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We overview a set of post-Newtonian reference frames for a comprehensive study of the
orbital dynamics and rotational motion of Moon and Earth by means of lunar laser ranging
(LLR). We employ a scalar-tensor theory of gravity depending on two post-Newtonian pa-
rameters, β and γ, and utilize the relativistic resolutions on reference frames adopted by the
International Astronomical Union (IAU) in 2000. We assume that the solar system is isolated
and space-time is asymptotically flat at infinity. The primary reference frame covers the en-
tire space-time, has its origin at the solar-system barycenter (SSB) and spatial axes stretching
up to infinity. The SSB frame is not rotating with respect to a set of distant quasars that are
forming the International Celestial Reference Frame (ICRF). The secondary reference frame
has its origin at the Earth-Moon barycenter (EMB). The EMB frame is locally-inertial and is
not rotating dynamically in the sense that equation of motion of a test particle moving with
respect to the EMB frame, does not contain the Coriolis and centripetal forces. Two other
local frames – geocentric (GRF) and selenocentric (SRF) – have their origins at the center
of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is
subject to the geodetic precession both with respect to other local frames and with respect to
the ICRF because of their relative motion with respect to each other. Theoretical advantage
of the dynamically non-rotating local frames is in a more simple mathematical description.
Each local frame can be aligned with the axes of ICRF after applying the matrix of the rela-
tivistic precession. The set of one global and three local frames is introduced in order to fully
decouple the relative motion of Moon with respect to Earth from the orbital motion of the
Earth-Moon barycenter as well as to connect the coordinate description of the lunar motion,
an observer on Earth, and a retro-reflector on Moon to directly measurable quantities such as
the proper time and the round-trip laser-light distance. We solve the gravity field equations
and find out the metric tensor and the scalar field in all frames which description includes
the post-Newtonian multipole moments of the gravitational field of Earth and Moon. We also
derive the post-Newtonian coordinate transformations between the frames and analyze the
residual gauge freedom.

DOI: 10.2478/v10155-010-0004-0
PACS: 04.20.Gz, 04.80.-y, 95.55.Br, 96.15.Vx

KEYWORDS:
Relativity, Gravitation, Gravitomagnetism, Gauge invariance, Brans-
Dicke theory, Post-Newtonian celestial mechanics, Reference frames,
Earth-Moon system, Lunar laser ranging

1E-mail address: kopeikins@missouri.edu

393



394 Reference Frames for Advanced Theory of the Lunar Motion

Contents

1 Introduction 396
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
1.2 Lunar Laser Ranging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
1.3 EIH Equations of Motion in N-body Problem . . . . . . . . . . . . . . . . . . . 398
1.4 Gravitoelectric and Gravitomagnetic Forces . . . . . . . . . . . . . . . . . . . . 402
1.5 The Principle of Equivalence in the Earth-Moon System . . . . . . . . . . . . . 403
1.6 The Residual Gauge Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
1.7 Towards a New Lunar Ephemeris . . . . . . . . . . . . . . . . . . . . . . . . . . 408
1.8 Main Objectives of The Present Paper . . . . . . . . . . . . . . . . . . . . . . . 410

2 The Scalar-Tensor Theory of Gravity 412
2.1 The Field Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
2.2 The Energy-Momentum Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

3 Theoretical Principles of the Post-Newtonian Celestial Mechanics 416
3.1 External and Internal Problems of Motion . . . . . . . . . . . . . . . . . . . . . 416
3.2 Post-Newtonian Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 417

3.2.1 Small Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
3.2.2 The Post-Newtonian Series . . . . . . . . . . . . . . . . . . . . . . . . . 419

3.3 The Post-Newtonian Field Equations . . . . . . . . . . . . . . . . . . . . . . . . 421
3.4 Conformal Harmonic Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 422
3.5 Microscopic Post-Newtonian Equations of Motion . . . . . . . . . . . . . . . . . 424

4 Post-Newtonian Reference Frames 425
4.1 Coordinates and Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
4.2 The Solar System Barycentric Frame . . . . . . . . . . . . . . . . . . . . . . . . 426

4.2.1 Boundary Conditions and Kinematic Properties . . . . . . . . . . . . . . 426
4.2.2 The Metric Tensor and Scalar Field . . . . . . . . . . . . . . . . . . . . 428
4.2.3 The Post-Newtonian Conservation Laws . . . . . . . . . . . . . . . . . . 430

4.3 The Earth-Moon Barycentric Frame . . . . . . . . . . . . . . . . . . . . . . . . 432
4.3.1 The Boundary Conditions and Dynamic Properties . . . . . . . . . . . . 432
4.3.2 The Metric Tensor and Scalar Field . . . . . . . . . . . . . . . . . . . . 434
4.3.3 Internal Multipoles of the Earth-Moon System . . . . . . . . . . . . . . 441

4.4 The Geocentric Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
4.4.1 The Boundary Conditions and Dynamic Properties . . . . . . . . . . . . 443
4.4.2 The Metric Tensor and Scalar Field . . . . . . . . . . . . . . . . . . . . 443
4.4.3 Gravitational Multipoles of Earth . . . . . . . . . . . . . . . . . . . . . 447

4.5 The Selenocentric Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
4.5.1 The Boundary Conditions and Dynamic Properties . . . . . . . . . . . . 449
4.5.2 The Metric Tensor and Scalar Field . . . . . . . . . . . . . . . . . . . . 450
4.5.3 Gravitational Multipoles of Moon . . . . . . . . . . . . . . . . . . . . . 454



CONTENTS 395

5 Post-Newtonian Transformations Between Reference Frames 456
5.1 Transformation from the Earth-Moon to the Solar-System Frame . . . . . . . . . 456

5.1.1 General Structure of the Transformation . . . . . . . . . . . . . . . . . . 456
5.1.2 Matching the Post-Newtonian Expansions . . . . . . . . . . . . . . . . . 461
5.1.3 Post-Newtonian Coordinate Transformation . . . . . . . . . . . . . . . . 463
5.1.4 The External Multipoles . . . . . . . . . . . . . . . . . . . . . . . . . . 464

5.2 Transformation from the Geocentric to the Earth-Moon Frame . . . . . . . . . . 466
5.2.1 Matching Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
5.2.2 Post-Newtonian Coordinate Transformation . . . . . . . . . . . . . . . . 470
5.2.3 The External Multipoles . . . . . . . . . . . . . . . . . . . . . . . . . . 472

5.3 Transformation from the Selenocentric to the Earth-Moon Frame . . . . . . . . . 475
5.3.1 Matching Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
5.3.2 Post-Newtonian Coordinate Transformation . . . . . . . . . . . . . . . . 476
5.3.3 The External Multipoles . . . . . . . . . . . . . . . . . . . . . . . . . . 478

6 Conclusion 482

Acknowledgment 482

References 483



396 Reference Frames for Advanced Theory of the Lunar Motion

1 Introduction

1.1 Background

The tremendous progress in technology, which we have witnessed during the last 30 years,
has led to enormous improvements of precision in the measuring time and distances within the
boundaries of the solar system. Further significant growth of the accuracy of astronomical obser-
vations is expected in the course of time. Observational techniques like lunar and satellite laser
ranging, radar and Doppler ranging, very long baseline interferometry, high-precision atomic
clocks, gyroscopes, etc. have made it possible to start probing not only the static but also kine-
matic and dynamic effects in motion of celestial bodies to unprecedented level of fundamental
interest. Current accuracy requirements make it inevitable to formulate the most critical astro-
nomical data-processing procedures in the framework of Einstein’s general theory of relativity.
This is because major relativistic effects are several orders of magnitude larger than the technical
threshold of practical observations and in order to interpret the results of such observations, one
has to build physically-adequate relativistic models. Many current and planned observational
projects and specialized space missions can not achieve their goals unless the relativity is taken
into account properly. The future projects will require introduction of higher-order relativistic
models supplemented with the corresponding parametrization of the relativistic effects, which
will affect the observations.

The dynamical modeling for the solar system (major and minor planets), for deep space nav-
igation, and for the dynamics of Earth’s satellites and Moon must be consistent with general
relativity. Lunar laser ranging (LLR) measurements are particularly important for testing general
relativistic predictions and for advanced exploration of other laws of fundamental gravitational
physics. Current LLR technologies allow us to arrange the measurement of the distance from
a laser on Earth to a corner-cube reflector (CCR) on Moon with a precision approaching 1 mil-
limeter (Battat et al, 2007; Murphy et al, 2008). There is a proposal to place a new CCR array on
Moon (Currie et al, 2008), and possibly to install other devices such as microwave transponders
(Bender et al, 1990) for multiple scientific and technical purposes. Successful human exploration
of Moon strongly demands further significant improvement of the theoretical model of the orbital
and rotational dynamics of the Earth-Moon system. This model should inevitably be based on the
theory of general relativity, fully incorporate the relevant geophysical processes, lunar libration,
tides, and should rely upon the most recent standards and recommendations of the IAU for data
analysis (Soffel et al, 2003).

The present paper discusses relativistic reference frames in construction of the high-precise
dynamical model of motion of Moon and Earth. The model will take into account all the clas-
sical and relativistic effects in the orbital and rotational motion of Moon and Earth to allow
the upcoming millimeter LLR to perform one of the most precise fundamental tests of gen-
eral relativity in the solar system. We should notice that after Einstein published his theory of
gravitation (Einstein, 1916), its effects on the lunar dynamics were worked out by a number of
authors: de Sitter (1916), Chazy (2005), Eddington (1923), Brumberg (1991), Baierlein (1967a),
Lestrade and Bretagnon (1982), Mashhoon and Theiss (2001), Soffel et al (1986). Modern lunar
ephemerides fully including the post-Newtonian effects of general relativity in the barycentric
reference frame of the solar system are the ELP from the Institute de Mécanique Céleste et
de Calcul des Éphémérides (Chapront-Touze and Chapront, 1983), the new ephemerides IN-
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POP06 developed at the IMCCE-Observatoire de Paris (Fienga et al, 2008), the ephemerides LE
from NASA Jet Propulsion Laboratory (Standish, 1998), the EPM from the Institute of Applied
Astronomy of Russian Academy of Sciences (Pitjeva, 2005) and the PMO ephemerides of the
Purple Mountain Observatory of Chinese Academy of Sciences (Li et al, 2008). However, the
relativistic orbital dynamics of the Moon was never explored from the point of view of the local
frames recommended to use by the International Astronomical Union (Soffel et al, 2003). The
approach based on the local frames is complementary to the barycentric frame approach. It helps
to disentangle spurious relativistic effects caused by the freedom in choosing coordinate trans-
formations from the genuine post-Newtonian effects associated with the curvature of space-time
and its physical consequences.

Historical reviews of the works on the Moon-Earth-Sun problem can be found in Cook
(1988) and Gutzwiller (1998). Introductory general overviews of the main Newtonian and post-
Newtonian features of the lunar motion are given by Roy (2005), Soffel (1989), and Brumberg
(1991).

1.2 Lunar Laser Ranging

Lunar laser ranging (LLR) is a technique based on a set of laser stations on Earth and corner
retro-reflectors (CCR) located on a visible (near) side of Moon (Alley, 1983; Bender et al, 1973)
making the natural reference frame to a mutual study of geophysical and selenophysical pro-
cesses. Indeed, LLR technique is currently the most effective way to study the interior of Moon
and dynamics of the Moon-Earth system. The most important contributions from LLR include:
detection of a molten lunar core (Williams, 2007) and measurement of its influence on Moon’s
orientation (Williams et al, 2001a) and tidal dissipation (Williams et al, 2001b, 2008); detection
of lunar free libration along with the forced terms from Venus (Williams et al, 1996b) and the
internal excitation mechanisms (Rambaux et al, 2008); an accurate test of the strong principle of
equivalence for massive bodies (Müller and Nordtvedt, 1998; Williams et al, 1976) also known as
the Nordtvedt effect (Will, 1993, Section 8.1); and setting of a stringent limit on time variability
of the universal gravitational constant and (non)existence of long-range fields besides the metric
tensor (Nordtvedt, 2001). LLR analysis has also given access to more subtle tests of relativity
(Müller et al, 1991; Müller et al, 1996; Soffel et al, 2008; Williams et al, 2004b), measurements
of Moon’s tidal acceleration (Calame and Mulholland, 1978; Chapront et al, 2002; Xu and Jin,
1994) and geodetic precession of the lunar orbit (Bertotti et al, 1987; Dickey et al, 1989), and has
provided orders-of-magnitude improvements in the accuracy of the lunar ephemeris (Kopeikin
et al, 2008; Kudryavtsev, 2007; Li et al, 2008; Newhall et al, 1996; Standish, 2008) and its three-
dimensional rotation (Chapront et al, 1999; Williams et al, 2003). On the geodesy front, LLR
contributes to the determination of Earth orientation parameters, such as nutation, precession
(including relativistic geodetic precession), polar motion, UT1, and to the long-term variation of
these effects (Müller et al, 2008a,b). LLR also contributes to the realization of both the terrestrial
and selenodesic reference frames (Huang et al, 1999, 1996). The Satellite Laser Ranging (SLR)
realization of a dynamically-defined inertial reference frame (Standish and Williams, 1990) in
contrast to the kinematically-realized frame of VLBI (Walter and Sovers, 2000, Section 6), of-
fers new possibilities for mutual cross-checking and confirmation (Müller et al, 2008b) espe-
cially after the International Laser Ranging Service (ILRS) was established in September 1998
to support programs in geodetic, geophysical, and lunar research activities and to provide the
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International Earth Rotation Service (IERS) with products important to the maintenance of an
accurate International Terrestrial Reference Frame (ITRF) (Pearlman et al, 2002).

Over the years, LLR has benefited from a number of improvements both in observing tech-
nology and data modeling, which led to the current accuracy of post-fit residuals of '2 cm (see,
for example, the paper by Meyer et al (2002) and reports of ILRS by Pearlman and Carey 2). Re-
cently, sub-centimeter precision in determining range distances between a laser on Earth and a
retro-reflector on Moon has been achieved (Battat et al, 2007; Murphy et al, 2008). As precision
of LLR measurements was gradually improving over years from a few meters to few centime-
ters, enormous progress in understanding evolutionary history of the Earth-Moon orbit and the
internal structure of both planets has been achieved. With the precision approaching 1 millimeter
and better, accumulation of more accurate LLR data will lead to new, fascinating discoveries in
fundamental gravitational theory, geophysics, and physics of lunar interior (Murphy et al, 2007)
whose unique interpretation will intimately rely upon our ability to develop a systematic theoret-
ical approach to analyze the sub-centimeter LLR data (Kopeikin et al, 2008).

1.3 EIH Equations of Motion in N-body Problem

Nowadays, the theory of the lunar motion should incorporate not only the numerous Newtonian
perturbations but has to deal with much more subtle relativistic phenomena being currently in-
corporated to the ephemeris codes (Chapront-Touze and Chapront, 1983; Li et al, 2008; Pitjeva,
2005; Standish, 1998). Theoretical approach, used for construction of the ephemerides, accepts
that the post-Newtonian description of the planetary motions can be achieved with the Einstein-
Infeld-Hoffmann (EIH) equations of motion of point-like masses (Einstein et al, 1938), which
have been independently derived by Petrova (1949) and Fock (1959, Section 6) for massive fluid
balls as well as by Lorentz and Droste (1917a,b, 1937) under assumptions that the bodies are
spherical, homogeneous and consist of incompressible fluid. These relativistic equations are
valid in the barycentric frame of the solar system with time coordinate t and spatial coordinates
xi ≡ x.

Due to the covariant nature of general theory of relativity the barycentric coordinates are not
unique and are defined up to the space-time transformation (Brumberg, 1972, 1991; Soffel, 1989)

t 7→ t− 1
c4

∑
B

νB

GMB

RB

(RB · vB) , (1.1)

x 7→ x− 1
c2

∑
B

λB

GMB

RB

RB , (1.2)

where summation goes over all the massive bodies of the solar system (B = 1, 2, ..., N ); G is
the universal gravitational constant; c is the fundamental speed in the Minkowskian space-time;
a dot between any spatial vectors, a ·b, denotes an Euclidean dot product of two vectors a and b;
MB is mass of a body B; xB = xB(t) and vB = vB(t) are coordinates and velocity of the center
of mass of the body B; RB = x − xB is a relative distance from a field point x to the body B;
νB and λB are constant, but otherwise free parameters being responsible for a particular choice
of the barycentric coordinates (see Figure 1).

2 http://ilrs.gsfc.nasa.gov/reports/ilrs reports/ilrsar 2003.html (especially Section 11)

http://ilrs.gsfc.nasa.gov/reports/ilrs_reports/ilrsar_2003.html


Introduction 399

Fig. 1. Global barycentric coordinates cover the entire Solar System but they are not unique and are defined
withtin the class of the gauge transformations given by equations (1.1), (1.2). These transformations clearly
show that the barycentric coordinates should not be understood as orthogonal at least in the vicinity of
self-gravitating bodies (Sun, planets).

We emphasize that these parameters can be chosen arbitrary for each body B of the solar
system. Standard textbooks (Brumberg, 1972, 1991; Soffel, 1989) [see also (Will, 1993, section
4.2)] assume that the coordinate parameters are equal for all bodies, that is ν1 = ν2 = ...νN = ν
and λ1 = λ2 = ...λN = λ. These simplifies the choice of coordinates and their transformations,
and allows one to identify the coordinates used by different authors. For instance, ν = λ = 0
corresponds to harmonic or isotropic coordinates (Fock, 1959), λ = 0 and ν = 1/2 realizes
the standard coordinates used in the book of Landau and Lifshitz (1975) and in PPN formalism
(Will, 1993). The case of ν = 0, λ = 2 corresponds to the Gullstrand-Painlevé coordinates (Gull-
strand, 1922; Painlevé, 1921). We prefer to have more freedom in transforming EIH equations of
motion and do not equate the coordinate parameters for different massive bodies. Physically, it
means that the space-time around each body is covered locally by its own coordinate grid, which
matches smoothly with the other coordinate charts of the massive bodies in the buffer domain,
where the different coordinate charts overlap.

If the bodies in N-body problem are numbered by indices B, C, D, etc., and the coordinate
freedom is described by equations (1.1), (1.2), EIH equations have the following form [compare
with (Brumberg, 1972, equation 88)]

MBa
i
B = F iN +

1
c2
F iEIH , (1.3)
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where the Newtonian force

F iN = −
∑
C 6=B

GMBMCR
i
BC

R3
BC

, (1.4)

the post-Newtonian perturbation

F iEIH = −
∑
C 6=B

GMBMCR
i
BC

R3
BC

{
(1 + λC)v2

B − (4 + 2λC)(vB · vC) + (2 + λC)v2
C

−3
2

(
RBC · vC

RBC

)2

− 3λC

[
RBC · (vB − vC)

RBC

]2
− (5− 2λB)

GMB

RBC

−(4− 2λC)
GMC

RBC

−
∑

D 6=B,C

GMD

[
1

RCD

+
4− 2λD

RBD

−
(

1 + 2λC

2R3
CD

− λC

R3
BD

+
3λD

RBDR2
BC

− 3λD

RCDR2
BC

)
(RBC ·RCD)

]}

−
∑
C 6=B

{
GMBMC(viC − viB)

R3
BC

[
(4− 2λC)(vB ·RBC)− (3− 2λC)

×(vC ·RBC)
]

+
GMBMC

RBC

∑
D 6=B,C

GMDR
i
CD

(
7− 2λC

2R3
CD

+
λC

R3
BD

+
λD

RCDR2
BC

− λD

RBDR2
BC

)}
, (1.5)

and vB = vB(t) is velocity of the body B, aB = v̇B(t) is its acceleration, RBC = xB − xC ,
RCD = xC − xD are relative distances between the coordinates of the bodies.

EIH equations (1.3)–(1.5) differ from the equations of the PPN formalism (Estabrook, 1969,
equation 3) employed in particular at JPL for actual calculation of the ephemerides of the major
planets by the fact that the right side of equation (1.5) has been resolved into radius-vectors and
velocities of the massive bodies and does not contain second derivatives (accelerations). This
elimination of the high-order time derivatives from a perturbed force is a standard practice in
celestial mechanics for calculation of the perturbed motion.

Barycentric coordinates xB and velocities vB of the center of mass of body B are adequate
theoretical quantities for description of the world-line of the body with respect to the center of
mass of the solar system. However, the barycentric coordinates are global coordinates covering
the entire solar system. Therefore, they have little help for efficient physical decoupling of the
post-Newtonian effects existing in the orbital and rotational motions of a planet and for the
description of motion of planetary satellites around the planet. The problem stems from the
covariant nature of EIH equations, which originates from the fundamental structure of space-
time manifold and the gauge freedom of the general relativity theory.

This freedom is already seen in the post-Newtonian EIH equations (1.5) as it explicitly de-
pends on the choice of spatial coordinates through parameters λC , λD. At the same time the EIH
force does not depend on parameters νC , which means that transformation (1.1) of the barycen-
tric coordinate time does not affect the post-Newtonian equations of motion of the solar system
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bodies. Each term, depending explicitly on λC and λD in equation (1.5), has no direct physical
meaning as it can be eliminated after making a specific choice of these parameters. In many
works on experimental gravity and applied relativity researches fix parameters λC = λD = 0,
which corresponds to working in harmonic coordinates. Harmonic coordinates simplify EIH
equations to large extent but one has to keep in mind that they have no physical privilege any-
way, and that a separate term or a limited number of terms from EIH equations of motion can
not be measured (Brumberg, 1991). This is because the coordinate description of motion of the
bodies does not exist independently of observable quantities and must be connected to them via
equations of light propagation.

EIH equations of motion can be recast to another form proposed by Brumberg (1991). It is
based on a simple property of decomposition of a vector of relative distance between any two
bodies in an algebraic sum of two vectors connecting the two bodies with any other body of the
N-body system. Let us take as an example a 4-body problem. Radius-vectors connecting each
pair of the bodies are: R12 = x1−x2,R13 = x1−x3,R14 = x1−x4,R23 = x2−x3,R24 =
x2 − x4,R34 = x3 − x4. However, only three of the six vectors are algebraically independent.
Indeed, if one takes the first three vectors as independent the others can be expressed in terms of
them: R23 = R13−R12,R24 = R14−R12,R34 = R14−R13. Analogous reasoning is valid
for any number of the bodies in the N-body problem. This property allows us to reshuffle terms
in the original EIH equation and to recast it to the following form (Brumberg, 1991)

aiB = −
∑
C 6=B

GMCR
i
BC

R3
BC

+
G

c2

∑
C 6=B

MC

(
ABCR

i
BC + BBCV

i
BC

)
, (1.6)

where V iBC = ṘiBC = viB − viC is the relative velocity between the bodies, the dot over function
denotes a time derivative, and the coefficients of the post-Newtonian acceleration are

ABC = − 1
R3

BC

{
(1 + λC)v2

B − (4 + 2λC)(vB · vC) + (2 + λC)v2
C

− 3
2

(
RBC · vC

RBC

)2

− 3λC

(
RBC · V BC

RBC

)2

− (5− 2λB)
GMB

RBC

− (4− 2λC)
GMC

RBC

}
+
∑

D 6=B,C

GMD

R3
BC

[
1− 2λD

RCD

+
4− λD

RBD

−
(

1 + 2λC

2R3
CD

− λC

R3
BD

+
3λD

RBDR2
BC

− 3λD

RCDR2
BC

)
(RBC ·RBD)

]
+

∑
D 6=B,C

GMD

[
4

RBCR3
CD

+
λC

RBCR3
BD

− λC

RCDR3
BD

− 7− 2λD

2RBDR3
CD

]
, (1.7)

BBC =
1

R3
BC

[
(4− 2λC)(vB ·RBC)− (3− 2λC)(vC ·RBC)

]
. (1.8)

Equations (1.6)–(1.8) have been derived by Brumberg (1991, pages 176-177).
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1.4 Gravitoelectric and Gravitomagnetic Forces

Brumberg’s form of EIH equations of motion can be further modified to separate the, so-called,
gravitoelectric and gravitomagnetic forces in N-body problem (Nordtvedt, 1988). Straightfor-
ward re-arrangement of the terms depending on velocities reveal that equations (1.6)–(1.8) can
be represented in the form being similar to the Lorentz force in electrodynamics

aiB =
∑
C 6=B

[
EiBC +

4− 2λC

c
(vB ×HBC)i − 3− 2λC

c
(vC ×HBC)i

]
(1.9)

where EiBC is called the gravitoelectric force, and the terms associated with the cross products
(vB ×HBC)i and (vC ×HBC)i are referred to as the gravitomagnetic force (Nordtvedt, 1988).

The gravitoelectric force is given by

EiBC =
(
−GMC

R3
BC

+
GMC

c2
EBC

)
RiBC , (1.10)

where the first term is the Newtonian force of gravity and the post-Newtonian correction

EBC = − 1
R3

BC

{
3(−1 + λC)v2

B + 3(1− 2λC)(vB · vC)− (1− 3λC)v2
C

−3
2

(
RBC · vC

RBC

)2

− 3λC

(
RBC · V BC

RBC

)2

− (5− 2λB)
GMB

RBC

−(4− 2λC)
GMC

RBC

}
+
∑

D 6=B,C

GMD

R3
BC
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RBCR3
BD

− λC

RCDR3
BD
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]
,

(1.11)

The gravitomagnetic force is given by equation

Hi
BC = −1

c
(V BC ×EBC)i =

GMC

c

(V BC ×RBC)i

R3
BC

, (1.12)

where the dot means a time derivative. As one can see, the gravitomagentic force is proportional
to the Newtonian force multiplied by the factor of v/c, where v is the relative velocity between
two gravitating bodies. Equation (1.12) can be also obtained by making use of a linearized
Lorentz transformation from the static to a moving frame of the body (Kopeikin and Fomalont,
2007; Nordtvedt, 1988). Similar arguments work in electrodynamics for physical explanation of
the origin of magnetic field of a uniformly moving charge (Landau and Lifshitz, 1975, Section
24). We have shown orientation and mutual correspondence between vectors of the gravitoelec-
tric and gravitomagnetic forces in Figure 2.
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Fig. 2. Directions of the velocity of the Moon, vM , and vectors of the gravitoelectric, EMS , and gravito-
magnetic, HMS , forces for different points of the lunar orbit are shown as the Earth-Moon system orbits
the Sun.

Recently, there was a lot of discussions about whether LLR can measure the gravitomag-
netic field Hi

BC (Kopeikin, 2007a; Murphy et al, 2007a,b; Soffel et al, 2008; Williams et al,
2004b). The answer to this question is subtle and requires more profound theoretical consid-
eration involving the process of propagation of the laser pulses in a curved space-time of the
Earth-Moon system. We are hoping to discuss this topic in an other publication. Nevertheless,
what is evident already now is that equation (1.9) demonstrates a strong correlation of the grav-
itomagnetic force of each body with the choice of coordinates. For this reason, by changing the
coordinate parameter λC one can eliminate either the term (vB ×HBC)i or (vC ×HBC)i from
EIH equations of motion (1.9). It shows that the strength of the factual gravitomagnetic force
is coordinate-dependent, and, hence, a great care should be taken in order to properly interpret
the LLR ”measurement” of such gravitomagnetic terms in consistency with the covariant nature
of the general theory of relativity and the theory of astronomical measurements in curved space-
time outlined in papers (Brumberg, 1981; Synge, 1962), in the textbooks by Synge (1964), by
Infeld and Plebański (1960), and by Brumberg (1972).

1.5 The Principle of Equivalence in the Earth-Moon System

Let us discuss in this section the case of the Earth-Moon system moving in the gravitational
field of Sun neglecting other planets of the solar system. This is a three-body problem, where
two bodies - Earth (index E) and Moon (index M) - form a bounded binary system perturbed by
the tidal gravitational field of a third body - Sun (index S). Brumberg (1958, 1972) extended the
Hill-Brown theory of motion of Moon to the post-Newtonian approximation by making use of an
Euclidean translation of the barycentric coordinates of Moon to the geocenter [see also Baierlein
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(1967b)]

r = xM − xE , (1.13)

and introducing a vector of the Newtonian center of mass of the Earth-Moon system, R, in such
a way that the distance Earth-Sun – rES , and that Moon-Sun – rMS , are given by the Newtonian-
like equations

rES = R− MMr

ME + MM

, rMS = R+
MEr

ME + MM

. (1.14)

In these new variables EIH equations (1.9) for the geocentric motion of Moon and the center-of
mass of the Earth-Moon system, assumes the form

r̈ = −G (ME + MM)
r3

r +GMS

(
rES

r3ES

− rMS

r3MS

)
+
GMS

c2
(AR+BV + Cr +Dv) , (1.15)

R̈ = −G (MS + ME + MM)
ME + MM

(
GME

r3ES

rES +
GMM

r3MS

rMS

)
+
GMS

c2
(A′R+B′V + C ′r +D′v) , (1.16)

where functions A, A′, B, B′, C, C ′, D, D′ depend on relative coordinates R, r of the bodies
and their velocities V = Ṙ, v = ṙ. Exact analytic form of these functions is notoriously
sophisticated and can be found, for example, in the book of Brumberg (1991, Section 5). Let us
neglect post-Newtonian corrections to the gravitational field of the planets, Earth and Moon, and
leave only the Schwarzschild gravitational field of Sun. Then, the main terms in these functions
read

A = 8(λS − 2)
GMS

R6
(R · r) + 3(1 + λS)

V 2

R5
(R · r)− 2(1 + λS)

V · v
R3

+3λS

R · V
R5

[
2R · v + 2r · V − 5

R2
(R · V )(R · r)

]
, (1.17)

B = −2
λS − 2
R3

[
R · v + r · V − 3

R2
(R · V )(R · r)

]
, (1.18)

C = −2(λS − 2)
GMS

R4
− (1 + λS)

V 2

R3
+

3λS

R5
(R · V )2 , (1.19)

D = −2(λS − 2)
R · V
R3

, (1.20)

A′ = C , (1.21)
B′ = D , (1.22)
C ′ = 0 (1.23)
D′ = 0 , (1.24)

where parameter λS describes the gauge freedom in choosing coordinates of the Schwarzschild’s
problem for Sun (Brumberg, 1972, 1991).
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The reader should notice that the equations (1.15)-(1.24) are still EIH equations of motion in
the solar barycentric coordinates expressed in terms of the relative distances between the bodies.
Newtonian part of equation (1.15) of the orbital motion of Moon around Earth couples with
vector R of the Earth-Moon center of mass only through the tidal terms. This can be seen by
expanding the second term in right hand side of equation (1.15) in powers of r/R:

GMS

(
rES

r3ES

− rMS

r3MS

)
= −GMS

R3
[r − 3N(r ·N)] + ... , (1.25)

where dots denote small terms of the higher order of magnitude. Comparing with the Newtonian
term one can confirm that the Newtonian tidal perturbation (1.25) is smaller than the Newtonian
term by a factor of ' (MS/ME)(r/R)3.

More important is to note that the Newtonian tidal perturbation (1.15) of the lunar orbit is a
coupling of the second (quadrupole) derivative of the Newtonian gravitational potential of Sun
US = MS/R with vector r of the lunar orbit

GMS

(
riES

r3ES

− riMS

r3MS

)
=

∂2US

∂xi∂xj
rj + ... , (1.26)

where here and everywhere else the repeated (dummy) indices mean the Einstein summation
rule, for example, AαBα ≡ A0B

0 +A1B
1 +A2B

2 +A3B
3, AiBi ≡ A1B

1 +A2B
2 +A3B

3,
and so on. Equation (1.26) elucidates that the first derivatives of the solar potential does not
perturb the lunar orbit in the Newtonian approximation. The first derivatives of the potential
are associated with the affine connection (the Christoffel symbols) of the space-time manifold
in a metric theory of gravity (Landau and Lifshitz, 1975; Misner et al, 1973). Hence, their
disappearance from the Newtonian equations of the relative motion of Moon around Earth is a
consequence of the principle of equivalence. This principle states that the Christoffel symbols
of the background gravitational field can be eliminated on the world line of a particle falling
freely in this field. The Earth-Moon system can be considered in a first approximation as such a
particle, composed of Earth and Moon and located at the Earth-Moon barycenter, which falls in
the field of Sun in accordance with equation (1.16).

Structure of the post-Newtonian force in equation (1.15) seems to violate the principle of
equivalence because it contains terms, which are explicitly proportional to the Christoffel sym-
bols, which are the first derivatives of the solar gravitational potential US , coupled with velocities
of Sun and Moon. However, the principle of equivalence is exact, and must be valid not only in
the Newtonian theory but in any approximation beyond it. The contradiction can be resolved if
one investigates the residual gauge freedom of the post-Newtonian terms in equations of motion
(1.15)-(1.24) more carefully.

1.6 The Residual Gauge Freedom

The primary gauge freedom of EIH equations of motion is associated with the transformations
(1.1)-(1.2) of the barycentric coordinates of the solar system, which are parameterized by pa-
rameters ν and λ. We have noticed that the post-Newtonian perturbations in the lunar equations
of motion are made up of the Christoffel symbols, which admit a certain freedom of coordinate
transformations. This freedom remains even after fixing the coordinate parameters ν and λ in
equations 1.15), (1.16). It is associated with the fact that the Earth-Moon system moves in tidal
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gravitational field of Sun and other planets, which makes the local background space-time for
this system not asymptotically-flat. The residual freedom remains in making transformations of
the local coordinates attached to the Earth-Moon system. It induces the gauge transformation of
the metric tensor and the Christoffel symbols and changes the structure of the post-Newtonian
terms in EIH equations of motion of the Earth-Moon system. The residual gauge freedom is
explicitly revealed in the linear dependence of the post-Newtonian force in equation (1.15) on
the orbital velocity V of the Earth-Moon system with respect to Sun. This dependence seems
to point out to violation of the principle of relativity according to which an observer can not
determine one’s velocity of motion with respect to an external coordinate frame by making use
of local measurements that are not sensitive to the curvature of space-time (the second deriva-
tives of the solar gravitational potential). LLR is a local measurement technique, which does
not observe Sun directly, and, hence, should not be able to determine velocity of the Earth-Moon
system with respect to it as it appears in equations (1.15) because those velocity-dependent terms
are not gauge-invariant and have no absolute physical meaning.

Thus, we face the problem of investigation of the residual gauge freedom of the lunar equa-
tions of motion, which goes beyond the choice of the barycentric coordinates by fixing a specific
value of the gauge parameter λ in equations (1.17)-(1.22). This freedom is actually associ-
ated with the choice of the local coordinates of the Earth-Moon barycentric frame as well as
the geocentric and selenocentric reference frames. Proper choice of the local coordinates re-
moves all non-physical degrees of freedom from the metric tensor and eliminates spurious (non-
measurable) terms from the post-Newtonian forces in the relative equations of motion of Moon.
If one ignores the residual gauge freedom and operates, for example, with the Newtonian defini-
tions (1.13)-(1.14) of the relative coordinates between the bodies, the gauge-dependent terms will
infiltrate the equations of motion causing possible misinterpretation of LLR observations. This
problem is well-known in cosmology where the theory of cosmological perturbations is designed
essentially in terms of the gauge-independent variables so that observations of various cosmo-
logical effects are not corrupted by the spurious, coordinate-dependent signals (Mukhanov et al,
1992). Similarly to cosmology, the residual gauge degrees of freedom existing in the relativistic
three-body problem, can lead to misinterpretation of various aspects of gravitational physics of
the Earth-Moon system (Kopeikin, 2008, 2007a), thus, degrading the value of extremely accurate
LLR measurements for testing fundamental physics of space-time and deeper exploration of the
lunar interior (Kopeikin et al, 2008).

The residual gauge freedom of the three body problem (Sun-Earth-test particle) was studied
by Brumberg and Kopejkin (1989b), Klioner and Voinov (1993), and Damour et al (1994). They
found that the post-Newtonian equations of motion of a test body (artificial satellite) can be
significantly simplified by making use of a four-dimensional space-time transformation from the
solar barycentric coordinates xα = (ct,x), to the geocentric coordinates Xα = (cT,X)

T = t+
1
c2
A(t, rE) +

1
c4
B(t, rE) +O

(
1
c5

)
, (1.27)

Xi = xi − xiE(t) +
1
c2
Ci(t, rE) +O

(
1
c4

)
, (1.28)

where the gauge functions A(t,x), B(t,x), Ci(t,x) are polynomials of the geocentric distance
rE = x − xE(t) of the field point x from Earth’s geocenter, which barycentric coordinates
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are xE(t). Coefficients of these polynomials are functions of the barycentric time t that are
determined by solving a system of ordinary differential equations, which follow from the gravity
field equations and the tensor law of transformation of the metric tensor from one coordinate
chart to another (Kopejkin, 1988).

Contrary to the test particle, Moon is a massive body, which makes the exploration of the
residual gauge freedom of the lunar motion more involved. This requires introduction of one
global (SSB) frame and three local reference frames associated with the Earth-Moon barycenter,
the geocenter, and the center of mass of Moon (selenocenter). It should be clearly understood
that any coordinate system can be used for processing and interpretation of LLR data since any
viable theory of gravity obeys the Einstein principle of relativity, according to which there is no
preferred frame of reference (Fock, 1959; Landau and Lifshitz, 1975; Misner et al, 1973). For
this reason, we do not admit a privileged coordinate frame in rendering analysis of the LLR data
irrespectively of its accuracy. It means that our approach is insensitive to PPN parameters α1,
α2, α3, etc., which describe the preferred frame and preferred location effects in gravitational
physics. Accepting the Einstein principle of relativity leads to discarding any theory of gravity
based on a privileged frame (aether) (Eling et al, 2006) or admitting a violation of the Lorentz
invariance (Kostelecky, 2008). The class of scalar-tensor theories of gravity, which have two
PPN parameters - β and γ (Damour and Esposito-Farese, 1992; Will, 1993), is in agreement with
the principle of relativity and it will be used in this paper.

The principle of relativity also assumes that a randomly chosen, separate term in the post-
Newtonian equations of motion of massive bodies and/or light can not be physically interpreted
as straightforward as in the Newtonian physics. The reason is that the post-Newtonian transfor-
mations (1.1)-(1.2) and (1.27)-(1.28) of the barycentric and local coordinates, change the form of
the equations of motion so that they are not form-invariant. Therefore, only those post-Newtonian
effects, which do not depend on the frame transformations can have direct physical interpreta-
tion. For example, the gauge parameters ν and λ entering transformations (1.1)-(1.2) and EIH
equations (1.15)-(1.24) can not be determined from LLR data irrespectively of their accuracy be-
cause these parameters define the barycentric coordinates and can be fixed arbitrary by observer
without any relation to observations. This point of view has been argued by some researchers
who believe that separate terms in the barycentric EIH equations of motion of Moon do have
direct physical meaning, at least those of them, which are associated with gravitomagnetism
(Nordtvedt, 1988, 2001; Soffel et al, 2008). These gravitomagnetic terms can be easily identi-
fied in quations (1.15)–(1.16) as being proportional to the velocity of motion of Moon, v and
that of the Earth-Moon barycenter V . Such orbital velocity-dependent terms in equations of
motion of gravitating bodies are associated with the extrinsic gravitomagnetic field as opposed
to the intrinsic gravitomagnetism caused by rotational currents of matter (Kopeikin, 2006). It is
remarkable that all the orbital velocity-dependent terms can be eliminated from the orbital equa-
tions of motion (1.15)–(1.16) by choosing the Gullstrand-Painlevé (GP) coordinates (Gullstrand,
1922; Painlevé, 1921) with λS = 2, which makes the equation coefficients B = D = B′ = 0. It
means that the extrinsic gravitomagnetic force, which is directly caused by the orbital motions of
Earth and Moon, can not be measured by LLR technique (Kopeikin, 2007a), – only the tidal ex-
trinsic gravitomagnetic field of Sun can be measured (Ciufolini, 2008). Papers (Ciufolini, 2008;
Iorio, 2008) discuss whether the intrinsic gravitomagnetism can be measured with LLR or not.



408 Reference Frames for Advanced Theory of the Lunar Motion

1.7 Towards a New Lunar Ephemeris

Existing computer-based theories of the lunar ephemeris (Chapront-Touze and Chapront, 1983;
Li et al, 2008; Pitjeva, 2005; Standish, 1998) consist of three major blocks:

(1) the barycentric EIH equations (1.3)-(1.5) of orbital motion of Moon, Earth, Sun, and other
planets of the solar system with the gauge parameters ν = 1/2, λ = 0 - the standard PPN
coordinates;

(2) the Newtonian rotational equations of motion of Moon and Earth;

(3) the barycentric post-Newtonian equations of motion for light rays propagating from laser
to CCR on Moon and back in standard coordinates with the gauge parameters ν = 1,
λ = 0.

This approach is straightforward but it does not control gauge-dependent terms in EIH equations
of motion associated with the choice of the gauge-fixing parameters ν and λ. Particular disad-
vantage of the barycentric approach in application to the lunar ephemerides is that it mixes up the
post-Newtonian effects associated with the orbital motion of the Earth-Moon barycenter around
Sun with those, which are attributed exclusively to the relative motion of Moon around Earth.
This difficulty is also accredited to the gauge freedom of the equations of motion in three-body
problem and was pointed out in papers (Brumberg and Kopejkin, 1989b; Damour et al, 1994; Tao
et al, 2000). Unambiguous decoupling of the orbital motion of the Earth-Moon barycenter from
the relative motion of Moon around Earth with apparent identification of the gauge-dependent de-
grees of freedom in the metric tensor and equations of motion is highly desirable in order to make
the theory more sensible and to clean up the LLR data processing software from the fictitious
coordinate-dependent perturbations, which do not carry out any physically-relevant information
and may accumulate errors in numerical ephemerides of Moon.

This goal can be rationally achieved if the post-Newtonian theory of the lunar motion is
consistently extended to account for mathematical properties offered by the scalar-tensor theory
of gravity and the differential structure of the space-time manifold. Altogether it leads us to
the idea that besides the global barycentric coordinates of the solar system one has to introduce
three other local reference frames. The origin of these frames should be fixed at the Earth-Moon
system barycenter, Earth’s center of mass (geocenter), and Moon’s center of mass (selenocenter).
We distinguish the Earth-Moon barycenter from the geocenter because Moon is not a test particle,
thus, making the Earth-Moon barycenter displaced from the geocenter along the line connecting
Earth and Moon and located approximately 1710 km below the surface of Earth. Mathematical
construction of each frame is reduced to finding a metric tensor by means of solution of the
gravity field equations with an appropriate boundary condition (Fock, 1957, 1959). The gauge
freedom of the three-body problem is explored by means of matching the set of the metric tensors
defined in each reference frame in the overlapping domains of their applicability associated with
the specific choice of boundary conditions imposed in each frame on the metric tensor. This
matching procedure is an integral part of the equations defining the local differential structure of
the manifold (Dubrovin et al, 1984; Eisenhart, 1947), which proceeds from a requirement that
the overlapping space-time domains covered by the local reference frames, are diffeomorphic.

The primary objective of the multi-frame post-Newtonian theory of the lunar ephemeris is
the development of a new set of analytic equations to revamp the LLR data processing software
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in order to suppress the spurious gauge-dependent solutions, which may overwhelm the exist-
ing barycentric code at the millimeter accuracy of LLR measurements, thus, plunging errors in
the interpretation of selenophysics, geophysics and fundamental gravitational physics. Careful
mathematical construction of the local frames with the post-Newtonian accuracy will allow us
to pin down and correctly interpret all physical effects having classical (lunar interior, Earth
geophysics, tides, asteroids, etc.) and relativistic nature. The gauge freedom in the three-body
problem (Earth-Moon-Sun) should be carefully examined by making use of a scalar-tensor the-
ory of gravity and the principles of the analytic theory of relativistic reference frames in the solar
system (Brumberg and Kopejkin, 1989a; Damour et al, 1991; Kopejkin, 1988) that was adopted
by the XXIV-th General Assembly of the International Astronomical Union (Kopeikin, 2007b;
Soffel et al, 2003) as a standard for data processing of high-precision astronomical observations.

The advanced post-Newtonian dynamics of the Sun-Earth-Moon system must include the
following structural elements:

1. construction of a set of astronomical reference frames decoupling orbital dynamics of the
Earth-Moon system from the rotational motion of Earth and Moon with the full account of
the post-Newtonian corrections and elimination of the gauge modes;

2. relativistic definition of the integral parameters like mass, the center of mass, the multipole
moments of the gravitating bodies;

3. derivation of the relativistic equations of motion of the center-of-mass of the Earth-Moon
system with respect to the barycentric reference frame of the solar system;

4. derivation of the relativistic equations of motion of Earth and Moon with respect to the
reference frame of the Earth-Moon system;

5. derivation of the relativistic equations of motion of CCR on Moon (or a lunar orbiter that
is deployed with CCR) with respect to the selenocentric reference frame;

6. derivation of the relativistic equations of motion of a laser with respect to the geocentric
reference frame.

These equations must be incorporated to LLR data processing software operating with observable
quantities, which are proper times of the round trip of the laser pulses between the laser on Earth
and CCR on Moon. The computational advantage of the new approach to the lunar ephemeris
is that it separates clearly physical effects from the choice of coordinates. This allows us to get
robust measurement of true physical parameters of the LLR model and give them direct physical
interpretation. The new approach is particularly useful for comparing different models of the
lunar interior and for making the fundamental test of general theory of relativity.

There is a practical consideration when we do LLR computer model improvements - a change
in the LLR code must have some advantages either for computation, or accuracy, or a more com-
plete and detailed model including adding solution parameters. Spacecraft missions use the out-
put of the orbit integrator and that imposes another practical matter. The output ephemeris must
be consistent with the conventions used in the spacecraft orbit determination program (Moyer,
2003). That means that the new LLR code must be compatible with the solar system barycentric
frame, scale and time.
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One should also make a distinction between analytical models, which play an important
role in understanding of fundamental gravitational physics, and models for numerical computa-
tion/prediction of astronomical events and phenomena. For the numerical computations it basi-
cally does not matter if there are gauge-dependent terms that cancel so long as the computations
are internally consistent. For understanding what is going on analytically and how gravitational
physics actually works, it does matter what terms cancel and what does not. The analytic LLR
model, which we are going to work out, pursues mostly the goals of the fundamental physics. It
will refine our understanding of the test of general relativity in the Earth-Moon system and the
physics of the lunar interior that are the primary concerns of the scientific exploration.

1.8 Main Objectives of The Present Paper

This paper deals with the precise analytic construction of the relativistic reference frames in
the Earth-Moon system moving in the field of Sun and other planets of the solar system. We
shall also identify the post-Newtonian gauge modes and eliminate them from the solutions of
the gravity field equations. Although our final goal is to develop a practical LLR code having
accuracy of one millimeter, the overall development will be as close to the covariant spirit of
modern physical theories as possible.

First of all, we discuss the scalar-tensor theory of gravity in Section 2. We formulate the field
equations for the metric tensor and the scalar field and describe the model of matter used in our
analytic calculations. Powerful mathematical approach developed for calculation of motion of
compact astrophysical objects, like neutron stars and/or black holes, employs the model of matter
in the form of the ”multipole moments”, which are the integrals over the volume of the bodies
from the unspecified ”effective” tensor of energy-momentum (Blanchet, 2002). The matter in
this approach is ”skeletonized” to push calculations as much forward as possible to the non-
linear regime of the gravity field equations. Similar matter ”skeleton” is used in a covariant
derivation of equations of motion proposed by Dixon (1979). These approaches are useless for
development of the LLR model because one has to know the internal motion of matter inside
Earth and Moon in order to describe the motion of the laser station and CCR with respect to
Earth and to Moon respectively. Hence, we use the tensor of energy-momentum specified by a
continuous distribution of matter’s density, current, and stress.

Theoretical principles of the post-Newtonian celestial mechanics of N-body system are for-
mulated in Section 3. We explain the need of separation of the problem of motion in the internal
and external counterparts and the post-Newtonian approximation scheme. Current mathematical
knowledge of the post-Newtonian approximations is rather outstanding (Blanchet et al, 2005)
and we rely upon it to secure the consistency of our derivation.

Post-Newtonian reference frames are constructed in Section 4. They include (see Figure 3)
the solar system barycentric (SSB) frame, the Earth-Moon barycentric (EMB) frame, the geo-
centric (GRF) frame, and the selenocentric (SRF) frame. Each of these frames is associated
with the world line of the center of mass of the corresponding gravitating system or a gravitating
body. The hierarchical structure of the reference frames corresponds to the hierarchy of masses
in the problem under consideration. Each frame has its own region of mathematical applicability,
which is reflected in a specific mathematical structure of solutions of the field equations describ-
ing behavior of the metric tensor and the scalar field in the corresponding coordinate charts.
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Fig. 3. Various reference frames used in the advanced post-Newtonian theory of the lunar motion based on
the corresponding hierarchy of the reference frames in the Solar System. Each reference frame describes
space-time in terms of its own metric tensor.

The post-Newtonian coordinate transformations between the frames are derived in Section
5. The derivation is based on a simple fact that the coordinate charts of the frames overlap
in a ceratin region of the space-time manifold. Hence, the metric tensor and the scalar field
expressed in different coordinates, must admit a smooth tensor transformation to each other. This
transformation of the physical fields establishes a system of ordinary differential and algebraic
equations for the functions entering the coordinate transformation. The overall procedure is
called the method of matched asymptotic expansions, which was used in general relativity for
the first time by D’Eath (1975a,b) and applied in the theory of astronomical reference frames in
our work (Kopejkin, 1988).

Gauge-independent derivation of the post-Newtonian equations of motion of Moon and Earth
in various reference frames as well as a systematic post-Newtonian algorithm of LLR data pro-
cessing with the precision of 1 millimeter will be given elsewhere.



412 Reference Frames for Advanced Theory of the Lunar Motion

2 The Scalar-Tensor Theory of Gravity

Post-Newtonian celestial mechanics describes orbital and rotational motions of extended bodies
on a curved space-time manifold described by the metric tensor obtained as a solution of the
field equations of a metric-based theory of gravitation in the slow-motion and weak-gravitational
field approximation. Class of viable metric theories of gravity ranges from the canonical general
theory of relativity (Landau and Lifshitz, 1975; Misner et al, 1973) to a scalar-vector-tensor the-
ory of gravity recently proposed by Bekenstein (2007) for description the motion of galaxies at
cosmological scale. It is inconceivable to review all these theories in the present paper and we
refer the reader to Will (2006) for further details. We shall build the theory of lunar motion and
LLR in the framework of a scalar-tensor theory of gravity introduced by Jordan (1949, 1959)
and Fierz (1956), and re-discovered independently by Brans and Dicke (1961); Dicke (1962a,b).
This theory extends the Lagrangian of general theory of relativity by introducing a long range
scalar field minimally coupled with gravity field causing a deviation of metric gravity from pure
geometry. The presence of the scalar field highlights the geometric role of the metric tensor
and makes physical content of the gravitational theory more rich. Equations of the scalar-tensor
theory of gravity have been used in NASA Jet Propulsion Laboratory (JPL) and other interna-
tional space centers for construction of the barycentric ephemerides of the solar system bodies
(Chapront-Touze and Chapront, 1983; Li et al, 2008; Pitjeva, 2005; Standish, 1998). We adopt
the scalar-tensor theory of gravity for developing the advanced post-Newtonian dynamics of the
Earth-Moon system.

2.1 The Field Equations

Gravitational field in the scalar-tensor theory of gravity is described by the metric tensor gαβ and
a long-range scalar field φ loosely coupled with gravity by means of a function θ(φ). The field
equations in the scalar-tensor theory are derived from the action (Will, 1993)

S =
c3

16π

∫ (
φR− θ(φ)

φ,αφ,α
φ

− 16π
c4
L(gµν , Ψ)

)√
−g d4x , (2.1)

where the first, second and third terms in the right side of equation (2.1) are the Lagrangian
densities of gravitational field, scalar field and matter respectively, g = det[gαβ ] < 0 is the
determinant of the metric tensor gαβ , R is the Ricci scalar, Ψ indicates dependence of the matter
Lagrangian L on the matter fields, and θ(φ) is the coupling function, which is kept unspecified
for the purpose of further parametrization of the deviation from general relativity. This makes
the theory, we are working with, to be sufficiently universal.

For the sake of simplicity we postulate that the self-coupling potential of the scalar field is
identically zero so that the scalar field does not interact with itself. This is because this paper
deals with a weak gravitational field and one does not expect that this potential can lead to
measurable relativistic effects within the boundaries of the solar system (Will, 2006). However,
the self-coupling property of the scalar field leads to its non-linearity, which can be important in
strong gravitational fields of neutron stars and black holes, and its inclusion to the theory may
lead to interesting physical consequences (Damour and Esposito-Farese, 1992, 1993).

Field equations for the metric tensor are obtained by variation of action (2.1) with respect to
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gαβ . It yields (Will, 1993)

Rµν =
8π
φc2

(
Tµν −

1
2
gµνT

)
+ θ(φ)

φ,µφ,ν
φ2

+
1
φ

(
φ;µν +

1
2
gµν gφ

)
, (2.2)

where

g ≡ gµν
∂2

∂xµ∂xν
− gµνΓαµν

∂

∂xα
(2.3)

is the Laplace-Beltrami operator (Eisenhart, 1947; Misner et al, 1973), and Tµν is the tensor
of energy-momentum (TEM) of matter comprising the N-body (solar) system. The variational
principle defines it by equation (Landau and Lifshitz, 1975)

c2

2
√
−g Tµν ≡

∂(
√
−gL)

∂gµν
− ∂

∂xα
∂(
√
−gL)

∂gµν,α
. (2.4)

Equation for the scalar field is obtained by variation of action (2.1) with respect to φ. After
making use of the contracted form of equation (2.2) it yields (Will, 1993)

gφ =
1

3 + 2θ(φ)

(
8π
c2

T − φ,α φ,α
dθ

dφ

)
. (2.5)

In what follows, we shall also utilize another version of the Einstein equations (2.2) which
is obtained after conformal transformation of the metric tensor (Damour and Esposito-Farese,
1992)

g̃µν =
φ

φ0
gµν , g̃µν =

φ0

φ
gµν . (2.6)

Here φ0 denotes the background value of the scalar field that may be a gradually-changing func-
tion of time due to the cosmological expansion (Will, 1993). It is worth noting that the de-
terminant g̃ of the conformal metric tensor relates to the determinant g of the metric gµν as
g̃ = (φ/φ0)4g. The conformal transformation of the metric tensor leads to the conformal trans-
formation of the Christoffel symbols and the Ricci tensor. Denoting the conformal Ricci tensor
by R̃µν , one can reduce the field equations (2.2) to more simple form (Damour and Esposito-
Farese, 1992)

R̃µν =
8π
φc2

(
Tµν −

1
2
gµνT

)
+

2θ(φ) + 3
2φ2

φ,µ φ,ν . (2.7)

The metric tensor gµν is called the physical (Jordan-Fierz) metric (Damour and Esposito-
Farese, 1992) because it is used for making real measurements of time intervals, angles, and
space distances. The conformal metric g̃µν is called the Einstein metric (Damour and Esposito-
Farese, 1992). Technically, it is more convenient for doing mathematical calculations than the
Jordan-Fierz metric. Indeed, if the last (quadratic with respect to the scalar field) term in equation
(2.7) is omitted, it becomes similar to the Einstein equations of general relativity. In this paper,
we prefer to construct the parameterized post-Newtonian theory of the lunar motion directly
in terms of the physical Jordan-Fierz metric. The conformal metric will be used in discussing
propagation of light and the lunar laser ranging somewhere else.
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2.2 The Energy-Momentum Tensor

Gravitational field and matter, which is a source of this field, are tightly connected via the Bianchi
identity of the field equations for the metric tensor (Landau and Lifshitz, 1975; Misner et al,
1973). The Bianchi identity makes four of ten components of the metric tensor fully independent
so that they can be chosen arbitrary. This freedom is usually fixed by picking up a specific
gauge condition, which imposes four restrictions on four components of the metric tensor but
no restriction on the scalar field. The gauge condition is associated with a specific class of
coordinates, which are used for solving the field equations. The Bianchi identity also imposes
four limitations on the tensor of energy-momentum of matter, which are microscopic equations
of motion of the matter (Landau and Lifshitz, 1975; Misner et al, 1973). Thus, in order to find the
gravitational and scalar fields, and determine motion of the gravitating bodies in N-body (solar)
system one has to make several steps:

(1) to specify a model of matter composing of the N-body system,

(2) to specify the gauge condition imposed on the metric tensor gαβ ,

(3) to simplify (reduce) the field equations by making use of the gauge freedom,

(4) to solve the reduced field equations,

(5) to derive equations of motion of the bodies from the conditions of compatibility of the
reduced field equations with the gauge conditions.

We assume that the solar system is isolated, which means that we neglect any influence of
our galaxy on the solar system and ignore cosmological effects. This makes the space-time
asymptotically-flat so that the barycenter of the solar system can be set at rest. We assume that
matter of the solar system is described by tensor of energy-momentum of matter with equation of
state which is kept arbitrary. There were numerous discussions in early times of development of
relativistic celestial mechanics about the role of the energy-momentum tensor of matter in deriva-
tion of equations of motion of gravitating bodies. There are two basic models of matter - the field
singularity and a continuous distribution of matter. The model of bodies as field singularities was
advocated by Einstein et al (1938) and Infeld and Plebański (1960). The model of bodies con-
sisting of a continuous distribution of matter was preferred by Lorentz and Droste (1917a,b,
1937), Fock (1959), Chandrasekhar and Nutku (1969), Chandrasekhar and Esposito (1970), and
others. Damour (1983) and Schäfer (1985) succeeded in derivation relativistic equations of mo-
tion of self-gravitating bodies, which were modeled by distributions (delta-functions), up to 2.5
post-Newtonian approximation. However, the same equations were derived by Kopeikin (1985),
Grishchuk and Kopeikin (1983, 1986) for self-gravitating bodies consisting of perfect fluid [see
comparison of two approaches in Damour (1989)]. It is pretty clear now that any model of mat-
ter is appropriate for analysis of the problem of motion of self-gravitating and extended bodies,
if mathematical analysis is performed in consistency with physical limitations on the bodies im-
posed by the field equations. Our goal is to construct a post-Newtonian theory of motion of Earth
and Moon with respect to each other and with respect to the other bodies of the solar system. This
relativistic analysis should match with the classic models of matter adopted in dynamical astron-
omy and geophysics. For this reason, we shall model the solar system bodies as consisting of the
continuous distribution of matter.



The Scalar-Tensor Theory of Gravity 415

Following Fock (1957, 1959) and Papapetrou (1951a,b) we define the energy-momentum
tensor as

c2Tαβ = ρ
(
c2 + Π

)
uαuβ + παβ , (2.8)

where ρ and Π are the density and the specific internal energy of matter in the matter’s co-moving
frame, uα = dxα/cdτ is the dimensionless 4-velocity of the matter with τ being the proper time
along the world line of matter’s volume element, and παβ is a symmetric stress tensor being
orthogonal to the 4-velocity of matter

uαπαβ = 0 . (2.9)

Equation (2.9) means that the stress tensor has only spatial components in the frame co-moving
with matter. If one neglects contribution of the off-diagonal components of the stress tensor, it is
reduced to a stress tensor of a perfect fluid

παβ =
(
gαβ + uαuβ

)
p , (2.10)

where p is an isotropic pressure. Perfect-fluid approximation is used, for example, in PPN for-
malism (Will, 1993) but it is not sufficient in the Newtonian theory of motion of the solar sys-
tem bodies because the tidal and dissipative forces affect their orbital and rotational motions
[see, for example, Zharkov and Trubitsyn (1978), Markov (1996), Bois and Journet (1993),
Christodoulidis et al (1988) and Darwin (1963)]. It is not difficult to incorporate the general
model of the stress tensor to the post-Newtonian approximations [see, for example, Damour et al
(1991) and Kopeikin and Vlasov (2004)]. Therefore, we discard the model of the perfect-fluid
and incorporate the anisotropic stresses to the post-Newtonian theory of motion of the solar sys-
tem bodies.

We have noted that due to the Bianchi identity the energy-momentum tensor is conserved,
that is obeys to the microscopic equation of motion

Tαβ ;β = 0 , (2.11)

where the semicolon denotes the covariant derivative and repeated indices mean the Einstein
summation rule. The conservation of the energy-momentum tensor leads to the equation of
continuity (Misner et al, 1973)

(ρuα);α =
1√
−g
(
ρ
√
−guα

)
,α

= 0 , (2.12)

and to the second law of thermodynamics that is expressed as a differential relationship between
the specific internal energy and the stress tensor (Misner et al, 1973)

ρuαΠ,α + παβuα;β = 0 . (2.13)

These equations set certain limitations on the structure of the tensor of energy-momentum. They
will be employed later for solving the field equations and for derivation of the equations of motion
of the bodies.
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3 Theoretical Principles of the Post-Newtonian Celestial Mechanics

3.1 External and Internal Problems of Motion

The post-Newtonian theory of motion of extended celestial bodies described in this paper is based
on the scalar-tensor theory of gravity and is a natural extension of PPN formalism for massive
point-like particles as described by Will and Nordtvedt (1972), Nordtvedt and Will (1972), and
Will (1993). PPN formalism contains 10 parameters characterizing different type of deviations
from general relativity. It also assumes the existence of a privileged PPN coordinate frame vio-
lating the principle of relativity for the metric tensor. PPN privileged frame is associated with the
isotropy of the cosmic microwave background radiation. Solar system is moving with respect to
this frame.

The present paper does not deal with the privileged-frame effects as the scalar-tensor theory
of gravity is Lorentz-invariant. For this reason, we can assume the solar system frame being at
rest with the origin located at the solar system barycenter. Heliocentric frame does not coincide
with the SSB frame as Sun moves around the SSB at the distances not exceeding two solar radii
(Hardorp, 1985). The SSB frame is global with the gravitational field described by the metric
tensor, which approaches the Minkowskian metric ηαβ at infinity. It means that the global coor-
dinates represent the inertial coordinates of the Minkowskian space-time at infinity. Harmonic
coordinates are particularly useful as they simplify the Einstein equations and reduce them to the
hyperbolic system of equations (Anderson and Decanio, 1975). For this reason, harmonic coordi-
nates were advocated by Fock (1959) who believed in their physical privilege. This point of view
was confronted by Infeld and Plebański (1960) and is currently considered as outdated (Landau
and Lifshitz, 1975; Misner et al, 1973). Adequate physical description of the global SSB frame
is the primary goal of the external problem of relativistic celestial mechanics (Damour, 1989;
Fock, 1959). However, the global SSB frame is not sufficient for solving the problem of motion
of extended bodies at the post-Newtonian approximation for two reasons.

First, the motion of matter is naturally split in two components – the orbital motion of the
center of mass of each body and the internal motion of matter with respect to the body’s center of
mass. The SSB frame is fully adequate for describing the orbital dynamics. However, description
of the internal motion of matter demands the introduction of a local frame attached to each
gravitating body. If a group of the bodies form a gravitationally bounded sub-system, like the
Earth-Moon or the sub-system of satellites of major planets, it is natural to introduce the local
frame associated with the center of mass of the sub-system. This will allow us to separate the
dynamics of the relative motion of the bodies inside the sub-system from the orbital motion of
the center of mass of the sub-system itself with respect to the SSB frame. Adequate physical
description of the internal motions at the post-Newtonian level of accuracy constitutes the main
goal of the internal problem of relativistic celestial mechanics (Damour, 1989; Fock, 1959).

Second, the post-Newtonian celestial mechanics is tightly connected to the geometric prop-
erties of the space-time manifold being characterized by the metric tensor, the affine connection
(the Christoffel symbol), the curvature tensor and topology. Thus, relativistic description of mo-
tion of the celestial bodies is to reflect the diffeomorphic properties of the manifold’s geometric
structure associated with the set of overlapping coordinate charts and corresponding transforma-
tions between them (Arnold, 1995; Dubrovin et al, 1984). The metric tensor in a local frame
of each body must match with the tidal gravitational field of external bodies, hence, it diverges
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as distance from the body goes to infinity. Therefore, the local coordinates cover only a limited
domain (world tube) in space-time around the body under consideration, and the process of their
construction must be reconciled with the principle of equivalence (Kopejkin, 1988; Thorne and
Hartle, 1985).

Newtonian mechanics of N-body system describes translational motion of the bodies in a
single global coordinate frame, xi, with the origin placed at the center of mass of all bodies.
Local coordinates, wi, are used for description of rotational motion of the bodies, and they are
constructed by a simple spatial translation of the global coordinates to the center of mass of each
body under consideration. Time in the Newtonian theory is absolute, and, hence, does not change
when one transforms the global to local coordinates. Newtonian space is also absolute, which
makes the difference between the global and local coordinates physically insignificant.

The theory changes dramatically as one switches from the Newtonian concepts to a consistent
relativistic theory of gravity. One still needs a global coordinate frame to describe translational
motion of the bodies with respect to one another and the local frames for description of the inter-
nal processes inside the bodies. However, there is no longer the absolute time and the absolute
space, which are replaced with a Riemannian space-time manifold and a rather complicated set
of relativistic differential equations for geometric (gravitational) variables and other fields. Con-
struction of the post-Newtonian global and local frames is now a matter of boundary conditions
imposed on the field equations (Fock, 1959). The principle of relativity should be satisfied when
the law of transformation from the global to local coordinates associated with each body (or a
sub-system of the bodies) is derived. Not only should it be consistent with the Lorentz transfor-
mation but must account for the gauge freedom of the relativistic theory of gravity as well. Time
and spatial coordinates are transformed simultaneously making up a class of four-dimensional
coordinate transformations (Soffel et al, 2003).

3.2 Post-Newtonian Approximations

3.2.1 Small Parameters

Field equations (2.2) and (2.5) of the scalar-tensor theory of gravity represent a system of eleventh
non-linear differential equations in partial derivatives. The challenge is to find their solution for
the case of N-body system represented by Sun and planets which are not considered as test bod-
ies. Exact solution of this problem is not known and may not exist. Hence, one has to resort
to approximation methods. Two basic methods are known: the post-Minkowskian and the post-
Newtonian approximations (Damour, 1989). Post-Newtonian approximations assume that matter
moves slowly and its gravitational field is weak everywhere – the conditions, which are satisfied
within the solar system. For this reason, we use the post-Newtonian approximations in this paper.

Post-Newtonian approximations are based on assumption that expansion of the metric tensor
in the near zone of a source of gravity can be done in inverse powers of the fundamental speed
c that is equal to the speed of light in vacuum. This expansion may be not analytic in higher
post-Newtonian approximations in a certain class of coordinates (Blanchet and Damour, 1986;
Kates and Kegeles, 1982). Exact formulation of a set of basic axioms required for doing the
post-Newtonian expansion was given by Rendall (1992). Practically, it requires to have several
small parameters characterizing the source of gravity. They are: εi ∼ vi/c, εe ∼ ve/c, and
ηi ∼ Ui/c

2, ηe ∼ Ue/c
2, where vi is a characteristic velocity of motion of matter inside a body,
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ve is a characteristic velocity of the relative motion of the bodies with respect to each other, Ui
is the internal gravitational potential of each body, and Ue is the external gravitational potential
between the bodies. If one denotes a characteristic radius of a body as L and a characteris-
tic distance between the bodies as R, the internal and external gravitational potentials will be
Ui ' GM/L and Ue ' GM/R, where M is a characteristic mass of the body. Due to the virial
theorem of the Newtonian gravity (Landau and Lifshitz, 1975) the small parameters are not in-
dependent. Specifically, one has ε2i ∼ ηi and ε2e ∼ ηe. Hence, parameters εi and εe are sufficient
in doing post-Newtonian approximations. Because within the solar system these parameters do
not significantly differ from each other, we shall not distinguish between them when doing the
post-Newtonian iterations. In what follows, we shall use notation ε ≡ 1/c to mark the presence
of the fundamental speed c in the post-Newtonian terms.

Besides the small relativistic parameters ε and η, post-Newtonian approximations utilize one
more small parameter. This parameter is δ = L/R, and it characterizes dependence of the grav-
itational field outside the bodies on their internal structure and shape. Parameter δ has no direct
relationship to relativity unless the bodies are not compact astrophysical objects like neutron
stars or black holes. This is the case of strong gravitational field when the size L of the body
approaches its gravitational radius, L ' rg = (2GM/c2). In this situation δ ' ηe ' ε2e making
post-Newtonian approximations more laborious.

It is well-known that in the Newtonian mechanics gravitational field of a spherically-symmetric
body is the same as the field of a single point-like particle having the same mass as the body
(Chandrasekhar, 1987). This is what Damour calls the effacing principle (Damour, 1983, 1989).
It suggests that for spherically-symmetric bodies parameter δ = L/R does not play any role in
the Newtonian approximation. Our study (Kopeikin and Vlasov, 2004, 2006) reveals that the ef-
facing principle is violated in the first post-Newtonian approximation of the scalar-tensor theory
of gravity so that terms of the order of (β−1)ε2δ2 appear in the translational equations of motion
of spherically-symmetric bodies.

Notice that in general relativity, where the PPN parameter β = 1, the effacing principle
in equations of motion is violated only by terms of the order of ε2δ4 (Kopeikin and Vlasov,
2004) as all terms of the order ε2δ2 can be eliminated after making an appropriate choice of
the center of mass of the bodies (Kopeikin and Vlasov, 2004). For compact relativistic stars
ε2δ4 ' ε10, which makes the first post-Newtonian approximation for this objects much smaller
than 2.5 post-Newtonian approximation (∼ ε5), where the radiation-reaction force due to emis-
sion of gravitational waves appears for the first time (Damour, 1983; Kopeikin, 1985; Schäfer,
1985). This remark corrects Damour’s consideration on the compatibility of different orders
of post-Newtonian approximations [see Damour (1989, pages 163 and 169)] and fully justifies
our result of the post-Newtonian calculation of the gravitational radiation-reaction force by the
Fock-Chandrasekhar method (Grishchuk and Kopeikin, 1983, 1986; Kopeikin, 1985).

If the bodies are not spherically-symmetric, parameter δ appears in the Newtonian and post-
Newtonian approximations as a result of expansion of gravitational field in multipoles. The size
of the multipole of multipolarity n depends on the parameter of non-sphericity of the body, Jn,
related to the elastic properties of matter, which are characterized for a self-gravitating body by
Love’s numbers κn. Generally, they are different for each multipole (Cheng, 1991; Getino, 1993;
Zharkov and Trubitsyn, 1978). The present paper will account for all gravitational multipoles of
the solar system bodies without making finite truncation of the multipolar series.
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3.2.2 The Post-Newtonian Series

One assumes that the scalar field can be expanded in a power series around its background value
φ0, that is

φ = φ0(1 + ζ) , (3.1)

where ζ is a dimensionless perturbation of the scalar field around its background value. In
principle, the background value φ0 of the scalar field can depend on time due to cosmological
expansion of the universe that may be interpreted as a secular change in the universal gravitational
constant G (see below). According to theoretical expectations (Damour and Nordtvedt, 1993)
and experimental data (Will, 1993, 2006) the post-Newtonian perturbation ζ of the scalar field
must have a very small magnitude, so that we can expand all quantities depending on the scalar
field in the Taylor series using the absolute value of ζ as a small parameter. In particular, the
post-Newtonian decomposition of the coupling function θ(φ) can be written as

θ(φ) = ω + ω′ ζ +O(ζ2) , (3.2)

where ω ≡ θ(φ0), ω′ ≡ (dθ/dζ)φ=φ0
, and we impose the boundary condition such that ζ

approaches zero as the distance from the solar system grows to infinity.
We look for solution of the field equations (2.5), (2.2) in the form of a Taylor expansion of

the metric tensor and the scalar field with respect to parameter ε ≡ 1/c such that

gαβ = ηαβ + ε
(1)

h αβ +ε2
(2)

h αβ +ε3
(3)

h αβ +ε4
(4)

h αβ +O(ε5) . (3.3)

The generic post-Newtonian expansion of the metric tensor is not analytic (Blanchet and Damour,
1986; Damour, 1989; Kates and Kegeles, 1982). However, the non-analytic terms emerge only
in higher post-Newtonian approximations and do not affect results of the present paper since we
restrict ourselves by the first post-Newtonian approximation. Notice also that the linear, with
respect to ε, terms in the metric tensor expansion (3.3) can be eliminated by coordinate adjust-
ments (Thorne and Hartle, 1985). These terms correspond to a non-orthogonality of the local
coordinate frame and/or a residual rotation of spatial axes (Thorne and Hartle, 1985). Reference
frames with such properties are not used in astronomy and geophysics. Therefore, we assume
that all coordinates used in this paper are non-rotating and orthogonal, so that the linear term in
expansion (3.3) is absent.

Various components of the metric tensor and the scalar field have in the first post-Newtonian
approximation the following form

g00 = −1 + ε2
(2)

h 00 +ε4
(4)

h 00 +O(ε5) , (3.4)

g0i = ε3
(3)

h 0i +O(ε5) , (3.5)

gij = δij + ε2
(2)

h ij +O(ε4) , (3.6)

ζ = ε2
(2)

ζ +O(ε4) , (3.7)



420 Reference Frames for Advanced Theory of the Lunar Motion

where
(n)

h αβ and
(n)

ζ denote terms of the order εn (n = 2, 3, 4). In what follows, we shall use
notations:

h00 ≡
(2)

h 00 , l00 ≡
(4)

h 00 , h0i ≡
(3)

h 0i , hij ≡
(2)

h ij , h ≡
(2)

h kk , (3.8)

and

ϕ ≡ (ω + 2)
(2)

ζ . (3.9)

Post-Newtonian expansion of the metric tensor and the scalar field introduces a corresponding
expansion of the energy-momentum tensor

T00 =
(0)

T 00 +ε2
(2)

T 00 +O(ε4) , (3.10)

T0i = ε
(1)

T 0i +O(ε3) , (3.11)

Tij = ε2
(2)

T ij +O(ε4) , (3.12)

where
(n)

T αβ (n = 0, 1, 2, 3...) denote terms of the order εn. In the first post-Newtonian
approximation the components of the energy-momentum tensor were derived by Fock (1959)

(0)

T 00 = ρ∗ , (3.13)
(1)

T 0i = − ρ∗vi , (3.14)
(2)

T ij = ρ∗vivj + πij , (3.15)
(2)

T 00 = ρ∗
(
v2

2
+ Π− h00 −

h

2

)
, (3.16)

where vi = cui/u0 is the 3-dimensional velocity of matter.
Fock also introduced the invariant density of matter (Fock, 1959)

ρ∗ ≡
√
−gu0ρ = ρ+

1
2
ε2ρ
(
v2 + h

)
+O(ε4) , (3.17)

which is a useful mathematical tool in relativistic hydrodynamics (Misner et al, 1973; Will,
1993). The reason is that the invariant density, unlike density ρ, obeys the exact equation of
continuity (2.12) that can be recast to a Newtonian-like form (Fock, 1959)

cρ∗,0 + (ρ∗vi),i = 0 , (3.18)

where f ,0 ≡ (1/c)∂f/∂t. Equation (3.18) is valid in any post-Newtonian approximation and it
makes calculation of time derivative of a volume integral of any function f(t,x) simple

d

dt

∫
VA

ρ∗(t,x)f(t,x)d3x =
∫
VA

ρ∗(t,x)
df(t,x)
dt

d3x , (3.19)
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where the total time derivative
d

dt
=

∂

∂t
+ vi

∂

∂xi
, (3.20)

and one assumes in equation (3.19) that the body A moves, and its shape and internal structure
depend on time.

3.3 The Post-Newtonian Field Equations

The post-Newtonian field equations can be derived after substitution the post-Newtonian series
of the previous section to the covariant equations (2.2) and (2.5), and arranging terms in the order
of smallness with respect to parameter ε ≡ 1/c. However, these post-Newtonian equations will
preserve the gauge freedom of the original covariant field equations, which will make their solu-
tion depending on four arbitrary functions. It is a common practice to eliminate this arbitrariness
by imposing a gauge condition. This is equivalent to a choice of a class of specific coordinates.
It should be understood that at this stage of the post-Newtonian iteration procedure, the gauge
condition have not rigidly fixed the coordinates as yet, so that a large freedom of coordinate trans-
formations remains. This class of transformations is associated with the residual gauge freedom,
which plays an essential role in relativistic celestial mechanics of N-body system.

In general-relativistic celestial mechanics the harmonic gauge condition(√
−g gµν

)
,ν

= 0 , (3.21)

is used the most often (Brumberg, 1991; Brumberg and Kopejkin, 1989a; Damour et al, 1991;
Fock, 1959; Soffel et al, 2003). The most convenient gauge condition in the scalar-tensor theory
of gravity were proposed by Nutku (1969a,b) as a generalization of the harmonic gauge(

φ

φ0

√
−g gµν

)
,ν

= 0 . (3.22)

Post-Newtonian expansion of gauge condition (3.22) yields

c

(
2ϕ
ω + 2

+ h00 + h

)
,0

= 2h0k,k , (3.23)(
2ϕ
ω + 2

− h00 + h

)
,i

= 2hik,k . (3.24)

It is worth noting that in the first post-Newtonian approximation, equations (3.23), (3.24) do not

restrict the metric tensor component
(4)

h 00≡ l00, which is directly obtained from the field equation
without further limitations.

The post-Newtonian field equations for the scalar field and the metric tensor are obtained
from equations (2.5) and (2.2) after making use of the post-Newtonian expansions, given by
equations(3.4)–(3.12), and the gauge conditions (3.23), (3.24). The scalar-tensor theory of grav-
ity with variable coupling function θ(φ) has two constant parameters, ω and ω′, characterizing
deviation from general relativity. They are related to the standard PPN parameters γ and β as
follows (Will, 1993)

γ = γ(ω) =
ω + 1
ω + 2

, (3.25)
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β = β(ω) = 1 +
ω′

(2ω + 3)(2ω + 4)2
. (3.26)

General relativity is obtained as a limiting case of the scalar-tensor theory when parameters
γ = β = 1. Notice that in order to get this limit convergent, parameter ω′ must grow slower than
ω3 as ω approaches infinity. Currently, there are no experimental data restricting the functional
behavior of ω′ ∼ ω3β(ω). This makes parameter β to be a primary target for experimental
study in the near-future gravitational experiments (Appourchaux et al, 2008; Dittus et al, 2008)
including advanced LLR (Williams et al, 2004b).

The scalar field perturbation (3.9) is expressed in terms of γ as
(2)

ζ = (1− γ)ϕ . (3.27)

The background scalar field φ0 and the parameter of coupling ω determine the observed numer-
ical value of the universal gravitational constant

G =
2ω + 4
2ω + 3

φ−1
0 . (3.28)

Had the background value φ0 of the scalar field driven by cosmological evolution, the measured
value of the universal gravitational constant would depend on time and one could hope to detect
it experimentally. The best upper limit on time variability of G is imposed by lunar laser ranging
(LLR) as |Ġ/G| < (4± 9)× 10−13 yr−1 (Williams et al, 2004a).

After making use of the definition of the tensor of energy-momentum, equations (3.13)–
(3.16), and that of the PPN parameters, equations (3.25)–(3.28), one obtains the final form of the
post-Newtonian field equations:

ϕ = −4πGρ∗ , (3.29){
h00 + ε2

[
l00 +

h2
00

2
+ 2(β − 1)ϕ2

]}
=

−8πGρ∗
{

1 + ε2
[
(γ +

1
2

) v2 + Π + γ
πkk

ρ∗
− h

6
− (2β − γ − 1)ϕ

]}
+ε2h<ij>h00,ij , (3.30)

h0i = 8πG(1 + γ)ρ∗vi , (3.31)
hij = −8πGγρ∗δij , (3.32)

where ≡ ηµν∂µ∂ν is the D’Alembert (wave) operator of the Minkowskian space-time, and
H<ij> ≡ Hij − δijH/3 is the symmetric trace-free (STF) part of the spatial components of
the metric tensor [the STF tensors are thoroughly discussed in Thorne (1980) and Blanchet and
Damour (1986)]. Equations (3.29)–(3.32) are valid in the class of coordinates defined by the
gauge condition (3.22). We shall study the residual gauge freedom of these coordinates in full
details in next sections of the paper.

3.4 Conformal Harmonic Coordinates

By making use of the conformal metric tensor one can recast equation(3.22) to the same form as
the harmonic gauge condition (3.21) in general relativity (Fock, 1959; Papapetrou, 1951a)

(
√
−g̃ g̃µν),ν = 0 . (3.33)
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Equation (3.22) or (3.33) can be re-written as follows

gµνΓαµν =
(

ln
φ

φ0

),α
, (3.34)

so that the Laplace-Beltrami operator (2.3) assumes the form

g ≡ gµν
(

∂2

∂xµ∂xν
− 1
φ

∂φ

∂xµ
∂

∂xν

)
. (3.35)

Dependence of this operator on the scalar field is a property of the adopted gauge condition.
Any function F (xα) satisfying the homogeneous Laplace-Beltrami equation, g F (xα) =

0, is called harmonic. Notice that the Nutku gauge condition (3.22) assumes that gx
α =

−(lnφ),α 6= 0, so any coordinate xα which obeys the gauge condition (3.34) is not a harmonic
function on a space-time manifold endowed with the Jordan-Fiertz metric. Nonetheless, such
non-harmonic coordinates are more convenient in the scalar-tensor theory of gravity because they
allow us to eliminate more non-physical terms from the field equations than the harmonic gauge
does. We shall call the class of coordinates being singled out by the Nutku conditions (3.22) as
conformal harmonic coordinates. This is because these coordinates are harmonic functions in
the conformal Einstein metric.

The conformal harmonic coordinates have many properties similar to the harmonic coor-
dinates in general relativity. The choice of the conformal harmonic coordinates for construct-
ing the theory of the lunar motion is justified by the following three factors: (1) the conformal
harmonic coordinates approach harmonic coordinates in general relativity when the scalar field
φ→ φ0 so that β = γ = 1, (2) the conformal harmonic coordinates are natural for scalar-tensor
parametrization of equations used in resolutions of the IAU 2000 General Assembly (Soffel et al,
2003) on relativistic reference frames, (3) the gauge condition (3.22) significantly simplifies the
post-Newtonian field equations, thus, facilitating their solution. Harmonic coordinates were used
by Klioner and Soffel (2000) for construction of post-Newtonian reference frames in PPN for-
malism and the difficulties associated with this choice have been analyzed in our paper (Kopeikin
and Vlasov, 2004, appendix A).

Gauge condition (3.34) does not fix coordinates uniquely. Let us change coordinates

xα 7→ wα = wα (xα) , (3.36)

but keep the gauge condition (3.34) the same. Simple calculation shows that in such case the new
coordinates wα must satisfy a homogeneous wave equation

gµν(xβ)
∂2wα

∂xµ∂xν
= 0 , (3.37)

which have an infinite set of non-trivial solutions defining the entire set of the local coordinates
wα on the space-time manifold of the solar system. Equation (3.37) describes the residual gauge
freedom existing in the class of the conformal harmonic coordinates restricted by the gauge
condition (3.34). This equation of the residual gauge freedom in the scalar-tensor theory of
gravity is the same as in the case of the harmonic coordinates in general relativity.
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3.5 Microscopic Post-Newtonian Equations of Motion

The macroscopic post-Newtonian equations of motion of matter consist of:

1. the equation of continuity,

2. the thermodynamic equation of internal energy relating the elastic energy Π and the stress
tensor παβ ,

3. the Navier-Stokes equation, which converts to the Euler equation in case of a perfect fluid.

The equation of continuity in arbitrary conformal harmonic coordinates wα = (w0, wi) =
(cu,w) has the most simple form for the invariant density ρ∗ and reads

∂ρ∗

∂u
+
∂
(
ρ∗νi

)
∂wi

= 0 . (3.38)

This equation is exact and takes into account all post-Newtonian corrections, as follows from the
definition of the invariant density ρ∗ and equation (3.18).

The thermodynamic equation relating the internal elastic energy Π and the stress tensor παβ
is required in the first post-Newtonian approximation only in a linear order where the stress tensor
is completely characterized by its spatial components πij . Hence, one has from equation (2.13)
the following differential equation

dΠ
du

+
πij
ρ∗

∂νi

∂wj
= O(ε2) , (3.39)

where the operator of convective time derivative is d/du ≡ ∂/∂u+ νi∂/∂wi.
The macroscopic equation of motion of a volume element of matter follows from the spatial

part of the law of conservation of the energy-momentum tensor, T iν ;ν = 0. This yields the
Navier-Stokes equation because the stress tensor accounts for anisotropic stresses. In case of
a perfect fluid, the stresses are reduced to isotropic pressure and the Navier-Stokes equation
becomes the Euler equation which is employed in the PPN formalism (Will, 1993), but not in
this paper. The post-Newtonian Navier-Stokes equation is

ρ∗
d

du

{
νi + ε2

[(
1
2
ν2 + Π +

1
2
h00 +

h

3

)
νi + h0i

]}
+ ε2

∂
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j
)

∂u
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2
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∂h00
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− ∂πij
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∂l00
∂wi

+
1
4
(
ν2 + 2Π + h00

) ∂h00
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1
6
ν2 ∂h

∂wi
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∂wi
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+

1
6
πkk
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∂wi
+

1
2
πik

(
∂h00

∂wk
− 1

3
∂h

∂wk

)
+

1
2

(
h00 −

1
3
h

)
∂πik
∂wk

}
+O(ε4) , (3.40)

where gravitational potentials h00, l00, h0i, hij , and h = hii are the metric tensor components
defined by equation (3.8). Notice that the scalar field enters the macroscopic equation of motion
of matter only implicitly through the metric tensor components.
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4 Post-Newtonian Reference Frames

4.1 Coordinates and Observables

Physically adequate relativistic description of the lunar motion is not conceivable without a
self-consistent theory of relativistic reference frames in the Earth-Moon system as it orbits the
barycenter of the solar system. The solar system has a hierarchic structure associated with the
diversity of masses of the solar system bodies and the presence of planetary satellite systems,
which form a set of gravitationally bounded sub-systems of the solar system consisting of a
planet and its satellites. The most massive body of the solar system is Sun. Therefore, in accor-
dance with the heliocentric point of view planets orbit Sun because their masses are significantly
smaller than that of Sun. Nevertheless, major planets of the solar system, like Jupiter and Sat-
urn, pull Sun by their gravitational fields strong enough making it to revolve at some distance
[less than two solar radii (Hardorp, 1985)] around a common solar-system barycenter (SSB).
A global, solar-system barycentric frame is required to describe the orbital motion of Sun and
planets around the SSB. On the other hand, rotational motion of Sun and planets is more natural
to describe in their local frames associated with each of the bodies. Many planets have their
natural satellites which orbit the planet. A planet with its satellites form a sub-system of the solar
system which can be considered as essentially isolated from the rest of the solar system. This is
because the principle of equivalence applied to the sub-system, reduces gravitational attraction
of the external bodies to the tidal force that is much smaller than the gravity of the planet. If the
ratio of masses of a planet and its satellites is not negligibly small, it is convenient to introduce a
local coordinate frame associated with the barycenter of the sub-system consisting of the planet
and its satellites. This is because motion of the barycenter of the sub-system around the SSB ap-
proximates the Keplerian ellipse fairly well, while the planet and its satellites oscillates on their
orbits around the barycenter of the sub-system. The hierarchic structure of the coordinate frames
in the solar system leads to a natural decomposition of orbital motion of each body in the solar
system in a trigonometric series of fundamental harmonics like in case of the Fourier expansion.

From this point of view the theory of the lunar motion should introduce three local coordinate
frames attached correspondingly to Earth’s center of mass (geocenter), to Moon’s center of mass
(selenocenter), and to the barycenter of the Earth-Moon sub-system. The geocentric frame is
to describe rotational motion of Earth and motion of artificial satellites orbiting the Earth. The
selenocentric frame is introduced to describe rotational motion (physical libration) of Moon and
orbital motion of spacecrafts around Moon. The Earth-Moon-barycenter (EMB) frame serves to
describe a relative motion of Moon with respect to Earth. The global SSB frame is introduced to
describe the orbital motion of the EMB frame with respect to the solar-system barycenter.

Relativistic theory of gravity brings about additional arguments in favor of introduction of the
hierarchic structure to the post-Newtonian problem of motion in N-body system. This structure
naturally arises on space-time manifold because of its differential structure described in terms
of a set of local coordinates and diffeomorphic transformations between them (Eisenhart, 1947;
Misner et al, 1973). If one neglected the mutual gravitational interaction between Earth and
Moon (test-particles approximation) their relative motion would be governed only by the tidal
gravitational field of Sun and other planets. Such relative motion of two test particles is described
in metric theories of gravity by the equation of deviation of geodesics (Misner et al, 1973). This
equation is covariant and valid in arbitrary coordinates but it has the most simple form in a local
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coordinate frame of one of the test particles. The Earth and Moon are not test particles and it
complicates their relative motion because one has to account for their mutual gravitational tug in
addition to the tidal forces from external bodies. The origin of the local coordinates is also shifted
to the center of mass of the Earth-Moon system. These factors bring about rather serious math-
ematical difficulty to the construction of the local frame in the post-Newtonian approximations
since the tidal forces get entangled with the Earth-Moon attraction of gravity and the concept of
the Earth-Moon barycenter should be elaborated on more profound basis than in the Newtonian
gravity. Any incomprehensive definition used in the construction of the local coordinates in the
post-Newtonian approximations leads to appearance of extra terms in equations of relative mo-
tion of the Moon-Earth system, which can be removed after transformation to a more appropriate
coordinates.

Construction of the set of the local coordinate frames in the Earth-Moon system connected
to the global SSB frame by a coordinate transformation helps us to single out and to eliminate a
great deal of spurious, gauge-dependent post-Newtonian effects. The spurious radial oscillations
of the Earth-Moon distance, expressed in terms of the solar system barycentric coordinates, in-
habited earlier relativistic theories of the lunar motion (Baierlein, 1967a; Brumberg, 1958, 1972)
and researchers assumed that they can be measured (Baierlein, 1967a; Lestrade and Chapront-
Touze, 1982; Lestrade et al, 1982). The spurious character of the main terms of these coordinate
oscillations was recognized in papers (Brumberg, 1981; Nordtvedt, 1973; Soffel et al, 1986).
However, the usage of the solar system barycentric coordinates introduces to the Earth-Moon
equations of motion (1.15), (1.16) many other unmeasurable terms, which are explicitly present
in the coordinate description of the lunar ephemerides around Earth. Recent paper by Murphy,
Nordtvedt and Turyshev (Murphy et al, 2007a) intends to interpret some of these coordinate terms
as measurable, despite that they depend on the choice of the local coordinates and can be elim-
inated from the coordinate description after making an appropriate coordinate transformation
(Kopeikin, 2007a). The on-going discussion (Kopeikin, 2008; Murphy et al, 2007b) stimulates
development of the post-Newtonian theory of reference frames in the Earth-Moon system in or-
der to clarify the number of observable relativistic effects, which can be measured with advanced
LLR techniques.

4.2 The Solar System Barycentric Frame

4.2.1 Boundary Conditions and Kinematic Properties

We assume that the solar system is isolated and there are no masses outside of it. The num-
ber of bodies in the solar system, which gravitational field must be taken into account in the
post-Newtonian theory of reference frames, depends on the accuracy of astronomical observa-
tions and the precision of calculation of their ephemerides. We include Sun, Moon, Earth, the
other planets, and the largest asteroids moving between orbits of Mars and Jupiter. Since we
ignore gravitational field of the external astronomical bodies residing outside of the solar system,
the space-time can be considered as asymptotically-flat at infinity with the metric tensor gαβ
approaching the Minkowskian metric ηαβ = diag(−1,+1,+1,+1).

The whole space-time manifold associated with the isolated solar system is covered by a sin-
gle global coordinate frame denoted as xα = (x0, xi), where x0 = ct is coordinate time, and
xi ≡ x are spatial coordinates. The global coordinates are used for description of orbital dynam-



Post-Newtonian Reference Frames 427

ics of the solar system bodies with respect to the solar system barycenter. The coordinate time
and spatial coordinates have no physical meaning in those domains of space-time where gravi-
tational field is not negligible. However, when one approaches to infinity the global coordinates
approximates the inertial coordinates of observer in the Minkowskian space. For this, reason one
can think about the coordinate time t and the spatial coordinates xi as proper time and proper
distance measured by a fictitious observer at infinity, who is at rest with respect to the barycenter
of the solar system (Fock, 1959).

Precise mathematical definition of the global coordinates can be given in terms of the metric
tensor, which is a solution of the field equations with a boundary conditions imposed on it at
infinity. To formulate the boundary conditions, let us introduce the metric perturbation with
respect to the Minkowskian metric (c.f. equation (3.3))

hαβ(t,x) ≡ gαβ(t,x)− ηαβ . (4.1)

Existence of the global coordinates demand that products rhαβ and r2hαβ,γ , where r = |x|,
were bounded, and

lim
r→∞

t+r/c=const.

hαβ(t,x) = 0 , (4.2)

Additional boundary condition must be imposed on the first derivatives of the metric tensor
to prevent appearance of non-physical radiative solutions associated with gravitational waves
incoming to the solar system (Fock, 1959). This condition is formulated as follows (Damour,
1983; Fock, 1959)

lim
r→∞

t+r/c=const.

[(rhαβ) ,r + (rhαβ) ,0 ] = 0 . (4.3)

Though, the first post-Newtonian approximation we are dealing with, does not include terms
in the metric tensor, which describe the gravitational waves, the boundary condition tells us to
choose the retarded solution of the field equation (3.30)-(3.32).

Similar ”no-incoming-radiation” conditions are imposed on the perturbation of the scalar
field defined in equation (3.2)

lim
r→∞

t+r/c=const.

ζ(t,x) = 0 , (4.4)

lim
r→∞

t+r/c=const.

[(rζ) ,r + (rζ) ,0 ] = 0 . (4.5)

The global coordinates xα cover the entire space-time and set up a primary basis for con-
struction of the IAU theory of relativistic reference frames in the solar system (Kopeikin, 1989b,
2007b; Soffel et al, 2003). The origin of the global coordinates coincides with the barycenter
of the solar system at any instant of time. This condition can be satisfied after choosing a suit-
able definition of the post-Newtonian dipole moment Di of the N-body system and equating its
numerical value to zero along with its first and second time derivatives. This requirement can
be fulfilled because of the law of conservation of the linear momentum of the solar system (see
equation 4.29).
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The law of conservation of the angular momentum of the solar system (see equation 4.27)
allows us to make the spatial axes of the global coordinates non-rotating in space either kinemat-
ically or dynamically (Brumberg and Kopejkin, 1989a,b). Coordinates are called kinematically
non-rotating if their spatial orientation does not change with respect to the Minkowskian coor-
dinates at infinity as time goes on (Kovalevsky and Mueller, 1989; Kovalevsky and Seidelmann,
2004). Such kinematically non-rotating coordinates are anchored in the sky to a set of distant
quasars forming the International Celestial Reference Frame (ICRF) that has the current pre-
cision better than 100 µarcsec (Kovalevsky and Seidelmann, 2004; Ma et al, 1998). The ICRF
quasars are uniformly distributed all over the sky and have negligibly small parallaxes and proper
motions. However, temporal stability of the global reference frame can be affected due to internal
motions of quasar’s jets, which should be constantly monitored in order to maintain ICRF inertial
steadiness (Feissel-Vernier et al, 2006; Titov, 2007). Another source of the possible corruption of
the inertial properties of the global reference frame is due to the accelerated motion of the solar
system with respect to the center of mass of our Galaxy (Hagihara, 1933; Kopeikin and Makarov,
2006), influence of the cosmological effects (Bergmann, 1970) and ultra-low frequency gravita-
tional waves (Gwinn et al, 1997). In principle, a more extended post-Newtonian approach to the
reference frames, taking into account the fact that the background space-time of the solar system
is cosmologically curved, has to be developed (Klioner and Soffel, 2005; Kopeikin, 2007b) but
we do not tackle this problem in the present paper.

Dynamically non-rotating coordinate system is defined by the condition that equations of
motion of test particles moving with respect to these coordinates do not have any terms that can be
interpreted as the Coriolis or centripetal forces (Brumberg and Kopejkin, 1989a; Kovalevsky and
Mueller, 1989). This definition operates only with local properties of the space-time manifold
and does not require observations of distant celestial objects like stars or quasars. The dynamical
definition of non-rotating global coordinates is used in construction of modern ephemerides of
the solar system bodies which are based primarily on radar and laser ranging measurements to
planets and Moon (Standish, 2008, 2002). Because of the assumption that the solar system is
isolated, one can postulate that the global coordinates do not rotate in any sense. This postulate
is firmly supported by observations (Jacobs et al, 1993; Standish, 2005).

4.2.2 The Metric Tensor and Scalar Field

The metric tensor gαβ(t,x) and the scalar field ϕ(t,x) are obtained in the global coordinates by
solving the field equations (3.29)–(3.32) after imposing the boundary conditions (4.2)–(4.4). It
yields

ϕ(t,x) = U(t,x) , (4.6)
h00(t,x) = 2U(t,x) , (4.7)

l00(t,x) = 2Ψ(t,x)− 2(β − 1)ϕ2(t,x)− 2U2(t,x)− ∂2χ(t,x)
∂t2

, (4.8)

h0i(t,x) = −2(1 + γ)Ui(t,x) , (4.9)
hij(t,x) = 2γδijU(t,x) , (4.10)

where the post-Newtonian potential

Ψ(t,x) ≡ (γ +
1
2

)Ψ1(t,x)− 1
6

Ψ2(t,x) +
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+ (1 + γ − 2β)Ψ3(t,x) + Ψ4(t,x) + γΨ5(t,x) , (4.11)

Gravitational potentials U, U i, χ, and Ψk (k = 1, ..., 5) can be represented as linear com-
binations of the gravitational potentials of each body of the solar system

U =
∑
A

UA , Ui =
∑
A

U iA , Ψk =
∑
A

ΨAk , χ =
∑
A

χA , (4.12)

where the summation indexA numerates the bodies of the solar system, which gravitational field
contributes to our calculations. In what follows, we shall also use the capital letters S, E, and M
to indicate affiliation of functions to Sun, Earth and Moon respectively.

The gravitational potentials of a body A are defined as integrals taken only over the spatial
volume VA of this body

UA(t,x) = G

∫
VA

ρ∗(t,x′)
|x− x′|

d3x′ , (4.13)

U iA(t,x) = G

∫
VA

ρ∗(t,x′)vi(t,x′)
|x− x′|

d3x′ , (4.14)

χA(t,x) = −G
∫
VA

ρ∗(t,x′)|x− x′|d3x′ , (4.15)

ΨA1(t,x) = G

∫
VA

ρ∗(t,x′)v2(t,x′)
|x− x′|

d3x′ , (4.16)

ΨA2(t,x) = G

∫
VA

ρ∗(t,x′)h(t,x′)
|x− x′|

d3x′ (4.17)

ΨA3(t,x) = G

∫
VA

ρ∗(t,x′)ϕ(t,x′)
|x− x′|

d3x′ (4.18)

ΨA4(t,x) = G

∫
VA

ρ∗(t,x′)Π(t,x′)
|x− x′|

d3x′ , (4.19)

ΨA5(t,x) = G

∫
VA

πkk(t,x′)
|x− x′|

d3x′ , (4.20)
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where h(t,x) = hii(t,x). Potential χ is determined as a particular solution of the inhomoge-
neous equation

∇2χ = −2U , (4.21)

with the right side defined in a whole space. Nevertheless, its solution given by equation (4.15)
has a compact support inside the volumes of the bodies of the solar system (Fock, 1959; Will,
1993). It is worthwhile to emphasize that all integrals defining the metric tensor in the global
coordinates are taken over the hypersurface of constant coordinate time t. Any space-time trans-
formation changes the time hypersurface, hence, transforming the corresponding integrals.

Notice that the Newtonian gravitational potential U(t,x) appears in the solution of the field
equations for both the scalar field - equation (4.6), and the time-time component of the metric
tensor - equation (4.7). It does not mean that the time-time component of the metric tensor is
a scalar - they are equal only in the Newtonian approximation. This remark is important for
making correct post-Newtonian transformation of the functions entering solutions of other field
equations since the scalar field and the metric tensor transform differently and should not be
confused (Kopeikin and Vlasov, 2004).

4.2.3 The Post-Newtonian Conservation Laws

The laws of conservation allow us to formulate the post-Newtonian definitions of mass, the center
of mass, the linear and the angular momenta for the whole solar system, which are crucial in
mathematical derivation of equations of motion of the bodies comprising the system. We employ
the mathematical technique relied upon the concept of Landau-Lifshitz pseudo-tensor (Landau
and Lifshitz, 1975; Misner et al, 1973) and extended to the scalar-tensor theory by Nutku (1969b).
To this end, it is convenient to recast the field equations (2.2) to the form

Θµν ≡ (−g)
φ

φ0

[
c2Tµν + tµν

]
=

c4

16πφ0

[
(−g)φ2(gµνgαβ − gµαgνβ)

]
,αβ

, (4.22)

where tµν is an analog of the Landau-Lifshitz pseudo-tensor of the gravitational field in the
scalar-tensor theory of gravity. This pseudotensor is defined by the following equation (Nutku,
1969b)

tµν =
c4

16π
φ3

φ2
0

τµνLL +
c4

16π
2θ(φ) + 3

φ

(
φ,µφ,ν − 1

2
gµνφ,λφ

,λ
)
, (4.23)

where τµνLL is the standard Landau-Lifshitz pseudotensor (Landau and Lifshitz, 1975; Misner
et al, 1973) expressed in terms of the conformal metric tensor, g̃αβ , and its first derivatives. The
conservation laws are now obtained from equation (4.22) by taking a derivative. One obtains

Θµν
,ν ≡

[
(−g)

φ

φ0
(c2Tµν + tµν)

]
,ν

= 0 , (4.24)

where the right side is zero because of anti-symmetry of the right side of equation (4.22) with
respect to indices ν and α.

We focus on the laws of conservation in the first post-Newtonian approximation and neglect
the energy, linear and angular momenta taken away from the solar system by gravitational waves
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(Damour and Esposito-Farese, 1992). For this reason, the conserved mass M, the linear momen-
tum Pi, and spin Si of the solar system are defined as

M = ε2
∫
R3

Θ00 d3x , (4.25)

Pi = ε

∫
R3

Θ0i d3x , (4.26)

Si = ε

∫
R3
εijkw

jΘ0k d3x , (4.27)

where the integration is performed over the whole space R3, that is the hypersurface of con-
stant global coordinate time t. Let us remark that the integrals are finite, since in the first post-
Newtonian approximation, Θ00 and Θ0i are of the order of O(r−4) for large r (Misner et al,
1973). Moreover, in this approximation the domain of integration is reduced to the volume of the
bodies comprising the solar system because the functions in the integrands of equations (4.30)–
(4.32) have compact support only inside the bodies. Taking into account the asymptotic behavior
of Θ00 one can prove that the linear momentum Pi can be represented as a time derivative of
function

Di = ε2
∫
R3

Θ00xi d3x , (4.28)

that is interpreted as the integral of the center of mass. Hence,

Di(t) = Pi t+ Ki , (4.29)

where Ki is a constant vector defining displacement of the solar-system barycenter from the
origin of the global coordinate frame. One can always choose Ki = 0 and Pi = 0 making
Di = 0 as well.

Direct calculation of the pseudotensor (4.23) brings about the post-Newtonian conserved
quantities in explicit form

M =
∫
R3
ρ∗
[
1 + ε2

(
Π +

v2

2
− U

2

)]
d3x+O(ε4) , (4.30)

Di =
∫
R3
ρ∗xi

[
1 + ε2

(
Π +

v2

2
− U

2

)]
d3x+O(ε4) , (4.31)

Pi =
∫
R3

{
ρ∗vi

[
1 + ε2

(
Π +

v2

2
− U

2

)]
+ ε2πikvk − ε2

2
ρ∗W i

}
d3x+O(ε4) ,

(4.32)

where by definition

W i(t,x) = G

∫
R3

ρ∗(t,x′)v′ · (x− x′)(xi − x′i)
|x− x′|3

d3x′ . (4.33)
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Position Xi of the center of mass (barycenter) of the solar system is defined as Xi = Di/M.
Because the total mass, M, of the solar system is constant, position of the solar-system barycenter
is fixed in the global coordinates by equating Pi = 0, and Di = 0, which makes Xi = 0 at any
instant of time t. This means that the center of mass of the solar system always coincides with
the origin of the global reference frame as we discussed above.

4.3 The Earth-Moon Barycentric Frame

4.3.1 The Boundary Conditions and Dynamic Properties

Earth and Moon makes a close binary system (a sub-system of the solar system) moving around
the barycenter of the solar system. It is convenient to describe orbital motion of Earth and
Moon with respect to the local coordinates wα = (cu, wi), which we shall call the Earth-Moon
barycentric (EMB) frame. The EMB frame is constructed in the neighborhood of the world
line of the center of mass of the Earth-Moon sub-system, which precise definition will be given
later along with the derivation of its equation of motion. The EMB frame was not substantiated
explicitly in the numerical construction of ephemerides of Moon. However, the advantage of the
EMB frame is that its explicit analytic construction will allow us to clearly decouple the orbital
motion of Moon and Earth from the motion of the Earth-Moon barycenter around Sun.

The EMB frame is not asymptotically Minkowskian as radial distance goes far away from
the Earth-Moon sub-system. This is because solution of the field equations in the EMB frame
must smoothly match with the background gravitational field of external bodies - Sun and other
planets, which affects the relative motion of Moon around Earth by means of tidal forces. The
tidal gravitational field of Sun and other planets makes significant impact on the orbital evolution
of the Earth-Moon system, and can not be neglected. Gravitational potential of the tidal force
is represented by a Taylor polynomial with respect to the local spatial coordinates with time-
dependent coefficients, which are called the external (tidal) multipoles (Kopejkin, 1988; Thorne,
1980; Thorne and Hartle, 1985). In the Newtonian approximation this polynomial yields a solu-
tion of the Laplace equation and starts from the second order (quadratic) term because monopole
and dipole external multipoles are usually eliminated by transformation to a freely-falling lo-
cal coordinates as they are not physically associated with the tidal force. In general relativity
this monopole-dipole effacing property of the external gravitational field is retained in the post-
Newtonian approximation as a consequence of Einstein’s equivalence principle (EEP) (Landau
and Lifshitz, 1975; Misner et al, 1973; Will, 1993). In particular, EEP suggests that it is always
possible to choose local coordinates in such a way that all first derivatives of the metric tensor
(the Christoffel symbols) vanish along a geodesic world line of a freely falling particle (Ni and
Zimmermann, 1978). In general relativity EEP is also valid for a self-gravitating body moving
in external gravitational field of other bodies (Breuer and Rudolph, 1982; Damour et al, 1992;
Kopejkin, 1988).

In contrast to general relativity the scalar-tensor theory of gravity has a long-range scalar
field that can not be eliminated by a coordinate transformation to a locally-inertial frame being
at free fall. This is because the scalar field does not change its numerical value under pointwise
coordinate transformations and, hence, can not vanish at a point on space-time manifold. The
non-vanishing scalar field couples with the intrinsic gravitational field of an extended body and
affects the local characteristics like the gravitational mass of the body. This exemplifies a mech-
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anism of possible violation of EEP discussed by Dicke (1962b, 1965) and Nordtvedt (1973), and
known in the PPN formalism as the Nordtvedt effect (Will, 1993). EEP possible violation is dif-
ficult for LLR and other kind of observations because the scalar field does not interacts directly
with the measuring instruments but only with the gravitational field. It is hidden in the definition
of the universal gravitational constant and reveals itself explicitly only in the first post-Newtonian
effects in the equations of motion of the solar system bodies.

We demand that the origin of the local EMB frame coincides with the center of mass of the
Earth-Moon system at any instant of time. This requires a precise post-Newtonian definition of
the center of mass of a sub-system consisting of self-gravitating bodies that is a part of the solar
system. Newtonian definition of the Earth-Moon barycenter is straightforward [see, for instance,
Brumberg (1991) and equation (1.14] of this paper) and used in the analytical theories of the
lunar motion in the barycentric coordinates. Post-Newtonian corrections make the concept of
the Earth-Moon barycenter more involved and to some extent uncertain because of the gravita-
tional interaction of the Earth-Moon system with the external gravitational field of Sun and other
planets. This uncertainty was first noticed by Thorne and Hartle (1985).

The other kind of problem in the scalar-tensor theory of gravity is that mathematically inade-
quate definition of the center of mass of the Earth-Moon system can bring about fictitious forces
that will compel it to move with respect to the origin of the EMB frame. Because the scalar-tensor
theory of gravity does not violate the law of conservation of the linear momentum for isolated
astronomical systems (Nutku, 1969b; Will, 1993), this motion have no an underlying physical
cause and can be removed after making corresponding correction in the post-Newtonian defini-
tion of the center of mass. Calculation, which we did in Kopeikin and Vlasov (2004), confirms
this idea and reveals that the dipole moment Di given by equation (4.31), where the integration
overR3 is replaced with that over the volumes of Earth and Moon only, gives the definition of the
Earth-Moon center of mass that excludes the nonphysical motion of the Earth-Moon barycenter
with respect to the origin of the EMB frame.

Another complication in the definition of the origin of the EMB frame is caused by the
finite size of the Earth-Moon system making its intrinsic quadrupole moment coupled with the
(octupole) tidal gravitational field of Sun and other planets. This coupling exists already in
the Newtonian approximation and is a well-established property of gravitationally-interacting
extended bodies (Dixon, 1979; Thorne and Hartle, 1985). If one assumes that the origin of the
EMB frame moves along a geodesic world line, the quadrupole-octupole coupling makes the
second time derivative of the dipole moment of the Earth-Moon system be not equal to zero,
that is the Earth-Moon barycenter moves with acceleration. It means that the assumption of the
geodesic motion of the origin of the EMB frame introduces a local gravitational force exerted
on the Earth-Moon barycenter, which prevents the Earth-Moon linear momentum (the first time
derivative of the dipole moment) to be conserved in such local frame. Nevertheless, mathematics
tells us that one can retain the origin of the local EMB frame at the Earth-Moon barycenter if
one can make the second time derivative of the dipole moment Di equal to zero. This can be
done (Kopejkin, 1988) if the origin of the EMB frame is chosen to move along the accelerated
world line of the Earth-Moon barycenter. The acceleration is specified by the external dipole
moment Qi in the multipolar expansion of the homogeneous solution of the field equations (see
equation 5.33) that corresponds physically to the force of inertia in the local EMB frame. The
overall procedure of the post-Newtonian determination of the origin of the EMB frame and the
Earth-Moon barycenter may look complicated but if it is not applied properly, the equations of
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the relative motion of Moon around Earth become cluttered with spurious, coordinate-dependent
terms having no physical meaning.

We postulate that the local EMB frame is dynamically non-rotating. It means that orbital
equations of motion of Earth and Moon written down in the local coordinates do not include the
Coriolis and centrifugal forces. However, the post-Newtonian nature of the gravitational interac-
tion suggests that spatial axes of the dynamically non-rotating EMB frame must rotate (precess)
in the kinematic sense with respect to the spatial axes of the global SSB frame. This kinematic
rotational drift of the EMB frame includes three components that are called respectively de-Sitter
(geodetic), Lense-Thirring (gravitomagnetic), and Thomas precessions (Misner et al, 1973). The
rate of each precession is derived from the law of the Fermi-Walker transport (Misner et al, 1973)
of a vector of the orbital momentum of the Earth-Moon system as it moves around Sun. Inter-
national Astronomical Union (IAU) recommends kinematically non-rotating frames for practical
applications. It means that the data processing algorithms that involve the local frames, must
have their spatial axes being anchored to ICRF (Soffel et al, 2003). We notice, however, that any
kinematically non-rotating local frame must include the angular speed of its dynamic rotation
(the above-mentioned relativistic precession with opposite sign) to the metric tensor. Including
such terms to the local EMB frame makes no sense from theoretical point of view as it compli-
cates the post-Newtonian equations of lunar motion. For this reason, we do not follow the IAU
resolution in this respect.

4.3.2 The Metric Tensor and Scalar Field

We denote the EMB local coordinates by wα = (w0, wi) = (cu, wi) where u stands for the
local coordinate time. We are looking for the solution of the field equations (3.29)–(3.32) inside
a world tube surrounding world lines of Earth and Moon and spreading up to the nearest external
bodies. Formally, these are Mars and Venus, but the domain of the EMB local coordinates can be
extended later on, if necessary (Brumberg and Kopejkin, 1989a; Kopeikin, 1989a). The matter
inside the region covered by the EMB frame, is that of Earth and Moon. Thus, the right side of
equations (3.29)–(3.32) should include only the energy-momentum tensor of Earth and Moon.

Functions in a partial solution of the inhomogeneous field equations related to the Earth-
Moon system alone, will be labeled by index (int) standing for “internal”. These functions de-
scribe solution of the internal problem of the post-Newtonian celestial mechanics. Other func-
tions describing a general solution of the homogeneous field equations, characterize the gravita-
tional and scalar field of external bodies and are labeled by index (ext) standing for “external”.
These functions are given by polynomials in powers of the spatial coordinates. Because the field
equations are non-linear, a third group of functions in their solution will appear. These functions
describe gravitational mix (coupling) between the internal and external fields, and they will be
labeled by index (mix).

Solution of the field equations (3.29)–(3.32) is a linear combination of a particular solution
of the inhomogeneous equation and a general solution of the homogeneous equation. In order to
distinguish these solutions from the corresponding solutions of the field equations found in the
global SSB frame, we put a hat on any function that is expressed in EMB coordinates. This is
because one and the same mathematical function has different forms when expressed in different
coordinates. For example, for any scalar function F (x) and a coordinate transformation x =
x(w) one has: F (x) = F [x(w)] ≡ F̂ (w). It would be mathematically inconsistent to write
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F (w) instead of F̂ (w) because F (w) differs from F (x) (Arnold, 1995; Dubrovin et al, 1984;
Eisenhart, 1947).

Accounting for these remarks, solution for a scalar field in the EMB local coordinates is
written as a sum of two terms

ϕ̂(u,w) = ϕ̂(int)(u,w) + ϕ̂(ext)(u,w) , (4.34)

whereas the EMB perturbation

ĥµν(u,w) = ĝµν(u,w)− ηµν (4.35)

of the metric tensor ĝµν(u,w) is given as a sum of three terms

ĥµν(u,w) = ĥ(int)
µν (u,w) + ĥ(ext)

µν (u,w) + ĥ(mix)
µν (u,w) , (4.36)

where terms with index (int) refer to the Earth-Moon and describe the internal solution of the in-
homogeneous field equations, terms with index (ext) refer to the external bodies (Sun and other
planets) and describe the background (external) solution of the homogeneous field equations,
and terms with index (mix) are due to the non-linearity of the gravity field equations for the met-
ric tensor. In the first post-Newtonian approximation the mixed terms appear only in ĝ00(u,w)
component of the metric tensor.

Internal and External Solutions for the Scalar Field. Equation (3.29) gives the internal,
ϕ̂(int)(u,w), and external, ϕ̂(ext)(u,w), solutions for the scalar field in the following form

ϕ̂(int)(u,w) = Û (int)(u,w) , (4.37)

ϕ̂(ext)(u,w) =
∞∑
l=0

1
l!
PLwL . (4.38)

Here PL ≡ PL(u) are external symmetric trace-free (STF) multipole moments in the multipolar
decomposition of the scalar field generated by Sun and other planets. These external multipoles
are functions of the local time u only. The internal solution ϕ̂(int)(u,w) describes the scalar
field, which is generated by Earth and Moon only. It is expressed in terms of the Newtonian
gravitational potential Û (int)(u,w) that is defined in next section by equations (4.44),(4.45).

A subtle point of notations should be discussed here. By definition, the scalar field is invari-
ant under coordinate transformation xα = xα(wβ), that is the equality ϕ(x) = ϕ[x(w)] = ϕ̂(w)
holds exactly. On the other hand, the Newtonian potentials U(x) and Û(w) are not scalar fields,
that is U(x) 6= Û(w) in all post-Newtonian approximations. For this reason, equations (4.6)
and (4.37) may look self-contradictory because their left sides must be exactly equal by defini-
tion, while the right sides are given in terms of the Newtonian potentials U(x) and Û(w), which
are not exactly equal to each other if the post-Newtonian corrections are taken into account.
This ”paradox” is solved if one notices that the transformation from the SSB frame to the EMB
frame is represented as a post-Newtonian series xα = wα + ε2(post-Newtonian terms) +O(ε4),
which means that if one neglects the post-Newtonian terms in the coordinate transformation,
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then, U(x) = Û(w). The difference between U(x) and Û(w) will emerge only if the post-
Newtonian terms are taken into account in transformation of the Newtonian potential from one
frame to another. This remark also indicates that the scalar field ϕ can not be expressed only in
terms of the Newtonian potential in all post-Newtonian approximation. Hence, equations (4.6)
and (4.37) must be replaced to a more general form in accordance with the exact equation (2.5)
for the scalar field. This, more exact form of the scalar field is not required in the present paper
as the scalar field directly perturbs the metric tensor only beyond the Newtonian approximation
and, thus, equations (4.6) and (4.37) are sufficient.

Internal Solution for the Metric Tensor. The boundary conditions imposed on the internal
solution for the metric tensor in EMB frame are identical with those given in equations (4.2),
(4.3). For this reason the internal solution for the metric tensor has the same form as in the global
coordinates, but all quantities must be referred now only to Earth and Moon. We obtain

ĥ
(int)
00 (u,w) = 2Û (int)(u,w) , (4.39)

l̂
(int)
00 (u,w) = 2Ψ̂(int)(u,w)− 2(β − 1)

[
ϕ̂(int)(u,w)

]2
−2
[
Û (int)(u,w)

]2
− ∂2χ̂(int)(u,w)

∂u2
, (4.40)

ĥ
(int)
0i (u,w) = −2(1 + γ)Û i(int)(u,w) , (4.41)

ĥ
(int)
ij (u,w) = 2γδijÛ (int)(u,w) , (4.42)

where

Ψ̂(int)(u,w) =
(
γ +

1
2

)
Ψ̂(int)

1 (u,w)− 1
6

Ψ̂(int)
2 (u,w) + (1 + γ − 2β)Ψ̂(int)

3 (u,w)

+ Ψ̂(int)
4 (u,w) + γΨ̂(int)

5 (u,w), (4.43)

the internal potentials

Û (int)(u,w) = ÛE(u,w) + ÛM(u,w), Û i(int)(u,w) = Û iE(u,w) + Û iM(u,w),

Ψ̂(int)
k (u,w) = Ψ̂Ek(u,w) + Ψ̂Mk(u,w), χ̂(int)(u,w) = χ̂E(u,w) + χ̂M(u,w),

(4.44)

and the indices E and M represent Earth and Moon respectively.
All these functions are defined as integrals over volumes of Earth and Moon. For example,

for Earth (index E) one has

ÛE(u,w) = G

∫
VE

ρ∗(u,w′)
|w −w′|

d3w′ , (4.45)
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Û iE(u,w) = G

∫
VE

ρ∗(u,w′)νi(u,w′)
|w −w′|

d3w′ , (4.46)

χ̂E(u,w) = −G
∫
VE

ρ∗(u,w′)|w −w′|d3w′ , (4.47)

where

Ψ̂E1(u,w) = G

∫
VE

ρ∗(u,w′)ν2(u,w′)
|w −w′|

d3w′ , (4.48)

Ψ̂E2(u,w) = G

∫
VE

ρ∗(u,w′)ĥ(int)(u,w′)
|w −w′|

d3w′ , (4.49)

Ψ̂E3(u,w) = G

∫
VE

ρ∗(u,w′)ϕ̂(int)(u,w′)
|w −w′|

d3w′ , (4.50)

Ψ̂E4(u,w) = G

∫
VE

ρ∗(u,w′)Π(u,w′)
|w −w′|

d3w′ , (4.51)

Ψ̂E5(u,w) = G

∫
VE

πkk(u,w′)
|w −w′|

d3w′ , (4.52)

ĥ(int) = ĥ
(int)
ii , the symbol νi = dwi/du is velocity of Earth’s or Moon’s matter with respect to

the origin of the EMB frame, and all gravitational potentials are taken over Earth’s volume de-
noted respectively as VE . Gravitational potentials for Moon are given by similar equations with
the integrals performed over the volume of Moon. Formally, one takes equations (4.48)–(4.52)
and replace index E for indexM . It is worth to emphasize that the integrals given in this section,
are taken over the hypersurface of the coordinate time u. It does not coincide with the hypersur-
face of the coordinate time t, which is used in the integrals defining the gravitational potentials
in the SSB frame. This remark is important for making post-Newtonian transformations of the
potentials from one frame to another (Kopeikin and Vlasov, 2004, section 8.3.1).

The internal terms of the metric tensor in the local EMB frame given by equations (4.37),
(4.39)–(4.42) must obey the gauge condition (3.22) with the external part of the metric being
excluded. It yields

∂Û (int)(u,w)
∂u

+
∂Û i(int)(u,w)

∂wi
= O(ε2) . (4.53)

This is the only condition, which relates the potentials of the internal (particular) solution of the
inhomogeneous field equations in the first post-Newtonian approximation, if one neglects the
influence of the external bodies. We note that equation (4.53) is satisfied by the equation of con-
tinuity (3.18).
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External Solution for the Metric Tensor. Solution of the homogeneous field equations for
the metric tensor in EMB frame gives the inertial force exerted on the Earth-Moon barycenter
and the tidal gravitational field of Sun and other planets in terms of the external STF tensors
(Kopeikin and Vlasov, 2004). Boundary conditions imposed on the external solution should
make it convergent on the world line of the origin of the EMB frame, that is at the point with local
coordinates w = 0. On the other hand, the external solution should match the tidal gravitational
field of Sun and other planets as radial distance r = |w| grows outward from the origin of
the EMB frame. These boundary conditions are typical for construction of the local frames on
curved background space-time (Brumberg and Kopejkin, 1989a; Damour et al, 1991; Kopeikin
and Vlasov, 2004; Ni and Zimmermann, 1978; Suen, 1986; Thorne and Hartle, 1985).

Explicit form of the most general external solution for the linearized metric tensor perturba-
tion in local coordinates is given by (Kopeikin and Vlasov, 2004)

ĥ
(ext)
00 (u,w) = 2

∞∑
l=0

1
l!
QLwL + C2w2 − CpCqwpwq , (4.54)

ĥ
(ext)
0i (u,w) = εipqC

pwq +
∞∑
l=2

1
l!
εipqC

pL−1w<qL−1> +
∞∑
l=0

1
l!
ZiLwL

+
∞∑
l=0

1
l!
SLw<iL> , (4.55)

ĥ
(ext)
ij (u,w) = 2δij

∞∑
l=0

1
l!
ALwL +

∞∑
l=0

1
l!
BLw<ijL> +

1
3
(
δijC

2 − CiCj
)
w2

+
∞∑
l=1

1
l!

(
DiL−1w<jL−1> + εipqEpL−1w<jqL−1>

)sym(ij)

+
∞∑
l=2

1
l!

(
F ijL−2wL−2 + εpq(iGj)pL−2w<qL−2>

)
, (4.56)

where we use the multi-index notation L ≡ i1i2...il, L − 1 ≡ i1i2...il−1, and so on, symbol
‘sym(ij)’ and the round brackets around indices denote symmetry with respect to the indices,
for instance, [TijL]sym(ij) ≡ T(ij)L = (1/2)[TijL + TjiL]. Function Ci in equations (4.54)–
(4.56) is the angular velocity of kinematic rotation of the local frame with respect to the global
coordinates, and we keep its contribution only up to terms of the order of O(C2), which is
sufficient for our goal. We also assume that Ci has the post-Newtonian order of magnitude being
comparable with the rate of the geodetic precession.

The external solution contains monopole terms Q and A entering ĥ(ext)
00 and ĥ(ext)

ij respec-
tively. Function Q defines the unit of measurement of the coordinate time u at the origin of
the EMB frame, and function A defines the unit of measurement of spatial distances. These
functions can be chosen arbitrary in accordance with the practice of astronomical measurements
and data processing recommended by the IAU (Soffel et al, 2003). Current practice is to choose
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these functions as constants to equate the rate of the solar barycentric and geocentric coordinate
times (Kaplan and Grossman, 2005; Soffel et al, 2003), which would secularly diverge due to the
orbital motion of Earth around Sun, if one had chosen Q = 0. In this paper we do not impose
any limitation on functions Q and A, which are admitted to depend on time u.

Physical meaning of the external multipoles QL can be understood if one writes down the
Newtonian equation of motion of a test particle being at free fall in the EMB frame. This equation
is a time-like geodesic so that after calculation of the Christoffel symbols one gets acceleration
of the particle

d2wi

du2
= Qi − Żi − 2εijkCjνk − εijkĊjwk +

(
C2δij − CiCj

)
wj +Qijw

j

+
∞∑
l=2

1
l!
QiLw

L +O
(
ε2
)
, (4.57)

where νi ≡ dwi/du. The difference between the first two terms in the right side of this equation,
Qi − Żi, describe the kinematic acceleration of the particle. It is caused by the force of inertia
if the origin of the local frame does not move along geodesic. The third term, 2εijkCjνk, in the
right side of equation (4.57) is the Coriolis acceleration (Arnold, 1995) caused by the coupling of
the particle’s velocity to the angular velocity Ci of rotation of the local frame. The fourth term,
εijkĊ

jwk, in the right side of equation (4.57) is acceleration due to the non-uniform rotation
of the local frame. The fifth term,

(
C2δij − CiCj

)
wj , describes a centrifugal acceleration of

the particle. The sixth term, Qijwj , is acceleration due to the presence of the quadrupole tidal
gravitational field of Sun and other planets. The last term in the right side of equation (4.57) is the
Newtonian tidal acceleration due to the higher-order external multipoles of the gravitational field
of Sun and planets. The centrifugal and quadrupole tidal accelerations have similar structure.
The difference, however, is that the matrix of the centrifugal acceleration, C2δij − CiCj , is not
trace-free in contrast to the tidal matrix, Qij . In what follows, we shall keep the angular velocity
Ci in the metric tensor but after completion of calculations it will be set equal to zero. This is
equivalent to the choice of dynamically non-rotating EMB frame. We also postulate without any
limitations that the shift function Zi = 0. It means that the time axis of the EMB frame is always
locally orthogonal to its spatial axes. However, we shall retain the dipole external moment Qi in
our calculations because it will be associated (see the next section) with acceleration of the origin
of the EMB frame due to the gravitational coupling of the internal multipoles of the Earth-Moon
system with external gravitational multipoles of Sun and other planets.

A set of eleven external STF multipole moments PL, QL, CL, ZL, SL, AL, BL, DL, EL,
GL is defined on the world line of the origin of the EMB local coordinates so that these mul-
tipoles are functions of the local coordinate time u only. Furthermore, the external multipole
moments are symmetric and trace-free (STF) Cartesian tensors with respect to a pair of any in-
dices (Blanchet and Damour, 1986; Kopeikin and Vlasov, 2004; Thorne, 1980). Imposing four
gauge conditions (3.23), (3.24) on the metric tensor given by equations (4.54)–(4.56) reveals
that only 7 from 11 external multipole moments are algebraically independent. Indeed, after
imposing the gauge conditions one can immediately eliminate the external multipole moments
BL, EL, DL, SL from the local metric (Kopeikin and Vlasov, 2004). The remaining multi-
poles: PL, QL, ZL, CL, AL, FL, GL can be constrained by making use of the residual gauge
freedom allowed by differential equation (3.37), which excludes four other multipoles AL, FL,
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GL, ZL (Kopeikin and Vlasov, 2004). We conclude that only three external moments PL, QL,
and CL have real physical meaning reflecting one degree of freedom for the scalar field and two
degrees of freedom for gravitational field of the external bodies. However, it is convenient to
preserve some gauge freedom and do not fix the external multipoles ZL with l ≥ 2. They can be
chosen later to simplify equations of orbital motion of Moon.

After fixing the gauge freedom as indicated above, the external metric tensor assumes the
following form (Kopeikin and Vlasov, 2004)

ĥ
(ext)
00 (u,w) = 2

∞∑
l=0

1
l!
QLwL , (4.58)

ĥ
(ext)
0i (u,w) =

(
Ȧ+

Q̇

3
+

1− γ
3

Ṗ

)
wi +

∞∑
l=1

1
l!
εipqC

pL−1w<qL−1>

+2
∞∑
l=1

2l + 1
(2l + 3)(l + 1)!

[
2Q̇L + (γ − 1)ṖL

]
w<iL>

+
∞∑
l=1

1
l!
ZiLwL , (4.59)

ĥ
(ext)
ij (u,w) = 2δij

{
A+

∞∑
l=1

1
l!
[
QL + (γ − 1)PL

]
wL

}
, (4.60)

where the dot above the external multipoles denotes a derivative with respect to time u.
Now we can compute the non-linear part of the external metric tensor by making use of

equation (3.30). It is determined up to a solution of the homogeneous field (Laplace) equation,
which is absorbed to the post-Newtonian terms (not shown explicitly) in definition of the external
multipoles QL in equation (4.58). Thus, for the non-linear terms of the metric tensor one obtains

l̂
(ext)
00 (u,w) = −2

( ∞∑
l=0

1
l!
QLwL

)2

− 2(β − 1)

( ∞∑
l=0

1
l!
PLwL

)2

+
∞∑
l=0

1
(2l + 3)l!

Q̈LwLw2 , (4.61)

where a double dot above QL denotes a second time derivative with respect to time u. We have
included the monopole and dipole terms to the non-linear part of the EMB metric tensor for
our convenience. In fact, these terms could be excluded from equation (4.61) by means of re-
definition of the monopole Q and the dipole Qi. We could also decompose the product of the
two sums in equation (4.61) into irreducible pieces and absorb some of the terms so obtained, to
the multipolesQL (l ≥ 2). This procedure is, however, redundant at this stage of calculation as it
will be done later on in the procedure of finding the post-Newtonian coordinate transformations
between the different frames.
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The Mixed Terms. The coupling terms in the metric tensor in the EMB local coordinates are
given as a particular solution of the inhomogeneous field equation (3.30) with the right side taken
as a product of the internal and external solutions found on previous step of the approximation
procedure. Solving equation (3.30) yields

l̂
(mix)
00 (u,w) = −2Û (int)(u,w)

[
A+ (2β − γ − 1)P

]
−4Û (int)(u,w)

∞∑
l=0

1
l!

[
QL + (β − 1)PL

]
wL

−2G
∞∑
l=1

1
l!

[
QL + 2(β − 1)PL

] ∫
V

ρ∗(u,w′)w′L

|w −w′|
d3w′ ,

(4.62)

where V denotes a common volume of Earth’s and Moon’s matter:
∫
V

=
∫
VE

+
∫
VM

. This
completes derivation of the metric tensor in the EMB local coordinates.

4.3.3 Internal Multipoles of the Earth-Moon System

Had one ignored the tidal gravitational field of Sun and other planets, the Earth-Moon system
would be considered as isolated and its gravitational field would be characterized by the sum of
the internal potentials of each body defined in equations (4.45)–(4.52). Multipolar decomposition
of the metric tensor of an isolated gravitating system residing in asymptotically flat space-time
has been well understood and can be found in papers (Blanchet and Damour, 1989; Damour
and Iyer, 1991; Thorne, 1980), where the technique of the irreducible Cartesian tensors has been
implemented. The technique has been extended to the case of a self-gravitating system embedded
to an asymptotically-curved background space-time in Thorne and Hartle (1985), Damour et al
(1991), and Kopeikin and Vlasov (2004). The Earth-Moon system is not fully isolated from the
other bodies of the solar system because it interacts with them gravitationally rather strong – it
suffices to recall the large orbital perturbations in the lunar motion caused by Sun (Deprit, 1971).
This mutual interaction brings about the mixed terms to the metric tensor in the EMB frame,
which bring uncertainty to the post-Newtonian definition of the internal multipole moments of
the Earth-Moon system noted by Thorne and Hartle (Thorne and Hartle, 1985).

There are two options – either to include or to exclude the contribution of the mixed terms
to the internal multipole moments of the Earth-Moon system. Both options are theoretically
admissible but one of them has advantage. Straightforward calculations (Kopeikin and Vlasov,
2004) prove that equations of motion of the Earth-Moon system can be significantly simplified
if the mixed terms are included to the definition of the internal multipole moments. This is the
choice we hold on. There are three classes of the internal multipole moments in the scalar-tensor
theory of gravity – active, conformal, and scalar multipoles (Will, 1993). Each class has two
physically-different types of mass-induced and current-induced multipoles.

The active STF mass-type multipoles of the Earth-Moon system are defined by equation
(Kopeikin and Vlasov, 2004)

IL =
∫
V

σ(u,w)w<L>d3w +
ε2

2(2l + 3)

[
d2

du2

∫
V

σ(u,w)w<L>w2d3w
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−4(1 + γ)
2l + 1
l + 1

d

du

∫
V

σi(u,w)w<iL>d3w

]
− ε2

∫
V

d3w σ(u,w)

×
{
A+ (2β − γ − 1)P +

∞∑
k=1

1
k!

[
QK + 2(β − 1)PK

]
wK
}
w<L> ,

(4.63)

where V denotes the volume occupied by the matter of the Earth-Moon system, the matter current
density

σi(u,w) = ρ∗(u,w)νi(u,w) , (4.64)

and the active mass density

σ(u,w) = ρ∗(u,w)
{

1 + ε2
[
(γ +

1
2

)ν2(u,w) + Π(u,w)

−(2β − 1)Û (int)(u,w)
]}

+ ε2γπkk(u,w) , (4.65)

where Û (int)(u,w) is the gravitational potential of the Earth-Moon system given by equation
(4.44).

The conformal STF mass-type multipoles of the Earth-Moon system are defined as follows
(Kopeikin and Vlasov, 2004)

IL =
∫
V

%(u,w)
{

1− ε2
[
A+ (1− γ)P +

∞∑
k=1

1
k!
QKw

K

]}
w<L> d3w

+
ε2

2(2l + 3)

[
d2

du2

∫
V

%(u,w)w<L>w2 d3w − 8(2l + 1)
l + 1

× d

du

∫
V

σi(u,w)w<iL> d3w

]
, (4.66)

with the conformal mass density of matter

% = ρ∗(u,w)
[
1 + ε2

(
3
2
ν2(u,w) + Π(u,w)− Û (int)(u,w)

)]
+ ε2πkk(u,w) . (4.67)

The conformal mass density does not depend on the PPN parameters β and γ as opposed to the
definition of the activemass density.

The scalar field multipoles, ĪL, are not independent and are related to the active and confor-
mal multipoles with the aid of a linear relationship (Kopeikin and Vlasov, 2004)

ĪL = 2IL − (1 + γ)IL . (4.68)

The hypersurface of the integration in equations (4.63), (4.66) is that of the constant local EMB
coordinate time u, which does not coincide with the hypersurface of the constant time t in the
global SSB coordinates.
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In addition to the gravitational mass-type multipoles, IL and IL, there is a set of other mul-
tipoles, which are called spin multipoles. In the post-Newtonian approximation they are defined
by equation (Blanchet and Damour, 1989; Kopeikin and Vlasov, 2004; Thorne, 1980)

SL =
∫
V

εpq<alwL−1>pσq(u,w) d3w , (4.69)

where the matter current density σq is defined in equation (4.64). The spin multipoles of the
Earth-Moon system are different from zero because both Earth and Moon move with respect to
the EMB frame making the matter current density σi 6= 0.

4.4 The Geocentric Frame

4.4.1 The Boundary Conditions and Dynamic Properties

The Earth is a self-gravitating, extended body moving around the barycenter of the Earth-Moon
system, which in its own turn moves around the barycenter of the solar system. It is convenient
to introduce local geocentric frame Xα = (cT,Xi) to describe rotational motion of Earth and
orbital motion of artificial satellites orbiting the Earth. It will also help us to decouple the or-
bital motion of Earth around the Earth-Moon system barycenter from the rotational harmonics
(nutation, precession, polar motion) of the Earth.

Mathematical principles of the construction of the geocentric reference frame (GRF) are
similar to those, which were used in the construction of the local Earth-Moon barycentric frame.
However, in case of the GRF the internal problem is solved only for Earth. The external bodies
are Sun, Moon, and other planets.

The origin of the GRF is located at Earth’s center of mass, and the domain of space covered
by the frame incloses the world line of the center of mass of Earth with a spatial cross-section
that extends to the orbit of Moon. The GRF is not asymptotically Minkowskian because of the
tidal gravitational field of Sun, Moon, and other planets. This means that the GRF metric tensor
diverges as distance from the origin of the GRF grows. At the same time, if one neglects gravita-
tional field of Earth, the remaining part of the GRF metric tensor is reduced to the Minkowskian
tensor ηαβ on the world-line of the origin of the geocentric frame.

We postulate that the GRF is dynamically non-rotating. It means that orbital equations of
motion of Earth’s artificial satellites, referred to the GRF, do not include the Coriolis and cen-
trifugal forces. However, the post-Newtonian force causes spatial axes of the GRF rotate slowly
in kinematic sense with respect to spatial axes of the EMB frame, which undergoes relativistic
precession with respect to the global SSB frame as well.

4.4.2 The Metric Tensor and Scalar Field

We denote the geocentric coordinates by Xα = (X0, Xi) = (cT,Xi) where T stands for the
geocentric coordinate time. We are looking for the non-vacuum (internal) solution of the field
equations (3.29)–(3.30) inside a domain spreading up from the geocenter to Moon. Thus, the
right side of equations (3.29)–(3.32) includes only the energy-momentum tensor of Earth. The
scalar field and the metric tensor in the internal solution of the field equations related to Earth
only, will be labeled by index (int) and a capital letter E. Other functions describing the metric
tensor and the scalar field of the external bodies are labeled by index (ext), and the coupling
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between the internal and external terms will be labeled by index (mix). The solution of the
field equations (3.29)–(3.30) is a linear combination of a general solution of the homogeneous
equation and a particular solution of the inhomogeneous equation.

Solution for a scalar field in the GRF coordinates is denoted as Φ, and has the following
structure

Φ(T,X) = Φ(int)(T,X) + Φ(ext)(T,X) . (4.70)

The GRF metric tensor is denoted as Gµν(T,X), and its perturbation

Hµν(T,X) = Gµν(T,X)− ηµν , (4.71)

is given in the following form

Hµν(T,X) = H(int)
µν (T,X) +H(ext)

µν (T,X) +H(mix)
µν (T,X) , (4.72)

where terms with index (int) refer to Earth and describe the internal solution of the inhomoge-
neous field equations, terms with index (ext) refer to the external bodies (Sun, Moon, and other
planets) and describe the external (background) solution of the homogeneous part of the field
equations, and terms with index (mix) are due to the gravitational coupling of the internal and
external solutions.

Internal and External Solutions for the Scalar Field. Equation (3.29) gives internal, Φ(int),
and external, Φ(ext), solutions for the scalar field in the following form

Φ(int)(T,X) = UE(T,X) , (4.73)

Φ(ext)(T,X) =
∞∑
l=0

1
l!
PLE X

L . (4.74)

Here PLE ≡ PLE (T ) are external STF multipoles entering the irreducible Cartesian-tensor decom-
position of the scalar field generated by Sun, Moon, and other planets. These external multipoles
are functions of the local time T only, and are attached to the world line of the origin of the
GRF. The internal solution Φ(int) describes the scalar field, which is generated by Earth. It is
expressed in terms of the Newtonian gravitational potential of Earth UE(T,X) that is defined
in equation (4.79). Notice again that the laws of the post-Newtonian coordinate transformation
for the scalar field Φ(int)(T,X), the metric tensor H(int)

00 (T,X), and the Newtonian potential
UE(T,X) are different because they represent different mathematical objects. This point will be
taken into account in the next section.

Internal Solution for the Metric Tensor. The boundary conditions imposed on the internal
solution for the metric tensor are similar with equations (4.2)–(4.3). Solving the inhomogeneous
field equations with Earth as a source of the field, yields:

H
(int)
00 (T,X) = 2UE(T,X) , (4.75)
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L
(int)
00 (T,X) = 2ΨE(T,X)− 2(β − 1)

[
Φ(int)(T,X)

]2
−2U2

E(T,X)− ∂2χE(T,X)
∂T 2

, (4.76)

H
(int)
0i (T,X) = −2(1 + γ)U iE(T,X) , (4.77)

H
(int)
ij (T,X) = 2γδijUE(T,X) , (4.78)

where all gravitational potentials are taken over Earth’s volume denoted in the following equa-
tions as VE . Specifically,

UE(T,X) = G

∫
VE

ρ∗(T,X ′)
|X −X ′|

d3X ′ , (4.79)

U iE(T,X) = G

∫
VE

ρ∗(T,X ′)V i(T,X ′)
|X −X ′|

d3X ′ , (4.80)

χE(T,X) = −G
∫
VE

ρ∗(T,X ′)|X −X ′|d3X ′ , (4.81)

ΨE(T,X) = (γ +
1
2

)ΨE1(T,X)− 1
6

ΨE2(T,X) + (1 + γ − 2β)ΨE3(T,X)

+ΨE4(T,X) + γΨE5(T,X) , (4.82)

where

ΨE1(T,X) = G

∫
VE

ρ∗(T,X ′)V 2(T,X ′)
|X −X ′|

d3X ′ , (4.83)

ΨE2(T,X) = G

∫
VE

ρ∗(T,X ′)H(int)(T,X ′)
|X −X ′|

d3X ′ , (4.84)

ΨE3(T,X) = G

∫
VE

ρ∗(T,X ′)Φ(int)(T,X ′)
|X −X ′|

d3X ′ , (4.85)

ΨE4(T,X) = G

∫
VE

ρ∗(T,X ′)Π(T,X ′)
|X −X ′|

d3X ′ , (4.86)
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ΨE5(T,X) = G

∫
VE

πkk(T,X ′)
|X −X ′|

d3X ′ , (4.87)

H(int) = H
(int)
ii , the symbol V i(T,X) = dXi/dT is the velocity of Earth’s matter with respect

to the origin of GRF, and all integrals given in this section, are taken over the hypersurface of a
constant value of the coordinate time T .

The internal part of the local metric given by equations (4.73), (4.75)–(4.78) must obey the
gauge condition (3.22), which yields

∂UE

∂T
+
∂U iE
∂Xi

= O(ε2) , (4.88)

where we have neglected contribution of the external part of the metric tensor. Equation (4.88)
is satisfied under this assumption because of the equation of continuity (3.18) for Earth’s matter.

External Solution for the Metric Tensor. The boundary conditions imposed on the external
solution of the field equations tells us that it must be convergent on the world line of the origin
of the GRF, where X = 0. However, the external solution diverges as the radial distance from
the origin of the GRF increases because it should match with the tidal gravitational field of Sun,
Moon, and the other planets. By making use of the gauge condition and the residual gauge
freedom, the external metric tensor can be brought to the following simple form (Kopeikin and
Vlasov, 2004)

H
(ext)
00 (T,X) = 2

∞∑
l=0

1
l!
QLEX

L , (4.89)

H
(ext)
0i (T,X) =

(
ȦE +

Q̇E

3
+

1− γ
3

ṖE

)
Xi +

∞∑
l=1

1
l!
εipqC

pL−1
E X<qL−1>

+2
∞∑
l=1

2l + 1
(2l + 3)(l + 1)!

[
2Q̇LE + (γ − 1)ṖLE

]
X<iL>

+
∞∑
l=1

1
l!
ZiLE XL , (4.90)

H
(ext)
ij (T,X) = 2δij

{
AE +

∞∑
l=1

1
l!
[
QLE + (γ − 1)PLE

]
XL

}
, (4.91)

where PLE = PLE (T ), QLE = QLE(T ), CLE = CLE (T ) are STF Cartesian tensors depending
only on time T and characterizing gravitational multipoles of the external gravitational field by
Sun, Moon, and the other planets on the world line of the origin of the GRF, and dot above
the multipoles denotes a time derivative with respect to time T . External multipoles ZLE =
ZLE (T ) are left free to accommodate the residual gauge freedom remained in the description of
the external gravitational field.
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The non-linear part of the GRF metric tensor is

L
(ext)
00 (T,X) = −2

( ∞∑
l=0

1
l!
QLEX

L

)2

− 2(β − 1)

( ∞∑
l=0

1
l!
PLE X

L

)2

+
∞∑
l=0

1
(2l + 3)l!

Q̈LEX
LX2 , (4.92)

where dots above QLE denotes time derivative with respect to time T .
We have included the monopole (l = 0) and dipole (l = 1) terms to the non-linear part of

the GRF metric tensor for our convenience. These terms could be excluded from equation (4.92)
by means of re-definition of the monopole QE and the dipole QiE in equation (4.89). We could
also decompose the product of the two sums in equation (4.92) into a single series consisting of
irreducible pieces, and absorb some of the terms to the multipoles QLE (l ≥ 2) in equation (4.89).
However, it is more simple to do calculations directly with expression (4.92).

The Mixed Terms. The coupling terms in the GRF metric tensor are given as a particular
solution of the inhomogeneous field equation (3.30) with the right side taken as a product of the
internal and external solutions found on the previous step. It reads

L
(mix)
00 (T,X) = −2UE(T,X)

[
AE + (2β − γ − 1)PE

]
−4UE(T,X)

∞∑
l=0

1
l!

[
QLE + (β − 1)PLE

]
XL

−2G
∞∑
l=1

1
l!

[
QLE + 2(β − 1)PLE

] ∫
VE

ρ∗(T,X ′)X ′L

|X −X ′|
d3X ′ .

(4.93)

This completes derivation of the metric tensor in the local GRF coordinates.

4.4.3 Gravitational Multipoles of Earth

Gravitational field of Earth is described in the GRF in terms of the internal potentials UE , U iE ,
ΨE , etc., defined in equations (4.79)–(4.87). Multipolar decomposition of the metric tensor of
Earth is given in terms of the irreducible STF Cartesian tensors. The active STF mass-type
multipole moments of Earth are (Kopeikin and Vlasov, 2004)

ILE =
∫
VE

σE(T,X)X<L>d3X +
ε2

2(2l + 3)

[
d2

dT 2

∫
VE

σE(T,X)X<L>X2d3X

−4(1 + γ)
2l + 1
l + 1

d

dT

∫
VE

σiE(T,X)X<iL>d3X

]
− ε2

∫
VE

d3X σE(T,X)

×
{
AE + (2β − γ − 1)PE +

∞∑
k=1

1
k!

[
QKE + 2(β − 1)PKE

]
XK

}
X<L> ,
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(4.94)

where VE denotes the volume occupied by the matter of Earth, the matter current density

σiE(T,X) = ρ∗(T,X)V i(T,X) , (4.95)

and the active mass density is defined as

σE(T,X) = ρ∗(T,X)
{

1 + ε2
[
(γ +

1
2

)V 2(T,X) + Π(T,X)

−(2β − 1)UE(T,X)
]}

+ ε2γπkk(T,X) , (4.96)

where UE(T,X) is the gravitational potential of Earth given by equation (4.79). The conformal
STF mass-type multipole moments of Earth is

ILE =
∫
VE

%E(T,X)

{
1− ε2

[
AE + (1− γ)PE +

∞∑
k=1

1
k!
QKE X

K

]}
X<L> d3X

+
ε2

2(2l + 3)

[
d2

dT 2

∫
VE

σE(T,X)X<L>X2 d3X − 8(2l + 1)
l + 1

× d

dT

∫
VE

σiE(T,X)X<iL> d3X

]
, (4.97)

with the conformal mass density of Earth’s matter defined as

%E = ρ∗(T,X)
[
1 + ε2

(
3
2
V 2(T,X) + Π(T,X)− UE(T,X)

)]
+ ε2πkk(T,X) . (4.98)

The conformal density does not depend on the PPN parameters β and γ. Scalar multipoles, ĪLE ,
are related to the active and conformal multipoles via linear relationship

ĪLE = 2ILE − (1 + γ)ILE . (4.99)

The hypersurface of the integration in equations (4.94), (4.97) is that of a constant value of the
GRF coordinate time T , which does not coincide either with the hypersurface of the constant
time u in the EMB frame or that of the constant time t of the SSB frame.

The spin multipoles of Earth are defined by equation

SLE =
∫
VE

εpq<alXL−1>pσqE(T,X) d3X , (4.100)

where the matter current density σqE is defined in equation (4.95). From their definitions, it is
clear that the current-type multipoles are different from zero, if and only if, velocity of matter
with respect to the GRF is not zero. Since Earth rotates around its axis, the spin moments for
Earth are well-defined.
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4.5 The Selenocentric Frame

4.5.1 The Boundary Conditions and Dynamic Properties

From the point of view of space research Moon is a self-gravitating, extended body moving in
space around the barycenter of the Earth-Moon system, which, in its own turn, orbits the barycen-
ter of the Solar system. Previous post-Newtonian theories of the lunar motion neglected its mass
(Brumberg, 1958, 1972). However, the millimeter ranging accuracy of LLR measurements may
be sensitive to some post-Newtonian effects associated with the finite value of mass of Moon.
For this reason, we are taking it into account. It is convenient to introduce a local selenocentric
reference frame (SRF) to describe rotational motion of Moon, motion of a CCR on Moon around
center of mass of Moon, and orbital motion of spacecrafts around Moon. The origin of the SRF
should be located at Moon’s center of mass – this will be achieved later by making use of the law
of conservation of the linear momentum of Moon in local selenocentric coordinates. The spatial
domain covered by the SRF encloses the world line of the center of mass of Moon and extends
to the orbit of Earth. The SRF is not asymptotically Minkowskian because the external part of
the SRF metric tensor must match with the tidal gravitational field of Sun, Earth, and the other
planets. This means that the SRF metric tensor diverges as distance from Moon grows. If one
neglects the internal part of the SRF metric tensor that describes gravitational field of Moon, the
external part of the SRF metric tensor must approach the Minkowskian metric on the world-line
of the origin of the SRF. We postulate that the SRF is dynamically non-rotating. It means that
orbital equations of motion of Moon’s artificial satellites, written down in the local selenocentric
coordinates, do not include the Coriolis and centrifugal forces. However, the post-Newtonian
gravitational interaction of Moon with Earth and the other solar system bodies makes the spatial
axes of the SRF slowly rotating in the kinematic sense with respect to the spatial axes of the EMB
frame. Dynamically non-rotating SRF is useful for doing the post-Newtonian calculations. How-
ever, one has to remember that Moon is tidally locked so that its orbital and rotational motions
are synchronized and obey the Cassini laws. For this reason, the post-Newtonian precession of
the spatial axes of the SRF should superimpose on physical libration of Moon.

Currently, it is not quite clear whether the Newtonian theory is sufficient for complete in-
terpretation of the high-precision rotational data of Moon (and Earth), or the post-Newtonian
corrections should be earnestly taken into account. Several papers (Brumberg and Groten, 2001;
Brumberg et al, 1991; Klioner and Soffel, 2006; Vokrouhlický, 1995, 1996) pointed out that the
relativistic corrections might be important in the rotational theory of Moon (and Earth). For
example, it seems likely that apart from the well-known geodetic precession of the lunar orbit
(Williams et al, 1996a), the SRF undergoes an additional precession of 28.9 milli-arcsec/century
(Vokrouhlický, 1995). This value is theoretically within the range of LLR technique attaining
precision of 1 millimeter, but the question is how to de-correlate it from other secular seleno-
physical effects. Existence of the orbit co-rotation 1:1 resonance in the lunar dynamics imposes
a specific constraint on the relativistic libration of Moon making it hard to observe (Vokrouhlický,
1996). Müller (1991) made a significant effort to incorporate relativistic effects to the rotational-
orbital dynamics of Moon by making use of Thorne and Hartle (1985) and Brumberg-Kopeikin
formalism (Brumberg and Kopejkin, 1989a,b) and tested their presence in his LLR software. He
had showed that their impact was fairly small at that time, and removed those terms, because
their computation was time consuming. However, the millimeter LLR demands to reconsider
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this problem at a new theoretical level. Certain progress towards this direction has been achieved
by German-Chinese research group in a series of papers (Xu et al, 2001, 2003, 2005). It would
be interesting to extend this line of research and to apply it to real LLR data processing.

4.5.2 The Metric Tensor and Scalar Field

We denote the selenocentric coordinates by Y α = (Y 0, Y i) = (cΣ, Y i) where Σ stands for
the selenocentric coordinate time. We are looking for the internal solution of the field equations
(3.29)–(3.32) inside the spatial domain spreading up from the center of mass of Moon to Earth.
Thus, the right side of equations (3.29)–(3.32) includes only the energy-momentum tensor of
Moon.

The internal solution of the field equations for the scalar field and the metric tensor relates
only to Moon and is labeled by index (int). The external solution of the field equations describes
the gravitational and scalar field of the external bodies (Earth, Sun, the other planets) and is la-
beled by index (ext). The non-linear solution of the field equations describing the gravitational
mixing (coupling) of the internal and external solutions will be labeled by index (mix). Solution
of the field equations (3.29)–(3.32) is a linear combination of a general solution of the homoge-
neous (the external field) equation and a particular solution of the inhomogeneous (the internal
field) equation. In order to distinguish these solutions from the corresponding solutions of the
field equations in the geocentric frame, we put a hat above any function expressed in the SRF
coordinates.

Solution for a scalar field in the SRF coordinates is

Φ̂(Σ,Y ) = Φ̂(int)(Σ,Y ) + Φ̂(ext)(Σ,Y ) , (4.101)

and the SRF perturbation

Ĥµν(Σ,Y ) = Ĝµν(Σ,Y )− ηµν , (4.102)

of the metric tensor Ĝµν(Σ,Y ) is given in the form

Ĥµν(Σ,Y ) = Ĥ(int)
µν (Σ,Y ) + Ĥ(ext)

µν (Σ,Y ) + Ĥ(mix)
µν (Σ,Y ) , (4.103)

where the terms with index (int) refer to Moon and describe the internal solution of the inho-
mogeneous field equations, the terms with index (ext) refer to the external bodies (Sun, Earth,
and the other planets) and describe the external (background) solution of the homogeneous field
equations, and the terms with index (mix) are due to the gravitational coupling of the internal
and external solutions.

Internal and External Solutions for the Scalar Field. Non-homogeneous equation (3.29)
yields the internal solution Φ̂(int) for the scalar field. Homogeneous part of this equation gives
rise to the external solution, Φ̂(ext), for the scalar field. They are

Φ̂(int)(Σ,Y ) = UM(Σ,Y ) , (4.104)
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Φ̂(ext)(Σ,Y ) =
∞∑
l=0

1
l!
PLMY

L . (4.105)

Here PLM ≡ PLM(Σ) are the external STF multipoles of the scalar field generated by Sun, Earth,
and the other planets. These external multipoles are functions of the coordinate time Σ only. The
internal solution Φ̂(int) describes the scalar field, which is generated by Moon. It is expressed in
terms of the Newtonian gravitational potential of Moon, UM(Σ,Y ), that is defined explicitly by
equation (4.110).

Internal Solution for the Metric Tensor. The boundary conditions imposed on the internal
solution for the metric tensor in the SRF are similar with equations (4.2), (4.3). Solving the
inhomogeneous field equations yields:

Ĥ
(int)
00 (Σ,Y ) = 2UM(Σ,Y ) , (4.106)

Ĥ
(int)
0i (Σ,Y ) = 2ΨM(Σ,Y )− 2(β − 1)

[
Φ̂(int)(Σ,Y )

]2
−2U2

M(Σ,Y )− ∂2χM(Σ,Y )
∂Σ2

, (4.107)

Ĥ
(int)
0i (Σ,Y ) = −2(1 + γ)U iM(Σ,Y ) , (4.108)

Ĥ
(int)
ij (Σ,Y ) = 2γδijUM(Σ,Y ) , (4.109)

where all functions in the right side of equations (4.106)–(4.109) are taken over Moon’s volume
denoted as VM . More specifically,

UM(Σ,Y ) = G

∫
VM

ρ∗(Σ,Y ′)
|Y − Y ′|

d3Y ′ , (4.110)

U iM(Σ,Y ) = G

∫
VM

ρ∗(Σ,Y ′)V i(Σ,Y ′)
|Y − Y ′|

d3Y ′ , (4.111)

χM(Σ,Y ) = −G
∫
VM

ρ∗(Σ,Y ′)|X −X ′|d3X ′ , (4.112)

ΨM(Σ,Y ) = (γ +
1
2

)ΨM1(Σ,Y )− 1
6

ΨM2(Σ,Y )

+(1 + γ − 2β)ΨM3(Σ,Y ) + ΨM4(Σ,Y ) + γΨM5(Σ,Y ) ,
(4.113)

where

ΨM1(Σ,Y ) = G

∫
VM

ρ∗(Σ,Y ′)V 2(Σ,Y ′)
|Y − Y ′|

d3Y ′ , (4.114)
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ΨM2(Σ,Y ) = G

∫
VM

ρ∗(Σ,Y ′)Ĥ(int)(Σ,Y ′)
|Y − Y ′|

d3Y ′ , (4.115)

ΨM3(Σ,Y ) = G

∫
VM

ρ∗(Σ,Y ′)Φ̂(int)(Σ,Y ′)
|Y − Y ′|

d3Y ′ , (4.116)

ΨM4(Σ,Y ) = G

∫
VM

ρ∗(Σ,Y ′)Π(Σ,Y ′)
|Y − Y ′|

d3Y ′ , (4.117)

ΨM5(Σ,Y ) = G

∫
VM

πkk(Σ,Y ′)
|Y − Y ′|

d3Y ′ , (4.118)

the symbol V i(Σ,Y ) = dY i/dΣ is the velocity of Moon’s matter with respect to the origin
of the SRF, and all integrals given in this section, are taken over the hypersurface of a constant
coordinate time Σ passing through Moons volume VM .

The local SRF metric given by equations (4.106)–(4.109) must obey the gauge condition
(3.22), which yields

∂UM(Σ,Y )
∂S

+
∂U iM(Σ,Y )

∂Y i
= O(ε2) , (4.119)

where we have neglected the contribution of the gravitational field of the external bodies. Un-
der this assumption equation (4.119) is satisfied because of the equation of continuity (3.18) for
Moon’s matter.

External Solution for the Metric Tensor. The boundary conditions imposed on the external
solution tell us that it must be convergent on the world line of the SRF origin, where Y = 0.
On the other hand, the external solution should match the tidal gravitational field of Sun, Earth,
and the other planets as the radial distance from Moon grows. The procedure of finding the
external solution for the metric tensor in the SRF is identical with that used for construction of
the external solution in the EMB frame and in the GRF. For this reason, we do not describe all its
details here. After solving the homogeneous field equations, making use of the gauge conditions
and the residual gauge freedom, the external metric tensor acquires the following form

Ĥ
(ext)
00 (Σ,Y ) = 2

∞∑
l=0

1
l!
QLMY

L , (4.120)

Ĥ
(ext)
0i (Σ,Y ) =

(
ȦM +

Q̇M

3
+

1− γ
3

ṖM

)
Y i +

∞∑
l=1

1
l!
εipqC

pL−1
M Y <qL−1>



Post-Newtonian Reference Frames 453

+2
∞∑
l=1

2l + 1
(2l + 3)(l + 1)!

[
2Q̇LM + (γ − 1)ṖLM

]
Y <iL>

+
∞∑
l=1

1
l!
ZiLM Y L , (4.121)

Ĥ
(ext)
ij (Σ,Y ) = 2δij

{
AE +

∞∑
l=1

1
l!
[
QLM + (γ − 1)PLM

]
Y L

}
, (4.122)

where PLM = PLM(Σ), QLM = QLM(Σ), CLM = CLM(Σ) are STF Cartesian tensors depending only
on time Σ characterizing gravitational multipolar structure of the external gravitational field by
Earth, Sun, and the other planets, the dot above the multipoles denotes a time derivative with
respect to time Σ. Multipoles ZLM = ZLM(Σ) are left free in the external solution as they are
associated with the residual gauge freedom, which will be fixed later in derivation of equations
of motion of Moon.

The non-linear part of the background SRF metric tensor is

L̂
(ext)
00 (Σ,Y ) = −2

( ∞∑
l=0

1
l!
QLMY

L

)2

− 2(β − 1)

( ∞∑
l=0

1
l!
PLMY

L

)2

+
∞∑
l=0

1
(2l + 3)l!

Q̈LMY
LY 2 , (4.123)

where the double dot above QLM denotes the second time derivative with respect to time Σ.
We have included the monopole (l = 0) and dipole (l = 1) terms to the non-linear part of the

SRF metric tensor for our convenience. These terms could be excluded from equation (4.123)
by means of re-definition of the monopole QM and the dipole QiM in equation (4.120). We could
also decompose the product of the two sums in equation (4.123) into a single series consisting
of irreducible pieces, and absorb some of the terms to the multipoles QLM (l ≥ 2) in equation
(4.120). However, it is more simple to do calculations directly with expression (4.123).

The Mixed Terms. The non-linear coupling terms in the SRF metric tensor are obtained as a
particular solution of the inhomogeneous field equation (3.30) with the right side being a product
of the internal and external solutions found at the previous step. It reads

L̂
(mix)
00 (Σ,Y ) = −2UM(Σ,Y )

[
AM + (2β − γ − 1)PM

]
−4UM(Σ,Y )

∞∑
l=0

1
l!

[
QLM + (β − 1)PLM

]
Y L

−2G
∞∑
l=1

1
l!

[
QLM + 2(β − 1)PLM

] ∫
VM

ρ∗(Σ,Y ′)Y ′L

|Y − Y ′|
d3Y ′ .
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(4.124)

This equation completes the derivation of the metric tensor in the local SRF coordinates.

4.5.3 Gravitational Multipoles of Moon

Gravitational field of Moon is described in the SRF in terms of the internal potentials UM , U iM ,
ΨM , etc., defined in equations (4.110)–(4.118). We have found (Kopeikin and Vlasov, 2004)
that the mixed terms given by equation (4.124) should be also taken into account to describe the
multipolar structure of the internal gravitational field. Multipolar decomposition of the metric
tensor of Moon is given in terms of the STF Cartesian tensors of two types. The active STF
mass-type multipoles of Moon are

ILM =
∫
VM

σM(Σ,Y )Y <L>d3Y +
ε2

2(2l + 3)

[
d2

dΣ2

∫
VM

σM(Σ,Y )Y <L>Y 2d3Y

−4(1 + γ)
2l + 1
l + 1

d

dΣ

∫
VM

σiM(Σ,Y )Y <iL>d3Y

]
− ε2

∫
VM

d3Y σM(Σ,Y )

×

{
AM + (2β − γ − 1)PM +

∞∑
k=1

1
k!

[
QKM + 2(β − 1)PKM

]
Y K

}
Y <L> ,

(4.125)

where VM denotes the volume occupied by the matter of Moon, the density of Moon’s matter
current

σiM(Σ,Y ) = ρ∗(Σ,Y )V i(Σ,Y ) , (4.126)

and the active mass density is defined by

σM(Σ,Y ) = ρ∗(Σ,Y )
{

1 + ε2
[
(γ +

1
2

)V 2(Σ,Y ) + Π(Σ,Y )

−(2β − 1)UM(Σ,Y )
]}

+ ε2γπkk(Σ,Y ) , (4.127)

where UM(Σ,Y ) is the gravitational potential of Moon given by equation (4.110).
The conformal STF mass-type multipoles of Moon are defined by equation

ILM =
∫
VM

%(Σ,Y )

{
1− ε2

[
AM + (1− γ)PM +

∞∑
k=1

1
k!
QKMY

K

]}
Y <L> d3Y

+
ε2

2(2l + 3)

[
d2

dΣ2

∫
VM

%(Σ,Y )Y <L>Y 2 d3Y − 8(2l + 1)
l + 1

× d

dΣ

∫
VM

σiM(Σ,Y )Y <iL> d3Y

]
, (4.128)

with the conformal mass density of matter defined as

%M = ρ∗(Σ,Y )
[
1 + ε2

(
3
2
V 2(Σ,Y ) + Π(Σ,Y )− UM(Σ,Y )

)]
+ε2πkk(Σ,Y ) . (4.129)
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The conformal density does not depend on the PPN parameters β and γ.
Scalar multipoles, ĪLM , are related to the active and conformal multipoles by means of a linear

relationship

ĪLM = 2ILM − (1 + γ)ILM . (4.130)

The hypersurface of the integration in equations (4.125), (4.128) is that of the constant coordinate
time Σ, which does not coincide with the hypersurface of the constant time u in the EMB frame
or that of the constant time t of the SSB frame.

The spin multipoles of Moon are defined by equation

SLM =
∫
VM

εpq<alY L−1>pσqM(Σ,Y ) d3Y , (4.131)

where the matter current density σqM is defined in equation (4.95). From their definitions, it is
clear that the spin multipoles are different from zero, if and only if, the velocity of matter with
respect to the SRF is not zero.
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5 Post-Newtonian Transformations Between Reference Frames

5.1 Transformation from the Earth-Moon to the Solar-System Frame

5.1.1 General Structure of the Transformation

The PPN coordinate transformations between various reference frames in the advanced theory of
the lunar motion can be split in three basic categories:

1. post-Newtonian transformation from the local EMB frame to the global SSB frame,

2. post-Newtonian transformation from the local GRF to the local EMB frame,

3. post-Newtonian transformation from the local SRF to the local EMB frame.

However, in order to model LLR data processing we have to add two more post-Newtonian
transformations - a transformation from the proper reference frame of the laser station on Earth
to the GRF coordinates, and a transformation from the proper reference frame of a CCR on
Moon to the SRF coordinates. These two transformations are required for linking the observer’s
proper time, τ , with the coordinate time T of the GRF, and for connecting the CCR proper
time λ with the coordinate time Σ of the SRF. They are also necessary for description of the
small adjustments of the origin and orientation of the proper reference frames with the exact
position and orientation of the laser and the CCR plate array. The present paper will describe
only the basic post-Newtonian transformations. The post-Newtonian transformations from the
proper reference frames to the GRF and the SRF will be discussed elsewhere in connection with
the LLR data processing model. The reader, who is interested in principles of derivation of
observer-related post-Newtonian transformations can find further details in Brumberg (1981),
Kopejkin (1991), and Brumberg (1991).

We draw attention of the reader that one can construct post-Newtonian transformations from
the geocentric and selenocentric frames directly to the global SSB frame without the interme-
diate EMB frame. This approach, however, does not reflect the hierarchic structure of the local
coordinates associated with the Earth-Moon system and does not allow us to make a complete de-
coupling of the relative motion of Moon around Earth from the orbital motion of the Earth-Moon
barycenter around Sun. Moreover, once one knows the transformations from the geocentric and
selenocentric frame to the EMB frame, and that from the EMB frame to the SSB frame - the
post-Newtonian transformation from the geocentric and selenocentric frame directly to the SSB
frame can be derived by means of successive application of the post-Newtonian transformations
between the hierarchic gravitating systems. This kind of procedure may lead to some difficul-
ties in formulation of the post-Newtonian conventions about the dynamically and kinematically
non-rotating frames (Klioner, 1993).

Post-Newtonian transformations between the frames are derived by making use of the mathe-
matical technique known as asymptotic matching of the post-Newtonian expansions of the scalar
field and the metric tensor. This technique was originally proposed in relativity by D’Eath
(1975a,b) as a tool for derivation of equations of motion of black holes. Other researchers had
proved its efficiency in the post-Newtonian theory of reference frames in the solar system (Ashby
and Bertotti, 1986; Brumberg and Kopejkin, 1989a; Damour et al, 1991, 1992; Kopeikin and
Vlasov, 2004; Kopeikin, 1985, 1989a; Kopejkin, 1988). The metric tensor and the scalar field
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are given as a solution of the field equations in each particular frame of reference. This solu-
tion is expressed in the form of different functions depending on the choice of the coordinates
associated with the reference frame. However, these functions describe one and the same phys-
ical situation, which means that they must match smoothly in the space-time domain where two
coordinate charts overlap. The matching assumes that the tensor transformation law is applied
to the post-Newtonian metric tensor and the scalar field. The matching domain is bounded by
the radius of convergence of the post-Newtonian series. After the matching is finished and the
post-Newtonian transformations between the reference frames are found, the local solutions of
the field equations can be analytically continued to a much larger spatial domain, if it is required
by practical applications (Brumberg and Kopejkin, 1989b; Klioner and Voinov, 1993; Kopeikin
and Vlasov, 2004; Kopejkin, 1991).

The post-Newtonian coordinate transformation between the frames must comply with the
gauge condition (3.22). Therefore, one begins with finding the most general structure of the
coordinate transformation that obeys equation (3.22). After this structure is established, it is
further specialized by making use of the residual gauge freedom admitted by equation (3.37).
Technically, post-Newtonian transformation between the global and local frames is found as a
general solution of the homogeneous equation (3.37) describing the residual gauge freedom of
the metric tensor. The solution is given by a post-Newtonian series of harmonic polynomial
expanded in powers of the spatial coordinates of the local frame with the polynomial coefficients
being functions of time that are STF Cartesian tensors defined on the world line of the origin
of the local coordinates (Damour et al, 1992; Kopejkin, 1988). This solution is substituted to
the matching equations between the solutions of the field equations expressed in the global and
local coordinates. The matching of the post-Newtonian expansions of the scalar field and the
metric tensor allows us to fix all degrees of the gauge freedom in the final form of the post-
Newtonian coordinate transformation. Notice that we have partially used this gauge freedom
in sections 4.3.2, 4.4.2, 4.5.2 to remove non-physical multipoles in the external solution for the
metric tensor.

The post-Newtonian transformation between the coordinate times of the two frames describes
the integral Lorentz (velocity-dependent) and Einstein (gravitational field-dependent) time delays
associated with the different definition of simultaneity of events in the two frames (Ashby and
Bertotti, 1986; Kopejkin, 1988). They also include a series of complicated polynomial terms
(Brumberg and Kopeikin, 1990). The post-Newtonian transformation between the space coordi-
nates of the two frames consists of linear and non-linear parts. The linear part of the transfor-
mation includes the Lorentz and Einstein contractions as well as a matrix of relativistic rotation
describing the post-Newtonian precession of the spatial axes of one frame with respect to another
due to the orbital motion of the local frame and gravitational fields of the solar system bodies,
which are external with respect to the local frame (Damour, 1989; Kopeikin, 1985). The Lorentz
contraction takes into account the kinematic aspects of the post-Newtonian transformation that
depends on the relative velocity of motion of the local frame with respect to the global one.
The Einstein gravitational contraction accounts for static effects of the scalar and gravitational
fields (Kopeikin and Vlasov, 2004). The non-linear part of the spatial transformation depends on
the orbital acceleration of the local frame and accounts for the effects of the derivatives of the
gravitational field associated with the Christoffel symbols.

Let us discuss the mathematical structure of the post-Newtonian transformation taking as an
example the transformation between the EMB local frame, wα = (w0, wi) = (cu,w), and the
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SSB global frame, xα = (x0, xi) = (ct,x). This coordinate transformation must be compatible
with the weak-field and slow-motion approximation used as a cornerstone of the post-Newtonian
iteration procedure. Hence, the transformation is also given as a post-Newtonian series by two
equations - one for time and another one for space coordinates:

u = t+ ε2ξ0(t,x) , (5.1)

wi = RiB + ε2ξi(t,x) , (5.2)

where ξ0 and ξi are the post-Newtonian corrections to the Galilean translation,RiB = xi−xiB(t),
and xiB(t) is the position of the origin of the local frame at time t with respect to the origin of
the global coordinates. The origin of the EMB frame can be always chosen at any instant of time
at the barycenter of the Earth-Moon system as we shall demonstrate later [see also Kopeikin and
Vlasov (2004)]. In what follows, we denote velocity and acceleration of the origin of the local
coordinates as viB ≡ ẋiB and aiB ≡ ẍiB respectively, where here and everywhere else the dot
above a function must be understood as a total time derivative with respect to time t.

Pointwise matching equations for the scalar field, the metric tensor, and the Christoffel sym-
bols are given by the general law of coordinate transformations of these objects (Dubrovin et al,
1984)

ϕ(t,x) = ϕ̂(u,w) , (5.3)

gµν(t,x) = ĝαβ(u,w)
∂wα

∂xµ
∂wβ

∂xν
, (5.4)

Γµαβ(t,x) = Γ̂νρσ(u,w)
∂xµ

∂wν
∂wρ

∂xα
∂wσ

∂xβ
+
∂xµ

∂wν
∂2wν

∂xα∂xβ
, (5.5)

where

Γµαβ(t,x) =
1
2
gµν

(
∂gνα
∂xβ

+
∂gνβ
∂xα

− ∂gαβ
∂xν

)
, (5.6)

Γ̂µαβ(u,w) =
1
2
ĝµν

(
∂ĝνα
∂wβ

+
∂ĝνβ
∂wα

− ∂ĝαβ
∂wν

)
, (5.7)

are the Christoffel symbols expressed in the SSB and EMB frames respectively.
It is worth noticing that the matching equations (5.3)–(5.5) are valid in a 4-dimensional space-

time volume, which includes the world tube with a space-like cross-section covered by spatial
coordinates of the local EMB frame. The scalar field, the metric tensor and their first derivatives
are continuously differentiated functions in this volume. This point, in fact, means that equations
(5.3), (5.4) are sufficient for the purposes of matching procedure because equation (5.5) does not
bear any new physical information. The matching equations are not identities, which are auto-
matically satisfied. The left side of these equations contain known functions which are defined
as integrals over the volumes of the bodies of the solar system. The right side of the matching
equations contain yet unknown functions, which are the external multipoles of the metric tensor
in the EMB frame as well as functions ξα entering the post-Newtonian transformations (5.1),
(5.2). These functions are determined by solving the matching equations.
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The starting point in this iterative post-Newtonian procedure is the g0i component of the
metric tensor. One notices that it does not contain terms of the order of O(ε) because one have
assumed that both the global and the local frames are not dynamically rotating, which cancels
the angular and linear velocity terms (Damour et al, 1991; Kopeikin and Vlasov, 2004). This
fact having been used in equation (5.4), implies that function ξ0(t,x) from time-transformation
equation (5.1) must be subject to the following restriction:

ξ0,k = −viB +O(ε2) . (5.8)

This is a partial differential equation which can be integrated so that function ξ0 can be the most
generally represented as

ξ0(t,x) = −A(t)− vkBRkB + ε2κ(t,x) +O(ε4) , (5.9)

where A(t) and κ(t,x) are analytic, but otherwise unspecified functions. Notice that function
A(t) depends only on time t.

Let us now use the gauge conditions (3.34) in order to impose further restrictions of the post-
Newtonian functions ξ0 and ξi from equations (5.1) and (5.2). The law of transformation of
the Christoffel connection, equation (5.5), being substituted to equation (3.34) yields a partial
differential equation of the second order

gαβ(t,x)
∂2wµ

∂xα∂xβ
= 0 , (5.10)

which describes any possible freedom in the post-Newtonian transformations from the EMB to
SSB coordinates. Let us now substitute functions w0 = cu and wi from equations (5.1) and
(5.2), and ξ0 from equation (5.9) to equation (5.10). One obtains

∇2κ(t,x) = 3vkBa
k
B − Ä − ȧkBRkB +O(ε2) , (5.11)

∇2ξi(t,x) = −aiB +O(ε2) . (5.12)

General solution of these elliptic-type equations can be written in the form of the Taylor series
expansion in terms of the irreducible Cartesian tensors. Furthermore, solution for functions
κ(t,x) and ξi(t,x) in equations (5.11) and (5.12) consists of two parts – a fundamental solution
of the homogeneous Laplace equation and a particular solution of the inhomogeneous Poisson
equation. We discard the part of the fundamental solution that has a singularity at the origin
of the local coordinates, where wi = 0. This is because the singular part does not present in
the internal solution of the field equations for the metric tensor and the scalar field, which are
represented by integrals over the continuous distribution of matter. However, had we worked
in the region outside of the gravitating bodies, we would have to include the singular part of
the fundamental solution of the Laplace equation to the coordinate transformation between the
frames. In this case the singular part of the transformation is responsible for the gauge freedom
in the definition of the multipole moments of the gravitating bodies (Blanchet and Damour, 1986,
1989; Thorne, 1980). This freedom has been fixed in the present paper by picking up the post-
Newtonian definition of the multipole moments in the form proposed by Blanchet and Damour
(1989). For this reason the singular terms characterizing the residual gauge freedom have no
matching counterparts and must be equated to zero.
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Integrating equations (5.11) and (5.12) results in

κ =
(1

2
vkBa

k
B −

1
6
Ä
)
R2
B −

1
10
ȧkBR

k
BR

2
B + Ξ(t,x) , (5.13)

ξi = −1
6
aiBR

2
B + Ξi(t,x) , (5.14)

where functions Ξ and Ξi are the fundamental solutions of the homogeneous Laplace equation,
which is convergent at the origin of the EMB frame. These solutions can be written in the form
of scalar and vector harmonic polynomials

Ξ(t,x) =
∞∑
l=0

1
l!
BLRLB , (5.15)

Ξi(t,x) =
∞∑
l=1

1
l!
DiLRLB +

∞∑
l=0

εipq
(l + 1)!

FpLR<qL>B +
∞∑
l=0

1
l!
ELR<iL>B ,

(5.16)

where coefficients BL ≡ B<L>(t), DL ≡ D<L>(t), FL ≡ F<L>(t), and EL ≡ E<L>(t) are
the STF Cartesian tensors (Kopeikin and Vlasov, 2004). These coefficients are defined on the
world line of the origin of the local coordinates and depend only on the coordinate time t of the
global SSB frame. Explicit form of these functions will be obtained in the process of matching
of the metric tensor and the scalar field in accordance with equations (5.3)–(5.5).

Formulas (5.13)–(5.16) allow us to evaluate the size of the spatial domain of applicability
of the EMB local coordinates. It is determined by the condition that determinant of the matrix
Λαβ of the four-dimensional coordinate transformation, is zero (Schutz, 1980). Calculating the
determinant yields

det
(
Λαβ
)

= 1 + ε2
[
− Ȧ+ 3 E − 4

3

(
akB −

5
2
Ek
)
RkB

+
∞∑
l=2

(l + 1)(2l + 3)
(2l + 1)l!

ELRLB
]

+O
(
ε4
)
. (5.17)

Radius of convergence of the polynomial in the right side of equation (5.17) crucially depends
on the choice of functions EL. We have proved (Brumberg and Kopejkin, 1989b; Kopeikin and
Vlasov, 2004) that it is possible to make function E i = aiB , and all other functions EL = 0 for
any l ≥ 2. Thus, determinant (5.17) vanishes when distance RB ≈ c2/(2aB). In case of the
EMB frame, moving around Sun with acceleration aB ' 0.6 cm/s2, this distance RB is about
1021 cm or about 300 parsec. Hence, the EMB frame covers a spatial region, which includes
the entire solar system and its neighborhood. This consideration suggests that the metric tensor
defined originally in the EMB local coordinates only in the domain restricted by the distance
to the nearest external gravitating body (Venus and Mars in case of the EMB frame) can be
re-formulated in terms of some other functions and extrapolated beyond this boundary. Such
extrapolation of the local coordinates and the corresponding metric tensor was considered in
papers (Brumberg, 1992; Klioner and Voinov, 1993).
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5.1.2 Matching the Post-Newtonian Expansions

Method of the matched post-Newtonian expansions is a powerful mathematical tool to find the
law of transformation from one celestial frame to another and to determine the external multi-
poles in the post-Newtonian expansions of the background metric tensor. These post-Newtonian
expansions, which are used in the matching procedure, are solutions of the gravity field equations
for the metric tensor and the scalar field found respectively in the global and local coordinates.
These solutions are shown in equations (4.6)–(4.8) for the SSB frame, and (4.37), (4.38), (4.58)–
(4.60) for the EMB frame. The solution for the metric tensor and the scalar field in the SSB
frame is valid everywhere inside and outside of the solar system up to infinity. One may think
that the global coordinates alone are sufficient to describe the post-Newtonian celestial dynamics
of the solar system bodies. Indeed, the original Fock-Papapetrou approach (Fock, 1957, 1959;
Papapetrou, 1951a,b) assumed that only one coordinate chart is used to solve the internal and
external problems of motion. However, the single coordinate-chart approach is not satisfactory
in doing the post-Newtonian approximations for two reasons.

First, a gravitating body (or a sub-system of bodies) that is a member of N-body system,
has its own (internal) gravitational field that is characterized outside the body by gravitational
multipoles like mass – monopole, center-of-mass – dipole, oblateness – quadrupole, etc. Local
coordinates attached to the body are required to give physically meaningful, post-Newtonian
definition of the internal multipoles. One must know how this definition of the multipoles given
in the local frame of reference conforms to the definition of the same multipoles given in the
global coordinates. Post-Newtonian relationship between the frame-dependent definitions of the
internal multipoles plays a key role in derivation of the orbital equations of motion of extended
bodies (Brumberg and Kopejkin, 1989b; Damour et al, 1992; Kopeikin and Vlasov, 2004).

Second, the global SSB frame is inappropriate for the gauge-independent description of the
orbital motion of Moon and artificial Earth’s satellites. This is because the Earth-Moon system is
moving in the external gravitational field of Sun and other planets of the solar system. The most
simple, Galilean translation of the origin of the global SSB coordinates to the barycenter of the
Earth-Moon system (to the geocenter in case of the artificial satellite) that is currently used for
construction of the lunar ephemeris (Chapront-Touze and Chapront, 1983; Li et al, 2008; Pitjeva,
2005; Standish, 1998), denies the post-Newtonian aspects of the coordinate transformation in
relativistic theory of gravity and brings up the gauge-dependent terms to the description of the
orbital motion of Moon. These terms are unobservable and should be discarded by making
appropriate choice of the global and local coordinate frames. The adequate post-Newtonian
transformation accounting for the gauge freedom should make description of the lunar motion
essentially simpler by suppressing all the spurious orbital harmonics (Brumberg and Kopejkin,
1989b; Damour et al, 1994; Kopeikin, 2007a; Soffel et al, 1986).

The internal solution for the metric tensor and the scalar field in the local EMB coordinates
contains the external multipoles QL, CL, PL describing gravitational field of Sun and other
planets. Their explicit functional dependence on the gravitational potentials of the external bodies
can not be determined by solving the field equations in the local EMB coordinates alone – the
matching with the solution of the field equations in the global SSB coordinates is required. The
external multipoles are found simultaneously with the post-Newtonian coordinate transformation
between the SSB and EMB coordinates. Matching also helps to understand better the physical
foundation underlying the principle of equivalence for self-gravitating bodies.
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Matching the metric tensor and the scalar field in the local and global coordinates is based on
equations (5.3) and (5.4), and consists of the following steps (for exhaustive mathematical details
of this procedure the reader is referred to (Kopeikin and Vlasov, 2004, Section 8))

Step 1. One re-writes the local metric tensor ĝαβ(u,w) and the scalar field ϕ̂(u,w) in the right
side of equations (5.3) and (5.4) in terms of the global coordinates (t,x). This is achieved
by making use of a Taylor expansion of the internal and external potentials defining ϕ̂(u,w)
and ĝαβ(u,w) around the point xα = (ct,x). The concept of the Lie transfer (Misner et al,
1973; Schutz, 1980) must be applied in order to change the integration in the integrals of
the internal potentials from the hypersurface of the local coordinate time u to that of the
global coordinate time t.

Step 2. One calculates the partial derivatives of the local coordinates, wα, with respect to the
global coordinates, xβ , that is the matrix of transformation of the coordinate bases, Λαβ =
∂wα/∂xβ .

Step 3. One separates the gravitational potentials in the left side of equations (5.3) and (5.4) to the
internal part, relating to the Earth-Moon system, and to the external part generated by Sun
and the other planets:

ϕ(t,x) = ϕE(t,x) + ϕM (t,x) + ϕ̄(t,x) , (5.18)

U(t,x) = UE(t,x) + UM (t,x) + Ū(t,x) , (5.19)

U i(t,x) = U iE(t,x) + U iM(t,x) + Ū i(t,x) , (5.20)

χ(t,x) = χE(t,x) + χM(t,x) + χ̄(t,x) , (5.21)

Ψk(t,x) = ΨEk(t,x) + ΨMk(t,x) + Ψ̄k(t,x) , (k = 1, ... , 5) ,
(5.22)

where functions with indices (E) and (M) are given by integrals (4.13)–(4.20) taken over
the volume of Earth and Moon respectively, and the bar above functions indicates, here
and everywhere else, that the corresponding sum in the definitions (4.12) of these functions
excludes Earth and Moon, that is the sum takes into account only external bodies which
are Sun and the other planets

ϕ̄ =
∑

A6=E,M

ϕA , Ū =
∑

A6=E,M

UA , Ūi =
∑

A 6=E,M

U iA ,

Ψ̄k =
∑

A6=E,M

ΨAk , χ̄ =
∑

A 6=E,M

χA . (5.23)

Step 4. One expands the gravitational potentials of the external masses, that is functions with
bars in equations (5.18)–(5.23), in the Taylor series in powers of RiB = xi − xiB in the
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neighborhood of the origin of the local EMB frame, which image in the global coordinates
is at the point xiB = xiB(t).

Step 5. One equates similar terms depending on the internal structure of the Earth-Moon system. It
turns out that all the internal potentials cancel out in equations (5.3),(5.4). It proves that the
internal structure of the bodies is compatible with the differential structure of space-time
manifold. Because we did not set any limitations on the distribution of matter’s density
and stress inside the bodies, it means that the effacing principle (Damour, 1983, 1989;
Kopeikin and Vlasov, 2006) is satisfied in the scalar-tensor theory of gravity.

Step 6. One equates similar terms of the Taylor expansions from the left side of the matching
equations (5.3) and (5.4) with the corresponding terms of the Taylor expansions entering
the right side of these equations. This reduces the original matching equations to the set
of algebraic and ordinary differential equations expressing the yet unknown external mul-
tipoles and the coefficients of the harmonic polynomials in the post-Newtonian coordinate
transformations in terms of the external gravitational potentials (the over-barred functions)
and their derivatives.

Step 7. One separates the algebraic equations into irreducible pieces and, finally, determine the
external multipoles as well as the coefficients of the harmonic polynomials. It fixes the
residual gauge freedom and brings about the laws of orbital and precessional motion of the
local EMB frame with respect to the global SSB frame

Final results of the matching procedure are given below.

5.1.3 Post-Newtonian Coordinate Transformation

The β − γ parameterized post-Newtonian coordinate transformation from the EMB frame to the
SSB frame is given by two equations:

u = t− ε2
(
A+ vkBR

k
B

)
+ ε4

[
B +

1
6

(
Q̇− ˙̄U(xB) + 2vkBa

k
B

)
R2
B

− 1
10
ȧkBR

k
BR

2
B +

∞∑
l=1

1
l!
BLRLB

]
+O(ε5) , (5.24)

wi = RiB + ε2
[(

1
2
viBv

k
B + γδikŪ(xB)− δikA+ F ik

)
RkB

+akBR
i
BR

k
B −

1
2
aiBR

2
B

]
+O(ε4) . (5.25)

Here functions A and B depends on the global coordinate time t only and are solutions of the
ordinary differential equations

dA
dt

= +
1
2
v2
B + Ū(xB)−Q , (5.26)

dB
dt

= −1
8
v4
B − (γ +

1
2

)v2
BŪ(xB) +

1
2
Ū2(xB) + 2(1 + γ)vkBŪ

k(xB)
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−Ψ̄(xB) +
1
2
χ̄,tt(xB) +Q

[
− 1

2
v2

B +
1
2
Q− Ū(xB)

]
, (5.27)

that describe the post-Newtonian transformation between the coordinate time u of the EMB
frame and the coordinate time t of the SSB frame. The other functions are defined by algebraic
relationships as follows

Bi = 2(1 + γ)Ū i(xB)− (1 + 2γ)viBŪ(xB)− 1
2
viBv

2
B −QviB , (5.28)

Bik = Zik + 2(1 + γ)Ū<i,k>(xB)− 2(1 + γ)v<iB Ū ,k>(xB) + 2v<iB ak>B , (5.29)

BiL = ZiL + 2(1 + γ)Ū<i,L>(xB)− 2(1 + γ)v<iB Ū ,L>(xB) , (l ≥ 2)
(5.30)

where some residual gauge freedom parameterized by STF Cartesian tensors ZL is explicitly
shown.

The anti-symmetric rotational matrix F ik couples algebraically with the dipole moment Ci,
which describes the post-Newtonian precession of the spatial axes of the EMB frame,

εipkC
p +

dF ik

dt
= −2(1 + γ)Ū [i,k](xB) + (1 + 2γ)v[i

BŪ
,k](xB) + v

[i
BQ

k] .

(5.31)

The first term in the right side of equation (5.31) describes the Lense-Thirring (gravitomagnetic)
precession, the second term describes the de Sitter (geodetic) precession in the scalar-tensor
theory of gravity, and the third term describes the Thomas precession (Misner et al, 1973) de-
pending on the local (non-geodesic) acceleration Qi of the origin of the EMB frame. In the
scalar-tensor theory both the Lense-Thirring and the de Sitter precessions depend on the PPN
parameter γ while the Thomas precession does not. The reason is that the Thomas precession is
generically a special relativistic effect (Misner et al, 1973) that can not depend on any particular
choice of a specific gravitational theory. The presence of matrix F ik in the spatial part of the
post-Newtonian transformation means that spatial axes of the local EMB frame rotates kinemat-
ically with respect to axes of the SSB frame which is anchored to distant quasars. At the same
time the dipole moment Ci is the angular velocity of the dynamic rotation of the spatial axes
of the EMB frame. IAU recommends (Soffel et al, 2003) to adopt F ik = 0 making the EMB
frame dynamically rotating with angular velocity Ci defined by equation (5.31). In the present
paper we prefer another choice, namely Ci = 0, making the EMB kinematically rotating with
the precessional matrix F ik defined by equation (5.31). The advantage of our choice is that it
eliminates the Coriolis and centrifugal forces from the equations of motion of Moon with respect
to Earth written in the local EMB frame.

5.1.4 The External Multipoles

Matching determines the external multipoles in terms of the derivatives of gravitational potentials
of the external bodies that are Sun and the other planets (Kopeikin and Vlasov, 2004). The
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external multipoles of the scalar field are

PL = ϕ̄,L(xB) +O(ε2) , (5.32)

where the external scalar field ϕ̄ coincides in this approximation with the external Newtonian
potential Ū , as defined in equation (5.23), and is computed at the origin of the local EMB coordi-
nates, xiB(t), at the instant of time t. We remind that the scalar field perturbation is coupled with
the factor γ − 1, so that all physically-observed scalar-field effects must be proportional to this
factor. We also notice that the lower-order (l = 0, 1) external multipoles of the scalar field can
not be removed from the observable gravitational effects by making coordinate transformation
because if the scalar field presents in one coordinate frame, it must be present in any other as
coordinate transformations do not change the numerical value of the scalar field.

The matching equation determines the external dipole moment of the EMB metric tensor as
follows (Kopeikin and Vlasov, 2004)

Qi = Ū,i(xB)− aiB

+ε2
{

Ψ̄,i(xB)− 1
2
χ̄,itt(xB) + 2(1 + γ) ˙̄U i(xB)− 2(1 + γ)vkBŪ

k,i(xB)

−(1 + 2γ)viB
˙̄U(xB) + (2− γ)Ū(xB)Ū,i(xB) + (2 + γ)v2

BŪ,i(xB)

−1
2
viBv

k
BŪ,k(xB)− 1

2
viBv

k
Ba

k
B − 2v2

Ba
i
B − (4 + γ)aiBŪ(xB) +

F ikŪ,k(xB)− F ikakB +Qi[A− v2
B − 2Ū(xB)]

}
+O(ε4) . (5.33)

The external dipole, Qi, is explicitly expressed in terms of the external gravitational potentials
and the barycentric acceleration aiB of the origin of the local EMB frame with respect to the
global SSB coordinates. It is remarkable that Qi is not limited by the gauge conditions and can
be chosen arbitrary because it determines the magnitude and direction of the inertial force acting
in the local EMB frame on a test particle being in a free fall. It means, that equation (5.33) must
be effectively understood as the law of the orbital motion of the origin of the EMB frame in the
global SSB coordinates, which is governed by a particular choice of the dipole momentQi. Only
after the choice of Qi is made, the coordinate acceleration aiB of the origin of the EMB frame
with respect to the global SSB coordinates can be fully defined.

The most simple choice of Qi = 0 means that the origin of the EMB frame moves along a
geodesic world line in the background space-time defined by the external part of the EMB metric
tensor. However, it does not allow us to keep the origin of the local coordinates at the barycenter
of the Earth-Moon system. This is because the Earth-Moon system has an internal quadrupole
moment interacting with the tidal gravitational field of Sun and the other planets, and forcing the
barycenter of the Earth-Moon system to move along an accelerated (non-geodesic) world line
(Kopejkin, 1988). Thus, Qi must be defined in such a way that the Earth-Moon barycenter and
the origin of the EMB local frame would coincide at any instant of time. This is equivalent to
solving the internal problem of motion of the Earth-Moon barycenter with respect to the local
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EMB frame that will be discussed elsewhere (some details can be found in (Kopeikin and Vlasov,
2004; Kopejkin, 1988)).

External mass-type multipoles QL for l ≥ 2 are defined by the following equation

QL = Ū ,<L>(xB)

+ε2
[
Ψ̄,<L>(xB)− 1

2
χ̄,tt<L>(xB) + 2(1 + γ) ˙̄U<il,L−1>(xB)

−2(1 + γ)vkBŪ
k,<L>(xB) + (l − 2γ − 2)v<ilB

˙̄U ,L−1>(xB)

+(1 + γ)v2
BŪ

,<L>(xB)− l

2
vkBv

<il
B Ū ,L−1>k(xB)− lγ Ū(xB)Ū ,L(xB)

−(l2 − l + 2γ + 2)a<ilB Ū ,L−1>(xB)− lF k<ilŪ ,L−1>k(xB) +KL

+ŻL + lAŪ ,<L>(xB)
]

+O
(
ε4
)
, (5.34)

where we have used notations

Kij ≡ 3a<iB aj>B , (5.35)

KL ≡ 0 , (l ≥ 3). (5.36)

External current-type multipoles CL for l ≥ 2 are given by

εipjCpL−1 =
4l(1 + γ)
l + 1

{
v
[i
BŪ

,j]L−1(xB)− Ū [i,j]L−1(xB)

− l − 1
l
δil−1[i ˙̄U ,j]L−2(xB)

}
+O

(
ε2
)
, (5.37)

where the dot means the time derivative with respect to time t.

5.2 Transformation from the Geocentric to the Earth-Moon Frame

5.2.1 Matching Procedure

Matching of the geocentric and the Earth-Moon barycentric solutions of the metric tensor and the
scalar field follows the same steps as in the matching of the post-Newtonian expansions written
in the EMB and SSB frames. We recall that the geocentric coordinates of the GRF are denoted by
Xα = (X0, Xi) = (cT,X), and the EMB local coordinates are wα = (w0, wi) = (cu,w). In
doing this matching, the GRF is ”more local” than the EMB frame in the sense of the hierarchy
of the astronomical frames discussed in the introduction of the present paper. Indeed, the local
GRF coordinates cover the space from Earth to Moon, while the EMB coordinates cover much
larger region spreading out to the orbits of Mars and Venus.

The matching equations are as follows:

ϕ̂(u,w) = Φ(T,X) , (5.38)

ĝµν(u,w) = Gαβ(T,X)
∂Xα

∂wµ
∂Xβ

∂wν
, (5.39)
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Γ̂µαβ(u,w) = Cνρσ(T,X)
∂wµ

∂Xν

∂Xρ

∂wα
∂Xσ

∂wβ
+
∂wµ

∂Xν

∂2Xν

∂wα∂wβ
, (5.40)

where Γ̂µαβ(u,w) is given by equation (5.7), and

Cνρσ(T,X) =
1
2
Gµν

(
∂Gµρ
∂wσ

+
∂Gµσ
∂wρ

− ∂Gρσ
∂wµ

)
, (5.41)

is the Christoffel symbol expressed in the geocentric coordinates. The law of transformation of
the Christoffel connection, equation (5.40), being substituted to the gauge condition (3.34) yields
a partial differential equation of the second order

ĝαβ(u,w)
∂2Xµ

∂wα∂wβ
= 0 , (5.42)

which describes the residual gauge freedom that remains in the post-Newtonian transformations
from the GRF to EMB coordinates.

Matching is done in accordance with the following procedure (compare with the matching of
the EMB and SSB coordinates):

Step 1. One writes down the most general solution admitted by the homogeneous equation (5.42).
In the first post-Newtonian approximation this equation is reduced to two wave equations

− 1
c2
∂T (u,w)
∂u2

+∇2T (u,w) = 0 , (5.43)

− 1
c2
∂X(u,w)

∂u2
+∇2X(u,w) = 0 . (5.44)

Solution of these equations is given in the form of functions T = T (u,w) and X =
X(u,w) which are harmonic polynomials with respect to the EMB spatial coordinatesw
with the coefficients which are STF Cartesian tensors depending on time u.

Step 2. One re-writes the GRF metric tensor Gαβ(T,X) and the scalar field Φ(T,X) in the
right side of equations (5.38) and (5.39) in terms of the EMB coordinates (u,w). This
is achieved by making use of a Taylor expansion of Φ(T,X) and Gαβ(T,X) around the
point wα = (cu,w).

Step 3. One calculates the partial derivatives of the GRF coordinates with respect to the EMB
coordinates, that is the matrix of transformation of the coordinate bases: ∂Xα/∂wβ .

Step 4. One separates the internal (Earth-related) scalar field and the metric tensor in the left side
of equations (5.38) and (5.39) from the external part generated by Moon, Sun, and the
other planets:

ϕ̂(u,w) = ϕ̂E(u,w) + ϕ̂M(u,w) + ϕ̂(ext)(u,w) , (5.45)

ĥ00(u,w) = ĥE00(u,w) + ĥM00(u,w) + ĥ
(ext)
00 (u,w) , (5.46)
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ĥ0i(u,w) = ĥE0i(u,w) + ĥM0i (u,w) + ĥ
(ext)
0i (u,w) , (5.47)

ĥij(u,w) = ĥEij(u,w) + ĥMij (u,w) + ĥ
(ext)
ij (u,w) , (5.48)

l̂00(u,w) = l̂E00(u,w) + l̂M00(u,w) + l̂
(ext)
00 (u,w) + l̂

(mix)
00 (u,w)

(5.49)

where functions with index E are integrals taken over the volume VE of Earth, functions
with index M are integrals taken over the volume VM of Moon, functions with index
(ext) are given by equations (4.58)–(4.61), and functions with index (mix) are given by
equations (4.62).

Step 5. One expands the gravitational potentials of the external masses (that is Moon, Sun, and
the other planets) in Taylor’s series in powers of the spatial distance riE = wi − wiE
in the neighborhood of the origin of the GRF, that is the point with spatial coordinates
wiE = wiE(u).

Step 6. One equates similar terms in the left and right sides of the matching equations (5.38) and
(5.39) depending on internal structure of Earth and on the Taylor expansions from step 5 of
this procedure. It is remarkable that all terms depending on the internal structure of Earth
as well as all mixed (coupling) terms will cancel out. What remains is a set of algebraic
and ordinary differential equations, which contain the coefficients of the post-Newtonian
coordinate transformation and the external multipoles.

Step 7. One separates the algebraic equations into irreducible parts and determine the external
multipoles PLE , Q

L
E , C

L
E in the local GRF metric tensor and the scalar field as well as

the time-dependent coefficients in the coordinate transformations. This fixes the residual
gauge freedom and brings about the laws of translational and precessional motion of the
GRF – geocentric reference frame.

Technically, the matching procedure is identical with that executed in section 5.1. Therefore,
it yields equations, which have the same functional structure as in matching between the EMB
and SSB coordinates. Because of this similarity we can get post-Newtonian transformation from
the GRF to the EMB frame by making use of the following replacements of coordinates, veloci-
ties, and accelerations in the coordinate transformations (5.24), (5.25) from the EMB to the SSB
frame

x → w,

xB → wE,

RB → rE,

vB → νE,

aB → αE. (5.50)
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One has to make replacement of the differential equations (5.26), (5.27), (5.31)

dA
dt

→ dAE

du
− 1

2
ĥ

(ext)
00 (wE), (5.51)

dB
dt

→ dBE

du
+ f̂B(wE), (5.52)

εipkC
p +

dF ik

dt
→ εipkC

p
E +

dF ikE

du
− f̂[i,k], (5.53)

where the time derivatives of functions AE , BE , and F ikE are given by the right sides of those
equations after replacing

Ū → ÛM , (5.54)
Ū i → Û iM ,

and we have introduced two auxiliary functions

f̂B ≡ 1
2
l̂
(ext)
00 +

dAE

du
ĥ

(ext)
00 + νkEĥ

(ext)
0k +

1
6
ĥ

(ext)
kk , (5.55)

f̂i ≡ ĥ
(ext)
0i + νiEĥ

(ext)
00 + νkEĥ

(ext)
ik . (5.56)

The coordinate functions B<iL> are replaced as follows

B<iL> → B<iL>E + f̂<i,L>(wE), . (5.57)

The external multipole moments are replaced according to the following rules:

PL → PLE − ϕ̂
(ext)
,<L>(wE) , (5.58)

QL → QLE − f̂<L>Q (wE) (l ≥ 1) , (5.59)

εipilC
pL−1 → εipilC

pL−1
E − 2l

l + 1
f̂[i,il]L−1(wE)

− 4l
(l + 1)(2l + 1)

δil−1[i f̂
k
,il]kL−2(wE) (l ≥ 2), (5.60)

where

f̂<L>Q ≡ 1
2
ĥ

(ext)
00,L + ε2

[
1
2
l̂
(ext)
00,L +

dAE

du
ĥ

(ext)
00,L + α<ilE ĥ

(ext),L−1>
00

+νkEĥ
(ext)
0k,L +

1
6
ν2

Eĥ
(ext)
kk,L

]
(l ≥ 1) . (5.61)

We have confirmed these rules of replacement by straightforward calculations. Next two subsec-
tions give explicitly the post-Newtonian coordinate transformations from the GRF to the EMB
frame and the external multipoles of the GRF metric tensor.
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5.2.2 Post-Newtonian Coordinate Transformation

The parameterized post-Newtonian coordinate transformations from the geocentric to the EMB
frame are given by two equations:

T = u− ε2(AE + νkEr
k
E)

+ε4
[
BE +

(
1
3
νkEα

k
E −

1
6
d

du
ÛM(wE) +

1
6
dQE

du

)
r2E

− 1
10
α̇kEr

k
Er

2
E +

∞∑
l=1

1
l!
BLErLE

]
+O(ε5) , (5.62)

Xi = riE + ε2
[(

1
2
νiEν

k
E + γδikÛM(wE)− δikAE + F ikE

)
rkE

+αkEr
i
Er
k
E −

1
2
αiEr

2
E

]
+O(ε4) . (5.63)

Here functions AE and BE are solutions of the ordinary differential equations

dAE

du
= +

1
2
ν2

E + ÛM(wE)−QE +
∞∑
k=0

1
k!
QKwKE , (5.64)

and

dBE

du
= −1

8
ν4

E −
(
γ +

1
2

)
ν2

EÛM(wE) +
1
2
Û2

M(wE)

+QE

[
− 1

2
ν2

E +
1
2
QE − ÛM(wE)

]
+ 2(1 + γ)νkEÛ

k
M(wE)

−Ψ̂M(wE) +
1
2
χ̂M,uu(wE)−Aν2

E −QE

∞∑
k=0

1
k!
QKwKE

+Q
[
− 1

2
ν2

E +
1
2
Q− ÛM(wE) +

∞∑
k=1

1
k!
QKwKE

]
−2(β − 1)PÛM(wE)−

(
dA

du
+

1
3
dQ

du
+

1− γ
3

dP

du

)
νkEw

k
E

−
[
(γ − 1)ν2

E + 2(β − 1)ÛM(wE)
] ∞∑
k=1

1
k!
PKwKE +

1
2

( ∞∑
k=1

1
k!
QKwKE

)2

−
[

3
2
ν2

E + ÛM(wE)
] ∞∑
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1
k!
QKwKE −

∞∑
k=1

1
k!
νmE εmpikC

pK−1wKE

−2
∞∑
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2k + 1
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−
∞∑
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1
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iKwKE −
1
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1
(2k + 3)k!

d2QK

du2
wKE w

2
E , (5.65)

that describe the post-Newtonian transformation between the coordinate time T of the geocentric
frame and the coordinate time u of the EMB frame. Other functions entering equations (5.62),
(5.63) are defined by algebraic relationships as follows

BiE = 2(1 + γ)Û iM(wE)− (1 + 2γ)νiEÛM(wE)− 1
2
νiEν

2
E − νiEQE

−νiE
[

+ 2A+Q+ 3
∞∑
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1
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∞∑
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1
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PKwKE

]
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(
dA
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+

1
3
dQ
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+

1− γ
3

dP

du

)
−
∞∑
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1
k!
εipikC

pK−1wKE

−2Gi(wE)−
∞∑
k=1

1
k!
ZiKwKE , (5.66)

BijE = 2(1 + γ)[Û<i,j>M (wE)− ν<iE Û ,j>M (wE)] + 2α<iE αj>E + ZijE

−2
∞∑
k=0

1
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[2ν<iE Qj>K + (γ − 1)ν<iE P j>K ]wKE −
∞∑
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1
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ZijKwKE

−
∞∑
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1
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εipik+1C
jpKwK+1

E − 2G<i,j>(wE) , (5.67)

BiLE = 2(1 + γ)[Û<i,L>M (wE)− ν<iE Û ,L>M (wE)] + ZiLE

−2
∞∑
k=0

1
k!

[2ν<iE QL>K + (γ − 1)ν<iE PL>K ]wKE −
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1
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εipik+1C
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E − 2G<i,L>(wE) , (l ≥ 2)

(5.68)

where we have left some residual gauge freedom parameterized by STF Cartesian tensors ZL

and ZLE (l ≥ 2), and introduced a shorthand notation for an auxiliary function

Gi ≡
∞∑
k=1

2k + 1
(2k + 3)(k + 1)!

[
2
dQK

du
+ (γ − 1)

dPK

du

]
w<iK>. (5.69)

The anti-symmetric matrix F ikE describes kinematic rotation of the GRF frame with respect
to the EMB frame. It is represented as an algebraic sum of terms produced by the gravitational
field of Moon alone and the terms associated with the external bodies and the dynamic rotation
of the EMB frame. The matrix F ikE of the kinematic rotation couples with the matrix of dynamic
rotation εipjC

p
E of the GRF yielding the following result

εipjC
p
E +

dF ijE

du
= −2(1 + γ)Û [i,j]

M (wE) + (1 + 2γ)ν[i
E Û

,j]
M (wE) + ν

[i
EQ

j]
E
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+3
∞∑
k=0

1
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ν
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j]KwKE + 2(γ − 1)
∞∑
k=0

1
k!
ν

[i
EP
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+
∞∑
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1
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pKwKE + 2G[i,j](wE) , (5.70)

The first two terms in the right side of equation (5.70) describe the Lense-Thirring (gravitomag-
netic) and the de Sitter (geodetic) precessions caused by Moon. The third term is the Thomas
precession due to the non-geodesic motion of the origin of the GRF. The fourth and the fifth
terms describe the de Sitter precessions due to the external mass-type multipoles of Sun and the
other planets. The sixth term is the Lense-Thirring precession caused by the external current-type
multipoles of Sun and the other planets. The last term is the relativistic precession caused by the
time evolution of the external multipoles as the origin of the GRF moves along its world line. We
should make a choice of the rotation of the GRF axes. Our preference is to make it dynamically
non-rotating so that the Coriolis and centrifugal forces are eliminated from the equations of mo-
tion of artificial satellites of Earth. This preference is realized with equating CiE = 0. With this
choice equation (5.70) defines the matrix of the kinematic rotation.

5.2.3 The External Multipoles

Matching determines the external geocentric multipoles in terms of the derivatives of gravita-
tional potentials of external bodies that are Moon, Sun and other planets. The external GRF
multipoles of the scalar field are

PLE = Û ,LM (wE) +
∞∑
k=0

1
k!
PLKwKE +O(ε2) , (5.71)

and are taken at the origin of the GRF, wiE = wiE(u), at the instant of time u. We emphasize that
the lower-order (l = 0, 1) external multipoles of the scalar field can not be removed by making
coordinate transformation as the scalar field does not depend on the choice of coordinates.

The matching equation for the metric tensor determines the external dipole moment of the
GRF metric tensor as follows
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∞∑
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+O(ε4) . (5.72)

The external dipole, QiE , is explicitly expressed in terms of the external gravitational potentials,
velocity νiE , and acceleration αiE of the origin of the GRF with respect to the EMB frame. The
dipole QiE is not subject any limitation from the gauge condition and can be chosen arbitrary,
because it determines the magnitude and direction of the inertial force acting on a test particle
being in a free fall with respect to the GRF. Thus, equation (5.72) should be understood as the
law of orbital motion of the origin of the GRF with respect to the EMB frame, which is specified
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by a particular choice of the dipole moment QiE . As soon as QiE is chosen, the coordinate
acceleration αiE of the origin of the GRF with respect to the EMB frame can be determined.
Notice that QiE = 0 corresponds to motion of the origin of the GRF along a geodesic world line.
This choice, however, does not keep the origin of the GRF at the geocenter because Earth has
an intrinsic quadrupole moment interacting with the tidal gravitational field of Moon, Sun, and
the other planets. Therefore, the geocenter moves along a non-geodesic world line. To keep the
origin of the GRF at the geocenter at any instant of time, the dipole QiE must be determined from
the solution of the internal problem of motion of the geocenter with respect to the GRF. We shall
discuss this issue somewhere else.

The mass-type external multipoles QLE for the case l ≥ 2 are derived from the matching
equations and are defined by the following equation
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)
+ 2ν2

E

] ∞∑
k=0

1
k!
QLKwKE

− l
2

∞∑
k=0

1
k!
νmE ν

<il
E QL−1>mKwKE + 2

l∑
k=0

∞∑
r=0

l!
(l − k)!k!r!
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where we have used notations

Kij
E ≡ 3α<iE αj>E , (5.74)

KL
E ≡ 0 , (l ≥ 3). (5.75)

The current-type external multipoles CLE (l ≥ 1) are given by
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where the dot above any function denotes a total time derivative with respect to time u.

5.3 Transformation from the Selenocentric to the Earth-Moon Frame

5.3.1 Matching Procedure

Matching solutions of the field equations for the metric tensor and the scalar field in the SRF and
EMB frame repeats exactly the same steps as the matching of the GRF and the EMB frames.
The only change is that Moon is now the internal object and Earth is external one. All matching
equations remain the same as in the previous subsection except that the indices belonging to
Moon and to Earth should be exchanged: EM . The results of the matching are given below.
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5.3.2 Post-Newtonian Coordinate Transformation

The parameterized post-Newtonian coordinate transformations from the SRF to the EMB frame
are given by two equations:
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k
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Here functions AM and BM are solutions of the ordinary differential equations
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∞∑
k=1

1
k!
νmMZ

mKwKM −
1
2

∞∑
k=0

1
(2k + 3)k!

d2QK

du2
wKMw

2
M , (5.80)

that describe the post-Newtonian transformation between the coordinate time Σ of the seleno-
centric frame and the coordinate time u of the EMB frame. The other functions are defined by
algebraic relationships as follows

BiM = 2(1 + γ)Û iE(wM)− (1 + 2γ)νiM ÛE(wM)− 1
2
νiMν

2
M − νiEQM

−νiM
[

+ 2A+Q+ 3
∞∑
k=1

1
k!
QKwKM + 2(γ − 1)

∞∑
k=1

1
k!
PKwKM

]

−wiM
(
dA

du
+

1
3
dQ

du
+

1− γ
3

dP

du

)
−
∞∑
k=1

1
k!
εipikC

pK−1wKM

−2Gi(wM)−
∞∑
k=1

1
k!
ZiKwKM , (5.81)

BijM = 2(1 + γ)[Û<i,j>E (wM)− ν<iM Û ,j>E (wM)] + 2α<iM αj>M + ZijM

−2
∞∑
k=0

1
k!

[2ν<iM Qj>K + (γ − 1)ν<iM P j>K ]wKM −
∞∑
k=0

1
k!
ZijKwKM

−
∞∑
k=0

1
(k + 2)k!

εipik+1C
jpKwK+1

M − 2G<i,j>(wM) , (5.82)
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(5.83)

where we have left some residual gauge freedom parameterized by STF Cartesian tensors ZL.
The anti-symmetric rotational matrix F ikM is a linear combination of three terms
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The first two terms in the right side of equation (5.84) describe the Lense-Thirring (gravitomag-
netic) and the de Sitter (geodetic) precessions caused by Earth. The third term is the Thomas



478 Reference Frames for Advanced Theory of the Lunar Motion

precession due to the non-geodesic motion of the origin of the SRF. The fourth and the fifth
terms describe the de Sitter precessions caused by the external mass-type multipoles of Sun and
other planets. The sixth term is the Lense-Thirring precession caused by the external current-
type multipoles of Sun and other planets. The last term is the relativistic precession caused by
the time evolution of the external multipoles as the origin of the SRF moves along its world line.
We should make a choice of the rotation of the SRF axes. Our preference is to make it dynami-
cally non-rotating so that the Coriolis and centrifugal forces are eliminated from the equations of
motion of artificial satellites of Moon. This preference is realized with equating CiM = 0. With
this choice equation (5.84) defines the matrix of the kinematic rotation F ijM .

5.3.3 The External Multipoles

Matching determines the external selenocentric multipoles in terms of the derivatives of gravita-
tional potentials of external bodies that are Earth, Sun and other planets. The external multipoles
of the scalar field are

PLM = Û ,LE (wM) +
∞∑
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1
k!
PLKwKM +O(ε2) , (5.85)

where all functions are taken at the origin of the SRF, wiM = wiM (u), at the instant of time u.
The matching equation determines the external dipole moment of the SRF metric tensor as

follows
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The external dipole, QiM , is explicitly expressed in terms of the external gravitational potentials
and acceleration αiM of the origin of the SRF with respect to the EMB frame. The dipole QiM
can be chosen arbitrary and determines the magnitude and direction of the inertial force acting
on a test particle being in a free fall with respect to the selenocentric frame. Thus, equation
(5.86) should be understood as the law of orbital motion of the origin of the SRF in the EMB
coordinates, which is governed by a particular choice of the dipole moment QiM . As soon as
QiM is chosen, the coordinate acceleration αiM of the origin of the SRF with respect to the EMB
coordinates is fully defined. The choice QiM = 0 means that the origin of the SRF moves along
a geodesic world line. The Moon has intrinsic quadrupole moment J2 interacting with tidal
gravitational field of Earth, Sun, and other planets. Therefore, the selenocenter does not move
along a geodesic world line. To keep the origin of the SRF at the selenocenter at any instant
of time, QiM must be determined from the solution of the internal problem of motion of the
selenocenter with respect to the SRF. We shall discuss this issue somewhere else.

The mass-type external multipoles QLM for the case l ≥ 2 are derived from the matching
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equations and are defined by the following equation
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+O
(
ε4
)
, (5.87)

where we have used notations

Kij
M ≡ 3α<iM αj>M , (5.88)

KL
M ≡ 0 , (l ≥ 3). (5.89)

The current-type external multipoles CLM are given by
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This finishes our study of the post-Newtonian reference frames in the Earth-Moon system.
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6 Conclusion

More sophisticated theoretical approach to the post-Newtonian reference frames and the problem
of orbital and rotational motions of the Moon, described in this review, is promising for making
significant progress in advanced exploration of the lunar interior. One millimeter LLR data
processed with the enhanced numerical code would allow us:
• to obtain further, more convincing evidences of existence of the lunar fluid core and deter-

mine its radius;
• to derive precise numerical values of Love numbers and other parameters (moduli) char-

acterizing elastic properties of the Moon;
• to solve the problem of the initial conditions for the coupled spin-orbit equations describing

temporal evolution of the lunar orbit as it passes through resonances;
• to evaluate the amplitude and frequencies of various harmonics in the rotational motion of

the multi-layer Moon: the Chandler wobble, the mantle free precession and nutation, and
the free core nutations which depend on the distribution of density, ellipticity, chemical
composition, viscosity, and aggregative state of the core, so that these characteristics can
be determined from LLR observations;

• to analyze dissipative processes and convective turbulence on the boundary layer between
the core and mantle, caused by differential rotation of the fluid core interior;

• to calculate characteristic times of dissipation of the free libration modes for different
values of density, viscosity, and other characteristics of the core;

• to advance understanding of the lunar topography and to explain the origin of gravitational
anomalies (mascons) at later stages of selenological evolution of the Moon.

One millimeter LLR and advanced theoretical model of the reference frames and equations
of motion will be able to significantly improve the fundamental test of general relativity in the
Earth-Moon system by setting stronger limitations on parameters of alternative theories of grav-
ity including those depending on the presence of dark energy (scalar fields). Detection of new
relativistic effects is highly plausible and feasible. Among them is the gravitomagnetic preces-
sion of the lunar orbit with respect to ICRF, secular and periodic effects caused by relativistic
quadrupole moment of the Earth, tidal gravitomagnetic (periodic) effects, presumable violation
of the strong principle of equivalence. One millimeter LLR will be also able to lower the limit on
the density of stochastic gravitational-wave background in the frequency range 10−5÷10−7 Hz.
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Chapront J, Chapront-Touzé M, Francou G (1999) Determination of the lunar orbital and rota-
tional parameters and of the ecliptic reference system orientation from LLR measurements
and IERS data. Astron. Astrophys.343:624–633
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1930. Paris: Éditions Jacques Gabay

Cheng Z (1991) Relation between the Love numbers and the Earth models. Journal Nanjing Univ
27:234–242

Christodoulidis DC, Smith DE, Williamson RG, Klosko SM (1988) Observed tidal braking in
the earth/moon/sun system. J. Geophys. Res.93:6216–6236

Ciufolini I (2008) Lunar Laser Ranging, Gravitomagnetism and Frame-Dragging. ArXiv e-prints
0809.3219

Cook A (1988) The motion of the moon. Bristol: Adam Hilger

Currie DG, Cantone C, Carrier WD, Dell’Agnello S, Delle Monache G, Murphy T, Rubincam
D, Vittori R (2008) A Lunar Laser Ranging Retro-Reflector Array for the 21st Century. LPI
Contributions 1415:2145

Damour T (1983) Gravitational radiation and the motion of compact bodies. In: Deruelle N,
Piran T (eds) Gravitational Radiation, pp 59–144

0809.3219


486 Reference Frames for Advanced Theory of the Lunar Motion

Damour T (1989) Three Hundred Years of Gravitation. Edited by Hawking, S. W. and Israel,
W., Cambridge: Cambridge University Press, chap The problem of motion in Newtonian and
Einsteinian gravity, pp 128–198

Damour T, Esposito-Farese G (1992) Tensor-multi-scalar theories of gravitation . Classical and
Quantum Gravity 9:2093–2176

Damour T, Esposito-Farese G (1993) Nonperturbative strong-field effects in tensor-scalar theo-
ries of gravitation. Physical Review Letters 70:2220–2223

Damour T, Iyer BR (1991) Multipole analysis for electromagnetism and linearized gravity with
irreducible Cartesian tensors. Phys. Rev. D43:3259–3272, DOI 10.1103/PhysRevD.43.3259

Damour T, Nordtvedt K (1993) General relativity as a cosmological attractor of tensor-scalar
theories. Physical Review Letters 70:2217–2219

Damour T, Soffel M, Xu C (1991) General-relativistic celestial mechanics. I. Method and defini-
tion of reference systems. Phys. Rev. D43:3273–3307

Damour T, Soffel M, Xu C (1992) General-relativistic celestial mechanics. II. Translational equa-
tions of motion. Phys. Rev. D45:1017–1044

Damour T, Soffel M, Xu C (1994) General-relativistic celestial mechanics. IV. Theory of satellite
motion. Phys. Rev. D49:618–635

Darwin GH (1963) The Tides and Kindred Phenomena in the Solar System. American Journal
of Physics 31:70–71, DOI 10.1119/1.1969263

de Sitter W (1916) On Einstein’s theory of gravitation and its astronomical consequences. Second
paper. Mon. Not. Roy. Astron. Soc.77(2):155–184

D’Eath PD (1975a) Dynamics of a small black hole in a background universe. Phys. Rev.
D11:1387–1403

D’Eath PD (1975b) Interaction of two black holes in the slow-motion limit. Phys. Rev.
D12:2183–2199

Deprit A (1971) The motions of the moon in space. In: Kopal Z (ed) Physics and Astronomy of
the Moon, pp 1–28

Dicke RH (1962a) Mach’s Principle and Invariance under Transformation of Units. Physical
Review 125:2163–2167, DOI 10.1103/PhysRev.125.2163

Dicke RH (1962b) Long-Range Scalar Interaction. Physical Review 126:1875–1877, DOI 10.
1103/PhysRev.126.1875

Dicke RH (1965) The weak and strong principles of equivalence. Annals of Physics 31:235–239,
DOI 10.1016/0003-4916(65)90239-3

Dickey JO, Newhall XX, Williams JG (1989) Investigating relativity using lunar laser ranging -
Geodetic precession and the Nordtvedt effect. Advances in Space Research 9:75–78



References 487

Dittus H, Lämmerzahl C, Turyshev SG (eds) (2008) Lasers, Clocks and Drag-Free Control: Ex-
ploration of Relativistic Gravity in Space, Astrophysics and Space Science Library, vol 349

Dixon WG (1979) Extended bodies in general relativity: their description and motion. In: Ehlers
J (ed) Isolated Gravitating Systems in General Relativity, pp 156–219

Dubrovin BA, Fomenko AT, Novikov SP (1984) Modern Geometry. New York: Springer-Verlag

Eddington AS (1923) The Mathematical Theory of Relativity. Cambridge: Cambridge University
Press

Einstein A (1916) Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik
354(7):769–822, DOI 10.1002/andp.19163540702

Einstein A, Infeld L, Hoffmann B (1938) The gravitational equations and the problem of motion.
The Annals of Mathematics 39(1):65–100

Eisenhart LP (1947) Differential Geometry. Princeton: Princeton University Press

Eling C, Jacobson T, Mattingly D (2006) Einstein-Æther Theory. In: Liu JT, Duff MJ, Stelle
KS, Woodward RP (eds) Deserfest: A Celebration of the Life and Works of Stanley Deser, pp
163–179

Estabrook FB (1969) Post-Newtonian n-BODY Equations of the Brans-Dicke Theory. Astrophys.
J.158:81–83, DOI 10.1086/150172

Feissel-Vernier M, Ma C, Gontier AM, Barache C (2006) Analysis strategy issues for the
maintenance of the ICRF axes. Astron. Astrophys.452:1107–1112, DOI 10.1051/0004-6361:
20054581

Fienga A, Manche H, Laskar J, Gastineau M (2008) INPOP06: a new numerical planetary
ephemeris. Astron. Astrophys.477:315–327, DOI 10.1051/0004-6361:20066607

Fierz M (1956) . Helv Phys Acta 29:128

Fock V (1957) Three Lectures on Relativity Theory. Reviews of Modern Physics 29:325–333,
DOI 10.1103/RevModPhys.29.325

Fock VA (1959) The Theory of Space, Time and Gravitation. New York: Pergamon Press

Getino J (1993) Perturbed nutations, Love numbers and elastic energy of deformation for Earth
models 1066A and 1066B. Zeitschrift Angewandte Mathematik und Physik 44:998–1021,
DOI 10.1007/BF00942762

Grishchuk LP, Kopeikin SM (1983) The Motion of a Pair of Gravitating Bodies Including the
Radiation Reaction Force. Soviet Astronomy Letters 9:230–232

Grishchuk LP, Kopeikin SM (1986) Equations of motion for isolated bodies with relativistic cor-
rections including the radiation reaction force. In: Kovalevsky J, Brumberg VA (eds) Relativity
in Celestial Mechanics and Astrometry. High Precision Dynamical Theories and Observational
Verifications, IAU Symposium, vol 114, pp 19–33



488 Reference Frames for Advanced Theory of the Lunar Motion

Gullstrand A (1922) Allgemeine Lsung des statischen Einkrperproblems in der Einsteinschen
Gravitationstheorie. Arkiv Mat Astron Fys 16:1–15

Gutzwiller MC (1998) Moon-Earth-Sun: The oldest three-body problem. Rev Mod Phys
70(2):589–639

Gwinn CR, Eubanks TM, Pyne T, Birkinshaw M, Matsakis DN (1997) Quasar Proper Mo-
tions and Low-Frequency Gravitational Waves. Astrophys. J.485:87–91, DOI 10.1086/304424,
arXiv:astro-ph/9610086

Hagihara Y (1933) On the theory of secular aberration. Annales de l’Observatoire astronomique
de Tokyo 36:155–174

Hardorp J (1985) A Demonstration of the Sun’s Motion around the Barycenter of the Solar
System. In: Bulletin of the American Astronomical Society, Bulletin of the American Astro-
nomical Society, vol 17, p 592

Huang C, Jin W, Xu H (1999) The terrestrial and lunar reference frame in lunar laser ranging.
Journal of Geodesy 73:125–129, DOI 10.1007/s001900050227

Huang CL, Jin WJ, Xu HG (1996) The Terrestrial and Lunar Reference Frame in LLR. Shanghai
Observatory Annals pp 169–175
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