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In the present paper I formulate a framework that accommodates many unambiguous dis-
crimination problems. I show that the prior information about any type of constituent (state,
channel, or observable) allows us to reformulate the discrimination among finite number of
alternatives as the discrimination among finite number of average constituents. Using this
framework I solve several unambiguous tasks. I present a solution to optimal unambiguous
comparison of two ensembles of unknown quantum states. I consider two cases: 1) The two
unknown states are arbitrary pure states of qudits. 2) Alternatively, they are coherent states
of single-mode optical fields. For this case I propose simple and optimal experimental setup
composed of beam-splitters and a photodetector. As a second tasks I consider an unambigu-
ous identification (UI) of coherent states. In this task identical quantum systems are prepared
in coherent states and labeled as unknown and reference states, respectively. The promise is
that one reference state is the same as the unknown state and the task is to find out unam-
biguously which one it is. The particular choice of the reference states is unknown to us,
and only the probability distribution describing this choice is known. In a general case when
multiple copies of unknown and reference states are available I propose a scheme consisting
of beamsplitters and photodetectors that is optimal within linear optics. UI can be considered
as a search in a quantum database, whose elements are the reference states and the query
is represented by the unknown state. This perspective motivated me to show that reference
states can be recovered after the measurement and might be used (with reduced success rate)
in subsequent UI. Moreover, I analyze the influence of noise in preparation of coherent states
on the performance of the proposed setup. Another problem I address is the unambiguous
comparison of a pair of unknown qudit unitary channels. I characterize all solutions and iden-
tify the optimal ones. I prove that in optimal experiments for comparison of unitary channels
the entanglement is necessary. The last task I studied is the unambiguous comparison of
unknown non-degenerate projective measurements. I distinguish between measurement de-
vices with apriori labeled and unlabeled outcomes. In both cases only the difference of the
measurements can be concluded unambiguously. For the labeled case I derive the optimal
strategy if each unknown measurement is used only once. However, if the apparatuses are
not labeled, then each measurement device must be used (at least) twice. In particular, for
qubit measurement apparatuses with unlabeled outcomes I derive the optimal test state in the
two-shots scenario.

1 Material in this article was presented as a PhD thesis of the author at the Institute of Physics, Slovak Academy of
Sciences. The work was conducted under supervision of professor Vladimı́r Bužek.
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1 Introduction

In our everyday life we often see just consequences of some action and we wonder about its
cause. Knowing how things around us work we have some candidates for the cause, which
we call hypotheses. Usually we also have some expectations about the probability of those
hypotheses to take place. Thus, based on the observed consequences we would like to make a
conclusion. Most often we want to deduce the correct hypothesis i.e. the one, which took place.
In this situation our logic tells us to select the hypotheses, which is ”most probable”. There are
also situations, where the goal is to make a different type of conclusion. For example, imagine
a policeman, who investigates a murder. As a first step he might want to narrow the number
of suspects. Hence, based on the evidences he has, he should conclude, which of the hypothesis
could not take place. In both cases our natural logic can be described using the probability theory
and it relays on the conditional probabilities of having the observed consequences if one of the
considered hypothesis is realized.

Our effort to make a conclusion can be formalized as follows. Imagine that we have a set
of objects A ≡ {A1, . . . , AN} and its element Ai, i ∈ {1, . . . , N}, is randomly chosen with
probability ηi. The action in which an element from A is involved, might be called a test and its
possible observable consequences we denote as outcomes {w1, . . . , wM}. Outcome of the test
shall help us to infer something about the tested object and subsequently enables us to make the
desired conclusion. The situation is very simple if the outcomes of the test have a direct relation
to the tested object. If an outcome can occur for just one tested object (one hypotheses) then we
may say that this outcome unambiguously indicates that object. If all the outcomes are either
unambiguous or have zero probability to appear we may say that the test perfectly distinguishes
among the objects {A1, . . . , AN}. However, most often the relation of the outcomes to the tested
objects will not be so direct and only some of the outcomes are unambiguous or even none of
them is unambiguous. In such case we can either accept that our conclusions will be sometimes
erroneous or we have to resign on conclusion we were originally aiming at and we shall make
only weaker, but still error free statements. Until now, we were discussing the situation, when
the test is fixed. In practice there are many situations in which we design the test together
with the decision procedure that relates its outcomes with the conclusions we make. This is the
case for example in communication, where the goal of the device on the receiver’s side is to
distinguish the signals coming out of the communication channel. In classical physics there is no
principal restriction on the precision of the measurements we make. Thus, in theory arbitrary set
of mutually different signals can be perfectly distinguished and the errors that occur are due to
insufficient precision of the measurement apparatuses we have used. Nowadays, pulses of lights
are used for communication through optical fibers. Permanent need for increase in the capacity
of such communication leads to shortening of the pulses. Light is a quantum phenomenon and in
certain situations exhibits its non-classical properties. Hence, it starts to be practically important
to know how quantum mechanics restricts the distinguishability of quantum objects.

Quantum mechanics is a statistical theory, which describes how Nature behaves on an atomic
scale. As each physical theory it has tools for describing state, evolution and predictions for
measurable quantities of the considered system [1]. A specific feature of quantum mechanics
is that probabilistic nature of its predictions can not be attributed to our insufficient knowledge
about the state of the system and in general the state can not be inferred from a single mea-
surement. In classical physics we are used to having a direct relation of the measured property
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of the physical system to its implicitly assumed preexisting value before the measurement. In
quantum mechanics it follows from Bells inequalities that for some sets of observables assuming
preexisting values before the measurement is forbidden. On the other hand, via experiments with
quantum systems we either try to acquire information formerly encoded into the system or we
are determining properties of the system itself. Usually we are not testing completely unknown
quantum system, but we have some prior knowledge about it. For example there always exists
a subset of orthogonal states that are perfectly distinguishable by some measurement, which for
each of those states produces only one distinct outcome. Therefore, the prior knowledge of this
subset from which the measured state originates, enables us to determine the state by a single
measurement. However as soon as the possible states before the measurement are not mutually
orthogonal, a perfect discrimination is impossible due to nonorthogonality of outcome probabil-
ity distributions predicted by quantum mechanics.

At the first glance the impossibility to perfectly discriminate states of quantum objects might
look as a disadvantage in the areas like computation and communication. Surprisingly, quite
opposite seems to be true. The use of nonorthogonal states for quantum communication enables
communicating parties to detect the eavesdropper who inevitably disturbs their measurement
statistics. Moreover, it was recognized that an unambiguous discrimination can used to design
quantum key distribution protocols (QKD) [2], but it can be also exploited by an eavesdropper
to attack some QKD protocols [3]. In quantum computation (see e.g. [4]) encoding of a final
result to nonorthogonal states can speed up the computation significantly even though some
repetitions of the computation may be necessary to find the result. These quantum information
processing applications currently motivate the investigation of state discrimination in situations
with different prior knowledge on states being measured.

The discrimination of quantum states was first considered in 1970s in a pioneering work by
Helstrom [5]. In his case the measured state is guaranteed to be in one of the two known states
ρ1, ρ2, which appear with prior probabilities η1, η2, respectively. The task is to determine after
each single measurement which of the two states we were given. If the states are not orthogonal
we inevitably sometimes guess incorrectly and the goal is to minimize the probability of making
an error. This approach is called minimum error approach and can be easily generalized also
for more states ρi. Although we will determine the state correctly with the highest possible
probability, we are never sure that our conclusion was correct.

The other (extreme) option to handle the inevitable errors in the discrimination is by ulti-
mately increasing the reliability of some outcomes at the expense of one totally unreliable out-
come (inconclusive result). This approach, called unambiguous discrimination, is adopted also in
this paper and each of its conclusive outcomes unambiguously indicates one of the discriminated
possibilities. Hence, the outcomes either imply error free conclusion or they are inconclusive
and marked also as a failure of the measurement.

Unambiguous discrimination of a pair of pure states was solved in works of Ivanovic [6],
Dieks [7] and Peres [8] in 1987. They found out that both states can be unambiguously deter-
mined, but the price to pay is the possibility of getting an inconclusive result, which means that
the measurement failed to give an unambiguous answer. Naturally, we would like to maximize
the probability of correct discrimination of the states, which is equivalent to minimization of the
failure probability. The fact that a specific result of a (single shot) measurement allows us to
determine with certainty which of the non-orthogonal states was prepared is astonishing and still
attracts lot of attention. The original Ivanovic, Dieks and Peres’s scenario with two pure states
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appearing with equal prior probability was generalized in several ways. The case with arbitrary
prior probabilities was solved in 1995 by Jaeger and Shimony [9]. Chefles [10] showed that
in contrast to minimum error approach only linearly independent states can be unambiguously
discriminated. He also resolved unambiguous discrimination of N symmetric pure states. Es-
sentially no more pure state analytical solutions are known, however Sun [11] showed that the
problem can be efficiently tackled numerically by the convex optimization. The transition to the
unambiguous discrimination of mixed states yields very interesting and still open problem. The
known results ranges from the upper and lower bounds on the failure probability, solutions for
some special cases and some numerical approaches. The main focus is certainly on discrimi-
nation of a pair of mixed states. There, the important step on a way to the general solution are
Raynal’s reduction theorems [12, 13], which enable uniform derivation of nearly all previously
solved special cases. They simplify the problem by reducing its dimension or splitting it into
more pieces, which are often unambiguous discrimination of two pure states. In years 2007
and 2008 very general new results were obtained by Kleinmann, Kampermann, and Bruss. In
particular, in [14] these authors found commutators, which reveal two dimensional block diag-
onal structure in the reduced states. Moreover, they succeeded [15, 16] to rewrite the necessary
and sufficient optimality conditions by Eldar, Stojnic, and Hassibi [17] into an operational form,
which enabled them to prove uniqueness of the optimal measurement within the set of proper
USD measurements. Finally, they completely classify and derive the solutions in four dimen-
sional Hilbert space. Unfortunately, there does not exist a closed formula for the probability of
success and hence some people still consider the unsolved general problem as open also in four
dimensional Hilbert space.

The unambiguous state discrimination started the investigation of tasks, in which the certain
measurement can lead to unambiguous knowledge about some property of the system. It is
clear that some kind of prior knowledge is needed for such tasks to be realizable. The closely
related example to discrimination of states is unambiguous discrimination of quantum channels.
The basic version of the task is to unambiguously distinguish among two fixed channels if we
control the preparation of the initial states and the measurement after the channel. Obviously
channels are distinguishable if there exist an input state, which is evolved to unambiguously
distinguishable output states. The goal is thus to chose an input state for which the probability of
unambiguously distinguishing final states is highest. The first results were obtained by G. Wang,
and M. Ying [18] and tell us when the discrimination among N quantum channels is possible if
the tested channel is used multiple times.

Another intriguing unambiguous discrimination task, was proposed and solved by S.M. Bar-
nett, A. Chefles, and I. Jex [19]. Imagine we are given two identical quantum systems, which
are guaranteed to be in a product state. The task, called quantum state comparison, is to say
unambiguously whether the systems are in the same or different state. No prior knowledge of
the pure state of each of the systems implies that only symmetry with respect to exchange of the
systems can be used. Perhaps a bit unexpectedly the analysis show that equivalence of states
can not be concluded unambiguously, whereas the difference can be. A measurement outcome
which would reveal the equality of the states will be always inconclusive, because a general pair
of pure states can produce any outcome for a given measurement. On the other hand detection of
the difference of the states is possible because a pair of identical pure states can not produce all
measurement outcomes.

So far we have considered as a prior knowledge the information about the task we are solving



Introduction 659

and the structure of the expected states together with their corresponding prior probabilities.
However the random choice of the quantum states in each run of the experiment was considered
as a consequence of our insufficient prior knowledge. Another way how to look on this situation
is to denote the prior knowledge we have about the problem as a classical information and to call
the choice of quantum states as a quantum information. In this way the quantum state comparison
can be also seen as a special kind of probabilistic quantum processor [20–23]. In such device one
system serves as the data register and the second quantum system as the program register telling
the machine what to do with the data (in our case with which state the data should be compared).
The processor acts probabilistically, because we are asking for unambiguous discrimination of
nonorthogonal possibilities.

The unambiguous discrimination task we intensively focus on in this work is denoted as
unambiguous identification (UI). Imagine that we are given N identical quantum systems each
of which is in different unknown pure state - the so called reference state. We are given one
additional system, which is guaranteed to be in one of the reference states. Our task is to identify
unambiguously with which reference state the additional system matches. This task was first
proposed by J. Bergou and M. Hillery. They aptly named their solution ”Programmable Quantum
State Discriminator”, because the reference states can be seen as a program, which tells the
machine between which states to discriminate. Thus, this task seems to be a nice fusion of ideas
from quantum processors and unambiguous discrimination of pure states. Its investigation can
help to clarify how the prior knowledge differ if it is given as classical and quantum information,
how those forms of information supplement each other and how they influence the solution of
the discrimination tasks.

The paper is organized as follows. We begin by Chapter 2, which recalls some basics of
quantum mechanics and provides some useful mathematical statements. In Chapter 3 we for-
mulate a framework which accommodates unambiguous discrimination problems. We shall see
that the prior information about any type of constituent (state, channel, observable) allow us to
reformulate the discrimination among finite number of alternatives as discrimination among fi-
nite number of average constituents. In subsequent chapters 4, 5 and 6 we use this framework
to investigate unambiguous tasks for states, channels and measurements, respectively. In each of
these chapters we study discrimination and comparison in general setting. Moreover, for states
we study also unambiguous identification. A more detailed treatment is given to unambiguous
identification of coherent states in Section 4.3. Each chapter is supplemented by a brief review
of recent results obtained in the specific topic that is covered in the chapter.
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2 Mathematical tools

Quantum mechanics describes Nature and its behavior by mathematical objects called linear
operators. The purpose of this chapter is to provide their definition together with their basic
properties, we will often use. In order to do that we have to start with the first postulate of
quantum mechanics:

To any physical system there exist a complex separable Hilbert space H, which provides
sufficient ground for the complete description of the system.

Hilbert space H is a complex vector space endowed with the inner product 〈.|.〉 and com-
plete in the norm derived from the inner product. Separability of H guarantees that there exist
{|i〉}dimH

i=1 a countable orthonormal basis of H i.e. closure of the span of {|i〉} equals H and
〈i|j〉 = δij . Having a Hilbert space we can build various mathematical structures based on it.
Let us note that for infinite dimensional Hilbert spaces many complications arise. We plan to
work mostly in finite dimensional H, thus we provide simpler definitions valid for such case.
Complex linear functional fψ : H 7→ C is a mapping from Hilbert spaceH to complex numbers
for which ∀α, β ∈ C, ∀|φ1〉, |φ2〉 ∈ H fψ(α|φ1〉 + β|φ2〉) = αfψ(|φ1〉) + βfψ(|φ2〉) holds.
Thanks to Riesz lemma, to any complex linear functional fψ there exist a unique vector |ψ〉 ∈ H,
such that fψ(|φ〉) = 〈ψ|φ〉 ∀|φ〉 ∈ H. We denote such functional by symbol 〈ψ| and the abbre-
viation for its action on vector |φ〉 coincide with the resulting scalar product 〈ψ|φ〉. The complex
linear functionals from H also form a Hilbert space isomorphic to H and usually denoted H∗.
The mapping A : H 7→ H which is linear (A(α|φ1〉+ β|φ2〉) = αA|φ1〉+ βA|φ2〉) and defined
on the dense subset of H, we denote as linear operator. If the norm of the linear operator A,
defined as:

‖A‖ := sup
|φ〉

√
〈Aφ|Aφ〉√
〈φ|φ〉

, A|φ〉 ≡ |Aφ〉, (2.1)

is finite we call operator A bounded. Bounded linear operators form a Banach space L(H) i.e.
a normed vector space complete in its norm. Moreover, L(H) has also a structure of noncom-
mutative algebra, because bounded linear operators are closed with respect to composition of
operators.

In general any linear operator A is completely determined by its action on the basis vec-
tors. Therefore in d dimensional Hilbert space H the action of A can be efficiently specified
by d × d matrix. If we use orthonormal basis the matrix elements are given by Aij = 〈i|A|j〉.
The elements Aij i = 1, . . . , d determine the transformation of vector |j〉 into vector A|j〉 =∑d
i=1Aij |i〉. The simple example of linear operator is |i〉〈j| - a complex linear functional

〈j| whose result rescales the fixed vector |i〉 from H. If indexes i, j run through 1, . . . , d the
set of the operators we obtain form a basis of L(H) and each A ∈ L(H) can be written as
A =

∑d
i,j=1Aij |i〉〈j|.

Each linear operator A ∈ L(H) defines a linear operator A∗ on H∗: A∗(〈ψ|) 7→ 〈χ| such
that ∀|φ〉 ∈ H 〈χ|φ〉 = 〈ψ|A|φ〉. Thanks to isomorphism T between H and H∗ operator A∗

uniquely defines the so called adjoint operator A† := T−1A∗T on H. The adjoint operator
therefore obeys the following property 〈φ|A†|ψ〉 = 〈Aφ|ψ〉. Taking the adjoint of an operator
is an antilinear operation i.e. (A + λB)† = A† + λB†, where λ is a complex conjugate of
λ ∈ C. We will further focus only on normal operators. Linear operator A is normal if and only
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if AA† = A†A. Different subsets of normal operators are important in quantum mechanics, so
we recall them by listing their defining properties. Selfadjoint operator is equal to its adjoint
(A = A†), projector is an operator obeying P = P † = P 2. A unitary operator U fulfills the
relation UU† = U†U = I , where I is a unity operator acting trivially I|φ〉 = |φ〉 on each vector
|φ〉 from H. Operator A is called possitive if it is selfadjoint and ∀|φ〉 ∈ H 〈φ|A|φ〉 ≥ 0. For
characterization of the internal structure of operators we will need the following terms. Vector
|φ〉 ∈ H is an eigenvector of operator A and λφ is its corresponding eigenvalue if A|φ〉 = λφ|φ〉.
A very useful Spectral theorem states that any normal operator has the following decomposition:

A =
∑
k

λkPk, (2.2)

where λk ∈ C are the eigenvalues of operator A and Pk are projectors onto mutually orthogonal
subspaces corresponding to those eigenvalues. Thus any vector from the subspace on which Pk
projects is an eigenvector with eigenvalue λk. The orthogonality of the subspaces is equivalent to
PkPj = PjPk = 0 ∀k 6= j and implies that eigenvectors with different eigenvalues are orthogo-
nal. Let us define a kernel of an operator as a subspace which is mapped into zero. For normal
operators it is a subspace corresponding to eigenvalue zero. By a support of an operator we will
understand an orthocomplement of operators kernel i.e. the biggest orthogonal subspace of the
kernel. For normal operator the support is a subspace corresponding to all nonzero eigenvalues.
The subsets of normal operators can be defined also through constraints on their eigenvalues.
Selfadjoint operators must have only real eigenvalues, positive operators positive eigenvalues,
unitary operators eigenvalues with modulus 1 and projectors only eigenvalues 0 and 1.

Description of compound quantum systems requires tensor product of Hilbert spaces corre-
sponding to the parts of the system. Assume we are given two Hilbert spaces HA, HB together
with their orthonormal bases {|i〉A}dimHA

i=1 , {|k〉B}dimHB
k=1 . Hilbert space HA ⊗HB is a vector

space span by vectors |i〉A⊗|k〉B endowed with inner product, which is on these vectors defined
as (A〈i| ⊗ B〈k|) (|j〉A ⊗ |l〉B) = (A〈i|j〉A).(B〈k|l〉B) and linearly extended to the rest of the
space. Completeness of HA, HB in the norm derived from the scalar product assures complete-
ness ofHA ⊗HB which is therefore also a Hilbert space. Usually we keep the same ordering of
the subsystems and thus we often simplify the notation by omitting the subscripts denoting the
parts of the system. Moreover for ∀z ∈ C, ∀|ϕ〉, |ψ〉 ∈ HA, ∀|φ〉, |ξ〉 ∈ HB , the following rules
hold:

z|ϕ〉 ⊗ |φ〉 = (z|ϕ〉)⊗ |φ〉 = |ϕ〉 ⊗ (z|φ〉),
(|ϕ〉+ |ψ〉)⊗ |φ〉 = |ϕ〉 ⊗ |φ〉+ |ψ〉 ⊗ |φ〉,
|ϕ〉 ⊗ (|φ〉+ |ξ〉) = |ϕ〉 ⊗ |φ〉+ |ϕ〉 ⊗ |ξ〉.

A pair of linear operators A ∈ L(HA), B ∈ L(HB) naturally defines a bounded linear operator
A⊗B onHA⊗HB . Its action is first defined on the product states (states of the form |ϕ〉⊗ |φ〉)
by:

(A⊗B)|ϕ〉 ⊗ |φ〉 := (A|ϕ〉)⊗ (B|φ〉),

and then linearly extended to the whole HA ⊗HB . Let us note that L(HA ⊗HB) = L(HA)⊗
L(HB) and algebras L(HA), L(HB) are contained as a subalgebras of operators acting by unit
on one of the subsystems.
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We should also define the trace which connects linear operators with numbers. Thus, it is
a linear mapping from L(H) to C defined as: Tr(A) =

∑d
i=1〈i|A|i〉, where A ∈ L(H) and

{|i〉}di=1 is any basis of Hd. In practice, use of orthonormal basis for calculation of the trace is
usually more convenient. The trace has the following properties (A,B,C,U ∈ L(H), λ ∈ C):

Tr(A+ λB) = Tr(A) + λTr(B),
T r(ABC) = Tr(BCA) = Tr(CAB),

T r(U−1AU) = Tr(A), U − unitary,
Tr(A⊗B) = Tr(A)Tr(B).

T r(A|ψ〉〈ψ|) = 〈ψ|A|ψ〉

Working with compound quantum systems we often need to focus our attention only on one of the
subsystem. In such situations we frequently use a mapping called partial trace which transforms
operators acting on the whole Hilbert spaceHA ⊗HB onto operators on Hilbert space of one of
the subsystems. Partial trace over subsystem B is defined as:

TrB(C) =
dimHA∑
i,j=1

(
dimHB∑
k=1

A〈i| ⊗ B〈k|C|j〉A ⊗ |k〉B

)
|i〉A A〈j|,

where C ∈ L(HA⊗HB), TrB(C) ∈ L(HA) and {|i〉A}dimHA
i=1 , {|k〉B}dimHB

k=1 are orthonormal
bases of HA, HB respectively. Partial trace over subsystem A is defined analogously and result
of both of them does not depend on the choice of the basis.

Before discussing how all these mathematical notions are used in quantum physics, let us
prove two lemmas and present one recipe, which will become useful later in chapter about un-
ambiguous identification.

Lemma 1 LetA,B be positive operators acting onH, such that Tr(AB) = 0. Then the support
of A is orthogonal to support of B.

Proof 1 Since operators A, B are positive they have spectral decomposition:

A =
rankA∑
i=1

λi|φi〉〈φi|, λi > 0, B =
rankB∑
j=1

κj |χj〉〈χj |, κj > 0 (2.3)

Now let’s evaluate the trace:

0 = Tr(AB) =
rankA∑
i=1

rankB∑
j=1

λiκj |〈φi|χj〉|2 (2.4)

Eigenvalues λi, κj are positive and |〈φi|〉χj |2 is nonnegative, therefore we have a sum of non-
negative terms equal to zero. This is possible if and only if each term in the sum is equal to zero.
Thus we have:

〈φi|χj〉 = 0 ∀i,∀j, (2.5)

which means that eigenvectors of A are orthogonal to all eigenvectors of B and so concludes the
proof.
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Lemma 2 Let E, ρ(ψ) = |ψ〉〈ψ| be positive operators acting on H. If for set S, an integral
Ω =

∫
S
|ψ〉〈ψ|dψ exists the following conditions on operator E are equivalent:

∀|ψ〉 ∈ S Tr(Eρ(ψ)) = 0⇐⇒ Tr(EΩ) = 0. (2.6)

In the integral defining Ω we use the Haar unitary invariant integration measure as well as in all
other integrals in this paper.

Proof 2 Integration of equation from left hand side (LHS) of equivalence together with linearity
of trace obviously implies the right hand side (RHS). To prove the oposite implication we first
rewrite the equation from RHS.

0 = Tr(EΩ) = Tr(E
∫
S

|ψ〉〈ψ|dψ) =
∫
S

〈ψ|E|ψ〉︸ ︷︷ ︸
≥0

dψ (2.7)

Integral of continuous nonnegative function is equal to zero only if the function is zero in the
integration region. Therefore we have:

∀|ψ〉 ∈ S 〈ψ|E|ψ〉 = Tr(Eρ(ψ)) = 0, (2.8)

which completes the proof.

Recipe 1 Construction of Jordan basis for two subspaces
Suppose we are given two orthonormal bases {|a′i〉}

dimV1
i=1 , {|b′j〉}

dimV2
j=1 of subspaces V1, V2

respectively. We would like to rotate those bases in such a way that the rotated bases {|ai〉}dimV1
i=1 ,

{|bi〉}dimV2
i=1 of V1, V2 will obey the following property:

∀i = 1, . . . ,dimV1, ∀j = 1, . . . ,dimV2, 〈ai|bj〉 = δij cos θi ≥ 0. (2.9)

Such a bases are called Jordan basis. They can always be relabeled so that cos θi ≥ cos θj for
i < j. In order to construct Jordan basis from {|a′i〉}, {|b′i〉} we first create (dimV1)× (dimV2)
matrix of overlaps H with elements Hij = 〈a′i|b′j〉. Next we have to find its Singular value
decomposition:

H = U1.D.U
†
2 , (2.10)

where Ui (i = 1, 2) is dimVi × dimVi unitary matrix and dimV1 times dimV2 matrix D has
non vanishing only diagonal elements Dii = cos(θi). Choosing {|ai〉}, {|bi〉} to be:

|ai〉 =
dimV1∑
k=1

(U1)ki|a′k〉 |bj〉 =
dimV2∑
l=1

(U2)lj |b′l〉

we obtain new orthonormal bases of V1, V2, since we have only unitarily rotated the former
bases3, with the following mutual overlap:

〈ai|bj〉 =
dimV1∑
k=1

dimV2∑
l=1

(U1)∗ki〈a′k|b′l〉(U2)lj =

=
dimV1∑
k,m=1

dimV2∑
n,l=1

(U†1 )ik(U1)kmDmn(U†2 )nl(U2)lj =

= Dij = δij cos θi
3Transpose of a unitary matrix is also unitary
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Thus we fulfilled the definition (2.9) i.e. we found the Jordan basis of subspaces V1, V2. Let us
note that the basis of the common subspace of V1 and V2 is given by vectors |ak〉 = |bk〉 such
that cos θk = 1. On the other hand vectors |am〉 such that cos θm = 0 or m > dim(V2) form a
basis of a subspace of V1, which is orthogonal to subspace V2. Analogously, vectors |bn〉 such
that cos θn = 0 or n > dim(V1) define a subspace of V2 orthogonal to V1.

After the brief summary of mathematics we will use, we should describe how those mathe-
matical structures are used in quantum mechanics. The entity of a quantum system determines
the Hilbert space H appropriate for its description. Our knowledge about the state of a quantum
system is expressed by a density matrix ρ - a positive linear operator onH with trace one. The set
of all possible density matrixes we denoted as S(H) and its elements are often also called mixed
states. If the density matrix ρ is a projector or equivalently Tr(ρ2) = 1 we call the state pure,
because ρ = |ψ〉〈ψ| for some vector |ψ〉 ∈ H with norm one. Vectors eiϕ|ψ〉, ϕ ∈ R represent
the same pure state. Pure states can therefore be identified with elements of projective Hilbert
space, which is formed by cosets of the type λ|ψ〉, λ ∈ C. We will denote the set of all pure
states of a d-dimensional quantum system (qudit) Spure.

Physical quantities, which can be measured, are called observables and correspond to self-
adjoint operators. If the observable A is measured, only the eigenvalues of operator A can ap-
pear as measurement outcomes. The experience from experiments tells us that the immediate
repetition of a measurement always gives the same outcome. This property of measurement is
guaranteed by the projection postulate. It claims that the measurement of observable A collapses
the state of the system into an eigenstate of A, corresponding to the observed eigenvalue. The
statistics of measurement outcomes for the observable A can be collected by repeating the whole
experiment many times. Quantum mechanics predicts that the mean value of these outcomes
will be 〈A〉 =

∑
k λkp(λk|ρ) =

∑
k λkTr(Πkρ) = Tr(Aρ), where ρ is the state of the system

immediately before the measurement, p(λk|ρ) is the probability of obtaining the outcome λk and
Πk projects onto a subspace corresponding to λk. The measurement of an observable A can be
therefore characterized as a projective measurement and might be specified by a set of orthogonal
projectors {Πk} and the corresponding measurement outcomes.

However, quantum mechanics permits a broader class of measurements to be performed. The
most general measurement is described by a Positive Operator Valued Measure (POVM). From
a mathematical point of view POVM is a mapping A from the set of outcomes {ω1, . . . , ωn}
into the set of effects E(H), i.e. a set of positive operators E on a Hilbert space H such that
O ≤ E ≤ I , where O is the zero operator and I is the identity operator. Moreover, the POVM is
normalized to identity i.e. A1 + · · ·+An = I , where Ai ≡ A(ωi).

We say that an observable or a measurement is sharp or equivalently projective if each effect
composing the corresponding POVM is a projection, i.e., Aj = A2

j for all j. If, moreover, AjH
is a one-dimensional subspace of H for each j, then the observable is non-degenerate. In such
a case we can write Aj = |ψj〉〈ψj | ≡ ψj and 〈ψj |ψk〉 = δjk. In fact, each orthonormal basis
of the Hilbert space defines a sharp non-degenerate POVM. We denote byM the set of all non-
degenerate sharp observables. From the point of view of a physicist a POVM is specified by a set
of positive operators {Ei ≡ Ai}, which sum up to identity operator

∑
iEi = I . The probability

of obtaining an outcome corresponding to the measurement operator Ei is p(Ei|ρ) = Tr(Eiρ).
The change of state associated with the measurement is not specified in this concept and in
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general depends on the particular realization of the POVM. Neumark [30] showed that each
POVM can be realized as a projective measurement on the quantum system supplemented with
an auxiliary quantum system. The auxiliary system is usually called the ancilla and its Hilbert
space can have as many dimensions as the number of the POVM elements.

The description of discrimination tasks we consider does not require characterization of the
dynamics of quantum systems, thus the aforementioned terms should suffice for our discussion.
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3 Model of quantum experiment

The purpose of this chapter is to define a perspective through which we will look on quantum
experiments. For us, an experiment is a sequence of three consecutive events: preparation, evo-
lution and measurement of the considered quantum system. In practice executing any of these
events involves several steps and takes a finite amount of time. However, for the purposes of
this paper we will not need the details of the execution procedure, but rather its final effects.
Thus, in our view the preparation part of an experiment is sufficiently described by the quantum
state ρ to which the system was set. The overall effect of the evolution part of an experiment is
characterized by a channel 4, i.e. a completely positive trace preserving map on the state space
of the quantum system. A measurement of a quantum system has two important aspects. One
is the classical information about the obtained outcome of the measurement and the other is the
state change inevitably induced by the measurement. The more information we gain about the
state of the system before the measurement the more disturbed is the state of the quantum system
by the measurement. In principle, we can further evolve the system after the measurement and
then measure it again. However, the additional amount of information we acquire about the state
of the system before the first measurement goes to zero as we iterate this process. Moreover,
the whole development of the system starting by the first measurement can be always perceived
as the realization of one big complicated measurement (see figure 3.1). We adopt this point of
view, because our goal will be to exploit the information of a particular measurement outcome
to maximize our knowledge about the constituents of an experiment. Hence, we do not need to
work with the quantum system after the measurement and we are only interested in the probabil-
ities that quantum mechanics predicts for the possible measurement outcomes. This is the reason
why we describe the measurement part of an experiment by a positive operator valued measure
(POVM).

Figure 3.1. The schematical model of quantum experiment.

4In each run of the experiment the state after the evolution will be measured, so post selection can not be involved in
the evolution part of the experiment.
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3.1 Unambiguous discrimination problem

Having established all three constituents of a quantum experiment (preparation, evolution, and
measurement) let us now define the tasks we want to study. Imagine we are given one of these
constituents i.e. either a preparator or a quantum channel or a measurement apparatus. The
considered device is equipped with an incomplete description of its function. We are given a
question about the operation of the device which we should answer by using the device only
once. Our answers are required to be unambiguous, that is error free, and also an inconclusive
answer indicating failure is allowed. The goal is to design an experiment, which gives a correct
conclusive answer as often as possible.

More formally, this task called the unambiguous discrimination problem (UDP), can be de-
fined in the following way. Let the labels P,C, and M indicate the preparator, channel, and mea-
surement, respectively. We will call SX(H) for X ∈ {P,C,M} the set of all possible constituents
of type X for the Hilbert space H. The incomplete knowledge about the constituent we investi-
gate should be reflected by a probability measure dA defined on SX(H). Thus,

∫
SX(H)

dA = 1
and the measure dA represents the probability density that the tested constituent is actually A.
In the studied problem a valid question is such that its conceivable answers divide all possibly
appearing elements of SX(H) (i.e. support of dA) into a finite number M of disjoint subsets
Si. Hence, it must hold that Si

⋂
Sj = ∅ for i 6= j and

∑M
i=1

∫
Si
dA = 1. Let pj(A) be the

probability of concluding answer j if constituent A ∈ SX(H) is tested in the experiment we
have designed. The probability of obtaining an inconclusive answer, denoted as j = 0, will be
p0(A). The unambiguity of conclusive answers is mathematically stated by the following no
error conditions:

∀i, j ∈ {1, . . . ,M}, i 6= j, ∀A ∈ Si; pj(A) = 0. (3.1)

The objective is to design an experiment that maximizes

Psucc =
M∑
i=1

∫
Si

pi(A)dA , (3.2)

the probability of successfully answering the investigated question about the constituent.
One might ask what is the motivation for defining this slightly artificially looking UDP. Al-

though it might not be obvious at first sight, but the definition of UDP covers all the unambiguous
tasks discussed in the introduction. Thus, understanding some aspects of the unambiguous dis-
crimination problem might give us some insight to a wide variety of unambiguous discrimination
tasks. In the next section we will see that in finite dimensional Hilbert spaces UDP can be refor-
mulated as unambiguous discrimination of M known constituents of a given type. This suggests
that investigation of discrimination of known states, channels, and measurements is certainly
an important thing to study. Unfortunately, regardless of effort made by many authors, even
the discrimination of two mixed states is still not completely solved. Much less is known for
discrimination of more than two states or for discrimination of channels and observables. The
investigation of state comparison and identification has lead to progress in discrimination of cer-
tain types of states and in a similar way the study of comparison and identification could help
in discrimination of certain types of channels or observables. UDP allows us to see these tasks
in a unified way and hopefully observe similarities and differences between the tasks for states,
channels and observables more clearly.
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3.2 Reformulation of UDP

Let us now consider a finite dimensional Hilbert spaceH. We define the average constituents5

Ai =
1
ηi

∫
Si

A dA, (3.3)

where the factor ηi =
∫
Si
dA guarantees that Ai is a convex combination of constituents from

Si. Hence, Ai is a valid state, channel or measurement. Probabilities predicted by quantum
mechanics are linear with respect to states, channels and measurements, which allow us to rewrite
Psucc in terms of average constituents

Psucc =
M∑
i=1

∫
Si

pi(A)dA =
M∑
i=1

pi

(∫
Si

A dA

)
=

M∑
i=1

ηipi(Ai). (3.4)

Let us now integrate the original no error conditions from Eq. (3.1)

∀i 6= j, ∀A ∈ Si : pj(A) = 0 ⇒ pj(Ai) =
1
ηi

∫
Si

pj(A) dA = 0. (3.5)

We see that the no error conditions from Eq. (3.1) imply the no error conditions for unambigu-
ous discrimination of the constituents Ai. The converse is also true, because if integral of non
negative continuous function is zero then the integrated function must be zero in the integrated
region. Hence UDP can be equivalently reformulated as unambiguous discrimination of average
constituents Ai appearing with prior probabilities ηi.

3.3 Mathematical apparatus for discrimination

Let us now sketch a general experiment for discrimination of a given type of constituent and
briefly discuss its mathematical description. An experiment for discrimination of states inevitably
starts by an action of the investigated preparator, which sets the system into one of the possible
states ρi. Anything that happens afterwards (e.g. use of ancillary quantum systems, any kind
of evolution, processing of measurement results) is incorporated into the measurement part of
the experiment described by a positive operator valued measure. The most general POVM {Ei}
for unambiguous discrimination of M states consists of M + 1 elements. Without loss of gen-
erality we require that the observation of outcome i ∈ {1, . . . ,M} indicates the preparation of
state ρi and the outcome 0 is inconclusive. The optimal measurement maximizes the proba-
bility of success Psucc =

∑M
i=1 ηipi(ρi) =

∑M
i=1 ηiTr(ρiEi), while preserving normalization∑M

i=0Ei = I and positivity (Ei ≥ 0) of the POVM elements.
A general experiment for the discrimination of quantum channels is more complicated. Ex-

cept for the principal quantum system exposed to the tested channel we have to consider also
an ancillary system, whose evolution is incorporated into the preparation or measurement of the
compound system. The class of such experiments is very broad, because the Hilbert space of

5Under some strange circumstances it may happen that
R

Si
dA = 0 for some i. We can remove these answers

from the definition of UDP, because they are forbidden to appear (∀A /∈ Si pi(A)dA = 0
V R

Si
dA = 0 ⇒R

SX(H) pi(A)dA = 0) and the elements A from Si can not spoil the unambiguity (
R

Si
pj(A)dA = 0). Hence

such sets Si do not influence the UDP.
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an ancilla can be arbitrary. Fortunately, as Ziman [31] showed one can restrict the ancilla to
have a Hilbert space isomorphic with the principal quantum system. Moreover, he showed that
the experiment is uniquely described by a process positive operator valued measure (PPOVM)
{Mi}. The tested channel E is equivalently represented via the Choi-Jamiolkowski isomor-
phism as a process state ωE and consequently the probability of observing the result i reads
pi(E) = Tr(ωEMi). The most general PPOVM {Mi} for unambiguous discrimination of M
channels consists of M + 1 elements. We associate the observation of result i ∈ {1, . . . ,M}
with the use of channel Ei and declare the outcome 0 as inconclusive. The optimal measure-
ment should maximize the probability of success Psucc =

∑M
i=1 ηipi(Ei) =

∑M
i=1 ηiTr(ωiMi),

while preserving positivity of PPOVM elements Mi and normalization
∑M
i=0Mi = ξT ⊗ I with

ξ being a state of the principal quantum system. Thus, from the mathematical point of view, the
optimization is similar to the discrimination of states except for the normalization of the operator
measure. In particular, the choice of this normalization ξ outlines the additional freedom, which
complicates the optimization.

The testing of measurements is a bit different from the experiments for channels and states,
because the outcomes of the investigated measurement apparatus may not be directly linked to the
results of the test. For example, imagine the discrimination ofM POVMs each havingN possible
outcomes. For N < M , a single outcome of the tested measurement could not indicate each of
the possibly used POVMs. Hence, the most general strategy uses the principal system measured
by the tested POVM as well as an ancillary quantum system, whose measurement depends on
the outcome of the tested POVM. One can show that it suffices to consider ancilla with the
same Hilbert space as the principal quantum system. Unfortunately, a suitable mathematical
framework for describing these type of experiments is not yet developed. Moreover, sometimes
it may happen that we are not allowed to use any other measurement then the tested one. In
such a situation the possible experiment consists of the preparation that we control and a tested
measurement, whose outcomes can be linked to test results in many ways.

The following three chapters are devoted to states, channels and measurements. Each of them
first summarizes the crucial known results on discrimination and then investigates the compar-
ison and the identification of the given constituents. For states, these tasks are also studied for
coherent states, which in this case do not allow the average constituent approach to the problem.
Nevertheless, we are able to find and compare several solutions, which are also easily optically
realizable.
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4 Unambiguous tasks for states

4.1 Unambiguous discrimination of two mixed states

The aim of this section is to collect in one place the most useful constructive procedures proposed
for unambiguous discrimination of a pair of general mixed states. The material we present further
in this section is mainly adopted from the PhD thesis of P. Raynal [13], which provides a thorough
review on unambiguous discrimination of two mixed states until year 2006. In years 2007 and
2008 other very general results were obtained by Matthias Kleinmann et. al. and we summarize
them at the end of the section.

The notation we use is the following: The quantum system we are given is guaranteed to
be either in the mixed state ρ1 or in the mixed state ρ2. This two possibilities appear with
a priori probabilities η1, η2 = 1 − η1, respectively. The POVM elements E1, E2 correctly
identify states ρ1, ρ2, respectively and element E0 correspond to an inconclusive result. The
unambiguity of the measurement is ensured by fulfilling a pair of the no-error conditions: 0 =
Tr(E1ρ2) = Tr(E2ρ1). We use the superscript opt to indicate that the Unambiguous State
Discrimination(USD) measurement maximizes the probability of discrimination PD ≡ Psucc =
η1Tr(E1ρ1) + η2Tr(E2ρ2). Due to validity of the no-error conditions this is equivalent to
minimization of the probability of failure Q = η1Tr(E0ρ1) + η2Tr(E0ρ2) = 1− PD.

Let us note that it suffice to focus on a subspace S given by the span of the supports of the
density matrices ρ1, ρ2. If we denote by ΠS the projector onto S then we have Tr(Ekρi) =
Tr(EkΠSρiΠS) = Tr(E′kρi), where E′k = ΠSEkΠS is the part of the operator Ek acting only
on S. Due to normalization of POVM {Ek} we have

∑2
k=0E

′
k = ΠS

∑2
k=0EkΠS = ΠS ,

so {E′k} forms a POVM on a subspace S of the Hilbert space H (E′k are positive operators
supported on S and sum up to identity on subspace S). Hence, the no error conditions hold forE′k
and the probability of discrimination stays the same as for the measurement {Ek}. This means
that the search for the optimal measurement can be done in the smaller Hilbert space specified
by the subspace S and any choice of POVM {Ek} leading to {E′k} performs the unambiguous
discrimination equally well. For S 6= H there are infinitely many POVMs {Ek} leading to {E′k}.
For example Ek = E′k +Fk with positive operators Fk supported in S⊥ and summing to I−ΠS
defines one such class. An USD measurement corresponding to F1 = F2 = 0, F0 = I − ΠS is
called proper USD measurement.

P. Raynal is the author of the following three reduction theorems, which can be used to
simplify the problem by contracting its effective Hilbert spaceH.

The first theorem tells us that the common subspace of the supports of the mixed states ρ1,
ρ2 cannot be used for unambiguous discrimination and thus can be split off from the problem.

Theorem 1 Reduction Theorem for a Common Subspace

Suppose supports Sρ1 and Sρ2 have a non-empty common subspace HT. We denote by H′
the orthogonal complement of HT in H while ΠHT and ΠH′ denote respectively the projector
onto HT and H′. Then the optimal USD measurement is characterized by POVM elements of
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the form

Eopt1 = E′opt1

Eopt2 = E′opt2 (4.1)
Eopt0 = E′opt0 + ΠHT

where the operators E′opt0 , E′opt1 , E′opt2 form a POVM E′optk with support on H′ describing the
optimal USD measurement of a reduced problem defined by

ρ′1 =
1
N1

ΠH′ρ1ΠH′ , η′1 =
N1η1

N
, N1 = Tr(ρ1ΠH′)

ρ′2 =
1
N2

ΠH′ρ2ΠH′ , η′2 =
N2η2

N
, N2 = Tr(ρ2ΠH′) (4.2)

N = N1η1 +N2η2

And finally, the optimal failure probability Qopt can be written in terms of Q′opt, the optimal
failure probability of the reduced problem, as

Qopt = 1−N +NQ′opt. (4.3)

The second reduction theorem proves that Eopt1 , the conclusive element of the optimal mea-
surement, is a projector on the part of the support of ρ1, which is orthogonal to the support of ρ2

and analogously for Eopt2 . Thus these parts of the supports can be eliminated and it suffices to
vary the POVM elements on a smaller Hilbert space, which corresponds to USD of two mixed
states with reduced rank.

Theorem 2 Reduction Theorem for Orthogonal Subspaces

Let us assume that supports Sρ1 and Sρ2 have no common subspace. Then one can construct
a decomposition

H = H′ ⊕H′⊥ (4.4)

with H′⊥ = S⊥1 + S⊥2 , S⊥1 = Kρ1

⋂
Sρ2 and S⊥2 = Kρ2

⋂
Sρ1 . The solution of the optimal

USD measurement problem can be given, with help of ΠS⊥1
and ΠS⊥2

, the projection onto S⊥1
and S⊥2 , respectively, inH = H′ ⊕H′⊥, by

Eopt1 = E′opt1 + ΠS⊥2

Eopt2 = E′opt2 + ΠS⊥1
(4.5)

Eopt0 = E′opt0

the operators E′opt0 , E′opt1 , E′opt2 form a POVM E′optk with support onH′ describing the optimal
USD measurement of a reduced problem defined by

ρ′1 =
1
N1

ΠH′ρ1ΠH′ , η′1 =
N1η1

N
, N1 = Tr(ρ1ΠH′)

ρ′2 =
1
N2

ΠH′ρ2ΠH′ , η′2 =
N2η2

N
, N2 = Tr(ρ2ΠH′) (4.6)

N = N1η1 +N2η2
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And finally, the optimal failure probability Qopt can be written in terms of Q′opt, the optimal
failure probability of the reduced problem, as

Qopt = NQ′opt. (4.7)

The third reduction theorem tells us that if we have an orthonormal basis in which matrices
of ρ1, ρ2 are simultaneously block diagonal then it suffice to optimally solve the USD of two
mixed states for each subblock.

Theorem 3 Reduction Theorem for two block diagonal density matrices

Suppose that ρ1 and ρ2 are block diagonal (in other words, there exists a set of orthogonal
projectors Πk such that

∑n
k=1 Πk = I and ρi =

∑n
k=1 ΠkρiΠk, i = 1, 2. Then the optimal

USD measurement can be chosen block diagonal where each block is optimal onto its restricted
subspace.

More precisely, the optimal USD measurement is characterized by POVM elements of the
form

Eopti =
n∑
k=1

Ekopti (4.8)

For k = 1, . . . , n, the operators Ek0
opt, Ek1

opt, Ek2
opt form a POVM Ekoptj with support on SΠk

describing the optimal USD measurement of the reduced problem defined by

ρk1 =
1
Nk

1

Πkρ1Πk, ηk1 =
Nk

1 η1

Nk
, Nk

1 = Tr(ρ1Πk)

ρk2 =
1
Nk

2

Πkρ2Πk, ηk2 =
Nk

2 η2

Nk
, Nk

2 = Tr(ρ2Πk) (4.9)

Nk = Nk
1 η1 +Nk

2 η2

And finally, the optimal failure probability can be written in terms ofQkopt, the failure probability
of the reduced problems, as

Qopt =
n∑
k=1

NkQ
opt
k . (4.10)

The problem one obtains after application of the above three theorem is called a Standard form of
USD of two mixed states. The three reduction theorems are powerful in a sense that all previously
(prior to P. Raynal thesis) solved cases of USD of two mixed states can be using these theorems
reduced to unambiguous discrimination of two known pure states. Therefore, we remind the
form of optimal measurement for this basic unambiguous discrimination problem.

4.1.1 Unambiguous discrimination of two known pure states

We are given one instance of a quantum system guaranteed to be either in a pure state |ψ1〉 or
in a pure state |ψ2〉. The states |ψ1〉, |ψ2〉 are known to us and appear with a priori probabilities
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Figure 4.1. Measurement directions for the unambiguous discrimination of two known pure states.

η1, η2 = 1 − η1. The goal is to design a measurement, which unambiguously distinguishes the
two possibilities with the highest possible probability. The existence of the inconclusive mea-
surement element E0 is implied by the fact that in quantum mechanics nonorthogonal quantum
states cannot be perfectly distinguished, when only finite number of copies is provided. Thus the
presence of inconclusive results is the price we are paying for the unambiguity of the measure-
ment.

This task was first formulated and solved for equal prior probabilities in works of Ivanovic,
Dieks and Peres [6–8] in 1987. However the solution for arbitrary prior probabilities was ob-
tained 8 years later by Jaeger and Shimony [9] in 1995.

The construction of the optimal measurement is relatively simple. First, one observes that the
relevant part of the Hilbert space is only a plane in which states |ψ1〉, |ψ2〉 lay. This is because the
support of the measurement also in the orthocomplement of the plane does not affect the overlap
with |ψi〉 and implies the same positivity conditions for the POVM elements. Secondly, the re-
quirement of unambiguity implies (see figure 4.1) E1 = c1|ψ⊥2 〉〈ψ⊥2 |, E2 = c2|ψ⊥1 〉〈ψ⊥1 |, where
ci ∈ R, |ψ⊥i 〉 is orthogonal to |ψi〉 and lays in the span of |ψ1〉, |ψ2〉. Finally, the maximization
of the probability of discrimination PD can be done explicitly, because it is constrained only by
the positivity of elements Ek (k=0,1,2), which have rank at most two.

The final form of the optimal measurement depends on the relation of the overlap λ =
|〈ψ1|ψ2〉| to the prior probability η1 = 1 − η2. For a given overlap of the states λ, there al-
ways exist three regimes:

• If η1 ∈ [0, λ2

1+λ2 ] the optimal measurement is a projective measurement, which either
unambiguously identify state |ψ2〉 or produce an inconclusive result:

Eopt1 = 0, Eopt2 = |ψ⊥1 〉〈ψ⊥1 |, Eopt0 = |ψ1〉〈ψ1|, (4.11)

The corresponding probability of discrimination is:

PD = η2(1− λ2) = (1− η1)(1− |〈ψ1|ψ2〉|2) (4.12)

• If η1 ∈ [ λ2

1+λ2 ,
1

1+λ2 ] the optimal measurement is a true POVM measurement, which con-
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Figure 4.2. Dependence of prior probability η1 transitions between the three regimes of the optimal POVM
on the overlap of discriminated pure states λ.

clusively identify both states ψ1, ψ2:

Eopt1 =
1−

√
η2
η1
λ

1− λ2
|ψ⊥2 〉〈ψ⊥2 |, Eopt2 =

1−
√

η1
η2
λ

1− λ2
|ψ⊥1 〉〈ψ⊥1 |, (4.13)

Eopt0 = I − Eopt1 − Eopt2 .

The resulting probability of discrimination is:

PD = 1− 2
√
η1η2λ = 1− 2

√
η1η2|〈ψ1|ψ2〉| (4.14)

• If η1 ∈ [ 1
1+λ2 , 1] the optimal measurement is a projective measurement, which either

unambiguously identify state |ψ1〉 or produce an inconclusive result

Eopt1 = |ψ⊥2 〉〈ψ⊥2 |, Eopt2 = 0, Eopt0 = |ψ2〉〈ψ2|, (4.15)

and gives the probability of discrimination:

PD = η1(1− λ2) = η1(1− |〈ψ1|ψ2〉|2) (4.16)

The position of the borders between the three regimes depending on the overlap of the states
λ is depicted on figure 4.2.

Let us now come back to the unambiguous discrimination of two general mixed states and
summarize some of the very general results found in the last two years by Kleinmann, Kamper-
mann, and Bruss. We will use notion of the weighted density operators γµ = ηµρµ µ = 1, 2.
As we already illustrated the subspace orthogonal to supports of discriminated states ρ1, ρ2 pro-
vides freedom in the choice of the optimal measurement. However, one might ask whether at
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least the part of the measurement operators (E′k) acting only on S, the span of the supports of
ρ1, ρ2, is uniquely determined. For this purpose we can work without loss of generality with
the proper USD measurements. This is because any USD measurement {Ek} can be turned
into proper USD measurement with the same operators E′k and the same probability of success.
Kleinmann [15] shows that a POVM {Ek} is a proper USD measurement if and only if E0 acts
as identity on S⊥, E0 ≥ 0, I−E0 ≥ 0, and γ1(I−E0)γ2 = 0. Hence, the inconclusive element
E0 uniquely determines the proper USD measurement.

For proper USD measurements the first two Raynal’s reduction theorems are show [15] to
commute and to be idempotent. Hence, only one application of each of them is needed. More-
over, the application of this two theorems can be done using Jordan basis of the supports of γ1, γ2.
The supports of the reduced states (denoted Sρ1 , Sρ2 ) are strictly skew, i.e. Sρ1

⋂
S⊥ρ2 = {0},

Sρ2
⋂
S⊥ρ1 = {0}, and do not have common subspace Sρ1

⋂
Sρ2 = ∅.

In general it is not known how to check whether the reduced states have some common
block diagonal structure. Nevertheless, in [14] Kleinmann et. al. shows that for operators
without common part of support two dimensional block diagonal structure exists if and only
if [γ1, γ1γ2γ1] = 0, [γ2, γ2(γ1)2γ2] = 0, and [γ1, γ1(γ2)2γ1] = 0. If these commutators vanish
then they provide a method to construct Jordan basis, which using the third Raynal’s reduction
theorem splits the problem into several independent discriminations of two known pure states.
Each of these subproblems has a unique solution (see Section 4.1.1) as well as the whole optimal
USD measurement that it forms.

However, proof of the uniqueness in general situation requires a different approach. Klein-
mann et. al. succeeded to rewrite the necessary and sufficient conditions on the optimality of
USD measurement by Eldar, Stojnic, and Hassibi [17] into operational form. If we denote by
Λ1 the projector onto kerγ2

⋂
S and by Λ2 the projector onto kerγ1

⋂
S then the rewritten

optimality conditions for proper USD measurement read:

(Λ1 − Λ2)E0(γ2 − γ1)(Λ1 + Λ2) ≥ 0 (4.17)
(Λ1 − Λ2)E0(γ2 − γ1)(I − E0) = 0 (4.18)

It turns out that Eq. (4.18) in a compact way expresses the following three conditions:

Λ1E0(γ2 − γ1)E0Λ1 ≥ 0 (4.19)
Λ2E0(γ1 − γ2)E0Λ2 ≥ 0 (4.20)
Λ1E0(γ2 − γ1)E0Λ2 = 0 (4.21)

An important consequence of the optimality conditions is the fact that optimal E0 and hence also
the whole optimal and proper USD measurement is completely determined by Π0 the projector
onto the support of E0. Another thing needed in the proof of the uniqueness is the knowledge
of the rank of the POVM element E0. For optimal proper USD measurements this can be shown
to be rankE0 = rankγ1γ2 + dim ker(γ1 + γ2). Let us consider two optimal proper USD mea-
surements {Ek}, {Ek}. Due to linearity of the probability rule and convexity of measurements
POVM { 1

2 (Ek + Ek)} is also optimal. However, all these three measurements must have the
same rank of the inconclusive POVM element. Positivity of operators E0, E0 implies that this
is possible only if all the three inconclusive elements have the same support given by projector
Π0. Since Π0 completely determines the POVM one concludes that the optimal and proper USD
measurement is unique.
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Rank of the conclusive POVM elements E1, E2 can be used to classify the optimal USD
measurement. For operators γ1, γ2 with strictly skew supports the ranks e1 = rankE1, e2 =
rankE2 obey (see [15]) inequalities e1 ≤ r, e2 ≤ r, r ≤ e1 + e2 ≤ 2r, where r = rankγ1 =
rankγ2. Among these (r + 1)(r + 2)/2 possibilities for (e1, e2) three are better understood.
Measurement types (0, r) and (r, 0) correspond to the so called single state detection, where
only state ρ2 or state ρ1, respectively, is unambiguously detected by projective measurement. For
fixed ρ1, ρ2 single state detection is always optimal for a prior probability η1 or η2 sufficiently
small6.

Measurement type (r, r) corresponds to the so called fidelity form measurement. The name
comes from the Uhlmann’s fidelity

F (ρ1, ρ2) = Tr(|√ρ1
√
ρ2|) = Tr(

√√
ρ1ρ2
√
ρ1),

which is closely related to this measurement. An upper bound on the probability of success
PD ≤ 1 − 2

√
η1η2|〈ϕ1|ϕ2〉| follows from considering USD measurement among maximally

overlapping purifications |ϕ1〉, |ϕ2〉 of states ρ1, ρ2. Uhlmann’s fidelity is equal to the overlap
|〈ϕ1|ϕ2〉|, so we have PD ≤ 1−2

√
η1η2 F (ρ1, ρ2) = 1−2 Tr(

√√
γ1γ2
√
γ1). It can be shown

[15], [32], [33] that this bound is tight7 if and only if γ1 ≥
√√

γ1γ2
√
γ1 and γ2 ≥

√√
γ2γ1
√
γ2.

In such case the inconclusive POVM element of optimal and proper USD measurement has the
following form:

E0 = I − (γ1 + γ2)−{√γ1(γ1 − F1)
√
γ1 +

√
γ2(γ2 − F2)

√
γ2}(γ1 + γ2)−,

where (γ1 + γ2)− denotes the inverse of γ1 + γ2 on its support and F1 =
√√

γ1γ2
√
γ1, F2 =√√

γ2γ1
√
γ2. Let us note that for fixed ρ1, ρ2 the region of η1, in which the fidelity form

measurement is optimal, might be empty. For USD of two known pure states this region covers
the whole interval between the two single state detections. Hence, the aforementioned types of
USD measurements describe the whole solution from Section 4.1.1 originally found by Jaeger
and Shimony. On the other hand, already for r = rankγ1 = rankγ2 = 2 there are weighted
density operators γ1, γ2 with strictly skew supports for which none of the aforementioned types
of USD measurement is optimal. Kleinmann et. al. applied their optimality criteria and for each
measurement type belonging to r = 2 reduced potentially optimal POVMs to a finite number of
candidates. Because of the uniqueness of the optimal POVM only one of the candidates really
exists and forms a valid USD measurement. Construction of the candidates is quite technical
and involves solving of high degree polynomials. For rank γ1 = r > 2 the measurement types
were not yet investigated. Unfortunately, they are not expected to give some clear insight into
the problem.

4.2 Quantum state comparison

In the classical world it is relatively easy to compare (quantitatively, as well as qualitatively)
features of physical systems and to conclude with certainty whether two systems exhibit the
same properties, or not. On the other hand, the statistical nature of the quantum theory restricts

6Region in which single state detection is optimal can be calculated exactly (see [15]) thanks to the optimality condi-
tions (4.17),(4.18)

7Here we still assume strictly skew supports of ρ1, ρ2
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our ability to provide deterministic conclusions/predictions even in the simplest experimental
situations. Therefore comparison of quantum states is different compared to classical situation.
To be specific, let us consider that we are given two independently prepared quantum systems of
the same physical origin (e.g., two photons). Our task is to determine unambiguously whether
these two photons have been prepared in the same polarization state. That is, we want to compare
the two states and we want to know whether they are identical or not. If we have just a single copy
of each state and no further information then the scenario according to which we first measure
each state does not work. For that we would need an infinite ensemble of identically prepared
systems. In this case also all other strategies would fail, because our knowledge about the states
is insufficient [34]. Simply if each photon can also be in any mixed state, then it is impossible
to test equality of states of the two photons. However, there are often situations in which we
know something more about the states we need to compare. For example, we might know that
each photon was prepared in the pure state. Barnett, Chefles, and Jex [19] were the first who
considered this kind of scenario for two qudits. We shall call it comparison of unknown states.
Here unknown means that there is still a continuum of possibilities for each of the compared
states. In the same paper Barnett et al. discuss also different kind of prior information we might
have about the compared states. We call the scenario comparison of states chosen from a finite
set, because the compared states are known to be randomly chosen from a finite set of possible
states |ϕi〉 with probability qi. These two scenarios have distinct features, therefore we discuss
them separately.

4.2.1 Comparison of states chosen from a finite set

The simplest version of this problem is a comparison of two quantum systems, each of them
guaranteed to be prepared either in state |ϕ1〉 or in state |ϕ2〉 with equal prior probabilities q1 =
q2 = 1/2. In this case two USD measurements can be used to determine the state of each
individual system. This strategy fails if one or both outcomes are inconclusive. Otherwise, we
can unambiguously conclude equality as well as difference of the compared states. Barnett et
al. proposed and proved optimality of the strategy that measures simultaneously both systems
and succeeds more often. It unambiguously detects both equality and difference of the states, but
in contrast to the former strategy it does not tell us in which states the systems were. However,
for this problem the emergence of inconclusive results is unavoidable and it is the price we are
paying for the unambiguity of the conclusions. Rudolph, Spekkens, and Turner reformulated this
comparison problem as discrimination the following two mixed states

ρ1 =
(q1)2

(q1)2 + (q2)2
|ϕ1, ϕ1〉〈ϕ1, ϕ1|+

(q2)2

(q1)2 + (q2)2
|ϕ2, ϕ2〉〈ϕ2, ϕ2|

ρ2 =
1
2
|ϕ1, ϕ2〉〈ϕ1, ϕ2|+

1
2
|ϕ2, ϕ1〉〈ϕ2, ϕ1| (4.22)

appearing with prior probabilities η1 = (q1)2 + (q2)2, η2 = 2q1q2 respectively. They consid-
ered q1 = q2 and using their upper and lower bounds on USD of mixed states confirmed the
optimality of the solution by Barnett et al.. Later, Kleinmann et. al. [35] for arbitrary q1, q2

used Raynal’s reduction theorems to reduce the problem to the discrimination of two known
pure states. Applications of this comparison problem in quantum information processing are e.g.
quantum fingerprinting [36] and quantum digital signatures [37].
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The problem was generalized in two ways. First, the extension to more quantum systems in
pure states was studied by Chefles et. al. [38]. While for two systems their states can be either
equal or different for more systems there are more possibilities. For example, one might ask
whether are all systems in the same state, called identicality confirmation, or there is at least
one different state. Similarly, we might want to know whether all the states of the N compared
systems are different from each other or at least one pair of states is the same.

Chefles et al. showed that identicality confirmation is possible8 if and only if the set of possi-
ble states {|ϕi〉}Mi=1 is linearly independent. Let us note that linear independence of the possible
states allows incoherent strategy, which determines each of the compared states by USD mea-
surement. Certainly, if no inconclusive outcome arise then the individual measurement outcomes
fix the conclusion. For two possible pure states (M = 2) and arbitrary N Kleinmann et. al. [35]
found the optimal solution for arbitrary prior probabilities q1, q2. They have used Raynal’s reduc-
tion theorems to turn the problem into USD of two mixed states of rank 2. Unfortunately, except
for q1 = q2, where the problems splits into two USD of two known pure states the solution is
cumbersome and we will not discuss it here.

Surprisingly, Chefles et al. in [38] found that linear independence restriction does not apply
if we want to unambiguously confirm that not all states are the same. This is exactly the point that
is used in comparison of unknown states. There we will present a strategy proposed by Chefles,
who also proved its optimality for wide range of circumstances.

Similar requirements as those above apply also to confirmation that all the compared systems
are in different states. Let us note that this task is meaningful only if M ≥ N i.e. there are
at least as many possible states as there are quantum systems. As Chefles et.al. in [38] shows
unambiguous confirmation of all states of the compared systems being different is possible9 if
and only if any N element subset of the set of possible states {|ϕi〉}Mi=1 is linearly independent.
Also universal strategy exists for this task, which means that the measurement has nonzero prob-
ability to detect that all systems are in different states for any N tuple of linearly independent
states. If any product state can enter the measurement then it is optimal (for details see [38]) to
project onto totally antisymmetric subspace Santi of the Hilbert space of N compared quantum
systems. If the projection succeeds then we conclude unambiguously that the states were linearly
independent and hence all mutually different. This happens with probability equal to 1

N ! det Γ,
where Γ is Gram matrix of the overlaps of the N compared states. On the other hand, projection
onto S⊥anti is inconclusive.

Except for looking on more than two quantum systems one can generalize comparison of
states chosen from a finite set also by allowing finite sets of mixed states ϕi. Kleinmann et.al.
considered this task in [35]. They showed that the identicality of states can be confirmed if and
only if Sϕi *

∑
k 6=i Sϕk , where Sϕi denotes the support of mixed state ϕi.

The unambiguous state comparison as introduced by Barnett et al. is a positive-operator-
value-measure (POVM) measurement that has two possible outcomes associated with the two
answers: the two states are different, or outcome of the measurement corresponds to an incon-
clusive answer.

8Here all N-tupples of states |ϕi〉⊗N are required to have nonzero probability of identicality confirmation.
9Here all such N-tupples of mutually different states are expected to be detectable with nonzero probability.
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4.2.2 Comparison of unknown states

In this section we consider comparison of states of quantum systems, which are known to be pure.
Apart from that we have no other information that would further restrict the set of possible states.
Hence, there is a continuum of possible states for each of the compared systems. It is important
to know that there is a nonzero prior probability ηsame, ηdiff of compared systems being in the
same or different states respectively. Otherwise, the conclusion of the comparison would be clear
just from our prior knowledge and no measurement would be needed. The first who formulated
and solved this task were Barnett, Chefles, and Jex [19]. They considered two qudits each of
them prepared in the arbitrary pure state. The task was to determine unambiguously whether the
qudits are in same or different states.

We shall discuss slightly more general version of the task solved by Chefles et al. in [38],
where N instead of two systems are compared and we have to decide whether are all systems in
the same state or not. More precisely we want to either unambiguously confirm identicality of the
compared states or prove existence of at least one difference among them. We will rephrase this
task in the spirit of unambiguous discrimination problem defined in Chapter 3. In this case state ρ
of theN compared systems plays the role of the tested constituentA. Our prior knowledge about
the possible constituents/states is the following: any pure product state ρ can emerge and with
probability ηsame state ρ = |ψ〉〈ψ|⊗N for some |ψ〉 ∈ H. Hence, the set of possibly emerging
states splits into two subsets S1, S2 that correspond to all states being identical and some states
being different, respectively. Moreover, the probability measure dA describing the occurrence
of the compared states should be uniform on the set Si (i = 1, 2), because we have no further
information, which would make some states from the set Si more favoured. This determines dA
to be ηsamedψ on S1 and ηdiffdψ1 . . . dψN on S2. Consequently, we can calculate the average
states/constituents to be

A1 ≡ ρ1 =
1

ηsame

∫
S1

AdA =
∫
|ψ〉〈ψ|⊗Ndψ (4.23)

A2 ≡ ρ2 =
1

ηdiff

∫
S2

AdA =
1

ηdiff

∫
ψ1 ⊗ . . .⊗ ψN ηdiffdψ1 . . . dψN

=
(∫
|ψ〉〈ψ|dψ

)⊗N
=

1
dN

I (4.24)

where we used ηsame =
∫
S1
dA, ηdiff =

∫
S2
dA and abbreviated ψk ≡ |ψk〉〈ψk|. Furthermore,

as it is shown for example in [39] the integral in Eq. 4.23 is equal to 1

(d+N−1
d−1 )P

sym
1...N , where

P sym1...N is the projector onto the totally symmetric subspace of H⊗N . The considered version of
comparison problem is thus equivalent to USD of mixed states ρ1 = N !(d−1)!

(d+N−1)!P
sym
1...N , ρ2 = 1

dN
I

appearing with prior probabilities ηsame, ηdiff , respectively. Kernel of ρ2 is a trivial subspace
{0}, which implies that state ρ1 can not be unambiguously detected. This means that it is im-
possible to unambiguously confirm identicality of the compared states. This impossibility is
suggested also by the linear dependence of the possible states that form a continuum of all pure
states inH. Hence, E1 = 0 and the Raynal reduction theorems quickly tell us that for ηsame 6= 0
optimal POVM has E2 = I − P sym1...N , E0 = P sym1...N . Simply the totaly symmetric subspace is
common support of ρ1, ρ2 and its orthocomplement is due to the second Raynal’s reduction the-
orem optimally used to detect state ρ2 i.e. to indicate existence of at least one difference among
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the compared states. On average the success probability reads (see Eq. 3.4)

Psucc = ηsameTr(E1ρ1) + ηdiffTr(E2ρ2) = ηdiff (1− 1
dN

Tr(P sym1...N )). (4.25)

It depends on the ratio of dimensions of the totaly symmetric subspace
(
d+N−1
d−1

)
and the whole

Hilbert space H⊗N . We may also ask what is the probability of detecting at least one difference
for particular states |ψ1〉, . . . |ψN 〉 entering the comparison measurement. Chefles et. al. showed
that this conditional probability is given by the permanent of Γ the Gram matrix of overlaps of
the compared states

P (|ψ1〉, . . . |ψN 〉) = Tr(E2ψ1 ⊗ . . .⊗ ψN ) = 1− 1
N !

perΓ, (4.26)

where per Γ =
∑
σ∈S(N) Γ1σ(1) . . .ΓNσ(N) =

∑
σ∈S(N)〈ψ1|ψσ(1)〉 . . . 〈ψN |ψσ(N)〉. More-

over, Chefles et.al. in [38] showed that the above measurement is optimal for detection of at least
one difference whenever all states |ψ〉〈ψ|⊗N |ψ〉 ∈ H can appear. This can be seen also through
average states/constituents. If all systems can be identically prepared in any pure state |ψ〉 then
state ρ1 has the same kernel whatever is the measure dA on the set S1. Only the kernel of ρ1 can
be used for detection of at least one difference10, hence E2 = I − P sym1...N obviously maximizes
Tr(E2ρ2) for any ρ2.

4.2.3 Comparison of two ensembles of pure states

The aim of this part of the paper is to find the optimal unambiguous state comparison procedure
in the case we have more copies of the two quantum states which we need to compare. The
compared states are guaranteed to be pure and to belong to a d-dimensional Hilbert spaceH. The
dimensionality of the Hilbert space is known, otherwise the only information about the states is
the probability of them being the same ηsame 6= 0. In more physical terms this means that we
have two preparatorsA andB. First preparator produce the state |ψ1〉, while the second produces
state |ψ2〉. Suppose we are given k copies of states produced by the preparator A and l copies of
states originated from the second preparator B. We want to decide whether the states prepared
by the preparatorsA andB are the same, or different. Thus, want to distinguish between two sets
of states S1 = {|ψ〉⊗kA ⊗ |ψ〉

⊗l
B : ψ ∈ H} and S2 = {|ψ1〉⊗kA ⊗ |ψ2〉⊗lB : |ψ1〉 6= |ψ2〉}. The first

set corresponds to the situation when the two preparators prepare the same (though unknown)
states, while the second set corresponds to the situation when the prepared states are different.

10The requirement can be mathematically stated as E2 ≤ I − P sym
1...N and the claim follows using any pure state

decomposition of ρ2
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In the same way as in the previous section we can calculate the average states to be:

A1 ≡ ρ1 =
1

ηsame

∫
S1

AdA =
∫
|ψ〉〈ψ|⊗k+ldψ

=
1

dk+l
P sym1...k+l (4.27)

A2 ≡ ρ2 =
1

ηdiff

∫
S2

AdA =
1

ηdiff

∫
ψ⊗k1 ⊗ ψ⊗l2 ηdiffdψ1dψ2

=
∫
|ψ〉〈ψ|⊗kdψ ⊗

∫
|ψ〉〈ψ|⊗ldψ

=
1

dkdl
P sym1...k ⊗ P

sym
k+1...k+l , (4.28)

where we abbreviated by dk ≡
(
d+k−1
d−1

)
the dimension of the symmetric subspace of k systems.

Also for more copies of the two compared states it is not possible to unambiguously conclude
that the compared states are the same, because support of ρ1 is included in the support of ρ2

i.e. P sym1...k+l ≤ P sym1...k ⊗ P
sym
k+1...k+l. Thus, E1 = 0 and the comparison procedure succeeds with

the probability of detecting the difference of the compared states Psucc = ηdiffTr(E2ρ2). The
measurement for detecting of at least one difference, discussed in the previous section, is optimal
also for this task, because it optimally reveals any dissimilarity from the totally symmetric states
ofN = k+ l systems. Raynal’s reduction theorems lead to the same proper USD measurement11

E1 = 0, E2 = I − P sym1...N , E0 = P sym1...N . (4.29)

The optimal measurement can be derived also directly by optimizing the probability of suc-
cess under the constraint of unambiguity and preservation of positivity and normalization of the
POVM elements. We present this derivation, because it will guide us in the case when the aver-
age constituent approach can not be used. For simplicity we will omit the indexes A,B in the
rest of the section.

In order to construct the optimal POVM for detecting the difference of the compared states
we first use the unambiguity requirement expressed by the (no-error) condition

∀|ψ〉 ∈ H, T r[E2(|ψ〉〈ψ|)⊗k+l] = 0 . (4.30)

that guarantees that whenever we obtain the resultE2 we can conclude that the states were indeed
different. Integrating uniformly over all pure states Spure = {|ψ〉 ∈ H} we obtain an equivalent
no-error condition that reads

0 =
∫
Spure

dψTr
[
E2(|ψ〉〈ψ|)⊗k+l

]
= Tr[E2∆] , (4.31)

where

∆ =
∫
Spure

dψ(|ψ〉〈ψ|)⊗k+l =
1(

k+l+d−1
d−1

)P sym1...N , (4.32)

11There is freedom provided by the trivial subspace and amounts to division of I − P sym
1...k ⊗ P

sym
k+1...k+l among Ei.
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and P sym1...N is the projector onto a completely symmetric subspace of H⊗(k+l). Because of the
positivity of the operators E2 and ∆ the equation (4.31) implies that these two operators have
orthogonal supports (see Lemma 1 in Chapter 2). Hence, the biggest support operator E2 can
have is the orthogonal complement to the support of ∆. POVM element E2 is an effect (0 ≤
E2 ≤ I) so the latter requirement can be written as E2 ≤ I − P sym1...N . The average success
probability of detecting the difference between the compared states can be written as

Psucc ≡ Psucc(k, l) = ηsame.0 + ηdiff

∫
Spure

∫
Spure

dψ1dψ2P (|ψ1〉, |ψ2〉),

P (|ψ1〉, |ψ2〉) = 〈ψ1|⊗k ⊗ 〈ψ2|⊗lE2|ψ1〉⊗k ⊗ |ψ2〉⊗l, (4.33)

The requirement on the support of E2 implies inequality 〈Ψ|E2|Ψ〉 ≤ 〈Ψ|I − P sym1...N |Ψ〉
∀|Ψ〉 ∈ H⊗k+l, which is saturated if E2 = I − P sym1...N . This choice obviously maximizes
P (|ψ1〉, |ψ2〉) ∀|ψ1〉, |ψ2〉 ∈ H and consequently also Psucc(k, l). Thus, the optimal comparison
of k and l copies of unknown pure states prepared by the two preparators is accomplished by the
projective measurement given in Eq. (4.29).

In what follows we calculate the probability of revealing the difference of the states |ψ1〉,
|ψ2〉 measured by the optimal comparator, i.e.

P (|ψ1〉, |ψ2〉) = Tr[(I − P sym1...N )|Ψ〉〈Ψ|]
= 1− 〈Ψ|ΨS〉 , (4.34)

where |Ψ〉 ≡ |ψ1〉⊗k ⊗ |ψ2〉⊗l and

|ΨS〉 ≡ P sym1...N |Ψ〉 =
1

(k + l)!

∑
σ∈S(k+l)

σ(|Ψ〉) . (4.35)

In the above formulas we denoted by S(N) a group of permutations of N elements and σ(|Ψ〉)
denotes the state |Ψ〉 in which subsystems have been permuted via the permutation σ. For exam-
ple, a permutation νk exchanging only the k-th and the (k + 1)-th position acts as

νk(|Ψ〉) = |ψ1〉⊗k−1|ψ2〉|ψ1〉|ψ2〉⊗l−1 . (4.36)

The state |Ψ〉 hasN subsystems definingN positions, which are interchanged by the permutation
σ. Let us denote by N1 the subset of the first k positions (originally copies of |ψ1〉) and by N2

the remaining l positions (originally occupied by systems in the state |ψ2〉). For our purposes it
will be useful to characterize each permutation σ ∈ S(k+ l) by the number of positions m in the
subset N1 occupied by subsystems originated from the subset N2. Literally, m(σ) is the number
of states |ψ2〉 moved into the first k subsystems (N1) by the permutation σ acting on the state
|Ψ〉. Using this number we can write

〈Ψ|σ(Ψ)〉 = |〈ψ1|ψ2〉|2m(σ) . (4.37)

For instance,

〈Ψ|νk(|Ψ〉) = 〈ψ1|⊗k〈ψ2|⊗l|ψ1〉⊗k−1|ψ2〉|ψ1〉|ψ2〉⊗l−1

= |〈ψ1|ψ2〉|2m(νk) = |〈ψ1|ψ2〉|2 .
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In order to evaluate the scalar product

〈Ψ|ΨS〉 =
1

(k + l)!

∑
σ∈S(k+l)

〈Ψ|σ(|Ψ〉). (4.38)

we need to calculate the number of permutations Cm with the same value m = m(σ). For each
permutation σ there are exactly k!l! permutations leading to the same state σ(|Ψ〉). The number
of different quantum states σ1(|Ψ〉), σ2(|Ψ〉), . . . having the same overlap |〈ψ1|ψ2〉|2m with the
state |Ψ〉 (i.e. the same m) is

(
k
m

)(
l
m

)
. This is because each such state is fully specified by enu-

merating m from the first k subsystems to which |ψ2〉 states were permuted and by enumerating
m from the last l subsystems to which |ψ1〉 states were moved. To sum up our derivation, we
have Cm = k!l!

(
k
m

)(
l
m

)
, and consequently Eq. (4.38) can be rewritten as

〈Ψ|ΨS〉 =
min(k,l)∑
m=0

(
k
m

)(
l
m

)(
k+l
k

) |〈ψ1|ψ2〉|2m . (4.39)

The optimal probability reads

P (|ψ1〉, |ψ2〉) = 1−
min(k,l)∑
m=0

(
k
m

)(
l
m

)(
k+l
k

) |〈ψ1|ψ2〉|2m . (4.40)

Before calculating the average probability of success Psucc(k, l) it is useful to evaluate the mean
values of the overlaps

|〈ψ1|ψ2〉|2m =
∫
Spure

∫
Spure

dψ1dψ2〈ψ1|ψ2〉m〈ψ2|ψ1〉m

=
∫
Spure

dψ1〈ψ1|⊗m
(∫

Spure

dψ2|ψ2〉〈ψ2|⊗m
)
|ψ1〉⊗m

=
1(

m+d−1
d−1

) ∫
Spure

dψ1〈ψ1|⊗mP sym1...N |ψ1〉⊗m

=
1(

m+d−1
d−1

) , (4.41)

where we exploited the identity in Eq. (4.32).
We will insert Eqs. (4.40) and (4.41) into the definition (4.33) and utilize the Vandermonde’s

identity

(
a+ b

r

)
=

r∑
m=0

(
a

m

)(
b

r −m

)
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to evaluate the summation to obtain

1
ηdiff

Psucc(k, l) = 1− 1(
k+l
k

) min(k,l)∑
m=0

(
k
m

)(
l
m

)(
m+d−1
d−1

)
= 1− k!(d− 1)!

(k + d− 1)!
1(
k+l
k

) k∑
m=0

(
k + d− 1
k −m

)(
l

m

)

= 1− k!(d− 1)!
(k + d− 1)!

(
k+l+d−1

k

)(
k+l
k

)
= 1−

(
k+l+d−1
k+l

)(
k+d−1
k

)(
l+d−1
l

) .
The previous steps are valid for k < l, however we can perform analogous calculation for l ≤ k
and obtain the same final result, which can be nicely written as

Psucc(k, l) = ηdiff

(
1−

dim(H⊗k+l
sym )

dim(H⊗ksym) dim(H⊗lsym)

)
, (4.42)

whereH⊗ksym stands for a completely symmetric subspace ofH⊗k. Thus, we see that the success
rate is essentially given by one minus the ratio of dimensionality of the failure subspace to the
dimension of the potentially occupied space.

Additional copy of an unknown state

Next we will analyze properties of P (|ψ1〉, |ψ2〉) with respect to k, l. In particular, we will
study how it behaves as a function of the number k, l of available copies of the two compared
states. We are going to confirm a very natural expectation that any additional copy of one of the
compared states always increases the probability of success. Stated mathematically, it suffices to
prove that

P (|ψ1〉, |ψ2〉, k + 1, l) ≥ P (|ψ1〉, |ψ2〉, k, l), (4.43)

since P (|ψ1〉, |ψ2〉, k, l) is symmetric with respect to k, l. For k ≥ l

δ ≡ P (|ψ1〉, |ψ2〉, k + 1, l)− P (|ψ1〉, |ψ2〉, k, l)

=
1(
k+l
k

) min(k,l)∑
m=0

(
1− (k + 1)2

(k + 1−m)(k + l + 1)

)
×
(
k

m

)(
l

m

)
|〈ψ1|ψ2〉|2m . (4.44)

For k < l the additional term −|〈ψ1|ψ2〉|2k+2
(
k+l+1
k+1

)
/
(
l

k+1

)
appears in the expression for δ,

however it is possible to proceed in the same way in both cases. We can think of δ as being
a polynomial in x ≡ |〈ψ1|ψ2〉|2, which vanishes for x = 1, because P (|ψ〉, |ψ〉) = 0. The
coefficients am of the polynomial δ =

∑
m amx

m are nonnegative for m ≤ (k+ 1)l/(k+ l+ 1)
and negative otherwise. Therefore, we can apply the Lemma from Appendix A.1 to conclude
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that δ(x) ≥ 0 for x ∈ [0, 1], which is equivalent to Eq. (4.43). We have proved that for any pair
of compared states the additional copies of the states improve the probability of success, so the
statement holds also for the average success probabilities, i.e.

Psucc(k + 1, l) ≥ Psucc(k, l) . (4.45)

Optimal choice of resources

Now we consider the situation when the total number N of copies of the two states is fixed,
i.e. N = k + l. Our aim is to maximize the success probability with respect to the splitting of
the N systems into k copies of the state |ψ1〉 and l copies of the state |ψ2〉. In order to find the
solution to this problem we prove the following inequality

Λ ≡ P (|ψ1〉, |ψ2〉, k + 1, N − k − 1)− P (|ψ1〉, |ψ2〉, k,N − k)
≥ 0 for k ≤ bN/2c , (4.46)

where bac indicates the floor function, i.e. the integer part of the number. The previous inequality
automatically implies Λ ≤ 0 for k > bN/2c, because P (|ψ1〉, |ψ2〉, k, l) is symmetric in k and
l. Therefore, this would mean that the optimal value is k = bN/2c.

Thus, to complete the proof it is sufficient to confirm the validity of Eq. (4.46). This is done
in the same way as for Eq. (4.43) i.e. by looking on Λ as on a polynomial in x ≡ |〈ψ1|ψ2〉|2 and
showing that the assumptions of the Lemma from Appendix A.1 hold.

Hence, given the total number N of copies it is most optimal to have half of them in the state
|ψ1〉 and the other half in the state |ψ2〉. In this case the average probability of success

Psucc(bN/2c, N − bN/2c) = max
k

Psucc(k,N − k) (4.47)

is maximized.
More quantitative insight into the behavior of P (|ψ1〉, |ψ2〉) and Psucc(k, k) is presented in

figures (4.3) and (4.4). The figure (4.3) illustrates that the more copies of the compared states
we have and the smaller is their overlap, the higher is the probability of revealing the difference
between the states. The overlap of a pair of randomly chosen states decreases with the dimension
of H. Therefore the mean probability Psucc(k, k) for a fixed number of copies k grows with the
dimension d. This fact is documented in Fig. 4.4.

Comparison with large number of copies

Let us now study the situation when k = 1 and l→∞. In this case the sum in Eq. (4.40) has
only two terms, which can be easily evaluated to obtain

P (|ψ1〉, |ψ2〉) = lim
l→∞

(
1− 1 + l|〈ψ1|ψ2〉|2

l + 1

)
=

= 1− |〈ψ1|ψ2〉|2 . (4.48)

In this limit the same probability of success can be reached also by a different comparison strat-
egy. We can first use the state reconstruction techniques to precisely determine the state |ψ2〉 and
then by projecting the remaining |ψ1〉 state onto I − |ψ2〉〈ψ2| reveal the difference between the
states.
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Figure 4.3. The probability of revealing the difference between the compared states |ψ1〉, |ψ2〉. The gray
dashed lines are valid for the optimal state comparison among all pure states. Each line corresponds to a
different number of copies of the compared states. The solid black lines indicate the performance of the
optimal comparison if we are restricted to coherent states only.
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Figure 4.4. The mean probability of the detection of a difference between the compared states |ψ1〉, |ψ2〉
as a function of the dimension of the Hilbert space of the compared systems.

For the limit, where the number of both compared states goes to infinity simultaneously
(k = l→∞), from Eq. (4.42) we recover for any finite d the classical behavior i.e.

lim
k→∞

Psucc(k, k) = 1 . (4.49)

Therefore we can conclude that larger the number of the copies k and l of the two states
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higher the probability to determine that the two states are different is. In the limit k = l → ∞
we essentially obtain a classical comparison problem.

4.2.4 Comparison of two ensembles of coherent states

In any quantum information processing the prior knowledge about the system in which informa-
tion is encoded plays an important role. The most explicit example one can name is the state
estimation when the prior knowledge about the state is crucial. In what follows we will ana-
lyze the quantum state comparison and instead of assuming that the two compared states are
totally arbitrary we will restrict a class of possible states. To be more specific, we will consider
a harmonic oscillator and we focus our attention on comparison of two ensembles of coherent
states.

Coherent states [40] are defined as eigenstates of the annihilation operator a (acting onH∞)
associated with eigenvalues taking arbitrary value in the complex plane. The set of coherent
states is defined as

Scoh = {|α〉 ∈ H∞ : α ∈ C , a|α〉 = α|α〉} . (4.50)

The first, who considered unambiguous quantum state comparison of coherent states were
E. Andersson, M. Curty and I. Jex [41]. They proposed a simple optical setup realizing the
comparison of a pair of coherent states, which consisted of a beamsplitter and a photodetector.
The optimality of the setup was an open question, hence in [25] we proved optimality of the setup
and derived its POVM description. The aforementioned results are a special case (k = l = 1) of
the comparison of two ensembles of coherent states, which we shall investigate now. Our next
task is two-fold: Firstly we introduce an optimal protocol for comparison of two ensembles of
coherent states. Secondly we propose an experimental realization of the optimal coherent states
comparator.

Following the same line of reasoning as in the previous section the measurement operator
Ecoh

1 unambiguously revealing that the coherent states (k copies of state |α1〉 and l copies of the
state |α2〉) are different must obey the following “no-error” conditions

Tr
(
Ecoh

1 (|α〉〈α|)⊗k+l
)

= 0 ∀ |α〉 ∈ Scoh , (4.51)

or equivalently

0 =
∫
Scoh

dα Tr
(
Ecoh

1 |α〉〈α|⊗k+l
)

= Tr(Ecoh
1 ∆) , (4.52)

where dα is an arbitrary positive measure such that its support contains all coherent states12.
Since the operators Ecoh

1 and ∆ are positive, the identity Tr(Ecoh
1 ∆) = 0 implies that their

supports are orthogonal. As before (in the case of all pure states) it is optimal to choose Ecoh
1 to

be a projector onto the orthocomplement of the support of ∆. Denoting by ∆N
coh the projector

onto the support of ∆ we can write Ecoh
1 = I −∆N

coh. As it is shown in Appendix A.2 using a
properly normalized Lebesgue measure on a complex plane we can write

∆ =
N

π

∫
C
dα|α〉〈α|⊗N = ∆N

coh . (4.53)

12Under
R

C dβf(β) we mean
R

R2 dxdyf(x+ iy).
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Consider |Ψ〉 = |α1〉⊗k⊗|α2〉⊗l to be a general input state of the coherent-state comparison
machine. Using the Eq.(4.53) we obtain the following expression for the success probability
P (|α1〉, |α2〉)

P (|α1〉, |α2〉) = Tr
(
Πcoh

1 |Ψ〉〈Ψ|
)

= 1− 〈Ψ|∆k+l
coh |Ψ〉

= 1− k + l

π

∫
C
dβ|〈α1|β〉|2k|〈α2|β〉|2l

= 1− k + l

π

∫
C
dβe−k|α1−β|2−l|α2−β|2

= 1− k + l

π
e−

kl
k+l |α1−α2|2

∫
C
dβe

−
∣∣∣√k+lβ− 1√

k+l
(kα1+lα2)

∣∣∣2
= 1− e−

kl
k+l |α1−α2|2 , (4.54)

where we used the following modification of the rectangular identity

k |α1 − β|2 + l|β − α2|2

=
∣∣∣√k + lβ − kα1 + lα2√

k + l

∣∣∣2 +
kl

k + l
|α1 − α2|2.

Optical setup for unambiguous comparison of coherent states

In this subsection we will describe an optical realization of an unambiguous coherent-states
comparator that achieves the optimal value of the success probability (see above). The exper-
imental setup we are going to propose will consist of several beam-splitters and only a single
photodetector. A beam-splitter acts on a pair of coherent states in a very convenient way, in
particular, the output beams remain unentangled and coherent, i.e.

|α〉 ⊗ |β〉 7→ |
√
Tα+

√
Rβ〉 ⊗ | −

√
Rα+

√
Tβ〉 , (4.55)

where T,R stand for transmissivity and reflectivity, respectively, and T + R = 1. The afore-
mentioned property of the beam-splitter transformation enables us to consider each of its outputs
separately.

Our setup is composed of k + l − 1 beam-splitters and one photodetector. The k − 1 beam-
splitters are used to “concentrate” (focus) the information encoded in k copies of the first state.
Namely, they are arranged according to Fig. 4.5 and they perform the unitary transformation
|α1〉⊗k 7→ |

√
kα1〉 ⊗ |0〉⊗k−1. To do this the transmissivities of the beam-splitters must be set

as follows

Tj =
j

j + 1
Rj =

1
j + 1

.

Similarly, l − 1 beam-splitters are used to “concentrate” the l copies of the second state. The
“concentrated” states |

√
kα1〉, |

√
lα2〉 are then launched into the last beam-splitter in which the

comparison of input coherent states is performed. It performs the following unitary transforma-
tion

|
√
kα1〉 ⊗ |

√
lα2〉 7→ |

√
Tfkα1 +

√
Rf lα2〉

⊗|
√
Tf lα2 −

√
Rfkα1〉 , (4.56)
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Figure 4.5. The beam-splitter setup for the comparison of two finite-size ensembles composed of k copies
of the coherent state |α1〉 and l copies of the coherent state |α2〉, respectively.

whereRf , Tf is the reflectivity and transmissivity of the last beam-splitter. To obtain the vacuum
in the upper output (see Fig. 4.5) we need to adjust the values of reflectivity and transmissivity
so that the identity kRf = lTf holds, i.e.

Tf =
k

k + l
, Rf =

l

k + l
.

Finally, a photodetector will measure the presence of photons in the upper output port of the
last beam-splitter (see Fig. 4.5). If the two compared states are identical, in the output port we
have zero photons - that is this port is in the vacuum state. Therefore a detection of at least one
photon unambiguously indicates the difference between the compared states. On the other hand
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the observation of no photons is inconclusive, since each coherent state has a nonzero overlap
with the vacuum. As a result we obtain the success probability

P (|α1〉, |α2〉) = 1− |〈0|
√

kl

k + l
(α2 − α1)〉|2

= 1− e−
kl
k+l |α1−α2|2 , (4.57)

which is the optimal one. Analyzing the last equation we find out that P (|α1〉, |α2〉,m, n) >
P (|α1〉, |α2〉, k, l) if and only if mn

m+n > kl
k+l . This equivalence implies that P (|α1〉, |α2〉, k +

1, l) > P (|α1〉, |α2〉, k, l). Thus, also in the case of coherent states the additional copy of one
of the compared states helps to increase the mean success of the state comparison. For a fixed
number of copies of both compared statesN the fraction k(N−k)/N is maximized for k = N/2.
Therefore, the probability of revealing the difference of the states is maximized if k = l.

4.2.5 Summary

Let me summarize my original results on the comparison of ensembles of quantum states derived
in this part of the chapter. The difference of arbitrary unknown pure states |ψ1〉, |ψ2〉 can be
unambiguously detected with the probability

P (|ψ1〉, |ψ2〉) = 1−
min(k,l)∑
m=0

(
k
m

)(
l
m

)(
k+l
k

) |〈ψ1|ψ2〉|2m , (4.58)

providing that we have k copies of state prepared by the first preparator and l copies produced
by the second preparator. This result does not depend on the dimension of the system in contrast
to the average success probability, which reads

Psucc(k, l) = ηdiff

(
1−

dim(H⊗k+l
sym )

dim(H⊗ksym) dim(H⊗lsym)

)
. (4.59)

Given the a priori knowledge that the states are coherent one can increase the probability (see
Fig. 4.3) to

P (|α1〉, |α2〉) = 1− e−
kl
k+l |α1−α2|2 . (4.60)

The improvement is significant (Fig. 4.3) for small number of copies.
We also addressed the problem of maximizing the success probability providing that the total

number of available copies is fixed. We have shown that it is optimal if the number of copies is
the same, i.e. k = l = N/2. In the limit of the large number of copies the comparison approach
reduces to “classical” comparison based on the quantum-state estimation.

We have proposed an optical implementation of the optimal quantum-state comparator of
two finite ensembles of coherent states. This proposal is relatively easy to implement, since it
consists only of N − 1 beam-splitters and a single photodetector. Unfortunately, the success of
unambiguous state comparison is very fragile with respect to small imperfections. The reason
is that the device can be only used for pure states. Therefore our device can be used only in the
situation when sources of a noiseN can be modeled as quantum channels preserving the validity
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of the no-error conditions Tr(Ecoh
1 N [∆N

coh]) = 0. An example of such noise is an application of
random unitary channel (simultaneously on all copies) transforming coherent states into coherent
states.

4.3 Unambiguous identification

Unambiguous identification is a discrimination task in which the description of the quantum
states we should distinguish is partly given by the classical information and partly by the states
of additional quantum systems. In order to unify the notation of the problems which fit into
this concept we first define a sufficiently wide framework. Next, we summarize the previously
known results. The aim is to sketch the scenarios, which were solved and name the techniques
that were used. Afterwards we explain the relation of UI to discrimination of mixed states,
which can be used to re-derive many of the known results in a uniform fashion. The remaining
part of the chapter is devoted to investigation of influence of prior knowledge on unambiguous
identification. This means we analyze how the distribution of the prior information between
quantum states and the classical description affects the probability of success and the form of
optimal measurement.

4.3.1 Definition of the framework

The problems considered further in this chapter can be described within the following framework.
Suppose we are given identical quantum systems, each of them living in d dimensional Hilbert
space H. The systems are divided into M + 1 groups: A,B,C, . . ., containing nA, nB , nC ,
. . . systems respectively. Systems in one group are prepared in the same unknown pure state.
Furthermore state of systems in A is guaranteed to be the same as the state of systems in one of the
other groups. The task further denoted as Unambiguous Identification(UI) is to unambiguously
recognize which group systems in A match. Strategy working for any choice of pure states we
denote as universal UI. From mathematical point of view we should discriminate among the
following M types of states:

|Ψi〉ABC... ≡ |ψi〉⊗nAA ⊗ |ψ1〉⊗nBB ⊗ |ψ2〉⊗nCC ⊗ . . . i = 1, 2, . . . ,M (4.61)

via a positive operator value measure (POVM) consisting of M + 1 elements. Element Ei will
correspond to correct identification of |Ψi〉 type of state and E0 corresponds to an inconclusive
result. These elements must obey no error conditions (equation (4.62)) and constitute a valid
POVM (equations (4.63)):

∀i 6= j Tr[EiΨj ] = 0, Ψj ≡ |Ψj〉〈Ψj | (4.62)

Ei ≥ 0,E0 ≥ 0, E0 +
M∑
i=1

Ei = I. (4.63)

We assume that states of the type |Ψi〉 appear with a prior probability ηi. We will refer to states
|ψi〉 as being reference states and denote the state of individual quantum systems in group A as
an unknown state. The performance of the UI measurement can be quantified by a probability of
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identification for a particular choice of reference states

P (|ψ1〉, . . . , |ψM 〉) =
M∑
i=1

ηiTr[EiΨi] (4.64)

However, more adequate figure of merit is its average value∫
P (|ψ1〉, . . . , |ψM 〉) χ(|ψ1〉, . . . , |ψM 〉) dψ1 . . . dψM ,

where χ(|ψ1〉, . . . , |ψM 〉) is the probability distribution describing our knowledge about the
choice of reference states. Usually, there is no reason to expect any correlations in the choice
of reference states and hence our classical information leads to an assumption that the reference
states are independently and uniformly chosen from subset of pure states, further denoted by S.
Consequently, the average probability of identification reads

Psucc ≡ P(S) =
∫
S

. . .

∫
S︸ ︷︷ ︸

M

P (|ψ1〉, . . . , |ψM 〉) dψ1 . . . dψM (4.65)

and the optimality of UI measurement is defined with respect to it. However, we will see that
optimization of P (|ψ1〉, . . . , |ψM 〉) is in some situations closely related to maximization of the
average probability of identification. We denote the set of all pure states of a d-dimensional
quantum system Spure and the subscript of P will indicate the used UI measurement.

4.3.2 Previous work

Quantum information processing most often deals with systems of qubits. Qubits are two-
dimensional quantum systems, which implies that also Hilbert space for systems of small number
of qubits is relatively simple and allow different tasks to be solved explicitly. Thus, many tasks
are first formulated and solved for qubits and afterwards the solution is generalized to qudits.
This was the case also for unambiguous identification.

Qubits

One copy

J. Bergou and M.Hillery [42] first formulated and solved the basic version of the UI problem.
In this case we have only one copy of unknown and two reference states and all of them are
qubits (M = 2, nA = nB = nC = 1, d = 2). Thus two types of states:

|Ψ1〉ABC ≡ |ψ1〉 ⊗ |ψ1〉 ⊗ |ψ2〉 |Ψ2〉ABC ≡ |ψ2〉 ⊗ |ψ1〉 ⊗ |ψ2〉. (4.66)

enter the UI measurement, which distinguishes whether state of qubit A matches the state of
qubit B or qubit C. The optimal measurement should maximize the mean probability of identifi-
cation P(Spure). Bergou and Hillery first derived anzatz for the measurement from the symmetry
considerations. The result of it’s parameter optimization depends on the prior probabilities η1,



Unambiguous tasks for states 693

η2. There are three different regimes in which the optimal measurement is either two-valued
projective or a true POVM measurement with three outcomes:

0 ≤ η1 < 1/5 E1 = 0, E2 = PasymAB ⊗ IC ,

1/5 ≤ η1 ≤ 4/5 E1 = λPasymAC ⊗ IB , E2 =
4− 4λ
4− 3λ

PasymAB ⊗ IC , (4.67)

4/5 < η1 ≤ 1 E1 = PasymAC ⊗ IB , E2 = 0,

where Pasym ≡ |ψ−〉〈ψ−| is a projector onto the antisymmetric subspace of the two qubit
Hilbert spaceH⊗2, |ψ±〉 = 1/

√
2(|01〉± |10〉) and λ = 2

3 (2−
√

η2
η1

). The inconclusive result is
associated with the POVM element E0 = I − E1 − E2. The optimal UI measurement is closely
related to quantum state comparison as we illustrate in next few lines. This relation will later
serve us also as a motivation for the proposition of the UI measurement for coherent states.

Relation to Quantum state comparison

Let us examine how the optimal UI works for a prior probability η1 <
1
5 . The measurement

(4.67) has effectively two outcomes, which are either unambiguously identifying the more prob-
able |Ψ2〉ABC type of state or signaling inconclusive result. The unambiguous decision is not
based on testing the equality of the unknown and the second reference state, but rather on reveal-
ing the difference between unknown and the first reference state – stored in qubits AB. Hence,
qubit C is not used and the measurement distinguishes antisymmetric and symmetric states of the
subsystem AB. States of the type |Ψ1〉 are symmetric in qubits AB, whereas |Ψ2〉 type of states
are not. Therefore, the projection onto antisymmetric subspace of qubits AB unambiguously
identifies |Ψ2〉 type of state and the projection onto symmetric subspace is inconclusive, because
of |Ψ2〉 having overlap with it. This is exactly what happens in quantum state comparison of
two unknown pure states. Two equal states are in symmetric subspace, therefore projection onto
antisymmetric subspace unambiguously indicate that the compared states were different. On
the other hand, projection onto symmetric subspace is inconclusive, because each pair of pure
states has nonzero overlap with it. Thus, for η1 <

1
5 the optimal UI measurement is a quantum

state comparison of unknown and the less probable reference state. The corresponding mean
probability of identification is 1

4 (1 − η1). Analogous consideration hold for η1 >
4
5 for which

P(Spure) is 1
4 (1 − η2) = 1

4η1. For equal prior probabilities the optimal POVM elements E1,
E2 are 2/3 multiples of the above mentioned quantum state comparison measurement elements
PasymAC , PasymAB . In this case the mean probability of identification equals 1/6.

More copies of unknown states

J. Bergou et. al. in [43] investigated also the situation with more copies of an unknown
state and with different prior knowledge of the two reference states. They used a technique
based on the relation of UI to discrimination of known mixed states, which we explain in detail
in next sections. For the already discussed case of only one copy of unknown state (M = 2,
nA = nB = nC = 1) the corresponding mixed states are:

ρ1 =
1
3
P symAB ⊗

1
2
IC , ρ2 =

1
2
IA ⊗

1
3
P symBC (4.68)
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In this case Bergou et. al. explicitly used the no-error conditions to determine the most general
form of the UI measurement. Its parameters were optimized to yield the maximum probability
of identification, while keeping the POVM conditions satisfied. This optimization is quite tech-
nical, but finally yields the measurement (4.67) from [42]. Although this technique is essentially
equivalent to that from the first paper of Bergou and Hillery [42] it can be more easily modified
to consider different prior knowledge on the reference states. If one of the reference states is
known (this corresponds to nB → ∞) one expects that the probability of UI should be higher
and Bergou et. al. confirmed it. In this case the UI can be reformulated as an unambiguous
discrimination of two-qubit mixed states:

ρ1 = |0〉〈0|A ⊗
1
2
IC , ρ2 =

1
3
P symAC , (4.69)

where the known reference state (from group B) is for convenience denoted as a basis state |0〉.
For the generalizations of this two scenarios, which differ by having m copies of unknown state
instead of one, a more sophisticated technique was used. It is essentially a solution to discrim-
ination of a pair of certain mixed states, and it is called unambiguous subspace discrimination
according to task it originally solves. Thanks to that technique the aforementioned scenarios
(M = 2, nA = m, nB = nC = 1), (M = 2, nA = m,nB 7→ ∞, nC = 1) were solved for
arbitrary prior probabilities η1, η2. From the results we see that the more copies of unknown state
we have the more quantum information is provided and thus the probability of identification is
higher.

More copies of unknown and reference states

Bing He and J. Bergou [44] managed to apply the same technique also to a scenario where the
number of copies for each of the two reference states was also varied (M = 2, nA = m, nB =
nC = n). However it is not easy to express the solution explicitly for all prior probabilities η1,
η2. Thus, for arbitrary n,mwe have an optimum identification probability and the corresponding
measurement only for prior probability η1 in a small interval around 1/2. In general work of J.
Bergou et. al. in [43] shows that the more prior knowledge (more copies of the states or their
more detailed classical description) we have about the states to be identified the higher is the
possible probability of unambiguous identification.

Qudits

After the first results for unambiguous identification of qubits were obtained it was natural
to investigate also more general situations. These certainly include the use of d dimensional
quantum systems instead of qubits and varying both the number of different reference states and
the number of copies per reference state.

Many copies of two reference states

The scenario with one copy of unknown state and n copies per each of the two reference states
(M = 2, nA = 1, nB = nC = n) was considered by A. Hayashi, M. Horibe, and T. Hashimoto
[45]. They found analytical solution for the case of equal prior probabilities η1 = η2 = 1

2 and any
dimension d of the used quantum systems. The situation offers symmetries whose exploitation
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substantially simplifies the form of the general UI measurement to such extend that for equal
prior probabilities it was possible to solve the problem completely. The relevant symmetries
are given by representations of permutation group S(n) and unitary group U(n). They arise
from the possibility of exchanging the copies without changing the state of the system and from
uniformity of the averaging in the probability of identification. Furthermore, the equality of the
prior probabilities permits restriction to measurements, where the conclusive elements are the
same except for acting on different subsystems. The final form of the optimal UI measurement
is most conveniently written as:

E1 = e.IB ⊗ PasymAC , E2 = e.IC ⊗ PasymAB , e =
∑
λ

eλΓλ, (4.70)

where λ specifies both U(d) and S(n) type of the irreducible representation, Γλ is the projector
onto that invariant subspace of H⊗n, and eλ is non-negative real number depending on n and
λ. The authors managed to express the average probability of identification as a finite sum de-
pending only on n and d. The sum can be evaluated numerically, but in large n limit it can be
also rewritten as an integral using Stirling formula and then explicitly evaluated. As n increases
we can extract more information about the reference states and in the large n limit the reference
states become known to us. Thus, as expected, the integral yields the same result as an average
of the probability of discrimination of two known pure states over all their possible choices. The
authors finally employed numerics to produce graphs, which show how for a chosen dimension-
ality d of the systems the average probability of identification grow with the increasing n till it
reaches its aforementioned asymptotic value.

One copy per M reference states

Unambiguous identification of M types of reference states presents qualitatively different
type of generalization to basic UI problem. In this direction the first results were obtained by C.
Zhang and M. Ying [46]. They considered the situation with one copy per each reference state
and one copy of the unknown state (nA = 1, nB = nC = · · · = 1). The no-error conditions
(4.62), which guarantee the correctness of the conclusive results, can be combined to express
the constraints on the measurement in more compact and easily testable way. Precisely this was
done by Zhang and Ying, who derived the following necessary and sufficient criterion for judging
whether the chosen measurement performs unambiguous identification:

POVM {Ei}Mi=0 performs UI of M reference states if and only if ∀i = 1, . . . ,M supp(Tri(Ei))
is in the totally antisymmetric subspace ofH⊗M .

For the special case, when the dimension of the quantum systems d is equal the number of
reference states M the problem simplifies significantly. It is because the totally antisymmetric
subspace ofH⊗M is span only by one vector |φ〉. Zhang and Ying finally optimize the measure-
ment within the MiniMax approach, which rates the measurement via its worst case performance.
Due to our framework we would optimize the average probability of identification. For equal
prior probabilities ηi = 1/M this gives the same UI measurement as MiniMax approach. This is
because the convexity of the set of UI measurement permits restriction of the optimization to the
same one parameter class and the maximization of the free parameter is in both cases restricted
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by the positivity of the measurement elements. The resulting optimal measurement has simple
structure and reads:

E1 =
1
M
IA ⊗ (|φ〉〈φ|)BCD..., E2 =

1
M
IB ⊗ (|φ〉〈φ|)ACD..., . . . ,

E0 = I −
M∑
i=1

Ei (4.71)

The measurement element Ei clicks only if the unknown state equals i-th reference state, be-
cause otherwise unknown and some other reference state are equal, which implies zero overlap
with totally antisymmetric |φ〉 in Ei.

Zhang and Ying propose the measurement with the same structure as (4.71) also for the
case d > M , however its optimality is unknown. Recently, the optimal measurement for the
special case d = M was rederived by J. Bergou and U. Herzog in [47]. They identified block
diagonal structure in the corresponding mixed states and employed the result of A.Chefles [10]
for unambiguous discrimination of M known symmetric pure states in each of these blocks.
Unfortunately, also their result does not clarify the situation for d > M . If the dimension of
the systems is smaller than the number of reference states (d < M ) the totally antisymmetric
subspace of H⊗M does not exist. Thus, according to the aforementioned criterion the support
of Ei, i = 1, . . . ,M must be empty, which implies that no useful UI measurement exist in this
case. This explains why the one copy unambiguous identification of qubits was investigated only
for two reference states.

4.3.3 UI as discrimination of known mixed states

The aim of this section is to explicitly show that the UI can be rephrased as unambiguous dis-
crimination among M multipartite mixed states. To see this we proceed according to general
recipe introduced in section 3.2. Hence, we first rewrite the mean probability of identification in
a suitable form, which will suggest the definition of the mixed states ρi, which play the role of
the average constituents Ai. Secondly, we reformulate the no-error conditions (4.62) in terms of
states ρi, prove their equivalence with (4.62) and finally discuss the optimality of a measurement
for both tasks. The mean probability of identification (4.65) can be rewritten using equation
(4.64) as:

P(S) =
∫
S

. . .

∫
S︸ ︷︷ ︸

M

M∑
i=1

ηiTr[EiΨi]dψ1 . . . dψM =

=
M∑
i=1

ηiTr[Ei
∫
S

. . .

∫
S︸ ︷︷ ︸

M

Ψidψ1 . . . dψM ] =

=
M∑
i=1

ηiTr[EiAi] =
M∑
i=1

ηiTr[Eiρi] = PD, (4.72)
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where we have defined the average constituent Ai:

Ai ≡ ρi =
∫
S

. . .

∫
S︸ ︷︷ ︸

M

|Ψi〉〈Ψi|dψ1 . . . dψM , T r(Ai) = Tr(ρi) = 1.

In equation (4.72) we finally wrote the average probability of UI as the probability of discrimi-
nation among M mixed states ρi appearing with prior probability ηi.

The integration of the no-error conditions (4.62) over all expected reference states |ψi〉 gives
us the following no-error conditions for mixed states ρi:

0 =
∫
S

. . .

∫
S︸ ︷︷ ︸

M

Tr[EiΨj ]dψ1 . . . dψM = Tr[Eiρj ] ∀i 6= j. (4.73)

We can directly apply Lemma 2 from Chapter 2 to conclude that these conditions (4.73) are
equivalent to no-error conditions (4.62). Thus, any measurement unambiguously discriminating
among mixed states ρi is a valid UI measurement and vice versa. Because of the equation (4.72)
such a measurement is optimal for both tasks at the same time. Hence, solution of unambiguous
discrimination of general mixed states automatically gives solution to the UI problem. However,
unambiguous discrimination of mixed states is a very complicated problem, which has drawn a
lot of attention during last decade, and is still not completely solved.

Typical structure of ρi

In unambiguous identification we typically consider situations when the corresponding mixed
states ρi have a very simple structure. Namely, if S the set of possible reference states is defined
by the whole Hilbert spaceH or by its nontrivial subspace then the corresponding average mixed
states ρi are rescaled tensor products of projectors onto the symmetric subspaces. To see this, we
use a result derived by A. Hayashi et. al. in [39]:∫

S

|ϕ〉〈ϕ|⊗kdϕ =
1(

k+dS−1
dS−1

)P sym(S), (4.74)

where dS is the dimension of the subspace HS ⊂ H determining the set S and P sym(S) is the
projector onto symmetric subspace ofHS⊗k ⊂ H⊗k. Therefore:

ρ1 =
∫
S

. . .

∫
S︸ ︷︷ ︸

M

|ψ1〉〈ψ1|⊗nAA ⊗ |ψ1〉〈ψ1|⊗nBB ⊗ |ψ2〉〈ψ2|⊗nCC ⊗ · · · dψ1 . . . dψM =

=
1(

nA+nB+dS−1
dS−1

)(
nC+dS−1
dS−1

)
· · ·
P symAB (S)⊗ P symC (S)⊗ . . . , (4.75)

ρ2 =
1(

nA+nC+dS−1
dS−1

)(
nB+dS−1
dS−1

)
· · ·
P symAC (S)⊗ P symB (S)⊗ . . . ,

and analogously for the rest of ρi’s (i = 1, . . . ,M ). In Eq. (4.75) we have used subscript of
P sym(S) to indicate subsystems on which the projection to symmetric subspace is performed.
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Tensor product of projectors is a projector, so ρi’s are projectors scaled to have trace one. This
simple structure of mixed states ρi simplifies their unambiguous discrimination significantly as
we will see below.

4.3.4 General approach to UI with two types of reference states

Unambiguous identification with two types of reference states is intuitively expected to be less
complicated than the case with more types of reference states. The restriction to two types of
reference states allow us to use the known results from unambiguous discrimination of two mixed
states, which are for the above mentioned states ρi sufficient to solve the UI for any number of
copies of unknown and reference states and for any dimension of the occupied subspaceHS . We
will now formulate the task called unambiguous subspace discrimination and present its solution
found by J. Bergou et. al. [48]. This will teach us how to optimally unambiguously discriminate
among a specific type of two mixed states. Afterwards, we shall recognize that this type of mixed
states emerge also in UI and hence we solve it in the same way.

Unambiguous subspace discrimination

Imagine we have a Hilbert spaceH and a description of two of its subspaces V1, V2. Someone
will with prior probability η1 respectively η2 choose subspace V1 respectively V2 and prepare a
quantum system in a state, which is chosen uniformly at random from that subspace. Our task is
to determine unambiguously from which subspace was the state chosen.

This task was formulated and solved by J. Bergou, E. Feldman, and M. Hillery [48] and it
was motivated by the basic version of the UI problem. We first explain how is this problem
connected to unambiguous discrimination of two mixed states and then we rederive the result of
Bergou et.al. via Raynal’s reduction theorems for general position of the subspaces V1, V2.

Let us establish the notation. Without loss of generality we can assume that dimV1 ≥
dimV2. The most general measurement one can perform is a POVM. For our task it should
have three measurement elements: E1, E2 correctly identifying the use of subspace V1, V2 and
the failure measurement operatorE0. The inconclusive outcome is necessary, since unambiguous
discrimination of two pure states is a special case of subspace discrimination. The probability of
correctly determining the used subspace PD is defined as:

PD = η1

∫
SV1

〈ψ1|E1|ψ1〉dψ1 + η2

∫
SV2

〈ψ2|E2|ψ2〉dψ2, (4.76)

where 〈ψi|Ei|ψi〉 is the conditional probability of correctly concluding that subspace Vi was
used if the state |ψi〉 ∈ Vi was chosen. The set of states in subspace Vi is denoted SVi . The
requirement of the unambiguity of the measurement can be mathematically formulated as:

∀|ψ2〉 ∈ V2 Tr(E1|ψ2〉〈ψ2|) = 0 (4.77)
∀|ψ1〉 ∈ V1 Tr(E2|ψ1〉〈ψ1|) = 0

The success probability PD defined by Eq.(4.76) and the no error conditions from Eq. (4.77) can
be equivalently rewritten using linearity and Lemma 2 from Chapter 2 as:

PD = η1Tr(E1ρ1) + η2Tr(E2ρ2), (4.78)
0 = Tr(E1ρ2) = Tr(E2ρ1), (4.79)
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where we have defined

ρi =
∫
SVi

|ψi〉〈ψi|dψi. (4.80)

Thus, we can argue in the same way as in Subsection 4.3.3 to conclude that unambiguous sub-
space discrimination can be reformulated as unambiguous discrimination of two mixed states.

Next, we show that ρi = 1
dimVi

PVi , where PVi is the projector onto the subspace Vi. We
choose some state |ϕ〉 from the subspace Vi. To obtain any state in SVi we transform state
|ϕ〉 using group of operators, which acts on subspace Vi as identical representation of the special
unitary group SU(dimVi) and trivially on the orthocomplement of Vi. If we use unitary invariant
measure on the SU(dimVi) we can rewrite the definition of ρi as follows:

ρi =
∫
SVi

|ψi〉〈ψi|dψi =
∫
SU(dimVi)

U |ϕ〉〈ϕ|U†dU =

=
1

dimVi

dimVi∑
k=1

∫
SU(dimVi)

U |ϕk〉〈ϕk|U†dU = (4.81)

=
1

dimVi

∫
SU(dimVi)

U(
dimVi∑
k=1

|ϕk〉〈ϕk|)U†dU

The choice of states |ϕk〉 ∈ Vi is completely arbitrary, so we use this freedom and chose them to
be the orthonormal basis of subspace Vi. Then

∑dimVi
k=1 |ϕk〉〈ϕk| equals unity on the subspace

Vi i.e.
∑dimVi
k=1 |ϕk〉〈ϕk| = PVi and since U acts unitarily on Vi we have:

U(
dimVi∑
k=1

|ϕk〉〈ϕk|)U† = U.PVi .U
† = PVi . (4.82)

If the Haar measure dU is standardly normalized then equation (4.81) yields ρi = 1
dimVi

PVi .
We proceed further by solving the USD of ρ1, ρ2. It suffice to work in the Hilbert space

H′ = V1 ⊕ V2 ⊂ H, because the supports of ρ1, ρ2 are contained there. The key step in the
solution is the use of appropriate basis. We will construct orthonormal basis {|ei〉} of H′ from
Jordan basis {|ai〉}, {|bj〉} of subspaces V1, V2.

It is always possible to construct the Jordan basis of a pair of subspaces with the following
properties, which are discussed together with the basis construction in recipe 1 from Chapter 2:

〈ai|ak〉 = δik ∀i, k = 1, . . . ,dimV1,

〈bj |bl〉 = δjl ∀j, l = 1, . . . ,dimV2,

〈ai|bj〉 = δij cos θi ≥ 0 .

We shall use the following notation:

n1 dimension of the subspace V1

n2 dimension of the subspace V2

nc dim (V1

⋂
V2) = number of i’s such that cos θi = 1

n0 number of i’s such that cos θi = 0
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Figure 4.6. Structure of ρ1, ρ2 matrices in the basis {|ei〉}.

Tk subspace spanned by |anc+k〉, |bnc+k〉, k = 1, . . . , n2 − nc − n0

|a⊥nc+k〉 state from subspace Tk orthogonal to |anc+k〉
|b⊥nc+k〉 state from subspace Tk orthogonal to |bnc+k〉

V ⊥1 Subspace of V2 orthogonal to subspace V1

V ⊥2 Subspace of V1 orthogonal to subspace V2

We begin the fabrication of the basis {|ei〉} by prescribing first elements |ei〉 = |ai〉 = |bi〉,
i = 1, . . . , nc to span the common subspace V1

⋂
V2. We append them by pairs of vectors |ai〉,

|a⊥i 〉, i = nc + 1, . . . , n2 − n0. We complete the basis by appending the unused Jordan basis
vectors |ai〉, i = n2 − n0 + 1, . . . , n1 from V1 and |bj〉, j = n2 − n0 + 1, . . . , n2 from V2. The
last mentioned vectors span the subspaces V ⊥2 , V ⊥1 respectively. Each element |ai〉 is contained
directly in the basis {|ei〉} and each element |bj〉 is either contained directly or can be obtained
as a linear combination of vectors |aj〉 and |a⊥j 〉 from the subspace Tj−nc . Thus, {|ei〉} is the
basis ofH′ = V1 ⊕ V2, which is by construction orthonormal13.

The matrixes of mixed states ρ1 = 1
n1

∑n1
i=1 |ai〉〈ai|, ρ2 = 1

n2

∑n2
j=1 |bj〉〈bj | have in the ba-

sis {|ei〉} simple structure, which is depicted on the picture 4.6. The common part of the support
of ρ1, ρ2 is V1

⋂
V2 and is span by |ei〉, i = 1, . . . , nc. Therefore, we can use the first Raynal’s

reduction theorem to split it off from ρ’s. We can then split off subspaces V ⊥1 , V ⊥2 via the sec-
ond reduction theorem. Finally, the problem can be reduced via the third reduction theorem to
n2 − nc − n0 unambiguous discriminations of pairs of pure states |ai〉, |bi〉. Application of the
reduction theorems is not complicated, it only involves tedious calculations. Thus, we present

13The orthonormality follows from the properties of Jordan basis
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directly its results. The final form of the POVM is the following:

E1 = P⊥2 +
n2−nc−n0∑

k=1

ck1 |b⊥nc+k〉〈b
⊥
nc+k|

E2 = P⊥1 +
n2−nc−n0∑

k=1

ck2 |a⊥nc+k〉〈a
⊥
nc+k| (4.83)

E0 = I − E1 − E2,

where P⊥i is projector onto V ⊥i (i = 1, 2) and cki are given by the solution of the USD in subspace
Tk. The overall probability of discrimination of mixed states ρ1, ρ2 and also the probability of
discrimination of subspaces V1, V2 is given by:

PD = 1−
(
η1

n1
+
η2

n2

)(
nc +

n2−nc−n0∑
k=1

(1− P kD)

)
, (4.84)

where P kD is the probability of discrimination of pure states |anc+k〉, |bnc+k〉 (k = 1, . . . , n2 −
nc−n0) appearing with prior probabity ηk1 , ηk2 respectively. It is worth to note that all these prior
probabilities are equal and read:

ηk1 =
η1
n1

η1
n1

+ η2
n2

≡ η′1, ηk2 =
η2
n2

η1
n1

+ η2
n2

≡ η′2 (4.85)

On the other hand, due to varying overlap λ = 〈anc+k|bnc+k〉 = cos θnc+k of the discriminated
states from the subspace Tk, the borders between the regimes of the USD measurement can
be different for each k. The intermediate regime with the measurement being a true POVM is
legitimate for prior probability ηk1 from interval Bk = [ cos2 θnc+k

1+cos2 θnc+k
, 1

1+cos2 θnc+k
]. The intervals

are successively included one into another: Bk ⊂ Bm for k ≤ m. Therefore, the intersection of
all the intervals is always not empty and is equal to B1. Suppose η′1 ∈ B1, then the intermediate
regime is legitimate for each k, so:

η1 ∈ [
n1 cos2 θnc+1

n1 cos2 θnc+1 + n2
,

n1

n1 + n2 cos2 θnc+1
] ≡ I1

ck1 =
1−

√
η2
η1
n1
n2

cos θnc+k

1− cos2 θnc+k
, ck2 =

1−
√

η1
η2
n2
n1

cos θnc+k

1− cos2 θnc+k
(4.86)

P kD = 1− 2 cos θnc+k
η1
n1

+ η2
n2

√
η1η2

n1n2

which enables the overall probability of discrimination to be written explicitly as:

PD = 1−
(
η1

n1
+
η2

n2

)
nc − 2

√
η1η2

n1n2

n2−nc−n0∑
k=1

cos θnc+k (4.87)

However, if we move η1 away from I1, the number of intervals in which η′1 is contained would
decrease successively. Thus, in more and more k’s the regime with projective measurement (cki
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equal 0 or 1) is optimal. Let us denote by R the number of different values of cos θi such that
0 < cos θi < 1. The interval [0,1] is split into 2R + 1 subintervals each of them prescribing
different form of the optimal measurement and different formula for the overall probability of
discrimination. Therefore, as R increases it becomes very complicated to specify the optimal
measurement and the probability of subspace discrimination in the whole range η1 ∈ [0, 1]. On
the other hand, if all Jordan angles from (0, 1) are equal, then R = 1 and unambiguous subspace
discrimination has only three regimes as well as USD of two known pure states.

Application of unambiguous subspace discrimination on UI

We saw in the previous subsection that unambiguous subspace discrimination can be refor-
mulated and solved as discrimination of a pair of mixed states, which are multiples of projectors
on those subspaces. Conversely, we can think of unambiguous discrimination of a pair of mixed
states, which are multiples of projectors as about discrimination of subspaces given by the pro-
jectors. In Subsection 4.3.3 we showed that UI can be reformulated as discrimination of mixed
states, which are multiples of projectors if S, the set of possible reference states, is derived from
a subspace HS of H. Thus, for two types of reference states UI can be viewed and explicitly
solved via unambiguous subspace discrimination.

If any choice of the reference states fromH is expected then the subspaces to be discriminated
are completely determined by the exchange symmetry that comes from equality of the unknown
state and the given reference state. This means that UI measurement is distinguishing two types
of symmetry the input states |Ψ1〉, |Ψ2〉 have.

In the rest of this subsection we would like to explain the known results on UI of two types
of reference states in the spirit and terms of unambiguous subspace discrimination.

Qubits

As we already mentioned in the beginning of the chapter qubit scenarios with more than one
copy of unknown or reference states were solved via unambiguous subspace discrimination. The
key property that strongly influence the structure of the optimal measurement isR, the number of
different values of cos θi ∈ (0, 1) in the Jordan basis we need to construct for the corresponding
pair of subspaces. UI for m copies of unknown state and one copy per each of the two reference
states (M = 2, nA = m, nB = nC = 1) was the first scenario in which the unambiguous
subspace discrimination was used. Surprisingly, all the Jordan angles are in this case either zero
(cos θi = 1) or cos θi = 1/(m + 1), thus R = 1 and the optimal measurement has only three
regimes depending on the prior probability η1. Another consequence of such Jordan angles is
that the measurement elements E1, E2 are multiples of projectors14. One could expect the same
situation also for the scenario with one copy of unknown state and n copies for each of the two
reference states (M = 2, nA = 1, nB = nC = n). However, quite opposite is true and the
situation is complicated also if we increase the number of copies of unknown states (M = 2,
nA = m, nB = nC = n). The Jordan angles are quite distinct resulting in R = n. Thus, it is
complicated to work out probability of identification explicitly for any prior probability η1. For
η1 = 1/2 the formula can be easily written, because the true POVM regime is optimal for all
involved unambiguous pure state discriminations. The resulting probability of identification is

14The corresponding subspaces are given by vectors {|b⊥nc+k〉}
n2−nc
k=1 , {|a⊥nc+k〉}

n2−nc
k=1 respectively.
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a finite sum of fractions depending only on n and m. Unfortunately, it can not be summed up
easily and the expression covers few lines.

Qudits

The results for qubits were obtained by unambiguous subspace discrimination, therefore the
previous paragraph only point out some specific features of the known results. However, the
results on qudit UI with two reference states were obtained by Hayashi et.al. [45] in a different
way. The view on the problem through unambiguous subspace discrimination will enable as to
extend the results also to unequal prior probabilities η1, η2. Let us first focus on the scenario with
one copy of unknown state and one copy of each of the two reference states (M = 2, nA = 1,
nB = nC = 1, d > 2). The solution of the problem must be the same irrespective of the method
we have used. Thus, we can use Hayashi’s solution to infer the Jordan angles that we would
obtain by constructing the Jordan basis corresponding to the problem. There is no ambiguity in
such inference as we will see. The corresponding mixed states ρ1,ρ2 read:

ρ1 =
2

d(d+ 1)
P symAB ⊗ IC , ρ2 =

2
d(d+ 1)

P symAC ⊗ IB , (4.88)

Therefore, dimensions n1, n2 of the discriminated subspaces are equal. On the subspace spanned
by the supports of the mixed states ρ1,ρ2 Hay-ashi’s optimal measurement elements E1, E2

are 2/3 multiples of projectors15. From the general form of POVM elements of unambiguous
subspace discrimination given in equations (4.83) we can certainly conclude that:

• P⊥1 = P⊥2 = 0, because E1, E2 do not have part on which they precisely project, thus
Jordan angles π/2 (cos θi = 0) will not occur i.e. n0 = 0.

• all the coefficients cki = 2/3, which together with n1 = n2, η1 = η2 and equations (4.86)
implies cos θnc+k = 1/2, k = 1, . . . , (d + 1)d(d − 1)/3, where the range of k can be
derived from the explicit form of Hayashi’s measurement, similarly as the dimension of
common subspace nc = d(d+ 1)(d+ 2)/6

This suffice to recover the Hyashi’s average probability of identification (valid for equal prior
probabilities) from the equation (4.87):

Popt(Spure) =
1
3
d− 1
d

(4.89)

However, the knowledge of the Jordan basis and Jordan angles we obtained suffice to give the
optimal measurement for arbitrary prior probabilities. Equality of all Jordan angles (different
from zero) implies that only the multiples in front of the projectors in optimal E1, E2 will vary
as we change the prior probabilities η1, η2. In other words R = 1 and the optimal measurement
has only three different regimes. Thus, the unambiguous subspace discrimination together with
the known solution for the special case η1 = η2 = 1/2 enabled as to find the solution in the
whole range of prior probabilities. The same reasoning can be used also for the scenario with n
copies of the reference states (M = 2, nA = 1, nB = nC = n, d > 2). However, the Jordan
angles are distinct in this case and although we formally obtain the optimal measurement for any
η1, it is hard to write the measurement explicitly.

15More details about the structure of the optimal Hayashi’s measurement for this case will be presented in the next
section.
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4.3.5 Influence of prior knowledge on UI

In this part of the chapter we illustrate how a prior knowledge of S, the subset of expected refer-
ence states, influence the optimal UI measurement and its performance with respect to universal
UI measurement (S = Spure). We illustrate this on two examples. The first one are equato-
rial qubits. They are a variation of the basic UI problem (M = 2, nA = nB = nC = 1,
d = 2) with the additional prior information that the reference states are chosen only from the
equator of the qubit Bloch sphere. The second example is UI of coherent states i.e. M = 2,
nA = nB = nC = 1, d = ∞ with the additional prior information that the reference states are
coherent states.

Equatorial qubits

We denote the state of a qubit |eϕ〉 = 1/
√

2(|0〉 + eıϕ|1〉) with ϕ ∈ [0, 2π] as an equatorial
state. Let us denote the subset of all equatorial states Seq . We shall find optimal UI measurement
in the case we have one copy both from the unknown state and from the two reference states
(M = 2, nA = nB = nC = 1). Thus, the aim is to optimize P(Seq) the probability of
identification averaged over the set Seq . We shall first calculate the corresponding mixed states
ρ1, ρ2:

ρi =
∫
Seq

∫
Seq

Ψidψ1dψ2 =

=
1

(2π)2

∫ 2π

0

∫ 2π

0

|eϕi〉〈eϕi | ⊗ |eϕ1〉〈eϕ1 | ⊗ |eϕ2〉〈eϕ2 | dϕ1dϕ2.

The integration yields:

ρ1 =
1
8
IC ⊗ (|00〉〈00|+ |11〉〈11|+ 2|ψ+〉〈ψ+|)AB (4.90)

ρ2 =
1
8
IB ⊗ (|00〉〈00|+ |11〉〈11|+ 2|ψ+〉〈ψ+|)AC .

Consequently, we will solve USD of ρ1, ρ2 in the same way as J. Bergou et. al. in [43]. Hence,
we calculate zero eigenvectors of ρ1, ρ2, because they determine the subspaces in which POVM
elements E1, E2 can operate:

ρ2|ai〉 = 0, ρ1|bi〉 = 0
|a1〉 = |0〉B ⊗ |ψ−AC〉 |b1〉 = |0〉C ⊗ |ψ−AB〉 (4.91)
|a2〉 = |1〉B ⊗ |ψ−AC〉 |b2〉 = |1〉C ⊗ |ψ−AB〉

E1 =
2∑

i,j=1

αij |ai〉〈aj | E2 =
2∑

i,j=1

βij |bi〉〈bj | (4.92)

Our goal is to maximize P(Seq), while keeping the POVM elements positive. We use equations
(4.90) and (4.92) to express P(Seq) via coefficients αij , βij :

P(Seq) = η1Tr(E1ρ1) + η2Tr(E2ρ2)

=
η1

8
(α11 + α22) +

η2

8
(β11 + β22) (4.93)
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Accidentally, the states |ai〉, |bj〉 are the same as in the paper of J. Bergou et. al. [43] and also
the expression for P(Seq) coincides with P(Spure) optimized there (see equations 3.19-3.22).
Therefore, the optimization task and the resulting measurement is in our case exactly the same
as for universal UI of qubits. Hence, the optimal UI measurement for equatorial qubits is also
given by equation (4.67).

Unambiguous Identification of coherent states

Under unambiguous identification of coherent states we will mainly think of the UI task
from our framework with M = 2, nA = nB = nC = 1, d = ∞ with the additional prior
information that the reference states are coherent states. Instead of dealing directly with infinite
dimensional quantum systems and their coherent states we first show how intuitive universal UI
measurement for arbitrary dimension can be constructed and compare it to the optimal universal
UI measurement found by Hayashi et.al. [45]. This will enable us to find (in large d limit) the
corresponding universal UI measurement for quantum systems described in infinite dimensional
H∞ and to calculate the probability of identification for particular choice of reference states
P(|ψ1〉, |ψ2〉).

The Swap Based approach for qudits

The optimal POVM elements E1,E2 for universal UI of qubits (M = 2, nA = nB = nC =
1, d = 2) are proportional to the projectors onto the antisymmetric subspace of the two qubit
subsystem AC, respectively AB. The simple generalization of the aforementioned universal UI
measurement to the case of qudits is the following POVM, which we abbreviate by sb (stands for
the “swap based”):

Esb1 = c1IB ⊗ PasymAC = c1IB ⊗
1
2

(1− SwapAC),

Esb2 = c2IC ⊗ PasymAB = c2IC ⊗
1
2

(1− SwapAB),

Esb0 = I − Esb1 − Esb2 ,

(4.94)

where PasymXY denotes the projector onto the antisymmetric subspace of subsystems X and Y ,
and c1, c2 are so far unspecified real numbers. Elements Esb0 ,E

sb
1 ,E

sb
2 have to form a valid

POVM, therefore certain conditions for c1, c2 must hold. Indeed, positivity of Esb1 and Esb2
implies c1 ≥ 0 and c2 ≥ 0, whereas the inequality imposed by the positivity of Esb0 is not so
apparent and we have to calculate the eigenvalues of Esb0 explicitly. Let {| i 〉}di=1 denote a basis
of the qudit Hilbert space H. Then |ijk〉 ≡ |i〉A ⊗ |j〉B ⊗ |k〉C is the basis of the three-qudit
Hilbert space H⊗3. The operator Esb0 can be expressed in terms of unit and Swap operators
so 〈ijk|Esb0 |lmn〉 ≡ 0 whenever {ijk} is not a permutation of {lmn}. In other words if we
properly reorder this basis Esb0 is block diagonal matrix. The blocks are of three types depending
on the number of equivalent indeces:

• the trivial 1× 1 block 〈iii|Esb0 |iii〉 = 1

• the 3× 3 block with matrix 〈σ1(iij)|Esb0 |σ2(iij)〉

• the 6× 6 block with matrix 〈σ1(ijk)|Esb0 |σ2(ijk)〉.
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The dimensionalities of the blocks are given by the number of inequivalent permutations σ of the
three indexes.

For qubits only the blocks of first two types occur in the matrix Esb0 whereas for qudits
(d > 2) blocks of all three types arise. Hence we reduced the problem of finding the eigenvalues
of a rank d3 operator Esb0 to calculation of the eigenvalues of the small matrices mentioned
above. The calculation of those eigenvalues is only technical and therefore treated in detail in
the appendix B.1. The condition resulting from requiring them to be nonnegative is a particulary
simple inequality:

c1 + c2 ≤ 1. (4.95)

A straightforward consequence of the block diagonality of Esb0 is that the inequality (4.95) as-
sures positivity of Esb0 regardless of the dimension d (provided that d > 2). We want to choose
c1, c2 so that POVM requirements are satisfied and the average probability of UI (4.65) is max-
imal. However, let us first look on the probability of identification for particular choice of refer-
ence states (4.64)

Psb(|ψ1〉, |ψ2〉) = η1〈Ψ1|Esb1 |Ψ1〉ABC + η2〈Ψ2|Esb2 |Ψ2〉ABC =

=
η1c1 + η2c2

2
(1− |〈ψ1|ψ2〉|2). (4.96)

We see that optimal choice of c1, c2 does not depend on |ψ1〉, |ψ2〉 but only on prior probabilities
η1, η2. Hence, the values of c1, c2 simultaneously maximizing Psb(|ψ1〉, |ψ2〉) and the average
probability of UI (4.65) read: c1 = 0, c2 = 1 for η1 < η2, c1 = 1, c2 = 0 for η1 > η2 and
c1+c2 = 1 for η1 = η2. Therefore, for equal prior probabilities the UI probability is independent
on the particular choice of c1 and c2 and is given by:

Psb(|ψ1〉, |ψ2〉) =
1
4

(1− |〈ψ1|ψ2〉|2). (4.97)

However, due to symmetry reasons we further consider c1 = c2 = 1/2 in case η1 = η2, which
gives:

Esb1 =
1
2
IB ⊗ PasymAC , Esb2 =

1
2
IC ⊗ PasymAB (4.98)

Averaging over all pure states can be easily done by using the integral∫ ∫
Spure

|〈ψ1|ψ2〉|2dψ1dψ2 = 1/d

from [49]. We obtain the average probability of UI for the swap-based measurement

Psb(Spure) =
1
4

(
d− 1
d

)
. (4.99)

Although the probability (4.97) itself is independent of the dimension the average value con-
verges to 1/4 in the limit of d → ∞. This corresponds to an intuitive expectation that two
randomly chosen unit vectors inH are more likely to be orthogonal for higher values of d.
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Optimal universal UI for qudits - Hayashi’s result

Although POVM elements Esb1 ,E
sb
2 proportional to projectors onto antisymmetric part of the

subsystem AC respectively AB seem intuitively as the best universal UI measurement, actually
results of Hayashi et.al. [45] imply they are not. We now present explicit form of Hayashi’s
result for our considered problem and explain how it actually differs from the intuitive expecta-
tion. First of all, his universal UI measurement maximizes for equal prior probabilities the mean
probability of identification P(Spure). This allows symmetry to be fruitfully exploited via repre-
sentations of the unitary group U ∈ U(d) 7→ U⊗3 and via the permutation group S(3) permuting
the subsystems A,B,C of H⊗3. As we already mentioned earlier the optimal measurement has
the following form:

Eopt1 = e.IB ⊗ PasymAC , Eopt2 = e.IC ⊗ PasymAB , e =
∑
λ

eλΓλ, (4.100)

where λ specifies both U(d) and S(3) type of the irreducible representation, Γλ is the pro-
jector onto that invariant subspace of H⊗3, and eλ is non-negative real number. In this case
(M = 2, nA = 1, nB = nC = n) only two irreducible U(d) representations specified by
λ = (2, 1, 0, . . . , 0), λ = (1, 1, 1, . . . , 0) are relevant. The corresponding eλ’s are 2/3 and 1/2.
Therefore we have:

e =
2
3

Γ(2,1,0,...,0) +
1
2

Γ(1,1,1,...,0). (4.101)

Projectors Γ(2,1,0,...,0) and Γ(1,1,1,...,0) project onto the subspaces (VS ⊕ VAS)⊥ and VAS , where
VS (respectively VAS) is the totaly symmetric (respectively antisymmetric) subspace of H⊗3.
Operators IC ⊗ PasymAB , IB ⊗ PasymAC do not mix subspaces (VS ⊕ VAS)⊥ and VAS on which
operator e is only a multiple of identity. Therefore Eopt1 (analogously Eopt2 ) is essentially 2

3IB ⊗
PasymAC except for VAS , where it is 1

2IB⊗PasymAC . Furthermore, part of the POVM elements Eopt1 ,
Eopt2 acting on the totaly antisymmetric subspace VAS does not contribute to Popt(|ψ1〉, |ψ2〉)
and Popt(Spure), because input states |Ψi〉ABC (equation (4.61)) are symmetric in a pair of
subsystems. Thus, for calculation of probabilities of identification we can as well use E1 =
2
3IB ⊗ PasymAC = 4

3Esb1 , E2 = 2
3IC ⊗ PasymAB = 4

3Esb2 to obtain:

Popt(|ψ1〉, |ψ2〉) =
1
3

(1− |〈ψ1|ψ2〉|2) (4.102)

Popt(Spure) =
1
3
d− 1
d

(4.103)

Unlike previous sections, where we have considered unambiguous identification of quantum
states from finite dimensional Hilbert space H, here we will work with infinite dimensional
Hilbert space of linear harmonic oscillatorH∞, which models a single mode of electromagnetic
field (EM). The two techniques for UI of qudits presented above work for any dimension d. The
resulting POVM elements are expressed via constant multiples of projectors, which in large d
limit define also projectors on H⊗3

∞ . Therefore, we have formally same looking universal UI
measurement also for states fromH∞. This measurement should be optimal for universal UI for
the case of equal prior probability η1 = η2.
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Our goal in this subsection is to show that UI of coherent states can be done with much better
probability of identification than universal UI of all pure states from H∞. The basic intuition
for this is that coherent states form a very small subset Scoh of all pure states from H∞ and
there could be a better way to identify them. The more reasonable motivation is based on the
following observation: As we showed in Section 4.3.2 in UI for qubits appearing with arbitrary
prior probabilities the optimal POVM is constructed via quantum state comparison measurement.
Hence, if there is a better quantum state comparison of coherent states, which can be employed
in UI setup for coherent states then this setup could outperform the universal UI measurement
identifying all states fromH∞. E. Andersson, M. Curty and I. Jex [41] proposed such a quantum
state comparison setup, which is also simply realizable by beamsplitter and a photodetector. In
what follows we shortly explain how their setup works and afterwards we show how it can be
used for a proposition of UI setup for coherent states.

Quantum comparison of coherent states

In comparison of coherent states we want to unambiguously distinguish between |α〉 = |β〉
and |α〉 6= |β〉. This is equivalent to distinguishing β−α = 0 and β−α 6= 0, which can be done
by 50/50 beamsplitter (T = R = 1/2) in the following way. The operation of the beamsplitter
on coherent states is particularly simple, because it does not entangle the output modes:

|α〉 ⊗ |β〉 7→ |
√
Tα+

√
Rβ〉 ⊗ | −

√
Rα+

√
Tβ〉. (4.104)

The state of the second mode after passing the beamsplitter will be either vacuum |0〉 or | 1√
2
(β−

α)〉 when α 6= β. Thus, if we detect at least one photon in the second mode, which happens with
probability 1 − |〈0| 1√

2
(β − α)〉|2 = 1 − e− 1

2 |α−β|
2
, we are sure that the states were different.

On the other hand the detection of no photons is inconclusive, because all coherent states have
nonzero overlap with vacuum.

UI with three beamsplitters

Motivated by the UI measurement in the case of qubits (equation (4.67)), we want to design a
measurement that in a sense for each single run simultaneously performs comparisons of coherent
states of subsystems AC and AB. For two separate state comparisons we can use two beamsplit-
ters, so it seems natural to employ a third one to perform them simultaneously. Therefore, we
consider a setup consisting of three beamsplitters B1, B2, and B3 depicted on figure 4.7. We
keep the notation of subsystems from our framework (mode A contain unknown state, B and C
reference states) except for the added fourth ancillary mode D initially prepared in vacuum. Thus,
the whole product state we are in general given can be written as |α?〉A⊗|α1〉B⊗|α2〉C ⊗|0〉D,
where |α?〉 is guaranteed to be either |α1〉 or |α2〉.

Our three beamsplitters act on it in the following way:

|α?〉A|α1〉B |α2〉C |0〉D 7→ U3(DC).U2(BA).U1(DA)|α?〉A|α1〉B |α2〉C |0〉D,
where Ui(XY ) is unitary transformation performed by the i-th beamsplitter on the modes X and
Y. Let us fix the transmitivity T1 of B1 for a moment and calculate the output states of B1 using
(4.104):

|0〉D ⊗ |α?〉A 7→ |
√
R1α?〉D ⊗ |

√
T1α?〉A. (4.105)



Unambiguous tasks for states 709

Figure 4.7. The beamsplitter setup designed for an unambiguous identification of coherent states.

The outputs ofB1 are in product state, so it suffice to analyze beamsplittersB2 andB3 separately.
Beamsplitter B2 transforms state of modes A, B in the following way:

|α1〉B ⊗ |
√
T1α?〉A 7→ |

√
T2α1 +

√
R2T1α?〉B ⊗ | −

√
R2α1 +

√
T2T1α?〉A.

(4.106)

In case α? = α1 we want beamsplitter B2 to behave as in comparison of identical states |α1〉,
|α1〉. This means we want mode A to be transformed into vacuum if α? = α1, which implies√
T2

√
T1 −

√
R2 = 0. This condition can be rewritten as:

T2 =
1

1 + T1
. (4.107)

We proceed analogously for beamsplitter B3:

|
√
R1α?〉D ⊗ |α2〉C 7→

7→ |
√
T3R1α? +

√
R3α2〉D ⊗ | −

√
R3R1α? +

√
T3α2〉C . (4.108)

In case α? = α2 we want modeC to be transformed into vacuum. This implies
√
T3−
√
R3R1 =

0, which can be written as:

T3 =
1− T1

2− T1
. (4.109)

Equations (4.107), (4.109) can be met simultaneously, therefore we set the transmitivities T2, T3

according to them. The final state of our four modes after passing all three beamsplitters can be
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simply obtained from equations (4.106), (4.108) and reads:

|
√
R2(α? − α1)〉A ⊗ |

√
T2α1 +

√
R2T1α?〉B ⊗

⊗ |
√
T3(α2 − α?)〉C ⊗ |

√
T3R1α? +

√
R3α2〉D

The field modes are factorized, therefore as our State comparison motivation suggests we can
focus only on state of modes A and C. Depending on α?, modes A and C end up in state:

α? = α1 : |0〉A ⊗ |
√
T3(α2 − α1)〉C

α? = α2 : |
√
R2(α2 − α1)〉A ⊗ |0〉C (4.110)

We measure modes A and C by photodetectors P2 and P1 respectively. In each single run
of experiment we can distinguish four situations: none of the detectors clicks, only P1 clicks,
only P2 clicks, both detectors click. In our situation both detectors cannot click at the same
time, because at least one of the modes is in vacuum. If only detector P1 clicks from equations
(4.110) we unambiguously conclude that α? = α1. Similarly if only detector P2 clicks we
unambiguously conclude that α? = α2. If none of the detectors click we cannot determine
which mode was not in vacuum and therefore it is an inconclusive result.

In case α? = α1 the probability of correct identification follows from equations (4.110) and
is given by the probability of detecting at least one photon in mode C:

1− |〈0|
√
T3(α2 − α1)〉|2 = 1− e−

1−T1
2−T1

|α1−α2|2 .

In case α? = α2 the probability of correct identification is given by the probability of detecting
at least one photon in mode A:

1− |〈0|
√
R2(α2 − α1)〉|2 = 1− e−

T1
1+T1

|α1−α2|2 .

Thus, the probability of identification for reference states |α1〉, |α2〉 reads:

Pbs(|α1〉, |α2〉) = η1(1− e−
1−T1
2−T1

|α1−α2|2) + η2(1− e−
T1

1+T1
|α1−α2|2) (4.111)

Next we want to optimize the performance of the setup by properly choosing transmitivity T1.
The definition of the uniform distribution on the set of coherent states is problematic, therefore
we first focus on the probability of identification for a particular choice of reference states |α1〉B ,
|α2〉C expressed by equation (4.111). In fact, this we later help us to draw more general conclu-
sions. By plotting the Pbs(|α1〉, |α2〉) for various ranges of |α1 − α2|,η1 ∈ [0, 1] and T1 ∈ [0, 1]
one quickly finds that for the fixed values of η1 and |α1 − α2| the probability Pbs(|α1〉, |α2〉) is
maximal for the values of T1 that depend on η1 and |α1 − α2|. Thus, in general, for arbitrary
prior probability optimal transmitivity T1 depends on the reference states to be identified. How-
ever, we will show that in the special case of equal prior probabilities there is only one value of
transmitivity T1, which is optimal for all reference states. This value turns out to be T1 = 1/2
as we for equal prior probabilities expect from symmetry reasons. In order to show this we cal-
culate ∂Pbs(|α1〉,|α2〉)

∂T1
from Eq. (4.111) for η1 = η2 = 1/2 and the condition for critical points

(vanishing the first derivative) yields:

1 =
(1 + T1)2

(2− T1)2
e−|α1−α2|2(

1−T1
2−T1

− T1
1+T1

). (4.112)
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For 0 5 T1 < 1/2 both terms on the right hand side (RHS) of (4.112) are greater than 1, for
1/2 < T1 5 1 both terms are less than 1 and for T1 = 1/2 both terms on the RHS are 1. Thus,
T1 = 1/2 is the only critical point for all reference states and because of the second derivative
being negative it is the global maximum of Pbs(|α1〉, |α2〉) for T1 ∈ [0, 1].

Further, we consider the UI of coherent states appearing with equal prior probabilities. In this
case the optimal choice of transmitivities for our three beamsplitter setup is T1 = 1/2, T2 = 2/3
T3 = 1/3, which enables the probability of identification (4.111) to be written as:

Pbs(|α1〉, |α2〉) = 1− e− 1
3 |α1−α2|2 (4.113)

Comparison of UI strategies acting on coherent states

In the previous paragraphs we have discussed three different UI measurements that can be
used to identify coherent states:

i) the swap-based measurement,
ii) the optimal measurement,
iii) the beamsplitter setup.

The first two schemes unambiguously identify arbitrary states of qudits in arbitrary dimensions.
The beamsplitter setup is designed to identify only coherent states. Although the comparison
is usually understood in terms of average probabilities, we will adopt a different comparison
method evaluating the performance directly in terms of probabilities P (|α1〉, |α2〉) for all pairs
of states. It turns out that for all the measurements these probabilities depend only on a scalar
product of states under consideration.

As we mentioned in the beginning of this subsection qudit POVM elements Esbi and Eopti in
large d limit define also POVM elements in H⊗3

∞ . For simplicity we use the same notation for
these operators. These two UI strategies are universal, so they work for any pure states from
H∞. If applied on coherent states the corresponding probabilities are given by Eqs. (4.97) and
(4.102)

Psb(|α1〉, |α2〉) =
1
4

(1− |〈α1|α2〉|2) =
1
4

(1− e−|α1−α2|2) (4.114)

Popt(|α1〉, |α2〉) =
1
3

(1− |〈α1|α2〉|2) =
1
3

(1− e−|α1−α2|2). (4.115)

In what follows we will compare Psb(|α1〉, |α2〉), Popt(|α1〉, |α2〉), and
Pbs(|α1〉, |α2〉), which is a probability of identification for a beamsplitter setup designed espe-
cially for coherent states (see equation (4.113)). The following inequality holds for arbitrary
coherent states |α1〉, |α2〉:

Psb ≤ Popt ≤ Pbs (4.116)

Hence the same relation between the measurements holds also on average. The inequality can
be derived as follows. We denote e−|α1−α2|2 as x (x ∈ [0, 1]). All the probabilities are zero for
α1 = α2 (x = 1) as they should, because then the reference states are the same. The validity
of the inequality can be proved by showing the reversed inequality for the first derivative of the
probabilities with respect to x (4.116), i.e.

∂xPsb ≥ ∂xPopt ≥ ∂xPbs ⇔ −1
4
≥ −1

3
≥ − 1

3x
2
3
.
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Figure 4.8. The probability of identification P (|α1〉, |α2〉) as a function of the scalar product (given by
|α1 − α2|) for three UI strategies applied on coherent states |α1〉, |α2〉. Starting from the bottom the
two lowest lines correspond to universal UI measurements (the swap-based is in magenta and the optimal
strategy is in black, respectively). The blue line is associated with the beam splitter setup that was designed
especially for coherent states. The top (red) curve corresponds to the optimal discrimination probability
among two known states.

The last row obviously holds in the interval x ∈ [0, 1], so inequality (4.116) is proved. More
quantitative insight is given in the figure (4.8) showing the dependence of the probability of
identification for the considered UI strategies on the |α1 − α2|. As a result we can conclude that
the beamsplitter setup designed for an unambiguous identification of coherent states performs
better than the optimal universal UI measurement. Another remarkable feature is that the beam-
splitter setup attains Pbs(|α1〉, |α2〉) = 1 for large values of |α1 − α2|, i.e. in the limit when two
coherent states are orthogonal.

In this section we have addressed the problem of an unambiguous identification of unknown
coherent states. We have explicitly designed UI measurement taking into account the a priori
knowledge about a particular family of states and compared the proposed measurement with
the universal unambiguous identification, i.e. the UI measurements (either the swap-based or
the optimal one) that can be applied for all pure states. Our main goal was to design a simple
experimental setup consisting of three beamsplitters (see Fig. 4.7) that performs best.

The proposed beamsplitters setup for unambiguous state identification can be compared with
the measurement proposed in Ref. [50] discriminating optimally among two known coherent
states. Both of them consists of three beamsplitters, but arranged differently. An interesting
observation is that the differences between the probabilities are not very large (see Fig. 4.8)
and even more surprising is the fact that two unknown nearly orthogonal coherent states can be
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identified almost perfectly. For the universal optimal UI measurement (see Fig. 4.8) there is a
significant gap between the probabilities for state discrimination and state identification.

4.3.6 Optimal UI of coherent states with linear optics

In this part of the chapter we study possible generalization of an optical setup proposed in the
previous section. More specifically, we show how the UI of coherent states can be performed
in a general case when multiple copies of unknown and reference states are available. This
investigation is motivated by the observation that with the increase of the number of identically
prepared particles we can better identify the preparator. We shall also prove optimality of the
discussed UI setups for multiple copies of unknown and reference states.

We start our investigation by stating the problem within our framework for unambiguous
identification. We consider modes of a quantum electromagnetic field (linear harmonic oscilla-
tors) each described by a semi-infinite-dimensional Hilbert spaceH∞ and prepared in a coherent
state of a specific amplitude. We denote the complex amplitude of the unknown coherent state
by α? and similarly we denote the reference states as |α1〉, |α2〉, . . . , |αM 〉. Thus, in general, we
should unambiguously distinguish the following M possible types of states:

|Ψi〉ABC... ≡ |αi〉⊗nAA ⊗ |α1〉⊗nBB ⊗ |α2〉⊗nCC ⊗ . . . , (4.117)

where α? = αi and i = 1, 2, . . . ,M . We assume that the states of the type |Ψi〉 appear with an
equal prior probability ηi = 1/M . The performance of the considered UI measurement will be
most often quantified by the probability of identification for a particular choice of reference states
P (|α1〉, . . . , |αM 〉), because the optimal parameters of the measurement setup will not depend
on specific reference states. Hence, most of the features that the averaged probability P(Scoh)
would have should be apparent already in P (|α1〉, . . . , |αM 〉). Nevertheless, in accordance with
our framework the aim is the maximization of the average value

P(Scoh) =
∫

CM
P (|α1〉, . . . , |αM 〉)χ(α1, . . . , αM ) dα1 . . . dαM ,

(4.118)

where χ(α1, . . . , αM ) is the probability distribution describing our knowledge about the choice
of reference states. In Eq. (4.118) we integrate over multiple infinite (complex) planes of com-
plex amplitudes. Unfortunately, a uniform distribution on an infinite plane can not be properly
defined. Thus, χ(α1, . . . , αM ) can not be uniform, but instead should be “regularized”, i.e. it
should satisfy some reasonable physical requirements. For example, the probability of having
reference states with very big amplitudes, i.e. of very high energy, should be vanishing. This
illustrates that UI of coherent states can not be so easily reformulated as unambiguous discrim-
ination of M mixed states. Even if there was a natural and mathematically allowed choice for
χ(α1, . . . , αM ) we could not apply the tools for unambiguous discrimination of mixed states
directly, because most of them were proved only for finite dimensional Hilbert spaces. Our ap-
proach to the problem is a bit more operational. We shall construct optical setups, which by
construction perform UI for any coherent reference states and prove their optimality under the
restriction that only linear optical elements and photodetectors are used in the measurement.

Naturally, coherent states encode complex numbers. From this point of view the state | 1√
2
α?〉

carries formally the whole information about the complex amplitude α?. This is due to the fact
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Figure 4.9. The beamsplitter setup designed for constructive interference of the same input coherent states.
Out of k copies of a coherent state |αi〉 we obtain at the output of a sequence of k − 1 beamspitters one
mode in the coherent state |

√
kαi〉 and k − 1 modes in a vacuum state |0〉⊗k−1.

that we know the factor λ = 1/
√

2 by which α? is rescaled. If the complex amplitude α? is
encoded in the state |λα?〉 then for 0 ≤ λ < 1 we will speak about a “diluted” unknown state
while the case λ > 1 will be referred to as a “concentrated” unknown state |α?〉. These terms
come from the fact that the “diluted” state can be obtained by superimposing a coherent state
and a vacuum via a beam splitter. As a result of the beam splitter transformation two modes at
the output of the beam splitter are in the diluted states. On the contrary, the “concentrated” state
can be prepared by launching two copies of the same coherent state into the beam splitter. As
a result we obtain one of the output modes in the “concentrated” state while the second mode
in the vacuum state. Using a sequence of beamsplitters and corresponding resources one can
prepare “diluted’ or “concentrated” states with arbitrary value of the scaling factor λ. Actually,
preparation of “concentrated” states is the main idea we will employ in our investigation of
the UI measurement with multiple copies of unknown and reference states. At the beginning
of the UI measurement we will, for each kind of state, concentrate the information encoded in
its k copies into a single quantum system. This can be done by a sequence of k − 1 beam
splitters (see Fig. 4.9) with transmitivities chosen so that the input state |αi〉⊗k constructively
interferes to produce the state |

√
kαi〉 ⊗ |0〉⊗k−1. More details about this transformation can be

found in Section 4.2.4. The result of these preliminary transformations is a mapping of possible
types of states |Ψi〉 into states |√nAαi〉A1 ⊗ |

√
nBα1〉B1 ⊗ |

√
nCα2〉C1 ⊗ . . . ⊗ |0〉t, where

t = nA − 1 + nB − 1 + . . .. As a next step we will use the setup proposed in previous section
for a single copy of the unknown state and single copies of M reference states. Of course, as we
will see below the transmitivities of all beam splitters in the setup must be modified according to
the number of copies of the unknown and the reference states we are given.
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Figure 4.10. The beamsplitter setup designed for an unambiguous identification of multiple copies of two
types of coherent states.

Two types of reference states

The unambiguous identification of two types of coherent reference states is the first natural
step in generalizing the scenario with single copies of unknown and reference states investigated
in previous section. In this section we consider M = 2 while nA, nB , nC are arbitrary. The
above mentioned idea of “concentration” of quantum information implies that we first feed all
provided copies of the unknown state into nA − 1 beam splitters to obtain state |√nAα?〉 in the
mode A1 (for brevity later called only A). The other modes A2 . . . AnA end up in a vacuum
state, therefore we will not consider them further. Similarly, nB − 1 (respectively, nC − 1)
beam splitters are used to prepare the state |√nBα1〉 (respectively, |√nCα2〉) in the modes B1

(C1). Next, we feed these concentrated states into essentially the same scheme as proposed in
the previous section (see Fig. 4.10). Thus, altogether we are going to use nA + nB + nC beam-
splitters. The analysis of the setup presented in Fig. 4.10 is analogous to the one presented in the
previous section, therefore we comment on it only briefly.

The beam splitter setup in Fig. 4.10 acts on input modes that are prepared in the state

|Φin〉 = |
√
nAα?〉A ⊗ |

√
nBα1〉B ⊗ |

√
nCα2〉C ⊗ |0〉D ,

where α? is guaranteed to be either α1 or α2. The action of the three beamsplitters in the setup
is described by a unitary transformation

|Φin〉 7→ |Φout〉 = (U (2)
AB ⊗ U

(3)
CD)(U (1)

AD ⊗ IBC)|Φin〉 ,

where U (j)
XY is associated with the j-th beamsplitter Bj acting on the modes X and Y . Since

beamsplitters do not entangle coherent states it follows that the output state |Φout〉 remains fac-
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torized. In the first step the beamsplitter B1 with transmittivity T1 prepares two “diluted” copies
of the state |√nAα?〉, i.e.

|0〉D ⊗ |
√
nAα?〉A 7→ |

√
R1nAα?〉D ⊗ |

√
T1nAα?〉A . (4.119)

In the second step the beamsplitters B2, B3 perform the transformation such that the output state
reads

|Φout〉 = |out〉A ⊗ |out〉B ⊗ |out〉C ⊗ |out〉D , (4.120)

with

|out〉A = | −
√
R2nBα1 +

√
T2T1nAα?〉A ,

|out〉B = |
√
T2nBα1 +

√
R2T1nAα?〉B ,

|out〉C = | −
√
R3R1nAα? +

√
T3nCα2〉C ,

|out〉D = |
√
T3R1nAα? +

√
R3nCα2〉D .

A crucial observation is that the parameters Tj , Rj = 1 − Tj can be adjusted so that either
the mode A, or the mode C, ends up in a vacuum state providing that α? = α1, or α? = α2,
respectively. In particular, setting the transmittivities to

T2 =
1

1 + nA
nB
T1

; T3 =
1− T1

nC
nA

+ 1− T1
, (4.121)

we find

|out〉A = |
√
R2nB(α? − α1)〉A ;

|out〉B = |
√
T2nBα1 +

√
R2T1nAα?〉B ;

|out〉C = |
√
T3nC(α2 − α?)〉C ;

|out〉D = |
√
T3R1nAα? +

√
R3nCα2〉D . (4.122)

Finally, we perform a photodetection in the output modes A and C by the photodetectors D2

and D1, respectively. By detecting a photon in one of the two modes we can unambiguously
identify the unknown state. In particular, for these two modes we have

α? = α1 ↔ |0〉A ⊗ |
√
T3nC(α2 − α1)〉C ;

α? = α2 ↔ |
√
R2nB(α2 − α1)〉A ⊗ |0〉C . (4.123)

We note that due to the fact that at least one of the modes is in a vacuum state both detectors
cannot “click”, i.e. cannot detect photons simultaneously. Therefore, in each single run of the
experiment only three situations can happen:

i) none of the detectors click,
ii) only the detector D1 clicks,
iii) only the detector D2 clicks.

If only the detector D1 clicks then following Eqs. (4.123) we unambiguously conclude that
α? = α1. Similarly, if only the detector D2 clicks we unambiguously conclude that α? = α2.
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If none of the detectors click we cannot determine which mode was not in the vacuum state and
therefore this situation represents an inconclusive result.

If α? = α1, then the probability of a correct identification is given as the probability of
detecting at least one photon in the mode C

P1 = 1− |〈0|
√
T3nC(α2 − α1)〉|2 = 1− e−

nCnA(1−T1)
nC+nA(1−T1) |α1−α2|2 . (4.124)

Analogously, in the case α? = α2 the probability of a correct identification reads

P2 = 1− |〈0|
√
R2nB(α2 − α1)〉|2 = 1− e−

nBnAT1
nB+nAT1

|α1−α2|2 . (4.125)

Thus the total probability of the identification of reference states |α1〉 and |α2〉 is equal to

P(|α1〉, |α2〉) = η1P1 + η2P2 =
1
2

(P1 + P2) . (4.126)

Next we will optimize the performance of the setup by choosing an appropriate value of the
transmittivity T1. The definition of the uniform distribution on a set of coherent states is prob-
lematic, therefore we first focus our attention on the probability of identification for a particular
choice of reference states |α1〉 and |α2〉 expressed by Eq. (4.126).

The investigation of the first derivative ∂P(|α1〉,|α2〉)
∂T1

reveals that the optimal choice of T1

does not depend on the reference states |α1〉, |α2〉 only if nB = nC . As one expects, because of
symmetry arguments, T1 is optimally set to 1/2 if nB = nC . In such a case, P(|α1〉, |α2〉) can
be simplified to take the following form:

P(|α1〉, |α2〉) = 1− e−
nAnB
nA+2nB

|α1−α2|2 . (4.127)

Let us note that if nB 6= nC then there exists a prior probability η1 = 1 − η2 for which the
optimal choice of T1 does not depend on the reference states. However, as already mentioned,
we focus on the ηi = 1/M case and we will assume that we are given the same number of copies
of each reference state.

Trade-off between resources

The number of copies of an unknown state or of a reference state we have can be seen as a
measure of some resource. From this point of view an interesting question immediately arises:
Which type of resource is more useful for an unambiguous identification of coherent states? Are
unknown states more useful than reference states or vice versa? To answer these questions we
consider the following situation. Imagine we will get altogether N quantum systems (modes of
electromagnetic field) but we have a liberty to specify whether the specific mode is prepared in
the unknown state or in one of the two reference states. Thus, if we ask for nA copies of the
unknown state we will obtain nB = nC = (N − nA)/2 copies per a reference state. Let us for
simplicity assume that N and nA have the same parity. The probability of identification for a
reference states |α1〉, |α2〉 then reads

P(|α1〉, |α2〉) = 1− e−
nA(N−nA)

2N |α1−α2|2 (4.128)
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and it is maximized for nA = bN/2c, because the terms in the exponent are nonnegative. Hence,
from the point of view of the resources, it is optimal to ask for a preparation of bN/2c unknown
states and the equal number of copies per a reference state (specifically, bN/4c).

Infinite number of copies of reference states

Unambiguous identification is a discrimination task in which we have very limited prior
knowledge about the possible preparations of the quantum system. The amount of information
about the possible preparations is essentially given by the number of copies of the reference
states we obtain. In the limit of infinite number of copies the preparation of reference states
becomes known (at least potentially via a tomographic measurement) and thus the UI is becoming
equivalent to discrimination among known states. The unambiguous discrimination among pair
of known pure states (for equal prior probabilities) was solved by Ivanovic, Dieks and Peres [6–8]
in 1987. Their optimal measurement succeeds with a probability 1−|〈ϕ1|ϕ2〉|, where |ϕ1〉, |ϕ2〉
are the known states in which the system can be prepared. In what follows we will show that in
the aforementioned limit (M = 2, nB = nC → ∞) our beam-splitter setup achieves the same
optimal performance. In order to prove this we have to evaluate the limit of Eq. (4.127):

P (|α1〉, |α2〉, nB = nC →∞)

= lim
nB→∞

1− e−
nAnB
nA+2nB

|α1−α2|2

= 1− e−
nA
2 |α1−α2|2

= 1− |〈α1|α2〉|nA . (4.129)

In the last equality we have used the expression for the modulus of the overlap of the two coherent
states |〈α1|α2〉|2 = e−|α1−α2|2 . In the limit nB = nC → ∞ the two known states that could
be unambiguously discriminated by the Ivanovic-Dieks-Peres measurement are |ϕ1〉 = |α1〉⊗nA ,
|ϕ2〉 = |α2〉⊗nA . Thus, we see that Eq. (4.129) is equal to 1−|〈ϕ1|ϕ2〉| and so our beam-splitter
setup performs optimally in this limit. Let us note that for nA = 1 our setup is in this limit
equivalent to the setup proposed by K. Banaszek [50] for unambiguous discrimination between a
pair of known coherent states. For nB = nC →∞ our T2 → 1, T3 → 0, i.e. the “concentrated”
reference states are nearly reflected, which induces a displacement of the “diluted” unknown
state | 1√

2
α?〉. In the same way K. Banaszek uses very unbalanced beam-splitters to cause the

displacement of the outputs of the beam-splitter.
For the limiting case M = 2, nA = nB = nC → ∞ it is natural to expect a classical

behavior, i.e. a unit probability of identification. For unequal reference states this result is easily
obtained by taking the limit of Eq. (4.127).

Weak implementation of UI measurement

Let us consider a basic version of the UI of coherent states (M = 2, nA = nB = nC =
1). We will describe a measurement, which in the case of success, leaves all the input states
nearly unperturbed and achieves the probability of identification given by Eq. (4.127). The
measurement procedure goes as follows: We first equally split each of our resource states into
N parts. Thus, we have N copies of states | 1√

N
α?〉, | 1√

N
α1〉, | 1√

N
α2〉. We use the three beam-

splitter setup (M = 2, nA = nB = nC = 1) for each of these N triples. The UI measurement
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performed on the first triple will succeed with the probability 1 − e
− 1

3 |
1√
N
α1− 1√

N
α2|2 = 1 −

e−
1

3N |α1−α2|2 . If we find α? = α1 we can combine the unmeasured 3N − 3 modes into the
states |

√
2N−2
N α1〉, |

√
N−1
N α2〉. For α? = α2 we operate analogously obtaining |

√
N−1
N α1〉,

|
√

2N−2
N α2〉. If the UI measurement of the first triples fails we continue by measuring the

other triples until we find a conclusive outcome or use all the triples. In the case of the k-
th triple leading to the conclusive result we concentrate the remaining resources to obtain the

states |
√

2(N−k)
N α1〉, |

√
N−k
N α2〉 or |

√
N−k
N α1〉, |

√
2(N−k)
N α2〉 depending on α? being α1 or

α2. We do not get a conclusive result only if the measurements of allN triples yield inconclusive
results. Hence, the overall probability of successful identification of the unknown state 1 −
(e−

1
3N |α1−α2|2)N = 1− e− 1

3 |α1−α2|2 is the same as in Eq. (4.127). However, in contrast to the
three beam splitter setup proposed in previous section, if a conclusive result is obtained before
measuring the N -th triple we still have “diluted” input states at our disposal.

Optimality proof

In this section we shall prove optimality of the proposed UI setups if only linear optical
elements, photodetectors and sources of multimode coherent states are allowed to be used. Due
to the fact that the linear optical transformations preserve the tensor product structure of coherent
states it follows that in any measurement (using arbitrarily many photodetectors) the measured
state is a factorized coherent state of N modes of the form |β1 ⊗ · · · ⊗ βN 〉 = |β1〉 ⊗ · · · ⊗
|βN 〉 ≡ |~β〉. In order to use an outcome of the measurement for the unambiguous conclusion
the probabilities for all the other options must vanish. Let us note that for the considered family
of states each photodetector measuring the individual mode has a non-vanishing probability to
observe n > 0 photons unless this mode is in the vacuum state, i.e. if |βj〉 6= |0〉, then pn(|βj〉) =
|〈n|βj〉|2 > 0 for all n > 0. Only for the vacuum state pn(|0〉) = 0. Moreover, the probability
to observe no photon is non-vanishing for all coherent states, i.e. this event cannot be used for
unambiguous conclusion. Consequently, the unambiguous conclusions are necessarily associated
with observation of the nonzero number of photons identifying the fact that the corresponding
mode is not in the vacuum state.

In unambiguous identification of two types of reference states and equal number of copies
per reference state (M = 2, nB = nC) our goal is to discriminate two families of states: either
|α1
⊗nA ⊗ α1

⊗nB ⊗ α2
⊗nB 〉, or |α2

⊗nA ⊗ α1
⊗nB ⊗ α2

⊗nB 〉, where |α1〉, |α2〉 are arbitrary
coherent states, but α1 6= α2. In general, our (Gedanken) experiment starts with a preparation
of a coherent state |α?

⊗nA ⊗ α1
⊗nB ⊗ α2

⊗nB ⊗ β1 ⊗ · · · 〉, where |βj〉 are fixed states of some
ancillary modes. By linear optical elements this state is mapped into a state |∆1⊗∆2⊗∆3⊗· · · 〉,
where ∆j are complex numbers depending on α?, α1, α2. Each of these modes is measured by
a photodetector. In order to make an unambiguous conclusion α? = α1 based also on a click of
the jth photodetector we need to guarantee for all values of α1, α2 that ∆j = 0 for α? = α2 and
|∆j | > 0 for α? = α1. Similarly, for the unambiguous conclusion α? = α2. As it was shown by
He and Bergou in Ref. [51] the linear optical transformations of coherent states can be described
by unitary matrices acting on vectors of amplitudes of individual modes, i.e.

G.(α?, . . . , α?︸ ︷︷ ︸
nA

, α1, . . . , α1︸ ︷︷ ︸
nB

, α2, . . . , α2︸ ︷︷ ︸
nB

, β1, . . .)T = (∆1, . . .)T ,
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where G is a unitary matrix. Without the loss of generality we can write G = W.Q, where W,Q
are unitary and Q performs the concentration operation. More precisely we set

Q =


Q1 O O O
O Q2 O O
O O Q2 O
O O O I

 , (4.130)

where Q1, Q2 are unitary matrices nA × nA (respectively nB × nB) such that

Q1 : (d, . . . , d)T 7→ (
√
nAd, 0, . . . , 0)T ;

Q2 : (d, . . . , d)T 7→ (
√
nBd, 0, . . . , 0)T .

The transformation described by the matrixQ turns the vector of input coherent states amplitudes
into

−→q ≡ (
√
nAα?, 0, . . .︸ ︷︷ ︸

nA

,
√
nBα1, 0, . . .︸ ︷︷ ︸

nB

,
√
nBα2, 0, . . .︸ ︷︷ ︸

nB

, β1, . . .)T .

Hence, we can write the result of the overall transformation G via the matrix W acting on the
above vector −→q

W.−→q = (∆1,∆2, . . .)T (4.131)

with

∆j = Wj,1
√
nAα? +Wj,nA+1

√
nBα1 +Wj,nA+nB+1

√
nBα2 + γj (4.132)

and γj =
∑
kWj,k+nA+2nBβk. The condition ∆j = 0 holding for all values α1, α2 if α? = α2

implies

0 = Wj,nA+1 = γj

λj = Wj,1
√
nA = −Wj,nA+2nB+1

√
nB

|∆(1)
j 〉 = |λj(α? − α2)〉,

where the upper index indicates the association of observation of photons in this mode with the
conclusion α? = α1. Similarly, if the jth mode will be associated with the conclusion α? = α2,
then the corresponding state has to be |∆(2)

j 〉 = |λj(α? − α1)〉.
The detectors can be divided into three classes according to the type of states that are mea-

sured: i) |∆(1)
j 〉 (detecting α? = α1), ii) |∆(2)

j 〉 (detecting α? = α2), and, iii) different type of
a state corresponding to an inconclusive result. The detectors from the third class can not be
employed in making unambiguous decision and hence will not be considered further. An arbi-
trary click on the detector i) tells us that α? = α1 therefore we associate these clicks with the
unambiguous result α? = α1. Analogously, clicks from the type ii) detector are associated with
the unambiguous result α? = α2. In what follows we shall show that the events on detectors
leading to the same conclusion can be replaced by a single detector while the success probabil-
ity is preserved. In other words, an experiment in which n1 detectors are used to conclude that
α? = α1 and n2 detectors to detect that α? = α2 can be replaced by an experiment with only two
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photodetectors. In particular, by renaming the output ports the output vector can be rearranged
into the form

∆(1)
1
...

∆(2)
n1+1
...

∆n1+n2+1

...


=



(α? − α2)λ1

...
(α? − α1)λn1+1

...
∆n1+n2+1

...


≡ ~α′? . (4.133)

In such case we denote Ω ≡ e−|α1−α2|2 and the success probability reads

Psuccess =
1
2

(1−
n1∏
j=1

e−|λj(α1−α2)|2) +
1
2

(1−
n1+n2∏
j=n1+1

e−|λj(α1−α2)|2)

= 1− 1
2

(Ω
Pn1
j=1 |λj |

2
+ Ω

Pn1+n2
j=n1+1 |λj |

2

) , (4.134)

because the UI measurement fails only if none of the conclusive detectors fire. However, there
exist a unitary matrix of the block diagonal form

U =

 U1 O O
O U2 O
O O I

 , (4.135)

where U1, U2 are suitable unitary matrices ni × ni such that

U1 : (λ1, . . . , λn1)T 7→ (κ1, 0, . . . , 0)T ;
U2 : (λn1+1, . . . , λn1+n2)T 7→ (κ2, 0, . . . , 0)T

with κ1 =
√∑n1

k=1 |λk|2 and κ2 =
√∑n2

k=1 |λn1+k|2. This means that the overall product of
coherent states transforms into

U : ~α′? 7→



κ1(α? − α2)
0
...

κ2(α? − α1)
0
...

∆n1+n2+1

...


. (4.136)

Two detectors measuring the first and the (n1 + 1)th output port are of the first respectively the
second type and we see that the probability of success

Psuccess =
1
2

(1− e−|κ1(α1−α2)|2) +
1
2

(1− e−|κ2(α2−α1)|2)

= 1− 1
2

(Ω
Pn1
j=1 |λj |

2
+ Ω

Pn1+n2
j=n1+1 |λj |

2

) (4.137)



722 Quantum theory of unambiguous measurements

equals the multidetector case [see Eq.(4.134)]. This means we have shown that it suffice to
consider one conclusive photodetector of the type one and one detector of the type two. We can
now go back to Eq. (4.131) and require that the states measured by the photodetectors D1, D2

have the form |∆1〉 = |λ1(α?−α2)〉, |∆2〉 = |λ2(α?−α1)〉. This implies that first, (nA + 1)th,
and (nA + nB + 1)th column of the matrix W is constraint in the following way:

W =


√

1
nA
λ1 . . . 0 . . . −

√
1
nB
λ1 . . .√

1
nA
λ2 . . . −

√
1
nB
λ2 . . . 0 . . .

...
...

. . .

 .

The unitarity of the matrix W requires normalization of its rows i.e.

1 = (
1
nA

+
1
nB

)|λ1|2 + a2 = (
1
nA

+
1
nB

)|λ2|2 + b2 ,

where a, b are norms of remaining parts of the first and the second row vectors, respectively.
Their orthogonality and the Cauchy-Schwartz inequality give us the inequality |λ1λ2|/nA ≤ ab.
With the help of the previous equation we find

1
(nA)2

|λ1|2|λ2|2 ≤ (1− h|λ1|2)(1− h|λ2|2), (4.138)

where h ≡ ( 1
nA

+ 1
nB

). The probability of success in the UI for the scheme using linear optical
elements described by the matrix W is

P(|α1〉, |α2〉) =
1
2

2∑
i=1

(1− e−|λi|
2|α1−α2|2). (4.139)

The higher the |λi|’s the higher P(|α1〉, |α2〉) is. However, the values of λ1, λ2 must satisfy the
inequality (4.138) and therefore the maximum is achieved [see Eq.(4.139)] only if the inequality
(4.138) is saturated. Thus, we have to optimize P(|α1〉, |α2〉) with respect to |λ1|, while keeping

|λ2|2 =
nAnB − (nA + nB)|λ1|2

nA + nB − (2 + nA
nB

)|λ1|2
. (4.140)

The optimal value of |λ1| for any value of |α1 − α2| is |λ1|2 = |λ2|2 = nAnB
nA+2nB

, because at this
point ∂

∂|λ1|P(|α1〉, |α2〉) = 0 and P(|α1〉, |α2〉) is concave with respect to |λ1| in the allowed
interval. The aforementioned choice of |λ1| corresponds to a performance of the setup we have
proposed in section 4.3.6, and hence concludes the proof.

More types of reference states

In the previous section the optimal values of transmittivities in our beam-splitter setup were
state-independent only in the case of equal number of copies per reference state. Thus, for more
than two types of reference states we will discuss only cases with the same number of copies of
each reference state. Unfortunately, we will see that even in this restricted scenario, the optimal
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choice of transmittivities in the setup we propose will depend on the reference states (which are
supposed to be unknown).

The generalization of the beam-splitter unambiguous identification scheme from the previ-
ous subsection is straightforward: We start by preparing the “concentrated” states |√nAα?〉,
|√nBα1〉, |

√
nCα2〉, . . .. We use M − 1 beam-splitters to sequentially split the “concentrated”

unknown state |√nAα?〉 into M states. Each of these M states is then merged with one of the
“concentrated” reference states |√nBα1〉, . . . , |

√
nMαM 〉 on beam-splitters C1, . . . , CM . The

transmittivity Tk (of the beam-splitter Ck) is chosen so that the destructive interference yields
the vacuum on the second output port of Ck for α? = αk. These output ports are monitored by
photodetectors D1, . . . , DM . Detection of at least one photon by the photodetector Dk unam-
biguously indicates α? 6= αk. If all photodetectors except the k-th fire, then we conclude that
α? = αk. For M = 2 we had freedom in choosing the ratio T1 with which the “concentrated”
unknown state |√nAα?〉 was split into two parts used for the two comparisons. In order to max-
imize the probability of identification we can tune M − 1 transmittivities of the beam-splitters
that govern the splitting of the “concentrated” unknown state. The optimal choice of these trans-
mittivities even for equal prior probabilities ηj = 1/M depends on the choice of the reference
states. Once we consider nB = nC = . . . then let us consider equal splitting of the “concen-
trated” unknown state into M parts, even though it is not necessarily the optimal choice. In such
case the beam-splitters C1, . . . , CM are performing the following transformation:

Ck : |
√
nA
M
α?〉 ⊗ |

√
nBαk〉 7→ |out1〉 ⊗ |out2〉;

|out1〉 = |
√
TknA
M

α? +
√
RknBαk〉; (4.141)

|out2〉 = | −
√
RknA
M

α? +
√
TknBαk〉.

The condition of |out2〉 being a vacuum for α? = αk forces us to set the transmittivity to Tk =
nA/(nA + MnB). The probability of observing at least one photon in |out2〉 if α? = αj is

1− e−
nAnB

nA+MnB
|αj−αk|2 . The corresponding probability of identification therefore reads:

P (|α1〉, . . . , |αM 〉) =
M∑
j=1

1
M

∏
k 6=j

(1− e−
nAnB

nA+MnB
|αj−αk|2) .

(4.142)

Let us note that for a single copy of an unknown state and a single copy of reference states
(nA = nB = nC = . . . = 1) the preliminary part of the setup concentrating the input coherent
states is not present and hence the setup is much simpler and it is depicted on Fig. 4.11.

The unambiguous identification of M reference states described above can be considered as
a search in a quantum database composed of M elements, i.e. M different though unknown
coherent states |αj〉 that are encoded into M modes of an electromagnetic field. We point out
that we have only a single copy of each of the states |αj〉 so one can not acquire a complete
classical knowledge about the state. This set of M states corresponds to a quantum database.
In addition we have the (M + 1)-st mode of the light field in the state |α?〉. The search of the
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Figure 4.11. Unambiguous identification measurement setup identifying among M coherent states.

database corresponds to the task of matching of two modes such that α? = αj . So we can say
that the two modes are in the same state without knowing what the state actually is.

4.3.7 Recovery of coherent reference states after UI

In this section we examine the information that remains in the unmeasured modes of our beam-
splitter UI setups. In particular, we focus on a possibility of “recreating” the reference states after
the unambiguous measurement. This recovery process might seem to be prohibited by the rules
of quantum mechanics (due to irreversible disturbance of a quantum state by a measurement).
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We show that in spite of the fact that the recovered reference states are “degraded” (disturbed),
nevertheless they can be used in the subsequent round of the UI under the condition that new
copy of an unknown state is provided. This can be useful for creating a quantum database, which
would not be completely destroyed by the search performed on it. Instead, the data, i.e. the
reference states, would degrade gradually with their repeated use.

First, we shall show that the coherent reference states can not be “recreated” without addi-
tional resources if the first unambiguous identification yields an inconclusive outcome. Although,
this may seem disappointing, we show that the unmeasured states still can be used efficiently for
the UI if the same unknown state is expected. Next, we examine the situation of the first UI
producing a conclusive result known to us. In that case “diluted” reference states can be created,
and they can be used for another independent unambiguous identification.

Let us consider the simplest version of unambiguous identification of coherent states (M =
2, nA = nB = nC = 1). The beam-splitter setup for this scenario is depicted in Fig. 4.10. The
modes B and D are not entangled with other modes, therefore their states do not depend on the
measurement performed by the two photodetectors. The states of the modes B,D are given by
Eqs. (4.121) and (4.122), where T1 is set to 1/2 (for details see Section 4.3.6).

|out〉B = |
√

2
3
α1 +

√
1
6
α?〉B ;

|out〉D = |
√

1
6
α? +

√
2
3
α2〉D . (4.143)

Using beam-splitters, phase shifters and known coherent states we can produce out of the states
satisfying Eq. (4.143) a coherent state of the form∣∣∣∣∣a

(√
2
3
α1 +

√
1
6
α?

)
+ b

(√
1
6
α? +

√
2
3
α2

)
+ γ

〉
, (4.144)

where a, b, γ ∈ C. Imagine we want to recover the first reference state. Hence, we want the
state from Eq. (4.144) to be |λα1〉. Even though we know that either α? = α1, or α? = α2, a
suitable choice of a, b for one of these possibilities produces “junk” in the other case. Analogous
reasoning works for the second reference state. For the inconclusive result of the UI measurement
we do not know, which possibility took place, and thus the reference states can not be recovered.

Repetition of UI for same unknown state

Although the unmeasured modes of the beam-splitter setup seem to be useless nevertheless
they can be exploited in the UI of the same unknown state |α?〉. Namely, we can feed them in-
stead of the reference states into the beam-splitter scheme shown in Fig. 4.10. The concatenation
is illustrated in Fig. 4.12. The transmittivity of the beamsplitter B2 (respectively, B3) can be set
so that its measured output is in a vacuum if α? = α1 (respectively, if α? = α2). If we chose
(for symmetry reasons) T1 = 1/2 then the transmittivities T2, T3 should be set to T2 = 3/4,
T3 = 1/4, respectively. This implies that the photodetectors measure the states |(α?−α1)/

√
6〉,

|(α2 − α?)/
√

6〉. Thus, for both cases α? = α1, α? = α2 we can observe a photon in only one
of the photodetectors and with the probability 1− e− 1

6 |α1−α2|2 unambiguously conclude which
possibility took place. Hence, the probability 1 − e− 1

6 |α1−α2|2 is a conditional UI probability
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Figure 4.12. The beam-splitter setup designed for a subsequent unambiguous identification of multiple
copies of an unknown coherent state.

after the first identification measurement returned an inconclusive result. The overall probability
of an unambiguous identification for this two-round measurement is 1 − e− 1

2 |α1−α2|2 . This is
due to the fact that the measurement fails only if both measurement rounds yield an inconclusive
outcome.

The two-round measurement is essentially the UI scheme for M = 2, nA = 2, nB = nC =
1, so we can compare its performance with the corresponding beam-splitter scheme analyzed
in Section 4.3.6 [see Eq. (4.127)]. Indeed, the performance is the same, but the two round
measurement has one possible advantage. If the first round gives a conclusive result then we still
have an unmeasured copy of the unknown state (i.e. copy of |α1〉 or |α2〉) at our disposal. This
is a similar advantage as in the case of weak implementation of the UI measurement discussed
in Section 4.3.6.

Repetition of UI with different unknown state

As we illustrated in the beginning of Section 4.3.7 it is not possible to “recreate” the reference
states by linear optics after an inconclusive result of an UI measurement is obtained. On the
contrary, we will show that when a conclusive result is registered then both reference states can
be “recreated”. The proposed process will not perfect, because the recreated reference states will
be a bit “diluted”. Nevertheless, these states can be used as reference states for an UI with a
different, independently prepared unknown state |β?〉 (either β? = α1 or β? = α2).

When the result α? = α1 is found in the first round of the UI, the unmeasured modesB,D are

in states the |
√

3
2α1〉B and |

√
1
6α1 +

√
2
3α2〉D, respectively. Thus, we have the “concentrated”

first reference state |
√

3
2α1〉 in the mode B. Let us now examine whether the reference state |α2〉

can be “recreated” out of the modes B and D. The obvious idea is to use the mode B to shift
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Figure 4.13. The beam-splitter setups designed for the recovery of unmeasured modes from Fig. 4.10. In
the case α? = α1 the setup a) is used, however for α? = α2 the setup b) is used.

the mode D via a beam-splitter so that the α1 part of the amplitude in |
√

1
6α1 +

√
2
3α2〉D is

canceled. This happens for the transmittivity of the beam-splitter equal to 9/10:

|
√

3
2
α1〉 ⊗ |

√
1
6
α1 +

√
2
3
α2〉 7→

7→ |

(√
27
20

+

√
1
15

)
α1 +

√
1
60
α2〉 ⊗ |

√
3
5
α2〉 . (4.145)

Hence, we know how to recover separately either the first or the second reference state. If solely
such a single state is used in the subsequent UI measurement then the probability of success
is bounded from above by 1/2, because only one type of a reference state can be identified.
Thus, we want to find a setup, which extracts both types of reference states simultaneously and
allows for a subsequent round of the unambiguous identification of |β?〉. Such a scheme is
presented in Fig. 4.13a. The beam-splitter B1 splits the “concentrated” first reference state into
two parts. One part can be directly used for the next round of the UI, the second part cancels
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Figure 4.14. The beam-splitter setup designed for a repetition of the UI with different unknown state, which
can be seen as a repeated search in a quantum database. The gray beam-splitters in recovery steps are used
if the unknown state from previous round of the UI matches the second reference state otherwise the black
beamsplitters are used.

the α1 contribution in the amplitude of coherent state in mode D via the beam-splitter B2. If
we set the transmittivity of the beam-splitter B1 to be TR1 , then the requirement of cancelation
of the α1 contribution of the amplitude in the mode D constrains the transmittivity of B2 to be
TR2 = (9− 9TR1 )/(10− 9TR1 ). The corresponding “recreated” reference states then read

|
√

3
2
TR1 α1〉, |

√
6− 6TR1
10− 9TR1

α2〉 . (4.146)

We want to use these two states instead of the reference states |α1〉, |α2〉 in the next round of
the UI. Both possible preparations |β?〉 = |α1〉, |β?〉 = |α2〉 will be equally likely, therefore we
chose TR1 = (7−

√
13)/9 so that equally diluted reference states

|
√
λ2α1〉 ; |

√
λ2α2〉 ; with λ2 ≡

7−
√

13
6

, (4.147)

enter the next round of the UI. If a conclusive result α? = α2 is obtained in the first round of
the UI, then after exchanging the roles of the modes B and D, analogous recovery setup (see
Fig.4.13b) can be used to produce the “diluted” reference states given by Eq. (4.147). Thus,
for both conclusive results from the first round of the UI, one type of the UI measurement using
the recovered reference states can be used in the second round. Actually, the beam-splitter setup
from Fig. 4.10 can be used (see Fig. 4.14) if we take into account that for our input states nA = 1,
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nB = nC = (7 −
√

13)/6. Upon making this substitution the performance of the setup is the
same as in Section 4.3.6, and all the formulas derived there remain valid. The aforementioned
setup succeeds in the UI with the probability given by Eq. (4.127). However, the second round
of the UI is possible only if the first UI succeeds, which implies the following probability of the
UI in the second round

P (2)(|α1〉, |α2〉) = (1− e− 1
3 |α1−α2|2)(1− e−

7−
√

13
2(10−

√
13)
|α1−α2|2) . (4.148)

It is interesting that the UI with nearly orthogonal reference states can be done also in the second
round with a probability of success approaching unity.

Let us now see, whether further rounds of the UI are still possible. The first round of the UI
can be seen as use of the beam-splitter setup from Fig. 4.10 with nA = nB = nC = 1 followed
by the setup from Fig. 4.13 recovering the reference states. In the second round we have used
again the beam-splitter setup from Fig. 4.10 this time with nA = 1, nB = nC = (7−

√
13)/6.

It turns out that we can perform infinitely many additional rounds of the UI, where in each round
the unknown state is independently chosen to be either |α1〉 or |α2〉. It suffices to use the beam-
splitter setup from Fig. 4.10 followed by the setup from Fig. 4.13 recovering the reference
states in each round of the UI. However, the transmittivities of the beam-splitters used in those
setups must be set as follows. Let us denote by

√
λk the factor by which the reference states are

suppressed at the beginning of the k-th round (e.g. λ1 = 1). In k-th round of the UI we should
set T1 = 1/2, T2 = 2λk/(1 + 2λk), T3 = 1/(1 + 2λk) in the scheme from Fig. 4.10 and

TR1 = 1−
2λ2

k +
√

4λ4
k + (1 + 2λk)2

(1 + 2λk)2
;

TR2 =
(1− T1)(1 + 2λk)2

1 + (1− T1)(1 + 2λk)2
, (4.149)

in the scheme presented in Fig. 4.13. The suppression of the amplitude of reference states is
given by λk 7→ λk+1 = f(λk), where

f(x) =
(1 + 2x)2 − 2x2 −

√
4x4 + (1 + 2x)2

2(1 + 2x)
.

(4.150)

The probability of successfully performing the UI in the k-th round is

P (k)(|α1〉, |α2〉) = P (k−1)(|α1〉, |α2〉)(1− e−
λk

1+2λk
|α1−α2|2),

because the k-th round of the UI is possible only if all previous UIs succeeded16. The dependence
of the probability of identification on the difference of the amplitudes of the reference states and
on the number of measurement rounds is shown in Fig. 4.15.

Let us now discuss an alternative approach to the recovery of reference states. Imagine that
our task is to identify N independent unknown states with reference states. Instead of recovering
reference states after identifying each of the unknown states we can first split the reference states
into N parts and then perform the identifications independently. We are going to illustrate that

16We set P (0)(|α1〉, |α2〉) = 1.
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Figure 4.15. The performance of the recovery setup. The probability of identification P (|α1〉, |α2〉) as a
function of the scalar product (given by |α1 − α2|) depicted for various numbers of measurement rounds.
Starting from the left the curves correspond to the probability of identification in the first, 20th, 40th, 60th,
80th round of the UI.

even though we know value N ahead of time, the splitting strategy does not outperform the
strategy based on recovery of reference states.

The splitting strategy begins by distributing the information in the two reference states into
N copies of the states | 1√

N
α1〉, | 1√

N
α2〉. These two states are then combined together with

one of the unknown states and are unambiguously identified by the scheme for M = 2, nA =
1, nB = nC = 1/N . The probability of a successful identification of the unknown state depends
only on the reference states, hence for each of the N UI measurements we have P(|α1〉, |α2〉) =
1 − e−

1
N+2 |α1−α2|2 . The probability that all of them succeed is therefore P (N)

S (|α1〉, |α2〉) =
(1 − e−

1
N+2 |α1−α2|2)N . On the other hand in the scheme with the recovery of the reference

states the N -th round can succeed only if all the previous identification rounds were successful.
This means that the probability of success of the N -th round P (N)(|α1〉, |α2〉) is the same as
the probability that all the N rounds of the identification task were successful. The difference
between the performance of the recovery and the splitting strategies for different N is depicted
in Fig. 4.16.

The investigated problem of finding a procedure forN successful rounds of the unambiguous
identification can be modified in several ways exhibiting the advantages of recovery or splitting
strategies. For example, one may be interested to find a procedure, such that at least in m ≤ N
out of N rounds we find an unambiguous conclusion. In such formulation of the problem it
is clear that there always exist m, for which the splitting strategy gives better results than the
described recovery strategy adopted for exactly m successes. However, as we have shown if
m = N , then the recovery procedure outperforms the splitting strategy.
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Figure 4.16. The difference between the performance of the recovery and the splitting strategies for different
number of identification rounds N as a function of the scalar product (given by |α1 − α2|).

4.3.8 Influence of noise on reliability of UI setups

In this section we shall investigate how noise (uncertainty) in the state preparation affects the
reliability of the measurement results. The UI setups we have presented above are designed
specifically for coherent states and ideally they are 100% reliable, i.e. whenever we obtain a
conclusive result Ei then we are completely sure that the possibility xi (i.e., α? = αi) took
place. However, it might be that the unknown and reference states are sent to us via a noisy
channel or simply that their preparation is noisy. We assume that this disturbance has the form of
a technical noise [52], and therefore the unknown and the reference states are not pure coherent
states |αi〉, but rather their mixtures ωi:

ωi =
1

2πσ2

∫
C
dβe−

|β|2

2σ2 |αi + β〉〈αi + β| ; (4.151)

ρi(α) = (ωi)⊗nA ⊗ (ω1)⊗nB ⊗ (ω2)⊗nC ⊗ . . . , (4.152)

with σ defining the strength of the noise and α indicating the dependence on the complex ampli-
tudes αi. In such case conclusive results of our UI setups will no longer be unambiguous. More
precisely, there will be a certain probability P (xi|Ei) with which the obtained outcomeEi of the
measurement is the consequence of the possibility xi. This probability is called the reliability of
the outcome Ei. The corresponding mathematical definition reads:

R(Ei) = P (xi|Ei) =
ηiP (Ei|xi)∑M
j=1 ηjP (Ei|xj)

, (4.153)

where ηi is the a priori probability of the possibility xi and P (Ei|xj) is the probability that the
measurement of the system prepared in the possibility xj will give a result Ei. Let us note that
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under the possibility xi we understand all situations in which the unknown state is the same as
the i-th reference state. Thus xi stands for the whole set of situations, which differ by complex
amplitudes αk of the “centers” of the reference states ωk. How those “center points” of all
reference states are chosen in xi is described by the probability distribution χ(α1, . . . , αM ).
The support of χ is Cm corresponding to an infinite plane. Therefore a uniform probability
distribution can not be defined on it. Nevertheless, we can express the reliability as:

R(Ei) =
ηi
∫

CM dαχ(α)Tr(Eiρi(α))∑M
j=1 ηj

∫
CM dαχ(α)Tr(Eiρj(α))

, (4.154)

where dα ≡ dα1 . . . dαM . In the limit σ → 0 states ωi become |αi〉〈αi|. Because of the no-error
conditions (4.62), which are for coherent states satisfied by our UI setups, only the i-th term of
the sum in Eq. (4.153) survives. Thus, without noise the reliability is equal to unity. For σ > 0
also other terms in Eq. (4.153) will contribute and hence the reliability will be less than one.
Moreover, the precise value of R(Ei) will depend on the probability distributions χ(α).

In the remaining part of this section we will investigate a scenario, which might be called
as the phase keying. We assume that the two reference states (M = 2) have always opposite
phases, i.e. if ω1 is centered around the amplitude α then ω2 is centered around the amplitude
−α. Values of α have a Gaussian distribution centered around 0 (the vacuum) with a dispersion
ξ, so

χ(α1, α2) = δ(α1 + α2)
1

2πξ2
e−|α1|2/(2ξ2), i = 1, 2. (4.155)

In order to calculate the reliability we must first evaluate Tr[Eiρj(α)]. This means we have
to derive the probabilities with which detectors D1, D2 click if “fuzzy” states ω?, ω1, ω2 are fed
into the UI setup instead of pure coherent states |α?〉, |α1〉, |α2〉. Our UI setup uses an additional
mode D that should be initially prepared in the vacuum. We assume that also this mode is noisy
and initially in a state ωi centered around 0 (the vacuum).

To present our calculations concisely, we first derive how the setup acts on displaced coherent
input states (e.g. |αi + β〉) and then we integrate those partial results. Thus, for a single copy of
the unknown and the reference states we derive how the UI setup acts on states |α? + ν〉, |α1 +
β〉, |α2 +γ〉, |%〉 fed into the modesA,B,C,D (see Fig. 4.10) and finally we perform integration
over ν, β, γ, %.

For multiple copies of the unknown and the reference states we assume that the noise is acting
independently on each of the copies, i.e. we analyze nB copies of the first reference state entering
as states |α1 + β1〉, . . . , |α1 + βnB 〉. The first part of the UI setup, which “concentrates” copies
of the same species, generates the state |√nBα1 + 1√

nB
(β1 + . . .+βnB )〉 and similarly, the state

|√nCα2 + 1√
nC

(γ1 + . . .+γnC )〉 for the second reference state, and |√nAα? + 1√
nA

(ν1 + . . .+
νnA)〉 for the unknown state. The beam splitter transformation for coherent input states does not
entangle outputs, thus we can, in the same way as in Section 4.3.6, derive expressions for the
states of the modes that the photodetectors D1, D2 measure. Consequently, the final states of the
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modes A and C read:∣∣∣√ nAnB
nA + 2nB

[
α? − α1 −

√
1
nA

%+
1
nA

ν − 1
nB

β

]〉
A
≡ |µ1〉A ;

(4.156)∣∣∣√ nAnC
nA + 2nC

[
α2 − α? −

√
1
nA

%− 1
nA

ν +
1
nC

γ

]〉
C
≡ |µ2〉C ,

where ν ≡
∑nA
k=1 νk, β ≡

∑nB
k=1 βk, γ ≡

∑nC
k=1 γk. Now we have to evaluate the probability of

the projection of these states |µ1〉A, |µ2〉C onto the vacuum. Subsequently, we will integrate this
partial result to obtain the probability P (Dk|ρi(α)) that the photodetector Dk (k = 1, 2) does
not click. Probabilities P (Dk|ρi(α)) are related to Tr(Eiρj(α)) in the following way:

Tr(E1ρ1) = [1− P (D1|ρ1)].P (D2|ρ1) ;
Tr(E1ρ2) = [1− P (D1|ρ2)].P (D2|ρ2) ;
Tr(E2ρ1) = P (D1|ρ1).[1− P (D2|ρ1)] ;
Tr(E2ρ2) = P (D1|ρ2).[1− P (D2|ρ2)] , (4.157)

where the argument of ρi(α) is omitted for brevity. Finally, we obtain the quantities Tr[Eiρj(α)]
that we need for evaluating the reliability according to Eq. (4.154).

Using the formula |〈0|µi〉|2 = e−|µi|
2

for the modulus of the overlap of two coherent states
we obtain:

P (D1|ρi(α)) =
∫

Cm

d%dγdν

(2πσ2)m
exp
[
−
|%|2 +

∑nA
k=1 |νk|2 +

∑nB
k=1 |γk|2

2σ2

−
nAnC

∣∣∣α2 − α? −
√

1
nA
%− 1

nA
ν + 1

nC
γ
∣∣∣2

nA + 2nC

]
;

(4.158)

P (D2|ρi(α)) =
∫

Cn

d%dβdν

(2πσ2)n
exp
[
−
|%|2 +

∑nA
k=1 |νk|2 +

∑nB
k=1 |γk|2

2σ2

−
nAnB

∣∣∣α? − α1 −
√

1
nA
%+ 1

nA
ν − 1

nB
β
∣∣∣2

nA + 2nB

]
,

(4.159)

where m = nA + nC + 1, n = nA + nB + 1. The integrals in Eq. (4.158) and (4.159) can
be performed using the relations derived in Appendix B.2. The results of the integration read:

P (D1|ρi(α)) =
1

1 + 2σ2
e
− 1

1+2σ2
nAnC
nA+2nC

|αi−α2|2 ; (4.160)

P (D2|ρi(α)) =
1

1 + 2σ2
e
− 1

1+2σ2
nAnB
nA+2nB

|αi−α1|2 , (4.161)
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where we have used the formulas for the case xi, i.e. α? = αi. Consequently, using these results
in Eq. (4.157) we obtain:

Tr(E1ρ1) =
1 + 2σ2 − e−

1
1+2σ2

nAnC
nA+2nC

|α1−α2|2

(1 + 2σ2)2
;

Tr(E1ρ2) =
2σ2

(1 + 2σ2)2
e
− 1

1+2σ2
nAnB
nA+2nB

|α1−α2|2 ;

Tr(E2ρ1) =
2σ2

(1 + 2σ2)2
e
− 1

1+2σ2
nAnC
nA+2nC

|α1−α2|2 ;

Tr(E2ρ2) =
1 + 2σ2 − e−

1
1+2σ2

nAnB
nA+2nB

|α1−α2|2

(1 + 2σ2)2
.

(4.162)

Now in order to obtain the reliability it remains to substitute Eqs. (4.155), (4.162) into Eq.
(4.154) and to perform the remaining integrals. Those integrals can be performed in polar co-
ordinates, where the angular dependence is trivial and the radial part can be simplified with the
help of a substitution t = e−r

2/2. After performing the integration we obtain the final result,
which can be, for nB = nC , written in the compact form:

R(E1) = R(E2) =
1 + θ

1 + 2θ
;

θ =
nA + 2nB
nAnB

(
σ

2ξ

)2

. (4.163)

Let us note that limσ→0R(Ei) = 1 as it should be. Moreover, the reliability depends only
on the fuzziness σ of the states entering the UI setup, the typical difference of the amplitudes
of the reference states 2ξ, and the number of copies that are available. If σ � ξ, i.e. the
fuzziness of the states, is much smaller than the displacement used to encode the information,
then θ → 0 and R(Ei) approaches the unity. More quantitative insight in the case of a single
copy of the unknown and the reference states is provided by Fig. 4.17. In order to see how
the noise influences other relevant quantities we will calculate P , PE , PF , which are called the
averaged probability of success, the error, and the failure, respectively. Obviously, we either
guess correctly, or incorrectly, or do not guest at all (inconclusive result/failure), therefore P +
PE + PF = 1 must hold. It is useful to rewrite the definition of these quantities in the following
form:

P =
1
2

2∑
i=1

∫
C2
dαTr(Eiρi(α))χi(α) ;

PE =
1
2

∫
C2
dα(Tr(E2ρ1(α)) + Tr(E1ρ2(α)))χ1(α) ;

PF = 1− P − PE . (4.164)

Now it suffice to substitute Eqs. (4.162) into the above equations and to perform the integration
in polar coordinates in the same way as in the previous paragraph. The resulting expressions
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Figure 4.17. The reliability of the UI setup (M = 2, nA = nB = nC = 1) as a function of the typical
displacement ξ. Different curves correspond to different values of σ i.e. to different fuzziness of the states.
As is seen from the figure all curves in the limit of large ξ are approaching the unity.

read:

P =
1

1 + 2σ2
(1− 1

1 + 2σ2 + 8nAnB
nA+2nB

ξ2
) ;

PE =
1

1 + 2σ2
(

2σ2

1 + 2σ2 + 8nAnB
nA+2nB

ξ2
) ; (4.165)

PF =
2σ2

1 + 2σ2
+

1− 2σ2

1 + 2σ2

1
1 + 2σ2 + 8nAnB

nA+2nB
ξ2
.

(4.166)

More quantitative insight is presented in Fig. 4.18, which for the fixed σ = 0.25 presents the
behavior of the calculated quantities P , PE , PF as a function of the typical displacement ξ. It
is worth mentioning that for ξ → ∞ the average probability of error goes to zero, but PF > 0,
because the noise causes inconclusive results by firing both detectors simultaneously.

4.3.9 Summary

Let me summarize the unambiguous identification (UI) part of the chapter. In UI we are given
a set of identical quantum systems prepared in pure states, which are labeled as unknown and
reference states. The promise is that one type of reference state is the same as the unknown
state and the task is to find out unambiguously which one it is. After stating precise definition
of the problem and review of previous work we present the general approach to UI of two types
of reference states. This approach is well suited for finite dimensional Hilbert spaces and it is
based on reformulation of UI as discrimination of two known mixed states. When the probability
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Figure 4.18. The reliability and the average probability of success (P ), the error (PE), and the failure (PF )
for the “phase keying” scenario (M = 2, nA = nB = nC = 1) with σ = 0.25 as a function of the typical
displacement ξ .

distribution governing the choice of each reference state is uniform and supported on the whole
Hilbert spaceH or on its subspace the problem can be solved completely due to simple structure
of corresponding mixed states. However, my main focus was on the case where the set of pos-
sible reference states is formed by coherent states of an electromagnetic field. The relevance of
this prior knowledge is illustrated in Section 4.3.5, where I show that the specialized measure-
ment outperforms the universal unambiguous identification, i.e. the UI measurements that can
be applied for all pure states. The difference between the measurements was quantified by the
probability of identification for particular choice of reference states [see Eqs.(4.113),(4.115)] and
is visualized by Figure 4.8. The interesting qualitative difference between the specialized and the
universal measurement is in the probability of success for nearly orthogonal states. While our
specialized measurement succeeds almost always the universal measurement produces conclu-
sive result at most with probability 1/3. Moreover, our specialized measurement can be easily
experimentally realized, because it consists of three beam splitters and two photodetectors (see
Figure 4.7). The setup was recently build and tested by L. Bartůšková et. al. [53] and we shortly
summarize the experiment in Appendix C.

The beamsplitter setup was motivated by an intuitive reduction of the unambiguous identi-
fication problem into specific ”distribution” task and an unambiguous state comparison. As a
next step the generalization of this optical setup to situations with more copies of the unknown
and the reference states was presented in Section 4.3.6. Our approach was based on an idea of
the “concentration” of the same type of states into strong coherent states that were subsequently
identified by setups for the single-copy scenario. In the UI task it is assumed that the particular
choice of the reference states is unknown to us, and only the probability distribution χ describing
this choice is known. Nevertheless, even without having χ it is possible to derive the optimal
choice of transmittivities in the beam-splitter setup we proposed for two types of reference states
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and an equal number of copies of each of the reference states (nB = nC). In that case the
probability of identification for the reference states |α1〉, |α2〉 reads:

P(|α1〉, |α2〉) = 1− e−
nAnB
nA+2nB

|α1−α2|2 . (4.167)

Under the condition that the experimental setup consists only of linear optical elements and
photodetectors we also proved the optimality of the setup. In the limit of nB = nC → ∞ the
two reference states become known. Therefore, one needs to unambiguously discriminate the
unknown state between two known pure states. The probability of success of our setup in this
case coincides with the optimal value achieved by the Ivanovic-Dieks-Peres measurement [6–8].

In Section 4.3.7 we addressed the question whether the coherent reference states can be recre-
ated after our UI measurement. We showed that the reference states can be partially recovered
only if the measurement yielded a conclusive outcome. The recovered reference states can be
used in the next round of the UI if another unknown state is provided. This might be seen as
a repeated search in a quantum database, where the data, i.e. the reference states, degrade with
repeated use of the database.

Recently, a framework for transformations induced by linear optics on coherent states was
proposed by B. He and J. Bergou in Ref. [51]. These authors illustrated their method on the
three beam splitter setup proposed in Section 4.3.5 and suggested that the reference states can
be always perfectly recovered. However, in their case the reference states are known, whereas in
our case the complex amplitudes of all coherent states are not known in advance.

Finally, in Section 4.3.8 we investigated how a particular type of noise influence the reliability
of the conclusions drawn by our UI setup. More precisely, we considered a communication
scenario called the phase keying, with two coherent reference states of equal amplitude, but
the opposite phases. We saw that the reliability of results, expressed by Eq. (4.163), depends
only on the ratio of the amplitudes of the noise and the signal. However, for nonzero noise the
unambiguity of the conclusions is lost.
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5 Unambiguous tasks for channels

The aim of quantum channels is to describe the overall effect of a temporal evolution on the con-
sidered quantum system. A quantum channel prescribes the final state to any possible input state,
but it does not characterize how the transformation is achieved. This is similar to having a black
box evaluating function f without knowing how the calculation proceeds inside. In this chapter
we shall consider experiments in which the investigated quantum channel is used just once. Our
aim will be to distinguish among the expected possibilities (i.e. expected channels) by a single
run of the experiment. In order to do that we shall control both the state preparation and the final
measurement surrounding the use of the investigated channel. General experiment of this kind
(see figure 5.1) uses also an ancillary system that does not evolve, while the principal quantum
system is exposed to the tested channel. Thus, the evolution of the compound system takes place
in between the preparation and the measurement part of the experiment, which should be under
our control. Class of such experiments is very broad, because the Hilbert space of ancilla can
have arbitrary dimension and we can independently tune state preparation and the final measure-
ment. Fortunately, many of those experiments are completely equivalent. For example, one can
show that in general it suffices to consider pure state preparation and an ancilla with at most
the dimension of the principal quantum system. Taking this into account some basic problems
for quantum channels were studied. In particular, researchers investigated the minimum error
discrimination for unitary channels [54, 55] and for some other specific channels [56–60]. In
contrast to quantum states it was found that a finite number of uses of a unitary channel makes
it possible to discriminate perfectly among discrete set of unitary channels, which are not distin-
guishable perfectly by a single use. For general quantum channels partial results were obtained
also for the unambiguous discrimination. Wang and Ying [18] found the necessary and suf-
ficient conditions for unambiguous channel discrimination in terms of Kraus operators, which
characterize each channel. Chefles and Barnett in [61] investigated unambiguous discrimination
of unitary operators. Focus on discrimination of unitary operators is naturally motivated by the
area of quantum computation. Algorithms that provide speed up with respect to their classi-
cal counterparts are very often based on the use of coherent quantum superpositions, which are
not degraded only by unitary channels. Many practically interesting problems (database search
etc.) are theoretically formulated as an oracle identification problem. Here oracle is a black box,
whose internal operating mechanism defines the solution of the problem. Unfortunately, we can
not solve the problem by directly looking into the black box, instead we have to do it by testing
the transformation that the oracle introduces on its inputs. Usually we know which finite set of

Figure 5.1. Scheme of general experiment for distinguishing quantum channels by their single use.
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transformations the oracle may implement and we want to discover which of them it actually
is with as few uses (queries) of the oracle as possible. By convention the oracles in quantum
computation are chosen to implement unitary channels. For unambiguous discrimination of such
channels from their single use Chefles and Barnett proved the following statements: Unitary op-
erators {Uj}Nj=1 acting on a Hilbert space H are unambiguously distinguishable if and only if
they are linearly independent. Moreover, set of linearly independent unitary operators can al-
ways be unambiguously discriminated using any entangled probe state with maximum Schmidt
rank d, the dimensionality of H. For a set of commuting unitary operators Uj any unambigu-
ous discrimination experiment involving ancilla (see figure 5.1) is completely equivalent to an
experiment without ancilla. The above two statements restrict the number of commuting unitary
operators that can be unambiguously discriminated to d = dimH. Chefles and Barnett in [61]
were most concerned with the distinguishability of so called standard oracle operators, which
are usually considered as (reversible) quantum realizations of classical oracles. These are unitary
operators acting on two subsystems of the same dimension and modify the basis in the following
way |i〉|j〉 7→ |i〉|j ⊕ f(i)〉, where f is an integer valued function. The work of Chefles and
Barnett laid foundations for unambiguous discrimination of quantum oracles and also reviewed
the related previous work.

As we announced already in Chapter 3 for discussing experiments involving single use of the
tested channel we will use framework of process positive operator valued measure (PPOVM).
This framework exploits a specific representation of channels defined via Choi-Jamiolkowski
isomorphism [62, 63]. According to the theorem a channel on D dimensional quantum system
can be represented by a positive operator acting on a bipartite quantum system D × D. In
particular, a channel E is represented by an operator

ωE = (I ⊗ E)[Ψ+
D], (5.1)

where Ψ+
D = |Ψ+

D〉〈Ψ
+
D| and |Ψ+

D〉 =
∑D
j=1 |j〉⊗ |j〉. Let us note that Ψ+

D is not a projector, be-
cause it is not normalized and Tr(Ψ+

D) = D. The operator 1
DΨ+

D is a one-dimensional projector
onto the maximally entangled state |ψ+〉 = 1√

D

∑
j |j〉 ⊗ |j〉 ∈ H ⊗H.

Process POVM is defined [31, 64] as a collection of positive operators (effects) M1, . . . ,Mn

such that
∑
jMj = ξT ⊗ I for some state ξ of the D dimensional system. An event that we

can observe in the experiment consists of a preparation of the test state % and an observation of
the effect Ej in the measurement E of the output state. Let us note that in the experiment we
are allowed to use an ancilla of arbitrary size, i.e. % and Ej are operators defined on danc ×D-
dimensional Hilbert space. The conditioned probability to observe an event consisting of the
state preparation % and the observation of an effect Ej providing that channel E is tested equals

p(%,Ej |E) = Tr (Ej(I ⊗ E)[%]) . (5.2)

Using the Choi-Jamiokowski relation % = (R% ⊗ I)[Ψ+
D], where R% : L(H) → L(Hanc) is a

completely positive map, and the duality relation Tr(Y F [X]) = Tr(F∗[Y ]X) determining the
dual channel F∗ we can write

p(%,Ej |E) = Tr((R∗% ⊗ I)[Ej ](I ⊗ E)[Ψ+
D])

= Tr(Mj ωE) , (5.3)



740 Quantum theory of unambiguous measurements

where Mj is an element of PPOVM. By definition Mj is positive and
∑
jMj = (R∗% ⊗ I)[I] =

ξT ⊗ I , where ξ = tranc[%]. Thanks to linearity of Eqs. (5.2),(5.3) the derivation of the PPOVM
elements remains valid also for experiments in which the test state %k and the measurement
{E(k)

j } are together randomly chosen according to an ensemble % =
∑
k pk%k. Thus, any con-

ceivable experiment in which the channel is used once can be formalized as a PPOVM and the
converse also holds [31], i.e. any PPOVM can be experimentally implemented. Let us note that
for a given PPOVM, i.e. a set of positive operators M1, . . . ,Mn such that

∑
xMx = %T ⊗ ID

there exists many different experiments with different choices of test states and POVMs.

Ancilla-free test state

Consider a PPOVM such that Mj = %T ⊗ Fj for all j. Since the identity

Tr(E [%]Fj) = Tr((I ⊗ E)[Ψ+
D](%T ⊗ Fj)) = Tr(ωEMj)

holds for all qudit channels E and all qudit operators %, F , it follows that this type of PPOVM can
be realized by using a single ancilla-free test state % and performing the measurement described
by POVM elements Fj .

Maximally entangled probe

On the other hand, let us consider that an unknown qudit channel is probed by a (normalized)
maximally entangled state |ψ+〉 = 1√

D

∑
j |j〉 ⊗ |j〉 ∈ H ⊗ H. In this case the mapping

Rψ+ = 1
DI, i.e. |ψ+〉〈ψ+| = 1

DΨ+
D. That is, M = (R∗ψ+

⊗ I)[F ] = 1
DF , where F is a two-

qudit effect. Considering a POVM consisting of effects F1, . . . , Fn the corresponding PPOVM
is composed of positive operators Mj = 1

DFj .

In the following we shall apply the PPOVM framework to unambiguous tasks for quantum
channels. We will first summarize the results on unambiguous discrimination of a pair of general
channels and then restrict ourselves to unitary channels.

5.1 Unambiguous discrimination of two channels

PPOVM for unambiguous discrimination of two channels should consist of three elements {M0,
M1,M2}. We associate observation of result i with use of channel Ei and declare outcome 0
as inconclusive. Unambiguity of measurement outcomes requires following two equations to be
satisfied

Tr(M1ω2) = 0, T r(M2ω1) = 0. (5.4)

The optimal measurement should maximize the probability of success

Psucc = η1Tr(ω1M1) + η2Tr(ω2M2), (5.5)

while preserving positivity of PPOVM elementsMi and normalizationM0 +M1 +M2 = ξT ⊗I
with ξ being a state of the principal quantum system. Thus, the problem is similar to the un-
ambiguous discrimination of states except for the normalization of the operator measure. This
normalization ξ provides additional freedom, which complicates the optimization. Nevertheless,
some basic features of the problem remain unchanged. For example two mixed states can be
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unambiguously discriminated if and only if they have distinct supports. The same holds also for
channels i.e. channels E1, E2 can be unambiguously distinguished by a single use of the channel if
and only if their process states ωi = (I ⊗Ei)[Ψ+

D] have distinct supports. This can be easily seen
after denoting by Π1,Π2 the projectors onto the supports of ω1, ω2, respectively. If Π1 = Π2

then Eq. (5.4) implies 0 = Tr(MiΠ3−i) = Tr(MiΠi) and consequently Psucc = 0 i.e. the
condition on supports is necessary. The sufficiency of the condition is proved by considering the
PPOVM M1 = 1

2D (I −Π2), M2 = 1
2D (I −Π1), M0 = 1

D I −M1 −M2, which can be seen as
an experiment with maximally entangled state |ψ+〉. Let us stress that this PPOVM is not always
optimal, but it succeeds with non-zero probability due to Π1 ≤ Π2, Π2 ≤ Π1 not holding simul-
taneously. The above condition judging the possibility of unambiguous channel discrimination
via the supports of ω1, ω2 is an alternative to the condition found by Wang and Ying [18] and
in some cases it may be more easily checked. Similarly as for unambiguous discrimination of
states also for channels single channel detection measurements are optimal for very unbalanced
prior probabilities. This, as we will see later, holds for a pair of unitary channels and seems to
be a very plausible conjecture also for arbitrary two channels. For example, experiments with
channels that contract everything into a fixed state are equivalent to experiments for state dis-
crimination, because the state of the system that was affected by the channel is factorized from
the potentially used ancilla. Hence, an attempt to unambiguously discriminate the possible final
states for very unbalanced prior probabilities is an unambiguous state discrimination problem for
which single state detection measurement is optimal.

In the language of PPOVM unambiguous detection of the channel E1 within the set {E1, E2}
corresponds to M2 = O. In this case only the no-error condition Tr(M1ω2) = 0 applies and the
optimal probability of success contains just a single term Psucc = η1Tr(M1ω1).

Let us now return to a general case assuming arbitrary prior probabilities η1, η2 = 1 − η1.
In the following we present an upper bound on the probability of success proposed by Ziman
et.al. [27]. This bound is an analog of the so called ”Fidelity bound” known for the unambiguous
discrimination of two mixed states (see Section 4.1 or for instance [65]).

Proposition 1 Let E1, E2 be channels (i.e. completely positive trace preserving linear maps) and
η1, η2 be their prior probabilities. Then

Psucc ≤ 1− 2
√
η1η2 min

ξ
Tr|
√
ω1(ξT ⊗ I)

√
ω2| , (5.6)

where ωj = (I ⊗ Ej)[Ψ+
D].

Proof 3 Proving the above proposition is equivalent to showing

Pfail ≥ 2
√
η1η2 min

ξ
Tr|
√
ω1(ξT ⊗ I)

√
ω2| , (5.7)

because probability of failure equals to 1− Psucc. We set a = η1Tr(M0ω1), b = η2Tr(M0ω2)
and since for all numbers a2 + 2ab+ b2 ≥ 4ab holds we get

(Pfail)2 = (a+ b)2 ≥ 4η1η2Tr(M0Ω1)Tr(M0ω2) . (5.8)

Using the Cauchy-Schwartz inequality for arbitrary unitary operator U we obtain

Tr(M0ω1)Tr(M0ω2) = Tr(U
√
ω1

√
M0

√
M0
√
ω1U

†)×
× Tr(

√
ω2

√
M0

√
M0
√
ω2)

≥ (Tr(U
√
ω1M0

√
ω2))2 .
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By definition M0 = ξT ⊗ I −M1 −M2. Due to no-error conditions ω1M2 = M1ω2 = O holds
and it follows that

√
ω1M0

√
ω2 =

√
ω1(ξT ⊗ I)

√
ω2. Thus,

pfailure ≥ 2
√
η1η2|Tr(U

√
ω1(ξT ⊗ I)

√
ω2)| . (5.9)

Using the identity supU |Tr(XU)| = tr|X| holding for all operators X the inequality reads

pfailure ≥ 2
√
η1η2tr|

√
ω1(ξT ⊗ I)

√
ω2| , (5.10)

which proves the proposition after the optimization over the PPOVM normalization is taken into
account.

The function F (ω1, ω2) = minξ tr|√ω1(ξ ⊗ I)
√
ω2| is called completely bounded process

fidelity in analogy with the completely bounded norm || · ||cb.

5.2 Unambiguous discrimination of two unitary channels

Unitary channels are associated with Choi-Jamiokowski operators proportional to one-dimen-
sional projectors. In particular, EU = U · U† is represented by ωU = D|ψU 〉〈ψU |, where
|ψU 〉 = (I ⊗ U)|ψ+〉. Given a pair of unitary channels U, V , then the joint support of ωU , ωV
specifies a two-dimensional subspace Q ofH⊗H, which is relevant for discrimination.

Since supports of ωU and ωV are different, two unitaries can be always unambiguously
distinguished. Let us denote by Q a projector onto the linear subspace Q spanned by vectors
|ψU 〉, |ψV 〉. The unambiguous no-error conditions require that on the relevant subspace Q the
operators MU ,MV are rank-one and take the form

MQU = cU (Q− |ψV 〉〈ψV |) , (5.11)
MQV = cV (Q− |ψU 〉〈ψU |) . (5.12)

In addition, MU +MV ≤ ξT ⊗ I for some state ξ. The optimal success probability reads

Psucc = max
PPOVM

(ηUTr(MUωU ) + ηV Tr(MV ωV ))

= max
PPOVM

(
ηUTr(MQU ωU ) + ηV Tr(MQV ωV )

)
= max

ϕ
max

POVM
(ηU 〈ϕU |FU |ϕU 〉+ ηV 〈ϕV |FV |ϕV 〉) .

Here we used the fact that PPOVM can be always implemented using a pure test state (see
[31]). This test state is associated with a suitable vector |ϕ〉 = (A ⊗ I)|Ψ+

D〉 leading to MU =
(A†⊗ I)FU (A⊗ I), MV = (A†⊗ I)FV (A⊗ I), where effects FU , FV represent the conclusive
outcomes of the performed POVM, i.e. FU + FV ≤ I ⊗ I . We have used the notation |ϕU 〉 =
(I ⊗ U)|ϕ〉 and |ϕV 〉 = (I ⊗ V )|ϕ〉.

For a fixed test state |ϕ〉〈ϕ| the POVM maximizing the success probability ηU 〈ϕU |FU |ϕU 〉+
ηV 〈ϕV |FV |ϕV 〉 is known from the problem of unambiguous discrimination of two pure states
|ϕU 〉, |ϕV 〉 (see Section 4.1.1). Without loss of generality we can assume ηU ≥ ηV . In such case
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the optimal POVM consists of effects

FU = min

1−
√

ηV
ηU
|〈ϕU |ϕV 〉|

1− |〈ϕU |ϕV 〉|2
, 1

 (Qϕ − |ϕV 〉〈ϕV |) ,

FV = max

1−
√

ηU
ηV
|〈ϕU |ϕV 〉|

1− |〈ϕU |ϕV 〉|2
, 0

 (Qϕ − |ϕU 〉〈ϕU |) ,

F0 = I − FU − FV ,

where Qϕ is a projector onto the subspace spanned by vectors |ϕU 〉, |ϕV 〉. The success proba-
bility optimized also over choices of test state |ϕ〉 reads

Psucc =

 1− 2
√
ηUηV F (U, V ) if F (U, V ) ≤

√
ηV
ηU
≤ 1

ηU (1− F (U, V )2) if F (U, V ) ≥
√

ηV
ηU
≤ 1

, (5.13)

where we denoted F (U, V ) = minϕ |〈ϕU |ϕV 〉|. As we will see F (U, V ) is the completely
bounded process fidelity from the previous section, which for unitaries turns out be

F (U, V ) = min
ξ∈SP(H)

|Tr(ξU†V )|. (5.14)

To see this we first consider PPOVM corresponding to experiments with pure test state % =
|ϕ〉〈ϕ|. Any unit vector |ϕ〉 can be expressed as |ϕ〉 =

√
D(A⊗ I)|ψ+〉, thus |ϕ〉〈ϕ| = (Rϕ ⊗

I)[Ψ+
D] = (A⊗ I)Ψ+

D(A†⊗ I) and the normalization requirement Tr(|ϕ〉〈ϕ|) = 1 corresponds
to Tr(A†A) = 1. The test state |ϕ〉 fixes the normalization of the related PPOVM to be ξT ⊗I =∑
jMj = (R∗ϕ ⊗ I)[I] = A†A ⊗ I i.e. A†A = ξT . The minimum overlap of the final states

|ϕU 〉, |ϕV 〉 reads

min
ϕ
|〈ϕU |ϕV 〉| = D min

A:Tr(A†A)=1
|〈(A⊗ U)ψ+|(A⊗ V )ψ+〉|

= min
A
|Tr((A†A)TU†V )|

= min
ξ∈S(H)

|Tr(ξU†V )| , (5.15)

where we used the explicit form of state |ψ+〉 = 1√
D

∑
j |j〉 ⊗ |j〉.

As a second step we evaluate the completely bounded process fidelity according to its def-
inition from the previous section. For a pair of unitary channels U and V we have

√
ωU =√

D|ψU 〉〈ψU | and
√
ωV =

√
D|ψV 〉〈ψV | and using the formula Tr|X| = Tr

√
X†X the re-

quired expression follows:

F (U, V ) ≡ min
ξ
Tr|
√
ωU (ξT ⊗ I)

√
ωV |

= D Tr(|ψU 〉〈ψU |) min
ξ
|〈ψU |(ξT ⊗ I)ψV 〉| (5.16)

= min
ξ
|Tr(ξU†V )|
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Figure 5.2. Geometrical interpretation of completely bounded process fidelity for two unitary channels.

From equations (5.13), (5.16) we see that the upper bound from Proposition 1 is saturated for
F (U, V ) ≤

√
ηV
ηU

. However, for F (U, V ) ≥
√

ηV
ηU

the optimal probability of success Psucc =

ηU (1 − F (U, V )2) is smaller. We see that this bound is not achievable in general. In fact, the
existence of the PPOVM giving the bound is not guaranteed in its derivation.

Let us now investigate equation (5.14). The quantity on the right hand side was also analyzed
in the study of perfect discrimination of unitary channels [54,55] and we will repeat the analysis
to illustrate its geometrical meaning. Let us denote by {φk} the eigenvectors of U†V associated
with eigenvalues eiθk . Then

F (U, V ) = min
ξ∈SP(H)

|
∑
k

eiθk〈φk|ξ|φk〉| (5.17)

The number on the right hand side is a convex combination of complex square roots of unity.
Thus, it can be visualized as an element of the convex hull of points (eigenvalues of U†V ) on the
unit circle of the complex plane. Our aim is to find the complex number within this convex hull
which is closest to zero. In particular, if 0 is not contained in the convex hull, then

F (U, V ) =
1
2

min
k,l
|eiθk + eiθl | , (5.18)

which means (see figure 5.2) that state ξ minimizing the expression has only two nonanishing
diagonal entries (equal to 1/2) in its matrix with respect to orthonormal basis {φk}. The minimum
in the Eq.(5.17) depends only on the diagonal entries of ξ, thus we can always choose optimal
ξ to be a pure state. That is, no ancilla is needed in order to realize an optimal experiment
unambiguously discriminating two unitaries.
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Since for two-dimensional Hilbert space the unitary operators have only two eigenvalues, the
minimalization is trivial [54] and

F (U, V ) =
1
2
|eiθk + eiθl | = 1

2
|Tr(U†V )| . (5.19)

Hence in this case the orthogonality in the Hilbert-Schmidt sense is necessary and sufficient
for perfect discrimination of EU and EV . Moreover, the maximally entangled state (for which
ξ = 1

2I) is a universal test state, because it optimizes unambiguous discrimination of any two
unitary channels.

Of course, the measurements depend on the particular task and the unitaries. Unfortunately,
these properties do not hold in the higher dimensions. For example, CNOT and SWAP gate
can be perfectly discriminated even without being orthogonal. In this particular case also the
maximally entangled test state is not very usable.

5.3 Unambiguous comparison of unitary channels

Our goal in this section is to investigate a comparison of quantum devices implementing unknown
unitary channels. Such universal comparator of unitary channels can be of use, for instance, in
the calibration and testing of the quality of elementary quantum gates.

Quantum channels are tested in two steps. First we prepare a so-called test state and apply the
channel. After that the output state is measured. Therefore, it seems natural to compare a pair of
channels by comparing the states they produce out of the same initial state. Indeed state compar-
ison is closely related to channel comparison, but there are also important differences concerning
the optimal strategies as we shall see later. The first who considered unambigous comparison of
unitary channels were Andersson, Jex, and Barnett [66]. They proposed several strategies and
developed also their generalizations for comparing more than two unitaries. However, they did
not investigate the optimality of the strategies, which is our aim here. In the following we refor-
mulate the problem in the PPOVM framework and show existence of a solution. Consequently,
the optimal solution shall be described together with its uniqueness.

5.3.1 Formulation of the problem

Consider we are given two black boxes implementing unknown unitary channels EU and EV
on qudit, i.e. d-dimensional quantum system. Our task is to unambiguously decide whether
the black boxes perform the same unknown unitary channel, or not. More formally, whether
a process implemented on D = d × d dimensional quantum system by the pair of devices is
described by a channel EU ⊗ EV with U 6= V , or by a channel EU ⊗ EU . As in any comparison
problem we implicitly assume that the probability that the channels are the same is nonzero.
Otherwise the problem would be senseless.

Let us note that unlike preparators (represented by states) the processes (associated with
channels) can be used sequentially. In general, this is an important difference between the usage
of preparators and processes providing us with a resource of a potential use. However, it does
not give us any advantage in the case of the considered comparison problem. In particular, one
cannot distinguish whether the product of two unknown unitary channels is EU ◦EV (for U 6= V ),
or EU ◦ EU , because for any unitary operator W there exist unitary operators U, V 6= W such
that W 2 = UV .
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Figure 5.3. Experiment for comparison of two unitary channels EU , EV .

The experimental procedure for the comparison is illustrated in figure 5.3. Using each of
the quantum boxes at most once the experiment will end by a measurement, whose outcome
uniquely determines our conclusion. In particular, the experiment consists of three steps. At
first, we prepare a so-called test state % onHanc ⊗Hd ⊗Hd, whereHanc is the Hilbert space of
some ancilliary system. After that black boxes are applied and a measurement F on the whole
system including the ancilla is performed. Measurement outcomes are associated with effects
Fsame, Fdiff , F0 forming a three-valued POVM, i.e.

O ≤ Fsame, Fdiff , F0 ≤ I ; F0 + Fsame + Fdiff = I .

As in any other unambiguous task the inconclusive outcome F0 is needed in order to make the
conclusive outcomes Fsame, Fdiff unambiguous. In fact, we shall see explicitly that F0 6= O. An
outcome x ∈ {same, diff, 0} is observed with the probability

px(U ⊗ V ) = Tr(Fx(Ianc ⊗ EU ⊗ EV )[%]) , (5.20)

where EU [·] = U · U†, EV [·] = V · V † are unitary channels implemented by the black boxes.
Our goal is to characterize all possible experiments (determined by pairs %, F ) performing

the unambiguous comparison of unitary channels and identify the optimal strategy. The figure of
merit for the optimization will be specified in details later.

5.3.2 Requirements on unambiguous comparators

Translating the comparison problem into PPOVM framework we set D = d2 and associate the
two black boxes acting on d-dimensional systems with operators

ωU⊗U = (ID ⊗ U ⊗ U)Ψ+
D(ID ⊗ U† ⊗ U†) , (5.21)

ωU⊗V = (ID ⊗ U ⊗ V )Ψ+
D(ID ⊗ U† ⊗ V †) , (5.22)

where Ψ+
D = |Ψ+

D〉〈Ψ
+
D| and |Ψ+

D〉1234 = |Ψ+
d 〉13⊗|Ψ+

d 〉24 ∈ H⊗4
d with |Ψ+

d 〉 =
∑d
j=1 |j〉⊗|j〉.

Operators Msame,Mdiff ,M0 defining the PPOVM have to satisfy following no-error conditions
ensuring the unambiguity of the corresponding conclusion:

pdiff(U ⊗ U) = Tr(ωU⊗UMdiff) = 0
psame(U ⊗ V ) = Tr(ωU⊗VMsame) = 0
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for allU, V ∈ U(d), whereU(d) denotes the group of unitary operators on d-dimensional Hilbert
space.

Defining average channels as

A[X] =
∫
U(d)

dU UXU† , (5.23)

T [Y ] =
∫
U(d)

dU (U ⊗ U)Y (U† ⊗ U†) , (5.24)

the above conditions can be equivalently rewritten as

0 = Tr((I12 ⊗ T34)[Ψ+
D]Mdiff) , (5.25)

0 = Tr((I12 ⊗A3 ⊗A4)[Ψ+
D]Msame) , (5.26)

because all the relevant operators are positive. The actions of the twirling channel T and the
average channel A are derived in Appendix D. In particular,

A[X] = Tr(X)
1
d
Id , (5.27)

T [Y ] =
Tr(Y P sym)

dsym
P sym +

Tr(Y P asym)
dasym

P asym , (5.28)

where P sym, P asym are projectors onto symmetric and antisymmetric subspace of Hd ⊗ Hd,
respectively. Dimensions of these subspaces are denoted as dsym, dasym and read

dsym = Tr(P sym) = d(d+ 1)/2
dasym = Tr(P asym) = d(d− 1)/2.

(5.29)

Let us note that P sym = 1
2 (I + Swap), P asym = 1

2 (I − Swap), where the swap operator acts
as Swap|ψ〉 ⊗ |ϕ〉 = |ϕ〉 ⊗ |ψ〉 for all ψ,ϕ ∈ Hd. Using these expressions we obtain

(I12 ⊗A3 ⊗A4)[Ψ+
D] =

1
d2
I⊗4
d (5.30)

and since

T [|jm〉〈kn|] =
1

dsym
〈kn|P sym|jm〉 P sym +

1
dasym

〈kn|P asym|jm〉 P asym

=
δjkδmn + δjnδmk

2dsym
P sym +

δjkδmn − δjnδmk
2dasym

P asym
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we have

ωT = (I12 ⊗ T34)[(Ψ+
d )13 ⊗ (Ψ+

d )24]

=
∑

j,k,m,n

|jm〉12〈kn| ⊗ T34[|jm〉34〈kn|]

=
1

2dsym

∑
j,m

[
|jm〉〈jm|+ |jm〉〈mj|

]
⊗ P sym

+
1

2dasym

∑
j,m

[|jm〉〈jm| − |jm〉〈mj|]⊗ P asym

=
1

4dsym

∑
j,m

[(|jm〉+ |mj〉)(〈jm|+ 〈mj|)]⊗ P sym

+
1

4dasym

∑
j,m

[(|jm〉 − |mj〉)(〈jm| − 〈mj|)]⊗ P asym

=
1

dsym
P sym ⊗ P sym +

1
dasym

P asym ⊗ P asym .

Putting all formulas together the conditions in Eqs.(5.25),(5.26) take the form

0 = Tr(ωτMdiff) , (5.31)

0 =
1
d2
Tr(I⊗4

d Msame) = Tr(Msame) . (5.32)

Since Msame,Mdiff are positive operators it follows that Msame = O and Mdiff has support in
the orthocomplement of ωτ . Consequently, we can unambiguously conclude only that the unitary
channels are different. We can formulate the following proposition.

Proposition 2 If a PPOVM Msame,Mdiff ,M0 describes an unambiguous comparison of arbi-
trary unitary channels, then necessarily

suppMdiff ⊥ suppωT ; Msame = O ;
M0 = ξT ⊗ ID −Mdiff , (5.33)

for some state ξ onHD ≡ Hd ⊗Hd.

5.3.3 Optimal unambiguous comparator

Following the previous section as a figure of merit for unambiguous comparators of unitary
channels we shall use the average conditioned probability of revealing their difference

pdiff =
∫
U(d)×U(d)

dUdV pdiff(U ⊗ V )

= Tr((I12 ⊗A3 ⊗A4)[Ψ+
D]Mdiff)

=
1
d2
Tr(Mdiff) . (5.34)



Discrimination of two unitary channels 749

The overall average success probability Psucc equals (1 − ηsame)pdiff , where ηsame 6= 0 is the
prior probability for channels being the same. This prior is independent of the particular PPOVM
{Mdiff ,M0} and therefore we shall use only the conditional average probability to evaluate the
quality of the unambiguous comparison strategy. Hence, our task is to maximize the conditional
success probability psuccess ≡ pdiff by finding a positive operator Mdiff defined on HD ⊗ HD
together with a state ξ onHD such that also the operator M0 = ξT ⊗ ID −Mdiff is positive. Be-
fore specifying the optimal solution let us prove the following upper bound on the (conditional)
success probability.

Theorem 4 If a process POVM consisting of positive operators Mdiff ,M0 with normalization
Mdiff +M0 = ξT ⊗ ID unambiguously compares an arbitrary pair of unitary channels, then

psuccess ≤
d+ 1

2d
. (5.35)

Proof 4 The validity of the no-error condition Tr(ωTMdiff) = 0 implies that supports of Mdiff

and ωT are orthogonal. Let us denote by |s1〉, . . . , |sdsym〉, |a1〉, . . . , |adasym〉 the vectors form-
ing orthonormal bases of symmetric and antisymmetric subspaces ofHd⊗Hd, respectively. Then
suppωT = span{|sj ⊗ sk〉, |am ⊗ a.n〉}, where j, k = 1, . . . , dsym and m,n = 1, . . . , dasym,
and because of the mentioned orthogonality

suppMdiff ⊂ span{|sj ⊗ an〉, |am ⊗ sk〉} . (5.36)

It follows that in a spectral form

Mdiff =
∑
α

λα|φα〉〈φα| , (5.37)

where 0 ≤ λα ≤ 1 and

|φα〉 =
∑
nj

cαnj |an ⊗ sj〉+ dαjn|sj ⊗ an〉 . (5.38)

Consequently,

Mdiff =
∑
n

|an〉〈an| ⊗An +
∑
n

Bn ⊗ |an〉〈an|+R ,
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with

An =
∑
α

λα
∑
jl

cαnjc
α
nl|sj〉〈sl| ;

Bn =
∑
α

λα
∑
jl

dαnjd
α
nl|sj〉〈sl| ;

R =
∑
α

λα

 ∑
m6=n,j,l

cαmj c
α
nl|am ⊗ sj〉〈an ⊗ sl|+

+
∑

m 6=n,j,l

dαjm dαln|sj ⊗ am〉〈sl ⊗ an|+

+
∑
m,n,j,l

cαmj d
α
ln|am ⊗ sj〉〈sl ⊗ an|+

+
∑
m,n,j,l

dαjm cαnl|sj ⊗ am〉〈an ⊗ sl|

 .
Since Tr(R) = 0 we get for the average success probability

psuccess =
1
d2

dasym∑
n=1

(Tr(An) + Tr(Bn)) . (5.39)

The operators An, Bn have the form of positive sum of one-dimensional projectors, hence they
are positive.

Let us evaluate the mean value of operator M0 = ξT ⊗ I −Mdiff in a pure state associated
with the vector |sj ⊗ an〉. Due to the required positivity of M0 we get the inequality

0 ≤ 〈sj ⊗ an|M0|sj ⊗ an〉 = 〈sj |ξT −Bn|sj〉 . (5.40)

Similarly, also the inequality

0 ≤ 〈an ⊗ sj |M0|an ⊗ sj〉
≤ 〈an|ξT |an〉 − 〈sj |An|sj〉 (5.41)

holds. These two inequalities can be used to bound the trace of the density operator ξT as follows

Tr(ξT ) =
∑
n

〈an|ξT |an〉+
∑
j

〈sj |ξT |sj〉

≥
∑
n

〈sk|An|sk〉+
∑
j

〈sj |Bm|sj〉

≥ 〈sk|
∑
n

An|sk〉+ Tr(Bm) , (5.42)

where we used the fact that by definition operators Bm have support only on the symmetric
subspace. The inequality holds for all choices of k and m. Moreover, since Tr(ξT ) = 1 and Bm
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is positive, i.e. Tr(Bm) ≥ 0, we obtain that also

〈sk|
∑
n

An|sk〉 ≤ 1 . (5.43)

for all k. Using these inequalities the success probability can be upper bounded as follows

psuccess =
1
d2

dsym∑
j=1

〈sj |
dasym∑
n=1

An|sj〉+
dasym∑
m=1

Tr(Bm)


=

1
d2

dasym∑
m=1

〈sm| dasym∑
n=1

An|sm〉+ Tr(Bm)

+

+
dsym∑

j=dasym+1

〈sj |
dasym∑
n=1

An|sj〉


≤ 1

d2
(dasym + d) =

dsym
d2

=
d+ 1

2d
, (5.44)

which proves the theorem.

Antisymmetric test states

In what follows we shall design a process POVM saturating the upper bound on the success
probability. In particular, for operators

Mdiff = %T ⊗ P sym , M0 = %T ⊗ P asym . (5.45)

the success probability equals

psuccess =
1
d2
Tr(Mdiff) =

1
d2
Tr(%T ⊗ P sym) =

dsym
d2

, (5.46)

hence the upper bound is saturated. Let us note that the state % is not arbitrary, because the
support of Mdiff must be orthogonal to support of ωT (see Eq.(5.36)). It implies that the state %
has support only on antisymmetric subspace. We shall call such states antisymmetric. Similarly,
if the support of a state is only in symmetric subspace we denote it as symmetric state.

The form of PPOVM in Eq. (5.45) suggests that one possible experimental realization con-
sists of the folowing steps: i) prepare a two-qudit antisymmetric state %; ii) insert each qudit into
different black box; iii) measure a two-valued observable described by POVM Fdiff = P sym and
F0 = P asym, which identifies the exchange symmetry of the joint state of the two-qudit system.

The test state % is antisymmetric. If U = V the action of the channels preserves the sym-
metry, i.e. the output state remains antisymmetric and in such case F0 must be observed. For
U 6= V the measurement outcome cannot be predicted with certainty, so both outcomes Fdiff , F0

have nonvanishing probability of occurence. However, if an outcome Fdiff is observed, we can
unambiguously conclude that U and V are different.

Symmetric test states
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Alternatively, we can consider a process POVM

Mdiff = %T ⊗ P asym , M0 = %T ⊗ P sym (5.47)

satisfying all the constraints providing % has support in the symmetric subspace. For this choice
the success probability reads

psuccess = Tr(%T ⊗ P asym) =
dasym
d2

=
d− 1

2d
, (5.48)

which is not optimal. Such PPOVM describes an experiment in which a ”symmetric“ test state
is used. The same measurement is carried out as in the antisymmetric case, but the role of
conclusive and inconclusive results is exchanged, i.e. Fdiff = P asym and F0 = P sym.

As we have mentioned at the beginning of this section one possibility how to tackle the
problem of unambiguous comparison of unitary channels is to adopt the universal comparison
machines for states. Consider a pair of unitary channels applied on independent systems initially
prepared in the same state. If U = V , then the resulting states are still described by the same
state. However, if U 6= V , then the output states can be different. That is the state comparator
can be used to find out whether the output states are different, which means that the unitary
channels are different as well. In the language of channel comparison the described strategy can
be interpreted as a strategy with pure, symmetric and factorized test state % = |ϕ ⊗ ϕ〉〈ϕ ⊗ ϕ|.
Since the optimal state comparison is based on projective measurement described by projectors
P sym, P asym, the value of the success probability is given in Eq.(5.48).

Uniqueness of optimal solution

In previous paragraphs we have shown that optimal strategy for comparison of unitary chan-
nels saturates the upper bound on probability of success imposed by Theorem 4. It means that
PPOVM elements of each optimal strategy have to saturate all inequalities used in proof of this
theorem. Analyzing this fact we can characterize all optimal strategies.

Theorem 5 If a process POVM {Mdiff ,M0} with normalization ξT ⊗ ID unambiguously com-
pares arbitrary pair of unitary channels with psuccess = d+1

2d , then

Mdiff = ξT ⊗ P sym , M0 = ξT ⊗ P asym , (5.49)

where ξ is a state with a support belonging only to the antisymmetric subspace ofHd ⊗Hd.

Proof 5 Saturation of inequality (5.43) for k = dsym together with inequality (5.42) implies that
Tr(Bn) = 0 for all n. Consequently, positivity of operators Bn implies Bn = 0 for all n i.e.
coefficients dαjn vanish. This in turn requires

〈sk|
∑
n

An|sk〉 = 1 (5.50)

for all k. Using Eq. (5.41) and Eq. (5.50) we get

1 =
∑
n

〈sk|An|sk〉 ≤
∑
n

〈an|ξT |an〉 ≤ Tr(ξT ) = 1 ,
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thus,
∑
n〈an|ξT |an〉 = 1. Due to positivity of ξT we obtain 〈sj |ξT |sj〉 = 0 for all j. This tells

us that ξT has support only on antisymmetric states. Since the used transposition is defined with
respect to a product basis, the antisymmetric states preserve their antisymmetry, i.e. the state ξ
is antisymmetric as it is stated in the theorem.

Using the spectral form (5.37) and Eq. (5.38) we can rewrite Mdiff as:

Mdiff =
∑
j

Cj ⊗ |sj〉〈sj |+H , (5.51)

with

Cj =
∑
α

λα
∑
nm

cαnjc
α
mj |an〉〈am| ;

H =
∑
α

λα
∑

j 6=l,m,n

cαmj c
α
nl|am ⊗ sj〉〈an ⊗ sl|

We rewrite also the probability of success [Eq. (5.34)] in terms of Cj and because the operator
H is traceless we get

psuccess =
1
d2

∑
j

Tr(Cj). (5.52)

Positivity of M0 = ξT ⊗ I −
∑
j Cj ⊗ |sj〉〈sj | −H implies

0 ≤ 〈a⊗ sj |M0|a⊗ sj〉 = 〈a|ξT − Cj |a〉 , (5.53)

where |a〉 is arbitrary vector from HD. Hence, we have that operator ξT − Cj is positive for
all j and consequently that 1 = Tr(ξT ) ≥ Tr(Cj). Saturation of inequality (5.35) requires
Tr(Cj) = 1 for all j, which in turn implies Tr(ξT − Cj) = 0. This together with the positivity
of operator ξT − Cj enables us to conclude that Cj = ξT for all j. The operators Mdiff ,M0

therefore read

Mdiff = ξT ⊗ P sym +H ,

M0 = ξT ⊗ P asym −H .

The support of the selfadjoint operator H is orthogonal to the support of the operator ξT ⊗
P asym. Since H is traceless it has both positive and negative eigenvalues unless H = O.
However, positive eigenvalues of H would spoil positivity of M0, so the operator H must vanish,
which concludes the proof.

5.3.4 Conclusions

The goal of this section was to find an optimal strategy for comparison of two unknown unitary
channels. Exploiting the framework of process POVM we have shown that the optimal strategy
achieves the average conditional success probability psuccess = (d + 1)/(2d). An interesting
observation is that the optimal strategy for comparison of unitary channels is very closely re-
lated to the comparison of pure states. In fact, the optimal state comparison is based on the
implementation of the two-valued projective measurement measuring the exchange symmetry of
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the bipartite states. Outcomes are associated with projectors onto symmetric and antisymmetric
subspaces of the joint Hilbert space. The optimal procedure for the comparison of unitary chan-
nels is exploiting the same measurement, but the outcomes are interpreted in the opposite way.
Whereas for comparison of pure states the projector P sym corresponds to the inconclusive result,
for unitaries this projector is associated with the unambiguous conclusion that the channels are
different. Similarly, the projector P asym indicates the difference of compared pure states, but
corresponds to no conclusion for unitaries. In both cases, the unambiguous conclusion that the
states, or unitaries are the same, can not be made.

Devices implementing quantum channels are tested indirectly via their action on quantum
states. In the experiment the unknown apparatuses are probed by some test states. We have
shown that the optimal solution is achieved if and only if the test state is antisymmetric, i.e. its
support is only in antisymmetric subspace. Let us note that if a state is separable, then necessarily
its support contains product vectors. However, by definition there is no antisymmetric product
vector, hence the support of each antisymmetric state does not contain any product vectors. Con-
sequently, each antisymmetric state is necessarily entangled. In conclusion, the entanglement
is the key ingredient for comparison of unitary channels. It enhances the success probability to
reach the optimal value.

Let us note that the proposed optimal strategy is feasible in current quantum information
experiments with photons and ions. In particular, in the qubit version the experiment consists of
preparation of a singlet, application of the unknown single-qubit unitary channels on individual
qubits and a projective measurement consisting of the projection onto a singlet, or arbitrary other
maximally entangled state. As the measurement we can use, for instance, the Bell measurement,
but it is not necessary. Moreover, for the optimal comparison of qudit unitary channels mixed
test states are allowed.
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6 Unambiguous tasks for measurements

The measurement part of an experiment correlates the state of the quantum system with some
classically distinguishable signals. The number of possible signals is in practice finite and ob-
servation of such a signal is called an event or an outcome. The rules of quantum mechanics
tell us that a quantum state is not an observable quantity. This means that there is always more
than one quantum state in the state space that could trigger the observed event. In general this
prevents us from deducing the (original) state precisely out of a single measurement outcome. In
fact, quantum mechanics predicts the probability of a state % leading to the considered event to
be Tr(%E), where O ≤ E ≤ I is a positive operator i.e. an effect associated with the event. If
the set of states before the measurement is restricted so that for only one of them Tr(%E) > 0
then the observation of effect E unambiguously implies that the measured state was %. Also in
other than unambiguous approaches the outcomes of the measurement are most often used to in-
fer something about the measured state. Moreover, we often tune the measurements to optimize
this inference.

On the other hand, there are also situations, where we want to design the experiment in such a
way that it enables us to infer something about the measurement itself. Hence, the measurement
is partly unknown and fixed and we want to deduce some of its properties out of its outcomes.
This type of experiments is a bit different from the experiments probing channels or states, be-
cause the outcomes of the investigated measurement apparatus may not be directly linked to the
conclusions we want to make. As an illustration consider a discrimination among M measure-
ment apparatuses, each having N possible outcomes. For N < M a single outcome of the tested
measurement could not indicate each of the possibly used apparatuses. However, consider the
following strategy for a single use of the unknown measurement. It would employ a principal
system measured by the tested apparatus as well as an ancillary quantum system, whose mea-
surement depends on the outcome of the tested POVM. The outcomes of the measurement on the
ancilla could then directly correspond to the conclusions we want to make. One can show that
it suffices to consider an ancilla with the same Hilbert space as the principal quantum system.
Unfortunately, a suitable mathematical framework for description of these type of experiments
is not yet developed. Moreover, sometimes it may happen that we are not allowed to use any
other measurement than the tested one. In such a situation the possible experiments consist of
the preparation that we control and a tested measurement, whose outcomes can be linked to the
test results in many ways.

6.1 Labeled vs. unlabeled observables

Let us now look on the description of measurement apparatuses from a bit more operational
point of view. Imagine we are given a Stern-Gerlach apparatus, whose outcomes are labeled
by 1 and 2. Suppose outcome 1 emerges when the measured spin is along the measurement
direction. Thus, if the measurement direction is along the +z axes17 the effects associated with
the outcomes read: E1 = |+ z〉〈+z|, E2 = | − z〉〈−z|. However, if the measurement direction
is along the −z axes the effects read: E1 = | − z〉〈−z|, E2 = | + z〉〈+z|. Although, these two
different POVMs correspond to two different Stern-Gerlach apparatuses mutually rotated by 180
degrees, they provide us with the same information. More precisely, after exchanging the labels

17In our 3D space or in the Bloch sphere representation if we are considering other two level system than spin
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on one of the apparatuses, quantum mechanics predicts the same probability distribution on their
outcomes for any possible input state. This illustrates that by a suitable labeling (interpretation)
of the outcomes a single physical apparatus can realize several different POVMs. Thus, all the
measurements related in this way are equivalent after the desired labeling of the outcomes is
performed. This motivates us to consider two types of equivalence among the POVMs. If the
desired labeling of the apparatus outcomes is done we may always assume that the outcomes are
labeled by numbers 1, . . . , n. If the outcomes were not properly labeled yet, we assign a number
j ∈ Jn ≡ {1, . . . , n} to each of them. However, in such a case the ambiguity in the labeling
must be taken into account and the equivalence of observables should be compatible with this
freedom. Let us spell out the definitions of observable equivalence explicitly.

Definition 1 Observables A : Jn → E(H) and B : Jn → E(H) are identical if Aj = Bj for all
j.

Definition 2 ObservablesA : Jn → E(H) and B : Jn → E(H) are equivalent (in the unlabeled
sense) if there exists a permutation π : Jn → Jn such that Aj = Bπ(j) for all j.

Thus, we shall use the word identical for equivalence in the strict labeled sense and the
word equivalent for equivalence in the unlabeled sense. It follows from the definition that the
equivalence class of an unlabeled observable consists of POVMs with the same range, i.e. the
elements of the set of unlabeled measurements can be understood as unordered collections of
effects summing up to identity.

Equivalence in the unlabeled sense of Def. (2) guarantees that the same property of the states
is measured. An example are two Stern-Gerlach apparatuses measuring a spin along the same
unoriented axes. However, in order to get the correct interpretation of the measured data one
should calibrate the apparatus to have the labels correctly attached. On the other hand, when two
measurements are identical, they have the same probability distributions without any relabeling
of the outcomes. For example, an impetuous use of an equivalent measurement apparatus instead
of the identical one in some quantum circuit may change the circuit behavior dramatically.

6.2 Perfect discrimination of two single qubit observables

Little is known about the discrimination of measurement apparatuses. The first paper focusing
on unambiguous tasks was published in 2006 by Ji, Feng, Duan, and Ying [67]. These authors in-
vestigate the perfect discrimination of projective measurements, whose outcomes are numbered.
Their motivation was the following. It is known (see e.g. [68]) that perfect discrimination be-
tween two nonorthogonal states is impossible unless we have access to an infinite number of
copies of the tested state. However, only a finite number of uses suffices to discriminate be-
tween any two unitary channels. Thus, it was very interesting to investigate, whether a finite
number of uses of the measurement apparatus suffice to distinguish between any two projective
measurements. The authors of [67] showed that a finite number of uses of the apparatus always
suffice, although the testing scheme depends on the particular projective measurements. They
define three schemes. The simple scheme consists of a preparation of a test state, whose parts
are then measured by the tested measurement apparatus. The second scheme they define is M-M
scheme. In this scheme, additional known measurements can be used to measure the test state. In
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Figure 6.1. Illustration of the M-U-M scheme.

their third M-U-M scheme (depicted in figure 6.1), the outcomes of some measurements can de-
termine the unitary operation that is applied before the remaining measurements are performed.
The authors prove three theorems stating the necessary and sufficient conditions for perfect dis-
crimination of two projective measurements within the simple and the M-M scheme. They use
them to show that for general qubit projective measurements, the M-M scheme is needed and
they derive the minimal number of uses of the tested apparatus. For general projective mea-
surements on more dimensional systems they show that a finite number of uses of the apparatus
within the M-U-M scheme suffices for perfect discrimination.

6.3 Unambiguous discrimination of unlabeled qubit observables

In contrast to the previous section, here we turn our attention to the discrimination of unlabeled
observables. The first who considered this kind of problem were M. Ziman and T. Heinos-
sari [69]. In their setting, the tested apparatus is modeled as a black box with leds. After a
measurement is performed one of the leds is flashing to indicate the obtained outcome. The
tested apparatus is known to be either the unlabeled measurement A or the unlabeled measure-
ment B. A single measurement outcome tells us that a support of the associated effect E has
overlap with the support of the measured state %. However, in the unlabeled case this informa-
tion does not help us to learn something about that particular effect. To illustrate this, we consider
an unlabeled measurement described by effects {A1, . . . ,An}, which form a particular POVM
once the ordering is fixed. In fact, we have to label the leds, which is inevitably done in a random
way. This causes that for each artificially named outcome the predicted probability is the same,
i.e.

pj(A) =
1
n!

∑
π∈S(n)

Tr(%Aπ(j)) =
(n− 1)!
n!

∑
j′

Tr(%Aj′) =
1
n
, (6.1)

where we used the fact that n! is the total number of permutations on Jn, and that (n− 1)! is the
number of them having a specific label j′ on the fixed (jth) position.

Using the apparatus once more, we can distinguish whether the observed outcomes coincide,
or not. After fixing the labels 1, . . . , n of the measurement device, the probability to observe a
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pair of outcomes j, k reads

pjk(A) =
1
n!

∑
π∈S(n)

Tr(%Aπ(j) ⊗Aπ(k)) (6.2)

=


(n−1)!
n!

∑
j′ Tr(%Aj′ ⊗Aj′) if j = k

(n−2)!
n!

∑
j′ 6=k′ Tr(%Aj′ ⊗Ak′) if j 6= k

,

where (n− 2)! is the number of permutations resulting in fixed operators Aj′ ,Ak′ for outcomes
j, k. Let us note that the values of pjk do not depend on the particular values of j, k, but only
on their relative relation (whether j = k, or j 6= k). Consequently, the probability to find the
same/different outcomes in two shots reads

psame = npjj =
∑
j

Tr(%Aj ⊗Aj) ,

pdiff = n(n− 1)pjk =
∑
j 6=k

Tr(%Aj ⊗Ak) .

We used the fact that for an n-valued measurement used twice, there are n pairs of same out-
comes and n(n − 1) pairs of different outcomes. In this two-shot scenario, the probabilities
psame, pdiff depend on the particular properties of the effects A1, . . . ,An, hence they contain
some information about A. Thus, with two uses of the unknown unlabeled apparatus we might
be able to decide, whether it is apparatus A or B. Ziman and Heinossari showed that for qubits,
perfect discrimination is possible only if the measurementsA and B correspond to Stern-Gerlach
apparatuses oriented in mutually orthogonal directions. An example of this are the measurements
of σZ and σX and all the other pairs can be obtained by their simultaneous rotation via a qubit
unitary transformation.

Due to the freedom in the labeling of the outcomes the probabilities are equal for certain
sequences of outcomes (see Eq. (6.2)). Hence, it is meaningful to distinguish only the symmetry
of the sequence with respect to renumbering of the outcomes. Two outcomes can be either same
↔ xx or different ↔ xy. For three measurement outcomes, there are five types of sequences:
xxx, xxy, xyx, xyy, xyz. However, for more outcomes, the classification of the sequences be-
comes complicated.

Ziman and Heinossari concentrated on discrimination based on two measurement outcomes.
If measurements A and B can not be perfectly discriminated, we need to allow the inconclusive
result of the unambiguous discrimination. This means we need to drop one possible conclusion,
because the relation of the two outcomes is only binary (same/different). Thus, the task Ziman
and Heinossari studied might be called unambiguous detection of the unlabeled measurement
A out of the measurements A,B. They showed that a qubit unlabeled measurement A can be
unambiguously detected if and only if the measurement B is projective. Let us denote by ηA, ηB
the prior probability that the tested measurement is A, B, respectively. There are two optimal
strategies for detecting the measurement A. In one of them, same outcomes unambiguously
indicate A and diff outcomes are inconclusive. The other optimal strategy uses a different probe
state and the role of same/diff outcomes is exchanged. For sharp unlabeled measurements A and
B defined by the unordered sets of effects { 1

2 (I + ~a.~σ), 1
2 (I − ~a.~σ)}, { 1

2 (I +~b.~σ), 1
2 (I −~b.~σ)}
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(‖a‖ = ‖b‖ = 1, ~σ - vector of sigma matrices) both optimal strategies succeed with probability
Psucc = ηA sin2 θab, where θab is the angle between vectors ~a,~b. The work of Ziman and
Heinosaari defined the concept of unlabeled observable discrimination. They provided basic
results for qubits, however there are many interesting open problems for qudits and for more
than two uses of the tested apparatus.

6.4 Comparison of sharp qubit observables

Suppose that we are given a pair of experimental setups implementing qubit measurements, each
of them designed by a different experimentalist. Is there a way to unambiguously compare their
performance? Especially, are they same or different? As independent experimentalists we can
think of these experimental setups as black boxes, producing outcomes after a qubit is inserted.
Our conclusions then have to be based on the acquired measurement outcomes.

For quantum measurements, there are two natural variations of the comparison problem. First
of all, we can ask whether the given black boxes are identical. This means that they produce
the same measurement outcome statistics in any state. In particular, also the labeling of the
outcomes is similar. For instance, two Stern-Gerlach apparatuses oriented in opposite directions
are considered to be different in this strict sense. However, they can be made identical by simply
re-labeling the outcomes in one of them. Thus, the other way to compare two black boxes is to
ask whether they are equivalent, i.e., identical after suitable re-labeling of the outcomes.

As an example, suppose we are comparing whether two Stern-Gerlach apparatuses are iden-
tical. A singlet state of two qubits inserted into the measurements cannot lead to the same out-
comes unless the measurement devices (including the labeling) are different. If labeling of the
outcomes is not given or it is part of the comparison problem, then we can perform this singlet-
based test for all possible labelings independently. Finding the same unambiguous conclusions
in all of them leads to a conclusion also for measurements without apriori labels. Since for each
of the Stern-Gerlach apparatuses we have two different choices of labels, we need to perform the
singlet-based comparison four times, i.e. each of the apparatuses is used 4 times. We will show
that there are also better strategies in which each of the unlabeled apparatuses is used only twice.

6.4.1 Apriori information

From now on, we assume that the two compared measurement apparatuses are described by
sharp non-degenerate observables, which we denote as A and B. Otherwise the measurement
apparatuses are completely unknown. This assumption represents a very important part of our
apriori information. As such, these observables are in direct correspondence with orthonormal
bases and have the same number of outcomes as the dimension of the Hilbert space (n = d = 2).
Let us fix an orthonormal basis |ψ1〉, . . . , |ψd〉 and denote by AUj the projections onto vectors
U |ψj〉, where U is a unitary operator defined on H. The projections AU1 , . . . ,AUd form a non-
degenerate sharp observable AU . Moreover, every non-degenerate sharp observable is of the
formAU for some unitary operator U . As in any other comparison problem we shall assume that
prior probabilities ηsame, ηdiff of observables being same, different are both nonzero. Otherwise
the comparison problem is meaningless and the conclusion is obvious from our prior knowledge.
To properly define the problem we have to specify also the probability distribution in the subset
of same observables and in the subset of different observables. The natural choice is to use to
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the Haar measure on the group of unitary operators that are in direct correspondence to sharp
non-degenerate observables as we illustrated above. Thus, in the subset of same measurement
apparatuses A = B = AU the probability distribution equals ηsamedU and in the subset of
different apparatuses A = AU 6= B = AV the probability distribution reads ηdiffdUdV . We
shall use the following notation. For labeled observables the probability of observing outcomes
j, k on the two compared apparatuses will be denoted by qj,k(A = B), where the relation in the
brackets indicates that the probability is conditioned on the measurement apparatuses being the
same. According to our prior information we have

qj,k(A = B) =
∫
Tr(%AUj ⊗AUk ) dU (6.3)

=
{
Tr(%

∫
ψ ⊗ ψ dψ) if j = k

Tr(%
∫
ψ ⊗ ψ⊥ dψdψ⊥) if j 6= k

,

where dψ⊥ denotes the integration over all vectors orthogonal to ψ. Similarly if the apparatuses
are different the probability to observe outcomes j, k is equal to

qj,k(A 6= B) =
∫
Tr(%AUj ⊗AVk ) dUdV (6.4)

= Tr(%
∫
ψ dψ ⊗

∫
ϕ dϕ)

= Tr(%
1
d
I ⊗ 1

d
I) =

1
d2

The overall average probability to observe outcomes j, k on the two tested apparatuses is ηsame
qj,k(A = B) + ηdiffqj,k(A 6= B). The introduced notation can be easily extended to multiple
outcomes of the compared apparatuses. For unlabeled observables we shall use analogous nota-
tion pj,k(A = B), pj,k(A 6= B), which differs only by using letter p instead of q. However, as
one might expect later we will show that for unlabeled observables we need to use each apparatus
at least twice to be able to compare them.

6.4.2 Comparison of labeled observables

In this section we assume that the outcomes of the compared measurement apparatuses A and
B are labeled by numbers 1, . . . , d. We study the simplest experimental scenario in which each
of the apparatuses is used only once. Our goal is to find a test state % and divide the potential
outcomes (j, k) into three families associated with conclusions: i) observables are identical, ii)
observables are different (not identical), iii) no conclusion (inconclusive result).

Using a pair of labeled measurements (each of them once) we distinguish d2 different out-
comes (j, k) appearing with probabilities qjk that depend on the equivalence of A and B (see
equations (6.3),(6.4)). Our prior information causes that the probabilities qjk(A = B) and
qjk(A 6= B) do not depend on particular values of j, k, but only on their mutual relation j = k,
or j 6= k. That is, whatever test state is used, we can split the outcomes at most into two outcome
classes x ∈ {same,diff}. Consequently, only two out of three conclusions can be made.

In general, conclusion y ∈ {identical, not identical} based on observed outcome from the
outcome class x is unambiguous, if for all other alternatives z , z 6= y the conditional proba-
bility p(y|x, z) of concluding y vanishes. In order to conclude that the observables are different



Discrimination of unlabeled qubit observables 761

(A 6= B) the condition qx(A = B) = 0 must hold for some outcome class x. Similarly, if
we can unambiguously conclude that A = B, then there must exist an outcome class x′ such
that qx′(A 6= B) = 0. We refer to such conditions as the no-error conditions. Their validity
is necessary to call a solution of the problem unambiguous. Outcomes that are not associated
with unambiguous conclusions lead to an inconclusive result. Our task now is to show, which
conclusion can be made unambiguously in an experiment involving single use of the compared
measurement apparatuses. Let us note that∫

dψ ψ⊗k =
(d− 1)!k!

(d+ k − 1)!
P sym1...k ≡

1
dk
P sym1...k , (6.5)

where P sym1...k is the projection onto the completely symmetric subspace ofH⊗k and

dk = Tr(P sym1...k ) =
(d+ k − 1)!
(d− 1)!k!

is the dimension of that subspace. For a fixed vector ψ∫
dψ⊥ ψ

⊗k
⊥ =

∫
H⊥ψ

dϕϕ⊗k

=
(d− 2)!k!

(d+ k − 2)!
(I − ψ)⊗kP sym1...k , (6.6)

where we usedH⊥ψ to denote the subspace ofH orthogonal to |ψ〉 ∈ H.
We use these identities in the evaluation of the probabilities qjk(A = B) and qjk(A 6= B).

In particular, from equations (6.3),(6.4) we have

qjj(A = B) =
1
d2
Tr(%P sym12 ) , (6.7)

qjk(A = B) =
1

d− 1
Tr(%(

1
d
I ⊗ I − 1

d2
P sym12 )) . (6.8)

qjj(A 6= B) =
1
d2
Tr(%) , (6.9)

qjk(A 6= B) =
1
d2
Tr(%) , (6.10)

We see that if the measurement devices are different (A 6= B), then for all test states % the
probabilities qjj(A 6= B) and qjk(A 6= B) do not vanish for any outcome. Because of that the
identicality of the observables cannot be concluded unambiguously.

Using the relation P sym12 + P asym12 = I ⊗ I between the projectors onto the symmetric and
antisymmetric subspace ofH⊗H we can rewrite the operator

1
d
I ⊗ I − 1

d2
P sym12 =

1
d
P asym12 +

d− 1
d(d+ 1)

P sym12

in the spectral form. Since this is positive full-rank operator it follows that also qjk(A = B) > 0
for all test states. Therefore, the occurence of different outcomes cannot be used to unambigu-
ously conclude that the measurements are different. However, qjj(A = B) = 0, if Π% ≤ P asym12 ,
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where we denoted by ΠX the projection onto the support of operator X . Hence, if we use test
state % supported only on the antisymmetric subspace and observe the same outcomes then we
can conclude with certainty that A 6= B.

In summary, the identicality of unknown sharp non-degenerate observables cannot be unam-
biguously confirmed if each of the labeled apparatuses is used only once. Using an antisymmetric
test state % and observing the same outcomes on both apparatuses lead us to unambiguous conclu-
sion that the apparatuses are different. For fixed observables A 6= B the conditional probability
of unambiguous conclusion reads

qsame(A,B) =
∑
j

Tr(%Aj ⊗ Bj) . (6.11)

On average

qsame(A 6= B) =
d∑
j=1

qjj(A 6= B) = d
1
d2

=
1
d
.

This value gives the average conditional success probability for revealing the difference of the
compared sharp labeled observables. It is independent of the used test state, however, the no-
error conditions restrict the possible test states to antisymmetric states, i.e. to states supported
only in the antisymmetric subspace spanned by P asym12 . Let us stress that if we choose a test state
% = 1

d−
P asym, then qsame(A,B) > 0 whenever A 6= B.

6.4.3 Comparison of unlabeled measurements

In this section we assume that the outcomes of measurement apparatuses are not labeled. As
previously, our goal is to design an experiment from which we are able to unambiguously con-
clude whether these apparatuses are same or not. But same now means that the observables are
equivalent in the unlabeled sense.

Consider a fixed pair of unlabeled measurement apparatusesA and B. A single usage of each
of the apparatuses leads us to outcome j on A-apparatus and a on B-apparatus with probability

pj,a =
1

(d!)2

∑
π,π′∈S(d)

Tr(%Aπ(j) ⊗ Bπ′(a))

=
1
d2

∑
j′,a′

Tr(%Aj′ ⊗ Ba′)

=
1
d2
Tr(%) ,

where we used that outcomes of each apparatus are labeled independently and we performed
the summations in the same way as in equation (6.1). Since this probability is independent on
whether A = B or A 6= B none of the outcomes can be used to make a conclusion. In fact pj,a
is independent of particular observables at all. Hence, we need to use the unlabeled apparatuses
more times. In particular, if each of them is used twice, then the independence of the labeling of
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the two apparatuses implies

pjk,ab =
1
d!d!

∑
π,π′

Tr(%Aπ(j) ⊗Aπ(k) ⊗ Bπ′(a) ⊗ Bπ′(b))

=


1
d2Tr(%Asame ⊗ Bsame) if j = k, a = b

1
d2(d−1)Tr(%Asame ⊗ Bdiff) if j = k, a 6= b

1
d2(d−1)Tr(%Adiff ⊗ Bsame) if j 6= k, a = b

1
d2(d−1)2Tr(%Adiff ⊗ Bdiff) if j 6= k, a 6= b ,

(6.12)

where the summations are done analogously to equation (6.2) and we denoted

Asame ≡
∑
j

Aj ⊗Aj , Adiff ≡
∑
j 6=k

Aj ⊗Ak ,

similarly for Bsame and Bdiff . We see that irrespectively whether A = B or A 6= B probability
pjk,ab depends only on the mutual relation of the outcomes j, k and a, b of the two usages of the
measurement A respectively B. Hence, also for unknown A and B distributed according to our
prior knowledge it is meaningful to distinguish at most four corresponding classes of outcomes.

Conditioned on measurement apparatuses being different (A 6= B) we shall calculate the
average probability of observing outcomes from the four outcome classes. The probability to
find the same outcomes on apparatusA and the same outcomes on apparatus B, respectively, can
be expressed as

psame,same(A 6= B) =
∑
j,a

pjj,aa(A 6= B) =
∑
j,a

∫
pjj,aa(AU ,AV ) dUdV

= d2

∫
1
d2
Tr(%AUsame ⊗AVsame) dUdV

= Tr(%OA6=Bsame,same) , (6.13)

where by pjj,aa(AU ,AV ) we mean equation (6.12) with A = AU ,B = AV . In equation (6.13)
the factor d2 stands for the number of same outcome pairs that can be observed on individual
apparatuses. The operator OA6=Bsame,same defined via this equation reads

OA6=Bsame,same =
∫
dUdVAUsame ⊗AVsame

= d2

∫
dψdϕψ ⊗ ψ ⊗ ϕ⊗ ϕ

= d2Rsame ⊗Rsame . (6.14)

We used the definitions

Rsame =
∫
dψψ ⊗ ψ =

1
d2
P sym ,

Rdiff =
∫
dψdψ⊥ψ ⊗ ψ⊥ =

1
d
I − 1

d2
P sym .
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Similarly, for other outcomes we find that

OA6=Bdiff,diff = d2(d− 1)2Rdiff ⊗Rdiff (6.15)

OA6=Bdiff,same = d2(d− 1)Rdiff ⊗Rsame (6.16)

OA6=Bsame,diff = d2(d− 1)Rsame ⊗Rdiff , (6.17)

providing A 6= B. Let us define operators

ΠA6=Bsame,same = P sym12 ⊗ P sym34 ΠA6=Bsame,diff = P sym12 ⊗ I34

ΠA6=Bdiff,same = I12 ⊗ P sym34 ΠA6=Bdiff,diff = I12 ⊗ I34 ,

that project onto the supports of operators OA6=Bsame,same, OA6=Bsame,diff , OA6=Bdiff,same, OA6=Bdiff,diff , respec-
tively.

Similarly, conditioned on measurement apparatuses being equivalent (A = B) we calculate
the average probability of observing outcomes from the four outcome classes. For this purpose
we define operators OA=B

same,same, OA=B
same,diff , OA=B

diff,same, OA=B
diff,diff in analogous way to equation

(6.13):

psame,same(A = B) = Tr(%OA=B
same,same) =

∑
j,a

∫
pjj,aa(AU ,AU ) dU ,

where

OA=B
same,same = d2

∫
dU

1
d2
AUsame ⊗AUsame

= d

∫
dψψ ⊗ ψ ⊗ ψ ⊗ ψ

+d(d− 1)
∫
dψdψ⊥ ψ ⊗ ψ ⊗ ψ⊥ ⊗ ψ⊥ (6.18)

and in the second term of equation (6.18) the integration over dψ⊥ runs over all vectors orthog-
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onal to a fixed ψ.In a general case the operators OA=B
x,x′ =

∫
dUAUx ⊗AUx′ read

OA=B
same,diff = d(d− 1)

∫
ψ ⊗ ψ ⊗ [ψ ⊗ ψ⊥ + ψ⊥ ⊗ ψ]

+
d!

(d− 3)!

∫
ψ ⊗ ψ ⊗ ψ′ ⊗ ψ′⊥ ,

OA=B
diff,same = d(d− 1)

∫
ψ ⊗ ψ⊥ ⊗ [ψ ⊗ ψ + ψ⊥ ⊗ ψ⊥]

+
d!

(d− 3)!

∫
ψ′ ⊗ ψ′⊥ ⊗ ψ ⊗ ψ ,

OA=B
diff,diff = d(d− 1)

∫
ψ ⊗ ψ⊥ ⊗ [ψ ⊗ ψ⊥ + ψ⊥ ⊗ ψ]

+
d!

(d− 3)!

∫
ψ ⊗ ψ⊥ ⊗ [ψ ⊗ ψ′ + ψ′ ⊗ ψ]

+
d!

(d− 3)!

∫
ψ ⊗ ψ⊥ ⊗ [ψ⊥ ⊗ ψ′ + ψ′ ⊗ ψ⊥]

+
d!

(d− 4)!

∫
ψ ⊗ ψ⊥ ⊗ ψ′ ⊗ ψ′⊥

(6.19)

where for simplicity we do not write explicitly the Haar measures dψ, dψ′, dψ⊥, dψ′⊥ and
ψ′, ψ′⊥ are vectors orthogonal to ψ and ψ⊥. Of course, 〈ψ|ψ⊥〉 = 〈ψ′|ψ′⊥〉 = 0. Since for
qubits the Hilbert space is two dimensional the terms containing ψ′ or ψ′⊥ do not appear in these
expressions. There are no two orthogonal vectors to a fixed ψ in such case.

Let us note that the integration leading to OA6=Bx,x′ includes the integration covered in OA=B
x,x′ .

Therefore,

ΠA=B
x,x′ ≤ ΠA6=Bx,x′ , (6.20)

which implies that whenever px,x′(A 6= B) = Tr(%OA6=Bx,x′ ) = 0, then also px,x′(A = B) =
Tr(%OA=B

x,x′ ) = 0, hence, in two shots we can not unambiguously conclude that the apparatuses
are equivalent. We can only approve the difference of the measurement devices.

In what follows we are going to specify for which test states and for which outcomes classes
x, x′ ∈ {same, diff} the no-error conditions Tr(%OA=B

x,x′ ) = 0 are satisfied and simultaneu-
ously, whether the associated conditional success probability rates psuccess = px,x′(A 6= B) =
Tr(%OA6=Bx,x′ ) > 0 are nonvanishing. We shall show that for qubits (d = 2)

ΠA6=Bsame,same = ΠA=B
same,same +Qsame,same ,

ΠA6=Bsame,diff = ΠA=B
same,diff +Qsame,diff ,

ΠA6=Bdiff,same = ΠA=B
diff,same +Qdiff,same ,

ΠA6=Bdiff,diff = ΠA=B
diff,diff +Qdiff,diff ,

where Qsame,same = O, Qdiff,diff 6= Qsame,diff = Qdiff,same are projections forming the relevant
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parts of the supports of potential test states % enabling us to conclude the difference. That is, we
shall see that three out of four outcomes classes can be used to make the unambiguous conclusion.

Support of operator OA=B
same,same

Evaluating the operator OA=B
same,same we obtain

1
d
OA=B

same,same =
∫
ψ⊗4 + (d− 1)

∫
ψ⊗2 ⊗ ψ⊗2

⊥

=
1
d4
P sym1234 +

2(d− 1)
d(d− 1)

R12−34P
sym
34 , (6.21)

where

R12−34 =
∫
ψ⊗2 ⊗ (I − ψ)⊗2

=
1
d2
P sym12 +

1
d4
P sym1234 −

1
d3

(P sym123 + P sym124 ) .

Due to positivity of operators in Eq. (6.21) the unambiguous no-error conditions require that

Tr(%P sym1234) = 0 , T r(%R12−34P
sym
34 ) = 0 ,

hold simultaneously. Hence, the support ofR12−34P
sym
34 is of interest for us and in particular we

should decide whether it is different from ΠA6=Bsame,same = P sym12 ⊗ P sym34 . If yes, then we can use
this outcome for making the unambiguous conclusion.

Let us analyze properties of R12−34 and its terms. First of all by definition R12−34P
sym
34 is a

positive operator, hence necessarily [R12−34, P
sym
34 ] = 0 and also [P sym123 + P sym124 , P sym34 ] = 0.

The support of the projections P sym12 , P sym1234 , P sym123 , and P sym124 contains the completely symmetric
subspace spanned by P sym1234 . As it is shown in Appendix E it is their greatest joint subspace and
since 1

d2
+ 1

d4
− 2

d3
> 0 the operator R12−34 is indeed supported on the whole P sym1234 .

It remains to analyze the properties ofR12−34P
sym
34 on the subspaceQ+

12 = P sym12 ⊗P sym34 −
P sym1234 . In particular, we are interested whether

〈ϕ| 1
d2
Q+

12 −
1
d3

(Q123 +Q124)|ϕ〉 > 0 (6.22)

for all |ϕ〉 from the support of Q+
12, where Q123 = P sym123 − P sym1234 , Q124 = P sym124 − P sym1234 .

For qubits these subspaces are described in details in Appendix E.1, where it is shown that the
operator Q123 + Q124 has two nonzero eigenvalues 4/3 and 2/3. However, the eigenvectors
associated with 4/3 are from the subspace spanned by P sym12 ⊗ P asym34 , which is irrelevant due
to multiplication of R12−34 by P sym34 . The eigenvectors associated with the eigenvalue 2/3 are
from P sym12 ⊗ P sym34 , thus 〈ϕ|Q123 +Q124|ϕ〉 ≤ 2/3 for all |ϕ〉 ∈ P sym12 ⊗ P sym34 ≥ Q+

12. Since
d2 = 3, d3 = 4 (see equation (6.5))

〈ϕ|1
3
Q+

12 −
1
4

(Q123 +Q124)|ϕ〉 ≥ 1
3
− 1

6
> 0 . (6.23)

As a result we have shown that support of R12−34P
sym
34 equals to support of P sym12 ⊗ P sym34 ,

thus ΠA=B
same,same = P sym12 ⊗ P sym34 = ΠA6=Bsame,same. In summary, an observation of pairs of same
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outcomes on both apparatuses cannot be used to make any unambiguous conclusion, because
Qsame,same = O.

Support of operator OA=B
diff,diff

In this case our aim is to show that Qdiff,diff 6= O. For qubits there are at most two mutually
orthogonal vectors, hence

OA=B
diff,diff = d(d− 1)

∫
ψ ⊗ ψ⊥ ⊗ (ψ ⊗ ψ⊥ + ψ⊥ ⊗ ψ) .

Let us remind that for larger systems, this expression contains additional terms. Using the oper-
ators R13−24, R14−23 introduced in a similar way as R12−34 defined in the previous section we
obtain

OA=B
diff,diff = 2(R13−24P

sym
24 +R14−23P

sym
23 ). (6.24)

Using the same arguments as forR12−34 we find thatR13−24P
sym
24 is supported on P sym13 ⊗P sym24

and R14−23P
sym
23 is supported on P sym14 ⊗ P sym23 . Therefore, for the test state % we can write the

following no-error condition

0 = Tr(%(P sym13 ⊗ P sym24 + P sym14 ⊗ P sym23 )) . (6.25)

The completely symmetric subspace P sym1234 is the greatest joint subspace of P sym13 ⊗ P sym24 and
P sym14 ⊗P sym23 . According to Appendix E.2 the support of P sym13 ⊗P sym24 +P sym14 ⊗P sym23 is 13
dimensional, because d4 = 5 andQ+

13 = P sym13 ⊗P sym24 −P sym1234 andQ+
14 = P sym14 ⊗P sym23 −P sym1234

are both four dimensional. Since the total Hilbert space H⊗4 for qubits is 16-dimensional, it
follows that test states satisfying the no-error conditions live in a three-dimensional subspace. In
Appendix E.2 it is shown that this subspace is a linear span of vectors

|κ1〉 =
1√
2

(|00〉|ψ+〉 − |ψ+〉|00〉) ,

|κ2〉 =
1√
2

(|0011〉 − |1100〉) ,

|κ3〉 =
1√
2

(|11〉|ψ+〉 − |ψ+〉|11〉) ,

where |ψ+〉 = 1√
2
(|01〉 + |10〉). Thus, Qdiff,diff =

∑
j |κj〉〈κj | ≤ Q+

12 ≤ P sym12 ⊗ P sym34 and
arbitrary test state % ≤ Qdiff,diff satisfies the no-error condition.

Let us optimize the conditional probability

pdiff,diff(A 6= B) = Tr(%OA6=Bdiff,diff) (6.26)

where

OA6=Bdiff,diff = 4(
1
2
I − 1

3
P sym12 )⊗ (

1
2
I − 1

3
P sym34 )

= I − 2
3

(P sym12 + P sym34 ) +
4
9
P sym12 ⊗ P sym34 .
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Arbitrary pure state |ϕ〉 ∈ Qdiff,diff is an eigenvector of projections P sym12 , P sym34 and P sym12 ⊗
P sym34 . Therefore, the probability is independent of the test states % ≤ Qdiff,diff and reads

pdiff,diff(A 6= B) = 1− 4
3

+
4
9

=
1
9
. (6.27)

Support of operator OA=B
same,diff

For qubits

OA=B
same,diff = d(d− 1)

∫
ψ⊗2 ⊗ (ψ ⊗ ψ⊥ + ψ⊥ ⊗ ψ)

= d

(
1
d3

(P sym123 + P sym124 )− 2
d4
P sym1234

)
,

and since P sym1234 ≤ P
sym
123 , P sym124 ; 1/d3 > 1/d4 we can conclude that the no-error condition reads

Tr(%(P sym123 + P sym124 )) = 0 . (6.28)

Let us remind that ΠA6=Bsame,diff = P sym12 and P sym123 , P sym124 ≤ P sym12 . The question is whether
ΠA=B

same,diff = P sym12 , or not. We know (see Appendix E.1) that P sym123 , P sym124 are not orthogonal,
however, their greatest joint subspace is the completely symmetric one. The dimension of P sym12

is 12, whereas the total support of P sym123 + P sym124 is 11 dimensional. It follows that there exist a
unique vector such that ΠA6=Bsame,diff |ϕQ〉 = |ϕQ〉, and, simultaneuously, ΠA=B

same,diff |ϕQ〉 = 0, thus,
Qsame,diff = |ϕQ〉〈ϕQ|. For such test state the observation of outcomes from (same, diff) class
leads to unambiguous confirmation of the difference of the measurement apparatuses.

Support of operator OA=B
diff,same

There is no substantial difference in the analysis of this case and the previous one. We only
need to exchange the role of pairs of indexes 12 and 34. Therefore, there exists a unique vector
|ϕ′Q〉 such that ΠA=B

diff,same|ϕ′Q〉 = 0, but ΠA6=Bdiff,same|ϕ′Q〉 = P sym34 |ϕ′Q〉 = |ϕ′Q〉. Surprisingly, we
shall see that |ϕ′Q〉 ≡ |ϕQ〉, which means that the same test state |%Q〉 guarantees the unambiguity
of both outcomes Osame,diff ,Odiff,same.

On the systems j and k we define a singlet vector as |ψ−jk〉 = 1√
2
(|01〉jk − |10〉jk). After a

short calculation one can verify that the vector

|ϕQ〉 =
1√
3

(|ψ−13 ⊗ ψ
−
24〉+ |ψ−14 ⊗ ψ

−
23〉) (6.29)

satisfies all the required properties, i.e. it is symmetric with respect to 1↔ 2, 3↔ 4 exchanges,
i.e. ΠA6=Bsame,diff |ϕQ〉 = ΠA6=Bdiff,same|ϕQ〉 = |ϕQ〉, and P sym123 |ϕQ〉 = P sym124 |ϕQ〉 = P sym134 |ϕQ〉 =
P sym234 |ϕQ〉 = 0, because both terms of |ϕQ〉 are antisymmetric exactly in one pair of all consid-
ered triples of indexes.

Using |ϕQ〉 as the test state we get

psame,diff(A 6= B) = 〈ϕQ|OA6=Bsame,diff |ϕQ〉

=
4
3
〈ϕQ|

1
6
P sym12 ⊗ P sym34 +

1
2
P sym12 ⊗ P asym34 |ϕQ〉 .
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Similarly, we find

pdiff,same(A 6= B) =
4
3
〈ϕQ|

1
6
P sym12 ⊗ P sym34 +

1
2
P asym12 ⊗ P sym34 |ϕQ〉 .

Since P sym12 |ϕQ〉 = P sym34 |ϕQ〉 = |ϕQ〉 implies P sym12 ⊗ P sym34 |ϕQ〉 = |ϕQ〉 and

〈ϕQ|P asym12 ⊗ P sym34 |ϕQ〉 = 〈ϕQ|P sym12 ⊗ P asym34 |ϕQ〉 = 0 ,

we obtain

psame,diff(A 6= B) + pdiff,same(A 6= B) =
4
9
. (6.30)

This gives a better success rate than we achieved for the outcome class (diff, diff). Unfortu-
nately, |ϕQ〉 6∈ Qdiff,diff . In conclusion, p = 4/9 is the optimal value of the conditional success
probability psuccess for unambiguous comparison of unlabeled sharp qubit observables in two
shots.

Consider a fixed pair of unlabeled observablesA = {ψ,ψ⊥}, B = {ϕ,ϕ⊥} such that ψ 6= ϕ.
Then the projections

Odiff,same = (ψ ⊗ ψ⊥ + ψ⊥ ⊗ ψ)⊗ (ϕ⊗ ϕ+ ϕ⊥ ⊗ ϕ⊥) ,
Osame,diff = (ψ ⊗ ψ + ψ⊥ ⊗ ψ⊥)⊗ (ϕ⊗ ϕ⊥ + ϕ⊥ ⊗ ϕ)

determine the probability of observing outcomes from the corresponding measurement class via
the relation pdiff,same = Tr(%Odiff,same). The success probability of revealing the difference of
the observables using the test state |ϕQ〉 reads

psuccess(ψ,ϕ) = 〈ϕQ|Osame,diff +Odiff,same|ϕQ〉 . (6.31)

Let us note that in a fixed orthonormal basis |ψ〉, |ψ⊥〉 the test state |ϕQ〉 takes the form

|ϕQ〉 =
1√
3

(
|ψ⊗2 ⊗ ψ⊗2

⊥ 〉+ |ψ⊗2
⊥ ⊗ ψ

⊗2〉 − |ψ+ ⊗ ψ+〉
)
,

where |ψ+〉 = 1√
2
(|ψ ⊗ ψ⊥〉 + |ψ⊥ ⊗ ψ〉). Using the identities |〈ψ|ϕ〉| = |〈ψ⊥|ϕ⊥〉| = cos θ,

|〈ψ|ϕ⊥〉| = |〈ψ⊥|ϕ〉| = sin θ a direct calculation gives

〈ϕQ|Osame,diff |ϕQ〉 =
1
3
〈ψ⊗2
⊥ |ϕ⊗ ϕ⊥ + ϕ⊥ ⊗ ϕ|ψ⊗2

⊥ 〉

+
1
3
〈ψ⊗2|ϕ⊗ ϕ⊥ + ϕ⊥ ⊗ ϕ|ψ⊗2〉

=
4
3
|〈ψ|ϕ〉|2|〈ψ⊥|ϕ〉|2 .

Since 〈ϕQ|Osame,diff |ϕQ〉 = 〈ϕQ|Odiff,same|ϕQ〉 the success probability reads

psuccess(ψ,ϕ) =
2
3

(sin 2θ)2 . (6.32)

It vanishes only if θ = 0, or θ = π/2 when ψ ≡ ϕ, or ψ ≡ ϕ⊥, respectively. As a result we get
that the optimal test state detects unambiguously the difference for any pair of non-equivalent
sharp qubit observables with strictly nonzero success probability. The actual probability depends
on the angle between the observables. In fact, if sharp qubit observables are understood as ideal
Stern-Gerlach apparatuses, then α = 2θ is the angle between the measured spin directions. The
probability achieves its maximum for orthogonal spin directions as one would expect.
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Figure 6.2. Illustration of the optimal scheme for unambiguous comparison of qubit apparatuses leading to
unambiguous conclusion A 6= B with average conditional probability 4/9.

6.4.4 Summary

We have investigated the problem of unambiguous comparison of quantum measurements. We
restricted our analysis to subset of sharp non-degenerate observables that can be associated with
non-degenerate selfadjoint operators. Let us note that without any restriction the comparison
problem has only a trivial solution.

We distinguished two different types of measurement apparatuses depending whether the
labels of their outcomes are apriori given, or not. We give solution to single shot comparison of
labeled measurements in arbitrary dimension. For unlabeled measurements the single usage of
each of the apparatuses is not sufficient. In the two shots scenario we find solution for unlabeled
qubit measurement apparatuses. In both cases, the unambiguous confirmation of the equivalence
of measurements is not possible. Similarly, as in the case of pure states and unitary channels,
also for sharp non-degenerate observables only the difference can be unambiguously concluded.

In summary, for the measurement apparatuses with labeled outcomes the optimal procedure
exploits the so-called antisymmetric test states. For any such test state % the success is associated
with the observation of the same outcomes. The difference of observables can be concluded with
the average conditional probability

qsuccess(A 6= B) = 1/d . (6.33)

In the case of unlabeled measurements individual outcomes can be associated with an unam-
biguous conclusion only if the support of the test state belongs to at least one of the subspaces
spanned by projections I − ΠA=B

x,x′ , x, x′ ∈ {same,diff}. We showed that only part of the
test state acting on the support of the projections Qsame,same = O, Qdiff,diff and Qsame,diff =
Qdiff,same = |ϕQ〉〈ϕQ| may contribute to the success probability. Out of these possibilities, it
turns out that the optimal test state is

|ϕQ〉 =
1√
3

(|ψ−13 ⊗ ψ
−
24〉+ |ψ−14 ⊗ ψ

−
23〉) , (6.34)

for which the average conditional probability of the unambiguous conclusion equals

psuccess(A 6= B) = 4/9 . (6.35)

Using such test state and finding on one of the measurement apparatuses different outcomes,
whereas on the second the same outcomes, we can conclude with certainty that the apparatuses
are different. This scheme is illustrated on Fig. 6.2.
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Let us compare these success probabilities with the comparison problem for pure states and
unitary channels. In particular, for single shot comparisons

pstate = (d− 1)/2d , (6.36)
punitary = (d+ 1)/2d . (6.37)

We see that unlike for states and channels the success rate for comparison of labeled measure-
ments vanishes as the dimension is increasing. Unfortunately, for unlabeled measurements on
systems of larger dimensions the situation is more complex and two shots are not sufficient to
make any unambiguous conclusion. The problem is still open and will be analyzed elsewhere.
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7 Conclusion

Quantum mechanics is a statistical theory and its predictions are conveyed by probabilities. How-
ever, in experiments we do not observe probabilities, but rather single experimental events called
“clicks” or outcomes. Repeating the experiment many times we acquire frequencies, which ex-
press statistics of the observed clicks. When the number of repetitions of the experiment is really
huge we intuitively expect that the predicted probabilities and the observed frequencies should
coincide. From this point of view it may appear counterintuitive that single experiments may
suffice to make reliable conclusions from the quantum mechanical predictions. In fact these
conclusions can be even unambiguous if the probability distributions for all the alternatives are
very well distinguishable. Mutual orthogonality of these probability distributions implies perfect
discrimination among the alternatives. If a given click (outcome) can be observed for only one
of the alternatives then we can use it to unambiguously conclude which alternative actually took
place in the experiment. This means probability distributions must be orthogonal on the subset
of outcomes usable for unambiguous conclusions. The remaining outcomes are inconclusive, as
they may be a consequence of more than one alternative. In most experiments one can think
of the subset of outcomes usable for unambiguous conclusions would be empty. However, in
certain situations our prior knowledge allows us to design the experiment in such a way that it
gives us unambiguous information about its constituents. The entire paper is devoted to study of
this kind of unambiguous tasks. In Chapter 3 I formulated a framework which accommodates
many problems of this type. I show that the prior information about any type of a constituent
(state, channel, observable) allows us to reformulate the discrimination among finite number of
alternatives as discrimination among finite number of average constituents.

Chapter 4 concentrates on tasks for quantum states. The relation of the quantum state com-
parison and the unambiguous identification to the discrimination of mixed states was recognized
soon after the problem of unambiguous discrimination of mixed states was defined. My original
results in this chapter cover two topics. One is comparison of ensembles of quantum states and
the other one is unambiguous identification of coherent states.

In the comparison of two ensembles of k and l copies prepared by two preparators of un-
known pure states I derived the conditional probability of revealing the difference of arbitrary
pure states |ψ1〉, |ψ2〉. The conditional probability is a polynomial in k, l, |〈ψ1|ψ2〉|2 and does
not depend on the dimension of the system. This is in contrast to the average success probability,
which is essentially given by the ratio of the dimensions of the symmetric subspacesH⊗k+l

sym and
H⊗ksym ⊗H⊗lsym. If the total number of available copies N is fixed then the success probability is
maximized for equal number of copies, i.e. k = l = N/2. The success probability can be slightly
increased given the prior knowledge that the states are coherent. In this case the improvement
is most significant for small number of copies. Moreover, I have proposed an optical implemen-
tation of the optimal quantum-state comparator of two finite ensembles of coherent states. This
proposal is relatively easy to implement, since it consists only of N − 1 beam-splitters and a
single photodetector.

Let me summarize the new results in the unambiguous identification (UI) part of Chapter
4. In UI we are given a set of identical quantum systems prepared in pure states, which are
labeled as unknown and reference states. The promise is that one type of reference state is the
same as the unknown state and the task is to find out unambiguously which one it is. My main
focus was on the case where the set of possible reference states is formed only by coherent
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states of an electromagnetic field. I illustrated the relevance of this prior knowledge by showing
that the specialized measurement outperforms the universal unambiguous identification, i.e. the
UI measurements that can be applied for all pure states. The interesting qualitative difference
between the specialized and the universal measurement for single copy of unknown and the
reference states is in the probability of success for nearly orthogonal states. While the specialized
measurement succeeds almost always the universal measurement produces conclusive result at
most with probability 1/3. Moreover, the specialized measurement can be easily experimentally
realized, because it consists of beam splitters and photodetectors. The basic version of the setup
was recently build and tested by L. Bartůšková et. al. [53] and we shortly summarize their
experiment in Appendix C. The beamsplitter setup was motivated by an intuitive reduction of the
unambiguous identification problem into specific ”distribution” task and an unambiguous state
comparison. The optical setup can be generalized to situations with more copies of the unknown
and the reference states. The generalization is based on an idea of the “concentration” of the
same type of states into strong coherent states that are subsequently identified by setups for the
single-copy scenario. In the UI task it is assumed that the particular choice of the reference
states is unknown to us, and only the probability distribution χ describing this choice is known.
Nevertheless, even without having χ it is possible to derive the optimal choice of transmittivities
in the beam-splitter setup for two types of reference states and an equal number of copies of
each of the reference states (nB = nC). In that case the probability of identification for the
reference states |α1〉, |α2〉 reads P(|α1〉, |α2〉) = 1 − exp[− nAnB

nA+2nB
|α1 − α2|2]. Under the

condition that the experimental setup consists only of linear optical elements and photodetectors
I proved the optimality of the setup. In the limit of nB = nC → ∞ the two reference states
become known. Therefore, one needs to unambiguously discriminate the unknown state between
two known pure states. The probability of success of our setup in this case coincides with the
optimal value achieved by the Ivanovic-Dieks-Peres measurement [6–8]. I addressed also the
question whether the coherent reference states can be recreated after our UI measurement. I
showed that the reference states can be partially recovered only if the measurement yielded a
conclusive outcome. The recovered reference states can be used in the next round of the UI
if another unknown state is provided. This might be seen as a repeated search in a quantum
database, where the data, i.e. the reference states, degrade with repeated use of the database.
Another aspect I investigated was the influence of a particular type of noise on the reliability of
the conclusions drawn by the UI setup. More precisely, I considered a communication scenario
called the phase keying, with two coherent reference states of equal amplitude, but the opposite
phases. I saw that the reliability of results depends only on the ratio of the amplitudes of the
noise and the signal. However, for nonzero noise the unambiguity of the conclusions is lost.

The goal of Chapter 5 was to investigate unambiguous tasks for quantum channels. Many
experiments probing channels are equivalent with respect to probability distribution on outcomes
they generate. Without taking this equivalence into account optimization of any discrimination
problem is very difficult, because we need to vary independently preparation and the measure-
ment part of the experiment. Process positive operator valued measure (PPOVM) is a frame-
work introduced by M. Ziman [31], which systematically takes this equivalence into account and
works with the equivalence classes instead. Unambiguous discrimination of channels is much
less studied than the discrimination of states. Using the PPOVM framework I defined the general
problem and provided some insight for unitary channels. My main contribution in this chapter
is the solution of comparison of two unknown unitary channels. Exploiting the framework of
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process POVM I have shown that the optimal strategy achieves the average conditional success
probability psuccess = (d + 1)/(2d). Quantum channels are tested indirectly via their action on
quantum states called also test states. I have shown that the optimal solution is achieved if and
only if the test state is antisymmetric, i.e. its support is only in antisymmetric subspace. Let
me note that such state is necessarily necessarily entangled. Hence, the entanglement is the key
ingredient for comparison of unitary channels.

Unambiguous tasks for measurements were studied in Chapter 6. In contrast to states and
channels quantum measurements act both quantumly and classically as they signalize the ob-
served outcome. The prior knowledge about the signalling of outcomes motivates us two dis-
tinguish two types of equivalence among observables. We call observables identical if their
outcomes are marked in the same way and they produce the same probability distribution for any
measured state. We call observables equivalent if they can be made identical by suitable labeling
of the outcomes. Suitable framework for description of experiments distinguishing observables
was not established even for their single use. This is the reason why my studies were restricted
to experiments, where only the tested measurements can be used and no feed forward of the
outcomes is allowed. More precisely, I investigated the problem of unambiguous comparison of
quantum measurements. I restricted the analysis to subset of sharp non-degenerate observables.
It is important to note that without any restriction the unambiguous comparison of measurements
has only a trivial solution. I distinguished two different types of measurement apparatuses de-
pending whether the labels of their outcomes are apriori given, or not. I have presented solution
to single shot comparison of labeled measurements in arbitrary dimension. For unlabeled mea-
surements the single usage of each of the apparatuses is not sufficient. In the two shots scenario I
give solution for unlabeled qubit measurement apparatuses. In both cases, the unambiguous con-
firmation of the equivalence of the measurements is not possible. Similarly, as in the case of pure
states and unitary channels, also for sharp non-degenerate observables only the difference can be
unambiguously concluded. For the measurement apparatuses with labeled outcomes the optimal
procedure exploits the antisymmetric test states. For any such test state the success is associated
with the observation of the same outcomes. The difference of observables can be concluded with
the average conditional probability qsuccess(A 6= B) = 1/d. In the case of unlabeled measure-
ments the optimal test state also has some antisymmetry. The unambiguous conclusion for this
test state is possible only if we find on one of the measurement apparatuses different outcomes,
whereas on the second the same outcomes. The average conditional probability of revealing the
difference of the apparatuses equals psuccess(A 6= B) = 4/9.

Let me compare these conditional success probabilities with the comparison problem for
pure states and unitary channels. In particular, for single shot comparisons pstate = (d− 1)/2d,
punitary = (d+1)/2d. We see that unlike for states and channels the success rate for comparison
of labeled measurements vanishes as the dimension is increasing. Unfortunately, for unlabeled
measurements on systems of larger dimensions the situation is more complex and two shots are
not sufficient to make any unambiguous conclusion.

Let me discuss my results also from a bit more general point of view. In classical physics
we are used to have a direct relation of the measured property of the physical system to its
implicitly assumed preexisting value before the measurement. In quantum physics it follows
from Bells inequalities that for some sets of observables assuming preexisting values before the
measurement is forbidden. On the other hand, there are well defined properties of the system
before the measurement (e.g. states being same or different in the comparison problem), which
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are not directly observable in the experiment. Unambiguous approach to the discrimination tasks
brings into the quantum world the direct relation of the measured outcomes to the preexisting
properties of the quantum systems. This paper tries to understand what kind of tasks can be
solved unambiguously and what kind of information we may acquire about the quantum system
in an unambiguous way. Motivated by the results on unambiguous comparison of states, channels
and observables, where equality of quantum objects can not be concluded, one might conjecture
that equality of quantum objects can not be proved in general from finite statistics of outcomes.
Although I do not prove this conjecture in the paper I consider it to be one of the the interesting
problems that remain as an open question for further studies.

Recently, G. M. D’Ariano [70] and his coworkers from the group in Pavia, Italy developed
a framework called quantum combs. Its aim is to describe most general transformations of con-
stituents (states, channels, measurements) and represent them in a unified way. Similarly to
PPOVM framework quantum combs are based on Choi-Jamiolkowski isomorphism. It seems
that they are well suited also for experiments containing multiple uses of the tested constituent.
Quantum combs were not yet applied to unambiguous discrimination tasks, however they were
already applied in quantum algorithm learning [71], optimal tomography [72] or optimal cloning
of a unitary transformation [73]. I think that application of quantum combs in unambiguous dis-
crimination may advance our understanding of this kind of task. On the other hand, the actual
calculations have to be the same as in the presently used calculus. Thus, one can not expect
that complicated problems as a discrimination of mixed states will be solved by quantum combs
easily. The more expectable advantage of better suited framework is in more clear and unified
way of working with the quantum objects.
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Appendices

A Calculations for state comparison

A.1 Proof of lemma

Lemma
Suppose we have a polynomial Qr(x) =

∑r
m=0 amx

m with the following properties:

1. Qr(1) = 0

2. am ≥ 0 for m ≤ r0 and am ≤ 0 for r0 < m ≤ r

Then Qr(x) ≥ 0 for all x ∈ [0, 1].
Proof: For x ∈ [0, 1] and a > b it follows that xa < xb. Therefore we can write

Qr(x) =
r0∑
m=0

amx
m +

r∑
m=r0+1

amx
m

≥ xr0
r0∑
m=0

am + xr0+1
r∑

m=r0+1

am (A.1)

= (1− x)xr0
r0∑
m=0

am (A.2)

≥ 0 , (A.3)

where we have used the fact that 0 = Qr(1) =
∑r0
m=0 am+

∑r
m=r0+1 am, i.e.

∑r
m=r0+1 am =

−
∑r0

0 am.

A.2 Projectors onto coherent states

Coherent states |α〉 are intimately related to the group of phase-space displacementsG generated
by the Glauber operator Dα = exp(αa† − α∗a) via the following relation Dα|0〉 = |α〉, where
|0〉 is the vacuum (ground) state of a harmonic oscillator. Using the group invariant measure dg
(its support contains all coherent states) the operator ∆ can be expressed as follows

∆ =
∫
G

dg(Dg|0〉〈0|D†g)⊗N . (A.4)

Applying the theorem proved in Ref. [74] to the representation of the group of displacements we
find that

∆ =
∫
G

dg(Dg|0〉〈0|D†g)⊗N = λ∆N
coh , (A.5)

where λ is a positive number (∆ is positive) and ∆N
coh is the projector onto the linear subspace

spanned by the product states |α〉⊗n. A particular choice of the group invariant measure dg
affects the value of the parameter λ. Our goal is to calculate the projector ∆N

coh, hence we are
looking for a measure dg such that λ = 1. The canonical Lebesgue measure dα on the complex
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plane C is invariant under complex translations (displacements) and therefore the correct measure
dg is proportional to dα, that is dg = µdα for some positive number µ, i.e.

∆N
coh = µ

∫
C
dα|α〉〈α|⊗N . (A.6)

Now, setting α = reiθ, we have, expanding the coherent states in terms of number states,

∆N
coh|0〉⊗N = µ

∫
C
dαe−N |α|

2/2 ×

×
∞∑
l1=0

αl1√
l1!

. . .

∞∑
lN=0

αlN√
lN !

(〈α|0〉)N |l1, . . . lN 〉

= 2πµ
∫ ∞

0

dr re−Nr
2
|0〉⊗N

= µ
π

N
|0〉⊗N , (A.7)

because
∫ 2π

0
eiθ(l1+···+lN )dθ = 2π if l1 + · · ·+ lN = 0, and vanishes otherwise. The invariance

of the canonical Lebesgue measure implies that

∆N
cohD

⊗N
β = D⊗Nβ D⊗N−β ∆N

cohD
⊗N
β

= D⊗Nβ µ

∫
C
dα|α− β〉〈α− β|⊗N

= D⊗Nβ µ

∫
C
d(α− β)|α− β〉〈α− β|⊗N

= D⊗Nβ µ

∫
C
dα|α〉〈α|⊗N

= D⊗Nβ ∆N
coh (A.8)

The previous identity (A.8) implies

∆N
coh|β〉⊗n = ∆N

cohD
⊗N
β |0〉⊗N = D⊗Nβ ∆N

coh|0〉⊗N . (A.9)

Consequently, for all |ψ〉 ∈ Hcoh ≡ span{|α〉⊗N} it holds that

∆N
coh|ψ〉 = µ

π

N
|ψ〉 , (A.10)

and for all |ψ⊥〉 ∈ H⊥0 we have ∆N
coh|ψ⊥〉 = 0. The above equality fixes the invariant measure

dg to be N
π dα, where dα is the Lebesgue measure on the complex plane.

B Calculations for UI problems

B.1 Eigenvalues of Esb0

The operator Esb0 is defined in Eq.(4.94). As we have already mentioned there this operator is
block diagonal consisting of three types of blocks. 1. Trivial 〈iii|Esb0 |iii〉 = 1.
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2. 3× 3 matrix 〈σ1(iij)|Esb0 |σ2(iij)〉:

Q3 =


iij iji jii

iij 1− c1/2 0 c1/2
iji 0 1− c2/2 c2/2
jii c1/2 c2/2 1− c1/2− c2/2

 (B.11)

with eigenvalues

λ
(3)
1 = 1 ; (B.12)

λ
(3)
2,3 =

2− c1 − c2 ±
√
c21 − c1c2 + c22

2

3. 6× 6 matrix 〈σ1(ijk)|Esb0 |σ2(ijk)〉:

Q6 =



ijk kji jki ikj kij jik
ijk X c1/2 0 0 0 c2/2
kji c1/2 X c2/2 0 0 0
jki 0 c2/2 X c1/2 0 0
ikj 0 0 c1/2 X c2/2 0
kij 0 0 0 c2/2 X c1/2
jik c2/2 0 0 0 c1/2 X


, (B.13)

where X = 1− c1
2 −

c2
2 . The corresponding eigenvalues read

λ
(6)
1 = 1
λ

(6)
2 = 1− c1 − c2
λ

(6)
3,4 = 2−c1−c2+

√
c21−c1c2+c22

2

λ
(6)
5,6 = 2−c1−c2−

√
c21−c1c2+c22

2 .

(B.14)

For qubits we have 23-dimensional Hilbert space and Esb0 is represented by 8×8 matrix with
two 3× 3 blocks and two 1× 1 blocks. So for qubits the sufficient condition for positivity of Esb0
reads

2− c1 − c2 ±
√
c21 − c1c2 + c22 ≥ 0

For qudits, d > 2, at least one 6 × 6 block appears in the matrix of Esb0 . The eigenvalues of
the 6× 6 block satisfy the following inequality:

λ
(6)
1 ≥ λ(6)

3,4 ≥ λ
(6)
5,6 ≥ λ

(6)
2 ,

so the sufficient condition for positivity of Esb0 when d > 2 is λ(6)
2 = 1− c1 − c2 ≥ 0.
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B.2 Evaluation of Gaussian type of integrals

As we have seen the following type of integrals

Im =
1

(2πσ2)m

∫
Cm

dα1 . . . dαme
−

Pm
i=1

|αi|
2

2σ2 − ab |x+
Pm
i=1 αi|

2

emerge often in our calculation for the noise model. These integrals can be evaluated recursively
using the relation

1
(2πσ2)

∫
C
dα e−

|α|2

2σ2 − ab |x+α|2 =
b

b+ 2aσ2
e
− a
b+2aσ2 |x|

2

(B.15)

we are going to derive now. Left hand side (LHS) of Eq. (B.15) can be rewritten using the
following modification of the rectangular identity

k |β − α1|2 + l|β − α2|2 = (B.16)

=
∣∣∣√k + lβ − kα1 + lα2√

k + l

∣∣∣2 +
kl

k + l
|α1 − α2|2

as

LHS =
e
− a
b+2aσ2 |x|

2

(2πσ2)

∫
C
dα e

−
∣∣∣q 1

2σ2 + a
bα−

2bσ2

b+2aσ2 x

∣∣∣2

=
e
− a
b+2aσ2 |x|

2

(2πσ2)

∫
C
dα e

−
∣∣∣q 1

2σ2 + a
bα

∣∣∣2
=

b

b+ 2aσ2
e
− a
b+2aσ2 |x|

2 1
2πσ′2

∫
C
dα e−

|α|2

2σ′2

=
b

b+ 2aσ2
e
− a
b+2aσ2 |x|

2

, (B.17)

where we have used the fact that we are integrating over the whole complex plane. As a conse-
quence, a constant shift of argument does not matter and the Gaussian distribution is normalized
to unity. Hence we have proved Eq. (B.15), which we can be rewritten as

Im(a, b) =
b

b+ 2aσ2
Im−1(a, b+ 2aσ2).

From this recursive rule it follows that

Im(a, b) =
b

b+ 2aσ2m
e
− a
b+2maσ2 |x|

2

, (B.18)

which is the result we wanted to obtain.
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Figure C.1. The scheme of the experimental setup [53]. A - attenuators, PM - phase modulators, AG -
adjustable air gaps, BS - beam splitters, D - detectors.

C UI of coherent states – experimental realization

In this appendix we shortly summarize the experiment of Bartůšková, Černoch, Soubusta, and
Dušek [53], who build and tested the unambiguous identificator for single copy of unknown
and two reference states. The arrangement of the experiment is depicted in Fig. C.1 and it is
based on the scheme that was derived in section 4.3.5. State |α?〉 is the unknown state that
should be matched with one of the reference states |α1〉, |α2〉. As we shown in section 4.3.5
if T0 = 1/2, T1 = 2/3, T2 = 1/3 hold for the transmittivities of beam splitters BS0, BS1,
and BS2, then one can unambiguously identify the unknown state using photodetectors D1 and
D2. If D1 clicks we conclude that |α?〉 = |α2〉, if D2 clicks it means that |α?〉 = |α1〉. If
neither of the detectors clicks we cannot make any conclusion about the state |α?〉 and this
is an inconclusive result. In theory, both detectors can not click simultaneously. In practice,
photodetectors have dark counts, dead times and less than 100% detection efficiency Γ. The
non-ideal detection efficiency is for the measured coherent state |β〉 easily taken into account
by replacing the probability of not registering photons p0(|β〉) = e−|β|

2
by p0(|β〉) = e−Γ|β|2 .

Consequently, the probability of correct identification of state |α1〉 reads

p1 = 1− exp
(
−Γ

1− T0

2− T0
|α1 − α2|2

)
, (C.19)

and of correct identification of state |α2〉

p2 = 1− exp
(
−Γ

T0

1 + T0
|α1 − α2|2

)
, (C.20)

where the same detection efficiency Γ is assumed for both photodetectors. In a real setup it
sometimes happens that detectors D1 and D2 click simultaneously (due to imprecisions and dark
counts). Practically these double clicks, as well as no detections, correspond to inconclusive
results because we cannot distinguish whether the unknown state was equal to state |α1〉, or to
state |α2〉. The other two situations, when just one of detectors clicks, belong to conclusive
results. They include both correct and erroneous identifications of the unknown state. Ideally,
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the erroneous identifications never occur and the probability of a conclusive result is equal to the
probability of correct identification.

The experimental setup (see Fig. C.1) was built up on fiber optics. The coherent states were
prepared by a laser diode, whose pulses were strongly attenuated and divided by a fiber coupler
into three optical fibers. After passing through additional attenuators (A) and electro-optical
phase modulators (PM) coherent states in the three fibers correspond to states |α1〉, |α2〉, |α?〉.
The principle of the identification lies in the interference of light beams at beam splitters. As
beam splitters BS1 and BS2 the two variable-ratio couplers were used, while beam splitter BS0

was a 50 : 50 fixed ratio fiber coupler. The whole setup works basically as two interconnected
Mach-Zehnder (MZ) interferometers. To accomplish discriminating operation visibilities of both
MZ interferometers had to be maximized. This was roughly done by aligning polarizations and
setting the same optical paths using air gaps, for the arms corresponding to |α1〉 and |α?〉 and
paths corresponding to |α2〉 and |α?〉. In order to to compensate the phase drift due to temperature
fluctuations an active stabilization of the paths was done using phase modulators and another two
photodetectors that regularly checked the visibility of the interference. The signal was detected
by four single-photon counting avalanche photodiodes. Two of them, D1 and D2, served for both
the discrimination and active stabilization while two others were used only for the stabilization.
To minimize the influence of dark counts of detectors on a measurement only the coincidences
between signals from detectors D1, D2 and pulses that triggered the laser diode were counted.

In the experiment the state identification for various combinations of states |α1〉 and |α2〉was
tested. Conclusive count rates C+

j , when the state was correctly discriminated, and C−j related
to erroneous detections; j = 1, 2 were recorded. For example in cases when j = 1 (|α?〉 = |α1〉)
the rate C+

1 (C−1 ) was obtained by measuring coincidence rate between detector D2 (D1) and
trigger pulse of the laser diode minus the coincidence rate between detectors D1 and D2 (related
to double clicks). C+

2 and C−2 were measured in a similar way. The fractions of correct and
erroneous results read

P+
j =

C+
j

Ctot
, P−j =

C−j
Ctot

(j = 1, 2) (C.21)

respectively, where Ctot is the total number of laser pulses per measurement period. The fraction
of conclusive results is thus Pj = P+

j + P−j (j=1, 2).
Experimental results are shown in Figs. C.2-C.5. Fig. C.2 and Fig. C.3 display the fraction of

correct and erroneous results as a function of phase difference between coherent states |α1〉 and
|α2〉. The theoretical curves of probabilities of a conclusive result (i.e. probabilities of correct
identification) were calculated by equations (C.19), (C.20). They are identical for both program
states due to assumed equality of the efficiencies of detectors D1 and D2. Measured data are
presented as P+

j and P−j according to equation (C.21). In the ideal case, when the visibility of
interference is 100% and there are no dark counts, the probability of a conclusive result is equal
to the probability of correct identification. In the setup the effect of dark counts was minimized to
be negligible and visibilities were around 98%. The imperfect interference affects the quality of
discrimination mainly in situations when the overlap of coherent states |α1〉 and |α2〉 is relatively
high. The probability of a conclusive result for the phase difference 180◦ between states rapidly
grows with increasing intensities of states |α1〉 and |α2〉 (see Fig. C.4). Finally, Fig. C.5 shows
the probability of a conclusive result as a function of intensity ratio |α2|2/|α1|2 whereas the
intensity of the first state was fixed to 1.33 photons per pulse. The upper line is related to
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Figure C.2. Dependence of the fraction of correct and erroneous results on the phase difference between
states |α1〉 and |α2〉 for three different intensities of states; |α1|2 = |α2|2. Solid lines represent theoretical
predictions for the probability of a conclusive result. The graph originates from [53].

Figure C.3. Dependence of the fraction of correct and erroneous results on the phase difference between
states |α1〉 and |α2〉; |α1|2 6= |α2|2. Solid line represents a theoretical prediction for the probability of a
conclusive result. The graph originates from [53].

situations when the overlap of states is for given intensities minimal (phase difference 180◦

between the states) and the lower line corresponds to cases when the overlap is maximal (phase
difference 0◦ between the states).
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Figure C.4. Dependence of the probability of a conclusive result on the intensity of states (|α1|2 = |α2|2;
phase difference between states was 180◦). Solid line represents the theoretical prediction for detectors
with η = 53%. Dashed line is the theoretical limit for ideal detectors (quantum efficiency η = 100%). The
graph originates from [53].

Figure C.5. Dependence of the probability of a conclusive result on the intensity ratio of states |α2|2/|α1|2
(|α1|2=1.33 photons/pulse). The upper line represents the theoretical prediction for the phase difference
180◦ between states |α1〉 and |α2〉 and the lower line corresponds to the phase difference 0◦. The graph
originates from [53].
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D Calculations for channels

D.1 Average unitary channel

In this section we shall prove that the action of the average unitary channel can be expressed as

A[X] =
∫
U(d)

dU UXU† =
Tr(X)
d

I , (D.22)

where dU is the unique Haar invariant measure defined on the group of unitary operators U(d).
By definition the image A[X] of any operator X must commute with all unitary operators, i.e.
[A[X], U ] = 0 for all U ∈ U(d). The Schurr lemma implies that A[X] = c(X)I . The transfor-
mation A is by definition trace-preserving. That is, Tr(X) = c(X)Tr(I) = c(X)d. It follows
that c(X) = Tr(X)/d, hence the Eq.(D.22) holds.

D.2 Twirling channel

We shall prove that the action of the twirling channel

T [X] =
∫
U(d)

dU U ⊗ UXU† ⊗ U† , (D.23)

on selfadjoint operators X takes the form

T [X] =
Tr(XP sym)

dsym
P sym +

Tr(XP asym)
dasym

P asym . (D.24)

The properties of Haar invariant measure dU implies that the operator T [X] commutes with
all unitary operators of the type U ⊗ U . If X is selfadjoint, then T [X] is also selfadjoint and
T [X] =

∑
j xjPj , where xj are real eigenvalues and Pj are the corresponding eigenprojectors.

The commutation of T [X] with unitaries U ⊗ U implies that [Pj , U ⊗ U ] = 0 for all U . The
subspaces Hj = Pj(Hd ⊗Hd) = {ψ ∈ Hd ⊗Hd such that Pj |ψ〉 = |ψ〉} are invariant under
the action of operators U ⊗ U .

It turns out there are only two invariant subspaces ofHd⊗Hd - symmetric and antisymmetric
subspace. A vector ψ ∈ Hd ⊗Hd is called symmetric (antisymmetric) if Swap|ψ〉 = ±|ψ〉, re-
spectively, where we employed the swap operator. Let us denote by P sym, P asym the projectors
onto the symmetric and antisymmetric subspaces, respectively.

Consider an orthonormal basis {|j〉}dj=1 of Hd. Defining the vectors |ϕ±jk〉 = 1√
2
(|j ⊗ k〉 ±

|k ⊗ j〉) for j < k, |ϕ+
jj〉 = |j ⊗ j〉 we can write

P sym =
∑
j≤k

|ϕ+
jk〉〈ϕ

+
jk|, P asym =

∑
j<k

|ϕ−jk〉〈ϕ
−
jk|. (D.25)

Let us note that vectors |ϕ±jk〉 (j, k = 1, . . . , d) are forming an orthonormal basis ofHd⊗Hd and
Swap|ϕ±jk〉 = ±|ϕ±jk〉. It follows that the dimensions of symmetric and antisymmetric subspaces
are d± = d(d± 1)/2, respectively. As a result we obtain that

T [X] = a+(X)P sym + a−(X)P asym (D.26)
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is the spectral form of T [X]. In order to verify that Eq.(D.23) and Eq.(D.24) define the same
mapping, it is sufficient to verify their actions on elements of arbitrary operator basis. We shall
use an orthonormal operator basis consisting of operators Ej±k,m±n = |ϕ±jk〉〈ϕ±mn|.

According to Eq.(D.26) Tr(Y †T [X]) = 0 for arbitrary operator Y orthogonal to P sym and
P asym, i.e. if Tr(Y †P sym) = Tr(Y †P asym) = 0. This identity holds for both expressions of
T . Consequently, it is sufficient to verify that the values of ∆sym = Tr(P symT [Ej±k,m±n])
and ∆asym = Tr(P asymT [Ej±k,m±n]) coincide for both expressions of the twirling channel
given in Eq.(D.23) and in Eq.(D.24). Direct calculation gives

∆sym = Tr(P sym
∫
U(d)

dU U ⊗ UEj±k,m±nU† ⊗ U†)

= Tr(Ej±k,m±n
∫
U(d)

dU U ⊗ UP symU† ⊗ U†)

= Tr(Ej±k,m±nP sym) ;

∆asym = Tr(Ej±k,m±nP asym)

and, simultaneuously,

∆sym =
Tr(Ej±k,m±nP sym)

dsym
Tr(P symP sym)

+
Tr(Ej±k,m±nP asym)

dasym
Tr(P symP asym)

= Tr(Ej±k,m±nP sym) ;

∆asym = Tr(Ej±k,m±nP asym) .

That is, the Eqs.(D.24) and (D.23) determine the same channel.

E Calculations for Measurements

E.1 Subspaces

In this appendix we shall analyze the subspaces of four quantum systems H⊗4, especially four
qubits. Let us start with the simpler case ofH⊗H. Denote by |j〉 the basis ofH and define

|ϕ±jk〉 =
1√
2

(|j ⊗ k〉 ± |k ⊗ j〉) . (E.27)

for j < k. For j = k

|ϕ+
jj〉 = |j ⊗ j〉 . (E.28)

These vectors form an orthonormal bases of symmetric and antisymmetric subspaces ofH⊗H,
i.e. they define the projections

P sym =
∑
j≤k

|ϕ+
jk〉〈ϕ

+
jk|, P asym =

∑
j<k

|ϕ−jk〉〈ϕ
−
jk|.
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We shall use the notation P sym12 ≡ P sym12 ⊗ I34 = P sym12 ⊗ (P sym34 + P asym34 ). Let us
stress that P sym1234 ≤ P sym123 ≤ P sym12 . We shall be interested in properties of projections that
are substracted from other projections to create the projections onto the completely symmetric
subspace, for example, operators Q12 = P sym12 − P sym1234 and Q123 = P sym123 − P

sym
1234 . Similar

notations, definitions and relations hold also for other combination of indexes.
For qubits dimP sym12 = d2 ·d2 = 12, dimP sym12 ⊗P sym34 = d2

2 = 9, dimP sym123 = dimP sym124 =
d · d3 = 8 and dimP sym1234 = d4 = 5, thus, dimQ123 = dimQ124 = 3 and Q12 = 7., etc.

E.2 P sym12 ⊗ P sym34 and P sym1234

Let us start with the analysis of the subspace of P sym12 not contained in P sym1234 , i.e. with Q12. In
the first step, let us split Q12 into Q12 = Q−12 + Q+

12, where Q+
12 = P sym12 ⊗ P sym34 − P sym1234 ,

Q−12 = P sym12 ⊗P asym34 . Due to asymmetry of P sym12 ⊗P asym34 in 3↔ 4 exchange the projections
P sym1234 and Q−12 are orthogonal. For Q+

12 the situation is more tricky. Our goal is to design a basis
of the support of Q+

12. The completely symmetric subspace P sym1234 is spanned by the following
orthonormal basis

|η0〉 = |ϕ+
00 ⊗ ϕ

+
00〉

|η1〉 =
1√
2

(|ϕ+
00 ⊗ ϕ

+
01〉+ |ϕ+

01 ⊗ ϕ
+
00〉)

|η2〉 =

√
2
3
|ϕ+

01 ⊗ ϕ
+
01〉+

√
1
6

(|ϕ+
00 ⊗ ϕ

+
11〉+ |ϕ+

11 ⊗ ϕ
+
00〉)

|η3〉 =
1√
2

(|ϕ+
11 ⊗ ϕ

+
01〉+ |ϕ+

01 ⊗ ϕ
+
11〉)

|η4〉 = |ϕ+
11 ⊗ ϕ

+
11〉 .

Our aim is to specify a basis spanning the support of Q+
12. Since dimP sym1234 = 5 and dimP sym12 ⊗

P sym34 = 9 it follows we need to find four mutually orthogonal vectors in P sym12 ⊗ P sym34 that are
also orthogonal to vectors |ηj〉. It is straightforward to verify that the following vectors

|κ1〉 =
1√
2

(|ϕ+
00 ⊗ ϕ

+
01〉 − |ϕ

+
01 ⊗ ϕ

+
00〉)

|κ2〉 =
1√
2

(|ϕ+
00 ⊗ ϕ

+
11〉 − |ϕ

+
11 ⊗ ϕ

+
00〉)

|κ′2〉 =

√
1
3

(|ϕ+
01 ⊗ ϕ

+
01〉 − |ϕ

+
00 ⊗ ϕ

+
11〉 − |ϕ

+
11 ⊗ ϕ

+
00〉)

|κ3〉 =
1√
2

(|ϕ+
11 ⊗ ϕ

+
01〉 − |ϕ

+
01 ⊗ ϕ

+
11〉)

form such a basis.
Let us abbreviate the swap operator implementing the exchange of the subsystems a, b by

Sab ≡ Swapab = P symab − P asymab . This operation is unitary and arbitrary permutation can be
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written as a composition of swap operations. The following identities hold

P sym13 ⊗ P sym24 = S23(P sym12 ⊗ P sym34 )S23 ,

P sym14 ⊗ P sym23 = S34(P sym13 ⊗ P sym24 )S34 ,

P sym12 ⊗ P sym34 = S24(P sym14 ⊗ P sym23 )S24 .

The vectors |κ1〉, |κ2〉, |κ3〉 defined with respect to division P sym12 ⊗ P sym34 are orthogonal to
all vectors |κj〉, |κ′2〉 defined with respect to splittings P sym13 ⊗ P sym24 and P sym14 ⊗ P sym23 , i.e.
P sym13 ⊗P sym24 |κj〉 = P sym14 ⊗P sym23 |κj〉 = 0. However, 〈κ′2|P

sym
13 ⊗P sym24 |κ′2〉 = 〈κ′2|P

sym
14 ⊗

P sym23 |κ′2〉 = 1/4, because the vectors |κ′2〉 defined with respect to different splittings are mutu-
ally nonorthogonal. This means that the 4 dimensional projectionsQ+

12, Q
+
13, Q

+
14 are not orthog-

onal, however, there is a three-dimensional subspace ofQ+
12 (spanned by vectors |κj〉) orthogonal

to both Q+
13 and Q+

14.

E.3 P sym123 + P sym124

For the purposes of this paper it is of interest to analyze the relation of the supports of projections
P sym123 and P sym124 . The swap operator S34 can be written as a composition S34 = S24S23S24.
Consider a vector |ϕ〉 belonging to both subspaces, i.e. P sym123 ϕ = P sym124 |ϕ〉 = |ϕ〉. For
such vector S12|ϕ〉 = S13|ϕ〉 = S14|ϕ〉 = S23|ϕ〉 = S24|ϕ〉 = |ϕ〉 and therefore also
S34|ϕ〉 = S24S23S24|ϕ〉 = |ϕ〉, hence the state ϕ is symmetric also with respect to exchange
3↔ 4. Consequently, it is invariant under the swap of arbitrary subsystems, i.e. it belongs to the
completely symmetric subspace. Therefore, the greatest joint subspace of supports of P sym123 and
P sym124 corresponds to the projection P sym1234 .

Further we shall prove that the projectionsQ123 = P sym123 −P
sym
1234 andQ124 = P sym124 −P

sym
1234

are not mutually orthogonal and we shall specify the support of Q123 + Q124. It is relatively
stragihtforward to verify that the following unnormalized vectors

|ω1〉 = |ϕ+
00〉12|ϕ−01〉34 + |ϕ+

00〉13|ϕ−01〉24 + |ϕ+
00〉23|ϕ−01〉14 ,

|ω2〉 = |ϕ+
00 ⊗ ϕ

+
11〉 − |ϕ

+
11 ⊗ ϕ

+
00〉+ 2|ϕ+

01 ⊗ ϕ
−
01〉 ,

|ω3〉 = |ϕ+
11〉12|ϕ−01〉34 + |ϕ+

11〉13|ϕ−01〉24 + |ϕ+
11〉23|ϕ−01〉14 ,

form an orthogonal basis of the support of Q123. These vectors are orthogonal to vectors |ηj〉
forming the completely symmetric subspace. In fact, they are completely symmetric only with
respect to three indexes (123), but they not with respect to exchanges with the fourth qubit, hence,
P sym12 ⊗ P sym34 |ωj〉 is not proportional to |ωj〉. In the same way we can design a basis for each
Qjkl, in particular, for Q124

|ω′1〉 = −|ϕ+
00〉12|ϕ−01〉34 + |ϕ+

00〉14|ϕ−01〉23 + |ϕ+
00〉24|ϕ−01〉13 ,

|ω′2〉 = |ϕ+
00 ⊗ ϕ

+
11〉 − |ϕ

+
11 ⊗ ϕ

+
00〉 − 2|ϕ+

01 ⊗ ϕ
−
01〉 ,

|ω′3〉 = −|ϕ+
11〉12|ϕ−01〉34 + |ϕ+

11〉14|ϕ−01〉23 + |ϕ+
11〉24|ϕ−01〉13 .

Since 〈ωj |ω′k〉 = −2δjk the pair of unnormalized vectors |ωj〉, |ω′j〉 forms a two-dimensional
subspace orthogonal to remaining vectors. Equal superpositions |ω+

j 〉 = |ωj〉+ |ω′j〉 are already
symmetric in 3 ↔ 4 exchange, hence |ω+

j 〉 ∈ P sym12 ⊗ P sym34 . On the other hand, the vectors
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|ω−j 〉 = |ωj〉−|ω′j〉 are antisymmetric in 3↔ 4, hence |ω−j 〉 ∈ P
sym
12 ⊗P asym34 . It is easy to verify

that they are orthogonal, i.e. 〈ω+
j |ω

−
j 〉 = 0, because 〈ωj |ωj〉 = 〈ω′j |ω′j〉 = 6 and 〈ωj |ω′j〉 =

〈ω′j |ωj〉 = −2. Moreover, 〈ω+
j |ω

+
j 〉 = 8 and 〈ω−j |ω

−
j 〉 = 16. Since |ωj〉 = 1

2 (|ω+
j 〉 + |ω−j 〉),

|ω′j〉 = 1
2 (|ω+

j 〉 − |ω
−
j 〉) we have

Q123 +Q124 =
1
6

∑
j

(|ωj〉〈ωj |+ |ω′j〉〈ω′j |)

=
∑
j

1
12

(|ω+
j 〉〈ω

+
j |+ |ω

−
j 〉〈ω

−
j |)

=
∑
j

(
4
3

1
16
|ω−j 〉〈ω

−
j |+

2
3

1
8
|ω+
j 〉〈ω

+
j |
)
,

where 1
16 |ω

−
j 〉〈ω

−
j | and 1

8 |ω
+
j 〉〈ω

+
j | are one-dimensional projections, hence, we get the spectral

decomposition of Q123 + Q124 with eigenvalues 2/3, 4/3. For our purposes the relevant part is
associated with vectors |ω+

j 〉, because |ω−j 〉 are not from the support of P sym12 ⊗ P sym34 .
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