the charge conjugation are also
important symmetries. This means that the soliton andsaiiion must scatter with the same
amplitude. The most general scattering matrix posseskaggtproperties has the form

St 0 0 0
_ 0 ST=(6) ST(H) 0
56) = 0 Sf*;(e) Si(e) 0
0 0 0 S”2(0)
a) 0 0 0
= 0| O ’ZEZ; Zgzg X ) (25.23)
0 0 0 a)

Additional restrictions to the scattering matrix have thaigin in the Yang-Baxter equation
S5 (01—02) 8,5 (01— 05)573" (02— 03) = STy (02— 03)S{ (61— 03) S5 (61— 02), (25.24)
together with unitarity

STZ(0)STZ(—=0)+ S H(O)ST (-0 = 1, (25.25)
STZ(0)STL(=0)+ S H(O)STZ(-0) = 0
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and crossing symmetry
STt(ir—0) =ST2(9), Syt —0) = ST (0). (25.26)

The YBE is an overdetermined system of equations, whichignghrticular case has three types
of solutions: The rational, the trigonometric and the ¢ilippnes. To cover the sine-Gordon
theory, we need the trigonometric solution:

~ sin(iAg)
sin \(m +i6)’

c(0) = __sindm) (25.27)

a(@) =1,  b(0) = sin \(7 + i0)°

Here, \ is a parameter which will be related to thgparameter of the sine-Gordon Lagrangian.
The scalar prefactqr(f) is fixed by the unitary and crossing conditions:
sin(i\g)

p(0)p(=0) =1,  plir —0) = —P(e)m- (25.28)

We are interested in the solution in the physical s&ip(6) < 7. Combining the two equations
we can write

i N\ sin(iAd + A7 /2)
p (9 * 3) p (9 - ’5) T TSN — r/2) (25.29)

First we suppose that< 1 in order to avoid poles and zeros of the rhs in the $¥ip(6) < 7/2.
We also suppose thatis non-zero and analytical in this strip as we are lookingferminimal
solution of our equations. We take the logarithm of bothside

m(p(6+T)) 4m(p(0-")) = —M . (25.30)
2 2 sin(ixd — Arr/2)

The shift operatoD f(§) = f(0 + in/2) + f(0 — ir/2) can be inverted in the Fourier space
provided that the functioln p(6) has a good asymptotic at infinity. Using also that

n (M) - di s {0l = 7) (ﬁ) (25.31)

sin[(mz +16) /2] t sinh ¢ i

we obtain the minimal solution for:

o(0) = _exp{/o"o dt sinh¢(1 + \) sinh (2./\t9>}7 (25.32)

't sinht coshtA ir

where the sign cannot be fixed from this analysis. We can ptylfie solution by every function
which satisfiesf(0) f(—0) = 1 and f(ir — ) = f(6). This non-uniqueness is known as the
CDD ambiguity. We take the simplest possible solution aretktihe consequences.

If we keep the parameterin the range\ < 1, the S-matrix has no singularity in the physical
strip and the theory is completely solved. In particulais th true forS;f(@) which shows that
in the considered parameter range the soliton and the &t@iscannot form any boundstate.
This is the repulsive regime of the sine-Gordon theory.

The domaim\ > 1 is called the attractive regime of the sine-Gordon theory.

If A lies in the rangd < A < 2, the soliton—anti-soliton scatterings ~ (6) = p(6)b(6) and
S7T(0) = p(0)c(9) have one pole at = ir(1 — A~'). We associate a bound-state to this pole,
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which is the quantum analogue of the breather. Using theshagt principle we can calculate
the mass of the boundstate in terms of the soliton (antiesglimass\/ as follows

mp, = 2M cos (g — %) = 2M sin (%) . (25.33)

The bootstrap also tells us how to calculate the solitomthier scattering matrix:

SiHe) = StE <9 - ig (1 — %)) St <9 + ig (1 — %)) =S71(6). (25.34)

Interestingly, the formula simplifies itself considerably

gy S (E (%) —if)sin(F(1-%) ~if)
+1 sin (2 (14 1) +i8)sin (2 (1 - %) +1i%)

(25.35)

Inspecting the analytical structure of the above scatigthre appearing poles do not signal more
boundstates in the range < A < 2. One can calculate also the, B; scattering from the
bootstrap, with the result

sinh 6 + isin(m/\)
sinh § — isin(mw/\)’

Sllll (9) — (25.36)
This is indeed the analytical continuation of the expected-&ordon scattering matri26.16.
We anticipate) to be related to the Lagrangian paramétas
8w

A= i 1, (25.37)
which will be derived in the next section. As has been alredidgussed, the scattering matrix
S11(0) has a pole at = in/\ which lies in the physical strip. We cannot associate to this
pole another particle of breather type since such a pashubelld have shown up already in the
soliton—anti-soliton scattering (where we found the fingdther only). Thus we have to find
the corresponding Coleman-Thun diagram to explain theusamigy. The diagram pictured on
the right of Fig.24.6is a candidate. Actually, there exist two diagrams in whigh goliton and
anti-soliton propagate in the triangle. Individually, battagram would give a second-order pole,
but the sum of the S-matrices in the middle of the figure has@ aéhich renders the singularity
to the first order, as expected [49]. In this way we explainkdiagularities of all scattering
matrices. The bootstrap program is closed and we solvedriee@ordon theory in the interval
1 < A < 2. The spectrum in this range contains the soliton, the aities and a breather.

When increasing\ further, the soliton—anti-soliton scatterings have pae8 = ir[l —
(n/)\)]. For a given), these poles are in the physical stripnif= 1,...,[\]®. This signals
the presence df\] breather boundstatds;, B», - - -, Bj). These boundstates are the quantized
counterparts of the classical breather labelled by theimoots parametes. The masses of
these boundstates can be calculated from the fusion angle,

nm

mp, = 2M sin (uy,) , Un = 5 (25.38)

8Here[\] denotes the integer part af
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Bn+m

Bn 7: > B
m&,%/iu\\ n
. . ~

/iUy m -~

Fig. 25.3. Fusions in the sine-Gordon theory. The solitahthe anti-soliton are represented by full lines,
while breathers by dashed lines. All rotated and reflectagrdims are allowed, too.

The scattering ofB,, with the soliton(+) or anti-soliton(—) is described compactly by the
formula

SEe) = 870

—n

B {n—=1+A{n -3+ A}--- {83+ A1+ A} ifniseven, (25.39)
a —{n—-14+XH{n-3+2}--- {2+ A}/{\} Iifnisodd, '
where we introduced the notation
) = U5 () oy = (1) 25.40)
= 1 —1 ) TR .
(55 -1 (5 +1) sin (% +i3)

Using building block{y}, which respect the unitarity and are crossing invariarg,lireather—
breather scatterings can be described as

Sr@) ={n+m—1}{n+m—3}---{In —m| + 3H{|n —m| + 1}. (25.41)

The spectrum with the soliton, the anti-soliton and thlgbreathers is complete in the sense that
all the poles of all scattering matrices can be explainedrim$ of Coleman-Thun diagrams with
nonvanishing couplings, see Fig5.3

25.4.1 Semi-classical limit

We end up this section by the calculation of the soliton artdsoliton scatterings in the semi-
classicalb — 0 limit. Supposing that the relation betwegrandb takes the form25.3%, we
have) = 87 /b? in the leading order. Performing explicitly the— oo limit in the soliton—anti-
soliton scatterings, we obtain

8 8 o dt 2t0
ST=(6) — exp {ib—gﬁ + 1b—§ /0 7z tanht sinh <?) } . STH(0) — 0. (25.42)
These results indicate that the reflection part vanisheghanttansmission part is a pure phase
shift in the semiclassical limit of the soliton—anti-solit scattering. This finding is consistent
with our classical results in Sect. 22. Let us go beyond thssital limit and compare the
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semiclassical phase shift to the classical time shift, dadan the relationZ4.9. The first term
shows that the number of bound-states grow%’gain theb — oo limit, which is equivalent to
the expected\]. The integral in 25.42 can be rewritten as

[e'e] dt 2t9 4 tanh(9/2) 1
/ —5 tanht sin (—) = ——/ do —2_ (25.43)
o t @ 0

T 1—02’

The velocity of the particles in the center of mass frame is tanh(6/2). Thus changing the
velocity integral to the energy one, we reproduce exactytbeded resul2é.g.
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26 UV-IR relation

In the previous sections, we developed consistent quantamefvorks for solving the sine-
Gordon theory. Each of these frameworks has different parars. In the perturbed conformal
field theory scheme defined by the Lagrangian

L= %(at¢)2 _ %(az(b)Q — (: eib@ P efib‘:b :) , (261)

the sine-Gordon theory was characterized by the dimendigmérturbation parametgr and
the dimensionless parametemwhich is the inverse of the compactification radius of thedeio
We managed to show the existence of higher-spin consenades and obtained a numerical
spectrum. In the bootstrap quantization, we determinedotetely the scattering matrix of the
soliton and anti-soliton of mask/, in terms of the parametey;, and in this way we solved the
model. It is not clear, however, how the parameters of thedesxriptions are related with each
other and the aim of the present section is to establish theigg mapping. This is done by
calculating the ground-state energy density in the presefan external field, coupled to the
topological charge, in the two different schemes and by @ing the obtained results [52].

26.1 Ground-state energy density from Perturbed CFT

We study the Euclidean version of the sine-Gordon theoryniexdernal fieldh, defined by the
Lagrangian

L = EO - ,uvpcrt
(9,9)?

1 1 b . .
= =3 - 5(6@)2 +h %Bmtb — (e e ) (26.2)
Here, the external field is coupled to the current normalizesdich a way that the corresponding
topological charge

Q= %/ 9, ® da (26.3)

is equal to 1 for the soliton. We consider the theory on thesavithz = = + L and periodic
imaginary timey = y + R, with both L and R going to infinity.
Solving the theory fop: = 0 (or, equivalently, in the limit: — oo), we obtain the equation

of motiond, ® = hb/27 which, according t0Z3.18, leads to

b 27 1

% = frm, r = E (264)
This shows that the introduced field/(27) is quantized in units o2xr/L and it merely de-
termines the topological charge of the sector. Since weraeedsted in thd, — oo limit, h is
basically a continuous variable. Thedependent part of the ground-state energy density in the
sector determined by is simply

o = —=——hZ. (26.5)
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Now we develop a systematic expansionuinRecall that the scaling dimension of the per-
turbing operators i%%/(4r), thus the dimension of the couplingfig] = 2 — b?/(4r). As the
dimension ofi] = 1 from the dimensional analysis we see that

eo = ~Wk(h,p) = =°k(E), &= - (26.6)

We see that works as an infrared cutoff § < 1. The theory is thus brought to the UV regime
in which k(¢) can be expanded as the Taylor serie§ is
b2

=5 (26.7)

k() = kn&", ko
n=0

where the coefficients,, can be calculated perturbatively. The ground-state endgeggity can
be extracted from the large-volume asymptotic of the Eeelidpartition function
Z(L,R) = Tre HIE — g=ecokR 4 (26.8)

The partition function can be perturbatively evaluated as

Z|L,R] = / [D®] e 5% = / [D®] e~ S0l ®l=rSpert[@]
_ /[D(I)] i( /LSF};I":[(I)]) o Sol]
N=1 ’
= 3 (S [#)Y), Zo(L, B). (26.9
N=1

In the leading non-vanishing order, we have

2
Z|L, R] e
Zo[L, R 2

(Spert[®]Spert[®])o + -+, (26.10)

where the expectation value is evaluated over the unpeduftonformal) theory in the topo-
logical sector prescribed by the external field. The onlyvamishing expectation value is
(: e0®(@1y1) .: o=1b®(x2,42) 1) which has to be integrated over both spagesy:) and(z2, y2).
As the expectation value is translationally invariant, ofghe integrations produces the volume
factorL R. We calculate the expectation value in the lifjtR — oo, so the correlation functions
on the plane can be used. Keeping in mind that the expectaioe is evaluated in the sector
m and making the integral dimensionless by introducing théttesz = b>h(x; — x2)/(47)
andy = b2h(y1 — y2)/(4), we get

b2 b2 /(2m) -2 5 )
kl _ (E) /(12 + y2)—b /(47r)e—21$ dax dy

2\ P/ D (1 - 52/ (4n))
" (E) T B2/(m)

(26.11)
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26.2 Ground-state energy from TBA

Now we calculate thé-dependent part of the ground-state energy density in thestrap frame-
work, from the scattering matrix, following the method offR&2]. We recall that the spectrum
of the sine-Gordon theory contains the soliton and the saitien of mass\/ and, in dependence
on the coupling\, the breather®3,, (n = 1,2,...,[\]) with massesnp,. The soliton has the
topological chargé) = 1, the anti-soliton-1, while the breathers are neutral, i.e. with= 0.
Introducing the external fieltl, the Hamiltonian will change to

H = H,— hQ. (26.12)
In particular, soliton’s energy becomes
E(0) = M cosh® — h. (26.13)

For large enough field > M the ground-state is no longer the empty state, insteadasslit
will condense in some field-dependent interigl< B(h) on the rapidity line. Nice feature of
the introduced field: is that it suppresses the influence of other particles totbergl state and
keeps only the solitons which scatter diagonally with eatieiothrough the S-matrix

; dt sinh(1+ ANt | 2)t0
++ — o—i6(0) — _ il SelLA/ A it
STr(0)=e exp {/0 I Sinhf cosh(t\) sinh ( : )} . (26.14)

The rapidities of these solitons are not independent, thegraction is described by Bethe
equations. These equation can be heuristically undersi®tmllows. PutV particles with rapid-
ity 6;,7 =1...N inalarge volumé_. In an integrable field theory, the number of particles is a
good quantum number since in the scatterings there is nizlgacteation and the multiparticle
scatterings factorize themselves into pairwise two-plrtscatterings. In a finite volume, the
momenta and the corresponding energy levels are quantiretbdhe fact that the multiparticle
wave function has to be periodic. Thus when we move a pasidand the system sizg, we
pick up the translation phaseL and in addition the scattering phase with all other paicle

PO TT SHE(0; — 0k) = 1. (26.15)
k#j

Taking the logarithm of this equation and using the rapigayameterization of the soliton mo-
mentump(6) = M sinh(6), we obtain the usual form of the Bethe equations

LM sinh(0;) = > " 6(0; — ) = 27n;,  n; € Z, (26.16)
k#j
which are correct up to exponentially small correctiongirThe density of the soliton rapidities

is described by the continuous functip(®) which is reflection symmetrigs(6) = p(—6), and
nonzero fow € [—B, B] (B = B(h)). Since the rapidities are densely packed betwe&B, B]

for large L, we haven; = Lfoej dé’ p(¢'). Thus, in the thermodynamic limit, the quantization
conditions 26.16 simplify to

! 6
%smhe—/ %5(9 0 )p (9’):/ 46’ p(6'). (26.17)
2T _B 2T 0
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Differentiating this equation with respectdpwe end up with the integral equation for the soliton
densityp(6):
r 1.95(9)

% . o / g / o
= coshﬁ—p(G)—i—/_B 0T~ 0)p(0),  JO) =555 (26.18)

Clearly, because the kernel is negativé) < 0, the density is discontinuous & p(B~) # 0.
For a giverp(0), the ground-state energy density= E,/L is written as

B
eo(h) —ep(0) = —/ dé (h — M cosh 0)p(6). (26.19)
-B
The rapidity limit B(h) can be determined by the thermodynamic minimization céodit

As the integral equation26.1§ does not depend explicitly oh, it is better to introduce the
energy functiore(#) which solves the equation

B
h— M cosh 0 = () + / 40’ J(6 — 0")e(0). (26.21)
—B

Plugging back this equation int@6.19 and using Eq.Z6.18, we arrive at
eo(h) —ep(0) = —M/ — cosh @ e(h). (26.22)

The advantage of usingd) instead ofp(f) consists in the fact that the minimization condition
(26.2Q translates into

e(+B) =0. (26.23)

This equality can be obtained by differentiatir$(19 with respect taB and using Eq.46.2J),
together with thé derivative of 6.18.

26.2.1 Leading-order calculation

We are interested in the largeexpansion ofeg(h). There is a standard trick, the so-called
dilogarithm trick, how to evaluate the leading-order bebaw of the integral equatior26.2)
for largeh. Sincee(6) is symmetric ird, we can write

eo(h) = M/ —e e( —M/ %eee (26.24)

where we used that for largethe integral collects most of the contributions aroéng B. In
this approximation, the TBA equatio2.2]) reduces to

h — ge" =€) + /B A0’ J(6 — 0")e(®). (26.25)

— 00
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After the differentiation with respect tand integration by parts, this equation can be put into
the form

e =—— |€0) + /B do" J(0 — 6')é' (0") €(0) = 9e(6) (26.26)
M oo ’ 00 '
This equation can be put back int®§(24 to obtain
B B 1 B
eo(h) = 2 / / 646 €(6)J (0 — 0')e'(¢') + ~ / a6 ¢(0)¢'(9). (26.27)
—c0 J—0 T J -0

The# integration in the first term can be done usi2§.5. The subsequent integration by parts
leads to

B
eo(h) = ﬁ/ do € (0) — eo(h). (26.28)
a — 00
Finally, we arrive at the leading-order result
— h _ 2 1

Here, we used Eq26.29 atd = —oo and the explicit form of the kernel. Comparing our result
with the conformal perturbative on26.5 we conclude that

A+1= i—j (26.30)

as was anticipated before.

26.2.2 Systematic expansion

In the following part, we solve systematically the TBA intabequation

h — M cosh 6 = ¢(6) + /B 49’ J(0 — 0)e(0) = /B 40" K (0 — 0')e(0) (26.31)
—B —B

for large magnetic fieldd and calculate the ground-state energy density fe@h If this linear

integral equation were valid on the whole lilB — oc), we could easily solve it by the Fourier
method. The problem consists in extending the equationistensly to the whole line in such
a way that we can use the Fourier transformation. For thipgae, we extend the definition of

e(0):

_ [ (o) o< B,
6(9)_{ 0 otherwise. (26.32)

The extended TBA equation then takes the form

K *e(f) = /jo K(0—0)e(0)do’ = g(6), (26.33)
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where evidently
9(0) = h — M cosh @ for |0| < B. (26.34)

However, for|#] > B, g(#) is an unknown function equal t& * ¢. In Sect. 14, where the
unknown function was defined on the half line, we applied thenar-Hopf technique to solve
this kind of problems. In the present application of the VéieHopf method to a finite interval,
we first exploit the9 — —6 symmetry of our problem. SincE (#) is symmetric, so is(6) and
we can decompose

9(0) =Y (0) +Y(-0) (26.35)
with

X(6) if 0 > B,

Y () = { (h—Me%)/2 if0<B. (26.36)

The main point of the Wiener-Hopf technique is the uniquédiazation of the Fourier trans-
form of the kernel into the product of two pieces, one beingiital in the upper and the other
in the lower half spaces. In the present case,

- . o i0d sinh 77“‘)(21;)‘)

1+ J(w)=K(w) = /_OO K(0)e*df = T cosh %2 sinh 22 (26.37)
factorizes into

Rw)=— (26.38)

Ky(w)K_(w)

where

. I(i2w) . . .

K_(w) = /21(1 + \) =22 el Ky(w)=K_(—w) (26.39)
and

1 (I+X)
A= 2111/\— ) In(1+ A). (26.40)

As required,f{+(w) is analytical in the upper, WhiléA(_(w) in the lower half planes. The
asymptotic of /", (w) = 1+ O(1/w) holds everywhere, except on the negative imaginary axis
where its poles and zeros are located. In particular, thisnm¢hatk | (w) — 1 = ki (w) is
analytical in the upper half plane and has a vanishing asyticghere. As a consequence, the
function

ki (6) = / k. (w)e*iwf’g—;’ (26.41)

is vanishing for§ < 0. Similar findings apply td§'+(w)_1 — 1. Analogously,kK _ (w)—1=
k_(w) is analytical in the lower half plane and has vanishing asptipthere. Hencé_ (0) is
vanishing ford > 0, just as the inverse Fourier transform/ef (w)~—! — 1.
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The TBA equation has the formal solution

tw) =K (wEK_(w) |Y(w)+Y(~—w)]| . (26.42)

In analogy with Sect. 14, we divide both sides of this rekatiy & _ (w) and analyze their
analytical structure:

K- (w) ') = Ko ()Y () + K- (~w)Y (~w)). (26.43)
In the coordinate space, this equation reads as

K l'xe(®) =Ky +Y (0)+K_xY (—0). (26.44)

Unfortunately¢(#) is nonvanishing on the intervgh B, B] and not on the positive line like the
functions in Sect. 14. This is why we define the operatiens$,. which project the positive and
negative “parts” of a function in the following way

R T T G S

It can be shown that the Fourier transform of these functoamsbe expressed by usipfgu) as
follows

Alat) =78 [

e—iw/Bf(w/) dw’
w—w +i0 27"

(26.46)

Using that the inverse Fourier transform it (w)~! — 1 is nonvanishing for negativé only,
we get

(K= e(0)], =0. (26.47)
In the view of Eq. 26.449), this is equivalent to
Ky *xY (0)], = —[K_xY (=0)], (26.48)

and we have eliminatedfrom the formalism. Using that() = [f(0)]+ + [f(#)]—, we derive
an integral equation far (6) from

Ki+«Y (0)=[Ky«Y (0)]_—[K_xY (-0)] (26.49)

4
Fortunately we are able to calculate explicithy,. = Y (6)]_. SinceK ;. —1 is nonvanishing only
for9 > 0andY (0) = (h — Me%)/2 only for § < B, we have

0 if 6 > B,

[Ky =Y ()] = { &y h KL G)Mef] /2 it 0 < B. (26.50)

Itis more convenient to rewrite the integral equatiaf.49 in the Fourier space, in terms of the
unknown function

d(w) =e “BK (W)Y (w). (26.51)



244 Introduction to Integrable Many-Body Systems Il

We find that this function is determined by

WK, (0)  iMePK, (i) /°° B K (W), d
— (W)=

W= T 2wy T e Wt W IR, () 2

(26.52)

It is useful to deform the integration contour to encircle #ingularities of the integrated func-
tions o(w) and K_ (w)/K(w). Except for the explicit simple poles atandi, they are all
located on the positive imaginary axis. Picking up the slagty at0, we obtain

H(w) =

S . Bl 2iw'B ’ 4
HhEL(0) | iMePR () / WP K (W) dw (26.53)
C

N
w 2(w —1) . w—i—w’f(Jr(w/)v w)27ri’

where now the integration goes around the positive imagiazis, leaving the origin out. Once
we determined(w) we can calculaté(w) from (26.42:

éw) =e“BK_(w)i(w) + e “BK, (w)i(—w). (26.54)

Explicitly, we have

—iwB ST T : B : 2iw'B 1o / /
e é(w) _ _ihK4(0) | iMe K+(1) / e /IA(,(w ){)((‘u,)d_(.u.7 (26.55)
K_(w) w 2(w —1) c, w+tw K, (w) 2mi
where in the integration the pole at = —w has to be surrounded, too. Finally, the change in
the ground-state energ2§.22 can be expressed as
M . MeB . S MeB .
eo(h) = eo(0) = ——é(~1) = ———K+(i) [Ma(m ~ R ()

2iw’ B [A(7 / d /
+/ B (26.56)
o W -1 K, (w) 2mi

We are left with the boundary conditiei+B) = 0. In the language of(w), this condition
requires the asymptotic behavioifw) = O(1/w?) and, consequently, the cancellation of the
leadingO(1/w) terms in the integral equatio2§.53:

/
, dw

. 2 /
ihK,(0) — %ef’fg(i) = / o5 KW )f}(w . (26.57)
2 Ct Ky (wl) 2mi
In order to develop the largk-expansion, we simplify the notation by introducing
w(w) = - 50, pw) = LW E-W) (26.58)
hK.(0) I+iw Ky (w)
With these functions the integral equation can be transéormto the form
i ein/B , , dw’
=— — 26.59
we = 5+ [ e g (26.59)
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and the boundary conditiafi+B) = 0 leads to

1A
u(l) — y%eB-ﬁ-A’ Y= [M@Q + )‘) 1;?(25\ ))
2X

AN/ (14-N)
] (26.60)
This is the very equation which relates the rapidity limitto the magnetic fieldh. Once the
functionu(w) is determined, the change of the specific ground-state prkmgsity due to the
field can be written as

h2u(i) e?iwB dw
eo(p, h) — eo(p,0) = EESY 1 - /C+ FP(W)U(W)% : (26.61)
We identifyeq (i, h = 0) as theh-independent part of the rhs. It comes from the explicit @dle
w =i
M? m
eo(p,h =0) = eo(p) — eoltree = e tan (ﬁ) , (26.62)

whereeg | = eo(1r = 0) is the specific ground-state energy of the free model.

It is instructive to evaluate the underlying integrals byngsthe residue theorem. Besides
the explicit pole at, which was already analyzed, there are another poles at 2in\/(1 + \)
(n =1,2,...). The residues of the kernel-related functjpatw,, can be calculated explicitly,
with the result

1+ A) 4nan/a+n)

(-D)"  TEHTE+ )

b, = ——e resy—w, pw) = (26.63)
2) @) nl(n = DIT(—20)0(3 — )
From Eq. £6.59 we obtain a coupled set of equations far = 2 \u(w,)/(1 + \):
1l s T B 4[B + A]X
wn = Z:1m+nbmwm, q—exp( T . (26.64)
The boundary conditior26.60 relatesy to the magnetic field as follows
oo 1+ AN/ (14X)
+ n
y=gq <1 - ngl mq bnwn> : (26.65)
Finally, the ground-state energy density can be expressef/a) = —h?k(h, M) with
1 - 1+
k(h,M) = ——|1- — " bpwy,
(h, M) 1+/\< ;1—1—(14—271))\(] “’)
. 1+
1-— ——¢"bywy, | . 26.66
X( ;14—(1—211)/\(1 “’) (26.66)

Note that the limity — 0 corresponds t& >> 1 (large magnetic field, UV regime). The
above systems of equations can be solved iteratively in powofeg, which can be translated via
Eq. (26.65 into an expansion iny:

k(h, M) = Kuy". (26.67)
n=0
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The first two coefficients are obtained in the form

1 2b1(1+A)
Ky=——— Ky =-— . 26.68
O T+ A YT RN+ 3N ( )
Now we make a comparison with the previous UV expans&€j. With regard to the relation
(26.30, the first coefficient is nothing but the leading-order coefficigat calculated previ-
ously. The next coefficient, however, after identifyibgt = K,y with k£ given by 6.1,
implies the explicit relation between the Lagrangian pagtam. and the soliton mass/:

10 () [ v )|
“‘wf(w)[ 2 r(—»] |

(26.69)
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27 Exact finite volume description from XXZ

In Sect. 17, the thermodynamics of the XXZ Heisenberg chais analyzed using the quantum
transfer matrix. The weights of the S-matrix in (17.3) welesen as

__sinu/2) oy sin()
sin(y + yu/2)’ sin(y +yu/2)’

where we modified the notation of the rapidity fronto u, v is a parameter of the lattice model
and the minus sign added adoes not change the partition function (which depends?pnit
was shown that the free energy per site can be calculatedtfretn — oo limit of the largest
eigenvalue of the alternating quantum transfer matrix2). In Sect. 17.3, two nonlinear
integral equations were derived for the eigenvalues of treatum transfer matrix. Interestingly,
these equations contain the kernel [see Eq. (17.57)]

[ dk sinh(1—2)k .
ple) = /_OO 2 2 cosh k siI:h (g — 1) ke = (272

a(u) =1, b(u) = (27.1)

which is trivially related to the logarithmic derivative tiie soliton-soliton scattering matrix
ST1(0), if the identificationst/y — 1 = A~ andxz = 20/ are made. Notice however that
the first identification differs from the one/y = A~! obtained from the comparison of the
S-matrices 25.2% and 7.1 themselves. Nevertheless, there is a hope that the comtinu
limit of the XXZ model is related to the sine-Gordon theorlithaugh the parameters may be
renormalized.

The continuum limit of the XXZ model is the free bosen= 1 conformal field theory.
In order to describe its massive perturbation, we have todoice a mass scale in the lattice
model. This can be done either by analyzing the XYZ model,[64by introducing alternating
inhomogeneities into the XXZ model, as was done in the quarttansfer matrix approach.
There the inhomogeneitydepends on the Trotter numh&rlike 7 o« N~! and vanishes in the
N — oo limit. In order to describe a massive theory we have to chedogebe imaginary and
send it to infinity in such a way that the resulting source tgse® Eq. 26.16] and the integral
equation [see Eqg. (17.58)] become

—iln a(x) = M Lsinh % +w+ 2/ da’ p(x — 2")Im In[l + a(z’ +i0)]. (27.3)
Here,w represents a twisted boundary condition which originatesfthe magnetic field in
the XXZ model. The functiora(z) is related to the ground state of the system. Within this
description the continuum sine-Gordon theory in volumis obtained as a continuum limit of
an alternating light-cone XXZ spin chain and its energy camdad off froma(z) by using the
relation
T

Eo(L) = —2M /Oo da sinh (7) Sm In[1 + a(z + i0)). (27.4)

Thus the same kind of integral equations, with differentrsederms, describe the ground-state
energy of the XXZ model in a magnetic field, as well as its theadymamics, and the sine-Gordon
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ground-state energy in finite volunie[53]. In the following part we document how the same
integral equation, but with more general source terms, eaaribe all states of the sine-Gordon
theory in finite volume.

27.1 Excited states from the lattice

We indicated that the ground-state energy of the sine-Gonadndel can be described by taking
a double scaled limit of the alternating XXZ spin chain. I tiollowing, we derive integral
equations for excited states of the sine-Gordon model blyzing the states close to the antifer-
romagnetic vacuum of the spin chain.

We aim at analyzing an alternating XXZ spin chain with inh@aoeities—1)"©. For this
purpose we rescaleto § = iur/2 and introduce weights which are closer to the sine-Gordon
S-matrix,

(i .
sm( 9) o(0) = sin vy

alt) =1, b0) = g E S Z(r+10)

(27.5)

The quantum transfer matrix is similar to that in (17.12)ce¢ for we use the sanfematrix
everywhere (instead of):

N/2
O an =TI so i (0 - e)s7 (0+6). (27.6)
{~v} n=1

We are interested in the eigenvectors and eigenvaluessifithirix. They can be characterized
by the roots{6; } ", which satisfy the Bethe ansatz equations

a0, +im) o0, + )
a6, —im) o6, — )

Here, in analogy with Sect. 17,

27.7)

M
q(0) = [[ r© - 0,), r(6) = sinh (%9) . 6(0) = [r6+0)(6 -0, (27.8)

j=1
Light-cone components of the energy and momentum can becdddtom the transfer matrix
as follows

. +(O+ 1
e1a(E':i:P) _ (_1)Mq ( ( + ;)) ’ (279)
q(£(©6-19))
where the lattice spacing= L/N is sent to zero.
We can introduce the function
0+i — iz

ae) = 20+ o (0= 5)

q(0 —im)¢ (9 + 7)

(27.10)

such that

a(0;) = —1 (27.11)
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whenevep); is a Bethe root. In the ground state, all Bethe r@gtare real and we can use, simi-
larly to Sect. 17.3, the derivative bi(1 + a(0)) to reformulate the BA equations by integrating
around the real line.

For excited states complex Bethe roots appear as well. Tioogs, whose imaginary part
satisfies

[Sm(0;)] < min(m, 7 — ) (27.12)

are called close roots. We denote the close rootand their number by The remaining
complex roots, which do not satisfy the above inequality,cailed wide roots. They are denoted
by 6 and their number by, . Clearly, the Bethe ansatz is periodic with periad /v, thus
we can restrict ourselves t&m(6Y)| < 7°/(27). Analyzing excited states, we may find real
positionsd” such that the condition(#)) = —1 is satisfied, bub” is not a Bethe root. Such
positions are called holes and their number is denoted’py In order to use the methods of
Sect. 17.3, we rewrite(f) as

0.0 = im) qu(0 —im) gu(0+im) _ qO+ims (0 —'F)
a(e)qc(e +im) qu (0 +im) gn(0 —im) G0 —imo (0+ ) o e

wherea is defined by 27.10, i.e. it contains the contributions of real roots and

Nc Nw Ny
ge(0) =[]0 -0, qu®)=]]r@O-0), an(®)=]]r©-06" (27.14)
j=1 Jj=1 Jj=1

andq(f) = q(0)qn(0) was chosen such that+ a(f) = 0 is satisfied only for the real roots,
i.e. a(f) behaves likev(6) behaved in the vacuum. Using a derivation analogous to $&ctve
obtain

“ilnal) = 2Narctan (f;:ﬁg) +g(01{0,})
+2Sm / a9'p (3(9 - 9/)) In[1 + a(d + i0)], (27.15)
o s

whereg(6]{6;}) comes fromy., ¢., andg;, as will be explained later. Note that the lattice spacing
appears only in the source term, see also Eq. (17.50). lattied model, we have as parameters
the anisotropyy, the inhomogeneity and the sizeV. Taking the continuum limit we should
match these parameters to that of the sine-Gordon theamgelgdo the parametex, the mass
parametef/ and the volumé.. In order to describe a relativistically invariant contimu theory
with massM we takeN — oo in such a way tha® — ~o as

AN
©=1In <m) . (27.16)

In this limit the source term becoméd L sinh # and we obtain the integral equation which
determines the energy of a given state in the sine-Gordamyie volumeL, wherer /v — 1 =
AL
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27.2 Integral equation for the spectrum

To make connection to the literature, we introduce instefagl®) the new functionsZ(9) =
—iIn[(—1)%a(#)], wheres = 0, 1 (the origin of§ comes from the lattice and encodes the parity
of the number of magnons in the given state). The integradguis transformed to

Z(#) = M Lsinh6 + g(0]{6,})
23m / A0’ G(6 — 0 —in)In |1+ (—1)%e 2@ +m | (27.17)

wheren > 0 is a small parameter, of which the result is independent, and
20 * dk sinh(1—X\)E
G(0) = — | = S N G2k 7 18
) p<77) /—0027T2005hksinh§e ( )

The source terms are given by

9(01{6,1) = er ) Z 6 —065) ane o) (27.19)
where
6
x(0) =27 / 40’ G(0') (27.20)
0

is the soliton-soliton scattering phase (modistp. The sine-Gordon theory behaves quite dif-
ferently in the repulsivé\ < 1) and attractivg\ > 1) regimes. This can be seen also from
the kernel 27.18. When we analytically continue any function along the iinagy direction,
the linemin(w, w/\) plays an important role. The domain above this line is caledsecond
determination and for any function its analytically comiéa function is

| f(0)+ f(6 —imsign(Sm(F)) for A <1,
fu(9) = { F(0) — F(6 —iZsign(Sm(0)) forA > 1, (27.21)

whenevelSm(6)| > min(m, 7/X). The source positions are determined from the Bethe quanti-
zation conditions
Z0;)=2nl;, I,eZ+ 1%5 (27.22)

Given a solution fotZ, the energy and momentum can be calculated from

Ny N¢ Nw
E = eoL—l—MZcoshHZ —MZcosh9§ — MZcoshH 0y

k=1 k=1 k=1
—2MSm / d¢ sinh(6 + in) In {1 + (-1)%““’“’0} : (27.23)
NH NW
P = MZ sinh 67 — MZSlnh 05 — MZsth 0y
k=1 k=1 k=1

—2MSm / df cosh(6 + in) In [1 + (—1)5eiz<9+in>} . (27.24)
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Here, we introduced the ground-state energy dersi{26.62 by hand, to be comparable with
the perturbed conformal field theory.

Finally we note that the characterization of holes and raotomplete for large volumes
only. For small volumes the so-called special objects cggeap which modify the formulas
above. For example, one has to use the effective hole numﬁfér: Ng — 2Ng; for details
see [41]. As the topological charge can be identified as tifieespin of the Heisenberg chain,
we obtain the relation

Ny — Neo for A > 1,

Q_QS_{ Ny — N¢ — 2Ny for A < 1. (27.25)

27.3 Large volume expansion

In order to compare the integral equation with the scattetireory, first we analyze the large
volume expansion. The integral equati@Y (17 can be solved iteratively in the large volume
limit. In leading order, we can drop the integral term andevri

Ng N¢ Nw
Z(0) = MLsinh 0+ x(0—07) = > x(0 —05) = > xr(0 — 65). (27.26)
k=1 k=1 k=1

In order to see how good is this approximation we can plugsthiistion back into27.1%. In the
integral term we can shifj until we reach some singularity. This singularity can ocatirr /2
for A < 1 andin/(2A) for A > 1. The corrections in these cases are of orde — M L cosh 6)
andexp(—2M Lsin(m/2)) cosh ), respectively. Thus, up to exponentially small correction
in the volume, it is sufficient to consider the leading ordesult 7.26. First we focus on
excited states composed exclusively of holes, afterwamlamalyze other roots separately for
the repulsive and attractive regimes.

If we have only holeﬁgI forj = 1... Ny, the quantization condition takes the form

(_1)6eiZ(9;-1) — (_1)5—NHeiMLsith;1 H Sj;i(oél _ 92) =1, (2727)
kik#j
once we used that
R ()} x(0) = 0. (27.28)

The equationZ7.27 is the momentum quantization condition fdiy solitons in volumeL if

0 = Ny mod2. Thus the@? locations can be interpreted as the rapidities of the sd@itd his
interpretation is also supported by the energy and momefadumulas which in the leading order
read

NH NH
E=eL+M)» cosh6), P=M) sinhfj. (27.29)
k=1 k=1

Consequently the solitons can be viewed as holes in thetmBeie of Bethe roots formed in the
termodynamic limit of the XXZ model [55, 56].



252 Introduction to Integrable Many-Body Systems Il

27.3.1 Repulsive regime

Here we analyze scattering states in the repuldive 1 regime [57]. Let us start with two-
particle states. A two-soliton scattering state can berdsstby two hole®” andd%. According

to (27.29, the corresponding topological charge is equal tAs the parity is the symmetry of the
system evenin finite volume, the same integral equatiorribesthe state with two anti-solitons.
The description of the sector of the zero topological ch@gaore complicated because in the
scattering thes(0,)3(6-) state is mixed with thé(d,)s(6-) state. Thus we have to diagonalize
the scattering matrix

( ST=) Sy ) . ( S ) 0 )
STL(O) SZE(o) 0 S_(0)
_ sinh A(6+im)/2 0

_ ( sinh)\(()efiﬂ')/Q cosh A(8-4im)/2 )SII(H) (27.30)
cosh \(0—im)/2

and to use the quantization condition
eiAlLsinhél S:I:(Gl _ 92) _ 17 eiMLsinhegsi(92 o 91) -1 (2731)

in the two cases. This is what we recover from the integrahéqo 27.17.

Careful investigation shows that the symmetric solutién) can be described by two holes
6% and 9} and a pair of close complex-conjugate rog(@" + 0%) + i<, where for large
volumee is exponentially small. Evaluating(6) at ¢ ande? yields @7.39). The energy and

momentum are given by

E = Mcosh 0" + M cosh6h, P = Msinh#? + M sinh 6. (27.32)

The simple representation is due to the special locatioh@tbmplex roots, namely their dif-
ference isir. The topological charge of the state@s = Ny — No = 2 — 2 = 0, as was
expected.

The antisymmetric solution of the two particle stéte_) can be obtained by creating two
holes a9} andé’ and a single self-conjugate wide root)d6} + 64) + iZ (1 + A). This root
decreases the topological charge by 2, but does not chaagm#rgy and momentum since it
holds

coshyy 0 = cosh 0 + cosh(f — ir) = 0, sinhy; @ = sinh 6 + sinh(0 —ir) =0  (27.33)
for any wide root. Nevertheless, they modify the quant@atondition because of the formula

sinh A(ir — 0)

sinh A0 (27.34)

xir(0) = x(0) + x(6 —in) = —iln

In general, complex roots cannot be created freely in thelsefe regime. They never con-

tribute to the energy and merely describe the polarizategrees of freedom of soliton—anti-
soliton multiparticle states. The phenomenon is quiteedéft in the attractive regime.
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27.3.2 Attractive regime

Now we analyze the domaik > 1, where one expects the existencg dfbreathers.

First we consider the first breath& . In identifying a given configuration, we analyze its
energy and the quantization condition for its momentum Wihscaffected by the correspond-
ing scattering matrix. We claim that the, particle with momentun# is described by a self-
conjugate wide rodt" = 6 + iz (1 + A). It has the topological chargeand its energy is

7T

E =—Mcoshy(0¥) = —Mcosh(8")+ M cosh (9“’ - IX)

= 2Msin (%) cosh @, (27.35)

as is expected since the masg, = 2M sin 5. To check the soliton-breather scattering matrix,
we additionally introduce a hole with rapidifyf. The quantization condition & means that

(_1)6eiZ(0h) _ (_1)5+1eiA4Lsinh&he—ixn(eh—ew) -1 (27.36)
Using the integral representation fpior the bootstrap relations, it can be show that
xur(6) = x(0) — x (9 - %) =iln STH(0) + i, (27.37)

SO theSjﬁl1 scattering matrix is correctly reproduced. Similarly,tng two self-conjugate roots
atoy =0, +igx (14 A) anddy = 02 +igx (1 4+ A) one can also check thg, — B; scattering
matrix by analyzingZ; (6%").

Higher odd breathers can be obtained by creating a sequéwidsrootst);’ = 0 +igy (A—
2n+ 1) for k = 1,...,n such that the lowest root is still a wide root. Similar roatags, in
which the lowest root is the close one, describe polarinadiegrees of freedom of soliton—anti-
soliton states and cannot be created freely. An analysitasita the above one can confirm both
the energy and scattering matrices of these states [58]evVdrebreathers can be represented by
the sequence of wide root§’ = 6, +ij5 (A —2n)fork=1,... n.

27.4 Small volume expansion

The integral equatior?(.17 describes the spectrum of the sine-Gordon theory for atynve
L. For large volumes, it reproduces the results of the sdagt¢neory. For small volumes, it has
to be related to the = 1 conformal field theory.

As was already shown in Sect. 23.3, the spectrum of the fertifiree massless boson can
be written as

2 1 . [2m\ 2D
B0 =T By - g5+ Datt (F) ], (27.39
k

whereE),, is the conformal energy of the unperturbed stateand’ is the conformal weight

of the perturbation in the sine-Gordon model. One possibéek of the integral equation is to
determine the spectrum numerically and to compare to theegberturbative formula. One can
numerically check the first few;, coefficients. Unfortunately, unlike to the previous Sed, 2
there is no method for an exact calculation of the coeffisiept What we can do exactly is
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to calculate the conformal energy levels only. The energyyranmentum eigenvalues can be
expressed vid.g, Lo as

2 - 1 2 _
B(l)=—+ (Lo + Lo — ﬁ) , P(L) =~ (Lo~ Lo). (27.39)
The Hilbert space is built up from the states
a’lilnl e ali];’l]\]dlil’ﬁl T d]i;lﬁ |n7 m> (27.40)

The energy and momentum eigenvalues can be calculatedrxy usi

1 /n 2 _ 1 /n 2
Loln,m) = — (— + 27Tm1") |n,m), Loln,m)=— (— — 27Tm1") |n,m) (27.41)
8T \r 8t \r
and the commutation relations
[Lna a—m] = Ma—m, [I/na d—m] = M0 (2742)

Here,r = b—! is the compactifaction radius, relatedtwia A\ = i—’; —

We can see from2{7.39 that the small volume spectrum divergedas'. A careful analysis
of the integral equation shows that the roots either movedoasf; = £ 1In % + .-+, or stay
around the origin. Actually the three region become inflgifar from each other in the limit
L — 0 and the integral equation can be substituted by three imakgre equations. To describe
this regime, we define the left/right mover and central roots

2
0, =+1n <m> 07, 0, =109, (27.43)

where both9f and@? are of ordeiO(1). The Z function is chosen as

Z1(0) = lim Z (9 +In %) . Zo(6) = lim Z(6). (27.44)
Taking theL — 0 limit in the integral equation, we get
Za(0) = e +ga(01{65})
+23m / h d0' G0 — 0 —in)In [1 + (=1)%eiZal0"+im | (27.45)

wherea = +, 0. In g, we have the contribution of the roat$ and additionally:y (c0)(Q — Q%)
for g1 andy(c0)(Q~ —Q™) for go, whereQ* are the topological charges of the left/right moving
configurations. Then using the expressions for the energyraamentum, we have

w,t
ek

™

NE NZE NE
LB+ —| = o ZH: 00" ZC: 0, ZW: p
4 2] 2m k=1 ) k=1 ‘ k=1 o

+Sm / d6e*01n [1+(—1)5eizi(9+i’7)}. (27.46)
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Calculations lead to the conformal spectrum with

1)
Q=m, ni:§+ki$(%$Qi), (27.47)
wherek_ are integers such that, = n_ [41]. The integer excitation numbers are related to the
guantization numbers of left and right moving roots.
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28 Two-dimensional Coulomb gas

28.1 Basic facts about 2D Coulomb gas

Let us consider an infinitd-dimensional space of pointsc R¢, having for simplicity vacuum
dielectric constant = 1. The Coulomb potentiab(r), induced by a unit charge at the oridin
is the solution of the Poisson equation

Ag(r) = —s40(r), (28.1)

wheresy is the surface area of thiedimensional unit sphere; = 27, s3 = 4, etc. According
to this definition, the long-range tail of the Coulomb potahimplies in the Fourier space the
characteristic singular smdelrl-behavioré(k) = 1/k? in any dimension. This maintains many
generic properties (like screening and the related suns f68) of “real” 3D Coulomb systems
with ¢(r) = 1/r,r € R3. In 2D of interest, we have

é(r) = —In <%> . reR (28.2)

The free length scale), which fixes the zero point of the Coulomb potential, is sesfmplicity
to unity.

The symmetric Coulomb gas, sometimes referred to as thebrgponent plasma, consists
of two species of pointlike particles, of opposite unit desq € {+1,—1} (in our units, the
elementary charge= 1). The interaction energ¥ of a given set of particle&: }, with charges
{¢:} and at spatial positiong-; }, is given by

N

E({qia rl}) = Z Vq;q; (riv rj)v Vqq’ (I‘, I'/) = qq/¢(|r - I‘/|). (28-3)

(i<jy)=1

The particles are constrained to a domairsince we are interested in bulk properties, we shall
consider the thermodynamic limi\| — oo; the infinite system is homogeneous and transla-
tionally invariant. The Coulomb gas is studied in thermaaiyiic equilibrium, via the grand
canonical ensemble characterized by the (dimensionlegsjse temperaturé and the couple

of fugacitiesz, andz_ for particles with charge = +1 andg = —1, respectively. Alterna-
tively, chemical potentialg ; andy_ can be defined by, = exp(Bu+)/\? where) is the de
Broglie thermal wavelength. The bulk Coulomb gas is nel@@], and thus its bulk properties
dependonly om = (py + p—)/2,i.e. on,/z z_. Itis therefore possible to set. = 2z = z;

at some places, in order to distinguish betweentrend — charges, we shall keep the notation
z+. The grand patrtition function is defined by

o] Ny N_

S(zy, 2 Z > 4 jv; (N.,N_), (28.4)

Ny=0N_ _0

where

Q(N4, N / Hdrz exp [—BE({q,r:})] (28.5)
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is the configuration integral oV positive andV_ negative charges, and = N, + N_. Due
to the neutrality of the bulk Coulomb gas, the sums28.4) over all possible values a¥; and
N_ may be restricted to neutral configuratiolis = N_ = N/2 (N = 0,2,4,...) only. For
the 2D Coulomb potential8.2 with rq = 1, the configuration integral reads

Q(N4, N / HdQTl r; —r;|P%% . (28.6)

(i<j)=1

The grand potentidl is defined by
— [ =1InE. (28.7)

It is expected to be an extensive quantity,x |A[, in the thermodynamic limit. The specific
grand potentiab is related to the bulk pressufeas follows

S . InE
1 — = llm —
IAl=oo |A] Aj=oo [A]

— fw = = (BP. (28.8)
For the considered case of pointlike particles, the singulaf the Coulomb potential of
the Coulomb potential28.2 at the originr = 0 can cause the thermodynamic collapse of
positive-negative pairs of charges. The (short-distaniteyviolet) stability against this collapse
is associated with the 2D spatial integrabiljtylr  of the corresponding Boltzmann factor”
at short distances. We see that the stability regime casregspto small enough inverse temper-
atures0 < < 2; in what follows, we shall restrict ourselves to this stapitegion. Going
beyond3 = 2, the introduction of a small hard core around each parti@eping the+/— pairs
at some finite nonzero distance, is inevitable. In spite eftémdency to the creation of neutral
pairs of+/— charges, there still exist free charges (which are ablereescand so the system
remains in its conducting phase) up to the Kosterlitz-Thssiltransition of infinite order to the
dielectric phase at poirfixT = 4 [61].
In the complementary large-distance (infrared) regioa,dbnfiguration integral2g8.6 di-
verge in the thermodynamic limjif\| — oo provided that? < 4. To show this fact, we consider
the configuration integraP@.6 with the imposed charge neutralily;, = N_ = N/2,

N/2 N/2 N/2

Q(N/2,N/2) / Hdel HdQnZ II Ipi—»p,l”
(i<jy)=1
N/2 N/2
< I me—nl” IT Ipi —ny177, (28.9)
(i<j)=1 i.j=1

wherep (n) denote the vector positions of positive (negative) char@nce the thermodynamic
limit should not depend on the shape of the domajnve can choose the disc geometry of
radiusR. We rescale alp andn vectors in the integral8.9 by R and obtainQ(N/2, N/2) «
RNC=8/2) If 8 < 4,Q(N/2,N/2) — oo in the thermodynamic limiR — co. This divergence
will be eliminated within the so-called renormalized Mayxpansion, developed in the next
subsection. For the time being, the infrared divergenceesthat the grand potentialdepends
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on the fugacity: in a non-analytic way. Indeed, 85N /2, N/2) o« RN(2-5/2) couples taz",
Q depends or and R exclusively via the combinationR>~%/2, ButQ o R?, so that

BP = —Bw = f(8)2T57 (28.10)

with some as yet undetermined function of primary inteyfést).
In order to introduce the one- and two-body densities, wel @gfeinctional generalization of
the grand partition function to position-dependent futest+ — z4(r):

0o [e%S) N N
—_ 1 1 —Bug.q. (ri,r;
‘:[z] = E g FW/H[drlqu(rl)] H e Bva;a;( ’J). (2811)
Ny=0N_=0 T A (i<j)=1

The density of particles with charge= +, n,, is defined by

1 2
ng(r) = <; 0g.4:0(r — rl)> - Zq(r)é 0z4(r)

Here, “uniform” means (r) = z_(r) = z and the thermodynamic limjf\| — co. Due to the
space homogeneity, we hane (r) = n_(r) = n/2, where the total particle density is given by

(28.12)

uniform

1
1-5/4°

The density-fugacity relation plays a fundamental rolehia derivation of the thermodynamics.
Comparing 28.13 with the relation 28.10, we obtain the exact equation of state

0 1
n= 22 (~fw) = 1(9) = (28.13)

3P = (1 - g) n, (28.14)

which is equivalent to the equation of state for an ideal flwidh the particle density rescaled
by the temperature-dependent factor 3/4.
At two-particle level, we introduce the translationallyamiant two-body densities

Ngq (r,7') = <Z 0g,q:0(r — ri)éqhqjé(rl - rj)>
i#]
o1 5=
2q(r)zg (v) = ————
a(r)z ( )E§zq(r)§zq/(r’)

(28.15)

uniform

They describe the effect of statistical correlation betw®e particles, the one with chargeat
spatial positionr and the other with chargg atr’. For oppositely charged particles, the two-
body densities possess an important property: Their behavishort distance is dominated by
the Boltzmann factor of the Coulomb potential [62],

1
n+_(r,r/) ~ Z+2_m. (2816)
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28.2 Renormalized Mayer expansion

For the 2D Coulomb gas, we can construct systematicallyitite temperature expansion of the
density-fugacity relationshi28.13 in powers of3. The method is based on a renormalization
of the Mayer diagrammatic technique for general classiadtimomponent fluids; the charge
which takes thet values in the Coulomb gas, denotes internal degrees ofdnedar particles.
We first review the ordinary Mayer expansion and then exptaibond-series renormalization.

The above formulation with fugaciti€g, (r)} as controlling variables and the logarithm of
the grand partition function as the generator for one-plartiensities28.12 is the direct one.
The transition to the inverse format, with densit{es,(r)} as controlling variables, is based on
the Legendre transformation

— BF[n]=InE - /ernq r)In z,(r) (28.17)

which defines the Helmholtz free enerfjyas the explicit density functional. The subtraction of
the one-particle part leads to the excess free enEfgydefined by

Aln] = —BF™[n] = —BF[n] + /A drz [ng(r) Inng(r) — ng(r)]. (28.18)

Itis easy to show that\[n] is the generator for the density-fugacity relationshiphia tollowing
sense

ng(r)] _ 0A[n] _
n [m] = Sngn)’ q=+. (28.19)

The ordinary Mayer diagrammatic technique (see e.g. theognaph [63]) is based on the
introduction of the MayeJf-function, related to the pair interaction via

exp [—fugy (r,1')] = 1+ foq (r,1'). (28.20)

For “standard” interactions,, (r,r’), which vanish fofr — r’| — oo, also f, (r,r’) goes to

0 at asymptotically large distances. Inserting the decoiitipag28.2( into the definition of
the grand patrtition functior2@.1)), expanding in Mayey-functions and using specific topolog-
ical reduction rules for the obtained diagrams, in the dgrisrmat, the Mayer diagrammatic
representation of the generatiyfn] reads

Aln] = {all connected diagrams which consist/éf> 2 field n, (i)-circles
andfq,4, (i, j)-bonds, and are free of connecting circ}es. (28.21)
Here, the vector position; of a particle is denoted by (= 1,..., N) and every field (black)

circlei is integrated over spatial coordinateand summed ovey;-states. A connecting circle is
the one whose removal disconnects the diagram onto two o independent parts.

The f-bonds are not integrable for the Coulomb gas. In this casergnormalization of the
Mayer expansion consists in two steps [64—66]:
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e The expansion of each Mayer function in the inverse tempezat

1

fQ1qz(17 2) = _ﬁvthqz(la 2) + 5 [_ﬁvthqz(la 2)]2 +- (2822)
or, graphically,
f B S
O—0 =0 — — 0 + 0+ -,
L 2 laa 2 la~--"2¢

where the factor 1/(number of interaction lines)! is auttoadly assumed.

e The consequent series elimination of two-coordinated figltles between every couple
of three- or more-coordinated field circles; hereinaftgicbordination of a circle we mean
its bond-coordination, i.e. the number of bonds meetindpiatdircle. The renormalized
K-bonds are given by

K

O~~~ = 0= — o0+ --———-@® ————0+ ---
17q1 27(]2 17q1 27Q2 17q1 27q2

or, algebraically,

K4142(172) = [_ﬂvq142(172)]
30 [ 48 Bnn (1. 3y (3K 3.2, (28.23)

The bond-renormalization transforms the ordinary Mayegohmmatic expansior28.2])
into [66]

Aln]= & === + Dolnl+ 3 Difn, (28.24)
s=1
where
o | Sl 4
- VEERN I
Do[n]: (\ /)"" / NI | |+
- “---% +--3
B Z ﬁ Z /AH [dl Mg, (Z)] [_Bvq142(172)]
=2 q1,--,qN i=1

X [=B0g545(2,3)] -+ [=Bgy g (N, 1)] (28.25)
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is the sum of all unrenormalized ring diagrams (which canmatertake the renormalization
procedure because of the absence of three- or more-cotedifield points) and

Z Di[n] = {all connected diagrams which consistéf> 2 field
s=1

ng, (i)-circles of coordination> 3 and multiple

K,q, (i, j)-bonds, and are free of connecting cirdles (28.26)
represents the set of all remaining completely renormalgraphs. By multiplek-bonds we
mean the possibility of an arbitrary number &fbonds between a couple of field circles, with

the obvious topological factdr/ (number of bonds)!. The order ofs-enumeration is irrelevant,
let us say

coalLlk

Dl D2 6

etc.
In accordance with the relatioi28.19, the density-fugacity relation is expressible in the
renormalized format as follows

ng, ()] _ o >
= [231(1)} - 17; * + do(Lqn) + Z; ds(1,q1) (28.27)

where the root (white) circle has the fixed spatial vedtand the particle statg , do(1,¢q1) =
dDy[n]/dng (1) can be readily obtained as the limit

1.
d0(1’ Q1) = 5 %Lrnl [thqz(l’ 2) + ﬁvlhqz(la 2)] — (2828)
and
0Dg[n
ds(l,ql) = 5/]17[(1]) (S: 1,2,) (2829)
g1

denotes the whole family dft, ¢;)-rooted diagrams generated fraby[n]. To get the family,
one has to take into account the functional dependence afrésseds-bonds 28.23 on the
species densities as well. Since it holds

(”(qlqz(l, 2)
— =K 1,3) K, 2 28.30
(ans (3) q193 ( ’ 3) 4392 (3a )7 ( )

the root circle is generated, besides the field-circle ot also onK'-bonds, causing their
“correct” K — K division. For example, in the case of the generdigrwe get

17Q1

di(1,q1) = d’{w}} + {E}}} (28.31)
17Q1
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), the renormalized(-bonds 28.23 take the form

For the infinite 2D Coulomb gas with homogeneous speciesitiEs, (r) = n, = n/2
(=), i
KQin (4,7) = qiq; K (i, 5)

whereK (i, j) satisfies the integral equation

K(1,2) = [6(1,2)] + /A A3 [~ B(1,3)] nk (3,2).

(28.33)
Since|A| — oo, we have the translationally invariait(z, j)

(28.32)

= K(]¢ — j]) and so this equation
is explicitly solvable in the Fourier space. Recalling ttieg Fourier componemfi( ) = 1/k?
we arrive at
—ﬁ/d% ! exp(ik - r) = =Ko (r\/276n) (28.34)
= 97 K2+ 27pn Xp(1 = olrv2mpbn), .
whereK is the modified Bessel function of second kind
The renormalized representation of the generdton), Eqs. £8.24-(28.29, consists of
three kinds of diagrams.
(i) The first term on the rhs 028.29

2!

[ d12amg, (1) [=56(1,2) gz (2) (28.35)
T quga=+17A
is equal to zero by the charge neutrality

(ii) The second term28.29 is expressible as

N
Do) = > o [ Tail-001.2) (-so(2.3))
N=2 Ai=1

[ B9(N, 1)
l " n' = n/(N—l) O il—
5/ > /A[Ild —Bo(1,2)]

(28.36)
With regard to the relatior28.33, the sum overV is nothing bufA| x lim, _o[K () + Bé(r)]
evaluated atn = n’. Taking into account the explicit form dk-bonds 28.39, we need the
small-z expansion ofy(z) [67],

Ko@) = ~1n (3) Io(a +22m

(1+1), (28.37)
where ‘
L T S
xXr) = — 221(2')2 an xTr) = d n X
is the psi function; in particulat)(1) = —C with C being Euler’s constant. We find that
Do(n) B Bn
Al —4(nlnn n) +

()]

(28.38)
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(iii) Let the completely renormalized diagrah (s = 1,2, ...), belonging to the sun?28.26,
be composed ofV, skeleton vertices = 1,..., N, of coordinationy; > 3 and Ly bonds
a=1,...,Ls;agiven bondv is defined by an ordered pair of skeleton vertites < «») joint
by this bond. The set of coordination numbérs} is constrained b[:fvgl v; = 2L, as every
bond is shared by just two vertices. Fay, (i) = n/2, D,(n) can be formally expressed as

Ls

Dy(n) = t Z /Hdznm K(ay,az)
q1,.-,qNg==%1 -1
n\ Vs Ne o L
= b (5) 1;[1 (q;qui>/Ail:[ldi£[lK(al,a2), (28.39)

wheret, is the numerical topological factor. We see that(n) # 0 if and only if the coordi-
nations of all vertice§v; } are even numbers 4. Let us assume that this condition is fulfilled.
In the limit [A|] — oo, due to the invariance of the integrated prodDt® , K (aq, az) with
respect to a uniform shift in all integration variablgg, one of these variables can be chosen as
a reference put at the origtn with the simultaneous multiplication of the integral by ttolume

A,

Ly
Dy(n) = tyn™e H (o1, a2). (28.40)

Here,j is the vector position of an arbitrary one of the field cirdles . ., N;). The scaling form
of K(aq,a) = —BKo(Jar — az]v/274n) permits us to perform the- and S-classification of
the integral in 28.4Q. Every dressed bon# (a1, a) brings the factor-5 and enforces the
substitutionr’ = r+/27Bn which manifests itself as the factay (273n) for each field-circle
integration~ [ rdr. Since there are ju$tV, — 1) independent field-circle integrations 28.40,
we conclude that

Ds(n) Ds(nzlaﬁzl).

=ngle~Netd,, dy = (28.41)
Al Al
The first nonzero diagram B,. It contributes to the3? order, with
1 [d>r, 17
dy = ol / gKo (r) = ng?’)a (28.42)

where( is the Riemann’s zeta function. In the ngitorder, only the diagramg has all vertices
even-coordinated and therefore survives, with

d?r d?r
ds = 3!( 21 / 1/ QKo(rl)Ko(I?)Ko( —r3) = @%C(B), (28.43)

etc. The above integrals of Bessel functions are evaluatagsimg the Fourier component of
K§(r),

@(k):/c;“ KT (r) = /Ooodrrjo(kr)Kg(r): —. (28.44)
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whereJ, is the ordinary Bessel function. Simple algebra yields

/ %KO( VK2 (r) = /0 b dk kG2 (k) (28.45)
/ d;” d;” K2(r1)K2(r2) K2 (ry — 1) = / T Ak BC3 (k). (28.46)
T 0

The primitive functions of:G2 (k) andkG3 (k) are available explicitly [67].

The diagrammatic contributions in the above paragraphs§i{))can be summarized by the
formula

I RS [

Here,{d,} are the numbers yielded by the topology of the renormalizzgrdms{ D }, nonzero
only if the bond coordinations of all vertices are even nurebe 4. The first few nonzero
contributions read

oo 3 4
Saptn =L (5) +eo (5) +ow (28.49)
s=1

In order to evaluatén(n,/z,) (¢ = %) using the relationZ8.19, we first recall the well-
known equation

n] Ong(r)
Z / Mq aqn (28.49)

valid for an arbltrary functionalA[n] with n,(r) substituted by some function ef. In the
homogeneous case. (r) = n_(r) = n/2, this relation takes the form

OA(n)  |A| [ 6A[n] 0A[n]
=— 28.50
on 2 \Oong(r) n_(r) | imitorm/ ( )

where ther-independence of the functional derivatives was assumeahfinfinite system. For
diagrams inA[n], the direct link between thé and— states of the root point is realized through
the charge state transformatifp — —g¢;} at all field vertices. The diagrams are invariant with
respect to this transformation. Hence, taking into acc@®#60, we have

0A[n] ~ 0A[n] _ 0 AMn)

6nt(0) | ynitorm ON—(T) ~oOn |A]
The consequent relatiofs(n /z) = In(n_/z) = 9[A(n)/|A]]/On, with A(n)/|A| given by
(28.47%, lead to the final result

nl 2P/ =24 exp { {20 +1In (g)} g + i dsﬁLS_NSH} - (28.52)

z
Taking into account8.48, this represents the high-temperature (snslkexpansion of the
density-fugacity relation for the 2D Coulomb gas.

uniform

(28.51)

uniform
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28.3 Mapping onto the sine-Gordon model

The 2D Coulomb gas is equivalent to the 2D Euclidean sined@omodel [68—70]. The map-
ping is accomplished via the grand partition function defibg (28.4 and £8.5. Introducing
the microscopic charge density

N
= q:d(r —1y), (28.53)
=1
the interaction energyB.3 can be expressed as

B(lgra)) = 5 [ @ [ @ plwolle =)o) - 5No(0); (28.54)

we forget for a while that the self-energy0) = lim,_,o(— Inr) diverges. Let us consider the
corresponding Boltzmann factexp|—SE({¢;,r;})] in the configuration integral8.5. Since
—A/(2m) is the inverse operator of the 2D Coulomb potentiat) [see Eq. 28.1) with so =
2], using the Hubbard-Stratonovich transformation we have

exp[ 2 [ [ oot — xho)

_ [ Doexp [ [ d?r (30Ap + ibpp)]
[ Dyexp ([ d>ripAp) ’
whereb = /273, ¢(r) is areal scalar field anflDy denotes the functional integration over this

field. The termpA¢ can be rewritten as (V)? by using integration by parts, with a vanishing
contribution from infinity. Inserting(r) from (28.53, the configuration integral is written as

Ny N_
Q(N+,N_):eﬁ¢<0>N/2<( / d2reib“’(r)> ( / d%e—i‘w(r)) > ,  (28.56)

free

(28.55)

where(- - )t means the average over the free-field actign. = [ d*r (V)?/2. The self-
energy term renormalizes the fugacities,

Z1 = oxplB6(0) /2] (28.57)

The grand partition function2@.4), after summing oveN, and N_, becomes the functional
integral

J Dy exp[-5(z4,%2-)]

=(za,2-) = 28.58
542 = "D ep-5(0.0) (26.59
with the action
S(34,2.) = / d?r E(W)Q —z,elt — Ze_ib“’] : (28.59)
In the uniform case, = z_ = z, we end up with the sine-Gordon representation
- J Dy exp[—S(2)] N / 2 [1 2 s
2(z) = ) S(Z)= | d&*r |=(Ve)* —2Zcos(by)| , (28.60)
() = premisoy S0 = [ & |5V (bp)
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wherez = exp[5¢(0)/2]z is the renormalized fugacity.

To obtain the sine-Gordon representation of the many-bedgities, the generalization of
the above formalism to position-dependent fugacitieér) is needed. The generalization is
straightforward and results in the representati®®.%9 with the action 28.59 in which the
constant (renormalized) fugacities are substituted bytsition-dependentones;, — Z, (r).
The one-body density28.12) is obtained in the form

n 1 = 1 = .
=—= - =Z,(r)= —— =z (%)) (28.61
M (r) 2 c (r E 6’24 (I‘) uniform s E 624 (I‘) uniform ¢ <e > ( )
Here, the symba|- - -) denotes the averaging over the acti2B.60, i.e.
1 / -
ce) = - Dy exp[—S(2)]---. 28.62
() Do o850 | P¥ p[—5(2)] ( )
For the two-body densitie28.15, we get

1 522

> > igbp(r) ,ig"be(r’
ngg (r,1') = Z4(r)Zy (r EW — 32 <eq @(r) oia" be( )>. (28.63)

uniform

The crucial variable in the formalism & i.e. the fugacity renormalized by the diverging
self-energy factor. In the sine-Gordon actiSii?), it couples to the cos-field. To give a
precise meaning, we have to fix the normalization of thisfaeld:- In the Coulomb format,
the normalization is given by the short-distance behavidth® two-body density for oppositely
charged particle28.19. In view of (28.63, this short-distance asymptotic is equivalent to

eP2(0) <eibtp(r)efib<p(r,)> ~ ﬁ aslr — 1’| — 0. (28.64)
Under this so-called conformal normalization, which wagally omitted in statmech literature,
the divergent self-energy factor disappears from stasiktielations calculated within the sine-
Gordon representation.

This fact can be easily verified in the high-temperaturetlighi— 0, when, in the leading
order,cos(bp) ~ 1 — (bp)?/2 = 1 — (n3)p?. The sine-Gordon actiofi(z) becomes

S(2) ~ /d% B(w)2 - 2w55¢2} —2Z|A. (28.65)

Thus,y has a Gaussian distribution. In terms of the Fourier compopgk) = [ d?re**o(r),
the p-dependent part of the action takes the diagonal form

2 2
S(z) = / % (% + 2#52) Bk (28.66)
Consequently,
. 1
<|90(k)|2> = P+ 4nj3z (28.67)

and

2 ’
(pl)ple) = [ s ) = 5K (ViR — ). (@860
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In the Gaussian approximation, it holds
<eib[ga(r)—tp(r/)]> — o ®*/2)([p(r)—p(x)]?)
o8P (1)) g =B (x")) 27 B (r)p(x")) (28.69)

In the large-distance limitr — r'| — oo, (el?l#(")=2()]) decouples tdel?? (™)) (e~1¢(*")) and,
according to 28.69, (¢(r)¢(r’)) — 0. Thus we get

o TBL3 () _

Hibor)y — 1L 28.70
(etete)) = 2 (28.70)

and the relation28.69 reads

<eib<p(r)e—ibsa(r/)> _ (%)Qezwmwww» (28.71)

In the short-distance limji —r’| — 0, using the small: expansion of<(z) (28.37 in (28.68,
we have

(P()pl) ~ 5= [In (Vadaie — ) +¢]. (28.72)

Combining this with the short-distance conformal nornetian 28.64, the formula 28.71)
leads to

n o pCc B Be(0)
5, = oXp {7 + 1 [ln(wﬁz) + T} } . (28.73)

But 5%2¢(0) = 0 at the orders; this term will be cancelled in the neg? order. We therefore
conclude that

n = z"4P/42(73)%/* exp (%) . (28.74)

Sincel + /4 ~ 1/(1 — 8/4) in the limit 5 — 0, we recover the leading term of the density-
fugacity relation 28.52 obtained by using the renormalized Mayer expansion.

28.4 Thermodynamics of the 2D Coulomb gas

The equivalence between the 2D Coulomb gas and the 2D Eanlidime-Gordon theory is
written in Eq. 8.6Q. For a large domain\, the sine-Gordon functional integral behaves as

/ Dy exp[—S(2)] ~ exp [—eo(2)[A[], (28.75)

whereey(z) is the specific ground state energy. This allows us to exphesspecific grand
potentialw of the Coulomb gas28.8 as follows

Bw = ep(z) — ep(0), (28.76)

wheree( (0) is the specific ground-state energy of the free model.
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From the exact TBA solution for the specific ground-stateagyef the sine-Gordon model
(26.62, we have

2
e0(2) = eo(0)] = = tan (7 ). (28.77)
where¢ (= 1/ in the sine-Gordon model) is the temperature parametendiye
2
§= o = & (28.78)

8m—b2 4-p4
The fugacityz (= i in the sine-Gordon model) is related to the soliton makby Eq. £6.69,
written as

£ £+1)7 &1
1P (&) [ el ()
== M- . (28.79)
LN N 2 (&
(&) (5
Finally, using the generating relation for the particle sign(28.13, the explicit density-fugacity
relationship reads

B 3 8
nlfﬁ/ﬁl 2(Wﬁ>ﬁ/4r(1—z) |:tan(2(4_ﬁ)) F2 (1+m)
AN 3 3
z r (1 + %) 2(4-0) %1—‘2 (% + m)
The expansion of the rhs of this equation around the infieiteperaturgd = 0 up to theg*

term is identical to the previous resu8.52 with the series28.489. Near the collapse point
£ = 2 at fixedz, we get the expected divergence of the density:

2

1-3/4
. (28.80)

A7z

24’
The same formula was derived by using a picture of the Coulgasimear the collapse point as
the system of independent neutral pairstoind— charges [71].

To obtain the complete thermodynamics of the 2D Coulomb gaspass from the grand-
canonical to canonical ensemble via the Legendre transitiom

F =Q+ uN, (28.82)

whereF is the free energy and = 3~ ! In z. The knowledge of the density-fugacity relationship
(28.80 allows us to obtain explicitly the free energy per partifle- F'//N as a function of the
inverse temperaturg and the particle density. The derivatives of with respect tg3 determine

in the standard way the internal energy, the specific heat[#2]. The extension of the exact
thermodynamics of the 2D Coulomb gas beyond the collapsdenGr= 2 for particles with a
small hard core (to prevent the collapse of opposite chawmgas accomplished in Ref. [73].

We would like to emphasize that the 2D (symmetric) two-comgd Coulomb gas was the
first classical fluid in dimension larger than one with congieknown thermodynamics. Later
[74], the thermodynamics of the Coulomb gas with the chagyenanetryq; = +1 andgs =
—1/2 was solved by mapping the system onto the so-called compléah-Dodd model [75].
This model is also integrable, for its TBA solution see R&6][

B—2 . (28.81)

n
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