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This is the second part of a three-volume introductory course about integrable systems of in-
teracting bodies. The models of interest are quantum spin chains with nearest-neighbor inter-
actions between spin operators, in particular Heisenberg spin- 1

2
models. The Ising model in a

transverse field, expressible as a quadratic fermion form by using the Jordan-Wigner transfor-
mation, is the subject of Sect. 12. The derivation of the coordinate Bethe ansatz for the XXZ
Heisenberg chain and the determination of its absolute ground state in various regions of the
anisotropy parameter are presented in Sect. 13. The magnetic properties of the ground state
are explained in Sect. 14. Sect. 15 concerns excited states and the zero-temperature thermo-
dynamics of the XXZ model. The thermodynamics of the XXZ Heisenberg chain is derived
on the basis of the string hypothesis in Sect. 16; the thermodynamic Bethe ansatz equations
are analyzed in high-temperature and low-temperature limits. An alternative derivation of the
thermodynamics without using strings, leading to a non-linear integral equation determining
the free energy, is the subject of Sect. 17. A nontrivial application of the Quantum Inverse
Scattering method to the fully anisotropic XYZ Heisenberg chain is described in Sect. 18.
Sect. 19 deals with integrable cases of isotropic spin chains with an arbitrary spin.
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QUANTUM SPIN CHAINS

12 Quantum Ising chain in a transverse field

We consider quantum spin operators Sn on a closed chain of N sites n = 1, 2, . . . , N , defined in
Appendix A of paper I [1]. The spin components Sαn (α = x, y, z or 1, 2, 3) fulfill the commuta-
tion relations

[Sαn,S
β
m] = iδnmεαβγSγn (12.1)

(εαβγ is the antisymmetric tensor) and the periodicity conditions SαN+1 ≡ Sα1 . In the case of only
nearest-neighbor interactions between spins and in the presence of an external magnetic field h
along the z-axis, the most general Hamiltonian reads

H =
N∑
n=1

Hn,n+1(Sn,Sn+1)− 2h
N∑
n=1

Szn, (12.2)

where Hn,n+1(Sn,Sn+1) is a symmetric function of the spin operators. The spin- 1
2 operators

can be represented by Pauli spin operators on the chain as follows Sαn = σαn/2 and the general
Heisenberg spin- 1

2 Hamiltonian reads

H = −1
2

N∑
n=1

(
Jxσ

x
nσ

x
n+1 + Jyσ

y
nσ

y
n+1 + Jzσ

z
nσ

z
n+1

)
− h

N∑
n=1

σzn. (12.3)

The spin- 1
2 Heisenberg model simplifies substantially when the z-component of the coupling

constant vanishes, Jz = 0. This so-called XY model in a transverse field was solved via a
transformation to a quadratic fermion form [2, 3]. Here, we shall study its simplified version
with an additional constraint Jy = 0, known as the quantum Ising model in a transverse field. In
terms of the parameter λ = Jx/2h and in the units of h = 1, its Hamiltonian takes the form

H(λ) = −λ
N∑
n=1

σxnσ
x
n+1 −

N∑
n=1

σzn, σαN+1 ≡ σα1 . (12.4)

The case λ > 0 (λ < 0) corresponds to the ferromagnetic (antiferromagnetic) regime.
For a bipartite chain with N = even number, the chain sites can be divided into two subsets

of alternating sites A and B. Due to the relation for the Pauli matrices σznσ
x
nσ

z
n = −σxn, the

unitary transformation with U = U† =
∏
n∈A σ

z
n leaves the Hamiltonian (12.4) unchanged,

except for the replacement λ→ −λ:

UH(λ)U† = H(−λ). (12.5)

Thus, without any loss of generality, the real parameter λ can be chosen to take positive values.
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12.1 Jordan-Wigner transformation

We consider the raising and lowering combinations of chain spin- 1
2 operators

S±n = Sxn ± iSyn. (12.6)

Since σxn = S+
n + S−n , σyn = (S+

n − S−n )/i and σzn = 2S+
nS−n − 1, the Hamiltonian (12.4) can

be rewritten in the form

H = −λ
N∑
n=1

(
S+
n + S−n

) (
S+
n+1 + S−n+1

)
−

N∑
n=1

(
2S+

nS−n − 1
)
. (12.7)

The spin chain operators {S±n }Nn=1 exhibit a “mixed statistics”. They satisfy the fermion
anticommutation relations on the same site

{S+
n ,S

−
n } = 1, (S+

n )2 = (S−n )2 = 0 (12.8)

and the boson commutation relations for two different sites

[S+
n ,S

−
n′ ] = [S+

n ,S
+
n′ ] = [S−n ,S

−
n′ ] = 0 for n 6= n′. (12.9)

The true annihilation operators {cn} and the creation operators {c†n} of spinless fermions can be
constructed from the spin chain operators by using the Jordan-Wigner transformation [4]:

cn = exp

(
iπ

n−1∑
m=1

S+
mS−m

)
S−n , c†n = S+

n exp

(
−iπ

n−1∑
m=1

S+
mS−m

)
. (12.10)

To verify whether the operators {cn} and {c†n} indeed satisfy the fermion anticommutation rela-
tions

{c†n, cn′} = δnn′ , {cn, cn′} = {c†n, c
†
n′} = 0, (12.11)

we first use the identities exp(±iπS+
nS−n ) = −σzn to rewrite the transformation (12.10) as fol-

lows

cn =
n−1∏
m=1

(−σzm)S−n , c†n = S+
n

n−1∏
m=1

(−σzm). (12.12)

Since (σzn)2 = 1 and the spin operators commute for different sites, it holds

cnc
†
n = S−nS+

n , c†ncn = S+
nS−n , (cn)2 = (S−n )2 = 0, (c†n)2 = (S+

n )2 = 0, (12.13)

i.e. the one-site anticommutation relations (12.8) are preserved by the transformation. Due to the
relation S+

nS−n = c†ncn, the transformation inverse to (12.10) reads

S−n = exp

(
−iπ

n−1∑
m=1

c†mcm

)
cn, S+

n = c†n exp

(
iπ

n−1∑
m=1

c†mcm

)
. (12.14)
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Let us now consider two different sites n 6= n′, say n < n′. Using the equality S−nσ
z
n = S−n , we

have

cnc
†
n′ = S−n

n′−1∏
m=n

(−σzm)S+
n′ = −S−n

n′−1∏
m=n+1

(−σzm)S+
n′ . (12.15)

On the other hand,

c†n′cn = S+
n′

n′−1∏
m=n

(−σzm)S−n = S+
n′

n′−1∏
m=n+1

(−σzm)S−n , (12.16)

where we used that σznS
−
n = −S−n . We see from the last two equations that {cn, c†n′} = 0. All

remaining anticommutation relations in Eq. (12.11) can be verified analogously.
We want to express the original Hamiltonian (12.7) in terms of the fermion operators. The

one-site terms are easy since S+
nS−n = c†ncn. The two-site terms are less trivial. From (12.15)

we find that for n = 1, . . . , N − 1 it holds

cncn+1 = −S−nS−n+1, c†nc
†
n+1 = S+

nS+
n+1,

c†ncn+1 = S+
nS−n+1, cnc

†
n+1 = −S−nS+

n+1.
(12.17)

For the couple of nearest-neighbor sites N and 1, we have

cNc1 = (−1)N̂aS−NS−1 , c†Nc
†
1 = −(−1)N̂aS+

NS+
1 ,

c†Nc1 = −(−1)N̂aS+
NS−1 , cNc

†
1 = (−1)N̂aS−NS+

1 ,
(12.18)

where N̂a =
∑N
n=1 c

†
ncn is the operator of the total number of fermions. Collecting all terms,

the Hamiltonian (12.7) is transformed to

H = −λ
N∑
n=1

(c†n − cn)(c†n+1 + cn+1)− 2
N∑
n=1

c†ncn +N (12.19)

with the boundary conditions

cN+1 = −(−1)N̂ac1, c†N+1 = −(−1)N̂ac†1. (12.20)

Since the Hamiltonian (12.19) contains only bilinear combinations of fermion operators, it holds
[(−1)N̂a , H] = 0, i.e. the states with even or odd fermion numbers are preserved. Let α be the
eigenvalue of the operator (−1)N̂a : α = +1 for even states and α = −1 for odd states. Then,
the boundary conditions (12.20) are expressed as follows

cN+1 = −αc1, c†N+1 = −αc†1. (12.21)
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12.2 Diagonalization of the quadratic form

The Hamiltonian (12.19) is a simple quadratic form in fermion operators of type

H −N =
N∑

n,m=1

[
c†nAnmcm +

1
2
(
c†nBnmc

†
m + h.c.

)]
, (12.22)

where

Anm = −λ(δn,m−1 + δn,m+1)− 2δnm (mod N ), (12.23)

Bnm = −λ(δn,m−1 − δn,m+1) (mod N ) (12.24)

are the elements of the real circulant matrices A, B and h.c. means hermitian conjugate. Note
that the Hamiltonian is hermitian due to the symmetricity of A and the antisymmetricity of B.

We shall look for a linear transformation of the fermion operators

ηk =
∑
n

(
gkncn + hknc

†
n

)
, η†k =

∑
n

(
gknc

†
n + hkncn

)
, (12.25)

which is canonical (i.e. the operators ηk and η†k also obey the fermion anticommutation rules) and
simultaneously transforms the Hamiltonian (12.22) to a Hamiltonian of noninteracting spinless
fermions

H −N =
∑
k

Λkη
†
kηk + const. (12.26)

If this is possible, then there must hold

[ηk, H]− Λkηk = 0. (12.27)

Substituting the transformation (12.25) into this equation and setting to zero the coefficients
ahead of each operator, we arrive at a coupled set of equations for the gkn and hkn:

Λkgkn =
∑
m

(gkmAmn − hkmBmn) , Λkhkn =
∑
m

(gkmBmn − hkmAmn) . (12.28)

Introducing the linear combinations of coefficients

φkn = gkn + hkn, ψkn = gkn − hkn, (12.29)

Eqs. (12.28) are expressible as matrix equations

φk (A−B) = Λkψk, ψk (A + B) = Λkφk. (12.30)

Eliminating either ψk or φk from these equations leads to the eigenvalue equations, either the
one

φk (A−B) (A + B) = Λ2
kφk (12.31)

or the one

ψk (A + B) (A−B) = Λ2
kψk. (12.32)
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In the present case, we have

[(A−B) (A + B)]nm = 4
[
(1 + λ2)δnm + λ(δn,m−1 + δn,m+1)

]
(mod N ). (12.33)

Assuming for simplicity that the number of chain sites N is odd, the Fourier diagonalization of
the circulant matrix (12.33) leads to the eigenvalues

Λk = 2
√

1 + 2λ cos k + λ2. (12.34)

The values of the wave number k are determined by the boundary conditions (12.21) as follows
k = 2πj/N , where j is integer (half-odd integer) for α = −1 (+1), such that−π/2 < k < π/2.

Because A is symmetric and B is antisymmetric, the transposition (A+B)T = A−B, and
so both matrices (A − B)(A + B) and (A + B)(A − B) are symmetric and at least positive
semi-definite. Consequently, the Λk’s are real and one can choose all the φk’s and ψk’s to be
real as well as orthogonal. If the φk’s are normalized vectors, i.e.

∑
n φ

2
kn = 1, then the ψk’s

are also normalized. This fact implies that∑
n

(gkngk′n + hknhk′n) = δkk′ ,
∑
n

(gknhk′n − hkngk′n) = 0, (12.35)

which are the necessary and sufficient conditions for {ηk} and {η†k} to be the fermion operators.
The constant in H − N can be determined from the invariance of Tr (H − N) under the

canonical transformation (12.25). From the representation (12.22), we have

Tr (H −N) = 2N−1
∑
n

Ann, (12.36)

while from (12.26) we have

Tr (H −N) = 2N−1
∑
k

Λk + 2N × const. (12.37)

The constant is thus equal to (
∑
nAnn −

∑
k Λk)/2. We conclude that

H =
∑
k

Λk

(
η†kηk −

1
2

)
, Λk = 2

√
1 + 2λ cos k + λ2, (12.38)

where the sum goes over N values of the wave number k, equidistantly distributed over the
interval (−π/2, π/2).

12.3 Ground-state properties and thermodynamics

The ground state Ψ0 of the transformed free-fermion Hamiltonian (12.38) is the state with no
elementary excitations:

ηk|Ψ0〉 = 〈Ψ0|η†k = 0 for all k. (12.39)

The ground-state energy is given by

E0 = −1
2

∑
k

Λk. (12.40)
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In the thermodynamic limit N →∞, the sum can be replaced by an integral:

− E0

N
=
∫ π

−π

dk
2π

√
1 + λ2 + 2λ cos k =

2
π

(1 + λ)E

(
π

2
,

2
√
λ

1 + λ

)
, (12.41)

whereE is the elliptic integral of the second kind [5]. The ground-state energy per site is analytic
in λ, except for the point λ = 1 at which the square root in the integral (12.41) vanishes for
k = ±π. The second and higher derivatives of E0 with respect to λ diverge at λ = 1, which is
the evidence of a second-order phase transition. The order parameter is Mx = 〈Ψ0|σxn|Ψ0〉:

Mx =
{

0 in the disordered region 0 ≤ λ < 1,
±Mx

0 6= 0 in the ordered region λ > 1. (12.42)

The first excited state corresponds to k = ±π and

Λ±π = 2|1− λ|. (12.43)

The gap between the ground-state energy and the excitation spectrum drops to zero, and so the
ground state becomes two-fold degenerated, just at the critical point λ = 1.

Let us consider the Ising model in its critical point λ = 1, in a continuum limit of the lattice
spacing a→ 0. In order to restore physical units in the energy-momentum relation, we measure
the momentum from π as follows

k = π + ak′, (12.44)

the energy of the correct dimension is defined as

E(k′) =
Λk
2a
. (12.45)

As a→ 0, we have a nontrivial continuum limit of the spectrum

E(k′) = |k′|, (12.46)

which corresponds to the relativistic spectrum of a massless particle. The Ising model is thus
described in the vicinity of the critical point λ = 1 by a continuum field theory of free Majorana
fermions [6, 7].

To derive the thermodynamics of the Ising model in a transverse field, for each momentum
k we define the fermion occupation numbers nk = 0, 1. For a given configuration of occupation
numbers {nk}, the energy corresponding to the Hamiltonian (12.38) is

E({nk}) =
∑
k

Λk

(
nk −

1
2

)
. (12.47)

The canonical partition function at the inverse temperature β = 1/T (in units of the Boltzmann
constant kB = 1) is thus given by

ZN =
∑

{nk=0,1}

exp [−βE({nk})] =
∏
k

2 cosh(βΛk/2). (12.48)
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In the thermodynamic limit N →∞, the free energy per site f is given by

− βf =
∫ π

−π

dk
2π

ln
[
2 cosh

(
β
√

1 + 2λ cos k + λ2
)]
. (12.49)

The free energy does not exhibit any singularity in λ for T 6= 0, i.e., arbitrarily small thermal
fluctuations prevent the system from undergoing a phase transition [8].
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13 XXZ Heisenberg chain: Bethe ansatz and the ground state

In the absence of the magnetic field h = 0, the Hamiltonian of the spin- 1
2 Heisenberg chain is

H = −1
2

N∑
n=1

(
Jxσ

x
nσ

x
n+1 + Jyσ

y
nσ

y
n+1 + Jzσ

z
nσ

z
n+1

)
. (13.1)

There are four basic possibilities for the coupling constants:

• Jx = Jy = Jz = J > 0: the isotropic ferromagnetic XXX Heisenberg chain, solved by
Bethe [9] in 1931.

• Jx = Jy = Jz = J < 0: the isotropic antiferromagnetic XXX Heisenberg chain, the
ground-state energy was obtained by Hulthén [10] in 1938 and the elementary excitations
were found by de Cloizeaux & Pearson [11] in 1962.

• (Jx = Jy = J) 6= Jz: the XXZ Heisenberg chain, solved by Yang & Yang [12, 13] in
1966.

• (Jx 6= Jy) 6= Jz: the fully anisotropic XYZ Heisenberg chain, solved by Baxter [14, 15]
in 1972.

13.1 Symmetries of Hamiltonian

In this part, we shall concentrate on the XXZ Heisenberg Hamiltonian

H(J, Jz) = −1
2

N∑
n=1

[
J
(
σxnσ

x
n+1 + σynσ

y
n+1

)
+ Jz(σznσ

z
n+1 − 1)

]
, (13.2)

where the energy is trivially shifted by a constant. For a bipartite chain with two alternating
subsets of sites A and B, the unitary transformation with U = U† =

∏
n∈A σ

z
n leaves H

unchanged, except for the replacement J → −J :

UH(J, Jz)U† = H(−J, Jz). (13.3)

We can therefore restrict ourselves to the Hamiltonian

H(∆) ≡ 1
J
H(J, Jz) = −1

2

N∑
n=1

[
σxnσ

x
n+1 + σynσ

y
n+1 + ∆(σznσ

z
n+1 − 1)

]
, (13.4)

where the parameter ∆ = Jz/J takes an arbitrary real value. The special cases ∆ = 1 and
∆ = −1 correspond to the ferromagnetic and antiferromagnetic isotropic Heisenberg chains,
respectively.

The XXZ model exhibits another useful symmetry for N = even number of sites. Using the
unitary operator V = exp(iπ

∑N
n=1 nσ

z
n), we can transform H to

V H(∆)V † = −H(−∆). (13.5)
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The energy spectra of the Hamiltonians H(∆) and H(−∆) are thus related by the reflection
around E = 0.

With regard to the relation

σxnσ
x
n+1 + σynσ

y
n+1 = 2

(
S+
nS−n+1 + S−nS+

n+1

)
(13.6)

the Hamiltonian (13.4) commutes with the total spin along the anisotropy z-axis,

[H(∆),
∑N
n=0S

z
n] = 0. (13.7)

This is no longer true for the XYZ Heisenberg model.

13.2 Schrödinger equation

Since the XXZ Hamiltonian commutes with the total spin along the anisotropy axis, the solution
of the Schrödinger equation

H(∆)ψM = EψM (13.8)

is searched as a superposition of all vectors in the Hilbert subspace with the fixed number M of
down spins

ψM =
∑
{n}

a(n1, n2, . . . , nM )|n1, n2, . . . , nM 〉. (13.9)

Here, the basis vector |n1, n2, . . . , nM 〉 corresponds to the tensor product of M “spin-down”
vectors e− =

(
0
1

)
put on the ordered set of chain sites

1 ≤ n1 < n2 < . . . < nM ≤ N (13.10)

and (N −M) “spin-up” vectors e+ =
(

1
0

)
put on all remaining sites (see Appendix A of paper

I).
To determine how the Hamiltonian (13.4) acts on a given vector |n1, n2, . . . , nM 〉, we write

H(∆) =
N∑
n=1

Hn,n+1, (13.11)

where the component

Hn,n+1 = −
(
S+
nS−n+1 + S−nS+

n+1

)
+

1
2

∆
(
1− σznσzn+1

)
. (13.12)

acts as the unity operator on each site, except for the couple of nearest neighbors n, n+ 1. Since(
S+
nS−n+1 + S−nS+

n+1

)( e±n ⊗ e±n+1

e±n ⊗ e∓n+1

)
=
(

0
e∓n ⊗ e±n+1

)
(13.13)

and

σznσ
z
n+1

(
e±n ⊗ e±n+1

e±n ⊗ e∓n+1

)
=
(
e±n ⊗ e±n+1

−e±n ⊗ e∓n+1

)
, (13.14)



166 Introduction to Integrable Many-Body Systems II

we have

Hn,n+1

(
e±n ⊗ e±n+1

e±n ⊗ e∓n+1

)
= ∆

(
0

e±n ⊗ e∓n+1

)
−
(

0
e∓n ⊗ e±n+1

)
. (13.15)

The whole Hamiltonian (13.11) acts on the vector |n1, n2, . . . , nM 〉 as follows

H(∆)|n1, n2, . . . , nM 〉 = Nanti ∆|n1, n2, . . . , nM 〉
−
∑
{n′}

|n′1, n′2, . . . , n′M 〉. (13.16)

Here, the configuration of spins down {n′} is obtained from {n} by the interchange of just one
nearest-neighbor pair of antiparallel spins,

n′1 = n1, n′2 = n2, . . . , n′α = nα ± 1, . . . , n′M = nM (13.17)

and

Nanti =
∑
{n′}

1 (13.18)

is the number of the nearest-neighbor antiparallel spins in the configuration {n}. Like for in-
stance, for the spin configuration

n1 n2 n3 n4 n5 n6 n7

the number of the nearest-neighbor antiparallel spins Nanti = 8 and the configuration {n′} is
generated from {n} by interchanging either the spin down at site n1 with its left spin-up neighbor
(n′1 = n1 − 1), or the spin at n3 with its right neighbor (n′3 = n3 + 1), or the spin at n4 with
one of its neighbors (n′4 = n4 − 1 or n′4 = n4 + 1), etc. The condition that ψM (13.9) is the
eigenfunction of the Hamiltonian H(∆) in (13.8) can be expressed as

Ea({n}) =
∑
{n′}

[∆ a({n})− a({n′})] . (13.19)

This set of equations follows from the operator formula (13.16) and from the obvious equality∑
{n}

a({n})
∑
{n′}

|n′1, n′2, . . . , n′M 〉 =
∑
{n}

|n1, n2, . . . , nM 〉
∑
{n′}

a({n′}). (13.20)

The periodic boundary conditions for the a-amplitudes

a(n1, n2, . . . , nM ) = a(n2, n3, . . . , nM , n1 +N), (13.21)

respect the prescribed ordering (from left to right) of sites.



XXZ Heisenberg chain: Bethe ansatz and the ground state 167

13.3 Coordinate Bethe ansatz

The derivation of the coordinate Bethe ansatz equations resembles the one for the spinless bosons
with δ-function interactions on a continuous line, presented in Sect. 2.

•M = 0: The case M = 0 is trivial. The vector |0〉 with all sites in the spin-up state e+ is the
eigenvector of the Hamiltonian H(∆) with the energy E = 0.

•M = 0: In the sector M = 1 with one spin down, Eq. (13.19) takes the form

Ea(n) = 2∆a(n)− a(n− 1)− a(n+ 1). (13.22)

The solution is the plane wave

a(n) = A exp(ikn). (13.23)

The periodicity condition a(n) = a(n+N) is equivalent to exp(ikN) = 1 and the wave number
k is quantized according to

Nk = 2πI, I = 0,±1,±2, . . . . (13.24)

The number of integer I-values is equal to N , i.e. to the dimension of the Hilbert M = 1
subspace. The dependence of the energy E on the wave number is obtained by substituting
(13.23) into the basic Eq. (13.22),

E = 2 (∆− cos k) . (13.25)

• M = 2: We have to distinguish between two cases: sites n1 and n2 either are or are not the
nearest neighbors.

Let us start with the case when n1 and n2 are not the nearest neighbors, i.e. n2 6= n1 + 1.
Eq. (13.19) then reads

Ea(n1, n2) = 4∆a(n1, n2)− a(n1 − 1, n2)− a(n1 + 1, n2)
−a(n1, n2 − 1)− a(n1, n2 + 1). (13.26)

The general solution is

a(n1, n2) = A(12)ei(k1n1+k2n2) −A(21)ei(k2n1+k1n2), (13.27)
E = 2 (∆− cos k1) + 2 (∆− cos k2) , (13.28)

where the coefficients A(12) ≡ A(k1, k2) and A(21) ≡ A(k2, k1) are as-yet free.
When n1 and n2 are the nearest neighbors, i.e. n2 = n1 + 1, Eq. (13.19) takes the form

Ea(n, n+ 1) = 2∆a(n, n+ 1)− a(n− 1, n+ 1)− a(n, n+ 2). (13.29)

We look for the solution in the form (13.27), where the coefficients A(12) and A(21) will be
constrained by a condition. This can be done directly by inserting the solution (13.27) into
(13.29), or indirectly by extending the definition of a(n1, n2) to identical sites n1 = n2 and
putting formally n1 = n, n2 = n+ 1 in Eq. (13.26):

Ea(n, n+ 1) = 4∆a(n, n+ 1)− a(n− 1, n+ 1)− a(n+ 1, n+ 1)
−a(n, n)− a(n, n+ 2). (13.30)
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The consistency of the relations (13.29) and (13.30) requires that

a(n+ 1, n+ 1)− 2∆a(n, n+ 1) + a(n, n) = 0. (13.31)

The insertion of the solution (13.27) into this equation leads to the following relation between
the A-coefficients:

A(21)
A(12)

=
ei(k1+k2) − 2∆eik2 + 1
ei(k1+k2) − 2∆eik1 + 1

= exp (−iθ12) . (13.32)

The phase shift θ12 ≡ θ(k1, k2) is from the interval 〈−π, π〉. Its alternative representations read

tan
(
θ12

2

)
= ∆

cot(k1/2)− cot(k2/2)
(1−∆) cot(k1/2) cot(k2/2)− (∆ + 1)

=
∆ sin[(k1 − k2)/2]

∆ cos[(k1 − k2)/2]− cos[(k1 + k2)/2]
. (13.33)

The phase function is antisymmetric with respect to the exchange of indices,

θ12 = −θ21, (13.34)

so that θ(k, k) = 0. Setting the common prefactor to unity, the (unnormalized) A-coefficients
are expressible as

A(12) = exp
(

i
2
θ12

)
, A(21) = exp

(
i
2
θ21

)
. (13.35)

The wave numbers k1 and k2 are quantized according to the periodic boundary condition
a(n1, n2) = a(n2, n1 +N) as follows

A(12) = −A(21)eik1N , A(21) = −A(12)eik2N . (13.36)

These conditions can be rewritten as

Nk1 = 2πI1 + θ12

Nk2 = 2πI2 + θ21

}
I1, I2 = ±1

2
,±3

2
,±5

2
, . . . . (13.37)

Because I1 and I2 may be interchanged without affecting the solutions, we can restrict ourselves
to I1 ≤ I2. The wave numbers must be unequal, k1 6= k2, in order to avoid the nullity of the
wavefunction. To show that the total number of solutions for (k1, k2) is equal to the dimension(
N
2

)
of the Hilbert subspace M = 2 is a nontrivial task [16].

• M = 3: We have to consider all possibilities of nearest-neighbor positions for three sites
n1 < n2 < n3:

(a) n2 6= n1 + 1, n3 6= n2 + 1, (b) n2 = n1 + 1, n3 6= n2 + 1,
(c) n2 6= n1 + 1, n3 = n2 + 1, (d) n2 = n1 + 1, n3 = n2 + 1.

In the case (a), the Schrödinger Eq. (13.19) takes the form

Ea(n1, n2, n3) = 6∆a(n1, n2, n3)− a(n1 − 1, n2, n3)− a(n1 + 1, n2, n3)
−a(n1, n2 − 1, n3)− a(n1, n2 + 1, n3)
−a(n1, n2, n3 − 1)− a(n1, n2, n3 + 1). (13.38)
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The solution is a superposition of plane waves

a(n1, n2, n3) = A(123)ei(k1n1+k2n2+k3n3) −A(132)ei(k1n1+k3n2+k2n3)

−A(213)ei(k2n1+k1n2+k3n3) +A(231)ei(k2n1+k3n2+k1n3) (13.39)
+A(312)ei(k3n1+k1n2+k2n3) −A(321)ei(k3n1+k2n2+k1n3).

The corresponding energy is given by

E = 2 (∆− cos k1) + 2 (∆− cos k2) + 2 (∆− cos k3) . (13.40)

In the presence of nearest-neighbor sites, we use the same trick as in the M = 2 sector. The
case (b) implies

A(213)
A(123)

= e−iθ12 ,
A(312)
A(132)

= e−iθ13 ,
A(321)
A(231)

= e−iθ23 , (13.41)

where θαβ ≡ θ(kα, kβ) is the obvious generalization of the phase function to an arbitrary pair of
wave numbers. The case (c) implies

A(132)
A(123)

= e−iθ23 ,
A(231)
A(213)

= e−iθ13 ,
A(321)
A(312)

= e−iθ12 . (13.42)

The case (d) does not imply any new relations. The solution of the above two equations reads

A(123) = exp
[

i
2

(θ12 + θ13 + θ23)
]
,

A(213) = exp
[

i
2

(θ21 + θ23 + θ13)
]
, (13.43)

A(321) = exp
[

i
2

(θ32 + θ31 + θ21)
]
,

etc. The formal structure of A-coefficients is obvious.
The periodic boundary condition a(n1, n2, n3) = a(n2, n3, n1 +N) implies

A(123) = A(231)eik1N , A(213) = A(132)eik2N , A(312) = A(123)eik3N . (13.44)

The distinct wave numbers k1, k2 and k3 are thus quantized as follows

Nk1 = 2πI1 + θ12 + θ13

Nk2 = 2πI2 + θ21 + θ23

Nk3 = 2πI3 + θ31 + θ32

 I1, I2, I3 = 0,±1,±2, . . . . (13.45)

We see that the solution in the M = 3 sector is constructed with the aid of two-spin phase
functions θαβ . This property is maintained in higher M = 4, 5, . . . , N sectors.

• Arbitrary M : In the sector with M spins down, the coordinate Bethe ansatz has the form

a(n1, n2, . . . , nM ) =
∑
P∈SM

sign(P )A(P ) exp

i
M∑
j=1

kPjnj

 , (13.46)
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where the sum goes over all M ! permutations P of numbers (1, 2, . . . ,M). This ansatz automat-
ically satisfies the Schrödinger equation (13.19) when there are no nearest-neighbor sites with
both spins down. The total momentum is K =

∑M
j=1 kj , the corresponding energy is given by

E =
M∑
j=1

e(kj), e(k) = 2(∆− cos k). (13.47)

When two of the sites in the sequence n1, n2, . . . , nM are the nearest neighbors, say nj+1 =
nj + 1, the counterpart of the consistency equation (13.31) is

a(. . . , nj + 1, nj + 1, . . .)− 2∆a(. . . , nj , nj + 1, . . .) + a(. . . , nj , nj , . . .) = 0. (13.48)

Inserting here the Bethe ansatz (13.46) leads to∑
P∈SM

sign(P )A(P )
[
ei(kPj+kP (j+1)) − 2∆eikP (j+1) + 1

]
×eikP1n1+···+i(kPj+kP (j+1))nj+···ikPMnM = 0. (13.49)

In the summation, each permutation P is coupled with the permutation Pj,j+1 which is gen-
erated from P by the transposition of the nearest-neighbors Pj and P (j + 1), i.e. if P =
(P1, . . . , P j, P (j + 1), . . . , PM) then Pj,j+1 = (P1, . . . , P (j + 1), P j, . . . , PM). Since the
corresponding A-coefficients are multiplied by the same exponential, taking into account that
sign(P ) = −sign(Pj,j+1) we get the condition

A(P )
[
ei(kPj+kP (j+1)) − 2∆eikP (j+1) + 1

]
−A(Pj,j+1)

[
ei(kPj+kP (j+1)) − 2∆eikPj + 1

]
= 0. (13.50)

Hence, A(Pj,j+1) = A(P ) exp
(
−iθPj,P (j+1)

)
which leads to

A(P ) = exp

 i
2

M∑
j,l=1
(j<l)

θPj,P l

 . (13.51)

The periodic boundary condition (13.20) is equivalent to the conditions

A(P ) = (−1)M−1A(PC)eikP1N for arbitrary P , (13.52)

where PC is the cyclic transposition of permutation P , i.e. if P = (P1, P2, . . . , PM) then
PC = (P2, . . . , PM,P1). Taking into account (13.51), we find

eikP1N = (−1)M−1 A(P )
A(PC)

= (−1)M−1 exp

i
M∑
j=2

θP1,P j

 for arbitrary P . (13.53)

Thus the wave numbers k1, k2, . . ., kM are quantized according to the fundamental set of M
coupled Bethe equations

Nkj = 2πIj +
M∑
l=1

(l 6=j)

θjl, j = 1, 2, . . . ,M, (13.54)
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where Ij are integers for odd M and half-integers for even M . Only solutions with distinct
wave numbers are allowed to avoid the nullity of the wavefunction. The Bethe equations can be
formally represented as

Nk = 2πI(k) +
∑
k′

θ(k, k′), (13.55)

where we assumed that θ(k, k) = 0.

13.4 Orbach parametrization

The phase function θ(k, k′) is a nonlinear function of the wave numbers k and k′ which, in
general, does not depend on their difference. We shall parametrize the wave number k by the
rapidity (spectral parameter) λ, k = k(λ), in such a way that the θ-function depends on the
difference of the corresponding rapidities: θ(k, k′) = θ(λ−λ′). k’s and λ’s are complex numbers
and the parametrization k(λ) depends on the value of the anisotropy parameter ∆ [16]. We shall
treat separately the regions ∆ > 1, ∆ = 1, −1 < ∆ < 1, ∆ = −1 and ∆ < −1.

• Ferromagnet ∆ > 1: We set ∆ = coshφ (0 < φ <∞) and consider the parametrization

eik =
eiλ − eφ

eiλ+φ − 1
=

sin 1
2 (λ+ iφ)

sin 1
2 (λ− iφ)

. (13.56)

We assume that 0 < Re(k) < 2π and−π < Re(λ) < π. Within the present parametrization, the
phase function (13.32) is given by

− eiθ(k,k′) =
sin 1

2 (λ− λ′ + 2iφ)
sin 1

2 (λ− λ′ − 2iφ)
(13.57)

and indeed depends on the difference of the rapidities. Inserting this relation into the Bethe
equations (13.53), we get for each j = 1, . . . ,M[

sin 1
2 (λj + iφ)

sin 1
2 (λj − iφ)

]N
=

M∏
l=1

(l 6=j)

sin 1
2 (λj − λl + 2iφ)

sin 1
2 (λj − λl − 2iφ)

. (13.58)

The energy is given by E =
∑M
j=1 e(λj), where

e(λ) = −2C(φ)k′(λ), C(φ) ≡ sinhφ =
√

∆2 − 1. (13.59)

The (unnormalized) coefficients (13.51) are expressible in terms of the spectral parameters as
follows

A(P ) =
∏
j<l

sin
1
2

(λPj − λPl + 2iφ) . (13.60)

• Isotropic ferromagnet ∆ = 1: The parametrization is now given by

eik =
λ+ i/2
λ− i/2

, −eiθ(k,k′) =
λ− λ′ + i
λ− λ′ − i

. (13.61)
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The real parts of k and λ are constrained by 0 < Re(k) < 2π, −∞ < Re(λ) < ∞. The Bethe
equations read(

λj + i/2
λj − i/2

)N
=

M∏
l=1

(l 6=j)

λj − λl + i
λj − λl − i

, j = 1, 2, . . . ,M. (13.62)

The energy component is obtained in the form

e(λ) =
1

λ2 + 1
4

= −k′(λ). (13.63)

The A-coefficients are given by

A(P ) =
∏
j<l

(λPj − λPl + i) . (13.64)

• Paramagnet |∆| < 1: Let ∆ = − cos γ (0 < γ < π). The needed parametrization is

eik =
eiγ − eλ

eiγ+λ − 1
=

sinh 1
2 (iγ − λ)

sinh 1
2 (iγ + λ)

, (13.65)

or, equivalently,

k(λ) = 2 arctan
[

tanh(λ/2)
tan(γ/2)

]
≡ θ(λ|γ/2). (13.66)

The real parts of k and λ are constrained by −(π − γ) < Re(k) < π − γ, −∞ < Re(λ) < ∞.
The phase function is given by

− eiθ(k,k′) =
sinh 1

2 (λ− λ′ − 2iγ)
sinh 1

2 (λ− λ′ + 2iγ)
, (13.67)

or

θ(k, k′) = 2 arctan
(

tanh [(λ− λ′)/2]
tan γ

)
= θ(λ− λ′|γ). (13.68)

The corresponding Bethe equations read[
sinh 1

2 (iγ − λj)
sinh 1

2 (iγ + λj)

]N
=

M∏
l=1

(l 6=j)

sinh 1
2 (λj − λl − 2iγ)

sinh 1
2 (λj − λl + 2iγ)

, j = 1, 2, . . . ,M, (13.69)

or, equivalently,

Nθ(λ|γ/2) = 2πI(λ) +
∑
λ′

θ(λ− λ′|γ). (13.70)

The energy component is found to be

e(λ) = −2C(γ)k′(λ), C(γ) ≡ sin γ =
√

1−∆2 (13.71)
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The A-coefficients read

A(P ) =
∏
j<l

sinh
1
2

(λPj − λPl − 2iγ) . (13.72)

• Isotropic antiferromagnet ∆ = −1: The needed parametrization is

eik =
i/2− λ
i/2 + λ

, k(λ) = 2 arctan(2λ) ≡ θ(2λ|0). (13.73)

The real parts of k and λ are constrained by −π < Re(k) < π, −∞ < Re(λ) < ∞. The phase
function is given by

− eiθ(k,k′) =
λ− λ′ − i
λ− λ′ + i

, θ(k, k′) = 2 arctan(λ− λ′) = θ(λ− λ′|0). (13.74)

The Bethe equations take the form(
i/2− λj
i/2 + λj

)N
=

M∏
l=1

(l 6=j)

λj − λl − i
λj − λl + i

, j = 1, 2, . . . ,M, (13.75)

or

Nθ(2λ|0) = 2πI(λ) +
∑
λ′

θ(λ− λ′|0). (13.76)

The energy component is given by

e(λ) = − 1
λ2 + 1

4

= −k′(λ). (13.77)

When the number of lattice sites N = even number, the Bethe Eqs. (13.62) and (13.75) for λ’s
coincide while the respective energies (13.63) and (13.77) differ from one another only by the
sign, which is in agreement with the equivalence of the spectra of conjugate Hamiltonians H(∆)
and −H(−∆). The A-coefficients are given by

A(P ) =
∏
j<l

(λPj − λPl − i) . (13.78)

• Antiferromagnet ∆ < −1: We set ∆ = − coshφ (0 < φ <∞). The needed parametrization
is

eik =
eφ+iλ − 1
eφ − eiλ

=
sin 1

2 (iφ− λ)
sin 1

2 (iφ+ λ)
, (13.79)

i.e.

k(λ) = 2 arctan
[

tan(λ/2)
tanh(φ/2)

]
≡ θ(λ|φ/2). (13.80)
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The real parts of k and λ are constrained by −π < Re(k) < π, −π < Re(λ) < π. The phase
function (13.32) is given by

− eiθ(k,k′) =
sin 1

2 (λ− λ′ − 2iφ)
sin 1

2 (λ− λ′ + 2iφ)
, (13.81)

i.e.

θ(k, k′) = 2 arctan
(

tan[(λ− λ′)/2]
tanhφ

)
≡ θ(λ− λ′|φ). (13.82)

The Bethe equations read[
sin 1

2 (iφ− λj)
sin 1

2 (iφ+ λj)

]N
=

M∏
l=1

(l 6=j)

sin 1
2 (λj − λl − 2iφ)

sin 1
2 (λj − λl + 2iφ)

, j = 1, 2, . . . ,M, (13.83)

or, equivalently,

Nθ(λ|φ/2) = 2πI(λ) +
∑
λ′

θ(λ− λ′|φ). (13.84)

The energy component is found to be

e(λ) = −2C(φ)k′(λ), C(φ) ≡ sinhφ =
√

∆2 − 1. (13.85)

Again, forN = even number, the spectrum equivalence of the HamiltoniansH(∆) and−H(−∆)
is reflected through the pair of equivalent Bethe Eqs. (13.58) and (13.83) and the oppositely-
signed energy components (13.59) and (13.85). The A-coefficients are expressible as follows

A(P ) =
∏
j<l

sin
1
2

(λPj − λPl − 2iφ) . (13.86)

It is instructive to compare the Bethe ansatz equations obtained in this subsection with those
derived in Sect. 8 by using the algebraic Bethe ansatz. The transfer matrix T (λ) was built from
the scattering matrix (8.12) with the trigonometric parametrization of the elements

a(λ) = sin(λ+ η), b(λ) = sin(λ), c(λ) = sin η, d(λ) = 0. (13.87)

In the sector with M spins down, the eigenvalues t(λ;λ1, . . . , λM ) are given by Eq. (8.53),
where the spectral parameters {λ1, . . . , λM} are determined by the system of Bethe equations[

a(λj)
b(λj)

]N
=

M∏
l=1

(l6=j)

a(λj − λl)b(λl − λj)
a(λl − λj)b(λj − λl)

, j = 1, 2, . . . ,M. (13.88)

The energy spectrum of the XXZ Hamiltonian (13.4) with ∆ = cos η is now expressible as
follows

E = − sin η
d

dλ
ln t(λ)

∣∣∣
λ=0

+N cos η

= sin η
M∑
j=1

[cot(λj + η)− cotλj ] . (13.89)
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In the ferromagnetic region ∆ = coshφ > 1, setting η = iφ in the Bethe equations (13.88),
these equations coincide with (13.58) if the present spectral parameters are shifted and rescaled
in the following way λ → (λ − iφ)/2. It is easy to check that the energy component deduced
from (13.89) reduces after the substitution λ → (λ − iφ)/2 to the previous one (13.59). The
same scenario takes place for all other values of the anisotropy parameter ∆. We conclude that
the coordinate Bethe ansatz method and the QISM provide the same solution, only the definitions
of the spectral parameter are different.

13.5 The ground state

In the ferromagnetic region ∆ ≥ 1, the absolute ground state of the XXZ Heisenberg chain is
trivial and corresponds to all spins up (or all spins down), i.e. M = 0 and

e0 = 0, ∆ ≥ 1. (13.90)

The reference point for the region ∆ < 1 is ∆ = 0 (the XY model) at which θ(k, k′) = 0.
The Bethe equations (13.54) then correspond to a system of free fermions,

Nkj = 2πIj (j = 1, 2, . . . ,M), E = −2
M∑
j=1

cos kj . (13.91)

As we know from the analysis of particles with δ-function interaction, the sequence of distinct
I-numbers associated with the ground state in the M -sector reads

{I1, I2, . . . , IM} =
{
−M − 1

2
,−M − 1

2
+ 1, . . . ,

M − 1
2

}
. (13.92)

The absolute (global) ground state corresponds to M = N/2 for even N and M = (N ± 1)/2
for odd N . Based on the continuity arguments it has been shown in Refs. [12, 13] that the
same sequence of I-numbers determines the ground state in the whole region ∆ < 1. The
corresponding wave numbers k1 < k2 < · · · < kM are real.

In the thermodynamic limit N → ∞, M → ∞, with the fixed density of down spins m =
M/N , the wave numbers k are distributed with a ground-state density R(k) = R(−k) between
some limits −q and +q. Applying Hultén’s continualization procedure explained in Sect. 2, the
Bethe equations (13.55) imply an integral equation for R(k)

k = 2πF (k) +
∫ q

−q
dk′ θ(k, k′)R(k′), (13.93)

where

F (k) ≡ I(k)
N

=
∫ k

0

dk′R(k′) (13.94)

is the state density. To transform the kernel of the integral equation (13.93) into a difference
kernel, we use the Orbach parametrization k(λ) and introduce the density ρ(λ) of λ’s via the
relation ρ(λ)dλ = R(k)dk, i.e. ρ(λ) = R(k)k′(λ). Since k(λ) = −k(−λ), the support
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k ∈ 〈−q, q〉 maps onto λ ∈ 〈−b, b〉 where the limits ±b are given by k(±b) = ±q. The integral
Eq. (13.93) for R(k) can be transcribed as an integral equation for ρ(λ),

k(λ) = 2πf(λ) +
∫ b

−b
dλ′ θ(λ− λ′)ρ(λ′), (13.95)

where f(λ) =
∫ λ

0
dλ′ ρ(λ′). The differentiation of this equation with respect to λ leads to the

basic integral equation

k′(λ) = 2πρ(λ) +
∫ b

−b
dλ′ θ′(λ− λ′)ρ(λ′), (13.96)

which determines the λ-density ρ(λ).
The density of down spins is given by

m =
M

N
=
∫ b

−b
dλ ρ(λ). (13.97)

This formula fixes the relationship between the limit b and the sectorm. The momentum vanishes
in the ground state,

k0 =
K0

N
=
∫ b

−b
dλ k(λ)ρ(λ). (13.98)

The ground-state energy per site is given by

e0 =
E0

N
=
∫ b

−b
dλ e(λ)ρ(λ). (13.99)

13.6 The absolute ground state for ∆ < 1

Although θ′(λ−λ′) is a difference kernel, the finiteness of the limits±b for the spectral parameter
causes that the integral Eq. (13.96) is not translationally invariant and therefore not explicitly
solvable. The only exception is the case when b takes its maximal value b0 implied by the Orbach
parametrization, namely b0 = ∞ for −1 ≤ |∆| < 1 and b0 = π for ∆ < −1. In that case the
operators in Eq. (13.96) are translationally invariant and the explicit solution can be obtained by
using the continuous or discrete Fourier transform of the kernel. It will be seen that the choice
b = b0 corresponds to the absolute ground state with m = 1/2. We shall use the subscript 0 in
ρ0(λ) in order to distinguish the special case b = b0. Using the notation introduced in Sect. 3,
Eq. (13.96) with b = b0 can be written as

k′

2π
= (I +G)ρ0, (13.100)

where G is an integral operator with kernel G(λ, λ′) = θ′(λ − λ′)/2π, over the interval −b0 ≤
λ′ ≤ b0. Introducing the resolvent operator J via the relation (I+J)(I+G) = (I+G)(I+J) =
I , the formal solution of this equation is

ρ0 = (I + J)
k′

2π
. (13.101)
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Denoting by Ĝ the Fourier transform of G(λ) = θ′(λ)/2π, the Fourier transforms of the resol-
vent kernel and of the λ-density are given by

Ĵ = − Ĝ

1 + Ĝ
, ρ̂0 =

1
1 + Ĝ

k̂′

2π
. (13.102)

• Paramagnet −1 < ∆ = − cos γ < 1: It follows from the definition (13.68) that

θ′(λ|γ) =
sin(2γ)

coshλ− cos(2γ)
. (13.103)

Recalling that b0 =∞ in the paramagnetic region, we have

Ĝ(ω|γ) =
∫ ∞
−∞

dλ e−iωλ 1
2π

sin(2γ)
coshλ− cos(2γ)

=
sinh[(π − 2γ)ω]

sinh(πω)
. (13.104)

From (13.66) we obtain k′(λ) = θ′(λ|γ/2), hence k̂′(ω) = 2πĜ(ω|γ/2) and

ρ̂0(ω) =
Ĝ(ω|γ/2)

1 + Ĝ(ω|γ)
=

1
2 cosh(γω)

, ρ0(λ) =
1

4γ
1

cosh(πλ/2γ)
. (13.105)

As was anticipated, m = ρ̂0(0) = 1/2. The ground-state energy per site reads

e0 =
∫ ∞
−∞

dω
2π

ê(ω)ρ̂0(ω) = −2 sin γ
∫ ∞

0

dω
sinh[(π − γ)ω]

sinh(πω) cosh(γω)
. (13.106)

• Isotropic antiferromagnet ∆ = −1: Using Eqs. (13.73)-(13.77) we find that

Ĝ(ω|0) =
∫ ∞
−∞

dλ e−iωλ 1
π

1
1 + λ2

= e−|ω| (13.107)

and

ρ̂0(ω) =
Ĝ(ω/2|0)

1 + Ĝ(ω|0)
=

1
2 cosh(ω/2)

, ρ0(λ) =
1

2 cosh(πλ)
. (13.108)

Consequently,

m = ρ̂0(0) =
1
2
, e0 = −2

∫ ∞
−∞

dλ
cosh(πλ)(1 + 4λ2)

= −2 ln 2. (13.109)

• Antiferromagnet ∆ = − coshφ < −1: Since

θ′(λ|φ) =
sinh(2φ)

cosh(2φ)− cosλ
(13.110)

and b0 = π, we have for integer n

Ĝ(n|φ) =
∫ π

−π
dλ e−inλ 1

2π
sinh(2φ)

cosh(2φ)− cosλ
= e−2φ|n|. (13.111)
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Fig. 13.1. The dependence of the range of k-values in the ground state on the anisotropy parameter ∆

From (13.80) we obtain k′(λ) = θ′(λ|φ/2) which implies k̂′(s) = 2πĜ(s|φ/2). Consequently,

ρ̂0(n) =
Ĝ(n|φ/2)

1 + Ĝ(n|φ)
=

1
2 cosh(φn)

,

ρ0(λ) =
1

4π

∞∑
n=−∞

einλ

cosh(φn)
=

Kdn(Kλ/π, u)
2π2

, (13.112)

where

K ≡ K(u) =
∫ π/2

0

dϕ√
1− u2 sin2 ϕ

(13.113)

is the complete elliptic integral of the first kind, whose modulus u is related to the parameter φ
through the relation

φ = π
K(
√

1− u2)
K(u)

(13.114)

(for definitions of elliptic functions and integrals, see Appendix B of paper I). Thusm = ρ̂0(0) =
1/2 and

e0 =
1

2π

∞∑
n=−∞

ê(n)ρ̂0(n) = −2 sinhφ
∞∑

n=−∞

1
1 + e2φ|n| . (13.115)

In Fig. 13.1, we show the range of k-values in the ground state as a function of the anisotropy
parameter ∆.

The absolute ground-state energy is the continuous function of ∆ which has singularities at
the ferromagnetic (∆ = 1) and antiferromagnetic (∆ = −1) critical points. At ∆ = −1, all
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its derivatives are also continuous (the phase transition is of infinite order). The ground-state
energies (13.106) and (13.115) are different, however, on the real axis they coalesce ideally at
∆ = −1 in the sense that their values and the values of all their derivatives coincide at this point.
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14 XXZ Heisenberg chain: Ground state in the presence of magnetic field

The external magnetic field h along the z axis was taken to be zero till now. In the region
∆ < 1, the absolute ground state corresponds to the “half-filling” with the density of down spins
m = 1/2 and the density of up spins 1 −m = 1/2, hence sz =

∑N
n=1〈Szn〉/N = 0. We also

looked for the local ground-state energy in the subspace with the fixed density of down spins

m =
1
2

(1− s), s = 2sz, (14.1)

which is related in some way to the limit b of the spectral parameter λ. If m = 1/2 we have
b = b0, if m < 1/2 then b < b0.

An alternative approach to the one of fixing m is to include the magnetic field h ≥ 0 into
the Hamiltonian and to look for the absolute ground state in the presence of this field. The
contribution of the magnetic field to the energy per site (13.99) is −h(N − 2M)/N , i.e.

e0 =
∫ b

−b
dλ e(λ)ρ(λ)− h

[
1− 2

∫ b

−b
dλ ρ(λ)

]
. (14.2)

The absolute ground state corresponding to the magnetic field is determined by the minimization
of this energy, which fixes a relationship between h and b, and consequently between h and m.
The ground state results from the competition of two effects: The energy loss due to spin flips
into the field direction and the energy gain from the spin-spin interaction part of the Hamiltonian.
The present section is devoted to various aspects of this problem. General formulas are solved
explicitly near the half-filling, at leading order in s.

The pioneering works in this field belong to Griffiths [17] (the calculation of the magnetiza-
tion curve for the infinite antiferromagnetic XXX chain) and to Bonner and Fisher [18] (extrap-
olation of numerical results obtained for finite-size XXX rings).

14.1 Fundamental equation for the λ-density

We study the absolute ground state in the presence of the magnetic field h. For h = 0, the limit of
λ-values b0 and the λ-density ρ0 (13.101) are known. For h > 0, the limit of λ-values is changed
to b < b0, the corresponding λ-density ρ satisfies Eq. (13.96). Let us introduce a projection
operator B which restricts the limits of the integral operator from (−b0, b0) to (−b, b), i.e., as
b→ b0 then B → I . Using B, Eq. (13.96) can be formally written as

k′

2π
= ρ+GBρ. (14.3)

The density of down spins (13.97) is expressible as

m = η+Bρ (14.4)

Both quantities ρ and m depend on h only implicitly through the limit b of λ-values and so their
analysis is possible without knowledge of the explicit functional dependence h(b).

Applying the operator I + J to both sides of Eq. (14.3) with G written as G = I + G − I ,
we obtain the fundamental integral equation for ρ:

ρ0 = ρ+ J(I −B)ρ. (14.5)
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Here, the projector I −B restricts the integral operator J to intervals (−b0,−b) ∪ (b, b0).
The spin-down density (14.4) can be written as

m ≡ 1
2

(1− s) = η+ρ− η+(I −B)ρ. (14.6)

In view of (14.3), the first term is expressible as

η+ρ = η+

(
k′

2π
−GBρ

)
. (14.7)

Setting λ =∞ in (13.66) and λ = π in (13.80), we get

η+k′ = 2k(b0) =
{

2(π − γ) for |∆| < 1,
2π for ∆ < −1. (14.8)

Simultaneously, it holds

η+GBρ ≡
∫ b0

−b0
dλ
∫ b

−b
dλ′

θ′(λ− λ′)
2π

ρ(λ′) =
∫ b0

−b0
dλ

θ′(λ)
2π

∫ b

−b
dλ′ ρ(λ′)

≡ (η+G)(η+Bρ) =
1
2

(1− s) η+G. (14.9)

Using Eqs. (13.104) and (13.111), we find

η+G = Ĝ(0) =
{

1− 2γ/π for |∆| < 1,
1 for ∆ < −1. (14.10)

Combining Eqs. (14.8)–(14.10), the formula (14.7) takes the form

η+ρ =
{

(1 + s)/2− sγ/π for |∆| < 1,
(1 + s)/2 for ∆ < −1. (14.11)

The relation (14.6) thus becomes(
1− γ

π

)
s = η+(I −B)ρ for |∆| < 1 (14.12)

and

s = η+(I −B)ρ for ∆ < −1. (14.13)

The general formalism outlined till now is exact. Now we solve the fundamental equation
(14.5) to leading order in I −B. The evaluation depends on whether −1 ≤ ∆ < 1 or ∆ < −1.

• Paramagnet: The fundamental equation is singular at half-filling for |∆| < 1 and ∆ = −1.
Since b0 =∞, b is also very large for leading order in I−B. In the fundamental equation (14.5),
the intervals (−∞,−b) and (b,∞) are localized far away from one another and one can ignore
in lowest order their mutual effect; this approximation is justified by explicitly solvable cases.

In the upper interval with large positive values of λ, the ρ0-density (13.105) becomes

ρ0(λ) =
1

4γ
1

cosh
(
πλ
2γ

) ∼
λ→∞

1
2γ

e−πλ/(2γ). (14.14)
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Setting λ = b+ x (0 ≤ x <∞), we have

ρ0(b+ x) ∼ ζe−πx/(2γ), ζ =
1

2γ
e−πb/(2γ). (14.15)

ζ � 1 is the smallness parameter. We assume that also the unknown function ρ scales analo-
gously, i.e.

ρ(b+ x) ∼ ζT (x). (14.16)

Ignoring the effect of the lower interval integration in (14.5), T (x) is determined by the integral
equation

T (x) +
∫ ∞

0

dx′ J(x− x′)T (x′) = e−πx/2γ , x ≥ 0. (14.17)

This equation can be extended to x < 0 within the standard Wiener-Hopf form

T (x) +
∫ ∞
−∞

dx′ J(x− x′)T (x′) = g(x) + h(x), (14.18)

where

g(x) =
{

e−πx/2γ for x > 0,
0 for x < 0,

(14.19)

and

h(x) =
{

0 for x > 0,∫∞
−∞ dx′ J(x− x′)T (x′) for x < 0. (14.20)

Since T (x) vanishes for x < 0, the Fourier transform T̂ (ω) is analytic in the upper half-plane
Imω ≥ 0, denoted by Π+. Note that limx→0+ T (x) 6= 0 and so T (x) exhibits the discontinuity
at x = 0.

The Fourier transform of the Wiener-Hopf equation (14.18) reads[
1 + Ĵ(ω)

]
T̂ (ω) = ĝ(ω) + ĥ(ω). (14.21)

Since Ĵ(ω) = Ĵ(−ω) and 1 + Ĵ(ω) 6= 0 for real ω, there exists a unique factorization [19]

1 + Ĝ(ω) =
1

1 + Ĵ(ω)
= F+(ω)F−(ω), −∞ < ω <∞. (14.22)

The functions F+(ω) and F−(ω) are analytic and nonvanishing in the half-planes Π+ and Π−,
respectively. The symmetry J(x) = J(−x) implies

F+(ω) = F−(−ω), ω ∈ Π+. (14.23)

The normalization condition is

F+(ω) = 1 as |ω| → ∞ in Π+. (14.24)
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The explicit forms of F+ and F− will not be needed. We only note that the relation (14.23)
implies F+(0) = F−(0) and so

F 2
+(0) = 1 + Ĝ(0) = 2

(
1− γ

π

)
. (14.25)

Using the factorization (14.22), Eq. (14.21) can be rewritten in the form

F−1
+ T̂ = F−(ĝ + ĥ). (14.26)

The lhs of this equation is analytic and bounded in Π+. The first term on the rhs has a decompo-
sition

F−ĝ = P+ (F−ĝ) + P− (F−ĝ) , (14.27)

where the projections P±(F−ĝ), analytic in Π±, satisfy the asymptotic conditions P±(F−ĝ) = 0
for |ω| → ∞ in Π±. The second term on the rhs F−ĥ is analytic and bounded in Π−. Thus the
P+ projection of Eq. (14.26) yields

T̂ = F+ P+ (F−ĝ) . (14.28)

From (14.19) we have

ĝ(ω) =
∫ ∞

0

dx eiωx−πx/2γ =
1

−iω + π/2γ
. (14.29)

The decomposition (14.27) corresponds to the subtraction of the residue of ĝ,

F−(ω)ĝ(ω) =
1

−iω + π/2γ
[F−(ω)− F−(−iπ/2γ)] +

F−(−iπ/2γ)
−iω + π/2γ

, (14.30)

so that the first (second) term is analytic in Π− (Π+). The formula (14.28) then implies

T̂ (ω) ≡
∫ ∞

0

dx eiωxT (x) =
1

−iω + π/2γ
F+(ω)F−(−iπ/2γ). (14.31)

Without much effort, we can express

lim
x→0+

T (x) = 2
∫ ∞
−∞

dω
2π
T̂ (ω) (14.32)

in terms of F+ and F−; the factor 2 is due to the discontinuity of T (x) at x = 0. Since T̂ (ω) is
analytic in Π+, the contour integral of T̂ (ω) over a closed infinite semi-circle (sc) in Π+ is zero,
i.e. ∫ ∞

−∞
dω T̂ (ω) = −

∫
sc

dω T̂ (ω) = −iπ lim
|ω|→∞

ωT̂ (ω). (14.33)

Consequently,

lim
x→0+

T (x) = lim
|ω|→∞

(−iω)T̂ (ω) = F−(−iπ/2γ). (14.34)
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A similar analysis can be accomplished for the lower interval λ ∈ (−∞,−b) in the funda-
mental equation (14.5). Due to the symmetry ρ(λ) = ρ(−λ), we find

ρ(−b− x) ∼ ζT (x). (14.35)

The small quantity s (14.12), which measures the deviation of sz from 0 due to the magnetic
field, is expressible as(

1− γ

π

)
s =

∫ ∞
b

dλ ρ(λ) +
∫ −b
−∞

dλ ρ(λ) ∼ 2ζT̂ (0). (14.36)

Hence,

s = 4ζ
γ

π − γ
F+(0)F−(−iπ/2γ). (14.37)

• Antiferromagnet: The formalism is much simpler for ∆ < −1 because the fundamental
equation (14.5) is not singular at b = π. The small parameter is ζ = π − b→ 0+. According to
the fundamental equation, the density ρ can be approximated by

ρ(λ) = ρ0(λ)− ζ [J(λ, π) + J(λ,−π)] ρ0(π) +O(ζ2). (14.38)

From (13.112) we have

ρ0(π) =
Kdn(K, u)

2π2
=

K
√

1− u2

2π2dn(0)
=

K
√

1− u2

2π2
. (14.39)

Moreover, the derivative

ρ′0(π) =
K2dn′(K, u)

2π3
= −K2u2sn(K, u)cn(K, u)

2π3
= 0 (14.40)

due to the equality cn(K, u) = 0. The series expansion of s in ζ follows from Eq. (14.13):

s = 2ζρ0(π)−ζ2ρ0(π) [J(π, π) + J(π,−π) + J(−π, π) + J(−π,−π)]+O(ζ3).(14.41)

14.2 Formula for magnetic field

Our next task is to find the relation between the magnetic field h and the λ-limit b which mini-
mizes the energy (14.2).

We change infinitesimally the range of λ’s, b→ b+ ∆b. The λ-distribution ρ(λ), defined by
Eq. (13.96), is changed to ρ(λ) + ∆ρ(λ). The equation for ∆ρ(λ) reads

∆ρ(λ) +
∫ b

−b
dλ′

θ′(λ− λ′)
2π

∆ρ(λ′) = − 1
2π

[θ′(λ− b) + θ′(λ+ b)] ρ(b)∆b. (14.42)

The change of the energy becomes

∆e0 =
∫ b

−b
dλ e(λ)∆ρ(λ) + 2e(b)ρ(b)∆b+ 2h

[∫ b

−b
dλ∆ρ(λ) + 2ρ(b)∆b

]
, (14.43)
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where we used the symmetries ρ(λ) = ρ(−λ) and e(λ) = e(−λ). Let us consider the function
C(λ) = −∆ρ(λ)/[2ρ(b)∆b]. According to (14.42), it is expressible as the sum

C(λ) = C+(λ) + C−(λ), (14.44)

where C±(λ) obey the integral equations

C±(λ) +
∫ b

−b
dλ′

θ′(λ− λ′)
2π

C±(λ′) =
1

4π
θ′(λ± b). (14.45)

Since the relation θ(λ) = −θ(−λ) implies θ′(λ) = θ′(−λ), it holds C±(λ) = C∓(−λ). Intro-
ducing D(λ) ≡ 2C−(λ), which satisfies the equation

D(λ) +
∫ b

−b
dλ′

θ′(λ− λ′)
2π

D(λ′) =
1

2π
θ′(λ− b), (14.46)

the energy change is expressible as

∆e0

4ρ(b)∆b
=

1
2

[
e(b)−

∫ b

−b
dλ e(λ)D(λ)

]
+ h

[
1−

∫ b

−b
dλD(λ)

]
. (14.47)

Since

e = −2Ck′ = −4πC (ρ+GBρ) , (14.48)

it can be readily shown that

e(b)−
∫ b

−b
dλ e(λ)D(λ) = −4πCρ(b). (14.49)

Defining L(λ) as the solution of the equation

η = L+GBL, (14.50)

we find that

1−
∫ b

−b
dλD(λ) = L(b). (14.51)

The consideration of Eqs. (14.49) and (14.51) in (14.47) gives

∆e0

4ρ(b)∆b
= −2πCρ(b) + hL(b). (14.52)

The extremal condition for the energy minimum is ∆e0/∆b = 0. The magnetic field is thus
given by

h =
2πCρ(b)
L(b)

. (14.53)

The relationship between the field and the magnetization is mediated by the parameter b. This
parameter varies from 0 to b0.
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The case b = 0 is identified with m = 0 (sz = 1/2), i.e. all spins up. For b = 0 we see from
(13.96) that ρ(λ) = k′(λ)/2π and from (14.50) that L(λ) = 1. The corresponding magnetic
field (14.53) has the unique form in the whole region ∆ < 1:

h(b = 0) ≡ hu = Ck′(0) = 1−∆. (14.54)

Above this “upper” magnetic field, the ground state is ferromagnetic with all spins up.
As we know, the case b = b0 corresponds to m = 1/2 (sz = 0). The projection operator B

becomes I at this point. Eq. (14.50) for L0(λ) and its solution read

η = L0 +GL0, L0 = (I + J)η. (14.55)

The function L0(λ) is therefore constant, equal to

L0 = 1 + Ĵ(0) =
1

1 + Ĝ(0)
=
{
π/2(π − γ) for |∆| < 1,

1/2 for ∆ < −1. (14.56)

The analysis of the point b = b0 and of its neighborhood depends on whether |∆| < 1 or
∆ < −1.

• Paramagnet: Since ρ0(∞) = 0, we have trivially from (14.53) that

h(b =∞) ≡ hl = 0 (14.57)

for the “lower” magnetic field in the paramagnetic field.
If b is close to b0 we find the field h(b) to leading order in I − B by using the Wiener-Hopf

technique. From (14.16) and (14.34), ρ(b) can be expressed as

ρ(b) ∼ ζ lim
x→0+

T (x) = ζF−(−iπ/2γ). (14.58)

To determine L(b), we write formally G = I + G − I in (14.50) and multiply both side by
(I + J), to arrive at

L0 = L+ J(I −B)L. (14.59)

In the upper interval λ = b+ x (0 ≤ x <∞), we set

L(b+ x) ∼ L0U(x), (14.60)

where U(x) obeys the Wiener-Hopf integral equation

U(x) +
∫ ∞

0

dxJ(x− x′)U(x′) = 1. (14.61)

Since the kernel is J(x−x′), we can use the factorization (14.22) by the same functions F+ and
F−. Simple computation leads to

Û(ω) =
1

−i(ω + i0)
F+(ω)F−(0). (14.62)

Consequently,

lim
x→0+

U(x) = lim
|ω|→∞

(−iω)Û(ω) = F−(0) = F+(0). (14.63)
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Fig. 14.1. Phase diagram of the XXZ Heisenberg chain in the magnetic field h

From (14.60) we conclude that

L(b) ∼ π

2(π − γ)
F+(0). (14.64)

Substituting this L(b) together with ρ(b) from (14.58) into the formula (14.53), we finally obtain

h = 4ζ(π − γ) sin γ
F−(−iπ/2γ)

F+(0)
. (14.65)

To obtain the relationship between h and s, we divide Eqs. (14.65) and (14.37) and apply the
relation (14.25) for F 2

+(0), with the result

h

s
=
π2

2

(
1− γ

π

) sin γ
γ

. (14.66)

• Antiferromagnet: The lower field is nonzero in the antiferromagnetic region,

h(b = π) ≡ hl(φ) = 4πCρ0(π) =
2 sinhφ

π
K
√

1− u2. (14.67)

For −hl(φ) < h < hl(φ), the magnetic field has no effect on the system which is in the anti-
ferromagnetic phase with sz = 0. The two-fold degenerate ground state is characterized by a
staggered magnetization on the alternating sublattices. A finite magnetic field hl(φ) is required
to destroy the antiferromagnetic order and to make the total magnetization nonzero. The phase
diagram is pictured in Fig.14.1. It has the reflection h → −h symmetry, the ferromagnetic
ground state for negative values of the field corresponds to sz = −1/2, i.e. all spins down. Note
that the magnetic field considered as the function of the magnetization, h(sz), has a discontinuity
at sz = 0, h(±0) = ±hl.
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To determine the small-ζ expansion of h, we find from (14.38) that

ρ(b) = ρ0(π) {1− ζ [J(π, π) + J(π,−π)]}+O(ζ2) (14.68)

and from (14.59) that

L(b) = L0 {1− ζ [J(π, π) + J(π,−π)]}+O(ζ2). (14.69)

Consequently,

h = hl +O(ζ2). (14.70)

14.3 Ground state energy near half-filling

Now we investigate the change of the ground state energy caused by a small magnetic field h.
The ground state energy (14.2) is first rewritten as

e0 = e+Bρ− hs = e+ρ− e+(I −B)ρ− hs. (14.71)

With regard to the fundamental equation (14.5), this expression is equivalent to

e0 + hs = e+ρ0 − e+(I + J)(I −B)ρ = e+ρ0 − ρ+(I −B)(I + J)e. (14.72)

Using the relation e = −2Ck′ and Eq. (13.101), the energy change due to the magnetic field
∆e0 ≡ e0 − e+ρ0 is given by

∆e0 = 4πCρ+(I −B)ρ0 − hs = 4πCρ+
0 (I −B)ρ− hs. (14.73)

• Paramagnet: Taking into account relations (14.15) and (14.16) for the upper interval and the
analogous ones for the lower interval, we write

∆e0 = 4π sin γ ζ22
∫ ∞

0

dx e−πx/2γT (x)− hs = 8π sin γ ζ2T̂ (iπ/2γ)− hs. (14.74)

The formal solution (14.31) tells us that

T̂ (iπ/2γ) =
γ

π
F+(iπ/2γ)F−(−iπ/2γ) =

γ

π
F 2
−(−iπ/2γ). (14.75)

At the same time, the multiplication of (14.37) and (14.65) yields

hs = 16γ sin γ ζ2F 2
−(−iπ/2γ). (14.76)

In view of the last two equations, Eq. (14.74) becomes

∆e0 = −1
2
hs = − 1

π(π − γ)
γ

sin γ
h2. (14.77)

We see that the energy decrease−hs originating from a direct interaction with the magnetic field
is only partially compensated by the amount hs/2 from the spin-spin interaction part. Note that
the explicit forms of the functions F+(ω) and F−(ω) were not needed to the considered order.
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To lowest order, the magnetic susceptibility at zero magnetic field is given by

χ = − ∂2

∂h2
e0 =

2
π(π − γ)

γ

sin γ
. (14.78)

• Antiferromagnet: With respect to equations (14.38), (14.41) and (14.70), the energy change
is

∆e0 = 4πC

(∫ π

b

dλ +
∫ −b
−π

dλ

)
ρ0(λ)ρ(λ)− hs = O(ζ3). (14.79)
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15 XXZ Heisenberg chain: Excited states

15.1 Strings

Although the general analysis of the Bethe ansatz equations is complicated for a finite number
of sites N , it simplifies substantially in the thermodynamic limit N →∞. When the number of
down spins M is finite, the Bethe equations exhibit in the spectral-parameter space the complex
string bound states which play an essential role in the finite-temperature thermodynamics. The
strings are low-lying excitations from the ground state in the ferromagnetic region ∆ ≥ 1. To
explain their origin and nature, we start with the relatively simple case of the isotropic ferromag-
net ∆ = 1, then pass to the ferromagnetic region ∆ > 1 and finally consider the paramagnetic
region |∆| < 1.

• ∆ = 1: In the sector M = 1, the Bethe equation (13.62) reads

eikN =
(
λ+ i/2
λ− i/2

)N
= 1. (15.1)

In the limit N →∞, the wave numbers k cover continuously the whole interval 〈0, 2π) and the
rapidities λ cover the real axis. The excitations of this type are called magnons. The energy of a
magnon with the wave number k is

e(k) = 2(1− cos k). (15.2)

In the sector with M = 2 spin downs, the Bethe equations read(
λ1 + i/2
λ1 − i/2

)N
=
λ1 − λ2 + i
λ1 − λ2 − i

,

(
λ2 + i/2
λ2 − i/2

)N
=
λ2 − λ1 + i
λ2 − λ1 − i

. (15.3)

Let us first study real solutions and denote (λ1−λ2 +i)/(λ1−λ2− i) = exp(iϕ), ϕ ∈ R. Then,

eik1N = eiϕ, eik2N = e−iϕ. (15.4)

In the limit N →∞, k1 and k2 once again cover continuously the interval 〈0, 2π). We have the
state of two independent magnons with the total energy

e(k1) + e(k2) = 4
[
1− cos

(
k1 + k2

2

)
cos
(
k1 − k2

2

)]
. (15.5)

The system of two equations (15.3) exhibits also complex solutions

λ1 = u1 + iv1, λ2 = u2 + iv2, (15.6)

where u’s and v’s are real numbers. Comparing the modulus of lhs and rhs of the first equation
in (15.3), we obtain the condition[

u2
1 + (v1 − 1/2)2

u2
1 + (v1 + 1/2)2

]N
=

(u1 − u2)2 + (v1 − v2 − 1)2

(u1 − u2)2 + (v1 − v2 + 1)2
. (15.7)

Let us assume that v1 > 0. As N → ∞, the lhs of (15.7) goes exponentially to 0, so the rhs
implies

u1 = u2 = u, v1 − v2 = 1. (15.8)
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The multiplication of two equations in (15.3) leads to the condition[
u+ i(v1 + 1/2)
u+ i(v1 − 3/2)

]N
= 1, (15.9)

from which, in the limit N →∞, v1 = 1/2 and u ∈ R. The consequent M = 2 string solution

λ1 = u+
i
2
, λ2 = u− i

2
(15.10)

is the bound state of two magnons with the total momentum

K = k1 + k2 =
1
i

ln
(
u+ i
u− i

)
(15.11)

and the energy

E2 =
1

λ2
1 + 1/4

+
1

λ2
2 + 1/4

=
2

u2 + 1
= 1− cosK. (15.12)

For the given values of wave numbers k1 and k2, this energy is always lower than the sum of
energies for two independent magnons (15.5).

We would like to document that the string (15.10) is in fact the only complex solution for
rapidities which ensures the normalizability of the wavefunction in the limit of an infinite chain.
The wavefunction (13.46) in the M = 2 sector, with the A-coefficients given by (13.64), is
proportional to

a(n1, n2) ∝
[(

λ1 + i/2
λ1 − i/2

)(
λ2 + i/2
λ2 − i/2

)]n1
{

(λ1 − λ2 + i)
(
λ2 + i/2
λ2 − i/2

)n2−n1

−(λ2 − λ1 + i)
(
λ1 + i/2
λ1 − i/2

)n2−n1
}
. (15.13)

Since the site label n1 can be arbitrarily large in the limit N → ∞, the normalizability of
a(n1, n2) requires that∣∣∣∣(λ1 + i/2

λ1 − i/2

)(
λ2 + i/2
λ2 − i/2

)∣∣∣∣ = 1. (15.14)

Under this condition, in order to ensure that the wavefunction is regular at asymptotically large
distances n2 − n1 → ∞, one of the terms on the rhs of (15.13) must disappear. For the present
string solution (15.10) with Im(λ1) > Im(λ2), the condition (15.14) is equivalent to the one∣∣∣∣u+ i

u− i

∣∣∣∣ = 1, (15.15)

i.e. u is real. Consequently,∣∣∣∣λ1 + i/2
λ1 − i/2

∣∣∣∣ =
∣∣∣∣u+ i
u

∣∣∣∣ > 1,
∣∣∣∣λ2 + i/2
λ2 − i/2

∣∣∣∣ =
∣∣∣∣ u

u− i

∣∣∣∣ < 1. (15.16)
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The “dangerous” term on the rhs of Eq. (15.13) is the second one and its prefactor vanishes
for the string (15.10), as it should be. Since the nonzero amplitude of the wavefunction (15.13)
decays to 0 as n2 − n1 →∞, the resulting two-magnon state is the bound state.

In the limit N →∞, the string solutions of the Bethe equations exist in each sector with M
spins down [9, 20]. Let us introduce the notation

zj ≡ eikj =
λj + i/2
λj − i/2

j = 1, 2, . . . ,M (15.17)

and assume that Im(k1) ≥ Im(k2) ≥ . . . ≥ Im(kM ). The wave function (13.46) with M down
spins at site positions n1 < n2 < . . . < nM is then rewritten as

a(n1, n2, . . . , nM ) = (z1z2 . . . zM )n1
∑
P∈SM

sign(P )A(P )

×
M−1∏
j=1

 M∏
l=j+1

zPl

nj+1−nj

, (15.18)

where

A(P ) =
∏
j<l

(λPj − λPl + i). (15.19)

The normalizability condition of the wave function is consistent with the requirement that

|z1z2 . . . zM | = 1 (15.20)

and that A(P ) = 0 if one of the products |
∏M
l=j+1 zPl| (j = 1, 2, . . . ,M − 1) is greater than 1,

i.e.

A(I) 6= 0, A(P ) = 0 if P 6= I . (15.21)

Simultaneously, there must hold∣∣∣∣∣∣
M∏

l=j+1

zl

∣∣∣∣∣∣ < 1 for all j = 1, 2, . . . ,M − 1 (15.22)

in order to ensure that the term P = I vanishes for large distances n2 − n1, n3 − n2, . . .,
nM − nM−1. All these conditions are satisfied only if the rapidities form an M -string,

λj = u+
i
2

(M + 1− 2j), j = 1, 2, . . . ,M. (15.23)

From the condition

|z1z2 . . . zM | =
∣∣∣∣u+ iM/2
u− iM/2

∣∣∣∣ = 1 (15.24)

we conclude that u must be real. Since the inequality

1 >

∣∣∣∣∣∣
M∏

l=j+1

zl

∣∣∣∣∣∣ =
∣∣∣∣u+ i(M − 2j)/2

u− iM/2

∣∣∣∣ (15.25)
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is satisfied for all j = 1, 2, . . . ,M − 1, strings of arbitrary length M are allowed for ∆ = 1.
Each string of type (15.23) is an entity characterized by the total momentum

K =
1
i

M∑
j=1

ln
(
λj + i/2
λj − i/2

)
=

1
i

ln
(
u+ iM/2
u− iM/2

)
(15.26)

and the energy

EM =
M∑
j=1

1
λ2
j + 1/4

=
M

u2 +M2/4
. (15.27)

The dispersion relation for the M -string reads

EM =
2
M

(1− cosK) . (15.28)

• ∆ > 1: The Orbach parametrization for the ferromagnetic region ∆ = coshφ (φ > 0) is
expressed by Eqs. (13.56)-(13.60). Introducing

zj ≡ eikj =
sin 1

2 (λj + iφ)
sin 1

2 (λj − iφ)
j = 1, 2, . . . ,M, (15.29)

the wave function in the sector of M down spins takes the form (15.18) with the coefficients

A(P ) =
∏
j<l

sin
1
2

(λPj − λPl + 2iφ) . (15.30)

The normalizability conditions (15.20) and (15.21) are satisfied only if

λj = u+ iφ (M + 1− 2j) , j = 1, 2, . . . ,M. (15.31)

From the requirement

|z1z2 . . . zM | =
∣∣∣∣ sin 1

2 (u+ iφM)
sin 1

2 (u− iφM)

∣∣∣∣ = 1 (15.32)

we see that u must be real and from the interval (−π, π〉. Since the inequality

1 >

∣∣∣∣∣∣
M∏

l=j+1

zl

∣∣∣∣∣∣ =
sin 1

2 [u+ iφ(M − 2j)]
sin 1

2 (u− iφM)
=

√
cosh[φ(M − 2j)]− cosu

cosh(φM)− cosu
(15.33)

is satisfied for all j = 1, 2, . . . ,M − 1, strings of arbitrary length M are possible in the ferro-
magnetic region.

The total momentum and the energy of the M -string are given by

K =
1
i

M∑
j=1

ln
[

sin 1
2 (λj + iφ)

sin 1
2 (λj − iφ)

]
=

1
i

ln
[

sin 1
2 (u+ iφM)

sin 1
2 (u− iφM)

]
, (15.34)
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EM =
M∑
j=1

2 sinh2 φ

coshφ− cosλj
=

2 sinhφ sinh(φM)
cosh(φM)− cosu

. (15.35)

Since

cosK =
1− cosu cosh(φM)
cosh(φM)− cosu

, (15.36)

the dispersion relation reads

EM =
2 sinhφ

sinh(φM)
[cosh(φM)− cosK] . (15.37)

The lowest energy state in the sector with M down spins is the M string with zero total momen-
tum K = 0 and the energy E0,M = 2 sinhφ tanh(φM/2).

• |∆| < 1: The Orbach parametrization for the paramagnetic region ∆ = − cos γ (0 < γ < π)
is expressed by Eqs. (13.65)–(13.72). Introducing

zj ≡ eikj =
sinh 1

2 (iγ − λj)
sin 1

2 (iγ + λj)
j = 1, 2, . . . ,M, (15.38)

the wave function for M down spins takes the form (15.18) with the coefficients

A(P ) =
∏
j<l

sinh
1
2

(λPj − λPl − 2iγ) . (15.39)

The normalizability conditions (15.20) and (15.21) are satisfied for two kinds of strings: strings
with “parity” v = 1 have the center on the real axis (u ∈ R)

λj = u+ iγ (M + 1− 2j) , j = 1, 2, . . . ,M (15.40)

and strings with parity v = −1 are centered on the iπ axis

λj = u+ iπ + iγ (M + 1− 2j) , j = 1, 2, . . . ,M. (15.41)

For a given value of the anisotropy parameter γ and the parity v, there exist strong restrictions
on possible lengths M of the strings [23, 24]. The normalizability conditions (15.22) for the
v = 1 string

1 >

∣∣∣∣∣∣
M∏

l=j+1

zl

∣∣∣∣∣∣ =
∣∣∣∣ sinh 1

2 [iγ(2j −M)− u]
sinh 1

2 (iγM + u)

∣∣∣∣ =

√
coshu− cos γ(M − 2j)

coshu− cos(γM)
(15.42)

are equivalent to the inequalities

cos(γM) < cos γ(M − 2j) for j = 1, 2, . . . ,M − 1 (v = 1). (15.43)

The normalizability conditions (15.22) for the v = −1 string

1 >

∣∣∣∣∣∣
M∏

l=j+1

zl

∣∣∣∣∣∣ =
∣∣∣∣cosh 1

2 [iγ(2j −M)− u]
cosh 1

2 (iγM + u)

∣∣∣∣ =

√
coshu+ cos γ(M − 2j)

coshu+ cos(γM)
(15.44)
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are equivalent to the inequalities

cos(γM) > cos γ(M − 2j) for j = 1, 2, . . . ,M − 1 (v = −1). (15.45)

The conditions (15.43) and (15.45) can be cast into the one

0 < 2v sin γ(M − j) sin(γj) j = 1, 2, . . .M − 1. (15.46)

The M -string has the total momentum and the energy

K =
1
i

ln
sinh 1

2 [iγM − u− i(1− v)π/2]
sinh 1

2 [iγM + u+ i(1− v)π/2]
, (15.47)

EM = − 2 sin γ sin(γM)
v coshu− cos(γM)

. (15.48)

The dispersion relation reads

EM = − 2 sin γ
sin(γM)

[cos(γM) + cosK] . (15.49)

The momentum is restricted to the region

|K| < π −
(
γM − π

[
γM

π

])
for v = 1 (15.50)

and to the region

π ≥ |K| > π −
(
γM − π

[
γM

π

])
for v = −1. (15.51)

We recall that the described strings determine the thermodynamics, but are not low-lying excita-
tions from the ground state in the paramagnetic region.

• ∆ ≤ −1: Since the energy spectra of the Hamiltonians H(∆) and H(−∆) are related by the
reflection around E = 0, the string solutions for ∆ = −1 and ∆ < −1 are basically the same as
their ferromagnetic counterparts (15.23) and (15.31), respectively, without any restrictions on the
length M of the strings. The fundamental difference is that these are not low-lying excitations
from the ground state in the antiferromagnetic region.

15.2 Response of the ground state to a perturbation

To obtain low-lying excitations from the ground state for ∆ < 1, we study in analogy with Sect.
3.1 the response of the ground state to an external phase perturbation φ(λ). This perturbation
causes the shift of λ’s by small amounts ∆(λ) of order 1/N , λ→ λ+∆(λ). The Bethe equations
(13.55), written in terms of rapidities as follows

Nk(λ) = 2πI(λ) +
∑
λ′

θ(λ− λ′), (15.52)
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are modified by the perturbation to

N [k(λ) + k′(λ)∆(λ)] = 2πI(λ) +
∑
λ′

θ[λ+ ∆(λ)−λ′−∆(λ′)] +φ[λ+ ∆(λ)].(15.53)

Expanding to first order and subtracting Eq. (15.52) leads to

Nk′(λ)∆(λ) =
∑
λ′

θ′(λ− λ′) [∆(λ)−∆(λ′)] + φ(λ). (15.54)

Replacing the summation by an integral and using Eq. (13.96), we obtain

2πNρ(λ)∆(λ) +N

∫ b

−b
dλ′ θ′(λ− λ′)ρ(λ′)∆(λ′) = φ(λ). (15.55)

Defining the function ω(λ) = ρ(λ)∆(λ)N , the response of the ground state to the perturbation
φ is described by the equation

(I +G)ω =
φ

2π
. (15.56)

Its formal solution is

ω = (I + J)
φ

2π
. (15.57)

The change of the momentum due to the perturbation φ(λ), ∆K = K (K0 = 0), is given by
the sum of k’s shifts as follows

K =
∑
λ

k′(λ)∆(λ)→ N

∫ b

−b
dλ ρ(λ)k′(λ)∆(λ)

=
∫ b

−b
dλ k′(λ)ω(λ) ≡ (k′)+ω. (15.58)

Using the formal expression (15.57) for ω and the symmetricity of the kernel I(λ, λ′)+J(λ, λ′),
this expression becomes

K = (k′)+(I + J)
φ

2π
= φ+(I + J)

k′

2π
= φ+ρ. (15.59)

Since

E =
∑
λ

e[λ+ ∆(λ)] ∼
∑
λ

e(λ) +
∑
λ

e′(λ)∆(λ), (15.60)

the change of the ground-state energy is

∆E =
∑
λ

e′(λ)∆(λ)→ N

∫ b

−b
dλ ρ(λ)e′(λ)∆(λ) =

∫ b

−b
dλ e′(λ)ω(λ)

≡ (e′)+ω = (e′)+(I + J)
φ

2π
= φ+(I + J)

e′

2π
. (15.61)
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For |λ| ≤ b, we define the function ε(λ) as the solution of the integral equation

(I +G)ε = e− µ, (15.62)

where the constant µ is chosen in such a way that ε(±b) = 0. The formal solution is

ε = (I + J)e− (I + J)µ. (15.63)

Equation (15.62) can be differentiated with respect to λ. Taking into account that G is a differ-
ence kernel, the integration by parts leads to

(I +G)ε′ = e′, i.e. ε′ = (I + J)e′. (15.64)

In terms of ε, the formula (15.61) can be rewritten as

∆E = φ+ ε′

2π
= −ε+ φ′

2π
. (15.65)

The ground-state energy per site (13.107) can be reexpressed as follows

E0

N
= e+R = e+(I + J)

k′

2π
= (k′)+(I + J)

e

2π
= (k′)+ ε+ (I + J)µ

2π

= (k′)+ ε

2π
+ µη+(I + J)

k′

2π
= (k′)+ ε

2π
+ µ

M

N
. (15.66)

For a chain of N sites and M spins down, E0 = −PN + µM , where P = −(k′)+ε/(2π) is the
pressure and µ is the chemical potential of down spins which are interpreted as “particles”.

15.3 Low-lying excitations

By continuity in ∆ from the free-fermion point ∆ = 0 to the whole region ∆ < 1, the excitations
from the ground state are of type I (“particle excitations”) and of type II (“hole excitations”), see
Sect. 3.3. The basic distribution functions ρ(λ) and ε(λ) are defined by the integral equations
(13.96) and (15.62), respectively, only for |λ| ≤ b. We shall need an analytic continuations of
these integral equations to extend the definition of these functions to all real λ, including |λ| > b:

ρ(λ) =
k′(λ)
2π
−
∫ b

−b
dλ′

θ′(λ− λ′)
2π

ρ(λ′), −∞ < λ <∞; (15.67)

ε(λ) = e(λ)− µ−
∫ b

−b
dλ′

θ′(λ− λ′)
2π

ε(λ′), −∞ < λ <∞. (15.68)

A “particle excitation” is created by taking a particle from λ = b to λp > b (or from −b
to λp < −b), respecting ∆M = 0. This generates in the Bethe equations (15.52) the phase
perturbation

φ(λ) = θ(λ− λp)− θ(λ− b). (15.69)

According to the response equation (15.65), we find

∆E(λp) = e(λp)− e(b)− ε+
φ′

2π
= ε(λp), (15.70)
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i.e. ε(λ) is the excitation energy. Using (15.59), the momentum of the particle excitation is given
by

K(λp) = k(λp)− k(b) + φ+ρ = 2π [f(λp)− f(b)] . (15.71)

Here, f(λ) is the analytic continuation of the state density, defined by the integral Eq. (13.95),
to |λ| > b:

f(λ) =
k(λ)
2π
−
∫ b

−b
dλ′

θ(λ− λ′)
2π

ρ(λ′), −∞ < λ <∞. (15.72)

Creating a “hole excitation” by taking a particle from λh (0 < λh < b) to λ = b, the
perturbation in the Bethe equations becomes φ(λ) = −θ(λ − λh) + θ(λ − b). The energy and
momentum changes are now

∆E(λh) = −e(λh) + e(b)− ε+ φ′

2π
= −ε(λh), (15.73)

K(λh) = −k(λh) + k(b) + φ+ρ = 2π [f(b)− f(λh)] . (15.74)

Since the excited energy changes ∆E(λp) and ∆E(λh) are positive, it must hold that ε(λ) < 0
for |λ| < b and ε(λ) > 0 for |λ| > b.

The group velocity

v(λ) =
d(∆E)

dK
=

∆E′

K ′
=

ε′(λ)
2πρ(λ)

(15.75)

has the same form for both particle and hole types of excitations. The velocity of sound is given
by vs = v(b).

The formalism simplifies substantially for the absolute ground state characterized by m =
1/2 and b = b0. In this case, the unity function η(λ) ≡ 1 is an eigenvector of the integral
equation (I +G)η = [1 + Ĝ(0)]η. Recalling that e(λ) = −2Ck′(λ) and comparing Eq. (15.67)
with Eq. (15.68), we obtain

ε0(λ) = −4πCρ0(λ)− µ

1 + Ĝ(0)
. (15.76)

Since ε0(±b0) = 0, the chemical potential is given by

µ = −4πC[1 + Ĝ(0)]ρ0(b0). (15.77)

• Paramagnet: Since b0 = ∞ and ρ0(b0) = 0, we have µ = 0. In view of the relation
2πf0(λ) = arctan[sinh(πλ/2γ)], the momentum of the hole excitation is

K(λ) =
π

2
− arctan[sinh(πλ/2γ)]. (15.78)

The hole-excitation energy is

∆E(λ) = 4π sin γ ρ0(λ) =
π sin γ
γ

1
cosh(πλ/2γ)

. (15.79)
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Eliminating λ from these equations, we get the dispersion relation

∆E(K) =
π sin γ
γ
| sinK|. (15.80)

The excitation spectrum is gapless. The velocity of sound is

vs =
d∆E(K)

dK

∣∣∣
K=0

=
π sin γ
γ

. (15.81)

The are no particle excitations in the paramagnetic region.

• Isotropic antiferromagnet: Also for this case b0 = ∞ and µ = 0. Since 2πf0(λ) =
arctan[sinh(πλ)], the momentum of the hole excitation is

K(λ) =
π

2
− arctan[sinh(πλ)]. (15.82)

The corresponding energy is

∆E(λ) = 2πρ0(λ) =
π

cosh(πλ)
. (15.83)

The dispersion relation takes the form

∆E(K) = π| sinK| (15.84)

and vs = π.

• Antiferromagnet: Now b0 = π, Ĝ(0) = 1 and the chemical potential is given by

|µ| = µl(φ) = 2hl(φ), (15.85)

where hl (14.67) is the smallest magnetic field which destroys the antiferromagnetic order; the
factor 2 is due to the equivalence µ ↔ 2h. As before, there is a discontinuity of the chemical
potential µ(sz) across sz = 0, µ(±0) = ±µl. The ambiguity of the chemical potential in the
M = N/2 sector causes some problems in interpreting the above excitation formalism. In order
to remain in this sector, we add a hole and a particle which repeal each other (since they belong
to different parts of the doubly degenerate antiferromagnetic ground state). This is manifested
by the presence of an energy gap µl between the ground state and low-lying excitations. For
example, in the case of hole-type excitations, the formula (15.73) should be modified as follows

∆E(λ) = µl − ε(λ) =
µl
2

[
1 +

1√
1− u2

dn
(

Kλ
π
, u

)]
. (15.86)

Since 2πf0(λ) = arcsin[sn(Kλ/π, u)], the momentum of the hole excitation is given by

K(λ) =
π

2
− arcsin

[
sn
(

Kλ
π
, u

)]
. (15.87)

The dispersion relation thus reads

∆E(K) =
µl
2

(
1 +
√

1− u2 cos2K√
1− u2

)
. (15.88)

The velocity of sound is vs = 0, i.e. the medium is incompressible. In the phase diagram in Fig.
14.1, the ground state has an energy gap in white (ferromagnetic and antiferromagnetic) regions
and the spectrum becomes gapless in the shaded region.
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16 XXX Heisenberg chain: Thermodynamics with strings

16.1 Thermodynamic Bethe ansatz

In this part, we derive the finite-temperature thermodynamics for the isotropic Heisenberg chain,
defined by the Hamiltonian

H = −J
2

N∑
n=1

(~σn · ~σn+1 − 1)− h
N∑
n=1

σzn, ~σN+1 ≡ ~σ1. (16.1)

Here, J > 0 (J < 0) corresponds to the ferromagnetic (antiferromagnetic) case and the magnetic
field h ≥ 0. The derivation of the thermodynamics is based on the string hypothesis and the
particle-hole formalism [25–28], developed in Sects. 4 and 11.

Following the Orbach parametrization (13.58)–(13.61), the energy eigenvalues in the sector
with M ≤ N/2 spins down are given by

E = J
M∑
α=1

1
λ2
α + 1/4

− h(N − 2M), (16.2)

where the rapidities {λα}Mα=1 satisfy the set of M coupled Bethe equations(
λα + i/2
λα − i/2

)N
= −

M∏
β=1

λα − λβ + i
λα − λβ − i

, α = 1, 2, . . . ,M. (16.3)

Introducing the symbol

en(λ) ≡ λ+ in/2
λ− in/2

, (16.4)

the Bethe equations can be written in a compact form

[e1(λα)]N = −
M∏
β=1

e2(λα − λβ). (16.5)

In the thermodynamic limitN →∞, rapidity solutions organize themselves into a collection
of strings of various lengths n = 1, 2, . . .. Like in (15.23), the rapidities of a given string are
distributed equidistantly and symmetrically around the real axis. A particular solution of the
Bethe equations (16.5) is characterized by a set of non-negative integers {Mn}∞n=1, where Mn is
the number of strings of length n. Since the total number of rapidities is equal toM , the numbers
of strings are constrained by

∑∞
n=1 nMn = M . For each n, there are Mn distinct real centers

λnα (α = 1, . . . ,Mn). The string is the set of complex rapidities

λ(n,r)
α = λnα + i

(
n+ 1

2
− r
)
, r = 1, 2, . . . , n. (16.6)

In the string format, the Bethe equations (16.5) take the form[
e1(λ(n,r)

α )
]N

= −
∞∏
m=1

Mm∏
β=1

m∏
s=1

e2(λ(n,r)
α − λ(m,s)

β ). (16.7)
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Applying the product operator
∏n
r=1 to both sides of Eq. (16.7), we obtain a coupled set of

equations for the real centers λnα of the strings:

[en(λnα)]N = (−1)n
∞∏
m=1

Mm∏
β=1

Enm(λnα − λmβ ), (16.8)

where

Enm(λ) ≡ e|n−m|(λ)e2
|n−m|+2(λ) · · · e2

n+m−2(λ)en+m(λ). (16.9)

To derive this result, we used the relations [25, 26]

n∏
r=1

em(λ(n,r)
α ) =

min(n,m)∏
l=1

en+m+1−2l(λnα) (16.10)

and
n∏
r=1

m∏
s=1

e2(λ(n,r)
α − λ(m,s)

β ) = Enm(λnα − λmβ ). (16.11)

For any real λ and n > 0, it holds

ln en(λ) = i [π − θn(λ)] (mod 2πi), θn(λ) ≡ 2 arctan
(

2λ
n

)
. (16.12)

Taking the logarithm of Eq. (16.8), we obtain

Nθn(λnα) = 2πInα +
∞∑
m=1

Mm∑
β=1

Θnm(λnα − λmβ ), (16.13)

where

Θnm(λ) = (1− δnm)θ|n−m|(λ) + 2θ|n−m|+2(λ)
+ · · ·+ 2θn+m−2(λ) + θn+m(λ). (16.14)

Here, Inα are integers or half-integers constrained by −Inmax ≤ Inα ≤ Inmax; the value of the
bound Inmax is found from the condition

λnα →∞ for Inα = Inmax +
1
2
, (16.15)

i.e., the string momentum has to reach its maximum value just one elementary step beyond Inmax.
Since θn(λ→∞) = π (n > 0), this condition is equivalent to the constraint

|Inα | ≤
1
2

(
N − 1−

∞∑
m=1

tnmMm

)
, tnm = 2 min(n,m)− δnm. (16.16)

For every set of admissible quantum numbers {Inα}, such that Inα 6= Inβ for α 6= β, there exists
a unique Bethe set of rapidities {λnα}, no two of which are identical. Such solutions are called
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“particle rapidities”. Counting the number of rapidity sets for all M = 0, 1, . . . , N [25], the total
number of multiplet states was found to be 2N , so they constitute a complete set.

Now we adopt the “hole” concept. Given a set of particle quantum numbers {Inα}, we de-
fine the set of the quantum numbers {Ĩnα} to be the admissible values from the interval (16.16)
which are omitted in {Inα}. The corresponding hole rapidities {λ̃nα} satisfy the counterpart of Eq.
(16.13):

Nθn(λ̃nα) = 2πĨnα +
∞∑
m=1

Mm∑
β=1

Θnm(λ̃nα − λmβ ). (16.17)

In terms of the function

hn(λ) ≡ 1
2π

θn(λ)− 1
N

∞∑
m=1

Mm∑
β=1

Θnm(λ− λmβ )

 , (16.18)

the particle and hole quantum numbers are given by

Inα = Nhn(λnα), Ĩnα = Nhn(λ̃nα). (16.19)

In the thermodynamic limit N → ∞, the distributions of the real n-string particle centers
{λnα} and hole centers {λ̃nα} are characterized by the respective densities ρn(λ) and ρ̃n(λ), such
that

Nρn(λ)dλ = number of λn’s in dλ,

Nρ̃n(λ)dλ = number of λ̃n’s in dλ.
(16.20)

There exists a constraint between the particle and hole densities. According to Eq. (16.19),

N [ρn(λ) + ρ̃n(λ)] dλ = number of λn’s and λ̃n’s in dλ
= N [hn(λ+ dλ)− hn(λ)] = Ndhn. (16.21)

Consequently,

ρn(λ) + ρ̃n(λ) =
dhn

dλ
. (16.22)

Combining this relation with Eq. (16.18), the replacement

Mm∑
β=1

· · · → N

∫ ∞
−∞

dλ′ ρm(λ′) · · · (16.23)

leads to

ρn(λ) + ρ̃n(λ) =
1

2π
dθn(λ)

dλ
−
∞∑
m=1

∫ ∞
−∞

dλ′
1

2π
dΘnm(λ− λ′)

dλ
ρm(λ′). (16.24)

This set of equations can be rewritten in the form

ρ̃n +
∞∑
m=1

Anm ∗ ρm = an (n = 1, 2, . . .), (16.25)
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where

an(λ) =
1

2π
dθn(λ)

dλ
=

1
2π

n

λ2 + (n2/4)
(16.26)

and

Anm(λ) = δ(λ)δnm +
1

2π
dΘnm(λ)

dλ
= δ(λ)δnm + (1− δnm)a|n−m|(λ)

+2a|n−m|+2(λ) + · · ·+ 2an+m−2(λ) + an+m(λ). (16.27)

The Fourier transforms of an(λ) and Anm(λ) read

ân(ω) = e−n|ω|/2, Ânm(ω) =
(

coth
|ω|
2

)[
e−|n−m||ω|/2 − e−(n+m)|ω|/2

]
. (16.28)

We introduce the “inverse” function A−1
nm(λ) by

∞∑
n′=1

(
A−1
nn′ ∗An′m

)
(λ) = δ(λ)δnm. (16.29)

Using the convolution theorem, we get

Â−1
nm(ω) = δnm − ŝ(ω) (δn,m+1 + δn,m−1) , (16.30)

where

ŝ(ω) =
1

2 cosh(ω/2)
, s(λ) =

1
2 cosh(πλ)

. (16.31)

The energy of an n-string for J = 1 is given in Eq. (15.27). The total energy per site for any
J is thus given by

E

N
= J

1
N

∞∑
n=1

Mn∑
α=1

n

(λnα)2 + (n2/4)
− h

(
1− 2

N

∞∑
n=1

nMn

)

= −h+
∞∑
n=1

∫ ∞
−∞

dλ (2πJan(λ) + 2nh) ρn(λ). (16.32)

The total entropy per site is

S

N
=
∞∑
n=1

∫ ∞
−∞

dλ {(ρn + ρ̃n) ln(ρn + ρ̃n)− ρn ln ρn − ρ̃n ln ρ̃n} . (16.33)

The equilibrium state of the isotropic Heisenberg chain at temperature T is described by the
equilibrium particle densities {ρeq} and hole densities {ρ̃eq}. Introducing the free energy

F = E − TS, (16.34)

the densities are determined by the variational condition

δF
∣∣∣
ρ=ρeq,ρ̃=ρ̃eq

= 0, δF = δE − TδS. (16.35)
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The functional variations of the energy and of the entropy with respect to {ρn} and {ρ̃n} are
given by

1
N
δE =

∞∑
n=1

∫ ∞
−∞

dλ {2πJan(λ) + 2nh} δρn(λ), (16.36)

1
N
δS =

∞∑
n=1

∫ ∞
−∞

dλ
{

ln
(

1 +
ρ̃n
ρn

)
δρn + ln

(
1 +

ρn
ρ̃n

)
δρ̃n

}
. (16.37)

The constraint (16.25) implies

δρ̃n = −
∞∑
m=1

Anm ∗ δρm. (16.38)

Using the symmetricity of the A-matrix, the condition (16.35) yields

ln(1 + ηn) =
1
T

(2πJan + 2nh) +
∞∑
m=1

Anm ∗ ln
(
1 + η−1

m

)
, n = 1, 2, . . . , (16.39)

where ηn(λ) = ρ̃eqn (λ)/ρeqn (λ). Forming the convolution of this equation with the inverse func-
tion A−1, noting that ân(ω) = ŝ(ω)Ân,1(ω) and using the relations

∞∑
n=1

(A−1
n′n ∗ an)(λ) = s(λ)δn′1,

∞∑
n=1

A−1
n′n ∗ n = 0, (16.40)

we finally arrive at an infinite sequence of TBA equations

ln η1(λ) =
2πJ
T

s(λ) +
∫ ∞
−∞

dλ′ s(λ− λ′) ln [1 + η2(λ′)] , (16.41)

ln ηn(λ) =
∫ ∞
−∞

dλ′ s(λ− λ′) ln {[1 + ηn−1(λ′)] [1 + ηn+1(λ′)]} , n ≥ 2. (16.42)

These equations are not complete since they do not contain the field h. Let us consider the
leading n → ∞ asymptotic of the generic Eq. (16.39). Since limn→∞ an(λ) → 0, the leading
asymptotic is

lim
n→∞

ln ηn(λ)
n

=
2h
T
. (16.43)

Note that the TBA functions possess the symmetry ηn(λ) = ηn(−λ).
In order to express the free energy per site f = F/N in terms of the TBA functions {ηn(λ)},

we use Eqs. (16.32)–(16.34) to write

f = −h+
∞∑
n=1

∫ ∞
−∞

dλ
{

[2πJan(λ) + 2nh] ρn(λ)

−Tρn(λ) ln[1 + ηn(λ)]− T ρ̃n(λ) ln[1 + η−1
n (λ)]

}
. (16.44)



XXX Heisenberg chain: Thermodynamics with strings 205

Eliminating ρ̃n via the relation (16.25), the coefficient of ρn vanishes by virtue of the TBA
equations (16.39) and we obtain

f = −h− T
∞∑
n=1

∫ ∞
−∞

dλ an(λ) ln
[
1 + η−1

n (λ)
]
. (16.45)

This formula can be further simplified. The n = 1 case of Eq. (16.39) reads

ln(1 + η1) =
1
T

(2πJa1 + 2h) +
∞∑
m=1

(am−1 + am+1) ∗ ln
(
1 + η−1

m

)
. (16.46)

Applying on this equation the operator
∫∞
−∞ dλ s(λ) and using the relation

ŝ(ω) [ân−1(ω) + ân+1(ω)] = ân(ω), (16.47)

we have∫ ∞
−∞

dλ s(λ) ln[1 + η1(λ)] =
2πJ
T

∫ ∞
−∞

dλ s(λ)a1(λ) +
h

T

+
∞∑
n=1

∫ ∞
−∞

dλ an(λ) ln
[
1 + η−1

n (λ)
]
. (16.48)

The expression (16.45) is thus equivalent to the formula

f = 2J ln 2− T
∫ ∞
−∞

dλ s(λ) ln [1 + η1(λ)] , (16.49)

which contains only the lowest TBA function.
At a given nonzero (finite) temperature, the TBA equations can be solved only numerically;

for a review, see the monography [30]. However, they can also serve as a systematic tool for
developing the high-temperature and low-temperature expansions of the free energy.

16.2 High-temperature expansion

For the isotropic XXX Heisenberg chain, the high-temperature expansion of the free energy per
site can be performed directly from the definition

f

T
= − 1

N
ln Tr exp(−H/T ). (16.50)

The isotropic Hamiltonian (16.1) can be decomposed as follows H = H0 + JH1, where the
operators

H0 = −h
N∑
n=1

σzn, H1 = −1
2

N∑
n=1

(~σn · ~σn+1 − 1) (16.51)

commute with one another, [H0, H1] = 0. Thus the exponential of H can be expanded as a
power series in J/T ,

exp(−H/T ) = exp(−H0/T )

[
1− J

T

H1

1!
+
(
J

T

)2
H2

1

2!
− · · ·

]
. (16.52)
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This implies the standard cumulant expansion for the free energy

f

T
= − 1

N
ln Tr exp(−H0/T ) +

J

T

〈H1〉
1!N

−
(
J

T

)2 〈H2
1 〉 − 〈H1〉2

2!N
+ · · · , (16.53)

where the symbol

〈· · ·〉 ≡ Tr · · · exp(−H0/T )
Tr exp(−H0/T )

(16.54)

denotes the equilibrium average with the Hamiltonian H0. The evaluation of the mean values
〈H1〉, 〈H2

1 〉, etc. is easy. In this way, we obtain the systematic J/T expansion of the free energy
at fixed h/T ,

f

T
= − ln [2 cosh(h/T )] +

J

T

1
2 cosh2(h/T )

− J2

8T 2

[
3 + 2 tanh2(h/T )− 3 tanh4(h/T )

]
+O

[(
J

T

)3
]
. (16.55)

In what follows, we rederive this expansion by using the TBA equations (16.41)–(16.43),
complemented by the formula (16.49) for the free energy.

In lowest expansion order J/T → 0, the functions ηn(λ) are independent of λ. Since∫∞
−∞ dλ s(λ) = 1/2, the TBA equations become

η2
n = (1 + ηn−1) (1 + ηn+1) , n ≥ 2; (16.56)

η2
1 = 1 + η2, lim

n→∞

ln ηn
n

=
2h
T
. (16.57)

The general solution of the second-order difference equation (16.56) is

ηn =
[
azn − (azn)−1

z − z−1

]2

− 1. (16.58)

The parameters a and z are determined by the “boundary” conditions (16.57) as follows: a = z,
z = exp(h/T ). Hence

ηn =
[

sinh[(n+ 1)h/T ]
sinh(h/T )

]2

− 1. (16.59)

The substitution of η1 = [2 cosh(h/T )]2−1 into the representation (16.49) reproduces correctly
the leading term of the expansion (16.55).

At higher expansion orders in J/T , we formally write ln[1 + ηn(λ)] as the expansion

ln [1 + ηn(λ)] = ln
(

αn
αn − 1

)
+
∞∑
m=1

(
J

T

)m
f (m)
n (λ), (16.60)

αn =
sinh2 [(n+ 1)h/T ]

sinh(nh/T ) sinh [(n+ 2)h/T ]
. (16.61)



XXX Heisenberg chain: Thermodynamics with strings 207

The corresponding expansion of ln ηn(λ), to first order in J/T , takes the form

ln ηn(λ) = ln
(

1
αn − 1

)
+
J

T
αnf

(1)
n (λ) +O

[(
J

T

)2
]
. (16.62)

Substituting the above expansions into the TBA equations and considering only terms of order
J/T results in a chain of coupled linear integral equations

αnf
(1)
n = s ∗

[
f

(1)
n−1 + f

(1)
n+1

]
, n ≥ 2; (16.63)

α1f
(1)
1 = 2πs+ s ∗ f (1)

2 , lim
n→∞

αnf
(1)
n

n
= 0. (16.64)

The Fourier transform of Eq. (16.63) takes the form(
eω/2 + e−ω/2

)
αnf̂

(1)
n (ω) = f̂

(1)
n−1(ω) + f̂

(1)
n+1(ω). (16.65)

The solution of this difference equation, respecting the boundary conditions (16.64), is

f̂ (1)
n (ω) =

π

cosh(h/T )

{
sinh[(n+ 2)h/T ]
sinh[(n+ 1)h/T ]

e−n|ω|/2

− sinh(nh/T )
sinh[(n+ 1)h/T ]

e−(n+2)|ω|/2
}
. (16.66)

The inverse Fourier transform of this formula, taken at n = 1, gives

f
(1)
1 (λ) =

π

cosh(h/T )

{
sinh(3h/T )
sinh(2h/T )

a1(λ)− sinh(h/T )
sinh(2h/T )

a3(λ)
}
. (16.67)

f
(1)
1 (λ) is the coefficient of the term of order J/T in the expansion (16.60). The substitution of

this term into (16.49) reproduces correctly the second term of the high-temperature expansion
(16.55).

Higher-order terms in J/T can be calculated analogously by solving the corresponding sets
of linear integral equations for f (2)

n (λ), f (3)
n (λ), etc., with inhomogeneous terms induced by

lower-order coefficients f (l)
n .

16.3 Low-temperature expansion

Since in the limit T → 0 the functions ln ηn diverge as 1/T , we introduce the “energy functions”

εn(λ) = T ln ηn(λ), ε(λ) = ε(−λ). (16.68)

The TBA sequence of integral equations for {εn} reads

ε1 = 2πJs+ T s ∗ ln
(

1 + eε2/T
)
, (16.69)

εn = T s ∗ ln
[(

1 + eεn−1/T
)(

1 + eεn+1/T
)]
, n ≥ 2 (16.70)
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and the asymptotic condition is

lim
n→∞

εn
n

= 2h. (16.71)

The free energy per site is expressible in two ways

f(T, h) = −h− T
∞∑
n=1

∫ ∞
−∞

dλ an(λ) ln
(

1 + e−εn(λ)/T
)

= 2J ln 2− T
∫ ∞
−∞

dλ s(λ) ln
(

1 + eε1(λ)/T
)
. (16.72)

16.3.1 Ferromagnet

For J = +1, it follows from the form of the TBA equations that

εn(λ) ≥ 0 for all n ≥ 1. (16.73)

Due to this positivity property, the logarithmic terms in the TBA equations can be expanded for
small T as follows

T ln
(

1 + eε/T
)

= ε+ T e−ε/T + · · · for ε ≥ 0. (16.74)

• T = 0: In leading T → 0 order, εn = ε
(0)
n , the TBA equations become

ε
(0)
1 = 2πs+ s ∗ ε(0)

2 , (16.75)

ε(0)
n = s ∗

(
ε
(0)
n−1 + ε

(0)
n+1

)
n ≥ 2, (16.76)

with limn→∞ ε
(0)
n (λ)/n = 2h. This set of equations is solvable by using the Fourier-transform

method. The final result is

ε(0)
n (λ) = 2πan(λ) + 2nh, n = 1, 2, . . . . (16.77)

The free energy at zero temperature is found to be

f(0, h) = 2 ln 2−
∫ ∞
−∞

dλ s(λ)ε(0)
1 (λ) = −h. (16.78)

This is nothing but the energy of the ferromagnetic ground-state with all spins up.

• Small T : In next order, we substitute εn = ε
(0)
n + ε

(1)
n into the TBA equations and expand the

logarithms up to the order indicated in (16.74). The contribution of the exponentials e−ε
(0)
n /T

with n ≥ 2 is negligible in comparison with the one of e−ε
(0)
1 /T as T → 0. Taking into account

the leading TBA equations (16.75) and (16.76), we get

ε
(1)
1 = s ∗ ε(1)

2 (16.79)

ε
(1)
2 = s ∗

(
ε
(1)
1 + ε

(1)
3

)
+ T s ∗ e−ε

(0)
1 /T (16.80)

ε(1)
n = s ∗

(
ε
(1)
n−1 + ε

(1)
n+1

)
for n ≥ 3. (16.81)
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The asymptotic condition is limn→∞ ε
(1)
n /n = 0. The Fourier-transform method yields

ε(1)
n = T (an−1 + an+1) ∗ e−ε

(0)
1 /T for n ≥ 2, (16.82)

ε
(1)
1 = T a2 ∗ e−ε

(0)
1 /T . (16.83)

The difference of the free energies at small T and at T = 0 is given by

f(T, h)− f(0, h) = −
∫ ∞
−∞

dλ s(λ)
[
ε
(1)
1 (λ) + T e−ε

(0)
1 /T

]
. (16.84)

Inserting here ε(1)
1 and using the equality ŝ(ω)â2(ω) = â1(ω)− ŝ(ω), we obtain

f(T, h)− f(0, h) = −T e−2h/T

∫ ∞
−∞

dλ a1(λ)e−2πa1(λ)/T . (16.85)

The substitution λ = λ′/
√
T permits us to evaluate the T → 0 limit of the integral, with the

result

f(T, h)− f(0, h) = −T
3/2

2
√
π

e−2h/T . (16.86)

16.3.2 Antiferromagnet

For J = −1, from the form of the TBA equations we conclude that

εn(λ) ≥ 0 for n ≥ 2. (16.87)

The small-T expansion (16.74) is applied for these functions. The ε1(λ) can have either sign.
Let us introduce the notation

ε+1 ≡
1
2

(ε1 + |ε1|) , ε−1 ≡
1
2

(ε1 − |ε1|) . (16.88)

In the small-T limit, we have

lim
T→0

T ln
(

1 + e±ε1/T
)

= ±ε±1 . (16.89)

• T = 0: In leading T → 0 order, εn = ε
(0)
n , the TBA equations read

ε
(0)
1 = −2πs+ s ∗ ε(0)

2 , (16.90)

ε
(0)
2 = s ∗ ε(0)+

1 + s ∗ ε(0)
3 , (16.91)

ε(0)
n = s ∗

(
ε
(0)
n−1 + ε

(0)
n+1

)
n ≥ 3. (16.92)

The solution can be deduced with the aid of Fourier transforms:

ε(0)
n = an−1 ∗ ε(0)+

1 + 2(n− 1)h n ≥ 2. (16.93)

The equation which determines ε(0)
1 is

ε
(0)
1 = −2πs+ h+ (s ∗ a1) ∗ ε(0)+

1 . (16.94)
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An alternative equation can be derived by substituting here ε(0)+
1 = ε

(0)
1 − ε

(0)−
1 and then Fourier

solving for ε(0)
1 in terms of ε(0)−

1 ,

ε
(0)
1 = −2πa1 + 2h− a2 ∗ ε(0)−

1 . (16.95)

For h = 0, since s(λ) is positive for all λ, we have ε(0)+
1 = 0 and Eq. (16.94) has the solution

ε
(0)
1 (λ) = −2πs(λ) = − π

cosh(πλ)
. (16.96)

This is just the excitation energy function ε(λ) for the isotropic antiferromagnet, i.e. minus
∆E(λ) given by (15.83). The free energy can be calculated in two ways, see Eq. (16.72).
Firstly,

f(0, 0) = −h− T
∫ ∞
−∞

dλ a1(λ) ln
(

1 + e−ε1(λ)/T
)

=
∫ ∞
−∞

dλ a1(λ)ε(0)−
1 (λ) = −2 ln 2. (16.97)

This is the ground-state energy of the isotropic antiferromagnet in zero field. Secondly,

f(0, 0) = −2 ln 2−
∫ ∞
−∞

dλ s(λ)ε(0)+
1 (λ) = −2 ln 2. (16.98)

When h > 0 and simultaneously 2h − 2πa1(0) < 0, i.e. h < 2, ε(0)
1 (λ) is a monotonically

increasing function for λ ≥ 0. As follows from Eq. (16.95), it is negative for λ = 0 and, because
a1(∞) and a2(∞) are zero, goes to 2h for λ → ∞. Thus ε(0)

1 (λ) has just two zeros at ±b
(b > 0). Eq. (16.95) can be rewritten as

ε
(0)
1 (λ) = −2πa1(λ) + 2h−

∫ b

−b
dλ′ a2(λ− λ′)ε(0)

1 (λ′). (16.99)

Since a1 and a2, given by (16.26), are simultaneously expressible as

a1(λ) =
k′(λ)
2π

and a2(λ) =
θ′(λ)
2π

, (16.100)

this equation is identical to the previous one (15.68) for the zero-temperature ε(λ).

• Small T : As before, the contribution of the exponentials e−ε
(0)
n /T with n ≥ 2 is negligible in

next order. Comparing the original n = 2 equation (16.70) with the linearized one (16.91) it is
clear that we should substitute ε(0)+

1 → T ln(1 + e−ε1/T ) in Eq. (16.94), to obtain

ε1 = −2πs+ h+ T (s ∗ a1) ∗ ln(1 + eε1/T ). (16.101)

This equation can be straightforwardly transformed to

ε1 = −2πa1 + 2h+ T a2 ∗ ln(1 + e−ε1/T ). (16.102)

If T � 4− 2h, ε1(λ) has two zeros at±bT (b0 = b) also for finite T ; ε1(λ) < 0 for |λ| < bT
and ε1(λ) > 0 for |λ| > bT .
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We write ε1 = ε
(0)
1 + ε

(1)
1 in (16.102) and subtract the linearized equation (16.99). The result

is

ε
(1)
1 (λ) +

∫ b

−b
dλ′ a2(λ− λ′)ε(1)

1 (λ′) =

[∫ b

bT

+
∫ −bT
−b

]
dλ′ a2(λ− λ′)ε1(λ′)

+I(λ), (16.103)

where the inhomogeneous term I(λ) is given by

I = T a2 ∗ ln
(

1 + e−|ε1|/T
)
. (16.104)

For T → 0, the dominant contribution to this integral comes from the neighborhood of the zeros
of ε1. Expanding ε1(λ) around bT ,

ε1(λ) = ε′1(bT )(λ− bT ) +O
(
(λ− bT )2

)
, (16.105)

and analogously around −bT , the leading T -dependence of the inhomogeneous term I(λ) be-
comes

I(λ) =
T 2

ε′1(bT )
[a2(λ− bT ) + a2(λ+ bT )]

∫ ∞
−∞

du ln
(

1 + e−|u|
)

=
π2T 2

6ε′1(bT )
[a2(λ− bT ) + a2(λ+ bT )] . (16.106)

Since ε1(±bT ) = 0, the first two terms on the rhs of Eq. (16.103) are of order (b− bT )2. The lhs
of the same equation is expected to be of order b− bT , so b− bT = O(T 2). Neglecting terms of
order O(T 3), Eq. (16.103) can be rewritten as

ε
(1)
1 (λ) +

∫ b

−b
dλ′ a2(λ− λ′)ε(1)

1 (λ′) =
π2T 2

6ε(0)′

1 (b)
[a2(λ− bT ) + a2(λ+ bT )] . (16.107)

With regard to the definition (16.100) of a2(λ), we conclude that

ε
(1)
1 (λ) =

π2T 2

3ε(0)′

1 (b)
C(λ), (16.108)

where C(λ) = C+(λ) + C−(λ) with C±(λ) obeying the integral equations (14.43).
We need the explicit expression for ε(0)′

1 (b). Differentiating first (16.99) with respect to λ
and then applying an integration by parts, we have

ε
(0)′

1 (λ) = 2πV (λ), (16.109)

where V (λ) satisfies the integral equation

V (λ) +
∫ b

−b
dλ′ a2(λ− λ′)V (λ′) = − d

dλ
a1(λ). (16.110)
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To evaluate the free energy per site, we prefer to use the formula (16.97) which gives

f(T, h)− f(0, h) = −T
∫ ∞
−∞

dλ a1(λ) ln
(

1 + e−|ε1(λ)|/T
)

+
∫ bT

−bT
dλ a1(λ)ε1(λ)−

∫ b

−b
dλ a1(λ)ε(0)

1 (λ)

= − π2T 2

3ε(0)′

1 (b)

[
a1(b)−

∫ b

−b
dλ a1(λ)C(λ)

]
. (16.111)

Taking advantage of the symmetries a1(λ) = a1(−λ) and C±(λ) = C∓(−λ), in terms of
D(λ) = 2C−(λ) we have

∫ b
−b dλ a1(λ)C(λ) =

∫ b
−b dλ a1(λ)D(λ). Setting in Eq. (14.47)

e(λ) = −k′(λ) = −2πa1(λ), the bracket on the rhs of (16.111) is equal to ρ(b), where the
density of λ’s is defined in (13.96), i.e.

ρ(λ) +
∫ b

−b
dλ′ a2(λ− λ′)ρ(λ′) = a1(λ). (16.112)

We conclude that

f(T, h) = f(0, h)− πT 2

6
ρ(b)
V (b)

+O(T 3). (16.113)

The ratio ρ(b)/V (b) can be easily evaluated in the limit h→ 0 (b→∞) with the aid of the
Wiener-Hopf technique, see Sect. 14. In particular, we find

ρ(b) ∼ ζ lim
x→0+

T (x), V (b) ∼ πζ lim
x→0+

T (x), (16.114)

which implies that ρ(b)/V (b) = 1/π in the limit b→∞. The free energy per site is given by

f(T, 0) = −2 ln 2− T 2

6
+ o(T 2). (16.115)

To lowest order in temperature, the specific heat at h = 0 is given by

C = −T ∂2

∂T 2
f(T, h = 0) =

1
3
T. (16.116)

According to the conformal invariance theory [31, 32], the free energy per site of a critical
quantum chain exhibits the small-T expansion

f = e0 −
πc

6vs
T 2 + · · · , (16.117)

where vs is the sound velocity and c is the central charge. For the isotropic antiferromagnet, we
have vs = π and therefore c = 1.
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17 XXZ Heisenberg chain: Thermodynamics without strings

The above derivation of the thermodynamics of the isotropic Heisenberg chain was based on the
string hypothesis which was criticized many times. The result is an infinite sequence of coupled
TBA integral equations. From among alternative approaches which avoid the manipulations with
strings, we present the “quantum transfer matrix” (QTM) method [33–39], It is based on a lattice
path-integral representation of the partition function for the one-dimensional Heisenberg model
and leads to a finite set of non-linear integral equations.

17.1 Quantum transfer matrix

We studied in Sect. 8.3 the classical two-dimensional six-vertex model with vertex weights a(λ),
b(λ) and c(λ). The corresponding S-matrix S12(λ1, λ2) ≡ S12(λ1 − λ2) is defined by

S12 =
a+ b

2
+
c

2
(σx1σ

x
2 + σy1σ

y
2 ) +

a− b
2
σz1σ

z
2 . (17.1)

Within the trigonometric parametrization of vertex weights (8.27), the S-matrix satisfies the YBE

S12(λ1, λ2)S13(λ1, λ3)S23(λ2, λ3) = S23(λ2, λ3)S13(λ1, λ3)S12(λ1, λ2). (17.2)

In the paramagnetic region, we shall use the standard notation η ≡ γ. Rescaling λ by γ/2 and
dividing all vertex weights by sin(γ + γλ/2), we have

a(λ) = 1, b(λ) =
sin(γλ/2)

sin(γ + γλ/2)
, c(λ) =

sin γ
sin(γ + γλ/2)

. (17.3)

With these vertex weights, the S-matrix satisfies the initial condition S(λ = 0) = P , where P is
the permutation operator. In algebraic manipulations which follows, we shall need anticlockwise
and clockwise 90o rotations of the S-matrix in the edge-state configuration space around the
vertex:

S̄σ1σ2
σ′1σ
′
2
(λ1, λ2) = S

σ2σ
′
1

σ′2σ1
(λ2, λ1), S̃σ1σ2

σ′1σ
′
2
(λ1, λ2) = S

σ′2σ1

σ2σ′1
(λ2, λ1). (17.4)

For a row of L sites, the row-to-row transfer matrix reads

T (λ)σ1...σL
σ′1...σ

′
L

=
∑
{γ}

L∏
l=1

Sσlγlσ′
l
γl+1

(λ). (17.5)

T (λ = 0) reduces to the right-shift operator TR. The Hamiltonian of the XXZ Heisenberg chain
with the anisotropy parameter |∆| < 1,

H =
1
2

L∑
l=1

[(
σxl σ

x
l+1 + σyl σ

y
l+1

)
+ cos γ

(
σzl σ

z
l+1 − 1

)]
≡ −1

2

L∑
l=1

[(
σxl σ

x
l+1 + σyl σ

y
l+1

)
− cos γ

(
σzl σ

z
l+1 − 1

)]
, (17.6)



214 Introduction to Integrable Many-Body Systems II

is obtained as the logarithmic derivative of the transfer matrix at λ = 0,

H = 2
sin γ
γ

d
dλ

ln T (λ)
∣∣∣
λ=0

. (17.7)

Thus,

T (λ) = TR

[
1 +

γ

2 sin γ
λH +O(λ2)

]
. (17.8)

The “adjoint” transfer matrix T̄ (λ), defined as a product of S̄(−λ) in analogy with (17.5), has
the small-λ expansion

T̄ (λ) = TL

[
1 +

γ

2 sin γ
λH +O(λ2)

]
, (17.9)

where TL = T−1
R is the left-shift operator.

Due to the periodic boundary conditions, the right- and left-shift operators commute with the
Hamiltonian, [TR, H] = [TL, H] = 0. The Trotter identity allows us to express the Boltzmann
factor in the following way

e−βH = lim
N→∞

[
T (−τ)T̄ (−τ)

]N/2
, τ = 2

sin γ
γ

β

N
, (17.10)

where the large number N is even. The partition function ZL of the XXZ Heisenberg chain of L
sites is thus expressible as follows

ZL = lim
N→∞

ZL,N , ZL,N = Tr
[
T (−τ)T̄ (−τ)

]N/2
. (17.11)

ZL,N can be interpreted as the partition function of a staggered vertex model with N/2 + N/2
alternating rows corresponding to the transfer matrices T (−τ) and T̄ (−τ). We are allowed to
change the transfer direction from rows to columns. The column-to-column “quantum transfer
matrix” TQTM is the λ = 0 member of the family of matrices:

TQTM(λ)σ1...σN
σ′1...σ

′
N

=
∑
{γ}

N/2∏
n=1

S
σ2n−1γ2n−1

σ′2n−1γ2n
(λ− τ)S̃σ2nγ2n

σ′2nγ2n+1
(λ+ τ). (17.12)

Since ZL,N = Tr(TQTM)L, the free energy per site f of the infinite quantum spin chain is given
by

− βf = lim
L→∞

1
L

lnZL = lim
N→∞

ln tmax(0), (17.13)

where tmax(0) is the largest eigenvalue of TQTM(0). In formulating this result, we interchanged
the limits L → ∞ and N → ∞ which is possible due to the theorems presented in [40, 41].
All other eigenvalues of TQTM(0) are separated from tmax(0) by a finite gap, even in the limit
N →∞. Note that tmax(0) depends on the parameter τ ∝ 1/N , so the treatment of theN →∞
limit is a delicate issue.
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In the presence of an external magnetic field h coupled to 2Sz =
∑
l σ

z
l , the corresponding

two-dimensional vertex model is modified by a horizontal seam along which each link variable
σ = ± carries the Boltzmann weight e±βh. Passing to the column transfer direction, the link
variable is identified with the auxiliary ξ-space of the monodromy matrix (7.44). In the repre-
sentation of the monodromy matrix (8.31), the presence of the magnetic field is reflected through
the additional Boltzmann factors in eβhA(λ) and e−βhD(λ). An alternative approach [34,35] is
to consider the twisted relation between spin operators after a translation by N sites:

σxn+N ± iσyn+N = e±βh [σxn ± iσyn] , σzn+N = σzn. (17.14)

17.2 Bethe ansatz equations

We want to diagonalize the quantum transfer matrix (17.12). It is composed of alternating S
and S̃ matrices, with differently shifted spectral parameter λ. The introduction of the spectral
parameter λ in (17.12), although physically interesting is only the λ = 0 case, is related to the
existence of a commuting family of the quantum transfer matrices generated by this λ. The
commutation property will be proven in what follows by using the QISM explained in Sect. 7.3.

It is easy to derive the analogy of the YBE (17.2) involving the S̃-matrix:

S12(λ1, λ2)S̃32(λ3, λ2)S̃31(λ3, λ1) = S̃31(λ3, λ1)S̃32(λ3, λ2)S12(λ1, λ2). (17.15)

We see the important fact that the order of multiplication of two S or S̃ matrices is interchanged
by the same intertwiner S12(λ1, λ2).

The quantum transfer matrix (17.12) is equal to the trace in the auxiliary ξ-space of the
monodromy matrix Tξ(λ), TQTM(λ) = Trξ Tξ(λ). The monodromy matrix is expressible as the
product of N Lax operators

Tξ(λ) =
N/2∏
n=1

[
Lξ,2n−1(λ− τ)L̃ξ,2n(λ+ τ)

]
. (17.16)

Here, the Lax operators at odd sites, corresponding to S, are given in the auxiliary 2× 2 ξ-space
by

L2n−1(λ) =
(
w0(λ)σ0

2n−1 + w3(λ)σz2n−1 w1(λ)σ−2n−1

w1(λ)σ+
2n−1 w0(λ)σ0

2n−1 − w3(λ)σz2n−1

)
(17.17)

and the ones at even sites, corresponding to S̃, by

L̃2n(λ) =
(
w0(−λ)σ0

2n + w3(−λ)σz2n w1(−λ)σ+
2n

w1(−λ)σ−2n w0(−λ)σ0
2n − w3(−λ)σz2n

)
; (17.18)

the parameters w0, w1 and w3 are related to the vertex weights as follows w0 = (a + b)/2,
w1 = c/2 and w3 = (a− b)/2. The YBEs (17.2) and (17.15) are equivalent to the relations

R(λ− µ) [L2n−1(λ− τ)⊗ L2n−1(µ− τ)] = [L2n−1(µ− τ)⊗ L2n−1(λ− τ)]
×R(λ− µ), (17.19)

R(λ− µ)
[
L̃2n(λ+ τ)⊗ L̃2n(µ+ τ)

]
=

[
L̃2n(µ+ τ)⊗ L̃2n(λ+ τ)

]
×R(λ− µ), (17.20)
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respectively. Here, the ordinary and tensor products are taken in the extended auxiliary (ξ, η)
space and R(λ) = PS(λ). Since the two kinds of Lax operators are interchanged by the same
intertwiner, the monodromy matrix (17.16) satisfies the permutation relation

R(λ− µ) [T (λ)⊗ T (µ)] = [T (µ)⊗ T (λ)]R(λ− µ). (17.21)

This immediately leads to the commutation formula [TQTM(λ), TQTM(µ)] = 0 valid for arbi-
trary λ and µ.

Having the commuting family of the quantum transfer matrices, we proceed in analogy with
Sect. 8.3. Using the representation (8.31) of the monodromy matrix in the ξ-space in the per-
mutation relation (17.21), the permutation relations between the operators {A,B,C,D} are the
same as in Eqs. (8.34)–(8.36). The action of the Lax operator at an odd site on the spin-up vector
e+ at the same site implies the triangle form

L2n−1(λ− τ)e+
2n−1 =

(
a(λ− τ) [· · ·]

0 b(λ− τ)

)
e+

2n−1. (17.22)

The action of the Lax operator at an even site (17.18) on the spin-up vector e+ leads to a different
triangle form, with 0 above the diagonal. This is the problem since only diagonal elements of
products of the same-type triangle matrices are available explicitly. The solution of the problem
is simple. We have to choose the generating vector Ω as the tensor product of alternating spin-up
vectors e+ =

(
1
0

)
on odd sites and spin-down vectors e− =

(
0
1

)
on even sites,

Ω = e+︸︷︷︸
1

⊗ e−︸︷︷︸
2

⊗ · · · ⊗ e+︸︷︷︸
N−1

⊗ e−︸︷︷︸
N

. (17.23)

The action of the Lax operator at an even site on the spin-down vector e− implies the “correct”
triangle form

L2n(λ+ τ)e−2n =
(
b(−λ− τ) [· · ·]

0 a(−λ− τ)

)
e−2n. (17.24)

The monodromy matrix thus acts on the generating vector Ω as follows

T (λ)Ω =
(

[a(λ− τ)b(−λ− τ)]N/2 [· · ·]
0 [b(λ− τ)a(−λ− τ)]N/2

)
Ω. (17.25)

We recall that if the magnetic field h 6= 0, the diagonal ++ and−− elements must be multiplied
by the Boltzmann factors eβh and e−βh, respectively.

The diagonalization procedure follows the standard QISM and we only write down the final
results. In the sector with M spins down, the eigenvalues of the quantum transfer matrix are
given by

tQTM(λ) = α(λ)
M∏
j=1

a(λj − λ)
b(λj − λ)

+ β(λ)
M∏
j=1

a(λ− λj)
b(λ− λj)

. (17.26)

Here, the abbreviations α(λ) and β(λ) are used for the products

α(λ) = eβh[a(λ− τ)b(−λ− τ)]N/2, β(λ) = e−βh[b(λ− τ)a(−λ− τ)]N/2 (17.27)
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and {λj}Mj=1 are the distinct roots of the Bethe ansatz equations

α(λj)
β(λj)

=
M∏
k=1

(k 6=j)

[
a(λj − λk)
a(λk − λj)

b(λk − λj)
b(λj − λk)

]
j = 1, . . . ,M. (17.28)

Since b(0) = 0, the same set of equations is obtained from (17.26) by requiring that t(λ) be
analytic in the whole complex plane, i.e.

Res t(λ = λj) = 0 for all j = 1, . . . ,M . (17.29)

We shall rewrite the above equations into a form which is more convenient for a general
analysis. We replace λ→ iλ and λj → iλj . Introducing the odd function

r(λ) = sinh(γλ/2), r(λ) = −r(−λ), (17.30)

we express b(iλ) = r(λ)/r(λ− 2i) and

α(iλ) = eβh
[

r(λ− iτ)
r(λ− iτ + 2i)

]N/2
, β(iλ) = e−βh

[
r(λ+ iτ)

r(λ+ iτ − 2i)

]N/2
. (17.31)

For the eigenvalues Λ(λ) ≡ t(iλ), the expression (17.26) can be rewritten as

Λ(λ) =
Λ1(λ) + Λ2(λ)

[r(λ− i(2− τ))r(λ+ i(2− τ))]N/2
(17.32)

with

Λ1(λ) = eβhφ(λ− i)
q(λ+ 2i)
q(λ)

, (17.33)

Λ2(λ) = e−βhφ(λ+ i)
q(λ− 2i)
q(λ)

. (17.34)

Here,

φ(λ) = [r(λ− i(1− τ))r(λ+ i(1− τ))]N/2 (17.35)

and the function q(λ) is defined in terms of the as-yet-undetermined Bethe ansatz roots as follows

q(λ) =
M∏
j=1

r(λ− λj). (17.36)

The condition which fixes the values of {λj} is now the analyticity of Λ1 + Λ2 in the complex
λ-plane. Defining the function

a(λ) ≡ Λ1(λ)
Λ2(λ)

= e2βhφ(λ− i)q(λ+ 2i)
φ(λ+ i)q(λ− 2i)

, (17.37)

the analyticity requirement is equivalent to the condition

a(λj) = −1 j = 1, . . . ,M. (17.38)
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λj+2i

λj-2i

i(2-τ)

-i(2-τ)

iτ
- iτ

Fig. 17.1. The function a(λ): Distribution of poles (crosses) and zeros (open circles)

17.3 Non-linear integral equations for eigenvalues

In the study of the antiferromagnetic XXZ Hamiltonian, the absolute ground state was deter-
mined as the unique solution of the Bethe ansatz equations in the sector sz = 0 (M = N/2) with
all N/2 roots being real. The corresponding quantum numbers were distributed equidistantly
and symmetrically about the origin; as a consequence, the Bethe ansatz roots appeared in con-
jugate couples λj = −λN/2−j+1. The largest eigenvalue Λ(0) of the quantum transfer matrix
is determined by an analogous antiferromagnetic state. For h 6= 0, the Bethe ansatz roots are
complex and possess the symmetries

λj(h) = λ̄j(−h), λj(h) = −λ̄N/2−j+1(h). (17.39)

As h→ 0, the Bethe ansatz roots go continuously to the real values which possess the symmetry
of the antiferromagnetic ground state

λj = −λN/2−j+1 j = 1, . . . , N/2. (17.40)

For this specific case we have q(−λ) = (−1)N/2q(λ) and φ(λ) = φ(−λ), so the a-function
(17.37) satisfies the equality

a(−λ) =
1

a(λ)
. (17.41)

There is a fundamental difference between the Bethe ansatz equations in the study of the
eigenvalues of the XXZ Hamiltonian and the present ones. The ratio of φ-functions in (17.37)
possesses zeros and poles which converge to the real axis in the limitN →∞. Consequently, the
distribution of the Bethe ansatz roots is discrete (roots have spacing of order larger thanO(1/N))
for λ > 0 and exhibits an accumulation point at the origin λ = 0. Therefore the roots cannot be
described by a continuous density as before.

The function a(λ) possesses poles and zeros depicted in Fig. 17.1 by crosses and open circles,
respectively. For each Bethe ansatz root λj , there exists a simple pole at λj + 2i and a simple
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λj+2i

λj

-i(2-τ)

-iτ
ä
Γ

Fig. 17.2. The function A(λ): Distribution of poles (crosses) and zeros (open circles correspond to the
Bethe ansatz roots, open squares correspond to additional hole-type zeros)

zero at λj − 2i. There are additional poles and zeros at ±iτ and ±i(2 − τ)) which are of order
N/2.

We define an auxiliary function A(λ) by

A(λ) = 1 + a(λ). (17.42)

The poles of this function are equivalent to those of a(λ). There are two kinds of zeros, see
Fig. 17.2. Due to the equality (17.38), one set is composed of N/2 Bethe ansatz roots (open
circles); the positions of these zeros are directly related to those occurring in the function a(λ).
There are additional N zeros (open squares) far away from the real axis, their imaginary parts
being close to ±2i. They are referred to as hole-type solutions of the Bethe ansatz equations and
their importance will be evident later.

Our strategy is to derive an integral equation which relates ln a(λ) and ln A(λ). Let us
consider the function

g(λ) =
1

2πi

∮
Γ

dλ′
d

dλ
ln r(λ− λ′) ln A(λ′), (17.43)

where the anticlockwise integration in the complex plane is along the closed contour Γ surround-
ing the real axis, the Bethe ansatz roots {λj} and the point−iτ (see Fig. 17.2). The numberN/2
of zeros of A(λ) inside this contour is identical to order of pole at −iτ . The integrand ln A(λ′)
has therefore zero winding number on the contour and the integral is well defined. Integration by
parts and the application of the Chauchy theorem to (17.43) yields

g(λ) =
N/2∑
j=1

ln r(λ− λj)−
N

2
ln r(λ+ iτ) = ln

q(λ)
r(λ+ iτ)N/2

. (17.44)

Combining this equation with the definition (17.37) of a(λ), we obtain

ln a(λ) = 2βh+
N

2
ln
(
r(λ− iτ)r(λ+ 2i + iτ)
r(λ+ iτ)r(λ+ 2i− iτ)

)
+ g(λ+ 2i)− g(λ− 2i). (17.45)
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To simplify the notation, we denote the logarithmic derivative of r(λ) as

d(λ) ≡ d
dλ

ln r(λ) =
γ

2
coth

(γ
2
λ
)
. (17.46)

This function satisfies important equalities

d(λ+ ni) + d(λ− ni) = γ
sinh(γλ)

cosh(γλ)− cos(nγ)
(17.47)

d(λ+ ni)− d(λ− ni) = −iγ
sin(nγ)

cosh(γλ)− cos(nγ)
, (17.48)

valid for any real n. According to the representation (17.43), the integration kernel κ of the
difference g(λ− 2i)− g(λ+ 2i) is given by

κ(λ) =
1

2πi
d

dλ
ln
r(λ− 2i)
r(λ+ 2i)

=
1

2πi
[d(λ− 2i)− d(λ+ 2i)]

=
γ

2π
sin(2γ)

cosh(γλ)− cos(2γ)
. (17.49)

The Trotter number N enters only the first term on the rhs of (17.45), which has the well defined
N →∞ limit:

lim
N→∞

N

2
ln
(
r(λ− iτ)r(λ+ 2i + iτ)
r(λ+ iτ)r(λ+ 2i− iτ)

)
∼ N iτ

[
d

dλ
ln r(λ+ 2i)− d

dλ
ln r(λ)

]
= iβ2

sin γ
γ

[d(λ+ 2i)− d(λ)] . (17.50)

Thus in the limit N →∞ Eq. (17.45) becomes the non-linear integral equation (NLIE) for a(λ)

ln a(λ) = 2βh+ βε0(λ+ i)−
∮

Γ

dλ′ κ(λ− λ′) ln A(λ′), (17.51)

where ε0(λ) is defined by

ε0(λ) = i2
sin γ
γ

[d(λ+ i)− d(λ− i)] = 2
sin2 γ

cosh(γλ)− cos γ
. (17.52)

There are other variants of this NLIE which are more convenient for low temperatures. Let
us consider the function a(λ) on the axes Im(λ) = ±1, the integration contour Γ is chosen just
below and above these axes. Writing Eq. (17.51) for λ = x− i (x ∈ R), we make the following
“particle-hole” transformation on the lower part of Γ:

a(x− i) =
1

ā(x− i)
, ln A(x− i) = ln Ā(x− i)− ln ā(x− i), (17.53)

where Ā = 1 + ā. The resulting equation contains convolution integrals with ln A, ln Ā and
ā. It can be formally solved for b̄(x) ≡ ā(x − i) in the Fourier space by using the convolution



XXZ Heisenberg chain: Thermodynamics without strings 221

theorem. Then, Eq. (17.51) taken at λ = x + i can be solved for b(x) ≡ a(x + i). The final
coupled set of NLIEs for the new functions reads

ln b(x) = − sin γ
γ

πβ

cosh(πx/2)
+

πβh

π − γ
+ p ∗ ln B(x)− p ∗ ln B̄(x+ 2i), (17.54)

ln b̄(x) = − sin γ
γ

πβ

cosh(πx/2)
− πβh

π − γ
+ p ∗ ln B̄(x)− p ∗ ln B(x− 2i), (17.55)

where

B(x) = 1 + b(x), B̄(x) = 1 + b̄(x), (17.56)

the function p(x) is given by

p(x) =
∫ ∞
−∞

dk
2π

sinh
(
π
γ − 2

)
k

2 cosh k sinh
(
π
γ − 1

)
k

eikx (17.57)

and the integration paths are well defined just below or above real axis.
For h = 0 with all N/2 “antiferromagnetic” Bethe roots being real numbers, the above

procedure can be applied to the integration contour Γ whose lower part goes just below and the
upper part just above the real axis. The result is the single NLIE of the form

− i ln a(x) = − sin γ
γ

πβ

sinh(πx/2)
+ 2

∫ ∞
−∞

dx′ p(x− x′)Im ln[1 + a(x′ + i0)]. (17.58)

17.4 Representations of the free energy

The next step is to express the QTM eigenvalues Λ(λ) in terms of the quantities determined in
the previous part by integral equations.

We start with the derivation of an integral expression for Λ(λ) in terms of a(λ) or A(λ),
satisfying the integral equation (17.51). As follows from Eqs. (17.32)–(17.38), the sum Λ1(λ) +
Λ2(λ) is an analytic function of λ, periodic along the imaginary axis with period 2πi/γ and with
exponential asymptotic along the real axis. This is why we can write

Λ1(λ) + Λ2(λ) = C

N∏
j=1

r(λ− µj), (17.59)

where C is a constant and {µj}Nj=1 are the hole-type zeros of A(λ) = 1 + a(λ), a(λ) =
Λ1(λ)/Λ2(λ). These zeros, which are not the Bethe ansatz roots, are localized close to the
±2i axes and depicted by open squares in Fig.17.2.

As before, let Γ be a closed contour which surrounds the real axis, the Bethe ansatz roots {λj}
and the point −iτ , but not the hole-type zeros {µj}. For λ close to the real axis, the application
of the Cauchy theorem yields

1
2πi

∮
Γ

dλ′ d(λ− λ′ − 2i)
d

dλ′
ln A(λ′) =

N/2∑
j=1

d(λ− λj − 2i)− N

2
d(λ+ iτ − 2i).(17.60)
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We also have

1
2πi

∮
Γ

dλ′ d(λ− λ′) d
dλ′

ln A(λ′) =
N/2∑
j=1

d(λ− λj − 2i)−
N∑
j=1

d(λ− µj)

+
N

2
d(λ+ 2i− iτ). (17.61)

Here, we replaced the contour Γ by a new contour Γ̃, such that its upper part is the lower part of
Γ and its lower part is the upper part of Γ shifted by the period −2πi/γ, reversing orientation.
The surrounded singularities of the integrand are poles and zeros of the A-function: There are
N/2 simple poles at λj+2i−2πi/γ,N zeros at µj (one half with and the other half without shift
−2πi/γ) and one pole of order N/2 at iτ − 2i. Subtracting Eqs. (17.60) and (17.61), integrating
by parts and finally integrating with respect to λ, we obtain

1
2πi

∮
Γ

dλ′ [d(λ− λ′)− d(λ− λ′ − 2i)] ln A(λ′)

= ln
[r(λ− i(2− τ))r(λ+ i(2− τ))]N/2∏

j r(λ− µj)
+ const. (17.62)

In view of (17.32) and (17.59), this relation gives

ln Λ(λ) = −βh− 1
2πi

∮
Γ

dλ′ [d(λ− λ′)− d(λ− λ′ − 2i)] ln A(λ′). (17.63)

The constant is fixed by the asymptotic formulas Λ(∞) = exp(βh) + exp(−βh) and A(∞) =
1 + exp(2βh).

We proceed with the derivation of an integral expression for Λ in terms of B(x) and B̄(x),
given by Eqs. (17.54)–(17.57). Λ1 can be eliminated from (17.32) via Λ1(λ) = a(λ)Λ2(λ).
Taking λ = x+ i with x ∈ R, we get

Λ(x+ i) = e−βh
[
r(x+ i(1 + τ))
r(x− i(1− τ))

]N/2
q(x− i)
q(x+ i)

B(x). (17.64)

Similarly, Λ2 can be eliminated from (17.32) via Λ2(λ) = λ1(λ)/a(λ). Taking λ = x − i, we
get

Λ(x− i) = eβh
[
r(x− i(1 + τ))
r(x+ i(1− τ))

]N/2
q(x+ i)
q(x− i)

B̄(x). (17.65)

The multiplication of Eqs. (17.64) and (17.65) results in the “inversion identity”

Λ(x+ i)Λ(x− i) =
[
r(x+ i(1 + τ))r(x− i(1 + τ))
r(x− i(1− τ))r(x+ i(1− τ))

]N/2
B(x)B̄(x) (17.66)

which no longer involves the q-function. Taking the logarithm of this equation, we find in the
limit N →∞ that

ln Λ(x+ i) + ln Λ(x− i) = βε0(x) + ln[B(x)B̄(x)]. (17.67)
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The solution, obtained by the Fourier transform, at x = 0 reads

ln Λ(0) = −βe0 +
∫ ∞
−∞

dx
1

4 cosh(πx/2)
ln[B(x)B̄(x)], (17.68)

where e0 is the ground state energy per site of the XXZ chain.
For the special case h = 0, the formula for Λ(0) in terms of a(x), satisfying (17.58), can be

derived in a similar way. The final result is

ln Λ(0) = −βe0 − Im
∫ ∞
−∞

dx
1

2 sinh[π(x+ i0)/2]
ln[1 + a(x+ i0)]. (17.69)

17.5 High-temperature expansion

We construct the high-temperature asymptotic expansion of the free energy f by using the func-
tion a(λ), which satisfies the integral equation (17.51).

For β → 0, the function a(λ) becomes independent of λ since the integrand in (17.51) has
no poles in the area surrounded by the contour Γ. Inserting the result a(λ) ∼ 1 into the integral
in (17.63) leads to the correct high-temperature entropy −βf = ln Λ(0) ∼ ln 2.

For small values of β, we search a(λ) as the series expansion

a(λ) = e−iz(λ), z(λ) = βz1(λ) + β2z2(λ) + · · · . (17.70)

With regard to the expansion formula

ln
[
1 + e−iz

]
= ln 2− iβ

2
z1 −

β2

2

[
iz2 +

1
4
z2

1

]
+ · · · , (17.71)

the integral equation (17.51) transforms itself into an infinite sequence of coupled equations for
the expansion functions {zj(λ)}:

z1(λ) = 2ih+ iε0(λ+ i)− 1
2

∮
Γ

dλ′ κ(λ− λ′)z1(λ′), (17.72)

z2(λ) = − 1
2i

∮
Γ

dλ′ κ(λ− λ′)
[
iz2(λ′) +

1
4
z2

1(λ′)
]
, (17.73)

etc. The second term on the rhs of (17.72) causes that z1(λ) has a simple pole at the origin,

z1(λ) ∼
λ→0

2 sin γ
γ

1
λ
. (17.74)

This is the only pole of z1(λ) inside the contour Γ and the application of the residue theorem
implies

z1(λ) = 2ih− sin γ
[

sinh(γλ)
cosh(γλ)− cos(2γ)

− coth
(
γλ

2

)]
. (17.75)

It turns out that in the whole infinite sequence of equations only the poles at λ = 0 contribute
to the contour integral over Γ. All the zj(λ) with j ≥ 2 are analytic there. This makes the
procedure of finding the expansion functions simply recursive. For z2(λ), we find

z2(λ) = −2
sin γ sin(2γ)

cosh(γλ)− cos(2γ)

[
2ih+ sin γ

sinh(γλ)
cosh(γλ)− cos(2γ)

]
, (17.76)
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etc.
Finally, we insert the expansion functions {zj(λ)} into the formula (17.63) and apply once

again the residuum theorem for simple and higher-order poles at the origin generated by powers
of z1(λ). The high-temperature expansion of the free energy is obtained in form

− βf = ln 2 +
β

2
cos γ +

β2

4

[(
1 +

1
2

cos2 γ

)
+ 2h2

]
+O(β3). (17.77)

For γ = 0, this expansion is in agreement with the antiferromagnetic J = −1 high-temperature
result (16.55) derived directly from the cumulant expansion of the free energy.

17.6 Low-temperature expansion

For h = 0, we construct the low-temperature expansion of the free energy f by using the function
a(x), satisfying the NLIE (17.58).

In the low-temperature limit β → ∞, the leading corrections to the ground state quantities
come from absolute values of x larger than

ξ =
2
π

ln
(

2πβ
sin γ
γ

)
. (17.78)

It is convenient to introduce the scaling functions

aξ(x) ≡ a(x+ ξ), ãξ(x) ≡ a(−x− ξ). (17.79)

They approach well-defined functions in the low-temperature limit which satisfy

− i ln aξ(x) = −e−πx/2 + 2
∫ ∞
−∞

dx′ p(x− x′)Im ln [1 + aξ(x′ + i0)] , (17.80)

−i ln ãξ(x) = e−πx/2 + 2
∫ ∞
−∞

dx′ p(x− x′)Im ln [1 + ãξ(x′ − i0)] . (17.81)

The h = 0 equality (17.41) implies aξ(x) = 1/ãξ(x). In view of the above integral equations,
this is equivalent to the relation

Im ln [1 + aξ(x+ i0)] = −Im ln [1 + ãξ(x− i0)] (17.82)

valid for any x ∈ (−∞,∞).
In the integral of the eigenvalue representation (17.69), we make the substitutions x = x′+ ξ

for x > 0 and x = −x′ − ξ for x < 0, to obtain∫ ∞
−∞

dx
1

2 sinh[π(x+ i0)/2]
ln[1 + a(x+ i0)]

=
∫ ∞
−ξ

dx′
1

2 sinh[π(x′ + ξ + i0)/2]
ln[1 + aξ(x′ + i0)]

−
∫ ∞
−ξ

dx′
1

2 sinh[π(x′ + ξ − i0)/2]
ln[1 + ãξ(x′ − i0)]. (17.83)
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With respect to the equality (17.82), in the limit β →∞ we find

ln Λ(0) = −βe0(γ)− γ

πβ sin γ
Im
∫ ∞
−∞

dx e−πx/2 ln[1 + aξ(x+ i0)] +O(β−2).(17.84)

The integral in (17.84) can be evaluated by using the following lemma [35, 36]. Let F (x)
satisfies the NLIE

− i lnF (x) = ϕ(x) + 2
∫ x2

x1

dy p(x− y)Im ln [1 + F (y + i0)] , (17.85)

where ϕ(x) is a real function for real x and x1, x2 are real numbers. Then the following equality
holds

Im
∫ x2

x1

dxϕ′(x) ln[1 + F (x+ i0)] =
1
2

Re [l(F1)− l(F2)]

+
1
2

[ϕ(x2)Im ln(1 + F2)− ϕ(x1)Im ln(1 + F1)]

+
∫ x2

x1

dy [p(x2 − y)Im ln(1 + F2)− p(x1 − y)Im ln(1 + F1)]

×Im ln [1 + F (y + i0)] , (17.86)

where F1,2 ≡ F (x1,2) and l(t) is a dilogarithm function

l(t) ≡
∫ t

0

du
[

ln(1 + u)
u

− lnu
1 + u

]
. (17.87)

The proof of the lemma starts from the relation

l(F2)− l(F1) =
∫ F2

F1

du
[

ln(1 + u)
u

− lnu
1 + u

]
=

∫ x2

x1

dx
{

ln [1 + F (x+ i0)]
d

dx
lnF (x)

− lnF (x)
d

dx
ln [1 + F (x+ i0)]

}
, (17.88)

obtained by using the substitution u = F (x). We substitute lnF (x) and d lnF (x)/dx by using
Eq. (17.85) and its derivative, respectively. The result is

l(F2)− l(F1) = i
∫ x2

x1

dx
{
ϕ′(x) ln [1 + F (x+ i0)]− ϕ(x)

d
dx

ln [1 + F (x+ i0)]
}

+2i
∫ x2

x1

dx
∫ x2

x1

dy
{

ln [1 + F (x+ i0)] p′(x− y)

−p(x− y)
d

dx
ln [1 + F (x+ i0)]

}
Im ln [1 + F (y + i0)] . (17.89)
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The second terms in the simple and double integrals are integrated by parts. Taking then real part
of both sides, the double integral∫ x2

x1

dx
∫ x2

x1

dy p′(x− y)Im ln [1 + F (x+ i0)] Im ln [1 + F (y + i0)]

vanishes due to the relation p′(x− y) = −p′(y − x). We end up with (17.86).

Choosing F (x) = aξ(x), from (17.80) we have ϕ(x) = − exp(−πx/2) and x1 = −∞,
x2 =∞. Since F (x1) = 0, F (x2) = 0, the formula (17.86) fixes the value of the integral

Im
∫ ∞
−∞

dx e−πx/2 ln [1 + aξ(x+ i0)] = − 2
π

1
2
l(1) = −π

6
. (17.90)

From (17.84) we finally obtain

f(T, h = 0) = e0(γ)− γ

6 sin γ
T 2 + o(T 2). (17.91)

For the isotropic antiferromagnet γ → 0, we recover the previous result (16.115). At low tem-
perature and h = 0, the specific heat is given by

C =
γ

3 sin γ
T + o(T ). (17.92)

According to (15.81), the velocity of sound for the paramagnet with ∆ = − cos γ is vs =
π sin γ/γ. Comparing (17.91) with the general formula (16.117) confirms that the central charge
c = 1 in the whole paramagnetic region −1 ≤ ∆ < 1.
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18 XYZ Heisenberg chain

The XYZ Heisenberg spin chain was solved by Baxter [14, 15]. Using the link between the
XYZ spin chain and the eight-vertex model, he obtained a system of transcendental equations for
the eigenvalues of the transfer matrix for the eight-vertex model. The ground-state energy of the
XYZ chain was evaluated. A generalization of the Bethe ansatz method enabled him to determine
also the eigenvectors and eigenvalues of the XYZ model [42–44]. Low-lying excitations were
studied in Ref. [45,46]. The thermodynamics was derived in [25,28] by using strings and in [38]
without using strings. The method was put into the framework of the QISM in [47].

Here, we review the application of the QISM and describe the ground state of the XYZ model.
Low-lying excitations and the thermodynamics can be derived in analogy with the XXZ model,
a complication is the manipulation with elliptic functions.

18.1 Diagonalization of the transfer matrix for eight-vertex model

In Sect. 7, we derived the scattering S-matrix which is a two-state solution of the YBE with the
elliptic parametrization of entries:

S(λ) =


a(λ) 0 0 d(λ)

0 b(λ) c(λ) 0
0 c(λ) b(λ) 0

d(λ) 0 0 a(λ)

 ,

a(λ) = Θ(η)Θ(λ)H(λ+ η)
b(λ) = Θ(η)H(λ)Θ(λ+ η)
c(λ) = H(η)Θ(λ)Θ(λ+ η)
d(λ) = H(η)H(λ)H(λ+ η)

, (18.1)

where H(λ) ≡ H(λ, k) and Θ(λ) ≡ Θ(λ, k) are the Jacobi theta functions with modulus k.
It has been shown in Sect. 8 that the commuting families of transfer matrices constructed from
these S-matrix elements correspond to local statistical weights of certain two-dimensional clas-
sical vertex models. When the modulus k tends to zero, we have the six-vertex model with the
trigonometric parametrization of elements and d(λ) = 0. The diagonalization of the trigonomet-
ric transfer matrix was straightforward within the QISM.

If d(λ) 6= 0 (the eight-vertex model), the Hilbert subspace of the spin chain with constant
Sztot is not invariant with respect to the Hamiltonian. This prevents from a simple extention of
the analytic Bethe ansatz from the six-vertex model. The present strategy of the algebraic Bethe
ansatz is to make the texture of the S-matrix (18.1) similar to that of the six-vertex model by a
change of the usual spin up and down orthonormal basis e+ =

(
1
0

)
, e− =

(
0
1

)
. It is surprising

that this problem admits an infinite number of solutions. Let us introduce the covariant vector
basis which depends on the spectral parameter λ and is labeled by an integer index l ∈ Z:

Xl(λ) =
(
H(s+ η(l − 1/2)− λ)
Θ(s+ η(l − 1/2)− λ)

)
, (18.2)

Yl(λ) =
1

g(τ2l)

(
H(t+ η(l + 1/2) + λ)
Θ(t+ η(l + 1/2) + λ)

)
. (18.3)

Here, s, t are free parameters and

g(u) = H(u)Θ(u), τl =
s+ t

2
−K +

1
2
ηl (18.4)
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with K ≡ K(k). The contravariant vectors X†l and Y †l are given by

X†l (λ) =
(
−Θ(s+ η(l − 1/2)− λ), H(s+ η(l − 1/2)− λ)

)
, (18.5)

Y †l (λ) =
1

g(τ2l)

(
Θ(t+ η(l + 1/2) + λ),−H(t+ η(l + 1/2) + λ)

)
. (18.6)

For the permuted matrix R(λ, µ) = PS(λ− µ), the following relations hold

R(λ, µ) [Xl(λ)⊗Xl+1(µ)] = h(λ− µ+ η) [Xl(µ)⊗Xl+1(λ)] , (18.7)
R(λ, µ) [Yl+1(λ)⊗ Yl(µ)] = h(λ− µ+ η) [Yl+1(µ)⊗ Yl(λ)] , (18.8)

R(λ, µ) [Yk(λ)⊗Xl(µ)] =
h(η)g(λ− µ+ τk+l+1)

g(τk+l+1)
[Yk(µ)⊗Xl(λ)]

+
h(λ− µ)g(τk+l−1)

g(τk+l+1)
g(τ2(k+1))
g(τ2k)

[Xl+1(µ)⊗ Yk+1(λ)] , (18.9)

R(λ, µ) [Xk(λ)⊗ Yl(µ)] =
h(η)g(µ− λ+ τk+l−1)

g(τk+l−1)
[Xk(µ)⊗ Yl(λ)]

+
h(λ− µ)g(τk+l+1)

g(τk+l−1)
g(τ2(l−1))
g(τ2l)

[Yl−1(µ)⊗Xk−1(λ)] , (18.10)

where

h(u) = Θ(0)g(u) = Θ(0)H(u)Θ(u), h(−u) = −h(u). (18.11)

The derivation of these formulas is based on the following addition theorems for the Jacobi theta
functions

Θ(u)Θ(v)H(w)H(u+ v + w) +H(u)H(v)Θ(w)Θ(u+ v + w)
= Θ(0)Θ(u+ v)H(u+ w)H(v + w), (18.12)

H(u− v)Θ(u+ v)−Θ(u− v)H(u+ v) = 2
g(u−K)g(v)

g(K)
. (18.13)

Similar formulas hold for the contravariant vectors:[
Y †l (µ)⊗ Y †l+1(λ)

]
R(λ, µ) = h(λ− µ+ η)

[
Y †l (λ)⊗ Y †l+1(µ)

]
, (18.14)[

X†l+1(µ)⊗X†l (λ)
]
R(λ, µ) = h(λ− µ+ η)

[
X†l+1(λ)⊗X†l (µ)

]
, (18.15)

[
X†k(µ)⊗ Y †l (λ)

]
R(λ, µ) =

h(η)g(λ− µ+ τk+l+1)
g(τk+l+1)

[
X†k(λ)⊗ Y †l (µ)

]
+
h(λ− µ)g(τk+l−1)

g(τk+l+1)
g(τ2(l+1))
g(τ2l)

[
Y †l+1(λ)⊗X†k+1(µ)

]
,(18.16)[

Y †k (µ)⊗X†l (λ)
]
R(λ, µ) =

h(η)g(µ− λ+ τk+l−1)
g(τk+l−1)

[
Y †k (λ)⊗X†l (µ)

]
+
h(λ− µ)g(τk+l+1)

g(τk+l−1)
g(τ2(k−1))
g(τ2k)

[
X†l−1(λ)⊗ Y †k−1(µ)

]
.(18.17)
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We see that in the new basis the nonvanishing entries of the R-matrix reproduce the six-vertex
texture.

The similarity (gauge) transformation related to the change of basis is described by the 2× 2
matrix

Ml(λ) = (Xl(λ), Yl(λ)) (18.18)

and by its inverse

M−1
l (λ) =

1
DetMl(λ)

(
Y †l (λ)
X†l (λ)

)
. (18.19)

As follows from the addition theorem (18.12), the determinant

DetMl(λ) =
2

g(K)
g

(
λ+

t− s+ η

2

)
≡ m(λ) (18.20)

does not depend on l.
The monodromy matrix of the eight-vertex model T is equal to the product of Lax opera-

tors in the auxiliary ξ-space, see Eq. (7.46). The ordering of Lax operators from left to right,
L1L2 · · ·LN can be changed to the opposite one, LNLN−1 · · ·L1; as was shown in Sect. 9, this
change in the definition of T has no effect on the spectrum of its trace, i.e. the transfer matrix.
We shall use the standard representation in the studied topic

T (λ) = LN (λ)LN−1(λ) · · ·L2(λ)L1(λ). (18.21)

The Lax operators are given by

Ln(λ) =
(
w0(λ)σ0

n + w3(λ)σ3
n w1(λ)σ1

n − iw2(λ)σ2
n

w1(λ)σ1
n + iw2(λ)σ2

n w0(λ)σ0
n − w3(λ)σ3

n

)
, (18.22)

where the w-functions are expressed in terms of the vertex weights in Eq. (7.57). We consider
the following gauge transformation of Lax operators

Lln(λ) = M−1
n+l(λ)Ln(λ)Mn+l−1(λ) ≡

(
αln(λ) βln(λ)
γln(λ) δln(λ)

)
, (18.23)

where l is an integer. The corresponding monodromy matrix

T l(λ) = LlN (λ)LlN−1(λ) · · ·Ll2(λ)Ll1(λ) (18.24)

is related to the original one (18.21) by

T l(λ) = M−1
N+l(λ)T (λ)Ml(λ). (18.25)

It is useful to introduce a family of monodromy matrices Tk,l with integer k, l which are related
to the original T as follows

Tk,l(λ) = M−1
k (λ)T (λ)Ml(λ) ≡

(
Ak,l(λ) Bk,l(λ)
Ck,l(λ) Dk,l(λ)

)
. (18.26)
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Here,

Ak,l(λ) =
1

m(λ)
Y †k (λ)T (λ)Xl(λ),

Bk,l(λ) =
1

m(λ)
Y †k (λ)T (λ)Yl(λ),

Ck,l(λ) =
1

m(λ)
X†k(λ)T (λ)Xl(λ),

Dk,l(λ) =
1

m(λ)
X†k(λ)T (λ)Yl(λ). (18.27)

The family involves the gauge-transformed monodromy matrix (18.24), T l(λ) = TL+l,l(λ). The
original transfer matrix T is expressible as

T (λ) = Tr T (λ) = TrM−ll (λ)T (λ)Ml(λ) = Al,l(λ) +Dl,l(λ). (18.28)

The algebra of the operators (18.27) can be derived from the YBE for the original monodromy
matrix

R(λ, µ) [T (λ)⊗ T (µ)] = [T (µ)⊗ T (λ)]R(λ, µ). (18.29)

Multiplying both sides of this equation from the left by Y †k (µ)⊗Y †k+1(λ)/[m(λ)m(µ)] and from
the right by Yl+1(λ) ⊗ Yj(µ) and using Eqs. (18.8), (18.14), we find for all integer values of k
and l

Bk,l+1(λ)Bk+1,l(µ) = Bk,l+1(µ)Bk+1,l(λ). (18.30)

A series of similar relations can be derived by applying various combinations of the tensor prod-
ucts of the basis vectors. We shall need the following permutation relations

Ak,l(λ)Bk+1,l−1(µ) = α(λ− µ)Bk,l−2(µ)Ak+1,l−1(λ)
−βl−1(λ− µ)Bk,l−2(λ)Ak+1,l−1(µ), (18.31)

Dk,l(λ)Bk+1,l−1(µ) = α(µ− λ)Bk+2,l(µ)Dk+1,l−1(λ)
+βk+1(λ− µ)Bk+2,l(λ)Dk+1,l−1(µ), (18.32)

where

α(λ) =
h(λ− η)
h(λ)

, βl(λ) =
h(η)h(τ2l − λ)
h(−λ)h(τ2l)

. (18.33)

For the chain of N sites, we propose an infinite family of generating vectors

ΩlN = ωl1 ⊗ ωl2 ⊗ · · · ⊗ ωlN , (18.34)

where l is an arbitrary integer. In analogy with the six-vertex model, we want the gauge-
transformed Lax operator (18.23) to possess the triangle form with the zero element

γln(λ)ωln = 0. (18.35)
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It is easy to check by using the addition theorems for the Jacobi theta functions that this condition
is ensured by the choice

ωln = Xn+l(0). (18.36)

The action of Lax-operator elements of interest αln and βln on the local vectors is simple, but
non-diagonal,

αln(λ)ωln = h(λ+ η)ωl−1
n , δln(λ)ωln = h(λ)ωl+1

n . (18.37)

Since T l(λ) = TN+l,l, we obtain from the local formulas (18.35)–(18.37) the following relations
for the action of monodromy elements on the generating chain vectors: CN+l,lΩlN = 0 and

AN+l,l(λ)Ωln = hN (λ+ η)Ωl−1
n , DN+l,l(λ)Ωln = hN (λ)Ωl+1

n . (18.38)

We are now ready to diagonalize the transfer matrix (18.28) by the generalized QISM tech-
nique. As the ansatz eigenvector we propose

Ψl(λ1, . . . , λM ) =
M∏
j=1

Bl+j,l−j(λj) Ωl−MN , (18.39)

whereM is an as-yet unspecified positive integer. Let us first investigate the action of the operator
Al,l(λ) on this vector. Using successively the permutation relation (18.31) for k = l, l+1, . . . , l+
M−1, we commuteAl,l(λ) withBl+1,l−1(λ1), the consequentAl+1,l−1(λ) withBl+2,l−2(λ1),
etc., to end up with Al+M,l−M just ahead of the vector Ωl−MN . It follows from (18.38) that the
operator Al+M,l−M can be applied to Ωl−MN only if M = N/2 (for simplicity, N is even). The
result of the commutation procedure can be written as

Al,l(λ)Ψl(λ1, . . . , λM ) = 1t(λ;λ1, . . . , λM )Ψl−1(λ1, . . . , λM )

+
M∑
j=1

1t
l
j(λ;λ1, . . . , λM )Ψl−1(λ1, . . . , λj−1, λ, λj+1, . . . , λM ), (18.40)

where

1t(λ;λ1, . . . , λM ) = hN (λ+ η)
M∏
j=1

α(λ− λj) (18.41)

and

1t
l
j(λ;λ1, . . . , λM ) = −βl−1(λ− λj)hN (λj + η)

M∏
k=1

(k 6=j)

α(λj − λk) (18.42)

(j = 1, 2, . . . ,M). Here we assume that all λj are distinct. Proceeding similarly in the case of
the operator Dl,l(λ) applied to the ansatz vector (18.39), we obtain

Dl,l(λ)Ψl(λ1, . . . , λM ) = 2t(λ;λ1, . . . , λM )Ψl+1(λ1, . . . , λM )

+
M∑
j=1

2t
l
j(λ;λ1, . . . , λM )Ψl+1(λ1, . . . , λj−1, λ, λj+1, . . . , λM ), (18.43)
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where

2t(λ;λ1, . . . , λM ) = hN (λ)
M∏
j=1

α(λj − λ) (18.44)

and

2t
l
j(λ;λ1, . . . , λM ) = βl+1(λ− λj)hN (λj)

M∏
k=1

(k 6=j)

α(λk − λj) (18.45)

(j = 1, 2, . . . ,M).
We sum together Eqs. (18.40) and (18.43), multiply the addition by exp(2πilϕ), where

ϕ ∈ 〈0, 1〉, and finally sum over all integers l from −∞ to∞. The result is

T (λ)Ψϕ(λ1, . . . , λM ) = tϕ(λ;λ1, . . . , λM )Ψϕ(λ1, . . . , λM )

+
∞∑

l=−∞

e2πilϕ
M∑
j=1

tlj,ϕ(λ;λ1, . . . , λM )Ψl(λ1, . . . , λj−1, λ, λj+1, . . . , λM ), (18.46)

where

Ψϕ(λ1, . . . , λM ) =
∞∑

l=−∞

e2πilϕψl(λ1, . . . , λM ), (18.47)

tϕ(λ;λ1, . . . , λM ) = e2πiϕ
1t(λ;λ1, . . . , λM ) + e−2πiϕ

2t(λ;λ1, . . . , λM ) (18.48)

and

tlj,ϕ(λ;λ1, . . . , λM ) = e2πiϕ
1t
l+1
j (λ;λ1, . . . , λM ) + e−2πiϕ

2t
l−1
j (λ;λ1, . . . , λM ).(18.49)

Ψϕ(λ1, . . . , λM ) is an eigenfunction of T (λ) if the unwanted terms tlj,ϕ(λ;λ1, . . . , λM ) vanish.
This requirement implies the Bethe ansatz equations for rapidities[

h(λj)
h(λj + η)

]N
= e4πiϕ

M∏
k=1

(k 6=j)

h(λj − λk − η)
h(λj − λk + η)

, j = 1, . . . ,M. (18.50)

The corresponding eigenvalue is given by

tϕ(λ;λ1, . . . , λM ) = e2πiϕhN (λ+ η)
M∏
j=1

h(λj − λ+ η)
h(λj − λ)

+e−2πiϕhN (λ)
M∏
j=1

h(λ− λj + η)
h(λ− λj)

. (18.51)

Note that the eigenvalues are independent of the free parameters s and t.
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18.2 Restricted models and the ϕ parameter

The Bethe solution is not complete, two points are obscure at this stage. Firstly, for general
values of η, we have the restriction M = N/2; we recall that for the six-vertex model M can
take any integer value between 0 and N . In this part we shall show that for particular values of
η the permissible values of M are less restricted. The second point concerns the introduction
of a free parameter ϕ into the Bethe solution. The value of this angle parameter is obviously
associated with the convergence of the series (18.47). It is expected that this series is summable
to zero for all ϕ, except finitely many values ϕj . For these ϕj , our Bethe ansatz solution describes
the eigenfunctions and eigenvalues of the transfer matrix. It turns out that the two problems are
interwoven: The determination of the set {ϕj} is relatively simple for η-values at which the
permissible values of M are less restricted.

Let us first assume that there exists Q ∈ Z>0 such that

Qη = 4K. (18.52)

Then H(u) and Θ(u) have the period Qη:

H(u+Qη) = H(u), Θ(u+Qη) = Θ(u). (18.53)

The vector basis (18.2)–(18.6) has the periodicity l → l + Q which restricts the possible values
of l to l = 0, 1, . . . , Q− 1. The periodicity extends to the monodromy matrices Tk,l and to their
operator entries which are periodic in k and l with period Q. The admissible values of M in the
ansatz eigenvector (18.39) are now determined by the condition

2M = N (mod Q). (18.54)

If moreover N is a multiple of Q, then the admissible values of M are 0, Q, . . . , N for odd Q
and 0, Q/2, . . . , N for even Q. The angle parameter of interest ϕ takes only the values

ϕ =
m

Q
, m = 0, 1, . . . , Q− 1. (18.55)

In sums of type (18.47) it is sufficient to sum over the period Q,

Ψϕ(λ1, . . . , λM ) =
Q−1∑
l=0

e2πilm/Qψl(λ1, . . . , λM ). (18.56)

In a more general case

Qη = 4m1K (18.57)

with m1 being an integer, for the given integer ν we define an integer m from the congruence

m = m1ν (mod Q). (18.58)

Since ϕmay be shifted by an arbitrary integer, we can substitute ϕ in Eqs. (18.50) and (18.51) by
νη/(4K). Assuming the continuous dependence of the transfer matrix on η, this choice remains
valid for all η for which the ratio η/K is real; M = N/2 for the unrestricted values of η.
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We now assume that

Qη = 4m1K + i2m2K
′, (18.59)

where Q ∈ Z>0 and m1, m2 are arbitrary nonzero integers. The Jacobi theta functions are
quasi-doubly periodic with quasi-periods 2K and 2iK ′ (see Appendix B of paper I). The quasi-
periodicity can be transformed to the periodicity by rescaling the Jacobi theta functions by a
common prefactor. In particular, setting A = iπm2/(2KQη) and defining the modified Jacobi
theta functions

H̃(u) = eA(u−K)2H(u), Θ̃(u) = eA(u−K)2Θ(u), (18.60)

we have the periodicity relations

H̃(u+Qη) = H̃(u), Θ̃(u+Qη) = Θ̃(u) (18.61)

analogous to those in Eq. (18.53). We introduce the scattering S̃-matrix with the texture of the
S-matrix (18.1) and the elements

ã(λ) = Θ̃(−η)Θ̃(−λ)H̃(λ+ η),
b̃(λ) = −Θ̃(−η)H̃(−λ)Θ̃(λ+ η),
c̃(λ) = −H̃(−η)Θ̃(−λ)Θ̃(λ+ η),
d̃(λ) = H̃(−η)H̃(−λ)H̃(λ+ η).

(18.62)

It can be checked that the elements of the S̃-matrix differ from the corresponding ones of the S-
matrix only by the common prefactor exp{A[2(λ2 + η2 + λη) + 3K2]}. The addition theorems
(18.12) and (18.13) remain valid for the modified theta functions provided that g(u) is replaced
by g̃(u) = Θ̃(−u)H̃(u). The monodromy matrices T̃k,l(λ), constructed from the elements
(18.62) of the S̃-matrix, are periodic functions of k and l with the period Q. The algebra of
the operators Ãk,l, B̃k,l, and D̃k,l is analogous to that described by the relations (18.30)–(18.33)
provided that we replace h(u) by h̃(u) = Θ̃(0)Θ̃(−u)H̃(u). As before, we propose the ansatz
for eigenvectors of the transfer matrix T̃ (λ) = Ãl,l(λ) + D̃l,l(λ) in the form

Ψ̃l(λ1, . . . , λM ) =
M∏
j=1

B̃l+j,l−j(λj) Ω̃l−MN . (18.63)

By virtue of the periodicity in l we have the condition 2M = N (mod Q). Simultaneously, the
angle parameter ϕ̃ = m/Q where m = 0, 1, . . . , Q− 1. The commutation procedure of the op-
erators Ãl,l(λ) and D̃l,l(λ) with the sequence of B̃-operators in (18.63) leads to the eigenvalues
of the transfer matrix T̃ (λ) of the form

t̃m(λ;λ1, . . . , λM ) = e2πim/Q h̃N (λ+ η)
M∏
j=1

h̃(λj − λ+ η)
h̃(λj − λ)

+e−2πim/Q h̃N (λ)
M∏
j=1

h̃(λ− λj + η)
h̃(λ− λj)

. (18.64)
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The rapidities {λj} satisfy the system of Bethe equations[
h̃(λj)

h̃(λj + η)

]N
= e4πim/Q

M∏
k=1

(k 6=j)

h̃(λj − λk − η)
h̃(λj − λk + η)

, j = 1, . . . ,M. (18.65)

We finally return from the modified to the ordinary Jacobi theta function via the transforma-
tion (18.60). The Bethe system of equations (18.65) becomes[

h(λj)
h(λj + η)

]N
= e4πiϕ(λj)

M∏
k=1

(k 6=j)

h(λj − λk − η)
h(λj − λk + η)

, j = 1, . . . ,M, (18.66)

where the phase function ϕ(λ) is defined by

ϕ(λ) =
1
Q

[
m+

m2

K

M∑
k=1

(
λk +

η

2

)
+
m2

2K
(N − 2M)

(
λ+

η

2

)]
. (18.67)

The corresponding eigenvalues of the original transfer matrix T (λ) are given by

t(λ;λ1, . . . , λM ) = C

e2πiϕ(λ)hN (λ+ η)
M∏
j=1

h(λj − λ+ η)
h(λj − λ)

+e−2πiϕ(λ)hN (λ)
M∏
j=1

h(λ− λj + η)
h(λ− λj)

 , (18.68)

where C = exp[iπm2η(N − 2M)/(2KQ)].

18.3 XYZ chain: Bethe ansatz equations

The Hamiltonian of the XY Z Heisenberg model in zero magnetic field

H = −1
2

N∑
n=1

(
Jxσ

x
nσ

x
n+1 + Jyσ

y
nσ

y
n+1 + Jzσ

z
nσ

z
n+1

)
, σαN+1 ≡ σα1 (18.69)

possesses useful symmetries. For an even number of sites N , using the unitary transformation

UHU−1, U =
∏

even n

(2Szn) (18.70)

we have the equivalence H(Jx, Jy, Jz) → H(−Jx,−Jy, Jz). Analogous equivalences are
H(Jx, Jy, Jz) → H(Jx,−Jy,−Jz) and H(Jx, Jy, Jz) → H(−Jx, Jy,−Jz). This means that
the Hamiltonian spectrum is unchanged under the sign reversal of two Jα’s; this was also the
symmetry of the XXZ chain. Furthermore, the spectrum is invariant under exchanging Jα’s. It
is therefore sufficient to study the case 0 ≤ |Jx| ≤ Jy ≤ Jz .
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The relationship between the transfer matrix of the eight-vertex model and the Hamiltonian
of the XYZ Heisenberg chain was established in Sect. 8 of paper I. The coupling constants of
the XYZ model were found to be parametrized as follows

Jx = 1 + k sn2η, Jy = 1− k sn2η, Jz = cn η dn η, (18.71)

where the Jacobi elliptic functions have modulus k. The inverse relations for the parameters k
and η read

k =
1− l
1 + l

, l =

√
J2
z − J2

y

J2
z − J2

x

, (18.72)

sn2η = −1
k

Jy − Jx
Jy + Jx

= −


√
J2
z − J2

x +
√
J2
z − J2

y

Jy + Jx

2

. (18.73)

Due to different normalizations of the S-matrix entries (8.13) and (18.1), the previous transfer
matrix differs from the present one by the factor[

sn(λ+ η)
Θ(η)Θ(λ)H(λ+ η)

]N
=
[

1√
kΘ(η)

]N [ 1
Θ(λ)Θ(λ+ η)

]N
.

This is why the present relationship between the XYZ Hamiltonian and the transfer matrix

H = −sn η
d

dλ
lnT (λ)

∣∣∣
λ=0

+N

[
Jz
2

+ sn η
(

Θ′(0)
Θ(0)

+
Θ′(η)
Θ(η)

)]
(18.74)

is slightly different from the previous one (8.24). From (18.68) we have

d
dλ

ln t(λ;λ1, . . . , λM )
∣∣∣
λ=0

=
iπm2

QK
(N − 2M) +N

h′(η)
h(η)

−
M∑
j=1

[
h′(λj + η)
h(λj + η)

− h′(λj)
h(λj)

]
. (18.75)

To symmetrize the obtained expressions in rapidities, in what follows we make the substitution
λj → λj − η/2. The Hamiltonian eigenvalues are thus expressible as

E(λ1, . . . , λM ) =
M∑
j=1

e(λj)− sn η
iπm2

QK
(N − 2M)

+N
[

cn η dn η
2

+ sn η
(

Θ′(η)
Θ(η)

− h′(η)
h(η)

)]
, (18.76)

where the energy component is given by

e(λ) = sn η

[
h′
(
λ+ η

2

)
h
(
λ+ η

2

) − h′
(
λ− η

2

)
h
(
λ− η

2

) ] . (18.77)
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In terms of the shifted rapidities, the Bethe equations (18.66) take the form[
h
(
λj − η

2

)
h
(
λj + η

2

)]N = e4πiϕ(λj)
M∏
k=1

(k 6=j)

h(λj − λk − η)
h(λj − λk + η)

, j = 1, . . . ,M, (18.78)

with

ϕ(λ) =
1
Q

[
m+

m2

K

M∑
k=1

λk +
m2

2K
(N − 2M)λ

]
. (18.79)

We would like to notice that, besides the XYZ Hamiltonian H with couplings (18.71), we
can consider the “conjugate” XYZ Hamiltonian H̃ = −H with the couplings

Jx = −(1 + k sn2η), Jy = −(1− k sn2η), Jz = −cn η dn η. (18.80)

The energy spectrum of H̃ is related to that of H by reflection about the E = 0 axis. The
relations (18.72) and (18.73) for the parameters k, η take the same form when expressed in terms
of the couplings (18.80). The spectrum of H̃ can be obtained following the same procedure as
for H:

Ẽ(λ1, . . . , λM ) =
M∑
j=1

ẽ(λj) + sn η
iπm2

QK
(N − 2M)

−N
[

cn η dn η
2

+ sn η
(

Θ′(η)
Θ(η)

− h′(η)
h(η)

)]
, (18.81)

where the energy component is given by

ẽ(λ) = sn η

[
h′
(
λ− η

2

)
h
(
λ− η

2

) − h′
(
λ+ η

2

)
h
(
λ+ η

2

) ] (18.82)

and the rapidities λj are the solutions of the Bethe ansatz equations (18.78). The consideration
of both H and H̃ is important. If we find the eigenvector which corresponds to the largest
eigenvalue of the transfer matrix, this eigenvector corresponds to either the ground state of H
and the state with the largest energy of H̃ or vice versa.

18.4 XYZ chain: Ground state energy

In some basic domain of the parameters k and η, which will be specified later, the largest eigen-
value of the transfer matrix T (λ) in the region close to λ = 0 is determined by the usual “an-
tiferromagnetic” state. This state is characterized by m = 0 and M = N/2 rapidity solutions
of the Bethe ansatz equations {λj} which are real numbers, symmetrically distributed on the
periodicity interval 〈−K,K〉, i.e.

−K ≤ λ1 < λ2 < · · · < λN/2 ≤ K,
N/2∑
j=1

λj = 0. (18.83)
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Under these conditions ϕ(λ) = 0 and the Bethe ansatz equations (18.78) take the simplified form[
h
(
λj − η

2

)
h
(
λj + η

2

)]N =
N/2∏
k=1

(k 6=j)

h(λj − λk − η)
h(λj − λk + η)

, j = 1, . . . , N/2. (18.84)

The condition that the half-period K is real is equivalent to the requirement for the modulus
k ∈ (0, 1).

Taking the logarithm of (18.84) results in

Nθ(λ|η/2) = 2πI(λ) +
∑
λ′ 6=λ

θ(λ− λ′|η), (18.85)

where I(λ) is an increasing sequence of integers with unit step, localized in the interval −N/4
to N/4, and

θ(λ|η) ≡ 1
i

ln
h(λ− η)
h(λ+ η)

. (18.86)

Within the standard continualization procedure in the limit N →∞, we introduce the (absolute)
ground state λ-density ρ0(λ), substitute I(λ) = N

∫ λ
0

dλ′ ρ(λ′) and differentiate Eq. (18.85)
with respect to λ, to obtain

G(λ|η/2) = ρ0(λ) +
∫ K

−K
dλ′G(λ− λ′|η)ρ0(λ′), (18.87)

where

G(λ|η) =
1

2π
d

dλ
θ(λ|η). (18.88)

The kernel and the free term in Eq. (18.87) are periodic functions with period 2K. Since
the integration is also over a period, we can solve this equation by using the discrete Fourier
transform

f(λ) =
1

2K

∞∑
n=−∞

eiπnλ/K f̂(n), f̂(n) =
∫ K

−K
dλ e−iπnλ/Kf(λ), (18.89)

namely

ρ̂0(n) =
Ĝ(n|η/2)

1 + Ĝ(n|η)
. (18.90)

To find the Fourier transform of G(λ|η), we first treat θ(λ|η) defined in (18.86) and express

ln
h(λ− η)
h(λ+ η)

= ln
Θ(λ− η)H(λ− η)
Θ(λ+ η)H(λ+ η)

= ln
ϑ1

(
λ−η
2K , q

)
ϑ1

(
λ+η
2K , q

) + ln
ϑ4

(
λ−η
2K , q

)
ϑ4

(
λ+η
2K , q

) , (18.91)
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where the real nome q of the theta functions is defined as q = exp(iπτ) = exp(−πK ′/K) < 1.
From the infinite-product representation of ϑ4 (B.22) we obtain

ln
ϑ4(u− v, q)
ϑ4(u+ v, q)

= −2i
∞∑
n=1

sin(2πnu) sin(2πnv)
n sin(πnτ)

, (18.92)

where the principal branch of the logarithm was chosen. With the aid of the relation between ϑ1

and ϑ4 in (B.24), we have likewise

ln
ϑ1(u− v, q)
ϑ1(u+ v, q)

= iπ + 2πiu− 2i
∞∑
n=1

sin(2πnu) sin 2πn
(
v − τ

2

)
n sin(πnτ)

. (18.93)

Consequently,

θ(λ|η) = π

(
1 +

λ

K

)
+ 2

∞∑
n=1

sin
(
πnλ
K

)
n sinh

(
πnK′

2K

) sinh
πn

2K
(2iη +K ′) . (18.94)

This series is absolutely convergent provided that

|Imλ|+ |Im η| < K ′, |Imλ|+ |Im (η − iK ′)| < K ′. (18.95)

For real λ, the real modulus k and the imaginary η are constrained to the principal domain

0 < k < 1, 0 ≤ −iη < K ′. (18.96)

Eq. (18.88) tells us that the Fourier component G(n|η) = 1 for n = 0 and

Ĝ(n|η) =
sinh πn

2K (2iη +K ′)
sinh

(
πnK′

2K

) for n 6= 0. (18.97)

With respect to (18.90), we finally arrive at

ρ̂0(n) =
1

2 cosh
(
πniη
2K

) , ρ0(λ) =
1

4K

∞∑
−∞

exp(iπnλ/K)

cosh
(
πniη
2K

) . (18.98)

For the parameters k and η in the principal domain (18.96), the following inequalities take
place

|1 + k sn2η| < 1− k sn2η < cn η dn η. (18.99)

It can be shown by using perturbation theory [15] that the antiferromagnetic eigenvector corre-
sponds to the ground state of the XYZ chain in the coupling region

|Jx| < −Jy < −Jz. (18.100)

We see that the corresponding Hamiltonian is H̃ with the couplings (18.80). From (18.81) (taken
with N = 2M ) we have

Ẽ0

N
= 2πi sn η

∫ K

−K
dλ ρ0(λ)G(λ|η/2) +

Jz
2

+ sn η
H ′(η)
H(η)

. (18.101)
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Simple algebra gives

Ẽ0

N
=
Jz
2

+
2πi
K

sn η
∞∑
n=1

sinh2 πn
2K (iη +K ′)

sinh(πnK ′/K)
tanh

(
− πn

2K
iη
)
. (18.102)

An equivalent form can be obtained by noticing that (Jy − Jx)/2 = k sn2η and [5]

k sn η = −πi
K

∞∑
n=1

 sinh
(
πniη
2K

)
sinh

(
πnK′

2K

) − sinh
(
πniη
K

)
sinh

(
πnK′

K

)
 . (18.103)

After some algebra, the ground-state energy (18.102) can be written as

Ẽ0

N
=

1
2

(Jz + Jy − Jx)

+
πi
K

sn η
∞∑
n=1

cosh
[
πn
2K (2iη +K ′)

]
− cosh

(
πn
2K iη

)
sinh

(
πnK′

2K

) tanh
(
− πn

2K
iη
)
.(18.104)

18.5 XYZ chain: Critical ground-state properties

The ground state energy of the XYZ chain is an analytic function of the couplings Jx, Jy and
Jz , except the case when two numerically largest couplings have equal magnitude. This fact was
seen in the special case, the XXZ chain with Jx = Jy = J , when the system was in the critical
state just for ∆ = Jz/J from the interval (−1, 1). In the general case, the XYZ Hamiltonian
(18.69) can be rewritten as

H(∆,Γ) ≡ 2H
Jx + Jy

= −
N∑
n=1

(
S+
nS−n+1 + S−nS+

n+1

)
+ Γ

(
S+
nS+

n+1 + S−nS−n+1

)
+

∆
2
σznσ

z
n+1, (18.105)

where the dimensionless parameters

Γ =
Jx − Jy
Jx + Jy

, ∆ =
2Jz

Jx + Jy
(18.106)

reflect the anisotropy in the (x, y) plane and along the z direction, respectively. The XXZ model
corresponds to five constraints for parameters Γ and ∆: ∆ = ±(Γ + 1), ∆ = ±(Γ − 1) and
Γ = 0. These lines are pictured in Fig. 18.1, the critical boundaries are depicted by heavy lines.
The critical lines divide the (∆,Γ) plane onto four sectors with different phases: z-ferromagnetic
for ∆ > 1, z-antiferromagnetic for ∆ < −1, x-ferromagnetic for Γ > 0 and y-ferromagnetic for
Γ < 0.

We now study the critical behavior of the ground state energy on the boundary −Jy = −Jz
of the principal region (18.100). As is seen from (18.72), this critical line corresponds to k = 1,
k′ = 0, i.e. K → ∞, K ′ = π/2. To obtain the singular behavior of the ground state energy per
site (18.104), we apply the Poisson summation formula

∞∑
n=−∞

f(nδ) =
1
δ

∞∑
n=−∞

f̂(2πn/δ), f̂(k) =
∫ ∞
−∞

dx eikxf(x). (18.107)



XYZ Heisenberg chain 241
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Fig. 18.1. Phase diagram of the XYZ model

Denoting

µ = −πiη
K ′

, 0 < µ < π, (18.108)

and choosing δ = K ′/(2K), the relation (18.104) can be rewritten as follows

Ẽ0

N
=

1
2

(Jz + Jy − Jx) +
πi
K ′

sn η

[
f̂(0) + 2

∞∑
n=1

f̂

(
4πnK
K ′

)]
, (18.109)

where

f̂(k) =
∫ ∞
−∞

dx exp(ikx)
cosh(π − 2µ)x− cosh(µx)

sinh(πx)
sinh(µx)
cosh(µx)

. (18.110)

The summation over n in (18.109) can be performed in the integral representation of f̂ by using
the formula

∞∑
n=1

exp
(

ik
4πnK
K ′

)
=

p−2ik

1− p−2ik
, p = exp(−2πK/K ′). (18.111)

The integral in (18.110) can be closed by an infinite semi-circle in the complex upper half x-
plane. The poles inside the contour are x = im and x = iπ(m − 1

2 )/µ (m = 1, 2, . . .). Using
the residue theorem, we obtain

Ẽ0

N
=

1
2

(Jz + Jy − Jx) +
πi
K ′

sn η

{
f̂(0)

−4
∞∑
m=1

[cos(2mµ) cos(mπ)− cos(mµ)] tan(mµ)
p2m

1− p2m

−4π
µ

∞∑
m=1

cot
[(
m− 1

2

)
π2

µ

]
p(2m−1)π/µ

1− p(2m−1)π/µ

}
. (18.112)
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The leading singular term is(
Ẽ0/N

)
sing

= −8πi
µ

sn η cot
(
π2

2µ

)
pπ/µ. (18.113)

Since

sn(η, 1) =
1
i

sn(iη, 0)
cn(iη, 0)

= i tan
(µ

2

)
, Jy = −1 + sn2(η, 1) = − 1

cos2(µ/2)
, (18.114)

this expression simplifies to(
Ẽ0/N

)
sing

=
4π sinµ

µ
(−Jy) cot

(
π2

2µ

)
pπ/µ. (18.115)

It can be easily shown that p behaves near the critical line like

p =
1
16
|J2
z − J2

y |
J2
z − J2

x

, (18.116)

so that(
Ẽ0/N

)
sing
∝ |Jz − Jy|π/µ, cosµ =

Jx
Jy
. (18.117)

We see that the critical index π/µ depends on model’s parameters, which is in contradiction
with universality hypothesis. Suzuki [48] however noticed that the ratio of arbitrary two critical
indices is universal (weak universality).
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19 Isotropic chain with arbitrary spin

The algebraic Bethe ansatz was used to establish higher-spin generalizations of the spin-1/2
Heisenberg models which are integrable. These generalizations cover a very restricted subspace
of coupling constants between neighboring spins. The integrable spin-1 chains was considered in
Ref. [53], the generalization to higher spin XXX chains was established by Kulish et al [49] who
found an explicit form of the scattering matrix. The ground state and low-lying excitations were
analyzed in [50]. The thermodynamics of the model was derived by Babujian [51,52]. The XXZ
version of integrable higher-spin chains was introduced in [53] and solved in [54]. The higher-
spin generalization of the XYZ spin chain was the subject of works [55,56]. For simplicity, here
we consider only isotropic XXX chains.

19.1 Construction of the spin-s scattering matrix

In Sect. 7, we have constructed the isotropic scattering matrix acting in the space which is a
tensor product of two-dimensional spin-1/2 Hilbert spaces defined at auxiliary sites ξ and η:

S
1
2

1
2

ξη (λ) = P
1
2

1
2

ξη + λI
1
2

1
2

ξη =
(
λ+

1
2

)
I

1
2

1
2

ξη +
1
2

(σξ, ση) , (19.1)

where the symbol (A,B) =
∑3
α=1A

αBα is used for the scalar product. It satisfies the YBE
(7.18). The corresponding Lax operator, which couples an auxiliary site (say ξ) and site n =
1, 2, . . . , N of the spin-1/2 chain, is given by

L
1
2

1
2

ξn (λ) =
(
λ+

1
2

)
I

1
2
ξ ⊗ I

1
2 ...

1
2

1...N +
1
2

(σξ,σn) . (19.2)

The YBE for the scattering matrix can be transcribed in terms of Lax operators as follows

R
1
2

1
2

ξη (λ− µ)
[
L

1
2

1
2

ξn (λ)⊗ L
1
2

1
2

ηn (µ)
]

=
[
L

1
2

1
2

ξn (µ)⊗ L
1
2

1
2

ηn (λ)
]
R

1
2

1
2

ξη (λ− µ), (19.3)

where

R
1
2

1
2

ξη (λ) = P
1
2

1
2

ξη S
1
2

1
2

ξη (λ) =
(

1 +
λ

2

)
I

1
2

1
2

ξη +
λ

2
(σξ, ση) . (19.4)

The validity of Eq. (19.3) can be verified by applying the standard product relations for the Pauli
matrices

(σα)2 = I, σασβ = iεαβγσγ , (19.5)

where εαβγ is the antisymmetric tensor and the summation over repeated indices is considered.
Let us now have spin-s (s = 1/2, 1, 3/2, . . .) variables instead of the spin-1/2 variables at

each site n = 1, 2, . . . , N of the chain. The local Hilbert space at each site has dimension 2s+1.
We define mixed Lax operators in the analogous way as before,

L
1
2 s

ξn (λ) =
(
λ+

1
2

)
I

1
2
ξ ⊗ I

s...s
1...N + (σξ,Sn) . (19.6)
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It can be verified with the aid of (19.5) that the commutation relations between these Lax opera-
tors are intermediated by the spin-1/2 R-matrix (19.4),

R
1
2

1
2

ξη (λ− µ)
[
L

1
2 s

ξn (λ)⊗ L
1
2 s
ηn(µ)

]
=
[
L

1
2 s

ξn (µ)⊗ L
1
2 s
ηn(λ)

]
R

1
2

1
2

ξη (λ− µ). (19.7)

The Lax-operator representation (19.6) is equivalent to the following expression for the S-matrix
acting in the mixed spin-1/2 and spin-s Hilbert spaces:

S
1
2 s

ξη (λ) =
(
λ+

1
2

)
I

1
2
ξ ⊗ I

s
η + (σξ, Sη) . (19.8)

Since the permutation operator is not defined for two spaces with distinct dimensions, the R-
matrix is not defined for this case.

Assuming the spin-exchange symmetry between two sites, the formula (19.6) is equivalent
to

L
s 1

2
ξn (λ) =

(
λ+

1
2

)
Isξ ⊗ I

1
2 ...

1
2

1...N + (Sξ,σn) . (19.9)

The analog of the commutation relation (19.7) is

Rssξη(λ− µ)
[
L
s 1

2
ξn (λ)⊗ Ls

1
2
ηn(µ)

]
=
[
L
s 1

2
ξn (µ)⊗ Ls

1
2
ηn(λ)

]
Rssξη(λ− µ). (19.10)

Our next task is to solve this equation for the R-matrix acting in the tensor product of two spin-s
Hilbert spaces. To simplify the notation, for a while we identify the auxiliary sites as ξ ≡ 1,
η ≡ 2 and set σn ≡ σ. Thus the commutation relation (19.10) reads

Rss12(λ− µ)
[
λ+

1
2

+ (S1, σ)
] [
µ+

1
2

+ (S2, σ)
]

=
[
µ+

1
2

+ (S1, σ)
] [
λ+

1
2

+ (S2, σ)
]
Rss12(λ− µ). (19.11)

We shall look for the R-operator in the isotropic form Rss12(λ,C) with a Casimir C = (S1, S2).
Since R is SL(2) invariant,

[Rss12(λ), Sα1 + Sα2 ] = 0 for all α = x, y, z, (19.12)

Eq. (19.11) can be rewritten as follows

Rss12(λ) [λ(S2, σ) + (S1, σ)(S2, σ)] = [λ(S1, σ) + (S1, σ)(S2, σ)]Rss12(λ). (19.13)

With regard to product relations of Pauli matrices (19.5), it holds

(S1, σ)(S2, σ) = (S1, S2) + iεαβγσαS
β
1 S

γ
2 . (19.14)

Using this formula and the central property of Casimir operator, Eq. (19.13) can be transformed
to

Rss12(λ)
[
λSα2 + iεαβγS

β
1 S

γ
2

]
=
[
λSα1 + iεαβγS

β
1 S

γ
2

]
Rss12(λ), α = x, y, z. (19.15)
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Due to the isotropic symmetry, it is sufficient to consider one from these three equations, say the
combination

Rss12(λ)
[
λS+

2 + (Sz2S
+
1 − Sz1S

+
2 )
]

=
[
λS+

1 + (Sz2S
+
1 − Sz1S

+
2 )
]
Rss12(λ). (19.16)

Instead of CasimirC, it is more convenient to look for theR-operator as a function of the operator
J , introduced via

(S1 + S2)2 = S2
1 + S2

2 + 2(S1, S2) = 2s(s+ 1) + 2(S1, S2) = J(J + 1). (19.17)

The operator J has an eigenvalue j in each irreducible representation Dj of the Clebsch-Gordan
decomposition

Ds ⊗Ds =
2s∑
j=0

Dj . (19.18)

We shall solve Eq. (19.16) in the subspace of the highest vectors in each Dj , i.e.

S+
1 + S+

2 = 0, (19.19)

which is permissible due to the commutation relation

[S+
1 S

z
2 − Sz1S+

2 , S
+
1 + S+

2 ] = 0. (19.20)

With respect to the general formula

(S1 + S2)2 = (Sz1 + Sz2 )2 + Sz1 + Sz2 + (S−1 + S−2 )(S+
1 + S+

2 ), (19.21)

we can identify

J = Sz1 + Sz2 (19.22)

in the constrained subspace (19.19). Eq. (19.16) thus reduces to

Rss12(λ, J)
(
−λS+

1 + JS+
1

)
=
(
λS+

1 + JS+
1

)
Rss12(λ, J). (19.23)

Using in this equation the commutation relation

S+
1 J = S+

1 (Sz1 + Sz2 ) = (Sz1 + Sz2 − 1)S+
1 = (J − 1)S+

1 , (19.24)

we obtain the functional equation

Rss12(λ, J)(−λ+ J) = (λ+ J)Rss12(λ, J − 1). (19.25)

We search the R-operator in the form

Rss12(λ) =
2s∑
j=0

ρj(λ)P j12, (19.26)

where P j is a projector in the tensor product of two spin-s Hilbert spaces which fixes the state
with total spin j, i.e. if |l〉 is a state with total spin l, then

P j |l〉 = δjl|j〉. (19.27)
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It is clear from (19.17) that P j12 can be represented as the polynomial of degree 2s in x =
(S1, S2),

P j12 =
2s∏
l=0
l 6=j

x− xl
xj − xl

, xl =
1
2

[l(l + 1)− 2s(s+ 1)] . (19.28)

Within the representation (19.26), the functional equation (19.25) implies the recurrence relations

ρj(λ) =
j + λ

j − λ
ρj−1(λ) (19.29)

which determine the coefficients ρj(λ) up to a common prefactor. We choose

ρ0(λ) = 1, ρj(λ) =
j∏

k=1

k + λ

k − λ
j = 1, 2, . . . , 2s, (19.30)

so that

Rss12(λ) =
2s∑
j=0

j∏
k=1

(
k + λ

k − λ

)
P j12 =

2s∑
j=0

j∏
k=1

(
k + λ

k − λ

) 2s∏
l=0
l 6=j

(S1, S2)− xl
xj − xl

. (19.31)

The normalization implies correctly the initial condition Rss12(0) =
∑2s
j=0 P

j
12 = I .

To obtain the S-matrix, we write down the Clebsch-Gordan decomposition

|s,m1〉|s,m2〉 =
2s∑
j=0

〈j,m1 +m2|s,m1, s,m2〉|j,m1 +m2, s, s〉. (19.32)

The Clebsch-Gordan coefficients possess the symmetry

〈j,m1 +m2|s,m1, s,m2〉 = (−1)2s+j〈j,m1 +m2|s,m2, s,m1〉. (19.33)

Thus the permutation operator between two spin-s spaces, defined by Pss12 |s,m1〉|s,m2〉 =
|s,m2〉|s,m1〉, reads explicitly

Pss12 = (−1)2s
2s∑
j=0

(−1)jP j12. (19.34)

Taking into account that P jP l = δjlP
j , the S-matrix has the form

Sss12(λ) = Pss12R
ss
12(λ) = (−1)2s

2s∑
j=0

j∏
k=1

(
λ+ k

λ− k

) 2s∏
l=0
l 6=j

(S1, S2)− xl
xj − xl

.. (19.35)

The corresponding Lax operator acting on s-spins at the auxiliary site ξ and the chain site n,

Lssξn(λ) = (−1)2s
2s∑
j=0

j∏
k=1

(
λ+ k

λ− k

)
P jξn, (19.36)

satisfies the commutation relation

Rssξη(λ− µ)
[
Lssξn(λ)⊗ Lssηn(µ)

]
=
[
Lssξn(µ)⊗ Lssηn(λ)

]
Rssξη(λ− µ). (19.37)
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19.2 Algebraic Bethe ansatz

From now, each site n = 1, 2, . . . , N of the chain is occupied by the spin-s, the spins localized
at the auxiliary sites ξ and η may be either s or 1/2.

Our aim is to diagonalize the transfer matrix

T s(λ) = TrξT sξ (λ), T sξ (λ) = Lssξ1(λ)Lssξ2(λ) · · ·LssξN (λ). (19.38)

The YB commutation relation for Lax operators (19.37) implies an analogous relation for mon-
odromy matrices

Rssξη(λ− µ)
[
T sξ (λ)⊗ T sη (µ)

]
=
[
T sξ (µ)⊗ T sη (λ)

]
Rssξη(λ− µ) (19.39)

and an infinite family of commuting transfer matrices arises:

[T s(λ), T s(µ)] = 0 for arbitrary λ and µ. (19.40)

The eigenfunctions of T s(λ) do not depend on the spectral parameter λ. The logarithmic deriva-
tive of the transfer matrix T s(λ) with respect to λ, taken at λ = 0, leads to the spin-sHamiltonian

d
dλ

lnT s(λ)
∣∣∣
λ=0

= Hs, Hs =
N∑
n=1

Hs
n,n+1, (19.41)

where the nearest neighbor interaction is given by

Hs
n,n+1 =

d
dλ
Rssn,n+1(λ)

∣∣∣
λ=0

=
2s∑
j=1

(
j∑

k=1

2
k

)
2s∏
l=0
l 6=j

(Sn,Sn+1)− xl
xj − xl

(19.42)

with HN,N+1 ≡ HN,1. Note that in the generic formula (8.21), the nearest-neighbor component
of the Hamiltonian corresponds to the λ-derivative of the permuted S-matrix elements, i.e. of
the R-matrix elements.

Although the T s(λ) matrices form the infinite commuting family, it is difficult to diagonalize
them directly by using the algebraic Bethe ansatz. This is why we introduce auxiliary transfer
matrices T

1
2 (λ) with spin-1/2 at the auxiliary site ξ, keeping spin-s at each chain site:

T
1
2 (λ) = TrξT

1
2
ξ (λ), T

1
2
ξ (λ) = L

1
2 s

ξ1 (λ)L
1
2 s

ξ2 (λ) · · ·L
1
2 s

ξN (λ). (19.43)

The YB commutation relation for Lax operators (19.7) leads to

R
1
2

1
2

ξη (λ− µ)
[
T

1
2
ξ (λ)⊗ T

1
2
η (µ)

]
=
[
T

1
2
ξ (µ)⊗ T

1
2
η (λ)

]
R

1
2

1
2

ξη (λ− µ), (19.44)

which implies an infinite family of commuting transfer matrices

[T
1
2 (λ), T

1
2 (µ)] = 0 for arbitrary λ and µ. (19.45)

To establish a relationship between the sets of commuting transfer matrices T s(λ) and T
1
2 (λ),

we consider the “mixed” S-matrix (19.8). This S-matrix is an intertwiner for the commutation
of the local Lax operators

S
1
2 s

ξη (λ− µ)L
1
2 s

ξn (λ)Lssηn(µ) = Lssηn(µ)L
1
2 s

ξn (λ)S
1
2 s

ξη (λ− µ) (19.46)
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and, consequently, of the monodromy matrices

S
1
2 s

ξη (λ− µ)T
1
2
ξ (λ)T sη (µ) = T sη (µ)T

1
2
ξ (λ)S

1
2 s

ξη (λ− µ). (19.47)

The non-existence of the mixed R-matrix is not a problem. We multiply directly Eq. (19.47)
from left by the inverse matrix [S

1
2 s

ξη (λ− µ)]−1 and take the trace, with the result

[T
1
2 (λ), T s(µ)] = 0 for arbitrary λ and µ. (19.48)

This means that also the families {T 1
2 (λ)} and {T s(λ)} have common eigenvectors, independent

of λ.
It is easy to diagonalize T

1
2 (λ) by using the procedure explained in Sect. 8.3. The spin-1/2

R-matrix (19.4) has the standard form (7.58) with the elements

a(λ) = 1 + λ, b(λ) = λ, c(λ) = 1, d(λ) = 0. (19.49)

The monodromy matrix T
1
2
ξ (λ) is expressible formally in the auxiliary 2× 2 ξ-space as follows

T 1
2 (λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
. (19.50)

The relation (19.44) then implies exactly the same commutation formulas (8.34)–(8.36) for the
operators {A,B,C,D} as in the trigonometric spin-1/2 case. The Lax operator at site n with
spin s has in the auxiliary ξ space the following form

Lsn(λ) =
(
λ+ 1

2 + Szn S−n
S+
n λ+ 1

2 − Szn

)
. (19.51)

As the generating vector of the (2s+ 1)N -dimensional Hilbert space, we take the direct product
of the highest eigenvectors of Sz on the chain of N sites:

Ωs = es︸︷︷︸
1

⊗ es︸︷︷︸
2

⊗ · · · ⊗ es︸︷︷︸
N

, es =


1
0
...
0


1
2
...

2s+ 1

. (19.52)

The Lax operator (19.51) is the identity operator at each site, except the nth site where it acts on
esn as follows

Lsn(λ)esn =
(
λ+ 1

2 + s [· · ·]
0 λ+ 1

2 − s

)
e+
n . (19.53)

Due to the triangle form of this matrix, the diagonal elements of the monodromy matrix T 1
2 (λ)

(19.50) act on the vector Ωs as follows

A(λ)Ωs =
(
λ+

1
2

+ s

)N
Ωs, D(λ)Ωs =

(
λ+

1
2
− s
)N

Ωs; (19.54)
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the action of B on Ωs is given indirectly via its commutation relations with A (8.35) and D
(8.36). The eigenvectors of the transfer matrix T

1
2 (λ) = A(λ) +D(λ) are searched in the ansatz

form

ψ(λ1, . . . , λM ) =
M∏
α=1

B(λα)Ωs. (19.55)

As before, the “unwanted” terms which arise from the commutation of operators B with A and
D, namely

tα(λ;λ1, . . . , λM ) = −c(λα − λ)
b(λα − λ)

(λα +
1
2

+ s

)N M∏
β=1

(β 6=α)

a(λβ − λα)
b(λβ − λα)

−
(
λα +

1
2
− s
)N M∏

β=1
(β 6=α)

a(λα − λβ)
b(λα − λβ)

 (19.56)

(α = 1, 2, . . . ,M), must vanish. These conditions imply the system of M nonlinear Bethe
equations(

λα + 1
2 + s

λα + 1
2 − s

)N
=

M∏
β=1

(β 6=α)

(
λα − λβ + 1
λα − λβ − 1

)
α = 1, 2, . . . ,M, (19.57)

which determines the rapidity parameters {λ1, λ2, . . . , λM}. We note that the total spin z-
projection Sz =

∑N
n=1 Szn, when acting on the Bethe vector (19.55), has eigenvalues Ns−M ,

soM can take the values 0, 1, . . . , 2Ns. With respect to the Sz → −Sz symmetry, it is sufficient
to consider M = 0, 1, . . . , Ns (if Ns is integer).

We are now ready to diagonalize the transfer matrix T s(λ), which is the trace of the mon-
odromy matrix T s,

T s(λ) =
s∑

m=−s
T sm,m(λ). (19.58)

We know that the eigenvectors of T s(λ) are given by (19.55), where {λ1, . . . , λM} satisfy the
Bethe equations (19.57). To find the eigenvalues of T s(λ), we have to derive the commutation
relations between the monodromy diagonal elements T sm,m(λ) and the operator B(µ) as well as
their action on the generating vector Ωs.

The commutation relations follow from Eq. (19.47):

T sm,m(λ)B(µ) = βsm(µ− λ)B(µ)T sm,m(λ) + unwanted terms, (19.59)

where

βsm(λ) =

(
λ− 1

2 − s
) (
λ+ 1

2 + s
)(

λ− 1
2 −m

) (
λ+ 1

2 −m
) (19.60)
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and the unwanted terms disappear due to (19.57).
To accomplish the second task, using the Clebsch-Gordan decomposition (19.32) we first act

by matrix elements of the Lax-operator (19.36) in the auxiliary ξ-space on the generating vector
es = |s, s〉 at site n, to obtain

〈s,m′|Lssξn(λ)|s,m〉|s, s〉 = (−1)2s
2s∑
j=0

j∏
k=1

(
λ+ k

λ− k

)
〈j,m+ s|s,m, s, s〉

×〈s,m′|j,m+ s, s, s〉. (19.61)

Using the Clebsch-Gordan decomposition inverse to (19.32), we have

〈s,m′|j,m+ s, s, s〉 = 〈s,m′, s,m2|j,m+ s〉|s,m2〉, m2 = m+ s−m′. (19.62)

Since m2 ≤ s, we find that

〈s,m′|Lssξn(λ)|s,m〉|s, s〉 = 0 for m′ < m, (19.63)

i.e. the local Lax-operator has the triangle form in the auxiliary ξ-space, as was expected. The
vector |s, s〉 is the eigenvector for the diagonal m′ = m elements of the monodromy matrix

〈s,m|Lssξn(λ)|s,m〉|s, s〉 = αsm(λ)|s, s〉, m = −s,−s+ 1, . . . , s (19.64)

with the eigenvalues

αsm(λ) = (−1)2s
2s∑
j=0

j∏
k=1

(
λ+ k

λ− k

)
〈j,m+ s|s,m, s, s〉2. (19.65)

Explicitly, we have

αss(λ) =
2s∏
k=1

(
k + λ

k − λ

)
, αsm(λ) = αss(λ)

s∏
l=m+1

(
λ+ l − s
λ+ l + s

)
for m < s. (19.66)

Since the monodromy matrix is the product of N local Lax-operators of triangle form, it holds

T sm,m(λ)Ωs = [αsm(λ)]N Ωs m = −s,−s+ 1, . . . , s. (19.67)

Taking into account the commutation relations (19.59), we conclude that the eigenvalue of
the transfer matrix T s(λ) corresponding to the eigenvector (19.55) is given by

ts(λ;λ1, . . . , λM ) =
s∑

m=−s
[αsm(λ)]N

M∏
α=1

βsm(λα − λ). (19.68)

Since αsm(λ) ∝ λ for m < s, only the m = s term contributes to the logarithmic derivative of ts

at λ = 0. The eigenvalues of the Hamiltonian Hs (19.41), (19.42) thus read

Es(λ1, . . . , λM ) =
∂ ln ts

∂λ

∣∣∣
λ=0

= N

2s∑
k=1

2
k

+
M∑
α=1

2s(
λα + 1

2

)2 − s2
. (19.69)
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It is convenient to subtract the absolute term from the Hamiltonian, i.e. Hs =
∑N
n=1H

s
n,n+1

with

Hs
n,n+1 =

2s∑
j=1

(
j∑

k=1

2
k

)
2s∏
l=0
l 6=j

(Sn,Sn+1)− xl
xj − xl

−
2s∑
k=1

2
k
. (19.70)

This ensures that Hs
n,n+1|s, s〉 ⊗ |s, s〉 = 0. The integrable spin-s Hamiltonians are antiferro-

magnetic. For the case s = 1/2, we have

H
1
2
n,n+1 = 2

(
Sn · Sn+1 −

1
4

)
=

1
2

(σn · σn+1 − 1) . (19.71)

For the case s = 1, we have

H1
n,n+1 =

1
2

[
Sn · Sn+1 − (Sn · Sn+1)2

]
, (19.72)

etc. After rescaling and shifting λα → iλα − 1/2, the energy (19.69) (with the absolute term
subtracted) takes the form

Es(λ1, . . . , λM ) = −
M∑
α=1

2s
λ2
α + s2

(19.73)

and the Bethe equations (19.57) become(
λα − is
λα + is

)N
=

M∏
β=1

(β 6=α)

(
λα − λβ − i
λα − λβ + i

)
α = 1, 2, . . . ,M. (19.74)

19.3 Thermodynamics with strings

As N →∞, the solutions of the Bethe equations (19.74) are strings of lengths n = 1, 2, . . .,

λ(n,r)
α = λnα + i

(
n+ 1

2
− r
)
, r = 1, 2, . . . , n, (19.75)

where the centers λnα (α = 1, . . . ,Mn) lie on the real axis. The numbers Mn of n-strings are
constrained by

∑∞
n=1 nMn = M . The Bethe equations (19.74) can be expressed in terms of the

string centers as follows

Nθn,2s(λnα) = 2πInα +
∞∑
m=1

Mm∑
β=1

Θnm(λnα − λmβ ), (19.76)

where Inα are integers or half-integers,

θnm(λ) =
n∑
r=1

θm

(
λ(n,r)

)
=

min(n,m)∑
l=1

θn+m+1−2l(λ) (19.77)
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with θn(λ) ≡ 2 arctan(2λ/n) and Θnm(λ) is defined in (16.14). The energy (19.73) of a given
collection of strings is written as

Es(λ1, . . . , λM ) =
∞∑
n=1

Mn∑
α=1

Esn (λnα) , (19.78)

where

Esn(λ) = −
n∑
r=1

2s(
λ(n,r)

)2 + s2
= − d

dλ
θn,2s(λ). (19.79)

To derive the thermodynamics of the integrable spin-s chains, we proceed in close analogy
with the isotropic spin-1/2 antiferromagnetic (J = −1) chain in Sect. 16.1. The distributions of
the real n-string particle centers ρn(λ) and hole centers ρ̃n(λ) are constrained by

ρ̃n +
∞∑
m=1

Anm ∗ ρm = an (n = 1, 2, . . .), (19.80)

where the Fourier transform of the matrix Anm(λ) is presented in Eq. (16.28) and an is given by

an(λ) =
1

2π
dθn,2s(λ)

dλ
, ân(ω) = ŝ(ω)Ân,2s(ω). (19.81)

The total energy per site from all strings is given by

E

N
= −2sh+

∞∑
n=1

∫ ∞
−∞

dλ [−2πan(λ) + 2nh] ρn(λ). (19.82)

The equilibrium state is determined by the variational condition for the free energy δF = δE −
TδS = 0. Using the relations

∞∑
n=1

(
A−1
n′n ? an

)
(λ) = s(λ)δn′,2s,

∞∑
n=1

A−1
n′n ? n = 0, (19.83)

the variational condition leads to an infinite sequence of the TBA equations for the ratios ηn(λ) =
ρ̃eqn (λ)/ρeqn (λ):

ln ηn(λ) = −2π
T
s(λ)δn,2s +

∫ ∞
−∞

dλ′ s(λ− λ′)

× ln {[1 + ηn−1(λ′)][1 + ηn+1(λ′)]} , n = 1, 2, . . . , (19.84)

where η0(λ) ≡ 0. These equations are complemented by the leading asymptotic

lim
n→∞

ln ηn(λ)
n

=
2h
T
. (19.85)

The free energy per site is expressible in two equivalent forms

f = −2sh− T
∞∑
n=1

∫ ∞
−∞

dλ an(λ) ln
[
1 + η−1

n (λ)
]
, (19.86)

f = e0 − T
∫ ∞
−∞

dλ s(λ) ln[1 + η1(λ)], (19.87)
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where

e0 = −2π
∫ ∞
−∞

dλ s(λ)a2s(λ) (19.88)

is the specific free energy at T = 0, i.e. the ground-state energy per site.

19.4 Ground state, low-lying excitations and low-temperature properties

In the limit T → 0, the TBA equations (19.84) for the energy functions εn(λ) = T ln ηn(λ) take
the form

εn(λ) = −2πs(λ)δn,2s + T

∫ ∞
−∞

dλ′ s(λ− λ′)

× ln
[(

1 + eεn−1(λ′)/T
)(

1 + eεn+1(λ′)/T
)]

(19.89)

with ε0(λ)→ −∞. The asymptotic condition (19.85) is equivalent to limn→∞ ε(λ)/n = 2h. It
follows from the form of the TBA equations that εn(λ) ≥ 0 for n 6= 2s while the function ε2s(λ)
can have either sign.

At T = 0 and for h = 0, we have the solution

ε(0)
n (λ) = −2πs(λ)δn,2s = − π

cosh(πλ)
δn,2s. (19.90)

Forming the convolution of Eq. (19.80) with the inverse function A−1 and using the TBA equa-
tions (19.89), we obtain

ρ(0)
n (λ) = s(λ)δn,2s, ρ̃(0)

n (λ) = 0. (19.91)

The ground state of the Hamiltonian Hs is thus described as the unperturbed Dirac sea of 2s-
strings. The total z-component of the spin in this state is given by

〈Sz〉
N

= s−
∞∑
n=1

n

∫ ∞
−∞

dλ ρ(0)
n (λ) = 0, (19.92)

i.e. for the chain of N sites there is just M2s = N/2 strings of length 2s and Mn = 0 for
n 6= 2s, so that M = sN . Using the relations (19.77) and (19.81), the ground-state energy per
site (19.88) is expressible as follows

e0 = −
∫ ∞
−∞

dλ s(λ)
2s∑
l=1

d
dλ
θ2l−1(λ),

dθn(λ)
dλ

=
n

λ2 + n2

4

. (19.93)

The integral can be evaluated by using the formula [5]∫ ∞
−∞

dλ
1

2 cosh(πλ)
1

λ2 + b2
=

1
b
β

(
b+

1
2

)
(b > 0), (19.94)

where β(n) =
∫ 1

0
dt tn−1/(1 + t) is the beta function. For integer n, it is given by

β(n) = (−1)n+1 ln 2 +
n−1∑
l=1

(−1)n+l+1

l
. (19.95)
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Thus,

e0 = −2
2s∑
n=1

β(n) =


−
∑s
n=1

2
2n−1 integer s,

−2 ln 2 +
∑s− 1

2
n=1

1
n half-integer s.

(19.96)

The structure of low-lying excitations is the following. The simplest are the hole excitations
in the Dirac sea of 2s strings which are created by taking a string with center λ to λ → ∞. The
relative energy and momentum with respect to the ground state are

∆E(λ) =
π

cosh(πλ)
, K(λ) =

π

2
− arctan[sinh(πλ)], (19.97)

so the dispersion relation reads

∆E(K) = π| sinK|. (19.98)

This relation does not depend on s and coincides with the spin-1/2 dispersion result (15.84). The
energy spectrum is gapless. There are other low-lying excitations which have no counterparts in
the spin-1/2 case [50]:

• M = sN − 1, M2s = 1
2N − 1, M2s−1 = 1, all other Mn = 0; the spin of this state is 1.

• M = sN , M2s = 1
2N − 2, M2s−1 = M2s+1 = 1, all other Mn = 0; this state has spin 0.

In both cases, the excitation energy and momentum are given additively by the energies and
momenta (19.97) of individual holes. The contribution of n-strings with n 6= 2s to dynamical
quantities vanishes, their role reduces itself to distinguishing the states of different spins.

It is instructive to comment the nature of low-lying excitation spectrum for the general
isotropic spin-1 chain with the Hamiltonian

H1 =
1
2

N∑
n=1

[
Sn · Sn+1 − δ (Sn · Sn+1)2

]
, SN+1 ≡ S1. (19.99)

The present case (19.72) corresponds to δ = 1 and its energy spectrum is gapless. The case δ =
−1 is also solvable by using the Bethe-ansatz method [57] and it exhibits the gapless spectrum
as well. The ground state is known at the point δ = −1/3 [58, 59] and the spectrum has a
gap. Numerical methods [60] indicate that the spectrum has a gap in the whole region −1 <
δ < 1. The point δ = 0 is of special interest as a test for the Haldane prediction [61, 62]: the
antiferromagnetic chain Hamiltonian

∑N
n=1 Sn · Sn+1 has an energy gap for integer s and is

gapless for half-integer s (like in the s = 1/2 case).
At T = 0 and for h > 0, the rapidities are constrained to the interval 〈−b, b〉 where b → ∞

as h→ 0. We can perform the Wiener-Hopf analysis of the corresponding integral equations for
the density ρ(λ), in close analogy with Sect. 14. To leading order in h, the final result for the
ground-state energy per site e0(h) and the magnetic susceptibility χ is [52]

e0(h) = e0 −
2s
π2
h2, χ =

4s
π2
. (19.100)
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Based on the formalism similar to that developed in Sect. 16, the low-temperature behavior of
the specific heat at h = 0 was obtained in the form

Cs

T
=

1
3
− 1
π2

2s−1∑
n=1

∫ 1/x2
n

0

dx
[

1
x

ln(1− x) +
1

1− x
lnx
]
, (19.101)

where

xn = sin
π(n+ 1)
2(s+ 1)

[
sin

π

2(s+ 1)

]−1

. (19.102)

For s = 1/2 we obtain C
1
2 = T/3 as in (16.116), for s = 1 we have C1 = T/2, etc.
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and SISSA. Dr. Šamaj was the principal investigator of three Slovak VEGA grants. Since 2005,
he is the member of the Steering committee of the ESF project MISGAM (Methods of Integrable
Systems, Geometry, Applied Mathematics). He published more than 70 scientific papers. For a
series of papers entitled ”Statistical mechanics of macroscopic systems: Exact results” he was
awarded in 2007 by the Prize of Slovak Academy of Sciences for the basic research. Occasion-
ally, he gives lectures about integrable many-body systems in quantum mechanics and statistical
physics for PhD. students and researchers at the home Institute of Physics, Comenius University,
Institute of Physics of Czech Academy of Sciences.


	Quantum Ising chain in a transverse field
	Jordan-Wigner transformation
	Diagonalization of the quadratic form
	Ground-state properties and thermodynamics

	XXZ Heisenberg chain: Bethe ansatz and the ground state
	Symmetries of Hamiltonian
	Schrödinger equation
	Coordinate Bethe ansatz
	Orbach parametrization
	The ground state
	The absolute ground state for <1

	XXZ Heisenberg chain: Ground state in the presence of magnetic field
	Fundamental equation for the -density
	Formula for magnetic field
	Ground state energy near half-filling

	XXZ Heisenberg chain: Excited states
	Strings
	Response of the ground state to a perturbation
	Low-lying excitations

	XXX Heisenberg chain: Thermodynamics with strings
	Thermodynamic Bethe ansatz
	High-temperature expansion
	Low-temperature expansion
	Ferromagnet
	Antiferromagnet


	XXZ Heisenberg chain: Thermodynamics without strings
	Quantum transfer matrix
	Bethe ansatz equations
	Non-linear integral equations for eigenvalues
	Representations of the free energy
	High-temperature expansion
	Low-temperature expansion

	XYZ Heisenberg chain
	Diagonalization of the transfer matrix for eight-vertex model
	Restricted models and the  parameter
	XYZ chain: Bethe ansatz equations
	XYZ chain: Ground state energy
	XYZ chain: Critical ground-state properties

	Isotropic chain with arbitrary spin
	Construction of the spin-s scattering matrix
	Algebraic Bethe ansatz
	Thermodynamics with strings
	Ground state, low-lying excitations and low-temperature properties

	References

