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Optimization is fundamental in many areas of science, from computer science and informa-
tion theory to engineering and statistical physics, as well as to biology or social sciences. It
typically involves a large number of variables and a cost function depending on these vari-
ables. Optimization problems in the non-deterministic polynomial (NP)-complete class are
particularly difficult, it is believed that the number of operations required to minimize the
cost function is in the most difficult cases exponential in the system size. However, even in
an NP-complete problem the practically arising instances might, in fact, be easy to solve. The
principal question we address in this article is: How to recognize if an NP-complete con-
straint satisfaction problem is typically hard and what are the main reasons for this? We adopt
approaches from the statistical physics of disordered systems, in particular the cavity method
developed originally to describe glassy systems. We describe new properties of the space of
solutions in two of the most studied constraint satisfaction problems - random satisfiability
and random graph coloring. We suggest a relation between the existence of the so-called
frozen variables and the algorithmic hardness of a problem. Based on these insights, we in-
troduce a new class of problems which we named ”locked” constraint satisfaction, where the
statistical description is easily solvable, but from the algorithmic point of view they are even
more challenging than the canonical satisfiability.
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Paris-Sud XI.

2E-mail address: lenka.zdeborova@gmail.com

169



170 Statistical physics of hard optimization problems

Contents

1 Hard optimization problems 173
1.1 Importance of optimization problems . . . . . . . . . . . . . . . . . . . . . . . . 173
1.2 Constraint Satisfaction Problems: Setting . . . . . . . . . . . . . . . . . . . . . 174

1.2.1 Definition, factor graph representation . . . . . . . . . . . . . . . . . . . 174
1.2.2 List of CSPs discussed in this article . . . . . . . . . . . . . . . . . . . . 174
1.2.3 Random factor graphs: definition and properties . . . . . . . . . . . . . . 176

1.3 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
1.3.1 The worst case complexity . . . . . . . . . . . . . . . . . . . . . . . . . 178
1.3.2 The average case hardness . . . . . . . . . . . . . . . . . . . . . . . . . 179

1.4 Statistical physics comes to the scene . . . . . . . . . . . . . . . . . . . . . . . 181
1.4.1 Glance on spin glasses . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
1.4.2 First encounter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

1.5 The replica symmetric solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
1.5.1 Statistical physics description . . . . . . . . . . . . . . . . . . . . . . . 183
1.5.2 The replica symmetric solution on a single graph . . . . . . . . . . . . . 184
1.5.3 Average over the graph ensemble . . . . . . . . . . . . . . . . . . . . . 186
1.5.4 Application for counting matchings . . . . . . . . . . . . . . . . . . . . 186

1.6 Clustering and Survey propagation . . . . . . . . . . . . . . . . . . . . . . . . . 188
1.7 Energetic 1RSB solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

1.7.1 Warning Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
1.7.2 Survey Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
1.7.3 Application to the exact cover (positive 1-in-3 SAT) . . . . . . . . . . . 194

1.8 Loose ends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
1.9 Summary of my contributions to the field . . . . . . . . . . . . . . . . . . . . . 196

2 Clustering 200
2.1 Definition of clustering and the 1RSB approach . . . . . . . . . . . . . . . . . . 200

2.1.1 Properties and equations on trees . . . . . . . . . . . . . . . . . . . . . . 202
2.1.2 Back to the sparse random graphs . . . . . . . . . . . . . . . . . . . . . 208
2.1.3 Compendium of the 1RSB cavity equations . . . . . . . . . . . . . . . . 210

2.2 Geometrical definitions of clusters . . . . . . . . . . . . . . . . . . . . . . . . . 212
2.3 Physical properties of the clustered phase . . . . . . . . . . . . . . . . . . . . . 214
2.4 Is the clustered phase algorithmically hard? . . . . . . . . . . . . . . . . . . . . 214

3 Condensation 217
3.1 Condensation in a toy model of random subcubes . . . . . . . . . . . . . . . . . 217
3.2 New in CSPs, well known in spin glasses . . . . . . . . . . . . . . . . . . . . . 218
3.3 Relative sizes of clusters in the condensed phase . . . . . . . . . . . . . . . . . . 220
3.4 Condensed phase in random CSPs . . . . . . . . . . . . . . . . . . . . . . . . . 222
3.5 Is the condensed phase algorithmically hard? . . . . . . . . . . . . . . . . . . . 223



CONTENTS 171

4 Freezing 225
4.1 Frozen variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

4.1.1 Whitening: A way to tell if solutions are frozen . . . . . . . . . . . . . . 225
4.1.2 Freezing on finite size instances . . . . . . . . . . . . . . . . . . . . . . 226
4.1.3 Freezing transition in 3-SAT - exhaustive enumeration . . . . . . . . . . 227

4.2 Cavity approach to frozen variables . . . . . . . . . . . . . . . . . . . . . . . . 229
4.2.1 Frozen variables in the entropic 1RSB equations . . . . . . . . . . . . . 229
4.2.2 The phase transitions: Rigidity and Freezing . . . . . . . . . . . . . . . 232

4.3 Point like clusters: The locked problems . . . . . . . . . . . . . . . . . . . . . . 234
4.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
4.3.2 The replica symmetric solution . . . . . . . . . . . . . . . . . . . . . . . 235
4.3.3 Small noise reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 237
4.3.4 Clustering transition in the locked problems . . . . . . . . . . . . . . . . 240

4.4 Freezing - The reason for hardness? . . . . . . . . . . . . . . . . . . . . . . . . 241
4.4.1 Always a trivial whitening core . . . . . . . . . . . . . . . . . . . . . . 241
4.4.2 Incremental algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
4.4.3 Freezing transition and the performance of SP in 3-SAT . . . . . . . . . 243
4.4.4 Locked problems – New extremely challenging CSPs . . . . . . . . . . . 244

5 Coloring random graphs 246
5.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
5.2 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
5.3 Large q limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

5.3.1 The 2q log q regime: colorability and condensation . . . . . . . . . . . . 252
5.3.2 The q log q regime: clustering and rigidity . . . . . . . . . . . . . . . . . 252

5.4 Finite temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

6 Conclusions and perspectives 256
6.1 Key results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
6.2 Some open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
6.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Appendices 259

A 1RSB cavity equations at m = 1 259

B Exact entropy for the balanced LOPs 263
B.1 The 1st moment for occupation models . . . . . . . . . . . . . . . . . . . . . . 263
B.2 The 2nd moment for occupation models . . . . . . . . . . . . . . . . . . . . . . 265
B.3 The results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

C Stability of the RS solution 268
C.1 Several equivalent methods for RS stability . . . . . . . . . . . . . . . . . . . . 268
C.2 Stability of the warning propagation . . . . . . . . . . . . . . . . . . . . . . . . 271



172 Statistical physics of hard optimization problems

D 1RSB stability 272
D.1 Stability of the energetic 1RSB solution . . . . . . . . . . . . . . . . . . . . . . 273
D.2 1RSB stability at general m and T . . . . . . . . . . . . . . . . . . . . . . . . . 275

E Populations dynamics 277
E.1 Population dynamics for belief propagation . . . . . . . . . . . . . . . . . . . . 277
E.2 Population dynamics to solve 1RSB at m = 1 . . . . . . . . . . . . . . . . . . . . 278
E.3 Population dynamics with reweighting . . . . . . . . . . . . . . . . . . . . . . . 279
E.4 Population dynamics with hard and soft fields . . . . . . . . . . . . . . . . . . . 281
E.5 The population of populations . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
E.6 How many populations needed? . . . . . . . . . . . . . . . . . . . . . . . . . . 282

F Algorithms 284
F.1 Decimation based solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

F.1.1 Unit Clause propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 284
F.1.2 Belief propagation based decimation . . . . . . . . . . . . . . . . . . . . 285
F.1.3 Maximal BP decimation on the random coloring . . . . . . . . . . . . . 286
F.1.4 Analysis of the uniform exact decimation . . . . . . . . . . . . . . . . . 286
F.1.5 The Failure of Decimation in the Locked problems . . . . . . . . . . . . 287
F.1.6 Survey propagation based decimation . . . . . . . . . . . . . . . . . . . 289

F.2 Search of improvement based solvers . . . . . . . . . . . . . . . . . . . . . . . 290
F.2.1 Simulated annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
F.2.2 Stochastic local search . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
F.2.3 Belief propagation reinforcement . . . . . . . . . . . . . . . . . . . . . 292

References 295



Hard optimization problems 173

1 Hard optimization problems

In this opening chapter we introduce the constraint satisfaction problems and discuss briefly
the computer science approach to the computational complexity. We review the studies of the
random satisfiability problem in the context of average computational complexity investigations.
We describe the connection between spin glasses and random constraint satisfaction problems
and highlight the most interesting results coming out from this analogy. We explain the replica
symmetric approach to these problems and show its usefulness on the example of counting of
matchings [ZM06]. Then we review the survey propagation approach to constraint satisfaction
on an example of 1-in-K satisfiability [RSZ07]. Finally we summarize the main contributions
of the author to the advances in the statistical physics of hard optimization problems, that are
elaborated in the rest of the article.

1.1 Importance of optimization problems

Optimization is a common concept in many areas of human activities. It typically involves a
large number of variables, e.g. particles, agents, cells or nodes, and a cost function depending on
these variables, such as energy, measure of risk or expenses. The problem consists in finding a
state of variables which minimizes the value of the cost function.

In this article we will concentrate on a subset of optimization problems the so-called con-
straint satisfaction problems (CSPs). Constraint satisfaction problems are one of the main build-
ing blocks of complex systems studied in computer science, information theory and statistical
physics. Their wide range of applicability arises from their very general nature: given a set of
N discrete variables subject to M constraints, the CSP consists in deciding whether there exists
an assignment of variables which satisfies simultaneously all the constraints. And if such an
assignment exists then we aim at finding it.

In computer science, CSPs are at the core of computational complexity studies: the satis-
fiability of boolean formulas is the canonical example of an intrinsically hard, NP-complete,
problem. In information theory, error correcting codes also rely on CSPs. The transmitted in-
formation is encoded into a codeword satisfying a set of constraints, so that the information may
be retrieved after transmission through a noisy channel, using the knowledge of the constraints
satisfied by the codeword. Many other practical problems in scheduling a collection of tasks, in
electronic design engineering or artificial intelligence are viewed as CSPs. In statistical physics
the interest in CSPs stems from their close relation with the theory of spin glasses. Answer-
ing if frustration is avoidable in a system is the first, and sometimes highly nontrivial, step in
understanding the low temperature behaviour.

A key point is to understand how difficult it is to solve practical instances of a constraint
satisfaction problem. Everyday experience confirms that sometimes it is very hard to find a
solution. Many CSPs require a combination of heuristics and combinatorial search methods to
be solved in a reasonable time. A key question we address in this article is thus why and when
are some instances of these problems intrinsically hard. Answering this question has, next to its
theoretical interest, several practical motivations

• Understanding where the hardness comes from helps to push the performance of CSPs
solvers to its limit.
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• Understanding which instances are hard helps to avoid them if the nature of the given
practical problem permits.

• Finding the very hard problem might be interesting for cryptographic application.

A pivotal step in this direction is the understanding of the onset of hardness in random constraint
satisfaction problems. In practice random constraint satisfaction problems are either regarded as
extremely hard as there is no obvious structure to be explored or as extremely simple as they
permit probabilistic description. Furthermore, random constraint satisfaction models are spin
glasses and we shall thus borrow methods from the statistical physics of disordered systems.

1.2 Constraint Satisfaction Problems: Setting

1.2.1 Definition, factor graph representation

Constraint Satisfaction Problem (CSP): Consider N variables s1 . . . , sN taking values from the
domain {0, . . . , q − 1}, and a set of M constraints. A constraint a concerns a set of ka different
variables which we call ∂a. Constraint a is a function from all possible assignments of the
variables ∂a to {0, 1}. If the constraint evaluates to 1 we say it is satisfied, and if it evaluates
to 0 we say it is violated. The constraint satisfaction problem consists in deciding whether there
exists an assignment of variables which satisfies simultaneously all the constraints. We call such
an assignment a solution of the CSP.

In physics, the variables represent q-state Potts spins (or Ising spins if q = 2). The constraints
represent very general (non-symmetric) interactions between ka-tuples of spins. In Boolean
constraint satisfaction problems (q = 2) a literal is a variable or its negation. A clause is then a
disjunction (logical OR) of literals.

A handy representation for a CSP is the so-called factor graph, see [KFL01] for a review.
Factor graph is a bipartite graph G(V, F,E) where V is the set of variables (variables nodes,
represented by circles) and F is the set of constraints (function nodes, represented by squares).
An edge (ia) ∈ E is present if the constraint a ∈ F involves the variable i ∈ V . A constraint a is
connected to ka variables, their set is denoted ∂a. A variable i is connected to li constraints, their
set is denoted ∂i. For clarity we specify the factor graph representation for the graph coloring
and exact cover problem in fig. 1.1, both defined in the following section 1.2.2.

1.2.2 List of CSPs discussed in this article

Here we define constraint satisfaction problems which will be discussed in the following. Most
of them are discussed in the classical reference book [GJ79]. The most studied constraint sat-
isfaction problems are defined over Boolean variables, q = 2, si ∈ {0, 1}. Sometimes we use
equivalently the notation with Ising spins si ∈ {−1,+1}. CSPs with Boolean variables that we
shall discuss in this article are:

• Satisfiability (SAT) problem: Constraints are clauses, that is logical disjunctions of lit-
erals (i.e., variables or their negations). Example of a satisfiable formula with 3 variables
and 4 clauses (constraints) and 10 literals: (x1 ∨ x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3) ∧
(x1 ∨ ¬x2 ∨ x3).
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Fig. 1.1. (Color online) Example of a factor graph representation for the coloring (left) and the exact cover
(right) problems. The function nodes (squares) in the graph coloring are satisfied if and only if their two
neighbours (circles) are in different states (take different colors). The function nodes (squares) in the exact
cover problem are satisfied if exactly one variable (circle) around them takes values 1 (full) and the others
0 (empty).

• K-SAT: Satisfiability problem where every clause involves K literals, ka = K for all
a = 1, . . . ,M .

• Not-All-Equal SAT: Constraints are satisfied everytime except when all the literals they
involve are TRUE or all of them are FALSE.

• Bicoloring: Constraints are satisfied except when all variables they involve are equal.
Bicoloring is Not-All-Equal SAT without negations.

• XOR-SAT: Constraints are logical XORs of literals.

• Odd (resp. Even) Parity Checks: A constraint is satisfied if the sum of variables it
involves is odd (resp. even). Odd parity checks are XORs without negations.

• 1-in-K SAT: Constraints are satisfied if exactly one of theK literals they involve is TRUE.

• Exact Cover, or positive 1-in-K SAT: Constraints are satisfied if exactly one of the K
variables they involve is 1 (occupied). Exact cover, or positive 1-in-K SAT, is 1-in-K SAT
without negations.

• Perfect matching: Nodes of the original graph become constraints, variables are on edges
and determine if the edge is or is not in the matching, see fig. 1.5. Constraints are satisfied
if exactly one of the K variables they involve is 1 (belongs to the matching). Note that
perfect matching is just a variant of the Exact Cover

• Occupation problems are defined by a binary (K + 1) component vector A. All con-
straints involve K variables, and are satisfied if the sum of variables they involve r =∑
∂a si is such that Ar = 1.
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• Locked Occupation Problems (LOPs): If the vector A is such that AiAi+1 = 0 for all
i = 0, . . . ,K − 1, and all the variables are present in at least two constraints.

We will also consider in a great detail one CSP with q-ary variables: The graph coloring
with q colors: Every constraint involves two variables and is satisfied if the two variables are not
assigned the same value (color). In physics the q-ary variables are called Potts spins.

1.2.3 Random factor graphs: definition and properties

Given a constraint satisfaction problem with N variables and M constraints, the constraint den-
sity is defined as α = M/N . Denote by R(k) the probability distribution of the degree of
constraints (number of neighbours in the factor graph), and by Q(l) the probability distribution
of the degree of variables. The average connectivity (degree) of constraints is

K = k =
∞∑
k=0

kR(k) . (1.1)

The average connectivity of variables is

c = l =
∞∑
l=0

lQ(l) . (1.2)

The constraint density is then asymptotically

α =
M

N
=
l

k
=

c

K
. (1.3)

A random factor graph with a given N and M is then created as follows: Draw a se-
quence {l1, . . . , lN} of N numbers from the distribution Q(l). Subsequently, draw a sequence
{k1, . . . , kM} of M numbers from the distribution R(k), such that

∑M
a=1 ki =

∑N
i=1 li. The

random factor graph is drawn uniformly at random from all the factor graphs with N variables,
M constraints and degree sequences {l1, . . . , lN} and {k1, . . . , kM}.

Another definition leading to a Poissonian degree distribution is used often if the degree of
constraints is fixed to K and the number of variables is fixed to N . There are

(
N
K

)
possible

positions for a constraint. Each of these positions is taken with probability

p =
cN

K
(
N
K

) . (1.4)

The number of constraints is then a Poissonian random variable with average M = cN/K. The
degree of variables is distributed according to a Poissonian law with average c

Q(l) = e−c
cl

l!
. (1.5)

If K = 2 these are the random Erdős-Rényi graphs [ER59]. This definition works also if con-
straints are changed for variables, that is if the degree of variables and the number of constraints
are fixed, as in e.g. the matching problem.
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The random factor graphs are called regular if both the degrees of constraints and variables
are fixed, R(k) = δ(k −K) and Q(l) = δ(l − L). In section 4.3 we will also use the truncated
Poissonian degree distribution

l ≤ 1 : Q(l) = 0 , (1.6a)

l ≥ 2 : Q(l) =
1

ec − (c+ 1)
cl

l!
. (1.6b)

The average connectivity for the truncated Poissonian distribution is then

l = c
ec − 1

ec − (c+ 1)
. (1.7)

In the cavity approach, the so-called excess degree distribution is a crucial quantity. It is
defined as follows: Choose an edge (ij) at random and consider the probability distribution of
the number of neighbours of i except j. The variables (analogously for constraints) excess degree
distribution thus reads

q(l) =
(l + 1)Q(l + 1)

l
, r(k) =

(k + 1)R(k + 1)
k

. (1.8)

We will always deal with factor graphs where K and c are of order one, and N →∞,M →
∞. These are called sparse random factor graphs. Concerning the physical properties of sparse
random factor graphs the two definitions of a random graph with Poissonian degree distribution
are equivalent. Some properties (e.g. the annealed averages) can however depend on the details
of the definition.

The tree-like property of sparse random factor graphs — Consider a random variable i in
the factor graph. We want to estimate the average length of the shortest cycle going through
variable i. Consider a diffusion algorithm spreading into all direction but the one it came from.
The probability that this diffusion will arrive back to i in d steps reads

1−
(

1− 1
N

)Pd
j=1(γlγk)j

, (1.9)

where γl = l2/l − 1 and γk = k2/k − 1 are the mean values of the excess degree distribution
(1.8). The probability (1.9) is almost surely zero if

d� logN
log γlγk

. (1.10)

An important property follows: As long as the degree distributions R(k) and Q(l) have a finite
variance the sparse random factor graphs are locally trees up to a distance scaling as logN (1.10).
We define this as the tree-like property.

In this article we consider only degree distributions with a finite variance. A generalization to
other cases (e.g. the scale-free networks with long-tail degree distributions) is not straightforward
and many of the results which are asymptotically exact on the tree-like structures would be in
general only approximative. We observed, see e.g. fig. 2.2, that many of the nontrivial properties
predicted asymptotically on the tree-like graphs seems to be reasonably precise even on graphs
with about N = 102 − 104 variables. It means that the asymptotic behaviour sets in rather early
and does not, in fact, require logN � 1.
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1.3 Computational complexity

1.3.1 The worst case complexity

Theoretical computer scientists developed the computational complexity theory in order to quan-
tify how hard problems can be in the worst possible case. The most important and discussed
complexity classes are the P, NP and NP-complete.

A problem is in the P (polynomial) class if there is an algorithm which is able to solve the
problem for any input instance of length N in at most cNk steps, where k and c are constants
independent of the input instance. The formal definitions of what is a ”problem”, its ”input
instance” and an ”algorithm” was formalized in the theory of Turing machines [Pap94], where
the definition would be: The complexity class P is the set of decision problems that can be solved
by a deterministic Turing machine in polynomial time. A simple example of polynomial problem
is sorting a list of N real numbers.

A problem is in the NP class if its instance can be stored in memory of polynomial size and
if the correctness of a proposed result can be checked in polynomial time. Formally, the com-
plexity class NP is the set of decision problems that can be solved by a non-deterministic Turing
machine in polynomial time [Pap94], NP stands for non-deterministic polynomial. Whereas
the deterministic Turing machine is basically any of our today computers, the non-deterministic
Turing machine can perform unlimited number of parallel computations. Thus, if for finite N
there is a finite number of possible solutions all of them can be checked simultaneously. This
class contains many problems that we would like to be able to solve efficiently, including the
Boolean satisfiability problem, the traveling salesman problem or the graph coloring. Problems
which do not belong to the NP class are for example counting the number of solutions in Boolean
satisfiability, or the random energy model [Der80, Der81].

All the polynomial problems are in the NP class. It is not known if all the NP problems
are polynomial, and it is considered by many to be the most challenging problem in theoretical
computer science. It is also one of the seven, and one of the six still open, Millennium Prize
Problems that were stated by the Clay Mathematics Institute in 2000 (a correct solution to each
of these problems results in a $1,000,000 prize for the author). A majority of computer scientists,
however, believes that the negative answer is the correct one [Gas02].

The concept of NP-complete problems was introduced by Cook in 1971 [Coo71]. All the NP
problems can be polynomially reduced to any NP-complete problem, thus if any NP-complete
problem would be polynomial then P=NP. Cook proved [Coo71] that the Boolean satisfiabil-
ity problem is NP-complete. Karp soon after added 21 new NP-complete problems to the
list [Kar72]. Since then thousands of other problems have been shown to be NP-complete by
reductions from other problems previously shown to be NP-complete; many of these are col-
lected in the Garey and Johnson’s ”Guide to NP-Completeness” [GJ79].

Schaefer in 1978 proved a dichotomy theorem for Boolean (q = 2) constraint satisfaction
problems. He showed that if the constraint satisfaction problem has one of the following four
properties then it is polynomial, otherwise it is NP-complete. (1) All constraints are such that
si = 1 for all i is a solution or si = 0 for all i is a solution. (2) All constraints concern at
most two variables (e.g. in 2-SAT). (3) All constraints are linear equations modulo two (e.g. in
XOR-SAT). (4) All constraints are the so-called Horn clauses or all of them are the so-called
dual Horn clauses. A Horn clause is a disjunction of variables such that at most one variable is
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not negated. A dual Horn clause is when at most one variable is negated. A similar dichotomy
theorem exists for 3-state variables, q = 3, [Bul02]. Generalization for q > 3 is not known.

1.3.2 The average case hardness

Given the present knowledge, it is often said that all the polynomial problems are easy and all the
NP-complete problems are very hard. But, independently if P=NP or not, even polynomial prob-
lems might be practically very difficult, and some (or even most) instances of the NP-complete
problems might be practically very easy.

An example of a still difficult polynomial problem is the primality testing, a first polynomial
algorithm was discovered by [AKS04]. But a ”proof” of remaining difficulty is the EFF prize
[EFF] of $100,000 to the first individual or group who discovers the first prime number with at
least 10,000,000 decimal digits.

And how hard are the NP-complete problems? One way to answer is that under restrictions
on the structure an NP-complete problem might become polynomial. Maybe the most famous
example is 4-coloring of maps (planar factor graphs) which is polynomial. Moreover, it was a
long standing conjecture that every map is colorable with 4 colors, proven by Appel and Haken
[AH77b, AH77a]. Interestingly enough 3-coloring of maps is NP-complete [GJ79].

But there are also settings under which the problem stays NP-complete and yet almost ev-
ery instance can be solved in polynomial time. A historically important example is the Boolean
satisfiability where each clause is generated by selecting literals with some fixed probability.
Goldberg introduced this random ensemble and showed that the average running time of the
Davis-Putnam algorithm [DP60, DLL62] is polynomial for almost all choices of parameter set-
tings [Gol79, GPB82]. Thus in the eighties some computer scientist tended to think that all the
NP-complete problems are in fact on average easy and it is hard to find the evil instances which
makes them NP-complete.

The breakthrough came at the beginning of the nineties when Cheeseman, Kanefsky and
Taylor asked ”Where the really hard problems are?” in their paper of the same name [CKT91].
Shortly after Mitchell, Selman and Levesque came up with a similar work [MSL92]. Both groups
simply took a different random ensemble of the satisfiability (in the second case) and coloring
(in the first case) instances: the length of clauses is fixed to be K and they are drawn randomly
as described in sec. 1.2.3. They observed that when the density of clauses α = M/N is small the
existence of a solution is very likely and if α is large the existence of a solution is very unlikely.
And the really hard instances were located nearby the critical value originally estimated to be
αs ≈ 4.25 in the 3-SAT [MSL92]. The hardness was judged from the median running time of
the Davis-Putnam-Logemann-Loveland (DPLL) backtracking-based algorithm [DP60, DLL62],
see fig. 1.2. This whipped away the thoughts that NP-complete problems might in fact be easy
on average. Many other studies and observations followed. The hard instances of random K-
satisfiability became very fast important benchmarks for the best algorithms. Moreover, there
are some indications that critically constrained instances might appear in real-world applications.
One may imagine that in a real world situation the amount of constraints is given by the nature of
the problem, and variables usually correspond to something costly, thus the competitive designs
contain the smallest possible number of variables.

Given a randomK-SAT formula ofN variables the probability that it is satisfiable, plotted in
fig. 1.3 for 3-SAT, becomes more and more like a step-function as the size N grows. An analogy
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Fig. 1.2. (Color online) The easy-hard-easy pattern in the random 3-SAT formulas as the constraint density
is changed. Full lines are probabilities that a formula is satisfiable. Dashed lines is the medium running
time of the DPLL algorithm. This figure is courtesy of Riccardo Zecchina.
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Fig. 1.3. (Color online) Probability that a random 3-SAT formula is satisfiable as a function of the constraint
density. In the inset on the left figure is the position of the crossing point between curves corresponding to
different sizes as a function of 1/N . It seems to extrapolate to the analytical value αs = 4.267 [MZ02,
MMZ06]. This figure should be put in contrast with fig. 4.1 where the same plot is presented for the freezing
transition with a much smaller size of the inset.

with phase transitions in physics cannot be overlooked. The existence and sharpness of the
threshold were partially proved [Fri99]. The best known probabilistic bounds of the threshold
value in 3-SAT are 3.520 for the lower bound [KKL03, HS03] and 4.506 for the upper bound
[DBM00]. Numerical estimates of the asymptotic value of the threshold are αs ≈ 4.17 [KS94],
αs ≈ 4.258 [CA96], αs ≈ 4.27 [MZK+99b, MZK+99a]. The finite size scaling of the curves



Hard optimization problems 181

in fig. 1.3 is quite involved as the crossing point is moving. That is why the early numerical
estimates of the threshold were very inaccurate. The work of Wilson [Wil02], moreover, showed
that the experimental sizes are too small and the asymptotic regime for the critical exponent is not
reached in any of the current empirical works. The study of XOR-SAT indeed shows a crossover
in the critical exponent at sizes which are not accessible for K-SAT [LRTZ01].

The studies of random K-SAT opened up the exciting possibility to connect the hardness
with an algorithm-independent property, like the satisfiability phase transition. But what exactly
makes the instances near to the threshold hard remained an open question.

1.4 Statistical physics comes to the scene

1.4.1 Glance on spin glasses

Spin glass is one of the most interesting puzzles in statistical physics. An example of a spin glass
material is a piece of gold with a small fraction of iron impurities. Physicist, on contrary to the
rest of the human population, are interested in the behaviour of these iron impurities and not in
the piece of gold itself. A new type of a phase transition was observed from the high temperature
paramagnetic phase to the low temperature spin glass phase, where the magnetization of each
impurity is frozen to a non-zero value, but there is no long range ordering. More than 30 years
ago Edwards and Anderson [EA75] introduced a lattice model for such magnetic disordered
alloys

H = −
∑
(ij)

JijSiSj − h
∑
i

Si , (1.11)

where Si ∈ {−1,+1} are Ising spins on a 3-dimensional lattice, the sum runs over all the nearest
neighbours, h is the external magnetic field and the interaction Jij is random (usually Gaussian
or randomly ±J). The solution of the Edwards-Anderson model stays a largely open problem
even today.

The mean field version of the Edwards-Anderson model was introduced by Sherrington and
Kirkpatrick [SK75], the sum in the Hamiltonian (1.11) then runs over all pairs (ij) as if the under-
lying lattice would be fully connected. Sherrington and Kirkpatrick called their paper ”Solvable
Model of a Spin-Glass”. They were indeed right, but the correct solution came only five years
later by Parisi [Par80c,Par80b,Par80a]. Parisi’s replica symmetry breaking (RSB) solution of the
Sherrington-Kirkpatrick model gave rise to a whole new theory of the spin glass phase and of the
ideal glass transition in structural glasses. The exactness of the Parisi’s solution was, however,
in doubt till 2000 when Talagrand provided its rigorous proof [Tal06]. The relevance of the RSB
picture for the original Edwards-Anderson model is widely discussed but still unknown.

A different mean field version of the Edwards-Anderson model was introduced by Viana and
Bray [VB85], the lattice underlying the Hamiltonian (1.11) is then a random graph of fixed aver-
age connectivity. The complete solution of the Viana-Bray model is also still an open problem.

1.4.2 First encounter

The Viana-Bray model of spin glasses can also be viewed as random graph bi-partitioning (or
bi-coloring at a finite temperature). The peculiarity of the spin glass phase will surely have
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some interesting consequences for the optimization problem itself. Indeed, the close connection
between optimization problems and spin glass systems brought forward a whole collection of
theoretical tools to analyze the structural properties of the optimization problems.

All started in 1985 when Mézard and Parisi realized that the replica theory can be used to
solve the bipartite weighted matching problem [MP85]. Let us quote from the introduction of this
work: ”This being a kind of pioneering paper, we have decided to present the method {meaning
the replica method} on a rather simple problem (a polynomial one) the weighted matching. In
this problem one is given 2N points i = 1, . . . , 2N , with a matrix of distance lij , and one looks
for a matching between the points (a set ofN links between two points such that at each point one
and only one link arrives) of a minimal length.” Using the replica symmetric (RS) approach they
computed the average minimal length, when the elements of the matrix lij are random identically
distributed independent variables.

Shortly after Fu and Anderson [FA86] used the replica method to treat the graph bi-partitioning
problem. They were the first to suggest that, possibly, the existence of a phase transition in the
average behaviour will affect the actual implementation and performance of local optimization
techniques, and that this may also play an important role in the complexity theory. Only later,
such a behaviour was indeed discovered empirically by computer scientists [CKT91, MSL92].

The replica method also served to compute the average minimal cost in the random traveling
salesmen problem [MP86a, MP86b]. Partitioning a dense random graph into more than two
groups and the coloring problem of dense random graphs were discussed in [KS87]. Later some
of the early results were confirmed rigorously, mainly those concerning the matching problem
[Ald01, LW04]. All these early solved models are formulated on dense or even fully connected
graph. Thus the replica method and where needed the replica symmetry breaking could be used
in its original form. Another example of a ”fully connected” optimization problem which was
solved with a statistical physics approach is the number partitioning problem [Mer98, Mer00].

And what about our customary random K-satisfiability, which is defined on a sparse graph?
Monasson and Zecchina worked out the replica symmetric solution in [MZ96, MZ97]. It was
immediately obvious that this solution is not exact as it largely overestimates the satisfiability
threshold, the replica symmetry has to be broken in random K-SAT.

An interesting observation was made in [MZK+99b]: They defined the backbone of a for-
mula as the set of variables which take the same value in all the ground-state configurations 1.
No extensive backbone can exist in the satisfiable phase in the limit of large N . If it would, then
adding an infinitesimal fraction of constraints would almost surely cause a contradiction. At the
satisfiability threshold an extensive backbone may appear. The authors of [MZK+99b] suggested
that the problem is computationally hard if the backbone appears discontinuously and easy if it
appears continuously. They supported this by replica symmetric solution of the SAT problem
with mixed 2-clauses and 3-clauses, the so-called 2 +p-SAT. Even if the replica symmetric solu-
tion is not correct in random K-SAT and even if it overlooks many other important phenomena
the concept of backbone is fruitful and we will discuss its generalization in chapter 4.

How to deal with the replica symmetry breaking on a sparse tree-like graph was an open
question since 1985, when Viana and Bray [VB85] introduced their model. The solution came
only in 2000 when Mézard and Parisi published their paper ”Bethe lattice spin glass revisited”

1In CSPs with a discrete symmetry, e.g. graph coloring, this symmetry has to be taken into account in the definition
of the backbone.
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[MP01]. They showed how to treat correctly and without approximations the first step of replica
symmetry breaking (1RSB) and described how, in the same way, one can in principal deal with
more steps of replica symmetry breaking, this extension is however numerically very difficult.
But before explaining the 1RSB method we describe the general replica symmetric solutions.
And illustrate its usefulness on the problem of counting matchings in graphs [ZM06]. Only then
we describe the main results of the 1RSB solution and illustrate the method in the 1-in-K SAT
problem [RSZ07]. After we list several ”loose ends” which appeared in this approach. Finally we
summarize the main contribution of this article. This will be the departure point for the following
part of this article which contains most of the original results.

1.5 The replica symmetric solution

The replica symmetric (RS) solution on a locally tree-like graph consists of two steps:

(1) Compute the partition sum and all the other quantities of interest as if the graph would be
a tree.

(2) The replica symmetric assumption: Assume that the correlations induced by long loops
decay fast enough, such that this tree solution is also correct on the only locally tree-like
graph.

Equivalent names used in literature for the replica symmetric solution are Bethe-Peierls approxi-
mation (in particular in the earlier physics references) or belief propagation (in computer science
or when using the iterative equation as an algorithm to estimate the marginal probabilities - mag-
netizations in physics). Both these conveniently abbreviate to BP.

1.5.1 Statistical physics description

Let φa(∂a) be the evaluating function for the constraint a depending on the variables neigh-
bourhooding with a in the factor graph G(V, F,E). A satisfied constraint has φa(∂a) = 1 and
violated constraint φa(∂a) = 0. The Hamiltonian can then be written as

HG({s}) =
M∑
a=1

[
1− φa(∂a)

]
. (1.12)

The energy cost is thus one for every violated constraint. The corresponding Boltzmann measure
on configurations is:

µG({s}, β) =
1

ZG(β)
e−βHG({s}) , (1.13)

where β is the inverse temperature and ZG(β) is the partition function. The marginals (magneti-
zations) χisi are defined as the probabilities that the variable i takes value si

χisi =
1

ZG(β)

∑
{sj},j=1,...,i−1,i+1,...,N

e−βHG({sj},si) . (1.14)
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Fig. 1.4. Parts of the factor graph used to compute ψa→isi and χj→asj .

The goal is to compute the internal energy EG(β) and the entropy SG(β). For β →∞ (zero
temperature limit) these two quantities give the ground state properties. We are interested in
the ”thermodynamic” limit of large graphs (N → ∞), and we shall compute expectations over
ensembles of graphs of the densities of thermodynamical potentials ε(β) = E[EG(β)]/N and
s(β) = E[SG(β)]/N , as well as the average free energy density

f(β) =
−1
βN

E[logZG(β)] =
1
N

E[FG(β)] = ε(β)− 1
β
s(β) . (1.15)

The reason for this interest is that, for reasonable graph ensembles, FG(β) is self-averaging. This
means that the distribution of FG(β)/N becomes more and more sharply peaked around f(β)
when N increases.

1.5.2 The replica symmetric solution on a single graph

First suppose that the underlying factor graph is a tree, part of this tree is depicted in fig. 1.4. We
define messages ψa→isi as the probability that node i takes value si on a modified graph where
all constraints around i apart a were deleted, and χj→asj as the probability that variable j takes
value sj on a modified graph obtained by deleting constraint a. On a tree these messages can be
computed recursively as

ψa→isi =
1

Za→i

∑
{sj},j∈∂a−i

φa({sj}, si, β)
∏

j∈∂a−i

χj→asj ≡ Fψ({χj→a}) , (1.16a)

χj→asj =
1

Zj→a

∏
b∈∂j−a

ψb→jsj ≡ Fχ({ψb→j}) , (1.16b)

where Za→i and Zj→a are normalization constants, the factor φa({s}, β) = 1 if the constraint a
is satisfied by the configuration {s} and φa({s}, β) = e−β if not. We denote by ψa→i the whole
vector (ψa→i0 , . . . , ψa→iq−1 ) and analogically χj→a = (χk→a0 , . . . , χj→aq−1 ). This is one form of
the belief propagation (BP) equations [KFL01,Pea82], sometimes called sum-product equations.
The probabilitiesψ, χ are interpreted as messages (beliefs) living on the edges of the factor graph,
with the consistency rules (1.16a) and (1.16b) on the function and variable nodes. Equations
(1.16) are usually solved by iteration, the name message passing is used in this context. In the
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following it will be simpler not to consider the ”two-levels” equations (1.16) but

ψa→isi =
1

Zj→i

∑
{sj},j∈∂a−i

φa({sj}, si, β)
∏

j∈∂a−i

∏
b∈∂j−a

ψb→jsj ≡ F({ψb→j}) , (1.17)

where Zj→i = Za→i
∏
j∈∂a−i Z

j→a. Notice that on simple graphs, i.e., when either li = 2 for
all i = 1, . . . , N or ka = 2 for all a = 1, . . . ,M , the form (1.17) simplifies further. And on
constraint satisfaction problems on simple graphs (e.g. the matching or coloring problems) the
”two-levels” equations are almost never used.

Assuming that one has found the fixed point of the belief propagation equations (1.16a-
1.16b), one can deduce the various marginal probabilities and the free energy, entropy etc. The
marginal probability (1.14) of variable i estimated by the BP equations is

χisi =
1
Zi

∏
a∈∂i

ψa→isi . (1.18)

To compute the free energy we first define the free energy shift ∆F a+∂a after addition of a
function node a and all the variables i around it, and the free energy shift ∆F i after addition of
a variable i. These are given in general by:

e−β∆Fa+∂a = Za+∂a =
∑

{si},i∈∂a

φa({si}, β)
∏
i∈∂a

∏
b∈∂i−a

ψb→isi , (1.19a)

e−β∆F i = Zi =
∑
si

∏
a∈∂i

ψa→isi . (1.19b)

The total free energy is then obtained by summing over all constraints and subtracting the terms
counted twice [MP01, YFW03]:

FG(β) =
∑
a

∆Fa+∂a −
∑
i

(li − 1)∆Fi . (1.20)

This form of the free energy is variational, i.e., the derivatives ∂(βFG(β))
∂χi→a and ∂(βFG(β))

∂ψa→i vanish if
and only if the probabilities χi→a and ψa→i satisfy (1.16a-1.16b). This allows to compute easily
the internal energy as

EG(β) =
∂βFG(β)

∂β
= −

∑
a

∂βZ
a+∂a

Za+∂a
. (1.21)

The entropy is then obtained as

SG(β) = β[EG(β)− FG(β)] . (1.22)

All the equations (1.16)-(1.22) are exact if the graph G is a tree. The replica symmetric ap-
proach consists in assuming that all correlations decay fast enough that application of eqs. (1.16)-
(1.22) on a large tree-like graph G gives asymptotically exact results. These equations can be
used either on a given graphG or to compute the average over the graph (and disorder) ensemble.
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1.5.3 Average over the graph ensemble

We now study the typical instances in an ensemble of graphs. We denote the average over the
ensemble by E(·). We assume that the random factor-graph ensemble is given by a prescribed
degree distribution Q(l) for variables and R(k) for constraints. Let us call P(ψ) and O(χ) the
distributions of messages ψ and χ over all the edges of a large typical factor graph from the
ensemble. They satisfy the following self-consistent equations

P(ψ) =
∞∑
l=1

q(l)
∫ l∏

i=1

[
dχiO(χi)

]
δ
[
ψ −Fψ({χi})

]
, (1.23a)

O(χ) =
∞∑
k=1

r(k)
∫ k∏

i=1

[
dψiP(ψi)

]
δ
[
χ−Fχ({ψi})

]
, (1.23b)

where the functions Fψ and Fχ represent the BP equations (1.16a-1.16b), q(l) and r(k) are the
excess degree distributions defined in (1.8). If there is a disorder in the interaction terms, as e.g.
the negations in K-SAT, we average over it at the same place as over the fluctuating degree.

Solving equations (1.23a-1.23b) to obtain the distributions P and O is not straightforward.
In some cases (on regular factor graphs, at zero temperature, etc.) it can be argued that the distri-
butions P , O are sums of Dirac delta functions. Then the solution of eqs. (1.23a-1.23b) can be
obtained analytically. But in general distributional equations of this type are not solvable analyt-
ically. However, a numerical technique called population dynamics [MP01] is very efficient for
their resolution. In appendix E we give a pseudo-code describing how the population dynamics
technique works.

Once the distributions P and O are known the average of the free energy density can be
computed by averaging (1.20) over P . This average expression for the free energy is again in
its variational form (see [MP01]), i.e., the functional derivative δf(β)

δP(h) vanishes if and only if P
satisfies (1.32). The average energy and entropy density are thus expressed again via the partial
derivatives.

Factorized solution — As we mentioned, on the ensemble of random regular factor graphs
(without disorder in the interactions) the solution of equations (1.23) is very simple: P(ψ) =
δ(ψ−ψreg),Q(χ) = δ(χ−χreg), where ψreg and χreg is a self-consistent solution of (1.16). This
is because in the thermodynamical limit an infinite neighbourhood of every variable is exactly
identical thus also the marginal probabilities have to be identical in every physical solution.

1.5.4 Application for counting matchings

To demonstrate how the replica symmetric method works to compute the entropy, that is the
logarithm of the number of solutions, we review the results for matching on sparse random
graphs [ZM06]. The reasoning why the replica symmetric solution is exact for the matching
problem is done on the level of self-consistency checks in [ZM06]. And [BN06] have worked
out a rigorous proof for graphs with bounded degree and a large girth (length of the smallest
loop).

Consider a graph G(V,E) with N vertices (N = |V |) and a set of edges E. A matching
(dimerization) of G is a subset of edges M ⊆ E such that each vertex is incident with at most
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Fig. 1.5. On the left, example of a graph with six nodes and six edges. On the right, the corresponding
factor graph with six function nodes (squares) and six variable nodes (circles).

one edge in M . In other words the edges in the matching M do not touch each other. The size of
the matching, |M |, is the number of edges inM . Our goal is to compute the entropy of matchings
of a given size on a typical large Erdős-Rényi random graph.

We describe a matching by the variables si = s(ab) ∈ {0, 1} assigned to each edge i = (ab)
of G, with si = 1 if i ∈ M and si = 0 otherwise. The constraints that two edges in a matching
cannot touch impose that, on each vertex a ∈ V :

∑
b,(ab)∈E s(ab) ≤ 1. To complete our statistical

physics description, we define for each given graph G an energy (or cost) function which gives,
for each matching M = {s}, the number of unmatched vertices:

HG(M = {s}) =
∑
a

Ea({s}) = N − 2|M | , (1.24)

where Ea = 1−
∑
∂b s(ab).

In the factor graph representation we transform the graph G into a factor graph F (G) as
follows (see fig. 1.5): To each edge of G corresponds a variable node (circle) in F (G); to each
vertex of G corresponds a function node (square) in F (G). We shall index the variable nodes
by indices i, j, k, . . . and function nodes by a, b, c, . . . . The variable i takes value si = 1 if the
corresponding edge is in the matching, and si = 0 if it is not. The weight of a function node a is

φa({∂a}, β) = I

(∑
i∈∂a

si ≤ 1

)
e−β(1−

P
i∈∂a si) , (1.25)

where ∂a is the set of all the variable nodes which are neighbours of the function node a, and the
total Boltzmann weight of a configuration is 1

ZG(β)

∏
a φa({∂a}, β).

The belief propagation equation (1.16) becomes

χi→asi =
1

Zb→a

∑
{sj}

I

si +
∑

j∈∂b−i

sj ≤ 1

 e−β(1−si−
P
sj)

∏
j∈∂b−i

χj→bsj , (1.26)

where Zb→a is a normalization constant. In statistical physics the more common form of the BP
equations uses analog of local magnetic fields instead of probabilities. For every edge between a
variable i and a function node a, we define a cavity field hi→a as

e−βh
i→a
≡ χi→a0

χi→a1

. (1.27)
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The recursion relation between cavity fields is then:

hi→a = − 1
β

log

e−β +
∑

j∈∂b−i

eβh
j→b

. (1.28)

The expectation value (with respect to the Boltzmann distribution) of the occupation number si
of a given edge i = (ab) is equal to

〈si〉 =
1

1 + e−β(hi→a+hi→b)
. (1.29)

The free energy shifts needed to compute the total free energy (1.20) are

e−β∆Fa+i∈∂a = e−β +
∑
i∈a

eβh
i→a

, (1.30a)

e−β∆Fi = 1 + eβ(hi→a+hi→b) . (1.30b)

The energy, related to the size of the matching via (1.24), is then

EG(β) =
∑
a

1
1 +

∑
i∈∂a e

β(1+hi→a)
. (1.31)

This is the sum of the probabilities that node a is not matched.
The distributional equation (1.23) becomes

O(h) =
∞∑
k=1

r(k)
∫ k∏

i=1

[
dhiO(hi)

]
δ

[
h+

1
β

log

(
e−β +

∑
i

eβh
i

)]
. (1.32)

And the average free energy is explicitly

f(β) =
E[FG(β)]

N
= − 1

β

∞∑
k=0

R(k)
∫ k∏

i=1

[
dhiO(hi)

]
log

(
e−β +

∑
i

eβh
i

)

+
c

2β

∫
dh1 dh2O(h1)O(h2) log

(
1 + eβ(h1+h2)

)
. (1.33)

WhereR(k) is the connectivity distribution of the function nodes, that is the connectivity distri-
bution of the original graph, c is the average connectivity. The distributional equations are solved
via the population dynamics method, see appendix E. Figure 1.6 then presents the resulting av-
erage entropy as a function of size of the matching.

1.6 Clustering and Survey propagation

As we said previously in the random K-SAT the replica symmetric solution is not generically
correct. Mézard and Parisi [MP01] understood how to deal properly and without approximations
with the replica symmetry breaking on random sparse graphs, that is how to take into account
the correlations induced by long loops. More precisely in their approach only the one-step (at
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Fig. 1.6. (Color online) Entropy density s(m) as a function of relative size of the matchingm = |M |/N for
Erdős-Rényi random graphs with mean degrees c = 1, 2, 3, 6. The lower curve is the ground state entropy
density for all mean degrees. The curves are obtained by solving eqs. (1.32)-(1.33) with a population
dynamics, using a population of sizes N = 2 · 104 to 2 · 105 and the number of iterations T = 10000.

most two-step on the regular graphs) replica symmetry breaking solution is numerically feasible.
Anyhow, such a progress opened the door to a better understanding of the optimization problems
on sparse graphs. The K-satisfiability played again the prominent role.

To compute the ground state energy within the 1RSB approach we can restrict only to ener-
getic considerations as described in [MP03], we call this approach the energetic zero tempera-
ture limit. Applying this method to K-satisfiability leads to several outstanding results [MPZ02,
MZ02], we describe the three most remarkable ones. Soon after, analog results were obtained for
many other optimization problems, for example graph coloring [MPWZ02, BMP+03, KPW04],
vertex cover [Zho03], bicoloring of hyper-graphs [CNRTZ03], XOR-SAT [FLRTZ01,MRTZ03]
or lattice glass models [BM02, RBMM04].

Clustering — It was known already in the ”pre-1RSB-cavity era” that replica symmetry bro-
ken solution is needed to solve random K-SAT. Such a need is interpreted as the existence of
many metastable well-separated states, in the case of highly degenerate ground state this leads to
a clustering of solutions in the satisfiable phase [BMW00, MPZ02, MZ02]. The energetic 1RSB
cavity method deals with clusters containing frozen variables (clusters with backbones), that is
variables which have the same value in all the solutions in the cluster. It predicts how many of
such clusters exist at a given energy, the logarithm of this number divided by the system size
N defines the complexity function Σ(E). According to the energetic cavity method for 3-SAT,
clusters exist, Σ(0) 6= 0, for constraint density α > αSP = 3.92 [MPZ02, MZ02].

It was conjectured [MPZ02, MZ02] that there is a link between clustering, ergodicity break-
ing, existence of many metastable states and the difficulty of finding a ground state via local al-
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gorithms. The critical value αSP was called the dynamical transition and the region of α > αSP

the hard-SAT phase.
Clusters were viewed as a kind of pure states, however, in the view of many a good formal

definition was missing. It was also often referred to some sort of geometrical separation between
different clusters. A particularly popular one is the following: Clusters are connected compo-
nents in the graph where solutions are the nodes and two solutions are adjacent if they differ in
only d variables. Depending on the model and author the value of d is either one of d is a finite
number of d is said to be any sub-extensive number. The notion of x-satisfiability, the existence
of pairs of solutions at a distance x, leads to a rigorous proof of existence of exponentially many
geometrically separated clusters [MMZ05, DMMZ08, ART06].

The satisfiability threshold computed — The energetic 1RSB cavity method allows to com-
pute the ground state energy and thus also the satisfiability threshold αs. In 3-SAT its value is
αs = 4.2667 [MPZ02, MZ02, MMZ06]. This value is computed as a solution of a closed distri-
butional equation. This time there is an excellent agreement with the empirical estimations. Is
the one step of replica symmetry breaking sufficient to locate exactly the satisfiability threshold?
The stability of the 1RSB solution was investigated in [MPRT04], the 1RSB energetic cavity
was shown to describe correctly the ground state energy for 4.15 < α < 4.39 in 3-SAT. In par-
ticular, it yields the conjecture that the location of the satisfiability threshold is actually exact.
From a rigorous point of view it was proven that the 1RSB equations give an upper bound on the
satisfiability threshold [FL03, FLT03, PT04].

Survey Propagation: a revolutionary algorithm — The most spectacular result was the de-
velopment of a new message passing algorithm, the survey propagation [MZ02,BMZ05]. Before
the replica and cavity analysis were used to compute the quenched averages of thermodynamical
quantities. Using always the self-averaging property that the average of certain (not all) quanti-
ties is equal to their value on a large given sample. Mézard and Zecchina applied the energetic
1RSB cavity equations, later called survey propagation, on a single large graph. This resulted
in an algorithm which is arguably still the best known for large instances of random 3-SAT near
to the satisfiability threshold. And even more interesting than its performance is the conceptual
advance this brought into applications of statistical physics to optimization problems.

1.7 Energetic 1RSB solution

In this section we derive the energetic zero-temperature limit of the 1RSB method. When applied
to the satisfiability problem this leads, between others, to the calculation of the satisfiability
threshold and to the survey propagation equations and algorithm. We illustrate this on the 1-in-
3 SAT problem. Before doing so we have to introduce the warning propagation equations, on
which the derivation of the survey propagation relies.

1.7.1 Warning Propagation

In general warning propagation (min-sum) is a zero temperature, β → ∞, limit of the belief
propagation (sum-product) equations (1.16a-1.16b). It can be used to compute the ground state
energy (minimal fraction of violated constraints) at the replica symmetric level. A constraint
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satisfaction problem at a finite temperature gives rise to φa({∂a}, β) = 1 if the constraint a is
satisfied by configuration {s∂a}, and φa({∂a}, β) = e−2β if a is not satisfied by {s∂a}2. In
a general Boolean CSP, with N variables si ∈ {−1, 1}, the warning propagation can then be
obtained from (1.16a-1.16b) by introducing warnings u and h as

e2βhi→a ≡ χi→a1

χi→a−1

, e2βua→i ≡ ψa→i1

ψa→i−1

. (1.34)

This leads in the limit of zero temperature, β →∞, to

hi→a =
∑

b∈∂i−a

ub→i , (1.35a)

ua→i =
1
2

[
max
{sj}

( ∑
j∈∂a−i

hj→asj − 2Ea({sj},+1)
)

−max
{sj}

( ∑
j∈∂a−i

hj→asj − 2Ea({sj},−1)
)]
.

(1.35b)

where Ea({si}) = 0 if the configuration {si} satisfies the constraint a, and Ea({si}) = 1
if it does not. The warnings u and h have to be integer numbers, as they can be interpreted
as changes in the ground state energy of the cavity subgraphs when the value of variable i is
changed from si = 0 to si = 1. Given Ea ∈ {0, 1} we have that h ∈ Z and u ∈ {−1, 0,+1}.
The correspondence between values of u and ψ are

u = 1 ⇔ ψ1 = 1 , ψ−1 = 0 , (1.36a)
u = −1 ⇔ ψ1 = 0 , ψ−1 = 1 , (1.36b)
u = 0 ⇔ ψ1 = ε , ψ−1 = 1− ε , 0 < ε < 1 . (1.36c)

The warnings u and h can thus be interpreted in the following way

ua→i = −1 Constraint a tells to variable i: “I think you should be −1.”

ua→i = 0 Constraint a tells to variable i: “I can deal with any value you take.”

ua→i = +1 Constraint a tells to variable i: “I think you should be +1.”

hi→a < 0 Variable i tells to constraint a: “I would prefer to be −1.”

hi→a = 0 Variable i tells to constraint a: “I don’t have any strong preferences.”

hi→a > 0 Variable i tells to constraint a: “I would prefer to be +1.”

Given this interpretation the prescriptions (1.35) on how to update the warnings over the graph
becomes intuitive, see Tab. 1.1. Variable i collects the preferences from all constraints except
a and sends the result to a. Constraint a then decides which value i should take given the
preferences of all its other neighbours.

2The factor 2 in the Hamiltonian is introduced for convenience and in agreement with the notation of [RSZ07].
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Given the fixed point of the warning propagation (1.35) the total warning of variable i is

hi =
∑
a∈∂i

ua→i . (1.37)

The corresponding energy can be computed as

E =
∑
a

∆Ea+∂a −
∑
i

(li − 1)∆Ei , (1.38)

where ∆Ea+∂a is the number of contradictions created when constraint a and all its neighbours
are added to the graph, ∆Ei is the number of contradictions created when variables i is added
to the graph. The energy shifts can be computed from (1.19a-1.19b) using (1.34) and taking
β →∞ they read

∆Ea+∂a = − max
{s∂a}

[ ∑
i∈∂a

hi→asi − Ea({s∂a})
]

+
∑
i∈∂a

∑
b∈∂i−a

|ub→i| ; (1.39a)

∆Ei = −
∣∣∣ ∑
a∈∂i

ua→i
∣∣∣+

∑
a∈∂i

|ua→i| ; (1.39b)

To summarize, the warning propagation equations neglect every entropic information in the
belief propagation (1.16a-1.16b), thus only the ground state energy can be computed. On the
other hand the fact that warnings u and h have a discrete set of possible values simplifies con-
siderably the average over the graph ensemble presented in sec. 1.5.3 as the distribution P is a
sum of three Dirac function, and can be represented by their weights. Deeper interpretations of
warning propagation and its fixed points will be given in chapter 4. Note that in the literature the
value 0 of warnings is also called ∗ or ”joker” [BMWZ03, BZ04].

1.7.2 Survey Propagation

Survey propagation (SP) [MPZ02, MZ02] is a form of belief propagation which aims to count
the logarithm of the number of fixed points of warning propagation (1.35) of a given energy

Tab. 1.1. Example of the update (1.35b) in the positive 1-in-3 SAT problem, where exactly one variable in
the constraint takes value 1 in order to satisfy the constraint. The first line might seem counter-intuitive, but
note that we defined the energy in such a way that configuration (1, 1, 1) is as bad as (1, 1,−1).

h1→a h2→a ua→3

+ + 0
+ – –
+ 0 –
0 0 0
– – +
– 0 0
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(1.38). For the sake of simplicity we present the most basic form of SP which aims to count the
logarithm of number of fixed points of the warning propagation with zero energy.

The constraints on values of the warnings assuring that the fixed point of warning propagation
corresponds to zero energy are

• For all i and a ∈ ∂i: the warnings {ub→i}b∈∂i−a are all non-negative or all non-positive,

• For all a and i ∈ ∂a: the preferred values of all j ∈ ∂a−i can be realized without violating
the constraint a.

We define probabilities that warnings ua→i or hi→a are positive, negative or null.

Pa→i(ua→i) = qa→i− δ(ua→i + 1) + qa→i+ δ(ua→i − 1) + qa→i0 δ(ua→i) ; (1.40a)

Pi→a(hi→a) = pi→a− µ−(hi→a) + pi→a+ µ+(hi→a) + pi→a0 δ(hi→a) ; (1.40b)

where qa→i− + qa→i+ + qa→i0 = pi→a− + pi→a+ + pi→a0 = 1, and µ±(h) are normalized measures
with support over Z±. So, to every oriented edge we associate a message q = (q−, q0, q+) or
p = (p−, p0, p+) (resp. if oriented towards the variable or the constraint). We call these messages
surveys, they are analogous to beliefs ψa→i and χi→a from (1.16a-1.16b). And thus, if the factor
graph is tree, exact iterative equations for q, p can be written. The update of surveys p given
incoming q is common for all Boolean CSPs and reads:

pi→a+ + pi→a0 = N−1
i→a

∏
b∈∂i−a

(qa→i+ + qa→i0 ) , (1.41a)

pi→a− + pi→a0 = N−1
i→a

∏
b∈∂i−a

(qb→i− + qb→i0 ) , (1.41b)

pi→a0 = N−1
i→a

∏
b∈∂i−a

qb→i0 , (1.41c)

whereNi→a is the normalization factor. The update of surveys q given the incoming ps depends
on the details on the constraint functions. For concreteness we write the equation for the positive
1-in-3 SAT problem. The constraints assuring zero energy then forbids that both the warnings
incoming to a constraint a have value +1.

qa→i+ = N−1
a→i p

j→a
− pk→a− , (1.42a)

qa→i− = N−1
a→i

[
pj→a+ (1− pk→a+ ) + (1− pj→a+ )pk→a+

]
, (1.42b)

qa→i0 = N−1
a→i

[
pj→a− pk→a0 + pj→a0 pk→a− + pj→a0 pk→a0

]
, (1.42c)

where Na→i = 1− pj→a+ pk→a+ is the normalization factor, j and k are the other two neighbours
of a.

The associated Shannon entropy is called complexity [Pal83] (or structural entropy in the
context of glasses) and reads [MZ02]

Σ(E = 0) =
∑
a

logN a+∂a −
∑
i

(li − 1) logN i , (1.43)
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where N a+∂a is the probability that no contradiction is created when the constraint a and all its
neighbours are added, N i is the probability that no contradiction is created when the variable
i is added. Remark the exact analogy with (1.19a-1.19b). We denote Pi0 ≡

∏
a∈∂i q

a→i
0 and

Pi± ≡
∏
a∈∂i(q

a→i
± + qa→i0 ), then

N i = Pi+ + Pi− − Pi0 , (1.44a)

N a+∂a =
∏
i∈∂a

(Pi→a+ + Pi→a− − Pi→a0 )−
∏
i∈∂a

(Pi→a− − Pi→a0 )−
∏
i∈∂a

(Pi→a+ − Pi→a0 )

−
∑
i∈∂a

Pi→a−

∏
j∈∂a−i

(Pj→a+ − Pj→a0 ) .

(1.44b)

The second equation collects the contributions from all combinations of arriving surveys except
the “contradictory” ones (+,+,+), (−,−,−), (+,+, 0) and (+,+,−) (plus permutations of
the latter).

The survey propagation equations (1.41-1.42) and the expression for the complexity function
(1.43) are exact on tree graphs. In the spirit of the Bethe approximation, we will assume sufficient
decay of correlations and use these equations on a random graph 3. To average over the ensemble
of random graphs we adopt the same equations as we did for the belief propagation in sec. 1.5.3.

1.7.3 Application to the exact cover (positive 1-in-3 SAT)

The 1-in-3 SAT problem (with probability of negating a variable equal to one-half) is a rare
example of an NP-complete problem which is on average algorithmically easy and where the
threshold can be computed rigorously [ACIM01]. In particular it was shown that for α 6= 1
an instance of the problem can be solved in polynomial time with probability going to one as
N →∞. This result was generalized into random 1-in-3 SAT where the probability of negating
a variable is p 6= 1/2 [RSZ07]. In particular we showed that for all 0.273 < p < 0.718
the RS solution is correct and almost every instance can be solved in polynomial time if the
constraint density α 6= 1/[4p(1 − p)]. When, however, p < 0.273 the phase diagram is more
complicated, see [RSZ07]. For p = 0 the solution of the positive 1-in-3 SAT (exact cover)
problem becomes very similar to the one of 3-SAT [MZ02]. The result for the complexity (1.43)
in the positive 1-in-3 SAT obtained from the population dynamics method is plotted in fig. 1.7.
For more detailed discussion of how the phase diagram changes from the almost-always-easy to
the very-hard pattern see [RSZ07].

Up to certain average connectivity of variables cSP = 1.822 the only iterative fixed point
of the population dynamics gives qa→i0 = pi→a0 = 1 for all (ia). The associated complexity
function is zero. In an interval (cSP, cs) = (1.822, 1.879) there exist a nontrivial solution giving
positive complexity function. There are thus exponentially many different fixed points of the
warning propagation. Asymptotically, almost every warning propagation fixed point is associated
to a cluster of solutions4. Above cs = 1.879 there is a nontrivial solution to the SP equations

3The fact that on a given tree with given boundary conditions the warning propagation has a unique fixed point might
seem puzzling at this point. Clarification will be made in the chapter 2.

4There might exist fixed points of the warning propagation which are not compatible with any solution, thus do not
correspond to a cluster. Such ”fake” fixed points are negligible if the 1RSB approach is correct.
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Fig. 1.7. (Color online) Average complexity density (logarithm of number of states divided by the number
of variables) as a function of the mean degree c for the positive 1-in-3 SAT problem. At cSP = 1.822 a
nontrivial solution of the survey propagation equations appears, with positive complexity. At cs = 1.8789±
0.0002 the complexity becomes negative: this is the satisfiability transition. At cp = 1.992 the solution
at zero energy ceases to exist. The inset magnifies the region where the complexity crosses zero, together
with the error bar for the satisfiability transition. Crosses represent results of a population dynamics with
N = 0.5 · 105 elements, squares of N = 1 · 105, and circles N = 2 · 105.

giving a negative complexity function. There are thus almost surely no nontrivial fixed points of
warning propagation at zero energy.

Before interpreting the survey propagation results, we should check that its application on
tree-like random graphs is justified. The method to do this self-consistency check has been
developed in [MPRT04] and is discussed in appendix D. For 1-in-3 SAT the result in that SP is
stable, thus the results are believed to be correct, for c ∈ (1.838, 1.948) [RSZ07]. The point cs
belongs to this interval, thus we can interpret it safely as the satisfiability threshold. However, the
point cSP has no physical meaning, and some statements that are suggested by its existence are
wrong. For example it is not true that there is not exponentially many fixed points of the warning
propagation, thus no clustering, for c < cSP. This has been remarked in [KMRT+07] and a part
of chapter 2 will be devoted to understanding this.

1.8 Loose ends

We could summarize the understanding of the subject three years ago in the following way: The
1RSB cavity method was able to compute the satisfiability threshold. The clustered phase was
predicted and its existence partially proven. The conjecture that clustering is a key element in
understanding of the computational hardness was accepted. The survey propagation inspired
decimation algorithm was breath-taking, and the computer science community was getting grad-
ually more and more interested in the concepts which lead to its derivation. It might have seemed
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that a real progress can be made only on the mathematical side of the theory, in the analytical
analysis of the performance of the message passing algorithms, or in new applications. But sev-
eral loose ends hanged in the air and the opinions on their resolution were diverse. I will list
three of them which I consider to be the most obtruding ones.

(A) The ”no man’s land”, RS unstable but SP trivial — The energetic 1RSB cavity method
(survey propagation) predicts the clustering in 3-SAT at αSP = 3.92. But the replica symmetric
solution is unstable at already αRS = 3.86, at this point the spin glass susceptibility diverges
and equivalently the belief propagation algorithm stops to converge on a single graph, see ap-
pendix C. What is the solution in the ”no man’s land” between αRS and αSP? The values are
even more significant for the 3-coloring or Erdős-Rényi graphs where the corresponding average
connectivities are cRS = 4 and cSP = 4.42.

(B) No solutions with nontrivial whitening cores — An iterative procedure called whitening
of a solution is defined as iteration of the warning propagation equations initialized from a solu-
tion. Whitening core is the corresponding fixed point. We call white those variables which are
assigned the ”I do not care” state in the whitening core. A crucial asymptotic property is that
if the 1RSB solution is correct then the whitening core of all solutions from one cluster is the
same and the non-white variables are the frozen ones in that cluster. Consequently, knowing a
solution, the whitening may be used to tell if the solution was or was not in a frozen cluster.

Survey propagation uses information only about frozen cluster. It might seem that every
cluster is uniquely described by its whitening core, that is by the set and values of the frozen
variables.

Yet, the solutions found by survey propagation have always a trivial, all white, whitening
core. This paradox was pointed out in [MMW07] and observed also by the authors of [BZ04]. It
was suggested that the concept of whitening might be meaningful only in the thermodynamical
limit. But that was not a satisfactory explanation.

(C) Where do the simple local algorithms actually fail — The clustered phase, baptized
”Hard” in [MZ02] does not seem to be that hard. There is no local algorithm which would
perform well exactly up to αSP = 3.92. For a while it was thought that the 1RSB stability point
αII = 4.15, see appendix D , is a better alternative. It was argued that the full-RSB states are
more ”transparent” for the dynamics than the 1RSB states which should be well defined and
separated. Moreover there was at least one empirical result which suggested that the Walk-SAT
algorithm stops to work in linear time at that point [AGK04]. But other version of Walk-SAT
stopped before or even after, as for example the ASAT which was argued in [AA06] to work in
linear time at least up to α = 4.21.

1.9 Summary of my contributions to the field

In my first works [ZM06, MMR+06, RSZ07] I applied the replica symmetric and the energetic
1RSB method to the matching and the 1-in-K SAT problems. This is why I used these two
problems to illustrate the methods in sec. 1.5.4 and 1.7.
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The problem of matching on graphs is a common playground for algorithmic and method-
ological development. I studied the problem of counting maximum matchings in a random graph
in [ZM06]. Finding a maximum matching is a well known polynomial problem, while their ap-
proximative counting is a much more difficult task. We showed, that the entropy of maximum
matchings can be computed using the belief propagation algorithm, a result which was later on
partially proved rigorously [BN06].

My interest in the 1-in-K SAT problem stemmed from the work [ACIM01] where the authors
computed rigorously the satisfiability threshold and showed that the NP-complete problem is
in fact on average algorithmically easy. In [MMR+06, RSZ07] we studied the random 1-in-3
SAT in two-parameter space. One parameter is the classical constraint density, the other is the
probability p of negating a variable in a constraint (p = 1/2 in [ACIM01]). We showed that
for 0.2627 < p < 0.7373 the problem is on average easy and the satisfiability threshold can be
computed rigorously. On the other hand for p < 0.07 the problem is qualitatively similar to the
3-SAT. We computed the threshold from the energetic 1RSB approach. In the intermediate region
the 1RSB approach is not stable, thus it stays an open question how exactly does the problem
evolve from an on average easy case to a 3-SAT like case. Qualitatively similar phase diagram
was described in the 2 + p SAT problem [MZK+99a, AKKK01]. We also found an interesting
region of the parameter space in the 1-in-3 SAT where the unit clause algorithm provably finds
solutions despite the replica symmetric solution being not correct (unstable).

The rest of my works [KMRT+07, ZK07, KZ08b, KZ08a, MZ08, AZ08, ZM08] tied up the
loose ends from the previous section and mainly addressed the original question of this article:
Why are some constraint satisfaction problems intrinsically hard on average and what causes this
hardness?

I used the entropic zero temperature 1RSB approach, introduced in [MPR05], to study the
structure of solutions in random CSPs. In [KMRT+07,ZK07] we discovered that the true cluster-
ing (dynamical) transition does not correspond to the onset of a nontrivial solution of the survey
propagation equations. We gave a proper definition of the clustering transition and formulated it
in terms of extremality of the uniform measure over solutions. The clustering transition happens
always before or at the same time as the replica symmetric solution ceases to be stable. This
tied up the loose end (A), as in the ”no man’s land” the energetic 1RSB solution was simply
incomplete.

We showed that in general there exist two distinct clustered phases below the satisfiable
threshold. In the first, dynamic clustered phase, an exponentially large number of pure states
is needed to cover almost all solutions. However, average properties (such as total entropy)
still behave as if the splitting of the measure did not count. In particular, a simple algorithm
such as belief propagation gives asymptotically correct estimates of the marginal probabilities.
However, the measure over solutions is not extremal and, more importantly, the Monte Carlo
equilibration time diverges, thus making the sampling of solutions a hard problem. The second
kind of clustered phase is the condensed clustered phase where a finite number of pure states is
sufficient to cover almost all solutions. A number of nontrivial predictions follows: for instance
the total entropy has a non-analyticity at the transition to this phase, the marginal probabilities
are non-self-averaging and not given anymore by the belief propagation algorithm.

In the context of the coloring problem, i.e. anti-ferromagnetic Potts glass, I also addressed
related questions of what does the 1RSB solution predict for the finite temperature phase diagram
and when is the 1RSB solutions correct (stable) [ZK07]. We give the full phase diagram for this
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model and argue that in the colorable phase for at least 4 colors the 1RSB solutions is stable, and
thus believed to be exact.

In order to clarify and substantiate this heuristic picture, we introduced the random subcubes
model in [MZ08], a generalization of the random energy model. The random subcubes model is
exactly solvable and reproduces the sequence of phase transitions in the real CSPs (clustering,
condensation, satisfiability threshold). Its, perhaps, most remarkable property is that it repro-
duces quantitatively the behaviour of random q-coloring and random K-SAT in the limit of large
q and K. We showed that the random subcubes model can also be used as a simple playground
for the studies of dynamics in glassy systems.

An important and quite novel phenomena I investigated in [ZK07, KZ08a] is the freezing of
variables. A variable is frozen when in all the solutions belonging to one cluster it takes the
same value. I discovered that the fraction of such frozen variables undergoes a first order phase
transition when the size of states is varied. I introduced the notion of the rigidity transition as the
point where almost all the dominating clusters become frozen and the freezing transition as the
point where all the clusters become frozen. The solutions belonging to the frozen clusters can be
recognized via the whitening procedure.

We computed the rigidity transition in the random coloring in [ZK07]. And we studied the
freezing transition in 3-SAT numerically [AZ08], with the result αf = 4.254 ± 0.009 (to be
compared to the satisfiability threshold αs = 4.267). This study also confirms that the notion of
whitening and freezing of variables in meaningful even on relatively small systems.

This allows us to tie up the loose end (B). The survey propagation algorithm describes the
most numerous frozen clusters. The range of connectivities where the SP based algorithms are
able to find solutions in 3-SAT lies in the phase where most solutions are in fact unfrozen. It
is thus much less surprising that the SP based algorithms always find a solution with a trivial
whitening.

A very natural question cannot be avoided at this point: What happens in the frozen phase
where all the solutions are frozen? We know that such a phase exists, this was shown in [ART06]
and numerically in [AZ08]. And we also know from several authors that the known algorithms
do not seem to be able to find frozen solutions in polynomial time (that is never for sufficiently
large instances). We conjectured in [ZK07] that the freezing is actually a relevant concept for the
algorithmical hardness. Thus the answer we suggest to tie up the loose end (C) is that the simple
local algorithms stop always before the freezing transition. It is a challenging problem to design
an algorithm which would be able to beat this threshold.

In the coloring and satisfiability problems (at reasonably small q and K) the freezing tran-
sition is however very near to the satisfiability threshold, see the numbers in [ZK07, AZ08]. It
is thus difficult to make strong empirical conclusions about the relation between hardness and
freezing. Motivated by the need of problems where the freezing and satisfiability would be well
separated I introduced the locked constraint satisfaction problems where the freezing transition
coincides with the clustering one [ZM08]. The locked CSPs are very interesting from several
points of view. The clusters in locked CSPs are point-like, this is why the clustering and freezing
coincide. This is also connected with a remarkable technical simplification, as these problems
can be fully described on the replica symmetric level.

On the other hand the locked problems are extremely algorithmically challenging. We imple-
mented the best known solvers and showed that they do not find solutions starting very precisely
from the clustering (= freezing) transition. At the same time this transition is very well separated
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from the satisfiability threshold.
A remarkable point about a subclass of the locked problems which we called balanced is that

the satisfiability threshold can be obtained exactly from the first and second moment calculation.
This adds a huge class of constraint satisfaction problems to a handful of other NP-complete
CSPs where the threshold is known rigorously. And it also brings the understanding of which
properties of the problem introduce fluctuations which make the second moment method fail.

The numerical work on the 3-SAT problems [AZ08] also addresses another important and al-
most untouched question: How much are the asymptotic results relevant for systems of practical
sizes. We counted the number of clusters in random 3-SAT on instances up to size N = 150 and
compared to the analytical prediction. We saw that the comparison is strikingly good for already
so small systems. This should encourage the application of statistical physics methods to the real
world problems.
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2 Clustering

In this chapter we introduce the concept of clustering of solutions. First we investigate when
does the replica symmetric solution fail. Then we derive the one-step replica symmetry breaking
equations on trees and give their interpretation on random graphs. We discuss how several
geometrical definitions of clusters might be related to the pure states and review the properties of
the clustered phase. Finally, we revise how is the clustering related to the algorithmical hardness
and conclude that it is considerably less than previously anticipated. The original contributions
to this chapter were published in [KMRT+07, ZK07, AZ08].

2.1 Definition of clustering and the 1RSB approach

How to recognize when is the replica symmetric solution correct? First we have to explain what
do we precisely mean by ”being correct”. We obviously require that quantities like the free
energy, energy, entropy, marginal probabilities (magnetizations) are asymptotically exact when
computed in the replica symmetric approach. But this is not enough, as this is also satisfied in
the phase which we will call later the clustered (dynamical) 1RSB phase.

A commonly used necessary condition for the validity of the RS solution is referred to as the
local stability towards 1RSB. It consists in checking that the spin glass susceptibility does not di-
verge, or equivalently that the belief propagation algorithm converges on a large single graph, or
in the probability theory this corresponds to the Kesten-Stigum condition [KS66a,KS66b]. These
and other equivalent representations for the replica symmetric stability are discussed in detail in
appendix C. If the replica symmetric solution is not stable then it predicts wrong free energy,
entropy, correlation functions, etc. But the contrary is far from being true: even if stable, the RS
solution might be wrong, and even unphysical (predicting negative entropies in discrete models,
negative energies in models with strictly non-negative Hamiltonian function, or discontinuities
in functions which physically have to be Lipschitzian).

It is tempting to say: The replica symmetric solution is correct if and only if the assumptions
we used when deriving it are correct. In deriving the belief propagation (1.16) and the RS free
energy (1.20) we used only one assumption: The neighbours of a variable i are independent
random variables, under the Boltzmann measure (1.13), when conditioned on the value of i. As
we will see, this assumption is asymptotically correct also in the dynamical 1RSB phase, and
thus the RS marginal probabilities, or the free energy function remain asymptotically exact in
that phase.

We thus need a different definition for the ”RS correctness” which would determine whether
the Boltzmann measure (1.13) can be asymptotically described as a single pure state, and whether
the equilibration time of a local dynamics is linear in the system size. At the same time we do
not want this definition to refer the RSB solution, because obviously we want to justify the need
of the RSB solution by the failure of the RS solution.

A definition satisfying the above requirements appeared only recently [MM08,MS05,MS06c],
and it can be written in several equivalent ways. From now on we say that the replica symmetric
solution is correct if and only if one of the following is true.

(a) The point-to-set correlations decay to zero.

(b) Reconstruction on the underlying graph in not possible.
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(d) The uniform measure over solutions satisfies the extremality condition.

(c) The 1RSB equations at m = 1, initialized in a completely biased configuration, converge
to a trivial fixed point.

In the rest of this section we explain these four statements, and show that they are indeed equiv-
alent, and explain how do they correspond to the existence of a nontrivial 1RSB solution. We
should mention that in the so-called locked constraint satisfaction problems this definition have
to be slightly changed at zero temperature, we will discuss that in sec. 4.3. The transition from
a phase where the RS solution is correct to a phase where it is not is called the clustering or the
dynamical transition.

Gibbs measures and why are the sparse random graphs different — Our goal is to describe
the structure of the set of solutions of a constraint satisfaction problem with N variables. Let
φa(∂a) be the constraint function depending on variables si ∈ ∂a involved in the constraint a,
φa(∂a) = 1 if the constraint is satisfied, φa(∂a) = 0 if not. The uniform measure over all
solutions can be written as

µ({si}) =
1
Z

M∏
a=1

φa(∂a) , (2.1)

where Z is the total number of solutions. The uniform measure over solutions is the zero tem-
perature limit, β →∞, of the Boltzmann measure

µ({si}, β) =
1

Z(β)

M∏
a=1

e−β[1−φa(∂a)] . (2.2)

The above expressions are valid on any given finite factor graph. The theory of Gibbs mea-
sures [Geo88] tries to formally define and describe the limiting object to which (2.1-2.2) converge
in the thermodynamical limit, N → ∞. A common way to build this theory is to ask: What is
the measure induced in a finite volume Λ when the boundary conditions are fixed? Roughly
speaking, the good limiting objects, called the Gibbs measures or the pure states, are such that
boundaries taken from the Gibbs measure induce the same measure inside the finite large volume
Λ.

The Ising model on a 2D lattice gives an excellent example of how a phase transition is seen
via Gibbs measures. Whereas in the high temperature paramagnetic phase the Gibbs measure
is unique, in the ferromagnetic phase there are two extremal measures, one corresponding to
the positive average magnetization, the other to the negative average magnetization. Indeed, if
a boundary condition is chosen from one of these two then the correct magnetization will be
induced in the bulk. In general the bulk in equilibrium can be described by a linear combination
of these two extremal objects.

In the disordered models the situation might be much more complicated. Indeed the proper
definition of the Gibbs measure in the Edwards-Anderson model (1.11) and other glassy models
is a widely discussed but still an open problem [Bov06, Tal03, NS92].

The locally tree-like lattices, we are interested in here, are also peculiar from this point of
view. The main difference is that in any reasonable definition of the boundary variables, the
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boundary has volume comparable to the volume of the interior. Thus again the usual theory of
Gibbs measure implies very little. On the other hand the tree structure makes some considerations
simpler. We will try to understand what sort of long range correlations might appear on the tree-
like graphs by studying the tree graphs with general boundary conditions.

2.1.1 Properties and equations on trees

It is a well known fact that on arbitrary tree, with arbitrary boundary conditions, the belief prop-
agation equations and the Bethe free energy are exact (the thermodynamical limit is not even
needed here) [Pea88, KFL01, YFW00].

But what if the boundary conditions are chosen from a complicated measure? Then very
little (if anything) is known in general. However, there is a way how to choose the bound-
ary conditions such that the tree is then described by the one-step replica symmetry breaking
equations. This is closely linked to the problem of reconstruction on trees, studied in mathe-
matics [EKPS00, Mos01, Mos04]. The link with 1RSB was discovered by Mézard and Monta-
nari [MM06a]. We chose to present the 1RSB equations in this new way, because it opens the
door to further mathematical developments. For the original statistical physics derivation we
refer to [MP00]. Another recent computer science-like derivation, which is based on the con-
struction of a decorated constraint satisfaction problem and writing belief propagation on such a
problem, in presented in [MM08, Mor07].

Reconstruction on trees — We explain the concept of reconstruction on trees [Mos04]. For
simplicity we consider q-coloring on a rooted tree with constant branching factor γ (sometimes
also called the Cayley tree). A more general situation (with disorder, in the interaction or in the
branching factor) is described in appendix A.

Create a rooted tree with branching γ and with L generations. An example of γ = 2 and
L = 8 is in fig. 2.1. Assign a color s0 to the root and broadcast over the edges towards the leaves
of the tree in such a way that if a parent node i was assigned color si then each of its ancestors is
assigned random one of the remaining q − 1 colors.

At the end of this broadcasting, every node in the tree is assigned a color, and this assignment
corresponds to a proper coloring (neighbours have different colors). Now in an imaginary exper-
iment we forget the colors everywhere but on the leaves. The problem of reconstruction consists
in deciding if there is any information left in the values on the leaves (and their correlation) about
the original color s0 of the root in the limit of infinite tree L→∞. If the answer is yes then we
say that the reconstruction is possible, if the answer is no then the reconstruction is not possible.

Call {s}l the assignment of colors in the lth generation of the tree. Consider formally the
probability ψs0({s}l) that a broadcasting process which finished at the configuration {s}l started
from the color s0 at the root. In other words, in what fraction of assignments in the interior of the
tree (compatible with the boundary conditions {s}l) is the color of the root s0? Reconstruction
is possible if and only if

lim
l→∞

q∑
r=1

ψr({s}l) log
[
qψr({s}l)

]
> 0 . (2.3)

Intuitively when the branching γ is small and the number of colors large the information
about the root will be lost very fast. If, on the contrary, the branching is large compared to the
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Fig. 2.1. (Color online) Illustration of the broadcasting of colors on a binary tree (γ = 2) for the recon-
struction problem.

number of colors some information remains. A simple exercise is to analyze the so-called naive
reconstruction algorithm [Sem08]. The naive reconstruction is possible if the probability that
the leaves determine uniquely the root does not go to zero as the number of generation goes to
infinity. We compute the probability η that the far-away boundary is compatible with only one
value of the root. Denote ηl the probability that a variable in the lth generation is directly implied
conditioned on the value of its parent. The probability ηl−1 can be computed recursively as

η l−1 = 1− (q − 1)
(
1− 1

q − 1
η l
)γ +

(q − 1)(q − 2)
2

(
1− 2

q − 1
η l
)γ − . . .

=
q−1∑
r=0

(−1)r
(
q − 1
r

)(
1− r

q − 1
η l

)γ
. (2.4)

The terms in this telescopic sum come from probabilities that number r out of the q − 1 colors
are not present in the γ descendants. In the last generation we know the colors by definition of
the problem, thus η∞ = 1. If the iterative fixed point of (2.4) is positive then the reconstruction
is possible.

This simple upper bound on the branching γ for which the reconstruction is possible is actu-
ally quite nontrivial and in the limit of large number of colors it coincides with the true threshold
at least in the first two orders, see [ZK07] and [Sem08,Sly09]. This upper bound is connected to
the presence of frozen variables and will be discussed in a greater detail in chapter 4.

Self-consistent iterative equations for the reconstruction — The iterative equations for the
reconstruction problem are equivalent to the one-step replica symmetry breaking equations with
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Parisi parameter m, m = 1 will apply to the original question of reconstructibility. This was
first derived by Mézard and Montanari [MM06a] and it has some deep consequences for the
understanding of the RSB solution. We now explain this derivation, still for the coloring problem
with a fixed branching γ and q colors. A more general form is presented in appendix A.

For given boundary conditions {s}l, constructed as described above, we compute the prob-
ability ψi→jsi (over all broadcasting experiments leading to these boundary conditions) that a
variables i had color si, where j is the parent of i and the edge (ij) has been cut. Given the
probabilities on the descendants of i, which are indexed by k = 1, . . . , γ, we can write

ψi→jsi =
1

Zi→j

γ∏
k=1

(1− ψk→isi ) ≡ Fsi({ψk→i}) , (2.5)

because the descendants can take any other color but si. The Zi→j is a normalization constant. It
should be noticed that this is in fact the belief propagation equation (1.16) for the graph coloring.
This equation can also be derived by counting how many assignments are consistent with the
boundary conditions {s}l. This gives a natural interpretation to Zi→j

Zi→j =
Z(i)∏γ
k=1 Z

(k)
. (2.6)

where Z(i) is the total number of solutions consistent with {s}l if iwere the root. Thus Zi→j is a
change in the number of solutions compatible with the boundary conditions when the γ branches
are merged.

Now we consider the distribution over all possible boundary conditions which are achievable
by the broadcasting process defined above. We have to specify the probability distribution on
the boundary conditions. We consider that the probability of every boundary conditions {s}l is
proportional to the power m of the number of ways by which we could create {s}l, denote this
number Z({s}l). In other words, the probability of a given boundary condition is proportional
to the power m of the number of possible assignments in the bulk of the tree.

µ({s}l) =

[
Z({s}l)

]m
Z(m)

, where Z(m) =
∑
{s}l

[
Z({s}l)

]m
. (2.7)

The value of m = 1 is natural for the original question of reconstruction, because every real-
ization of the broadcasting experiment is then counted in a equiprobable way. We, however,
introduced a general power m. The parameter m will play a role of the Legendre parameter,
changing its value focuses on boundary conditions compatible with a given number of assign-
ments inside the tree.

Denote P i→j(ψi→j) the distribution of ψi→j , over the measure on the boundary conditions
(2.7)

P i→j(ψi→j) ≡
∑
{s}l

I({s}l induceψi→j)

[
Z(i)({s}l)

]m
Z(i)(m)

. (2.8)

Where Z(i)({s}l) is the number of solutions induced on the subtree rooted in vertex i, Z(i)(m)
is the corresponding normalization. To express the probability distribution P i→j(ψi→j) as a
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function of P k→i(ψk→i) we need that ψi→j = F({ψk→i}), eq. (2.5). Moreover, Zi→j is the
increase in the total number of solutions after merging the branches rooted at k = 1, . . . , γ into
one branch rooted at i. The distributional equation for P is then

P i→j(ψi→j) =
1
Zi→j

∫ γ∏
k=1

dP k→i(ψk→i) (Zi→j)m δ
[
ψi→j −F({ψk→i})

]
, (2.9)

where F and Zi→j are defined in (2.5), and Zi→j is a normalization constant equal to

Zi→j =
Z(i)(m)∏γ
k=1Z(k)(m)

=
∫ γ∏

k=1

dP k→i(ψk→i) (Zi→j)m . (2.10)

whereZ(i) is the normalization from (2.8) if iwere the root. Notice that if we start from boundary
conditions which are not compatible with any solution then the re-weighting Zi→j = 0 at the
merging where a contradiction is unavoidable. Initially at the leaves the colors of nodes are
known. Call δr the q-component vector ψi→jsi = δ(si, r), then the initial distribution is just a
sum of singletons

P init(ψ) =
1
q

q∑
r=1

δ
(
ψ − δr

)
. (2.11)

Denote P0(ψ) the distribution created from (2.11) after many iteration of (2.9) with m = 1. The
reconstruction is possible if and only if P0(ψ) is nontrivial, that is different from singleton on
ψsi = 1/q , ∀si. We define the critical branching factor γd in such a way that for γ < γd the
reconstruction is not possible, and for γ ≥ γd the reconstruction is possible. The critical values
γd = cd − 1 for the coloring problem are reviewed in tab. 5.2.

What are clusters on a tree? If the reconstruction is not possible, then almost all (with respect
to (2.7) at m = 1) boundary conditions do not contain any information about the original color
of the root. However, for rare boundary conditions this might be different. Obviously as long as
γ ≥ q − 1 one can always construct boundary conditions which determine uniquely the value of
the root (by assigning every of the q − 1 colors to the descendants of every node). If γ < q − 1
then this is no longer possible. And it was proven in [Jon02] that for γ < q − 1 every boundary
conditions lead to an expectation 1/q for every color on the root. If the reconstruction is possible,
then different boundary conditions may lead to different expectations on the root.

The basic idea of the definition of clusters on a tree is the same as in the classical definition
of a Gibbs measure [Geo88]. However, some more work is needed to make the following con-
siderations rigorous. Define a d-neighbourhood of the root as all the nodes up to dth generation,
consider 1 � d � l. Consider the set S (resp. S ′) of all assignments on the d-neighbourhood
compatible with a given boundary condition {s}l (resp. {s′}l). Define two boundary conditions
{s}l and {s′}l as equivalent if the fraction of elements in which the two sets S and S ′ differ goes
to zero as l, d → ∞. Clusters are then the equivalence classes in the limit l → ∞, d → ∞,
d � l. The requirement d � l comes from the fact that in l − d iterations the equation (2.8)
should converge to its iterative fixed point.

As we explained, more than one cluster exists as soon as the branching factor γ ≥ q − 1, but
as long as the iterative fixed point of eq. (2.9) atm = 1 is trivial all but one clusters are negligible
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because they contain an exponentially small fraction of solutions. Indeed, if the reconstruction is
not possible it means that the information about the d-neighbourhood is almost surely lost at the
lth generation. Thus almost every broadcasting will lead to a boundary condition from the only
relevant giant cluster.

Only for γ ≥ γd, when the reconstruction start to be possible, the total weight of all solutions
will be split into many clusters. In every of them the set of expectation values (beliefs) ψi→j will
be different. This is related to another derivation of the 1RSB equations where the clusters of
solutions on a given graph are identified with fixed points of the belief propagation equations
[MM08, Mor07]. There are exponentially many (in the total number of variables N ) initial
conditions, it is also reasonable to expect that the number of clusters will be exponentially large
in N .

The complexity function — The number of solutions compatible with a boundary condition
({s}l) was denoted Z({s}l) in eq. (2.7). The associated entropy is then, due to interpretation of
Zi→j (2.6)

S({s}l) ≡ log
[
Z({s}l)

]
=
∑
i

logZi→j , (2.12)

where the sum is over all the vertices i in the tree, if i is a leaf then Zi→j = 1, if i is the root that
j is a imaginary parent of the root. An intuition about this formula is the following: logZi→j is
the change in the entropy when the node i and all edges (ki), where k are descendants of i, are
added. Summing over all i then creates the whole tree.

More commonly, we introduce also messages going from the parents to the descendants and
write the expression for the entropy (2.12) in the equivalent Bethe form [YFW03]

S({s}l) =
∑
i

logZi+∂i −
∑
ij

logZij , (2.13)

where

Zi+∂i =
q∑
r=1

∏
k∈∂i

[
1− ψk→ir

]
, Zij = 1−

q∑
r=1

ψi→jr ψj→ir , (2.14)

where ∂i are all the neighbours (descendants and the parent) of node i. The first sum in (2.13)
goes over all the nodes in the tree, the root included, leaves have only one allowed color, thus
eq. (2.14) changes correspondingly. Again the meaning of logZi+∂i is the change in the entropy
when node i and his neighbourhooding edges are added, each edge is then counted twice, thus
the shift in the entropy when an edge (ij) is added, logZij , have to be subtracted.

We denote Φ(m) ≡ logZ(m) the thermodynamical potential associated to the measure
(2.7). To avoid confusion with the real free energy, associated to the uniform measure over
solutions (2.1), we call it the replicated free entropy. If a nonzero temperature is involved then
−Φ(m)/(βm) is called the replicated free energy. The replicated free entropy on a tree can be
expressed in totally analogous way as the entropy. From (2.10) we derive

Φ(m) ≡ logZ(m) =
∑
i

logZi→j , (2.15)
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which is usually written in the equivalent way

Φ(m) =
∑
i

logZi+∂i −
∑
ij

logZij , (2.16)

where we introduced

Zi+∂i =
∫ ∏

k∈∂i

dP k→i(ψk→i)
(
Zi+∂i

)m
, (2.17a)

Zij =
∫

dP i→j(ψi→j)dP j→i(ψj→i)
(
Zij
)m

. (2.17b)

We denote Σ(m) the Shannon entropy corresponding to measure on the boundary conditions
(2.7), and we call it the complexity function.

Σ(m) ≡ −
∑
{s}l

µ({s}l) logµ({s}l) = −mS(m) + Φ(m) , (2.18)

where S is the entropy averaged with respect to µ({s}l)

S(m) =
∑
{s}l

[
Z({s}l)

]m
Z(m)

logZ({s}l) =
∂Φ(m)
∂m

. (2.19)

Thus the complexity can also be written as a function of the internal entropy via the Legendre
transform of the replicated free entropy Φ(m)

Σ(S) = −mS + Φ(m) with
∂Σ(S)
∂S

= −m. (2.20)

The reader familiar with the cavity approach surely recognized eqs. (2.9) and (2.15–2.20) as the
1RSB equations.

Interpretation of the complexity function — In the cavity method [MP01] the exponential
of the complexity function Σ(m) (2.18) counts the number of clusters corresponding to a given
value of the parameter m, that is of a given entropy S (2.19). Complexity defined on the full tree
is never negative, as it is a Shannon entropy of a discrete random variable. The same is, of course
true, about the entropy (2.12).

It is more interesting to consider the complexity (or the entropy) function Σd(m) on the d-
neighbourhood of the root. If the total number of generations of the tree is l we take 1� d� l.
And moreover we require l− d to be large enough, such that the distributional iterative equation
(2.9) converges to its fixed point in less than l − d iterations. The average complexity function
on the d-neighbourhood can then be computed from this fixed point. And it can be both positive
or negative. Its negative value then means that the number of clusters is decreasing as we are
getting nearer to the root. Two important critical connectivities can be defined

• γc: at which the complexity of the ”natural” clusters Σd(m = 1) becomes negative.

• γs: at which the maximum of the complexity Σd(m = 0) becomes negative.
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The connectivity γs is the tree-analog of the satisfiability threshold. The connectivity γc is the
tree-analog of the condensation transition on random graphs, see chapter 3.

Strictly speaking, it is not known how to justify the interpretation of the complexity function
as the counter of clusters in the derivation we just presented. In the original cavity derivation
[MP01] or in the later derivations [MM08, Mor07] this point is well justified. We, however, find
the purely tree derivation appealing for further progress on the mathematical side of the theory
and that is why we have chosen to present this approach despite this current incompleteness.

2.1.2 Back to the sparse random graphs

We stress that the equations, derived in the previous section, are all exact on a given (even finite)
tree and that we have not use any approximation. We were just describing boundary conditions
correlated via (2.7). These, in nature recursive, equations are solved via the population dynamics
technique, see the appendix E.

To come back to the sparse random graphs, which are only locally tree-like, we can consider
equations (2.9-2.26) as an approximation on arbitrary graphs, just as we did with belief prop-
agation. This leads to the one-step replica symmetry breaking (1RSB) approach. Note that on
random graphs we will always speak about densities of the entropy, complexity or free-entropy
etc. Thus on random graphs: instead of the entropy S defined in (2.12) we consider s = S/N .
The replicated free entropy Φ (2.15) and complexity Σ (2.18) are also divided by the number of
variables. We, however, denote them by the same symbol, as confusion is not possible.

Let us discuss once again, now from the random graph perspective, what are the correlations
which make the replica symmetric approach fail. This will finally explain the definition of the
replica symmetric solution being correct given at the beginning of this section.

Point-to-set correlations — The concept of the point-to-set correlations is common in the
theory of glassy systems. Usually it is considered in the phenomenology of the real glassy
systems on finite-dimensional lattices, see for example [BB04] and references therein. Here we
restrict the discussion to properties relevant for the tree-like lattices.

Call Bd(i) all vertices of the graph which are at distance at least d from i, define point-to-set
correlation function as

Cd(i) = ||µ(i, Bd(i))− µ(i)µ(Bd(i))||TV , (2.21)

where µ(·) is the uniform measure over solutions (2.1), and the total variation distance of two
probability distributions is defined as ||q−p||TV =

∑
x |q(x)−p(x)|/2. The average point-to-set

correlation is

Cd =
1
N

N∑
i=1

Cd(i) . (2.22)

The reconstruction on graphs is then defined via the decay of this correlation function. The
reconstruction on tree-like graphs is not in general equivalent to the reconstruction on trees.
Roughly said, it is not equivalent in the ferromagnetic models, e.g. the ferromagnetic Ising
model, which spontaneously break some of the discrete symmetries. On the other hand on most
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of the frustrated models they are equivalent. A general condition, which might be very nontrivial
to check, is given in [GM07].

If the point-to-set correlation function decays to zero, limd→∞ Cd = 0, then almost every
variable is independent of its far away neighbours. The replica symmetric approach then has to
be asymptotically correct on locally tree-like lattices.

On the other hand if the point-to-set correlations do not decay to zero, then the far-away
neighbours influence the value of the variable i. And the replica symmetric solution fails to
give the correct picture of the properties of the model. The lack of decay of the point-to-set
correlations is equivalent to the reconstruction on graphs, and is also equivalent to the existence
of a nontrivial solution of the 1RSB equation (2.9) at m = 1. This is also equivalent to the
extremality condition for the uniform measure (2.1), which was used in definition of [KMRT+07]
and reads

E
[ ∑
Bd(i)

µ(Bd(i)) ||µ(i|Bd(i))− µ(i)||TV

]
→
d→∞

0 , (2.23)

where the external average is over quenched disorder (in interactions or connectivities).
The point-to-set correlations do not decay to zero for example in the low temperature phase

of the ferromagnetic Ising model on a random graph. There it is sufficient to introduce the pure
state ”up” and the pure state ”down” and within these pure states the point-to-set correlations
will decay to zero again. On the frustrated models the situation is more complicated but the idea
of the resolution is the same: If we manage to split the set of solutions into clusters (pure states)
such that within each cluster the point-to-set correlations again decay, the situation is fixed. A
statistical description of the properties of clusters can be obtained using the one-step replica
symmetry breaking (1RSB) equations, derived in the previous section 2.1.1 and summarized in
the next section 2.1.3.

However, the correlations might be more complicated and might not be captured fully by
the 1RSB approach. In particular the 1RSB approach is correct if and only if the point-to-set
correlation decay to zero within clusters and if the replica symmetric statistical description of
clusters is correct. In appendix D we will discuss a necessary condition for the 1RSB approach
being correct. In case the 1RSB approach does not fully describe the system further steps of
replica symmetry breaking might provide a better approximation (that means splitting clusters
into sub-clusters or aggregation of clusters) [MP00]. However, on the tree-like lattices, the exact
solutions is not known in such cases.

Relation with equilibration time — In glasses, the clustering transition is usually studied at
finite temperature and is called the dynamical transition. The clustered phase with Σ(m = 1) > 0
is called the dynamical 1RSB phase. This phase, where most of the static properties do not differ
from the replica symmetric (liquid) ones, was first described and discuss in [KT87a, KT87b].
The dynamical transition is associated with a critical slowing down of the dynamical properties,
e.g. the equilibration time is expected to diverge at this point. Note that such a purely dynamical
phase transition is typical for mean-field models. In the finite dimensional glassy systems the
barriers between a metastable and an equilibrium state are finite (independent of the system
size). This is because the nucleation length might be large but have to be finite. Thus instead of
a sharp dynamical transition in finite dimensional systems we observe only a crossover.
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However, even at the mean field level, the exact dynamical description is known only in a
few toy models, e.g. the spherical p-spin model [CK93] or the random subcubes model [MZ08].
In general, the dynamical solution is only approximative, still many very interesting results were
obtained. For a review see [BCKM98]. In the models on sparse random lattices even the ap-
proximation schemes are rather poor, see e.g. [SW04]. Thus the exact general relation between
dynamics and the dynamical (clustering) transition is not known.

An important contribution in establishing the link between dynamics and the static solution
on random graphs is [MS05,MS06b,MS06c] where the divergence of the point-to-set correlation
length is linked with divergence of the equilibration time of the Glauber dynamics. This suggests
that beyond the clustering transition the Monte Carlo sampling (or maybe even sampling in
general) will be a hard task.

Note also that in the mathematical literature the Glauber dynamics is often studied. Many
results exist about the so-called rapid mixing of the associated Markov chain [Sin93]. But the
rapid mixing questions equilibration in polynomial time, whereas in physics the relevant time
scale is linear. Moreover rapid mixing is defined as convergence to the equilibrium measure
from any possible initial conditions, whereas in physics of glasses the notion of a typical initial
condition should be used instead.

2.1.3 Compendium of the 1RSB cavity equations

We review the 1RSB equations on a general CSP. The order parameter is a probability distribution
of the cavity field (BP message) ψa→i = (ψa→i0 , . . . , ψa→iq−1 ). The self-consistent equation for
P a→i reads

P a→i(ψa→i) =
1
Zj→i

∫ ∏
j∈∂a−i

∏
b∈∂j−a

[
dP b→j(ψb→j)

]
× (Zj→i)m δ

[
ψa→i −F({ψb→j})

]
, (2.24)

where the function F({ψb→j}) and the term Zj→i are defined by the BP equation (1.17), Zj→i
is a normalization constant.

The associated thermodynamical potential (2.15) is computed as

Φ(m) =
1
N

[∑
a

logZa+∂a −
∑
i

(li − 1) logZi
]
, (2.25a)

Za+∂a =
∫ ∏

i∈∂a

∏
b∈∂i−a

[
dP b→i(ψb→i)

](
Za+∂a

)m
, (2.25b)

Zi =
∫ ∏

a∈∂i

[
dP a→i(ψa→i)

](
Zi
)m

, (2.25c)

where the terms Za+∂a and Zi are the partition sum contributions defined in (1.19).
The logarithm of the number of states divided by the system size defines the complexity

function Σ. Inversely the number of states is eNΣ. At finite temperature the complexity of states
with a given internal free energy is a Legendre transformation of the potential Φ(m)

Φ(m) = −βmf + Σ(f) , (2.26)
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Useful relations between the free energy, complexity and potential Φ are

∂fΣ(f) = βm , ∂mΦ(m) = −βf , m2∂m
Φ(m)
m

= −Σ . (2.27)

At zero energy, E = 0, and zero temperature, β →∞, the free energy becomes entropy−βf →
s. Then the complexity is a function of the internal entropy of states and (2.26) becomes

Φ(m) = ms+ Σ(s) , (2.28)

with

∂sΣ(s) = −m, ∂mΦ(m) = s , m2∂m
Φ(m)
m

= −Σ . (2.29)

This is called the entropic zero temperature limit. The internal entropy is expressed as

s =
1
N

(∑
a

∆Sa+∂a −
∑
i

(li − 1)∆Si
)
, (2.30)

where ∆Sa+∂a (∆Si resp.) is an internal entropy shift when the constraint a and all its neighbour
(the variable i resp.) are added to the graph.

∆Sa+∂a =

∫ ∏
i∈∂a

∏
b∈∂i−a

[
dP b→i(ψb→i)

](
Za+∂a

)m logZa+∂a∫ ∏
i∈∂a

∏
b∈∂i−a

[
dP b→i(ψb→i)

](
Za+∂a

)m , (2.31a)

∆Si =

∫ ∏
a∈∂i

[
dP a→i(ψa→i)

](
Zi
)m logZi∫ ∏

a∈∂i
[
dP a→i(ψa→i)

](
Zi
)m . (2.31b)

In the energetic zero temperature limit, described in sec. 1.6 for zero energy, the Parisi parameter
y = βm is kept constant, thus m→ 0. The free energy then converges to the energy, and (2.26)
becomes

Φ(y) = −ye+ Σ(e) , (2.32)

where the complexity is this time a function of the energy density e. The survey propagation
equations generalized to nonzero y are called the SP-y equations.

Equations (2.24-2.31) are defined on a single instance of the constraint satisfaction problem.
Averages P over the graph ensemble are obtained in a similar manner as in sec. 1.5.3 for the
replica symmetric solution.

P
[
P (ψ)

]
=

∑
{li}

[∏
li

Q1(li)
] ∫ K−1∏

i=1

li∏
ji=1

{
dP
[
P ji(ψji)

]}
× δ

[
P (ψ)−F2({P ji(ψji)})

]
, (2.33)

where in the sum over {li}, i ∈ {1, . . . ,K − 1}, and the functional F2 is defined by (2.24).
Analogical expression holds for the average of the complexity or internal entropy. A general
method to solve the equation (2.33) is the population of populations described in appendix E.5.
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2.2 Geometrical definitions of clusters

Up to now we were describing clusters, i.e., partitions of the space of solutions, in a very abstract
way which was defined only in the thermodynamical limit. We showed how to compute the
number of clusters of a given size (internal entropy) (2.28), and we argued that the description
makes sense if the point-to-set correlation (2.22) decays to zero within almost every cluster of
that size. In this last sense clusters are what we would call in statistical physics pure equilibrium
states.

On a very intuitive level, cluster are groups of nearby solutions which are in some sense
separated from each other. Several geometrical definitions are used in the literature, we want to
review the most common ones and state their relation to the definition above. We want to stress
that it is not know whether any of the geometric definitions is equivalent to the description given
above and used usually in the statistical physics literature.

Strong geometrical separation, x-satisfiability — First rigorous proofs of existence of an
exponential number of clusters of solutions in the random K-SAT were based on the concept of
x-satisfiability. Two solutions are at distance x if they differ in exactly xN variables. A formula
is said x-satisfiable if there is a pair of solutions at distance x, and x-unsatisfiable if there is not.

Mora, Mézard and Zecchina [MMZ05, DMMZ08] managed to prove that for K ≥ 8 and
a constraint density α near enough to the satisfiability threshold the formulas are almost surely
x-satisfiable for x < x0, almost surely x-unsatisfiable for x1 < x < x2, and almost surely
x-satisfiable at x3 < x < x4, where obviously 0 < x0 < x1 < x2 < x3 < x4 < 1. This means
that at least two well separated clusters of solutions exist. Proving that there is an exponentially
smaller number of pairs of solutions at distances x < x1 than at distances x > x2 leads to the
conclusion that an exponential number of well geometrically separated clusters exists [ART06].

However, the x-satisfiability gives too strong conditions of separability. This is illustrated for
example in the XOR-SAT problem [MM06b]. It is still an open question if there is or not a gap
in the x-satisfiability in the random 3-SAT near to the satisfiability threshold.

Connected-components clusters — Another popular choice of a geometrical definition of
clusters is that clusters are connected components in a graph where every solution is a vertex and
solutions which differ in d or less variables are connected. The distance d is often said to be any
sub-extensive (in the number of variables N ) distance, that is d = o(N). However, such a rule is
not very practical for numerical investigations.

In K-SAT, in fact, d = 1 seems to be a more reasonable choice. There are two reasons:
First, clusters defined via d = 1 have correct ”whitening” properties as we explain in the next
paragraph. Second, we numerically investigated the complexity of d = 1 connected-components
clusters, fig. 2.2 right, and the agreement with the total number of clusters computed from (2.28)
at m = 0 is strikingly good. In particular, near to the satisfiability threshold α > 4.15, where the
1RSB result for the total complexity function is believed to be correct (stable) [MPRT04].

Formally, connected-components clusters have no reason to be equivalent to the notion of
pure states. They are not able to reproduce purely entropic separation between clusters, which
might exist in models like 3-SAT. However, fig. 2.2 suggests that there is more in this definition
than it might seem at a first glance.



Clustering 213

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 2.8  3  3.2  3.4  3.6  3.8  4  4.2  4.4

co
m

p
le

x
it

y

density of constraints

N=25
N=50
N=75

N=100
N=125
N=150

SP

 0

 0.004

 0.008

 4.2  4.25  4.3  4.35

 

 

 

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 3.8  3.9  4  4.1  4.2  4.3

co
m

p
le

x
it

y

density of constraints

N=25
N=50
N=75

N=100
N=125
N=150

SP

Fig. 2.2. (Color online) Right: Complexity of the connected-components clusters. Left: Complexity of the
whitening-core clusters. Both compared to the complexity computed from the survey propagation equa-
tions. The data for the SP complexity are courtesy of Stephan Mertens, from [MMZ06].

Whitening-core clusters — We define the whitening of a solution as iterations of the warning
propagation equations (1.35) initialized in the solution. The fixed point is then called the whiten-
ing core. Note, that the whitening core is well defined in the sense that the fixed point of the
warning propagation initialized in a solution does not depend on the order in which the messages
were updated. A whitening core is called trivial if all the warning messages are 0, that is ”I do
not care”.

The 1RSB equations at m = 0, which give the total complexity function, can be derived
as belief propagation counting of all possible whitening cores [MZ02, BZ04, MMW07]. Thus
another reasonable definition of clusters is that two solutions belong to the same cluster if and
only if their whitening core is identical. In fig. 2.2 left we plot numerically computed complexity
of the whitening-core clusters compared to the complexity computed from (2.28) at m = 0. The
agreement is again good, in particular near to the satisfiability threshold, α > 4.15, where the SP
gives a correct result.

The d = 1 connected-components clusters share the property that all the solution from one
clusters have the same whitening core. Proof: If this would not be true then there have to exist a
pair of solutions which do not have the same whitening core but differ in only one variable, this
is not possible because then the whitening could be started in that variable.

Note, however, that the definition of whitening-core clusters put all the solutions with a trivial
whitening core into one cluster. This is not correct as, at least near to the clustering threshold,
there are many pure states with a trivial whitening core. This is closely connected to the proper-
ties of frozen variables which will be discussed in chapter 4.

Enumeration of clusters in 3-SAT: the numerical method — In order to obtain the data in
fig. 2.2 we generate instances of the random 3-SAT problem with N variables and M clauses,
constraint density is then α = M/N . We count number of solutions in A = 999 random
instances and choose the median one where we count the number of connected-components and
whitening-core clusters S. This is repeated B = 1000 times. The average complexity is then
computed as Σ =

∑B
i=1 logSi/(BN), if the median instance was unsatisfiable then we count
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zero to the average, that is if all the B instances are unsatisfiable then the complexity is zero. We
do such a non-traditional sampling to avoid rare instances with very many solutions, which we
would not be able to cluster.

2.3 Physical properties of the clustered phase

Let us give a summary of the properties of the clustered phase, also called the dynamical 1RSB
phase. We describe only the situation when Σ(m = 1) > 0 (2.28), when the opposite is true the
properties are completely different as we will discuss in the next chapter 3.

The complexity function computed from (2.28) is the log-number of clusters of a given inter-
nal entropy. If a solution is chosen uniformly at random it will almost surely belong to a cluster
with entropy s∗ such that Σ(s) + s is maximized in s∗, ∂sΣ(s∗) = −1, that is m = 1. At m = 1
the total entropy Σ(s∗) + s∗ = Φ(m = 1). The replicated free entropy at Φ(m = 1) is equal to
the replica symmetric entropy. Thus the total entropy in the dynamical 1RSB phase is equal to
the RS entropy. Also the marginal probabilities at m = 1 are equal to the replica symmetric ones∫

dP i→j(ψi→j)ψi→jsi = (ψRS)i→jsi if m = 1 . (2.34)

Thus the clustering transition is not a phase transition in the Ehrenfest sense, because the ther-
modynamical potential, entropy in our case, in analytical at the transition.

The overlap (or here distance) distribution, which is often used to describe the spin glass
phase, is also trivial and equal to the replica symmetric one in the dynamical 1RSB phase. Indeed,
if exponentially many clusters are needed to cover almost all solutions, then the probability that
two solutions happen to belong to the same cluster is zero.

The correlation function between two variables at a distance (shortest path in the graph) d
is defined as 〈sisj〉c = ||µ(si, sj) − µ(si)µ(sj)||TV. The variance of the overlap distribution,
which is negligible compared to 1 as we explained, can be expressed as

∑
i,j〈sisj〉2c/N2, and

thus the two-point correlation have to decay faster with distance than the number on vertices at
that distance is growing. This means in particular that two neighbours of a node i are independent
if we condition on the value of i, this is again consistent with the fact that the belief propagation
equations predict correct total entropy and marginal probabilities.

So far nothing is different form the replica symmetric phase. It is thus not straightforward
to recognize the dynamical 1RSB phase based on the original replica computation. Presence
of this phase was discovered and discussed in [KT87a, KT87b]. Later purely static methods
were developed to identify this phase. The most remarkable is perhaps the ε-coupling and the
”potential” of [FP95, FP97].

In our setting the main difference between the replica symmetric phase and the dynamical
1RSB phase is that in the later the point-to-set correlations do not decay to zero. Consequently
the equilibration time of the local Monte Carlo dynamics diverges and Monte Carlo sampling
becomes difficult [MS06b].

2.4 Is the clustered phase algorithmically hard?

Clustering has important implications for the dynamical behaviour. It slows down the equilibra-
tion and thus uniform sampling of solutions via local single spin flip Monte Carlo is not possible,
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Fig. 2.3. (Color online) The performance of the ASAT algorithm in the 4-coloring of random Erdős-Rényi
graphs. Left: The energy density plotted against the number of steps per variable. Right: The average
running time (per variable) as a function of the connectivity. The time does not diverge at the clustering
transition cd, but beyond it. The other phase transitions marked are the condensation transition cc (chap. 3)
the rigidity transition cr (chap. 4) and the colorability threshold cs

or exponentially slow, beyond the dynamical threshold. But finding one solution is a much sim-
pler problem than sampling.

Analytic arguments — In the 3-coloring of Erdős-Rényi graphs the clustering threshold is
cd = 4, as at this point the spin glass susceptibility diverges, see appendix C. In the terms of
the reconstruction problem the Kesten-Stigum [KS66a, KS66b] bound is sharp. On the other
hand Achlioptas and Moore [AM03] proved that a simple heuristic algorithm is able to find a
solution in average polynomial time up to at least c = 4.03. This shows that the RSB phase is
not necessarily hard.

A similar observation was made in the 1-in-3 SAT problem in [RSZ07]. There is a region
in the values of the average density of constraints and the probability of negating a variable in
a clause in which the replica symmetric solution is unstable and yet the unit clause propagation
algorithm with the short clause heuristics was proven to find a solution in polynomial average
time.

We should mention a common contra-argument; which is that in the above mentioned regions
the 1RSB approach might not be correct, and the presumably full-RSB phase [Par80c] is more
”transparent” for the dynamics of algorithms, see e.g. [MRT04]. However, at least in the 3-
coloring, the 1RSB approach seems to be correct in the interval in question, as we argue in
appendix D.

Stochastic local search — There is a lot of numerical evidence that relatively simple sin-
gle spin flip stochastic local search algorithms are able to find solutions in linear time deep in
the clustered region. Examples of works where performance of such algorithms was analyzed
are [KK07, SAO05, AA06, AAA+08]. In fig. 2.3 we give an example of performance of the
ASAT algorithm [AA06] in 4-coloring of Erdős-Rényi random graphs [ZK07]. The algorithm
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is described in appendix F.2.2. In the 4-coloring ASAT is able to find solutions in linear time
beyond the clustering transition cd = 8.35

Simulated annealing — There is no paradox in the observations above. Quantitative state-
ments are, however, difficult to make. Let us describe on an intuitive level the behaviour of
an algorithm (dynamics) which satisfies the detailed balance condition and thus in infinite time
samples uniformly from the uniform measure (2.1). We think for example about the simulated
annealing [KGV83]. Above the dynamical temperature Td corresponding to an energy Ed the
point-to-set correlation function (2.22) decay fast and thus simulated annealing is able to reach
the equilibrium. Below temperature Td this is not the case anymore and the dynamics is stuck
for a very long time in one of the clusters, states. But the bottom of this state Ebottom lies lower
thanEd, thus when lowering the temperature the average energy seen by the simulated annealing
also decreases. If Ebottom = 0 then the algorithm will find a solution. It is not known how to
compute Ebottom in general. Sometimes, far from the clustering transition, the iso-complexity
approach [MRT04] gives a lower bound on Ebottom. But in general, as far as we know, there is
no argument saying Ebottom > 0. This picture can be substantiated for several simple models as
the spherical p-spin model [CK93] or the random subcubes model [MZ08]. The connection with
the optimization problems was remarked in [KK07].

For the stochastic local search algorithm, which does not satisfy the detailed balanced condi-
tion, the situation might be similar. At a point the algorithm is stuck in a cluster, but if this cluster
goes down to the zero energy then it might be able to find solutions even in the clustered phase.

However, the current understanding of the dynamics of the mean field glassy systems is far
from complete. More studies are needed to understand better the link between the static clustered
phase and the dynamical behaviour.
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3 Condensation

In this chapter we will describe the so-called condensed clustered phase. Before turning to the
models of our interest we present the random subcubes model [MZ08], where the condensation
of clusters can be understood on a very elementary probabilistic level. After mentioning that
the condensed phase is in fact very well known in spin glasses we describe the Poisson-Dirichlet
process which determines the distribution of sizes of clusters in that phase. Further, we discuss
general properties of the condensed phase in random CSPs. And finally we address our original
question and conclude that the condensation is not much significant for the hardness of finding
a solution [ZK07].

3.1 Condensation in a toy model of random subcubes

The random-subcubes model [MZ08] is defined by its solution space S ⊆ {0, 1}N ; we define S
as the union of b2(1−α)Nc random clusters (where bxc denotes the integer value of x). A random
cluster A being defined as:

A = {σ | ∀i ∈ {1, . . . , N}, σi ∈ πAi }, (3.1)

where πA is a random mapping:

πA : {1, . . . , N} −→ {{0}, {1}, {0, 1}} , (3.2)
i 7−→ πAi , (3.3)

such that for each variable i, πAi = {0} with probability p/2, {1} with probability p/2, and
{0, 1} with probability 1 − p. A cluster is here a random subcube of {0, 1}N . If πAi = {0} or
{1}, variable i is said “frozen” in A; otherwise it is said “free” in A. In this model one given
configuration σ might belong to zero, one or several clusters.

We describe the static properties of the set of solutions S in the random-subcubes model in
the thermodynamic limit N → ∞ (the two parameters 0 ≤ α ≤ 1 and 0 ≤ p ≤ 1 being fixed
and independent of N ). The internal entropy s of a cluster A is defined as 1

N log2 |A|, i.e., the
fraction of free variables in A. The probability P(s) that a cluster has internal entropy s follows
the binomial distribution

P(s) =
(
N

sN

)
(1− p)sNp(1−s)N . (3.4)

Then the number of clusters of entropy s, denoted N (s), is with high probability

lim
N→∞

1
N

log2N (s) =
{

Σ(s) ≡ 1− α−D(s ‖ 1− p) if Σ(s) ≥ 0,
−∞ otherwise, (3.5)

where D(x ‖ y) ≡ x log2
x
y + (1− x) log2

1−x
1−y is the binary Kullback-Leibler divergence.

We compute the total entropy stot = 1
N log2 |S|. First note that a random configuration

belongs on average to 2N(1−α)(1− p
2 )N clusters. Therefore, if

α < αd ≡ log2 (2− p), (3.6)

then with high probability the total entropy is stot = 1.
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Now assume α > αd. The total entropy is given by a saddle-point estimation:∑
A

2s(A)N = [1 + o(1)]N
∫

Σ(s)≥0

ds 2N [Σ(s)+s], (3.7)

whence stot = max
s

[Σ(s) + s |Σ(s) ≥ 0]. (3.8)

We denote by s∗ = argmaxs[Σ(s) + s |Σ(s) ≥ 0] the fraction of free variables in the clusters
that dominate the sum. Note that our estimation is valid (there is no double counting) since in
every cluster the fraction of solutions belonging to more than one cluster is exponentially small
as long as α > αd.

Define s̃ ≡ 2(1−p)/(2−p) such that ∂sΣ(s̃) = −1. The complexity of clusters with entropy
s̃ reads:

Σ(s̃) =
p

2− p
+ log2(2− p)− α. (3.9)

s̃ maximizes eq. (3.8) as long as Σ(s̃) ≥ 0, that is if

α ≤ αc ≡
p

(2− p)
+ log2 (2− p). (3.10)

Then the total entropy reads

stot = 1− α+ log2 (2− p) for α ≤ αc. (3.11)

For α > αc, the maximum in (3.8) is realized by the largest possible cluster entropy smax, which
is given by the largest root of Σ(s). Then stot = s∗ = smax. We will show in the next section
that in such a case almost all solutions belong to only a finite number of largest clusters. This
phase is thus called condensed, in the sense that almost all solutions are ”condensed” in a small
number of clusters.

In summary, for a fixed value of the parameter p, and for increasing values of α, four different
phases can be distinguished:

(a) Liquid (replica symmetric) phase, α < αd: almost all configurations are solutions.

(b) Clustered (dynamical 1RSB) phase with many states, αd < α < αc: an exponential
number of clusters is needed to cover almost all the solutions.

(c) Condensed clustered phase, αc < α < 1: a finite number of the biggest clusters covers
almost all the solutions.

(d) Unsatisfiable phase, α > 1: no cluster, hence no solution, exists.

3.2 New in CSPs, well known in spin glasses

The complexity function Σ(s) (2.26) in random CSPs is counting the logarithm of the number of
clusters per variable which have internal entropy s per variable. We define dominating clusters
in the same way as in the random subcubes model, that is clusters of entropy s∗ such that

s∗ = arg max
s,Σ(s)>0

[
Σ(s) + s

]
. (3.12)
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Fig. 3.1. (Color online) The complexity function in the random subcubes model, Σ(s) (3.5), for p = 0.8
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transition αd ≈ 0.263 is far away from the plotted values, the condensation transition is αc ≈ 0.930, the
satisfiability αs = 1.

In chap. 2 we discussed properties of the dynamical 1RSB phase, that is when Σ(s∗) > 0, in
other words when there are exponentially many dominating clusters.

The condensed phase with Σ(s∗) = 0, described in the random subcubes model, exists also
in random CSPs. And in the context of constraint satisfaction problems it was first computed
and discussed in [MPR05] and [KMRT+07]. However, historically it was the condensed phase
where the 1RSB solution was first worked out [Par80c]. A very simple example of condensation
can also be found in the random energy model [Der80, Der81]. As we discussed in the previous
chapter 2, the dynamical 1RSB phase is well hidden within the replica solution — the total
entropy is equal to the replica symmetric entropy, the overlap distribution is trivial and the two-
point correlation functions decay to zero etc. All this changes in the condensed phase.

A small digression to the physics of glasses: In structural glasses, the analog of the condensa-
tion transition is well known for a long time, its discovery goes back to Kauzmann in 1948 who
studied the configurational entropy of glassy materials. Configurational entropy is the difference
between the total (experimentally measured) entropy and the entropy of a solid material, this thus
corresponds to the complexity function. In the so called fragile structural glasses [Ang95] the
extrapolated configurational entropy becomes zero at a positive temperature, nowadays called
the Kauzmann temperature. The Kauzmann temperature in the real glasses is, however, only
extrapolation. The equilibration time in glasses exceeds the observation time high above the
Kauzmann temperature. It is a widely discussed question if there exists a true phase transition at
the Kauzmann temperature or not, for a recent discussion see [DS01].
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Why does Parisi maximize the replicated free energy? As we said, it is the condensed phase
which was originally described by Parisi and his one-step replica symmetry breaking solution
[Par80c]. Let us now briefly clarify the relation to the replica solution, similar reasoning first
appeared in [Mon95]. In sec. 2.1 we called the Legendre transform of the complexity function
the replicated free entropy Φ(m) (2.26). In the replica approach the replicated entropy Ω(m) =
Φ(m)/m is computed. From (2.28) follows

Ω(m) = s+
Σ(s)
m

where
∂Ω(m)
∂m

= −Σ(s)
m2

. (3.13)

Thus, in the condensed phase, computing the largest root of the function Σ(s), in order to max-
imize the total entropy, is equivalent to extremizing the replicated entropy Ω(m). Moreover, as
the function Σ(s) is concave and the parameter m is minus its slope this extrema have to be a
minima. Thus in the Parisi’s replica solution we have to minimize the replicated entropy function
with respect to the parameter m. If a temperature is involved then this becomes a maximization
of the replicated free energy, this might have seem contra-intuitive in the original solution, but it
comes out very naturally in our approach. Other physical interpretation of the maximization was
proposed e.g. in [Jan05].

3.3 Relative sizes of clusters in the condensed phase

What is the number of dominating clusters in the condensed phase and what are their relative
sizes? So far we know that the entropy per variable of the dominating states is s∗ + o(1) and
that their number is sub-exponential, Σ(s∗) = 0. But much more can be said based on purely
probabilistic considerations.

Consider that the total number of clustersN is exponentially large in the system size N , and
that N → ∞. Let the log-number of clusters of a given entropy be distributed according to an
analytic function Σ(s). Denote −m∗ = ∂sΣ(s∗), in the condensed phase 0 < m∗ < 1. Denote
the size of the αth largest cluster eNs

∗+∆α , ∆α = O(1). The probability that there is a cluster of
size between eNs

∗+∆ and eNs
∗+∆+d∆, ∆ � d∆, is e−m

∗∆d∆, in other words points ∆α are
constructed from a Poissonian process with rate e−m

∗∆ 1. Relative size of the αth largest cluster
is defined as

wα =
e∆α∑N
γ=1 e

∆γ

. (3.14)

Point process wα which is constructed as described above is in mathematics called the Poisson-
Dirichlet process [PY97]. The connection between this process and the relative weights of states
in the mean field models of spin glasses was (on a non-rigorous level) understood in [MPV85],
for more mathematical review see [Tal03]2.

Any moment of any wα can be computed from the generating function [PY97]

E[exp (−λ/wα)] = e−λφm∗(λ)α−1ψm∗(λ)−α , (3.15)
1Note that in the random subcubes model the numbers (Ns∗ + ∆α) log(2) are integers equal to the number of free

variables in the cluster Aα. Then ∆α are discrete and some of the properties of the resulting process might be different
from the Poisson-Dirichlet.

2To avoid confusion, note that the Poisson-Dirichlet process we are interested in is the PD(m∗, 0) in the notation
of [PY97]. In the mathematical literature, it is often referred to the PD(0, θ) without indexing by the two parameters.
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Fig. 3.2. (Color online) The fractions of solutions covered by the largest clusters as a function of parameter
m∗. The lower curve is related to the size of the largest clusters as 1/E[1/w1] = 1 −m∗. The following
curves are related to the size of i largest clusters, their distances are E[Rα]E[Rα−1] . . .E[R1](1−m∗).

where λ ≥ 0 and the functions φm∗ and ψm∗ are defined as

φm∗(λ) = m∗
∫ ∞

1

e−λxx−1−m∗dx , (3.16a)

ψm∗(λ) = 1 +m∗
∫ 1

0

(1− e−λx)x−1−m∗dx . (3.16b)

The second moments can be used to express the average probability Y that two random solutions
belong to the same cluster

Y = E
[ N∑
α=1

w2
α

]
= 1−m∗ . (3.17)

This was originally derived in [MPV85]
Another useful relation [PY97] is that the ratio of two consequent points Rα = wα+1/wα,

α = 1, 2, . . . ,N is distributed as αm∗Rαm
∗−1

α . In particular its expectation is E[Rα] =
αm∗/(1 + αm∗) and the random variables Rα are mutually independent. We used these re-
lation to obtain data in figure 3.2.

From the properties of the Poisson-Dirichlet process, it follows that an arbitrary large fraction
of the solutions can be covered by a finite number of clusters. When m∗ is near to zero, that is
near to the satisfiability threshold, the largest cluster covers a large fraction of solutions. On the
other side, when m∗ is near to one, that is near to the condensation transition, very many (but
finite in N ) clusters are needed to cover a given fraction of solutions.
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3.4 Condensed phase in random CSPs

The total entropy in the condensed phase is strictly smaller than the replica symmetric entropy,
stot = s∗ < sRS. At the condensation transition cc the total entropy is non-analytic, it has a
discontinuity in the second derivative. This can be seen easily for example from the expressions
for the random subcubes model. At a finite temperature the discontinuity in the second derivative
of the free energy corresponds to a jump in the specific heat. The parameter m∗ = 1 at the
condensation transition and decreases monotonously to m∗ = 0 at the satisfiability threshold.

Concept of self-averaging — In the physics of disordered systems the self-averaging is a
crucial concept. We say that quantity A measured on a system (graph) of N variables is self-
averaging if in the limit N →∞

E(A2)−
[
E(A)

]2[
E(A2)

] → 0 , (3.18)

where the average E
[
·
]

is over all the disorder in the system. In other words a quantity is self-
averaging if its value on a typical large system is equal to the average value. By computing the
average value we thus describe faithfully the typical large system. And also measuring A on a
single large system is enough to represent the whole ensemble. On finite-dimensional lattices
and off criticality extensive quantities are always self-averaging. This can be shown by building
the large lattice from smaller blocks, the additivity of an extensive quantity and the central limit
theorem then ensures the self-averaging. At the critical point, on a mean field lattice (fully
connected or tree-like) or for non-extensive quantities the answer whether A is self-averaging or
not becomes nontrivial.

In the condensed phase quantities which involve the weights of clusters are not self-averaging.
This arises from the fact that the dominating clusters are different in every realization of the
system. Statistical properties of many quantities of interest can be described from the Poisson-
Dirichlet process.

Overlap distribution — The overlap between two solutions is defined as one minus the Ham-
ming distance

q({s}, {s′}) =
1
N

N∑
i=1

δ(si, s′i) . (3.19)

The overlap between two solutions belonging to two different dominating clusters is q0, and
between two solutions belonging to the same dominating cluster q1. Values q0 and q1 are self-
averaging. The distribution of overlaps in the limit N →∞ can thus be written as

P (q) = w δ(q − q1) + (1− w) δ(q − q0) , (3.20)

where the weight w is the probability that two random solutions belong to the same cluster. Thus
w =

∑N
α=1 w

2
α, where wα are weights of the clusters (3.14) given by the Poisson-Dirichlet pro-

cess. The weights change from realization to realization, w is thus not a self-averaging quantity,
its typical value fluctuates around the mean E(w) = 1−m∗ computed in (3.17). The distribution
of the random variable w is also known [MPS+84].



Condensation 223

Two-point correlation functions — The variance of the overlap distribution is

var q =
∫
q2P (q) dq −

[ ∫
q P (q) dq

]2
= w(1− w)(q1 − q0)2 . (3.21)

At the same time the variance is equal to

var q =
1
N2

∑
i,j

∑
si,sj

|µ(si, sj)− µ(si)µ(sj)|

≈ 1
N

∑
i

∑
si,s0

|µ(si, s0)− µ(si)µ(s0)| , (3.22)

where s0 is a typical variable in the random graph. If we consider that the two-point correlation
function is of order one up to a correlation length ξ and zero after that we get

var q ≈ 1
N
cξ , (3.23)

where c is approximately the branching factor. In the condensed phase the variance of the overlap
is of order one thus the correlation length has to be of order logN . But the shortest path between
two random variables is also of order logN thus the two-point correlations cannot be neglected
in the condensed phase.

If two-point correlations cannot be neglected then the derivation of belief propagation equa-
tions (1.16a-1.16b) is not valid, because we supposed that the neighbours of a node i are indepen-
dent when we condition on the value of i. It is thus not surprising that the value to which the BP
equations converge (if they do), does not correspond to the true marginal probability. Formally,
the BP fixed point corresponds to the 1RSB equations at m = 1, but in the condensed phase
m∗ < 1.

In fact, the probability distribution of the true marginal probabilities is another example of a
non self-averaging quantity. It again depends on the realization of the Poisson-Dirichlet process.

3.5 Is the condensed phase algorithmically hard?

From the algorithmic point of view the only important difference between the dynamical 1RSB
phase and the condensed phase is that in the condensed phase the belief propagation does not es-
timate correctly the asymptotic marginal probabilities. In the condensed phase, the total entropy
cannot be estimated from the BP equations either, thus approximative counting and sampling of
solutions will probably be even harder than in the dynamical 1RSB phase.

Concerning the hardness of finding a solution we might expect that the incorrectness of the
belief propagation estimates of marginals will play a certain role. However, we used the be-
lief propagation maximal decimation as described in appendix F.1.2 in the 3- and 4-coloring,
see fig. 3.3. And this algorithm does not seem to have any problem to pass the condensation
transition in both these cases. In particular, in the 3-coloring the gap between the condensation
threshold cc = 4 and the limit of performance of the BP decimation c ≈ 4.55 is huge. The
rigidity transition cr, defined in chapter 4, and the colorability threshold cs are also marked for
comparison in fig. 3.3.

The condensation transition thus does not seem to play any significant role for the computa-
tional hardness of finding a solution.
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Fig. 3.3. (Color online) The performance of the maximal BP decimation algorithm, described in ap-
pendix F.1.2, in the 3-coloring (left) and the 4-coloring (right) of random graphs. This algorithm is able to
color random graphs beyond both the clustering cd and the condensation cc transitions in 3- and 4-coloring.
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4 Freezing

The previous two chapters describe recent contributions to the understanding of the clustering
and condensation of solutions in random constraint satisfaction problems. Both these concepts
are well known and widely discussed in the mean field theory of glasses and spin glasses for at
least a quarter of a century.

The concept of freezing of variables appeared in the studies of optimization problems, that
is systems at zero temperature (or infinite pressure). In this chapter we first define the freez-
ing of variables, clusters and solutions, and discuss its properties both in the thermodynamical
limit and on finite-size instances. Then we explain how to describe the frozen variables within
the one-step replica symmetry breaking approach and we define several possible phase tran-
sition associated to the freezing. To simplify the picture we define and solve the ”completely
frozen” locked constraint satisfaction problem where every cluster contains only one configu-
ration. Finally we give several arguments about connection between the freezing and the av-
erage computational hardness. Results of this section are mostly original and were published
in [ZK07, KZ08a, AZ08, ZM08].

4.1 Frozen variables

Consider a set of solutions S of a given instance of a constraint satisfaction problem. Define
that a variable i is frozen in the set of solutions A ⊂ S if it is assigned the same value in all the
solutions in the set. If an extensive number of variables is frozen in the set A, then we call A and
all the solutions in A frozen, otherwise A and all the solutions in A are called soft (unfrozen).

A first observation is that the set of all solutions S is not frozen in the satisfiable phase. If
it would be then adding one constraint, i.e., increasing the constraint density by 1/N , would
make the formula unsatisfiable with a finite probability, that would be in a contradiction with the
sharpness of the satisfiability threshold. The backbone is made of variables frozen in the set of
ground states. An extensive backbone can thus exist only in the unsatisfiable phase. Already
in [MZK+99b] it was argued that there might be a connection between the backbone and the
computational hardness of the problem. The suggestion of [MZK+99b] was that if the fraction
of variables covered by the backbone is discontinuous at the satisfiability transition then it is hard
to find satisfying assignments on highly constrained but still satisfiable instances. On the other
hand if the backbone appears continuously the problem is easy in the satisfiable phase. This was
based on the replica symmetric solution of the random K-SAT which does not describe fully the
phase space, in spite of that the relation between the existence of frozen variables inside clusters
and the algorithmical hardness seems to be deep and we will develop it in this chapter.

4.1.1 Whitening: A way to tell if solutions are frozen

How to recognize if clusters have frozen variables or not. Or how to recognize if a given solution
belongs to a frozen cluster or not. An iterative procedure called whitening [Par02a] gives an
answer to these questions.

Given a formula of a CSP and one of its solutions {si} ∈ {−1, 1}N , i = 1, . . . , N , the
whitening of the solution is defined as iterations of the warning propagation equations (1.35)
initialized on the solution. That is, for a binary CSP hi→ainit = si, and ua→iinit is computed according
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to eq. (1.35b). Note that the fixed point of the whitening does not depend on the order in which
the warnings are updated. Indeed, during the iterations the only changes in warnings are from
non-zero values to zero values. The fixed point is called the whitening core of the solution. The
whitening core is called trivial if all the warnings are equal to 0, and nontrivial otherwise.

In the K-SAT problem whitening can be reformulated in a very natural way: Start with the
solution {si}, assign iteratively a ”∗” (joker) to variables which belong only to clauses which
are already satisfied by another variable or already contain a ∗ variable. On a general CSP such
procedure is not equivalent to the whitening, and the warning propagation definition has to be
used instead in order to obtain all the desired properties and relations to the 1RSB solution.

We now argue that if the 1RSB solution is correct, then frozen variables in the cluster, to
which solution {si} belongs, asymptotically correspond to variables for which in the whitening
core the total warning hi 6= 0 (1.37). Thus whitening can be used to decide if the solution
{si} belongs to a frozen cluster without knowing all the solutions in that cluster. The first step
to show this property is, as in sec. 2.1.1, to consider the CSP on a tree with given boundary
conditions which are compatible with a non-empty set of solutions S in the interior of the tree.
Starting on the leaves we compute iteratively the warnings (1.35) down to the root. Variables
which have at least one non-zero incoming warning are frozen in the set S. The correctness of
the 1RSB approach on a tree-like graph means that the picture on a tree captures properly all the
asymptotic properties. In particular, the whitening core determines the set of frozen variables
on typical large instances of the problem. The correctness of the 1RSB solution is an essential
assumption for the above statement. Because all the long-range correlations decay within one
cluster the warnings ua→i in the whitening core are independent in the absence of i. Thus there
truly exist solutions in that cluster in which the variable i takes all the values allowed by the
warnings. And on the other hand, if a value is not allowed by the warnings there is no solution
where i would be taking this value. For consistency, all solutions in one cluster have to have the
same whitening core. However, two different clusters can have the same whitening core. The
most important example are all the soft (not frozen) clusters that all have the trivial whitening
core.

Whitening, as the iterative fixed point of the warning propagation, may be defined not only
for a solution but for any configuration. In this way one may find blocking metastable states. For
some preliminary numerical considerations see [SAO05].

4.1.2 Freezing on finite size instances

The definition of whitening is applicable to any (non-random, small, etc.) instance. What does
then remain from the asymptotic correspondence between frozen variables and whitening cores?

Consider now clusters as connected components in the graph where all solutions are nodes
and where edges are between solutions which differ in only one variable, as in sec. 2.2. Several
questions arise about this definition:

• Do all the solutions in the connected-components cluster have the same whitening core?
The answer is yes. If there were two solutions with different whitening cores which can be
connected by a chain of single-variable flips, then along this chain there would exist a pair
of solutions which differ in only one variable i and have different whitening cores. But this
is not possible, as the fixed point of the whitening does not depend on the order in which
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the warnings were updated, and one could thus start the whitening by setting warnings
hi→a = 0.

• Does the whitening core of a connected-components cluster correspond to the set of frozen
variables? The answer is: If in the whitening core hi 6= 0 (1.37) then the variable i is frozen
in the connected-components cluster. Proof: If such a variable i is not frozen, then there
have to exist a pair of solutions which differ only in the value of this variable. Then all
the constraints around i have to be compatible with both these values, this would be in
contradiction with hi 6= 0. On the other hand, if in the whitening core hi = 0 then the
variable i might still be frozen in the connected-components cluster on a general instance,
because correlations which are not considered by the 1RSB solution may play a role.

Consider now clusters as the set of all solutions which share the same whitening core.
Whitening-core clusters are aggregations of the connected-components clusters. In particular,
all the solutions with a trivial whitening core, which might correspond to exponentially many
pure states, are put together.

• What is the set of frozen variables in the whitening-core clusters? The answer is: Again if
in the whitening core hi 6= 0 then the variable i is frozen in the whitening-core cluster. In
principle, one whitening-core cluster could be an union of several connected-components
cluster, but i is frozen to the same value in each of them. The inverse is not correct in
general. On finite size instances some variables with a zero warning hi = 0 might be
frozen in the whitening-core cluster.

• Can there be a fixed point of the warning propagation (1.35) corresponding to zero energy
(1.38) which is not compatible with any solution? The answer is yes. And such fixed
points were observed in [BZ04, MMW07, KSS07b]. Again if the 1RSB solution is correct
then in the thermodynamical limit these ”fake” fixed points are negligible.

4.1.3 Freezing transition in 3-SAT - exhaustive enumeration

Before turning to the cavity description of frozen clusters we investigate the freezing transition
in the random 3-SAT numerically. We define the freezing transition, αf , as the smallest density
of constraints α such that the whitening core of all solutions is nontrivial, i.e., not made only
from zero warnings. We use the whitening core in the definition instead of the real set of frozen
variables, because it does not depend on the definition of clusters and it has much smaller finite
size effects. The existence of such a frozen phase was proven in the thermodynamical limit for
K ≥ 9 of the K-SAT near to the satisfiability threshold in [ART06].

In order to determine the freezing transition we start with a 3-SAT formula of N variables
and all possible clauses, and remove the clauses one by one independently at random1. We mark
the number of clausesMs where the formula becomes satisfiable as well as the number of clauses
Mf ≤Ms where at least one solution starts to have a trivial whitening core. We repeat B-times
(B = 2 · 104 in fig. 4.1) and compute the probabilities that a formula of M clauses is satisfiable
Ps(α,N), and unfrozen Pf (α,N) respectively. Due to the memory limitation we could treat

1In practice we do not start with all the clauses, but as many that in all the repetitions of this procedure the initial
instance is unsatisfiable.
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Fig. 4.1. (Color online) Left: Probability that there exists an unfrozen solution as a function of the constraint
density α for different system sizes. The clustering [KMRT+07] and satisfiability [MPZ02] transitions
marked for comparison. Right: A 1:20 zoom on the critical (crossing) point, our estimate for the freezing
transition is αf = 4.254 ± 0.009. The curves are cubic fits in the interval α ∈ (4, 4.4). The arrows
represent estimates of the limits of performance of the best known local search ASAT [AA06] and survey
propagation [Par03, CFMZ05] algorithms.

only instances which have less than 5 · 107 solutions which limits us to system sizes N ≤ 100.
The results for the satisfiability threshold are shown in fig. 1.3 and are consistent with previous
studies in [KS94,MZK+99b,MZK+99a]. The probability of being unfrozen, Pf (α,N), is shown
in fig. 4.1.

It is tempting to perform a scaling analysis as has been done in [KS94,MZK+99b,MZK+99a]
for the satisfiability threshold. The critical exponent related to the width of the scaling window
was defined via rescaling of the constraint density α as N1/νs [1 − α/αs(N)]. Note, however,
that the estimate νs = 1.5 ± 0.1 for 3-SAT provided in [MZK+99a] is not asymptotically cor-
rect. It was proven in [Wil02] that νs ≥ 2. Indeed, it was shown numerically in [LRTZ01] that a
crossover exists at sizes of order N ≈ 104 in the related XOR-SAT problem. A similar situation
happens for the scaling of the freezing transition, Pf (α,N), as the proof of [Wil02] applies also
here 2. It would be interesting to investigate the scaling behaviour on an ensemble of instances
where the results of [Wil02] do not apply (e.g. graphs without leaves). However, we concentrate
instead on the estimation of the critical point, which we do not expect to be influenced by the
crossover in the scaling. We are in a much more convenient situation for the freezing transition
than for the satisfiability one. The crossing point between functions Pf (α,N) for different sys-
tem sizes seems to depend very little on N , while for the satisfiability transition it depends very
strongly on N , compare the zooms in figs. 1.3 and 4.1.

We determine the value of the freezing transition in random 3-SAT as

αf = 4.254± 0.009 , (4.1)

which is very near but seems separated from the satisfiability threshold αs = 4.267 [MZ02,
MMZ06]. In any case the frozen phase in 3-SAT is very narrow, that is in contrast with the
situation in K ≥ 9 SAT where it covers at least 1/5 of the large clustered phase [ART06].

2Theorem 1 of [Wil02] applies to the freezing property where the bystander are clauses containing two leaves.
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4.2 Cavity approach to frozen variables

In this section we present how to describe the frozen variables within the 1RSB cavity solution.
We illustrate the results on an example of the random graph coloring where properties of frozen
variables were studied in detail for the first time [ZK07].

The energetic 1RSB (survey propagation), sec. 1.6-1.7, aims to count the total number of
frozen clusters. More precisely, it counts the total number of fixed points of the warning propa-
gation (1.35). It can be used to locate the satisfiability threshold or to design survey propagation
based solvers [MPZ02, MZ02]. However, as we understood in chapter 2, by neglecting the soft
clusters we cannot locate the clustering transition. In chapter 3 we defined the dominant clusters,
i.e., those which cover almost all solutions. A natural question arises immediately: Are the dom-
inant clusters frozen or soft? In order to answer the general entropic 1RSB equations (2.24,2.28)
have to be analyzed.

4.2.1 Frozen variables in the entropic 1RSB equations

We remind that in the 1RSB solution of the graph coloring problem the components of the mes-
sages (called also the cavity fields) ψi→jsi are the probabilities that in a given cluster the node i
takes the color si when the constraint on the edge (ij) is not present. The belief propagation
equations, (1.16) in general, (2.5) in coloring, then define the consistency rules between the field
ψi→jsi and fields incoming to i from the other variables than j. In the zero temperature limit we
can classify fields ψi→jsi in the following two categories:

(i) The hard (frozen) field corresponds to the case when all components of ψi→j are strictly
zero except the one for color s. This means that in the absence of edge (ij), variable i
takes color s in all the solutions from the cluster in question.

(ii) The soft field corresponds to the case when more than one component of ψi→jsi is nonzero.
The variable i is thus not frozen in the absence of edge (ij), and the colors of all the
nonzero components are allowed.

This distinction is also meaningful for the full probabilities ψisi (1.18). By definition, the variable
i is frozen in the cluster if and only if ψisi is a hard field.

It is important to stress that some of the soft fields on a given instance of the problem might
be very small. Some of them might even scale like e−N . We insist on classifying those as the soft
fields because they cannot create real contradictions. This subtle distinction becomes important
mainly in the implementation of the population dynamics algorithm, see appendix E.

The distribution of fields over clusters P i→j(ψi→j) (2.24), which is the ”order parameter” of
the 1RSB equation, can be decomposed into the hard-field part of a weight ηi→js and the soft-field
part P i→jsoft of a weight ηi→j0 = 1−

∑q
s=1 η

i→j
s

P i→j(ψi→j) =
q∑
s=1

ηi→js I(ψi→jfrozen into s) + ηi→j0 P i→jsoft (ψi→j) . (4.2)

Hard fields in the simplest case, m = 0 — First, we derive equations for the hard fields when
the parameter m = 0 in (2.24). This will, in fact, lead to the survey propagation equations, for
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coloring originally derived in [MPWZ02, BMP+03] from the energetic 1RSB method (1.6). For
simplicity we write the most general form only for the 3-coloring.

We plug (4.2) into eq. (2.24). The reweighting factor (Zi→j)m at m = 0 is either equal to
zero, when the arriving fields are hard and contradictory, or equal to one. This is the origin of a
significant simplification. The outcoming field ψi→j might be frozen in direction s if and only if
for every other color r 6= s there is at least one incoming field frozen to the color r. The update
of probability ηi→js that a field is frozen in direction s is for the 3-coloring written as

ηi→js =

∏
k∈i−j(1− ηk→is )−

∑
p 6=s

∏
k∈i−j(η

k→i
0 + ηk→ip ) +

∏
k∈i−j η

k→i
0∑

p

∏
k∈i−j(1− ηk→ip )−

∑
p

∏
k∈i−j(η

k→i
0 + ηk→ip ) +

∏
k∈i−j η

k→i
0

. (4.3)

In the numerator there is a telescopic sum counting the probability that color s and only color s
is not forbidden by the incoming fields. In the denominator there is the normalization, i.e., the
telescopic sum counting the probability that there is at least one color which is not forbidden.
The crucial observation is that at m = 0 the self-consistent equations for η do not depend on the
soft-fields distribution P i→jsoft (ψi→j).

If we do not aim at finding of a proper coloring on a single graph but just at computing of
the complexity function and similar quantities, we can further simplify eq. (4.3) by imposing the
color symmetry. Indeed, the probability that in a given cluster a field is frozen in the direction of
a color s has to be independent of s. Then (4.3) becomes, now for general number of colors q:

ηi→j = w({ηk→i}) =

∑q−1
l=0 (−1)l

(
q−1
l

)∏
k∈i−j

[
1− (l + 1)ηk→i

]∑q−1
l=0 (−1)l

(
q
l+1

)∏
k∈i−j [1− (l + 1)ηk→i]

. (4.4)

We remind that since ∂Σ(s)/∂s = −m (2.28), the value m = 0 corresponds to the point s̃
where the function Σ(s) has a zero slope. If a nontrivial solution of (4.3) exists, then Σ(s̃)|m=0 is
the maximum of the curve Σ(s). And if the 1RSB solution for clusters atm = 0 is correct then it
is counting the total log-number of clusters of size s̃, which is due to the exponential dependence
also the total log-number of all clusters, regardless of their size.

Frozen variables at general m, generalized SP — Let us compute how the fraction of hard
fields η evolves after one iteration of equation (2.24) at a general value of m. There are two
steps in each iteration of (2.24). In the first step, η iterates via eq. (4.4). In the second step we
re-weight the fields. Writing P hard

m (Z) the —unknown— distribution of the reweightings Zm

for the hard fields, one gets

ηi→j =
1
N i→j

∫
dZi→j P hard

m (Zi→j)
(
Zi→j

)m
w({ηk→i})

=
w({ηk→i})
N i→j

∫
dZi→j P hard

m (Zi→j)
(
Zi→j

)m
=

w({ηk→i})
N i→j 〈Zi→jm 〉hard . (4.5)

A similar equation can formally be written for the soft fields

1− qηi→j =
1− qw({ηk→i})

N i→j 〈Zi→jm 〉soft . (4.6)
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Writing explicitly the normalizationN i→j , we finally obtain the generalized survey propagation
equations:

ηi→j =
w({ηk→i})

qw({ηk→i}) + [1− qw({ηk→i})] r(m, {ηk→i})
, (4.7)

where r is the ratio of average reweighting factors of the soft and hard fields

r(m, {ηk→i}) =
〈Zi→jm 〉soft

〈Zi→jm 〉hard

. (4.8)

In order to do this recursion, the only nontrivial information needed is the ratio r between
soft- and hard-field average reweightings, which depends on the full distribution of soft fields
P i→jsoft (ψi→j). Eq. (4.7) is easy to use in the population dynamics and allows to compute the
fraction of frozen variables in typical clusters of a given size (for a given value m).

There are two cases where eq. (4.7) simplifies so that the hard-field recursion becomes in-
dependent from the soft-field distribution. The first case is, of course, m = 0. Then r = 1
independently of the edge (ij), and the equation reduces to the original SP. The second case
arises for m = 1, where the eq. (4.7) can be written as the equation for the naive reconstruction
(2.4). The probability that a variables is frozen atm = 1 is the same at the probability that leaves
(far away variables) determine uniquely the root in the reconstruction problem, see sec. 2.1.1.

Frozen variables and minimal rearrangements — Montanari and Semerjian [MS05,Sem08]
developed a very interesting connection between frozen variables and the so-called minimal re-
arrangements. Given a CSP instance, one of its solutions {si} and a variable i, find the nearest
solution to {si} where the values of the variable i is changed to s′i 6= si. The set of variables on
which these two solutions differ is called the minimal rearrangement. It was shown in [Sem08]
that the size of the average (over variables i, the solution {si}, and the graph ensemble) minimal
rearrangement diverges at the rigidity transition (when almost all the dominant clusters become
frozen). Indeed, the cavity approach to minimal rearrangements leads to equations analogous to
those for frozen variables. Part of the reasoning is the following [SAO05]: Consider a solution
of a K-SAT formula and a variable i from its whitening core. By flipping the variable i at least
one neighbouring constraint a is made unsatisfied, otherwise the variable would not be in the
whitening core. All variables contained in a are also in the whitening core, thus one of them has
to be flipped in order to satisfy this constraint. There have to be a chain of flips which can be
finished only by closing a loop. The length of the shortest loop going through a typical variable
is of order logN . Thus a diverging number of changes is needed to find another solution. Hence
the connection between frozen variables and rearrangements is:

• If the variable i is frozen in the cluster to which the solution {si} belongs, then in order to
change the value of i one has to find a solution from a different cluster, thus at an extensive
Hamming distance.

• If the variable i is not frozen in the cluster to which the solution {si} belongs, then the
best rearrangement will probably also lie within that cluster and the Hamming distance is
finite.
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Many more results about rearrangements can be found in [Sem08], they shed light on the
onset of frozen variables. An exciting possibility is that the cavity equations for rearrangements
might be useful in incremental algorithms for CSPs, like the one of [KK07].

4.2.2 The phase transitions: Rigidity and Freezing

A natural question is: “In which clusters are the hard fields present?” Or more in the terms
of the 1RSB solutions: “When does eq. (4.7) have a nontrivial solution η > 0?” We answer
this question in one of the simplest cases, that is for the coloring of random regular graphs
of connectivity c = k + 1. In tree-like regular graphs the neighbourhood of each node looks
identical, thus also the distribution P i→j(ψi→j) is the same for every edge (ij). Moreover we
search for a color-symmetric solution [ZK07], that is ηs = ηr = η for all s, r ∈ {1, . . . , q}. The
function w({η}) in the ensemble of random regular graphs simplifies to

w(η) =
∑q−1
l=0 (−1)l

(
q−1
l

)
[1− (l + 1)η]k∑q−1

l=0 (−1)l
(
q
l+1

)
[1− (l + 1)η]k

. (4.9)

First notice that in order to constrain a variable into one color, i.e., create a hard field, one needs
at least q − 1 incoming fields that forbids all the other colors. It means that the function w({η})
defined in eq. (4.9) is identically zero for k < q − 1 and might be non-zero only for k ≥ q − 1,
where k is the number of incoming fields.

The equation (4.7) also simplifies on a regular graph and η follows a self-consistent relation

η = w(η)
1

qw(η) + [1− qw(η)] r(m)
, (4.10)

where r(m) is the average of the reweighting of the soft fields divided by the average of the
reweighting of the frozen fields (4.7). The function r(m) is in general not easy to compute, the
population dynamics is needed for that. Several properties are, however known:

r → 0 when m→ −∞ , (4.11a)
r → ∞ when m→∞ , (4.11b)

and r(m) is a monotonous function of m. Moreover, for the internal entropy of clusters s(m)→
0 when m → −∞, and s(m) → ∞ when m → ∞, and s(m) is also a monotonous function.
We thus solve eq. (4.10) for every possible ratio r. For all k ≥ q − 1 we compute the solution
η(r). The result is shown in fig. 4.2 for the 3- and 4-coloring of random regular graphs.

There is a discontinuous phase transition: For r < rr eq. (4.10) has a solution with a large
fraction of frozen fields, η > 0, whereas for r < rr the only solution is η = 0. Note that the
index r stands for ”rigidity”. In terms of the parameter m, the critical value is r(mr) = rr. In
terms of the internal entropy of clusters s(mr) = sr. The interpretation is the following:

• Clusters of internal entropy s < sr are almost all frozen, and the fraction of frozen vari-
able’s they contain is quite large.

• Clusters of internal entropy s > sr are almost all soft, meaning the fraction of frozen
variables is zero.
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Fig. 4.2. (Color online) The lines are solutions of eq. (4.10) and give the fraction qη of hard fields for a
given value of ratio r = 〈Zi→jm 〉soft/〈Zi→jm 〉hard for q = 3 (left) and q = 4 (right) in regular random
graphs. There is a critical value of the ratio rr (red point) beyond which only the trivial solution η = 0
exists. Note that the solutions corresponding to m = 0 (green square) and m = 1 (blue triangle) only exist
for a connectivity large enough.
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Fig. 4.3. (Color online) A pictorial sketch of the complexity function of clusters of a given size. Cyan-blue
is the complexity of the frozen clusters, magenta of the soft clusters. The total complexity is the envelope,
which can be calculated from the entropic 1RSB solution. The black point marks the dominating clusters.
Left: In the rigid phase almost all the dominant clusters are frozen, but clusters corresponding to larger
entropy might be mostly soft. Middle: In the totally rigid phase almost all clusters of all sizes are frozen,
but there still might be exponentially many of soft clusters. Right: The frozen phase where soft clusters
almost surely do not exist.

When we change the average constraint density there are at least three interesting phase
transitions related to frozen variables. Figure 4.3 sketches the difference between the phases they
separate. Recall that s∗ is the internal entropy of the dominant clusters, and smax the internal
entropy of the largest clusters Σ(smax) = 0.

• The rigidity transition, cr, at which s∗ = sr, separates a phase where a typical dominant
cluster is almost surely not frozen from a phase where a typical dominant cluster is almost
surely frozen.

• The total rigidity transition, ctr, at which smax = sr, when almost all clusters of every
size become frozen.
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• The freezing transition, cf , separates phase where exponentially many unfrozen cluster
exists from a phase where such clusters almost surely do not exist3.

In general it have to be cr ≤ ctr ≤ cf . The relation between the rigidity and total rigidity
transition is easily obtained from the 1RSB solution. It is thus known that in the q-coloring of
Erdős-Rényi graphs cr = ctr if and only if q ≤ 8, in K-SAT if and only if K ≤ 5. For larger q
or K the rigidity transition is given by the onset of frozen variables in clusters corresponding to
m = 1, this is equivalent to the naive reconstruction (2.4).

The relation between the total rigidity transition and the freezing is less known. There are
only few studies for the freezing transition in randomK-SAT. The first one is the one of [ART06]
where they prove that for every K ≥ 9 the freezing transition is strictly smaller than the satisfia-
bility one cf < cs. In the large K limit they showed that the frozen phase covers a finite fraction
(at least 20%) of the satisfiable region. The second study [MS07] gives a rigorous upper bound on
the freezing transition in 3-SAT αf < 4.453, which is slightly better than the best known upper
bound on the satisfiability transition in 3-SAT [DBM00]. The third study is numerical [AZ08],
presented in fig. 4.1. It shows that in 3-SAT the frozen phase is tiny, about 0.3% of the satisfiable
region.

It is not known if the total rigidity transition coincides with the freezing transition. The
entropic cavity method describes a typical but not every cluster of a given size. A generalization
of the 1RSB equations which would count only the number of soft cluster would answer this
question.

To summarize the description of the freezing of variables and clusters in the canonical con-
straint satisfaction problems, like q-coloring or K-satisfiability, is both numerically and concep-
tually involved task. Moreover in the experimentally feasible range of q and K the frozen phase
is tiny. Thus conclusive statements about the connection between the freezing and the compu-
tational hardness are difficult to make. In the next section we introduce the so-called locked
constraint satisfaction problems where the situation is much more transparent.

4.3 Point like clusters: The locked problems

In order to get a better understanding of the frozen phase we introduce the so-called locked
constraint satisfaction problems [ZM08]. In these problems the whole clustered phase is at the
same time frozen, this is because in the locked problems all the clusters contain only one solution.

4.3.1 Definition

A locked constraint satisfaction problem is made of N variables and M locked constraints in
such a way that every variable is present in at least two constraints. A constraint consisting of
K > 0 variables is locked if and only if for every satisfying assignment of variables changing
the value of any (but only one) variable makes the assignment unsatisfying.

A locked constraint of K variables has the property that if (K − 1) variables are assigned
then either the constraint cannot be satisfied by any value of the last variable or there is only
one value of the last variable which makes the constraint satisfied. All the uniquely extendible

3Note that what is called freezing transition in [Sem08] or in sec. IV.C of [MRTS08] is in fact what we define as the
rigidity transition, in agreement with [ZK07].
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constraints [Con04,CM04] are locked, XOR-SAT being the most common example. 1-in-K SAT
(exact cover) constraint [GJ79] is another common example. On the other hand, the most studied
constraint satisfaction problems K-SAT or graph q-coloring (q > 2) are not made of locked
constraints.

The second important part of the definition of locked constraint satisfaction problems is the
requirement that every variable is present in at least two constraints, i.e., leaves are absent. An
important property follows: In order to change a satisfying assignment into a different satisfying
assignment at least a closed loop of variables have to be changed. If leaves would be allowed
changing a path connecting two leaves might be sufficient.

It seems to us that all the random locked constraint satisfaction problems should behave in
the way we describe in the following. We, however, investigated in detail only a subclass of the
locked problems called locked occupation problems (LOP). Occupation constraint satisfaction
problem is defined as a problem with binary variables (0-empty, 1-occupied) where each con-
straint containing K variables is a function of how many of the K variables are occupied. A
constraint of the occupation CSP can thus be characterized via a (K + 1)-component vector A,
Ai ∈ {0, 1}, i ∈ 0, . . . ,K. A constraint is satisfied (resp. violated) if it contains r occupied vari-
ables where r is such that Ar = 1 (resp. Ar = 0). For example A = (0, 1, 0, 0) corresponds to
the positive 1-in-3 SAT [RSZ07], A = (0, 1, 1, 0) is bicoloring [CNRTZ03], A = (0, 1, 0, 1, 0)
is 4-odd parity check (4-XOR-SAT without negations) [MRTZ03].

An occupation problem is locked if all the variables are connected to at least two constraints
and the vector A is such that AiAi+1 = 0 for all i = 0, . . . ,K − 1. We study the random
ensembles of LOPs where all constraints are identical and the variable degree is either fixed of
distributed according to a truncated Poissonian law (1.6).

4.3.2 The replica symmetric solution

The replica symmetric cavity equations, belief propagation (1.16a-1.16b), for the occupation
problems read

ψa→isi =
1

Za→i

∑
{sj}

δ(Asi+
P
j sj
− 1)

∏
j∈∂a−i

χj→asj , (4.12a)

χj→asj =
1

Zj→a

∏
b∈∂j−a

ψb→jsj , (4.12b)

where ψa→isi is the probability that the constraint a is satisfied conditioned that the value of the
variable i is si, and χj→asj is the probability that variable j takes value sj conditioned that the
constraint awas removed from the graph. The normalizationsZ have the meaning of the partition
function contributions. The replica symmetric entropy s is a zero temperature limit of (1.20)

s =
1
N

∑
a

log (Za+∂a)− 1
N

∑
i

(li − 1) log (Zi) , (4.13)
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where the contributions Za+∂a (resp. Zi) are the exponentials of the entropy shifts when the
node a and its neighbours (resp. the node i) is added (1.19a-1.19b)

Za+∂a =
∑
{si}

δ(AP
i si
− 1)

∏
i∈a

( ∏
b∈i−a

ψb→isi

)
, (4.14a)

Zi =
∏
a∈i

ψa→i0 +
∏
a∈i

ψa→i1 . (4.14b)

Solving eqs. (4.12a-4.12b) means finding their fixed points. A crucial property of the locked
problems it that if {si} is one of the solutions then

ψa→isi = 1 , ψa→i¬si = 0 , (4.15a)

χi→asi = 1 , χi→a¬si = 0 (4.15b)

is a fixed point of eqs. (4.12a-4.12b). The corresponding entropy is then zero, as Zi = Za+∂a =
1 for all i, a. In the derivation of [MM08] fixed points of the belief propagation equations
correspond to clusters. Thus in the locked problems every solution corresponds to a cluster.

In the satisfiable phase there exist exponentially many solutions (i.e., clusters), thus the iter-
ative fixed point of BP equations (4.12a-4.12b) obtained from a random initialization gives an
asymptotically exact value for the total entropy. And the satisfiability threshold coincides with
the condensation transition, described in chap. 3. Furthermore, as each cluster contains only
one solution the clustered phase is automatically frozen according to the definition in sec. 4.2.2.
Interestingly, part of the satisfiable phase is only ”fake clustered” meaning that at infinitesimally
small temperature there is a single fixed point of the BP equations. This has been discussed e.g.
in the context of the perfect matchings in [ZM06]. A general discussion and proper definition of
the clustering transition in the locked problems follows in sec. 4.3.3.

Iterative fixed point of eqs. (4.12a-4.14b) averaged over the graph ensemble is in general
found via the population dynamics technique, see appendix E. Note that the sum over {sj} in
(4.12a) can be computed iteratively in (K−1)2 steps instead of the naive 2K−1 steps. Moreover,
on the regular graphs ensemble or for some of the symmetric locked problems, such that Ai =
AK−i for all i = 0, . . . ,K, the solutions is factorized. In the factorized solution the messages
χi→a, ψa→i are independent of the edge (ia) and the population dynamics is thus not needed.

• For the regular graph ensemble where each variable is present in L constraints the factor-
ized solution is

ψ0 =
1

Zreg

∑
Ar=1

(
K − 1
r

)
ψ

(L−1)r
1 ψ

(L−1)(K−1−r)
0 , (4.16a)

ψ1 =
1

Zreg

∑
Ar+1=1

(
K − 1
r

)
ψ

(L−1)r
1 ψ

(L−1)(K−1−r)
0 , (4.16b)

and the entropy is

sreg =
L

K
log

[∑
Ar=1

(
K

r

)
ψ

(L−1)r
1 ψ

(L−1)(K−r)
0

]
− (L− 1) log

[
ψL0 + ψL1

]
.(4.17)



Freezing 237

• For the symmetric locked problems where the symmetry is not spontaneously broken the
solution is also factorized. We call these the balanced locked problems. The BP solution
is ψ1 = ψ0 = 1/2 and the corresponding entropy

ssym(l) = log 2 +
l

K
log

[
2−K

K∑
r=0

δ(Ar − 1)
(
K

r

)]
, (4.18)

where l is the average degree of variables. Notably, this result for the entropy can be proven
rigorously by computing the first and second moment of the partition sum, i.e., 〈Z〉, 〈Z2〉,
and using the Chebyshev’s inequality. The exact value of the satisfiability threshold is then
given by ssym(ls) = 0. This itself is a remarkable result, because so far the exact threshold
was computed in only a handful of the sparse NP-complete CSPs. As far as we know only
in the 1-in-K SAT [ACIM01] and [RSZ07], the 2 +p-SAT [MZK+99a,AKKK01] and the
(3, 4)-UE-CSP [CM04]. We dedicate the appendix B to this computation.

The replica symmetric solution might be incorrect if long range correlations are present in
the system, as we discussed in detail in chap. 2. A sufficient condition for its correctness is the
decay of the point-to-set correlations, which we will discuss in the next section, again in context
of the reconstruction problem. A necessary condition for the RS solution to be correct is the
non-divergence of the spin glass susceptibility, which can be investigated in several equivalent
ways, as described in appendix C. The result for all the locked problems we investigated is that
the phase where the entropy (4.13) is positive is always RS stable, whereas part of the phase
where the entropy (4.13) is negative might be RS unstable (depending on the parameters and the
vector A).

4.3.3 Small noise reconstruction

It is immediate to observe that reconstruction as we defined it in sec. 2.1.1 is always possible
for the locked problems. Indeed, if we know K − 1 out of K variables around a constraint the
last one is given uniquely (no contradiction is possible as we broadcasted a solution). This is
related to the fact that at least one closed loop has to be flipped to go from one solution of a
given instance of a locked problem to another solution. Typical length of such a minimal loop
is of order logN . For very low connectivities, and at infinitesimally low temperature, the BP
equations will have a unique fixed point, there the zero temperature logN clustering is ”fake”
and will not have a crucial influence on the dynamics and other properties of interest.

Thus for the locked problem it is useful to modify the definition of the clustering transition
presented in chap. 2. In order to do that we need to introduce the small noise (SN) reconstruction.
Construct an infinite tree hyper-graph, assign a value 1 or 0 to its root and iteratively assign its
offsprings uniformly at random but in such a way that the constraints are satisfied (constraints
play the role of noiseless channels). At the end of the procedure forget the values of all variables
in the bulk but also of an infinitesimal fraction ε of leaves. If the remaining 1− ε leaves contain
some information about the original value on the root then we say that the small noise reconstruc-
tion is possible, if they do not the small noise reconstruction is not possible. The phase where the
SN reconstruction is not possible is then only ”fake clustered” and is more similar to the liquid
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phase. Whereas the phase where the SN reconstruction is possible has all the properties of the
clustered phase, except that each of the clusters contains only one configuration4.

All the equations we derived in sec. 2.1.1 for the reconstruction apply also for the SN recon-
struction. Except the specification of the initial conditions (2.11) which for the SN reconstruction
is instead

P init(~ψ) =
1− ε

2
[
δ(~ψ − δ0) + δ(~ψ − δ1)

]
+ ε δ

(
ψ0 −

1
2
)
δ
(
ψ1 −

1
2
)
, (4.19)

where ε � 1. The second term accounts for the fraction of leaves on which the value of the
variable has been forgotten. The fixed point of the 1RSB equation (2.24) is then either trivial
(corresponding to the replica symmetric solution) or nontrivial describing solutions as an ensem-
ble of totally frozen clusters. This has several interesting consequences: The threshold for the
naive SN reconstruction (i.e., the one taking into account only the frozen variables) coincide with
the true threshold for SN reconstruction. The solution of the 1RSB equation (2.24) in the locked
problem does not depend on the value of the parameter m.

A general form of the 1RSB equations at m = 1 for occupation problems is derived in
appendix A. First we consider only problems where the replica symmetric solution is factorized.
We define µ1 (resp. µ0) as the probability that a variable which in the broadcasting had value 1
(resp. 0) is uniquely determined by the boundary conditions. Based on the general eq. (A.10),
we derive self-consistent equations for µ1, µ0 on regular graphs ensemble of connectivity of
variables L:

µ1 =
1

ψ1Zreg

∑
Ar+1=1,Ar=0

(
k

r

)
(ψ1)lr(ψ0)l(k−r)

s1∑
s=0

(
r

s

)
×

[
1− (1− µ0)l

]k−r [
1− (1− µ1)l

]r−s
(1− µ1)ls , (4.20a)

µ0 =
1

ψ0Zreg

∑
Ar=1,Ar+1=0

(
k

r

)
(ψ1)lr(ψ0)l(k−r)

s0∑
s=0

(
k − r
s

)
×

[
1− (1− µ1)l

]r [
1− (1− µ0)l

]k−r−s
(1− µ0)ls , (4.20b)

where l = L − 1, k = K − 1. The indices s1, s0 in the second sum of both equations are the
largest possible but such that s1 ≤ r, s0 ≤ K − 1 − r, and

∑s1
s=0Ar−s = 0,

∑s0
s=0Ar+1+s =

0. The values ψ0, ψ1 are the fixed point of eqs. (4.16a-4.16b), and Zreg is the corresponding
normalization. These lengthy equations have in fact a simple meaning. The first sum is over the
possible numbers of occupied variables on the descendants in the broadcasting. The sums over
s is over the number of variables which were not implied by at least one constraint but still such
that the set of incoming implied variables implies the outcoming value. The term 1 − (1 − µ)l

is the probability that at least one constraint implies the variable, (1− µ)l is the probability that
none of the constraints implies the variable.

The second case where the BP equations are factorized are the balanced locked problems.
That is LOPs with symmetric vector A where the symmetry is not spontaneously broken. Then

4Note that a rigorous study of a related robust reconstruction exists [JM04]. In robust reconstruction, however, one
allows ε to be arbitrarily near to one.
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ψ0 = ψ1 = 1/2 and thus also µ0 = µ1 = µ. For the ensemble of graphs with truncated
Poissonian degree distribution of coefficient c we derive from (A.10)

µ =
2
gA

∑
Ar+1=1

(
k

r

) s1∑
s=0

(
r

s

)(
1− e−cµ

1− e−c

)k−s(
e−cµ − e−c

1− e−c

)s
, (4.21)

where k = K − 1, and gA =
∑
r,Ar+1=1

(
k
r

)
+
∑
r,Ar=1

(
k
r

)
and the value s is, as before, the

number of descendants which were not directly implied.
In both these cases, there are two solutions to eqs. (4.20a-4.20b) and (4.21). One is µ = 0

and the other µ = 1. The small noise reconstruction is investigated by the iterative stability of
the solution µ = 1. If it is stable then the SN reconstruction is possible, all variables are almost
surely directly implied. If it is not stable then the only other solution is µ = 0. Few observations
are immediate, for example if L ≥ 3 then the solution µ1 = µ0 = 1 of (4.20a-4.20b) is always
iteratively stable. Iterative stability of (4.21) gives for the balanced locked problems, marked by
∗ in tab. 4.1:

ecd − 1
cd

= K − 1−
∑K−2
r=0 r δ(Ar+1 − 1) δ(Ar−1) δ(Ar)

(
K−1
r

)∑K−2
r=0 δ(Ar+1 − 1)

(
K−1
r

) . (4.22)

Tab. 4.1. The locked cases of the occupation CSPs for K ≤ 6 (cases with a trivial ferromagnetic solution
are omitted). In the regular graphs ensemble the phase is clustered for L ≥ Ld = 3, and unsatisfiable for
L ≥ Ls. Values c are the critical parameters of the truncated Poissonian ensemble (1.6), the corresponding
average connectivities l are given via eq. (1.7). All these problems are RS stable at least up to the satisfia-
bility threshold. For the balanced cases, marked as *, the dynamical threshold follows from (4.21), and the
satisfiability threshold, which can be computed rigorously, app. B, from (4.18).

A name Ls cd cs ld ls
0100 1-in-3 SAT 3 0.685(3) 0.946(4) 2.256(3) 2.368(4)
01000 1-in-4 SAT 3 1.108(3) 1.541(4) 2.442(3) 2.657(4)
00100* 2-in-4 SAT 3 1.256 1.853 2.513 2.827
01010* 4-odd-PC 5 1.904 3.594 2.856 4
010000 1-in-5 SAT 3 1.419(3) 1.982(6) 2.594(3) 2.901(6)
001000 2-in-5 SAT 4 1.604(3) 2.439(6) 2.690(3) 3.180(6)
010100 1-or-3-in-5 SAT 5 2.261(3) 4.482(6) 3.068(3) 4.724(6)
010010 1-or-4-in-5 SAT 4 1.035(3) 2.399(6) 2.408(3) 3.155(6)
0100000 1-in-6 SAT 3 1.666(3) 2.332(4) 2.723(3) 3.113(4)
0101000 1-or-3-in-6 SAT 6 2.519(3) 5.123(6) 3.232(3) 5.285(6)
0100100 1-or-4-in-6 SAT 4 1.646(3) 3.366(6) 2.712(3) 3.827(6)
0100010 1-or-5-in-6 SAT 4 1.594(3) 2.404(6) 2.685(3) 3.158(6)
0010000 2-in-6 SAT 4 1.868(3) 2.885(4) 2.835(3) 3.479(4)
0010100* 2-or-4-in-6 SAT 6 2.561 5.349 3.260 5.489
0001000* 3-in-6 SAT 4 1.904 3.023 2.856 3.576
0101010* 6-odd-PC 7 2.660 5.903 3.325 6
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4.3.4 Clustering transition in the locked problems

In the locked problem where the replica symmetric solution is not factorized there is another
equivalent way to locate the clustering transition, which is simpler than solving eq. (A.10). It is
the investigation of the iterative stability of the nontrivial fixed point of the survey propagation.
In LOPs the survey propagation equations consist of eqs. (1.41) and

qa→i1 =
1

N a→i

∑
{rj}

C1({rj})
∏
j∈a−i

pj→arj

 , (4.23a)

qa→i−1 =
1

N a→i

∑
{rj}

C−1({rj})
∏
j∈a−i

pj→arj

 , (4.23b)

qa→i0 =
1

N a→i

∑
{rj}

C0({rj})
∏
j∈a−i

pj→arj

 , (4.23c)

where the indexes rj ∈ {1,−1, 0}, N a→i is the normalization constant. The C1/C−1 (resp. C0)
takes values 1 if and only if the incoming set of {rj} forces the variable i to be occupied/empty
(resp. let the variable i free), in all other cases theC’s are zero. Let us call s1, s−1, s0 the number
of indexes 1,−1, 0 in the set {rj} then

• C1 = 1 if and only if As1+s0+1 = 1 and As1+n = 0 for all n = 0 . . . s0;

• C−1 = 1 if and only if As1 = 1 and As1+1+n = 0 for all n = 0 . . . s0;

• C0 = 1 if and only if there exists m,n = 0 . . . s0 such that As1+n = As1+m+1 = 1.

The SP equations in LOPs have two different fixed points:

• The trivial one: qa→i0 = pi→a0 = 1, qa→i1 = pi→a1 = qa→i−1 = pi→a−1 = 0 for all edges (ai).

• The BP-like one: qa→i0 = pi→a0 = 0, qa→i = ψa→i, pi→a = χi→a for all edges (ai),
where ψ and χ is the solution of the BP equations (4.12a-4.12b).

The small noise reconstruction is then investigated, using the population dynamics, from the
iterative stability of the BP-like fixed point. If it is stable then the SN reconstruction is possible
and the phase is clustered. If it is not stable then we are in the liquid phase. Of course, this
approach gives the same critical connectivity ld as the previous one, because for the locked
problems the solutions of the 1RSB equation (2.24) is independent of the parameter m.

We remind at this point that in a general CSP, where the sizes of clusters fluctuate, the SP
equations are not related to the reconstruction problem, more technically said the 1RSB solutions
at m = 0 and at m = 1 are different. The solution of the locked problems is sometimes called
frozen 1RSB [MMR04, MMR05].
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4.4 Freezing - The reason for hardness?

We describe several strong evidences that it is hard to find frozen solutions. We also give several
arguments for why it is so. However, the precise mechanism stays an open question and strictly
speaking the freezing of variables might just be going along with a true yet unknown reason. Or
even there might be an algorithm which is able to find the frozen solutions efficiently waiting for
a discovery. But in any case, we show that freezing of variables is an important new aspect in the
search of the origin of the average computational hardness.

4.4.1 Always a trivial whitening core

Several studies of the random 3-SAT problem [MMW07, BZ04, SAO05] showed that all known
algorithms on large instances systematically find only solutions with a trivial whitening core
(defined in sec. 4.1.1). On small instances of the problem solutions with a nontrivial whitening
core can be found as observed by several authors, and studied systematically in sec. 4.1.3.

For solutions found by the stochastic local search algorithms, see appendix F, this observation
is reasonable, as argued already in [SAO05]. Consider that a stochastic local search finds a
configuration which is not a solution, but its whitening core is nontrivial. Then a diverging
number of variables have to be rearranged in order to satisfy one of the unsatisfied constraints
[Sem08]. In the clusters with a trivial whitening core the rearrangements are finite [Sem08] and
thus stochastic local dynamics might be able to find them more easily.

The fact of finding only the ”white” solutions is, however, quite surprising for the survey
propagation algorithm. The SP equations compute probabilities (over clusters) that a variables
is frozen in a certain value. This information is then used in a decimation, reinforcement, etc.
algorithms, see appendix F. Thus SP is explicitly exploring the information about nontrivial
whitening cores and in spite of that it finishes finding solutions with trivial whitening cores.

A related, and rather surprising, result was shown in [DRZ08]. The authors considered the
random bi-coloring problem in the rigid, but not frozen, phase. That is a phase where most
solutions are frozen, but rare unfrozen ones still exist. They showed that belief propagation
reinforcement solver, see appendix F, is in some cases able to find these exponentially rare, but
unfrozen, solutions.

We have observed the same phenomena in one of the non-locked occupation problem A =
(0110100), that is 1-or-2-or-4-in-6 SAT. On regular factor graphs this problem is in the liquid
phase for L ≤ 6, in the rigid phase for 7 ≤ L ≤ 9, where almost all the solutions are frozen,
and it is unsatisfiable for L ≥ 10. In fig. 4.4 we show that belief propagation reinforcement finds
almost always solutions for L = 8, but as the size of instances is growing the fraction of cases in
which the solution is frozen goes to zero.

We listed this paradox, that only the all-white solutions can be found, as one of the loose ends
in sec. 1.8. The resolution we suggest here, and substantiate in the following, is that every known
algorithm is able to find efficiently (in polynomial - but more often in experiments we mean linear
or quadratic - time) only the unfrozen solutions. The frozen solutions are intrinsically hard to
find and all the known algorithms have to run for an exponential time to find them.
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Fig. 4.4. (Color online) Algorithmical performance in the rigid phase of the 1-or-2-or-4-in-6 SAT at L = 8.
In red is the rate of success of the belief propagation reinforcement algorithms as a function of system
size (out of 100 trials). The algorithm basically always succeeds to find a solution. In blue is the fraction
of solutions which were frozen (had a nontrivial whitening core). Almost all solutions are frozen in this
problem, yet it is algorithmically easier to find the rare unfrozen solutions, in particular in instances of
larger size.

4.4.2 Incremental algorithms

Adopted from [KK07]: Consider an instance of a constraint satisfaction problem of N variables
and M constraints. Order randomly the set of constraints and remove all of them. Without con-
straints any configuration is a solutions. In each step: First, add back one of the constraints.
Second, if needed rearrange the configuration in such a way that it satisfies the new and all the
previous constraints. Repeat until there are some constraints left. We call such strategy the in-
cremental algorithm for CSPs. And one can ask about its computational complexity. The way
by which the rearrangement is found in the second step needs to be specified. But independently
of this specification we know that if the new constraint connects frozen and contradictory vari-
ables then the size of the minimal rearrangement diverges [Sem08], thus in the frozen phase the
incremental algorithm have to be at best super-linear.

Another understanding of the situation is gained by imagining the space of solutions at a
given constraint density. As we are adding the constraints some solutions are disappearing and
none are appearing. At the clustering transition the space of solutions splits into exponentially
many clusters. As more constraints are added the clusters are becoming smaller, they may split
into several smaller ones and some may completely disappear. However, only the frozen clusters
can disappear, if a constraint is added between two frozen and contradictory variables. Note also
that each frozen cluster will almost surely disappear before an infinitesimally small fraction of
constraints is added. An unfrozen cluster, on the other hand, may only become smaller or split.
Indeed, if a constraint is added any solution belonging to an unfrozen cluster may be rearranged
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in a finite number of steps [Sem08]. The incremental algorithm in this setting works as a non-
intelligent animal would be escaping from a rising ocean on a Pacific hilly island [KK07]. As
the water starts to rise the animal would step away from it. As the water keeps rising at a point
the animal would be blocked in one of the many smaller islands. This island will be getting
smaller and smaller and it will disappear at a point and the animal will have to learn how to
swim. But at this point there might still be many small higher island. All of them will disappear
eventually. For sure the animal will be in trouble before all the clusters (island) start to contain
frozen variables.

Moreover, if the sequence of constraints to be added is not known in advance there is no way
to choose the best cluster, because which cluster is the best depends completely on the constraints
to be added. This proves that no incremental algorithm is able to work in linear time in the frozen
phase. On the other hand it was shown experimentally in [KK07] for the coloring problem that
such algorithms work in linear time in part of the clustered (or even the condensed) phase.

4.4.3 Freezing transition and the performance of SP in 3-SAT

How does the freezing transition in 3-SAT, αf = 4.254 ± 0.009 fig. 4.1, compare to the per-
formance of the best known random 3-SAT solver — the survey propagation? We are aware of
two studied where the performance of SP is investigated systematically and with a reasonable
precision, [Par03] and [CFMZ05].

In [Par03] the survey propagation decimation is studied. The SP fixed point is found on the
decimated graph and the variable having the largest bias is fixed as long as the SP fixed point is
nontrivial. When the SP fixed point becomes trivial the Walk-SAT algorithm finishes the search
for a solutions. In [Par03] the residual complexity is measured on the partially decimated graph.
It is observed that if the residual complexity becomes negative then solutions are never found,
if on the other hand the residual complexity is positive just before the survey propagation fixed
point become trivial then solutions are found. The value of complexity in the last step before the
fixed point becomes trivial is extrapolated, fig. 2 of [Par03] for system sizeN = 3 ·105, to zero at
a constraint density α = 4.252± 0.003 (we estimated the error bar based on data from [Par03]).

In [CFMZ05] the survey propagation reinforcement is studied. The rate of success is plotted
as a function of the complexity function. From fig. 8 of [CFMZ05] it is estimated that SP re-
inforcement (more precisely its implementation presented in [CFMZ05]) finds solution in more
than 50% of trials if Σ > 0.0013. The data do not really concentrate on this point, thus is is
difficult to obtain a reliable error bar of this value, our educated guess is 0.0013 ± 0.0003 this
would correspond to a constraint density α = 4.252± 0.004.

The striking agreement between our value for the freezing transition and the performance
limit of the survey propagation supports the suggestion that the frozen phase is hard for any
known algorithm. The trouble for a better study of the frozen phase in 3-SAT is its size, it covers
only 0.3% of the satisfiable phase. In K-SAT with large K the frozen phase becomes wider, but
as K grows the constraint density of the satisfiability threshold grows like 2K logK, empirical
study thus becomes infeasible very fast. It is also not very easy to compute the freezing transition
or to check if the 1RSB solution is correct in the frozen phase. Thus K-SAT (and q-coloring)
are not very suitable problems for understanding better how exactly the freezing influences the
search for a solution.
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Fig. 4.5. (Color online) The probability of success of the BP-REINFORCEMENT (top) and the stochastic
local search ASAT (bottom) plotted against the average connectivity for two of the locked occupation
problems. The clustering transition is marked by a vertical line, the satisfiability threshold is ls = 4 for the
4-odd parity checks, and ls = 4.72 for the 1-or-3-in-5 SAT. The challenging task is to design an algorithm
which would work also in the clustered phase of the NP-complete locked problems.

4.4.4 Locked problems – New extremely challenging CSPs

We introduced the locked problems to challenge the suggestion about hardness of the frozen
phase [ZM08]. It is rather easy to compute the freezing transition here, it coincides with the
clustering transition ld. Moreover, the frozen phase is wide, taking more than 50% of the sat-
isfiable phase for some of the locked problems, see table 4.1. As in the locked problems every
cluster consists of one solution, all the variables are frozen. Consequently the replica symmetric
approach describes correctly the phase diagram. From this point of view the locked problems
seems extremely easy compared to K-SAT.

On the other hand, experiments with the best known solvers of random CSPs show that the
frozen phase of locked problems is very hard. And some of the very good solvers, e.g. the
belief propagation based decimation, do not work at all even at the lowest connectivities (for an
explanation see appendix F).

In fig. 4.5 we show the performance of the BP-REINFORCEMENT and the stochastic local
search ASAT algorithms. Both the algorithms are described in appendix F, they are the best
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we were able to find for the locked CSPs. The greediness parameter in the stochastic local
search ASAT we evaluated as the most optimal is p = 5.10−5 for the 4-odd parity check, and
p = 3.10−5 for the 1-or-3-in-5 SAT. In the BP-REINFORCEMENT the optimal forcing parameter
π changes slightly with the connectivity. For the 1-or-3-in-5 SAT we used π = 0.42 for 2.9 ≤
l < 3.0 and π = 0.43 for 3.0 ≤ l ≤ 3.2. For the 4-odd parity checks we used π = 0.44 for
2.75 ≤ l ≤ 2.95.

Of course, the parity check problem is an exceptional locked problem, as it is not NP-
complete and can be solve via Gaussian elimination. However, our study shows that algorithms
which do not use directly the linearity of the problem fail in the same way as they do in the NP-
complete cases. Instances of the regular XOR-SAT indeed belong between the hardest bench-
marks for all the best known satisfiability solvers which do not explore linearity of the problem,
see e.g. [HJKN06].

Figure 4.5 puts in the evidence that in all the random locked problems the best known algo-
rithms stop to be able to find solutions (in linear time) at the clustering transition. This supports
the conjecture about freezing being relevant for algorithmical hardness. The locked problems
are thus (at least until they are ”unlocked”) the new benchmarks of hard constraint satisfaction
problems.
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5 Coloring random graphs

In the previous three chapters we developed tools for describing the structure of solution and
the phase diagram of random constraint satisfaction problems. These tools were applied to the
problem of coloring random graphs in a series of works [KMRT+07, ZK07, KZ08b, KZ08a]. In
this section we summarize the results.

5.1 Setting

Coloring of a graph is an assignment of colors to the vertices of the graph such that two adjacent
vertices do not have the same color. The question is if on a given graph a coloring with q colors
exists. Figure 5.1 gives an example of 3-coloring of a graphs with N = 22 vertices and M = 27
edges, the average connectivity is c = 2M/N ≈ 2.45.

It is immediate to realize that the q-coloring problem is equivalent to the question of de-
termining if the ground-state energy of a Potts anti-ferromagnet on a random graph is zero or
not [KS87]. Consider indeed a graph G = (V,E) defined by its vertices V = {1, . . . , N} and
edges (i, j) ∈ E which connect pairs of vertices i, j ∈ V ; and the Hamiltonian

H({s}) =
∑
(i,j)

δ(si, sj) . (5.1)

With this choice there is no energy contribution for neighbours with different colors, but a pos-
itive contribution otherwise. The ground state energy is thus zero if and only if the graph is
q-colorable. This transforms the coloring problem into a well-defined statistical physics model.

Studies of coloring of sparse random graphs have a long history in mathematics and computer
science, see [ZK07] for some references. From the statistical physics perspective it was first stud-
ied in [vMS02], where the replica symmetric solution was worked out, and the replica symmetric
stability was investigated numerically. Results were compared to Monte Carlo simulations and
simulated annealing was used as a solver for coloring. The energetic 1RSB solution and the
survey propagation algorithm for graph coloring were developed in [MPWZ02, BMP+03]. Sub-
sequently [KPW04] studied the stability of the 1RSB solution and its large q limit. The entropic
1RSB solution was studies in [MPR05] for 3-coloring of Erdős-Rényi graphs. The entropic

Fig. 5.1. (Color online) Example of a proper 3-coloring of a small graph.
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Fig. 5.2. (Color online) Up: Sketch of the structure of solutions in the random coloring problem. The
depicted phase transitions arrive in the above order on Erdős-Rényi graphs for number of colors 4 ≤ q ≤ 8.
Down: Complexity (log-number) of clusters of a given entropy, Σ(s), for 6-coloring or random regular
graphs. The circles mark the dominating clusters, i.e., those which cover almost all solutions.

1RSB solution was, however, fully exploited only in [KMRT+07,ZK07,KZ08b,KZ08a] and the
resulting phase diagram is discussed here.

5.2 Phase diagram

Figure 5.2 summarizes how does the structure of solutions of the coloring problem change when
the average connectivity is increased, (A)→(F). In fig. 5.2 up, each colored ”pixel” corresponds
to one solution, and each circle to one cluster. As the average connectivity is increased, some
solutions disappear and the overall structure of clusters changes. This is depicted in the six
snapshots (A)→(F). The magenta clusters are the unfrozen ones, the cyan-blue clusters are the
frozen ones. Figure 5.2 down, the corresponding complexity (log-number) of clusters of a given
entropy, Σ(s), computed from the 1RSB approach (2.28) for the 6-coloring of random regular
graphs. More detailed description of the different phases for q-coloring follows.
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(A) A unique cluster exists: For connectivities low enough, all the proper colorings are found
in a single cluster, where it is easy to “move” from one solution to another. Only one
possible —and trivial— fixed point of the BP equations exists at this stage (as can be
proved rigorously in some cases [BG06]). The entropy can be computed and reads in the
large graph size limit

s =
logNsol

N
= log q +

c

2
log
(

1− 1
q

)
. (5.2)

(B) Some (irrelevant) clusters appear: As the connectivity is slightly increased, the phase
space of solutions decomposes into a large (exponential) number of different clusters. It is
tempting to identify that as the clustering transition. But in this phase all but one of these
clusters contain relatively very few solutions, as compare to the whole set. Thus almost all
proper colorings still belong to one single giant cluster, and the replica symmetric solution
is correct, eq. (5.2) gives the correct entropy.

(C) The clustered phase: For larger connectivities, the large single cluster decomposes into
an exponential number of smaller ones: this now defines the genuine clustering threshold
cd. Beyond this threshold, a local algorithm that tries to move in the space of solutions
will remain prisoner of a cluster of solutions for a diverging time [MS06c]. Interestingly,
it can be shown that the total number of solutions is still given by eq. (5.2). Thus the
free energy (entropy) has no singularity at the clustering transition, which is therefore not
a phase transition in the sense of Ehrenfest. Only a diverging length scale (point-to-set
correlation length) and time scale (the equilibration time) when cd is approached justify
the name ”phase transition”.

(D) The condensed phase: As the connectivity is increased further, another phase transition
arises at the condensation threshold, cc, where most of the solutions are found in a finite
number of the largest clusters. Total entropy in the condensed phase is strictly smaller
than (5.2). It has a non-analyticity at cc therefore this is a genuine static phase transition.
The condensation transition can be observed from the two-point correlation functions or
from the overlap distribution.

(E) The rigid phase: As explained in chapter 4, two different types of clusters exist. In the
first type, the unfrozen ones, magenta in fig. 5.2, all variables can take at least two different
colors. In the second type, frozen clusters, cyan in fig. 5.2, a finite fraction of variables is
allowed only one color within the cluster and is thus ”frozen” into this color. In the rigid
phase, a random proper coloring belongs almost surely to a frozen cluster. Depending on
the value of q, this transition may arise before or after the condensation transition (see
tab. 5.1).

(F) The uncolorable phase: Eventually, the connectivity cs is reached beyond which no more
solutions exist. The ground state energy is zero for c < cs and then grows continuously
for c > cs.

In table 5.1 we present all the critical values for coloring of Erdős-Rényi graphs, in table
5.2 for random regular graphs. Notice the special role of 3-coloring where the clustering and
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condensation transitions coincide and are given by the local stability of the replica symmetric
solution, see app. C. Notice also that for q ≥ 9 in Erdős-Rényi graphs and q ≥ 8 in regular graph
the rigidity transition arrives before the condensation transition.

Few more words about the rigidity transition and the rigid phase in coloring. In sec. 4.2.2,
next to the rigid phase, we also defined the totally rigid phase where almost all the clusters of
every size become frozen. And the frozen phase where strictly all clusters become frozen. Note

Tab. 5.1. Critical connectivities cd (dynamical, clustering), cr (rigidity), cc (condensation, Kauzmann) and
cs (colorability) for the phase transitions in the coloring problem on Erdős-Rényi graphs. The connectivities
cSP (where the first non trivial solution of SP appears) and cr(m=1) (where hard fields appear at m = 1)
are also given. The error bars consist of the numerical precision on evaluation of the critical connectivities
by the population dynamics technique, see appendix E.

q cd cr cc cs cSP cr(m=1)

3 4 4.66(1) 4 4.687(2) 4.42(1) 4.911
4 8.353(3) 8.83(2) 8.46(1) 8.901(2) 8.09(1) 9.267
5 12.837(3) 13.55(2) 13.23(1) 13.669(2) 12.11(2) 14.036
6 17.645(5) 18.68(2) 18.44(1) 18.880(2) 16.42(2) 19.112
7 22.705(5) 24.16(2) 24.01(1) 24.455(5) 20.97(2) 24.435
8 27.95(5) 29.93(3) 29.90(1) 30.335(5) 25.71(2) 29.960
9 33.45(5) 35.658 36.08(5) 36.490(5) 30.62(2) 35.658
10 39.0(1) 41.508 42.50(5) 42.93(1) 35.69(3) 41.508

Tab. 5.2. The transition thresholds for regular random graphs: cSP is the smallest connectivity with a
nontrivial solution at m = 0; the clustering threshold cd is the smallest connectivity with a nontrivial
solution at m = 1; the rigidity threshold cr is the smallest connectivity at which hard fields are present in
the dominant states, the condensation cc is the smallest connectivity for which the complexity at m = 1 is
negative and cs the smallest uncolorable connectivity. Note that 3−coloring of 5−regular graphs is exactly
critical for that cd = 5+. The rigidity transition may not exist due to the discreteness of the connectivities.

q cSP cd cr cc cs
3 5 5+ - 6 6
4 9 9 - 10 10
5 13 14 14 14 15
6 17 18 19 19 20
7 21 23 - 25 25
8 26 29 30 31 31
9 31 34 36 37 37
10 36 39 42 43 44
20 91 101 105 116 117
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Fig. 5.3. (Color online) Entropies and complexities as a function of the average connectivity for the 5-
coloring of Erdős-Rényi graphs. The replica symmetric entropy is in dashed black, the total entropy in red.
The complexity of dominant clusters in red. The total complexity, computed from the survey propagation,
is in dashed blue.

that in the random graph coloring the rigidity transition coincides with the total rigidity transition
for q ≤ 8 for Erdős-Rényi graphs and for q ≤ 7 for regular graphs. For larger values of q the
rigidity transition is given by the m = 1 computation. We have not computed the total rigidity
transition for larger q, but it is accessible from the present method. The freezing transition is,
however, not accessible for the entropic 1RSB cavity approach. We cannot exclude that in the
totally rigid phase there might still be some rare unfrozen clusters.

Note also an interesting feature about the 1RSB entropic solution; in fig. 5.2 down, for the
connectivity c = 17 the function Σ(s) consists of two branches. The low-entropy branch with
frozen clusters, and the high-entropy branch with soft clusters. Note that the soft branch may also
exist for positive values of complexity, e.g. in 4-coloring of Erdős-Rényi graphs. We interpreted
the gap as the nonexistence of clusters of the corresponding size. The gap might, however, be an
artifact of the 1RSB approximation which most likely does not describe correctly clusters of the
corresponding size. For the discussion of correctness of the 1RSB solutions see appendix D.

To make the picture complete we plot the important complexities and entropies as a function
of the average connectivity, for 5-coloring of Erdős-Rényi graphs see fig. 5.3. We plotted in
dashed black the replica symmetric entropy (5.2), which in coloring is equal to the annealed
one sann. The correct total entropy stot (in red) differs from the replica symmetric one in the
condensed and uncolorable phase. The complexity of the dominating clusters (those covering
almost all solutions) Σdom (in red, computed at m = 1) is non-zero between the clustering
and the condensation transition. The total complexity Σmax (in blue), maximum of the curves
Σ(s), can be computed in the region where survey propagation gives a nontrivial result. The
colorability threshold corresponds to Σmax = 0. We call cSP the smallest connectivity at which
survey propagation gives a nontrivial result, i.e., the part of the curve Σ(s) with a zero slope
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Fig. 5.4. (Color online) The fraction of solutions covered by the largest cluster as a function of the average
connectivity for 4-coloring of Erdős-Rényi graphs. In the condensed phase the fraction covered by the
largest cluster is not self-averaging and is determined by the Poisson-Dirichlet process with parameter m∗.

exists. Clusters exists also for c < cSP, but computing their total complexity is more involved
and we have not done it. The rigidity transition cr cannot be determined from these quantities.

In fig. 5.4 we sketch what fraction of solutions is covered by the largest cluster as the average
connectivity increases for 4-coloring of Erdős-Rényi graphs. In the replica symmetric phase
c < cd the largest cluster covers almost all solutions. In the dynamical 1RSB phase the largest
cluster covers an exponentially small fraction of solutions. In the condensed phase the largest
state covers fraction of about 1−m∗ of solutions1, but this part of the curve in not self-averaging.
In the uncolorable phase there are no clusters of solutions, the ground state is made from one
cluster.

5.3 Large q limit

The coloring of random graphs in the limit of large number of colors might seem a very unprac-
tical and artificial problem. However, it allows many simplifications in the statistical description
(rigorous or not) and a lot of insight can be obtained from this limit.

It is known from the cavity method, but also from a rigorous lower [ANP05] and upper
[Luc91] bound that the colorability threshold for large number of colors scales like 2q log q. At
the same time a very naive algorithm: Pick at random an uncolored vertex and assign it at random
a color which is not assigned to any of its neighbours, was shown to work in polynomial (linear)
time up to a connectivity scaling as q log q. In other words this algorithm uses about twice as
many colors than needed. Such a performance is not very surprising, a very naive algorithm

1More precisely from the properties of the Poisson-Dirichlet process, described in sec. 3.3, if the fraction of solutions
covered by the largest state is w then 1−m∗ = 1/E(1/w).
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performs half as good as possible. The surprise comes with the fact that it is an open problem if
there is a polynomial algorithm which would work at connectivity (1+ε)q log q for an arbitrarily
small positive ε.

5.3.1 The 2q log q regime: colorability and condensation

The complexity function Σ(s) at connectivity

c = 2q log q − log q + γ (5.3)

where γ = Θ(1) was computed in [ZK07] and reads

Σ(s) =
s

log 2

[
1− log

s

ε log 2

]
− ε(2 + γ) + o(ε). (5.4)

where ε = 1/2q. From this expression it is easy to see that the coloring threshold corresponds to

γs = −1. (5.5)

and the condensation transition

γc = −2 log 2 . (5.6)

Notice, as in [MZ08], that the complexity of the random subcubes model (3.5), sec. 3.1, gives
exactly the expression (5.4) if we take the parameters of the random subcubes model as 2

p = 1− ε , α = 1 + ε
1 + γ

log 2
. (5.7)

This is a striking property of the coloring problem in the limit of large number of colors near to
the colorability threshold. The 1−ε is a fraction of frozen variables in each cluster. Almost all the
soft variables can take only one of two colors. The expression (5.4) means that the soft variables
are mutually almost independent and the clusters have shape of small hypercubes. And the
other way around, this property makes the random subcubes model more than just a pedagogical
example of the condensation transition.

5.3.2 The q log q regime: clustering and rigidity

Another interesting scaling regime is defined as

c = q(log q + log log q + α) , (5.8)

where α = Θ(1) is of order one. The large q scaling of the rigidity transition (m = 1) is easily
expressed from (2.4):

αr = 1 . (5.9)

2We remind that in the section 3.1 entropies were logarithms of base 2 whereas everywhere else they are natural
logarithms.
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The data are takes from table 5.1. The difference αr − αSP indeed seems to converge to the theoretical
log 2, the difference αr − αSP seems to converge to around 1/4.

This was originally computed in [KMRT+07, ZK07] and [Sem08]. The onset of a nontrivial
solution for the survey propagation corresponds to the rigidity transition at m = 0 and reads
[KPW04]

αSP = 1− log 2 . (5.10)

An empirical observation is that for q = 3 the threshold for survey propagation is smaller than the
rigidity at m = 1, but for q ≥ 4 the order changes and the distances between the two threshold
grows with q. Based on this observation we conjectured that the clustering transition is

1− log 2 ≥ αd ≥ 1 . (5.11)

Note that recently the dynamical transition was proved to be 1− log 2 ≥ αd [Sly09]. Figure 5.5
actually suggest that αd ≈ 1/4. Its precise location is actually an interesting problem because it
could shed light on the way soft fields converge to hard fields in the cavity approach.

Concerning the total rigidity transition, where almost all the clusters of all sizes become
frozen, we have not manage to compute it in the large q limit. It is not even clear if the relevant
scaling is as (5.8). The same is true for the even more interesting freezing transition, where all
the clusters become frozen.

5.4 Finite temperature

It is interesting to study how does the antiferromagnetic Potts model, coloring at zero tempera-
ture, behave at finite temperature. In particular which of the zero temperature phase transitions
survive to positive temperatures and what do they correspond to in the phenomenology of glasses.
This has been done in [KZ08b] and we summarize the main results here.
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The belief propagation equation for coloring (2.5) generalizes at finite temperature to

ψi→jsi =
1

Zi→j

∏
k∈∂i−j

[
1−

(
1− e−β

)
ψk→isi

]
≡ Fsi({ψk→i}) . (5.12)

The distributional 1RSB equation (2.24) is the same.

• The clustering transition — becomes the dynamical phase transition Td at positive tem-
perature. The notion of reconstruction on trees, introduced in sec. 2.1.1, generalizes to
positive temperatures. Constraints then play the role of noisy channels in the broadcasting.
The dynamical temperature Td is then defined via divergence of the point-to-set correla-
tions (2.22). Or equivalently via the onset of a nontrivial solution of the 1RSB equations
at m = 1. At the dynamical transition the point-to-set correlation length and the equilibra-
tion time diverge. There is however no non-analyticity in the free energy, Ehrenfest might
thus not call it a phase transition.

• The condensation transition — becomes the Kauzmann phase transition TK at positive
temperature. The point at which the complexity function at m = 1 (structural entropy)
becomes negative defines the Kauzmann temperature [Kau48]. At the Kauzmann temper-
ature the free energy has a discontinuity in the second derivative. This corresponds to the
discontinuity in the specific heat. Kauzmann transition is thus genuine even in the sense
of Ehrenfest.

• The rigidity transition — is a purely zero temperature phase transition. At positive tem-
perature the fields ψi→jsi (5.12) cannot be hard.

• The colorability transition — is a purely zero temperature phase transition. At the col-
orability threshold the ground state energy becomes positive (it has discontinuity in the first
derivative). At a finite temperature, however, there is no corresponding non-analyticity.

Figure 5.6 shows the temperature phase diagram of 3- (left) and 4-coloring (right) on both
Erdős-Rényi (up) and regular (down) random graphs. The dynamical temperature is in blue, the
Kauzmann temperature in black.

The temperature at which the replica symmetric solution becomes locally unstable, see ap-
pendix C, is called Tlocal. In the terms of reconstruction on trees this is the Kesten-Stigum
bound [KS66a,KS66b]. This temperature is a lower bound on the dynamical temperature Td, but
also on the Kauzmann temperature TK . This is because bellow Tlocal the two-point correlations
do not decay, which is possible only bellow TK . Note that in the 3-coloring Td = TK = Tlocal

and this phase transition is continuous in the order parameter P i→j(ψi→j) (2.24). For q ≥ 4
colors we find instead Td > TK > Tlocal and the dynamical transition is discontinuous. At large
connectivity, however, the three temperatures are very close, see fig. 5.6 where the Tlocal is in
pink.

Correctness of the 1RSB solution — The last question concerns correctness of the 1RSB
solutions itself. The local stabilities of the 1RSB solution are discussed in appendix D. The
temperature at which the 1RSB solutions becomes type II locally unstable, see appendix D, is
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Fig. 5.6. (Color online) Phase diagrams for the 3-state (left) and 4-state (right) anti-ferromagnetic Potts
glass on Erdős-Rényi graphs of average degree c (top) and regular graphs of degree c (bottom). For q = 3
the transition is continuous Td = TK = Tlocal. For q = 4, we find that Td > TK > Tlocal, while for
larger connectivities these three critical temperatures become almost equal. The Gardner temperature TG
for regular graphs is also shown (green), bellow TG the 1RSB solution is not correct anymore (for Erdős-
Rényi graph we expect this curve to look similar). The bold (red) lines at zero temperature represent the
uncolorable connectivities c > cs.

called the Gardner temperature TG [Gar85]. We computed it only on the ensemble of random
regular graphs, see fig. 5.6, the TG is in green. We do not know how to compute the stability of
the type I, but we argued that the corresponding critical temperature should be smaller than the
Tlocal. An important consequence is that in the colorable region the 1RSB solution is stable for
q ≥ 4 coloring.

Coloring with three colors is a bit special, as Tlocal = Td = TK . However, at small temper-
atures the stability of type I can be investigated from the energetic approach, again discussed in
app. D. It follows that at least in interval c ∈ (cs, cG) = (4.69, 5.08) the 1RSB solution is stable
at low temperature. For c > cG on contrary the Gardner temperature is strictly positive. We
cannot exclude that part of the colorable phase is unstable, but in such a case the unstable region
would have a sort of re-entrant behaviour. Moreover the ferromagnetic fully connected 3-state
Potts model has also a continuous dynamical transition Td = Tlocal yet it is 1RSB stable near to
Td [GKS85]. We thus find more likely that also the colorable phase of 3-coloring is 1RSB stable.

Finally, the local stability is only a necessary condition. The full correctness of the 1RSB
approach have to be investigated from the 2RSB approach. We implemented the 2RSB on the
regular coloring, the results are not conclusive, as the numerics is involved. but we have not
found any sign for a nontrivial 2RSB solution in the colorable region.
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6 Conclusions and perspectives

In this final section we highlight the, in our view, most interesting results of this thesis. More
complete overview of the original contributions is presented in sec. 1.9. Scientific research is
such that every answered question raises a number of new questions to be answered. We thus
bring up a list of open problems which we find particularly intrinsic. Finally we give a brief
personal view on the perspective applications of the results obtained in this work.

6.1 Key results

The main question underlying this study is: How to recognize if an NP-complete problem is
typically hard and what are the main reasons for this?

In order to approach the answer we studied the structure of solutions in random constraint
satisfaction problem - mainly in the graph coloring. We did not neglect the entropic contributions,
as was common in previous studies, and this led to much more complete description of the phase
diagram and associated phase transitions, see summarizing fig. 5.2.

The most interesting concept in these new findings was the freezing of variables. We pursued
its study and investigated its relation to the average computational hardness. We introduced the
locked constraint satisfaction, where the statistical description is easily solvable and the clus-
tered phase is automatically frozen. We indeed observed empirically that these problems are
much harder than the canonical K-satisfiability. They should thus become a new challenge for
algorithmical development. As we mention in the perspectives, we also anticipate that the locked
constraint satisfaction problems are of a more general interest.

6.2 Some open problems

(A) Clusters and their counting on trees — In sec. 2 we derived the 1RSB equations on
purely tree graphs. Our derivation was, however, not complete as it is not straightforward why the
complexity function should be counting the clusters as we defined them on trees. More physically
founded derivations are for example the original one [MP00]. And also the one presented in
[MM08] where the complexity is shown to count the fixed points of the belief propagation. We
are, however, persuaded that the purely tree approach is more appealing from the probabilistic
point of view, as treating correlations in the boundary conditions on trees is easier than treating
the random graphs directly, for a recent progress see e.g. [Sly09,GM07,DM08]. This is why we
chose to present this derivation despite its incompleteness.

In general we should say that creating better mathematical grounds for the replica symmetry
breaking approach is a very important and challenging task.

(B) What is the meaning of the gap in the Σ(s) function — We computed the number of
clusters of a given entropy via the 1RSB method. For some intervals of parameters there is no
solution corresponding to certain intermediate sizes. In other words there is a gap in the 1RSB
function Σ(s). See e.g. fig. 5.2, we observed such a gap in many other cases. Does this gap mean
that there are truly no clusters of corresponding sizes or does it mean that the 1RSB method is
wrong in that region or is there another explanation?
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(C) Analysis of dynamical processes — In this thesis we described in quite a detail the static
(equilibrium) properties of the constraint satisfaction problems. Very little is known about the
dynamical properties – here we mean both the physical dynamics (with detailed balance) and
the dynamics of algorithms. Focusing on results described here: the dynamics of the random
subcubes model can be solved [MZ08], and the uniform belief propagation decimation can be
analyzed [MRTS07], see also appendix F.1.4. However in general even the performance of sim-
ulated annealing as a solver is not known. And the understanding of why the survey propagation
decimation works so well in 3-SAT and not that well in other problems, e.g. the locked problems
or for larger K, is also very pure.

The most exciting conjecture of this work is the connection between the algorithmical hard-
ness and freezing of variables. Several indirect arguments and empirical results were explained
in sec. 4.4 to support this conjecture. It is, however, not very clear what is the detailed origin of
the connection between presence of frozen variables in solutions and the fact that dynamics (of
a solver) does not seem to be able to find them.

(D) Beyond random graphs and the thermodynamical limit — For practical application the
perhaps most important point is to understand what is the relevance of our results for instances
which are not random or not infinite. For example fig. 2.2 suggests that even on small random
instances the clustering can be observed and is thus probably relevant. We also observed that
the solutions-related quantities seems to have stronger finite size effects than the clusters-related
properties, compare e.g. fig. 1.3 with fig. 4.1. This is an interesting point and it should be
pursued.

6.3 Perspectives

This work should have a practical impact on the design of new solvers of constraint satisfaction
problems. Instances with only frozen solutions should be used as new benchmarks for SAT
solvers. At the same time where the design allows such instances should be avoided.

More concretely, the belief propagation algorithm is used as a standard approximative infer-
ence technique in artificial intelligence and information theory. One of the important problems
with applications of the belief propagation is the fact that in many cases it does not converge.
Many converging modifications were introduced. In might be interesting to investigate in this
context the reinforced belief propagation, see appendix F.2.3, which sometimes converges to-
wards a fixed point when the standard belief propagation does not. As the reinforcement algo-
rithm seems to be very efficient, robust and is not theoretically well understood different variants
of the implementation should be studied empirically. It would be interesting to see if this al-
gorithm performs well on non-random graphs, or if it can provide information useful for the
practical solvers. Several other concepts enhanced in this thesis might show up useful in algo-
rithmic applications. We feel that the whitening of solutions might be one of them.

We introduced the locked constraint satisfaction problems as a new algorithmical challenge.
Moreover the simplicity of their statistical description makes accessible several quantities which
are difficult to compute in the K-SAT problem. For example the weight enumerator function
or the x-satisfiability threshold. But these new models are exciting from many other points of
view. Their hardness might be appealing for noise tolerant cryptographic applications. Planted
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ensemble of the locked problems might be a very good one-way functions. The fact that the so-
lutions of the locked problems are well separated makes them excellent candidates for nonlinear
error correcting codes. It will be interesting to investigate if they can be advantageous over the
standard linear low-density-parity-check codes [Gal62, Gal68, MN95, Mon01].

Clusters of solutions come up naturally in the pattern recognition and machine learning prob-
lems. There each cluster corresponds to a pattern which should be learned or recognized. Sim-
ilarly the different phenotypes of a cell might be viewed as clusters of fixed points of the corre-
sponding gene regulation network. The methods developed in this thesis might thus have impact
also in these exciting fields.
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Appendices

A 1RSB cavity equations at m = 1

Here we derive how the 1RSB equation (2.24) simplifies at m = 1 for the problems where
the replica symmetric solution is not factorized. We restrict to the occupation models, but a
generalization to other models is straightforward. Advantage of these equations is that the un-
known object is not a functional of functionals but only a single functional. Moreover, the final
self-consistent equation does not contain the reweighting term. This simplification makes imple-
mentation of the population dynamics at m = 1 much simpler, and thus the computation of the
clustering and condensation transitions easier. Derivation of the corresponding equations for the
K-SAT problem can be found in [MRTS08].

Write the RS equation (1.17) for the occupation problems in the form

ψa→isi =
1

Zj→i

∑
{sj}

Ca({sj}, si)
∏

j∈∂a−i

 ∏
b∈∂j−a

ψb→jsj

 ≡ Fsi({ψb→j}) , (A.1)

where the constraints Ca({sj}, si) = 1 if
∑
j sj + si ∈ A, and 0 otherwise. Let PRS(ψ) be the

distribution of RS fields over the graph.
The 1RSB equations (2.24) at m = 1 are

P a→i(ψa→i) =
1
Zj→i

∫ ∏
j∈∂a−i

∏
b∈∂j−a

[
dψb→jP b→j(ψb→j)

]
Zj→i({ψb→j}) δ

[
ψa→i −F({ψb→j})

]
≡ F2({P b→j}) . (A.2)

The averages over states

ψ
a→i
si =

∫
dψa→isi P a→i(ψa→isi )ψa→isi (A.3)

satisfy the RS equation (A.1). And consequently the RS and 1RSB normalizations are equal
Zj→i = Zj→i. The full order parameter is the probability distribution of P ’s over the graph, it
follow the self-consistent equation

P1RSB[P (ψ)] =
∑

l1,...lK−1

q(l1, . . . , lK−1)

∫ K−1∏
i=1

li∏
j=1

{
dP j(ψj)Pj1RSB[P j(ψj)]

}
δ[P (ψ)−F2({P j})] . (A.4)

We define the average distribution P (ψ|ψ) on those edges where the RS field is equal to a
given value ψ

P (ψ|ψ)PRS(ψ) ≡
∫

dP (ψ)P1RSB[P (ψ)]P (ψ) δ
[
ψ −

∫
dψP (ψ)ψ

]
. (A.5)
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Now we rewrite all the terms on the right hand side using the incoming fields and distributions,
i.e., using first eq. (A.4) and then (A.2).

P (ψ|ψ)PRS(ψ) =
∑
{l}

q({l})
∫ K−1∏

i=1

li∏
j=1

{
dP j(ψj)Pj1RSB[P j(ψj)]

}
F2({P j}) δ

[
ψ −

∫
dψF2({P j})ψ

]
=

∑
{l}

q({l})
∫ K−1∏

i=1

li∏
j=1

{
dP j(ψj)Pj1RSB[P j(ψj)]

}
∫ K−1∏

i=1

li∏
j=1

[
dψjP j(ψj)

] Z({ψj})
Z

δ
[
ψ −F({ψj})

]
δ
[
ψ −F({ψj})

]

=
∑
{l}

q({l})
∫ K−1∏

i=1

li∏
j=1

[
dψ

jPRS(ψ
j
)
]
δ
[
ψ −F({ψj})

]
∫ K−1∏

i=1

li∏
j=1

[
dψjP

j
(ψj |ψj)

] Z({ψj})
Z({ψj})

δ
[
ψ −F({ψj})

]
, (A.6)

where the original Dirac function was rewritten using

∫
dψF2({P j})ψ =

1
Z

∫ K−1∏
i=1

li∏
j=1

[
dψjP j(ψj

]
Z({ψj})

∫
dψ ψ δ

[
ψ −F({ψj})

]
=

1
Z

∫ K−1∏
i=1

li∏
j=1

[
dψjP j(ψj

]
Z({ψj})F({ψj}

= F({ψj}) , (A.7)

and in last equality was obtained using the integral of eq. (A.5)

∫
dψ P (ψ|ψ)PRS(ψ) =

∫
dP (ψ)P1RSB[P (ψ)]P (ψ) . (A.8)

To simplify the equations further, in particular to get rid of the reweighting term Z({ψj}),
we define a distribution P s

ψsP s(ψ|ψ) ≡ ψsP (ψ|ψ) ⇒ P (ψ|ψ) =
∑
s

ψsP s(ψ|ψ) , (A.9)
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then by factorizing the sum over components s we get

ψsP s(ψ|ψ)PRS(ψ) =
∑
{l}

q({l})
∫ K−1∏

i=1

li∏
j=1

[
dψ

jPRS(ψ
j
)
]
δ
[
ψ −F({ψj})

]
∑
{si}

C({si}, s)
∏K−1
i=1

∏li
j=1 ψ

j

si

Z({ψj})∫ K−1∏
i=1

li∏
j=1

[
dψjP

j

si(ψ
j |ψj)

]
δ
[
ψ −F({ψj})

]
. (A.10)

This final equation might look more complicated than the original one, but, in fact, it is much eas-
ier to solve. It could seem that we need a population of populations to represent the distribution
P s(ψ|ψ)PRS(ψ). But keeping in mind that the proper initial conditions are

P 1(ψ1 = 1|ψ) = 1 , P 0(ψ0 = 1|ψ) = 1 , (A.11)

independently of the RS field ψ we see that the probability distribution P s(ψ|ψ)PRS(ψ) may be
represented by a population of triplets of fields - the first one corresponding to the RS field ψ and
the other two corresponding to the two components (A.11).

In the population dynamics we first equilibrate the RS distribution PRS(ψ) and then initialize
the other two components according to (A.11). In every step of the update we first fix randomly
the set of indexes {j} and compute the new ψ, then given the value s we choose the set of
indexes {si} according to a probability law given by the first line of eq. (A.10), then we compute
the new ψ for s = 0 and s = 1 and change a random triplet in the population for the new
values. In summary, eq. (A.10) allows to reduce the double-functional equations at m = 1 into a
simple-functional form, which is much easier to solve.

The internal entropy s = sRS − Σ, and thus also the complexity function, may be computed
by making very similar manipulations as

s = α
∑
{l}

q({l})
∫ K∏

i=1

li∏
j=1

[
dψ

jPRS(ψ
j
)
] ∑

{si} C({si})
∏K
i=1

∏li
j=1 ψ

j

si

Za+∂a({ψj})∫ K∏
i=1

li∏
j=1

[
dψjP jsi(ψ

j |ψj)
]

logZa+∂a({ψj})

−
∑
l

Q(l)(l − 1)
∫ l∏

i=1

[
dψ

iPRS(ψ
i
)
] ∑

si

∏l
i=1 ψ

i

si

Zi({ψi})∫ l∏
i=1

[
dψiP isi(ψ

i|ψi)
]

logZi({ψi}) . (A.12)
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We can also express other quantities, e.g. the inter q0 = qRS and intra q1 state overlaps.

q1 =
∫

dP (ψ)P1RSB

∫
dψP (ψ)

∑
σ

ψσ

=
∑
σ,s

∫
dψPRS(ψ)ψs

∫
dψ P s(ψ|ψ)ψ2

σ . (A.13)

Factorized RS solution — Several times, see e.g. sec. 4.3.3, we used the equations at m = 1
for problems with factorized RS solution, PRS(ψ) = δ(ψ−ψ). The derivation is straightforward
from (A.10)

P s(ψ) =
∑
{l}

q({l}) 1
ψsZ

∑
{si}

C({si}, s)
K−1∏
i=1

li∏
j=1

ψ
j

si

∫ K−1∏
i=1

li∏
j=1

dP si(ψ
j) δ(ψ −F(ψj)) . (A.14)

Proper initial conditions for the population dynamics resolution of (A.14) is P s(ψs = 1) = 1.
At zero temperature the distributions can be written as the sum of the frozen and soft part

P 1(ψ) = µ1δ(ψ −
(

1
0

)
) + (1− µ1)P̃1(ψ) , (A.15a)

P 0(ψ) = µ0δ(ψ −
(

0
1

)
) + (1− µ0)P̃0(ψ) . (A.15b)

Self-consistent equations for the fractions of hard fields µ1, µ0 (4.20a-4.20b) follow from (A.14).
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B Exact entropy for the balanced LOPs

Rigorous results about the entropy and the satisfiability threshold can be obtain comparing the
first and second moment of the number of solutions, that is: If a number of solution on a graph
G is NG then the first moment is average over the graph ensemble:

〈NG〉 =
∑
{σ}

Prob ({σ} is SAT) . (B.1)

The second moment is

〈N 2
G〉 =

∑
{σ1},{σ2}

Prob ({σ1} and {σ2} are both SAT) . (B.2)

The Markov inequality then gives an upper bound on the entropy and the satisfiability threshold

Prob(NG > 0) ≤ 〈NG〉 . (B.3)

The Chebyshev’s inequality gives a lower bound via

Prob(NG > 0) ≥ 〈NG〉
2

〈N 2
G〉

. (B.4)

B.1 The 1st moment for occupation models

Let us remind that the occupation models are defined via a (K + 1)-component vector A, such
that Ai = 1 if and only if there can be i occupied particles around a constraint of K variables.
We consider by default A0 = AK = 0, i.e., that everybody full of empty is not a solution. We
also consider all the M constraints are the same. We have Q(l)N variables of connectivity l,
where

∑∞
l=0Q(l) = 1 and l =

∑∞
i=0 lQ(l) = KM/N .

In order to compute the first moment we divide variables into groups according to their con-
nectivity and in each groups we choose fraction tl of occupied variables. Number of ways in
which this is possible is then multiplied by a probability that such a configuration satisfies simul-
taneously all the constraints.

〈NG〉 =
∫ 1

0

dt
∑
{tl}

∏
l

(
Q(l)N
tlQ(l)N

) K∑
r1,...,rM=1

M∏
a=1

δ(Ara − 1)

×
(

N
∑
l l(1− tl)Q(l)

(K − r1) . . . (K − rM )

)(
N
∑
l l tlQ(l)

r1 . . . rM

)[(
lN

K . . .K

)]−1

× δ

(
M∑
a=1

ra − ltN

)
δ

(
t lN −

∑
l

l tlQ(l)N

)
, (B.5)

where t is the total fraction of occupied variables, this variable might seem ambiguous, as it can
be integrated out, but we will appreciate its usefulness later, ra is a number of occupied variables
in a constraint a.
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We develop expression (B.5) in the exponential order. In order to do so we exchange the last
two delta functions by their Fourier transforms, introducing two complex Lagrange parameters
log x and log u.

〈NG〉 ≈
∫

dt
∫ ∏

l

dtl
∫

dx
∫

du expN

{
−
∑
l

Q(l) [tl log tl + (1− tl) log (1− tl)]

+ l [t log t+ (1− t) log (1− t)] + log u

[∑
l

ltlQ(l)− tl

]

+
l

K
log

[
K∑
r=1

δ(Ar − 1)
(
K

r

)
xr

]
− tl log x

}
. (B.6)

Saddle point with respect to parameters tl gives us

tl =
ul

1 + tl
, (B.7)

and we call pA(x) =
∑K
r=1 δ(Ar − 1)

(
K
r

)
xr. Using this we have

〈NG〉 ≈
∫

dtdxdu expN

{
l

K
log pA(x)− t l log x

+
∑
l

Q(l) log (1 + ul)− t l log u+ l [t log t+ (1− t) log (1− t)]

}
. (B.8)

The saddle point equations read

∂u : t =
1
l

∑
l

l Q(l)
ul

1 + ul
, (B.9a)

∂x : t =
x∂xpA(x)
KpA(x)

, (B.9b)

∂t : t =
xu

1 + xu
, (B.9c)

As the parameter t is the only physically meaningful from the three, the goal is to express
the annealed entropy as a function of t and find its maxima. We do that by inverting numerically
(B.9a) and plugging (B.9c) in (B.8). Eq. (B.9c) then express the saddle point with respect to the
parameter t. We can write

sann(t) =
∑
l

Q(l) log [1 + u(t)l] +
l

K
log pA(t) , (B.10)

where

pA(t) =
K∑
r=1

δ(Ar − 1)
(
K

r

)(
t

u(t)

)r
(1− t)K−r , (B.11)
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where u(t) is an inverse of (B.9a).
For the regular graphs Q(l) = δ(l − L) the inverse of (B.9a) is explicit u = [t/(1 − t)]1/L

and thus

sann reg(t) =
L

K
log

{
K∑
r=1

δ(Ar − 1)
(
K

r

)[
tr(1− t)K−r

]L−1
L

}
. (B.12)

B.2 The 2nd moment for occupation models

The second moment is computed in a similar manner. First we fix that in a fraction tx,l of nodes
of connectivity l the variable is occupied in both the solutions σ1, σ2 in (B.2). In a fraction ty,l
the variable is occupied in σ1 and empty in σ2 and the other way round for tz,l. We sum over all
possible combinations of 0 ≤ tx,l, ty,l, tz,l such that

∑
w=x,y,z tw,l ≤ 1. All this is multiplied

by the probability that such two configurations σ1, σ2 both satisfy all the constraints.

〈N 2
G〉 =

∫
dtxdtydtz

∑
{tx,l},{ty,l},{tz,l}

∏
l

(
Q(l)N

(tx,lQ(l)N) (ty,lQ(l)N) (tz,lQ(l)N)

)
∑

rx,1,...,rx,M

∑
ry,1,...,ry,M

∑
rz,1,...,rz,M

M∏
a=1

δ(Arx,a+ry,a − 1)δ(Arx,a+rz,a − 1)

(
N
∑
l l(1−

∑
w=x,y,z tw,l)Q(l)

(K −
∑
w=x,y,z rw,1) . . . (K −

∑
w=x,y,z rw,M )

)
∏

w=x,y,z

(
N
∑
l l tw,lQ(l)

rw,1 . . . rw,M

)[(
lN

K . . .K

)]−1

∏
w=x,y,z

δ

(
M∑
a=1

rw,a − ltwN

)
δ

(
tw lN −

∑
l

l tw,lQ(l)N

)
. (B.13)

We introduce Fourier transforms at a place of both the Dirac functions, the conjugated parameters
are log x, log y, log z for the first Dirac function, and log ux, log uy, log uz for the second one.
After that we suppress the parameters tw,l in the same manner as we did for the first moment.
We obtain for the second moment entropy

s2nd = l [tx log tx + ty log ty + tz log tz + (1− tx − ty − tz) log (1− tx − ty − tz)]

− l(tx log x+ ty log y + tz log z) +
l

K
log pA(x, y, z)

+
∑
l

Q(l) log (1 + ulx + uly + ulz)− l(tx log ux + ty log uy + tz log uz) , (B.14)

where

pA(x, y, z) =
K∑

r1,r2=0

δ(Ar1Ar2 − 1)
min (r1,r2)∑

s=max (0,r1+r2−K)

(
K

(r1 − s)(r2 − s) s

)
× xsy(r1−s)z(r2−s) , (B.15)
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and the saddle point with respect to tw, w and uw (w = x, y, z) is

∂tw : tw =
1
l

∑
l

l Q(l)
ulw

1 + ulx + uly + ulz
, w = x, y, z , (B.16a)

∂w : tw =
w∂wpA(x, y, z)
KpA(x, y, z)

, w = x, y, z , (B.16b)

∂uw : wuw =
tw

1− tx − ty − tz
, w = x, y, z . (B.16c)

Once again the parameters tw are physically meaningful, so we want to express s2nd as a
function of these. We thus need to inverse (B.16a), note that such an inverse is well defined, and
using (B.16c) we obtain

s2nd(tx, ty, tz) =
l

K
log pA(tx, ty, tz)

+
∑
l

Q(l) log

1 +
∑

w∈{x,y,z}

[uw(tx, ty, tz)]l

 , (B.17)

where

pA(tx, ty, tz) =
K∑

r1,r2=0

δ(Ar1Ar2 − 1)
min (r1,r2)∑

s=max (0,r1+r2−K)

(
K

(r1 − s)(r2 − s) s

)
(

tx
ux(tx, ty, tz)

)s(
ty

uy(tx, ty, tz)

)(r1−s)

(
tz

uz(tx, ty, tz)

)(r2−s)

(1− tx − ty − tz)(K−r1−r2+s) . (B.18)

The global maximum with respect to tx, ty, tz needs to be found.
For the regular ensemble Q(l) = δ(l − L) the function (B.16a) is explicitly reversible and

the final expression for the second moment entropy simplifies significantly

s2nd,reg(tx, ty, tz) =
L

K
log

{ ∑
r1,r2,s

K!δ(Ar1 − 1)δ(Ar2 − 1)
(r1 − s)! (r2 − s)! s! (K − r1 − r2 + s)![

tsxt
(r1−s)
y t(r2−s)z (1−

∑
w

tw)(K−r1−r2+s)

]L−1
L
}
, (B.19)

where the range of summations is the same as in (B.18).

B.3 The results

The main result is that for some of the symmetric (AK−r = Ar for all r = 0, . . . ,K) and locked
occupation problems (Q(0) = Q(1) = 0) the first and second moments computation leads the
exact entropy of solutions (4.18). And thus also the exact satisfiability threshold. The cases
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where this statement holds are marked by a ∗ in tab. 4.1, and we call them balanced LOPs. We
observed that some of the balanced problemsA are created iteratively starting from 010 or 01010
and adding

AK+2 = 0AK0 , AK+4 = 01AK10 . (B.20)

We, however, found also other balanced cases than (B.20). The simplest example of symmetric
locked problem which is not balanced is A = 010010, and many others of higher K.

Let us now show this result. For all the symmetric occupation problems:

• The annealed entropy (B.10) has a stationary point at t = 1/2 (u = 1, x = 1). At this
stationary the entropy evaluates to (4.18).

• The second moments entropy (B.17) has a stationary point at tx = ty = tz = 1/4
(ux = uy = uz = 1, x = y = z = 1). At this stationary point the second moment
entropy evaluates to twice the (4.18). To prove this statement observe that for the symmet-
ric problems pA(1/4, 1/4, 1/4) = [pA(1/2)]2. This last identity can be derived from the
Vandermonde’s combinatorial identity(

K

r2

)
=

r1∑
s=0

(
r1

s

)(
K − r1

r2 − s

)
. (B.21)

• The second moment entropy has another stationary point at tx = 1/2, ty = tz = 0 or
tx = 0, ty = tz = 1/2. This stationary point is equal to the first moment entropy at
t = 1/2.

In the problems where one of the above stationary points is the global maximum the annealed
entropy is exact and the satisfiability threshold easily calculable from (4.18).

In the symmetric problems with leaves (Q(1) > 0), or those which are not locked (e.g.
0110) or not balanced (e.g. 010010) another competing maximum of the second moment entropy
appears before the annealed entropy goes to zero.

We investigated numerically that this does not happen for the balanced problems described
by the recursion (B.20). So far we were not able to prove this last point analytically. This is,
however, a technical problem, much simpler that the original one.

The main message of this analysis is what are the ingredients of the model which make the
satisfiability threshold accessible to the second moment computations. Here we showed that
it is on one hand the (unbroken) symmetry of the problem and on the other hand the point-like
clusters. Such a general result might be surprising because otherwise the satisfiability threshold is
known exactly in only a handful of the NP-complete problems [ACIM01, MZK+99a, AKKK01,
CM04].
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C Stability of the RS solution

In chapter 2 we argued in detail that the replica symmetric solution is correct if and only if
the point-to-set correlations decay to zero, or equivalently if the reconstruction is not possible.
Failure of the RS solution may (but does not have to) manifest itself via the divergence of the
spin glass susceptibility. In a system with Ising variables si ∈ {−1,+1} this is defined as

χSG =
1
N

∑
i,j

〈sisj〉2c , (C.1)

where 〈·〉c is the connected expectation with respect to the Boltzmann measure.
Originally the replica symmetric instability was investigated from the spectrum of the Hes-

sian matrix in a celebrated paper by de Almeida and Thouless [dAT78]. Equivalence between
the RS stability and the convergence of the belief propagation equations on a single large graph
is also often stated. In the reconstruction on tress this corresponds to the Kesten-Stigum condi-
tion [KS66a, KS66b]. It is not straightforward to see that all these statements are equivalent. We
thus try to put a bit of order to the different ways of expressing the stability of the RS solution1.

C.1 Several equivalent methods for RS stability

Susceptibility chains — Perhaps the most direct way how to investigate the divergence of the
spin glass susceptibility (C.1) is to write

χSG ≈
∑
i

E(〈sis0〉2c) ≈
∑
d

γdE(〈sds0〉2c) , (C.2)

where s0 is a typical variable (the origin), sd is a variable at distance d from s0, and γd is the
typical number of variables at distance d from s0 (γ = l2/l − 1). The average E(·) is over the
randomness of the graph. The spin glass susceptibility diverges if and only if λ > 1 where

λ = γ lim
d→∞

[
E(〈sds0〉2c)

] 1
d

(C.3)

Using the fluctuation dissipation theorem we can rewrite

E(〈s0sd〉2c) ≈ E

[(
∂h0

∂hd

)2
]

= E

[
d∏
i=1

(
∂hi−1

∂hi

)2
]
, (C.4)

where h0, . . . , hd is a sequence of cavity fields (1.34) on the shortest path from s0 to sd. The
dependence of the cavity field hi on hi−1 is given by the belief propagation equations. This
method to investigate the RS stability was used e.g. in [MMR05] or [ZM06]. It is numerically
involved and not very precise as in practice d can be taken only at maximum 10− 20.

1This overview has been worked out in collaboration with F. Krzakala and F. Ricci-Tersenghi.
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Noise propagation — Call v0
d the contribution to the spin glass susceptibility from the layer

of variables at a distance d from 0

v0
d =

∑
k,|k,0|=d

(∂h0

∂hk

)2

=
∑
i∈∂0

(∂h0

∂hi

)2 ∑
k,|k,i|=d−1

( ∂hi
∂hk

)2

=
∑
i∈∂0

(∂h0

∂hi

)2

vid−1 , (C.5)

where hk are cavity fields at distance d from h0, and the sum is over all the cavity fields needed
to compute h0. The spin glass susceptibility diverges if and only if the numbers vd are on average
growing with the distance d.

The evolution of numbers v can be followed via the population dynamics method. Next to
the population of fields h we keep also a population of positive numbers v. When a field h0 is
updated according to the belief propagation equations, we update also the number v0 according
to (C.5). The RS solution is stable if and only if the overall sum

∑
i v
i is decreasing during the

population dynamics updates. This method was implemented e.g. in [MS06a] or [RSZ07]. It is
simple and numerically very precise.

Deviation of two replicas — Consider a general form of the belief propagation equations
h = f({hi}). After averaging over the graph ensemble we obtain distributional equations (1.23a-
1.23b) which are solved via the population dynamics technique. Consider now two replicas of
the resulting population, each element i differs by δhi. Keep running the population dynamics
on both these replicas and record how the differences δhi are changing

δh0 =
∑
i∈∂0

∂h0

∂hi
δhi . (C.6)

The differences δh can be negative and positive. Take v = (δh)2 then

v0 =

(∑
i∈∂0

∂h0

∂hi
δhi

)2

=
∑
i∈∂0

(
∂h0

∂hi

)2

vi +
∑
i 6=j

∂h0

∂hi

∂h0

∂hj
δhiδhj . (C.7)

The second term can be neglected because the terms δhi and δhj are independent. This brings
us back to the equation (C.5).

Thus the replica symmetric solutions is stable if and only if the two infinitesimally different
replicas do not deviate one from another. This method is very fast to implement and is thus useful
for preliminary checks of the RS stability.

Convergence of the belief propagation — The stability of replica symmetric solutions is
equivalent to the convergence of the belief propagation equations on a large random graph. This
fact follows directly from the previous paragraph. Eq. (C.6) gives the rate of convergence (diver-
gence) of two nearby trajectories of the dynamical map defined by the BP iterative equations.

Variance propagation — Often a ”variance” formulation of the stability if described. Assume
that instead of a value hi on every link, there is a narrow distribution of values g(hi) parameter-
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ized by a mean hi and a small variance vi. How does h and v evolve? We have now

h =
∫

dh g(h)h =
∫ ∏

i

[dhi gi(hi)] f({hi}) , (C.8)

v =
∫

dh g(h) (h− h)2 =
∫ ∏

i

[dhi gi(hi)] f2({hi})− (h)2 , (C.9)

where h = f({hi}) is the belief propagation equation. However, since the variance is infinitesi-
mal, the variation of hi around hi is very small, so that

f({hi}) = f({hi}) +
∑
i

(
hi − hi

) ∂f({hi})
∂hi

∣∣∣
hi
, (C.10)

and therefore one obtains h = f({hi}) and

v =
∑
i

vi

(
∂f({hi})
∂hi

∣∣∣
hi

)2

, (C.11)

which is nothing else then equations (C.5).

Numerical instability towards the 1RSB solution — The RS stability can also be investi-
gated from the numerical stability of the trivial solution of the 1RSB equations. Indeed if the
distribution of fields over states is regarded the probability distribution of a small variance g(h)
then the 1RSB equation (2.24) gives for a pth moment of g(h)

hp =
1
Z

∫ ∏
i

[dhi gi(hi)]Zm({hi})fp({hi}) , (C.12)

where Z is the normalization of the BP equations and its mth power is the reweighting factor.
Expansion gives

Zm({hi}) = Zm({hi}) +mZm−1({hi})
∑
i

(
hi − hi

) ∂Z({hi})
∂hi

∣∣∣
hi
. (C.13)

The equations for the variances (C.11) does not depend on the second term from (C.13), as this is
of a smaller order. As a consequence the condition for stability is independent of the parameter
m.

It is quite remarkable fact that the divergence of the spin glass susceptibility corresponds to
the appearance of a nontrivial solution of the 1RSB equation at all the values of m. In particular
because we observed that when the instability is not present the onset of a nontrivial 1RSB
solution is m dependent, see e.g. fig. D.2.

The eigenvalues of the Hessian — The replica symmetric solution is a minimum of the Gibbs
free energy. This is often investigated from the spectra of the matrix of second derivatives called
Hessian. The equivalence between this approach and the divergence of the spin glass suscepti-
bility is a classical result, see e.g. the book of Fischer and Hertz [FH91], page 98-100.
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C.2 Stability of the warning propagation

At zero temperature the necessary (but not sufficient) condition for the replica symmetric solu-
tion to be stable is the convergence of the warning propagation on a single graph. Obviously if
the warning propagation does not converge then BP does not either, and convergence of the BP is
equivalent to the replica symmetric stability. Advantage of the investigation of the warning prop-
agation convergence is that it can be treated analytically, without using the population dynamics
method.

Consider a model with Ising spins where the warnings u (1.35b) can take only three possible
values u ∈ {−1, 0, 1}. Consider warning u and one of the warnings on which u depends, say u0.
Except u0 the warning u depends also on u1, . . . , uk, where k is distributed according to Q̃(k).
The degree distribution conditioned on the presence of two edges is

Q̃(k − 2) =
k(k − 1)
k2 − k

Q(k) . (C.14)

Call P (a → b|c → d) the probability that the warning u changes from value a to value b
provided that the warning u0 was changed from value c to value d. This probability can be
always computed from the probabilities p−, p0, p+ that a warning u = −1, 0,+1

P (a→ b|c→ d) =
∑
k

Q̃(k)Pk(p−, p0, p+; a→ b|c→ d) , (C.15)

where the function Pk depends on the model in consideration. This probability describes a
proliferation of a ”bug” in the warning propagation. We define a bug proliferation matrix Pij of
dimension 6, i ≡ a → b, j ≡ c → d. The stability of the warning propagation is then governed
by the largest (in absolute value) eigenvalue of this matrix λmax. The warning propagation is
stable if and only if

γλmax < 1 , (C.16)

where γ = k2/k−1 is the growth rate of the tree (γd is the typical number of vertices at distance
d from the root). This analysis is often called bug proliferation [KPW04,MMZ06] (mostly in the
context of the 1RSB stability). This investigation of the warning propagation stability was used
e.g. in [ZM06] or [CKRT05].

An example where the warning propagation is stable, however, the belief propagation is not,
can be found in [RSZ07] for the 1-in-K SAT problem. In 1-in-K SAT the warning propagation
stability threshold corresponds to the unit clause propagation upper bound [RSZ07].
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D 1RSB stability

Concerning the correctness of the 1RSB solution: the Boltzmann measure is split into clusters.
This leads to an exact description of the system if and only if both the following conditions are
satisfied.

• Condition of type I — the point-to-set correlation with respect to the measure over clusters
decay to zero. The statistics over clusters may be described on the replica symmetric (tree)
level. Clusters do not tend to aggregate.

• Condition of type II — the point-to-set correlations within the dominating clusters decay
to zero. The interior of these clusters may be described on the replica symmetric (tree)
level. Clusters do not tend to fragment into smaller ones.

Within the cavity approach these conditions can be checked from the 2RSB equation

P i→j2

[
P i→j

]
=

1
Zi→j2

∫ ∏
k∈∂i−j

dP i→j2

[
P k→i

]
(Zi→j)m2 δ

[
P i→j −F2({P k→i})

]
,(D.1)

where the functional F2 is given by the 1RSB equation (2.24). We call the solution of (D.1)
trivial if either P i→j2

[
P i→j

]
= δ[P i→j ] or each P i→j(ψi→j) = δ(ψi→j − ψi→j), where the

P i→j is the solution of (2.24). If and only if the (population dynamics) solution of the 2RSB
equation at m = m∗, m2 = 1 and at m = 1, m2 = m∗ is trivial then the two conditions are
satisfied, and the 1RSB solution at m∗ is correct.

Solving the 2RSB equation is, however, numerically involved. Even on random regular
graphs the population dynamics of populations is needed, see app. E.5. Moreover the reweight-
ing taking in account the term (Zi→j)m2 is costly. It is thus extremely useful to check the local
stability of the 1RSB solution in the lines of the appendix C. The two types of local stability
follow.

• Stability of type I — the inter-cluster spin glass susceptibility does not diverge.

χinter
SG =

1
N

∑
i,j

(
〈si〉〈sj〉 − 〈si〉 , 〈sj〉

)2
, (D.2)

where the overline denotes an average over clusters

x(ψi→j) =
∫
x(ψi→j) dP i→j(ψi→j) . (D.3)

• Stability of type II — the intra-cluster spin glass susceptibility does not diverge.

χintra
SG =

1
N

∑
i,j

〈sisj〉2c . (D.4)

The instability of second type is sometimes called the Gardner instability due to [Gar85].

Again, there are several equivalent ways how to investigate the 1RSB stability. This time we first
describe the zero temperature - frozen fields - version before turning to the general formalism.
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D.1 Stability of the energetic 1RSB solution

In the energetic zero temperature limit the 1RSB distribution P i→j(ψi→j) can be split into the
frozen and soft part as in (4.2). Moreover the self-consistency equations on the weights of the
frozen fields, called the SP-y equations, do not depend on the details of the soft part. The methods
for stability investigation of the SP-y equations were developed in [Par02b, MRT03, MPRT04,
RBMM04].

Type I — SP-y convergence — The divergence of the inter-cluster spin glass susceptibility
is in general equivalent to the non-convergence of the 1RSB equations (2.24) on a single graph.
The reason is exactly the same as for the equivalence of the non-divergence of the spin glass
susceptibility and the convergence of the belief propagation equations, which we explained in
app. C.1. In the energetic zero temperature limit the convergence of the general 1RSB equations
becomes convergence of the SP-y equations on a single graph. All the methods described in
app. C.1 for the stability of the belief propagation equations can be used directly.

Remark in particular that the chain method (C.3), used e.g. in [RBMM04, KPW04], is not
the simplest choice. The chains of length d → ∞ have to be considered numerically, and the
treatable values are only d ≈ 10−20. This leads to an imprecision for a relatively large numerical
effort. It is much more precise to use for example the noise propagation (C.5) as e.g. in [RSZ07].

Type II — Bug proliferation — The intra-state susceptibility is investigated in exactly the
same manner as the replica symmetric stability. The only difference is that the average over clus-
ters have to be taken properly. The energetic 1RSB solution is based on the warning propagation
equations averaged properly over the clusters. Thus the 1RSB stability of the type II leads to the
bug proliferation, as in app. C.2, averaged over the clusters.

Roughly explained, if we consider a model with Ising spins, we have the three components
surveys p = (p−, p0, p+) on each edge. Where ps is the probability over clusters that the warning
on this edge takes the value s. Consider, as in app. C.2, a warning u and one of the incoming
warnings u0, the remaining incoming warnings are indexed by i = 1, . . . , k where k is distributed
according to Q̃(k) (C.14). Define Pk(a → b|c → d) as the probability, over clusters, that the
warning u changes from a value a to a value b provided that the warning u0 was changed from
a value c to a value d. Consider Pk(a → b|c → d) as a matrix of dimension 6. And consider
a chain of edges of length d. The proliferation of an instability ”bug” is given by the product
of matrices Pk along this chain. The product is averaged over the realizations of disorder (in
degrees, etc.). We define the stability parameter as

λII(d) = γ
(
Tr〈P 1

k1 . . . P
d
kd
〉
) 1
d . (D.5)

The SP-y is 1RSB stable if and only if limd→∞ λII(d) < 1. For more detailed presentation of
the 1RSB bug proliferation method or concrete examples see e.g. [RBMM04, MMZ06, KPW04]
and [RSZ07]. In all the implementations of this method the chain of d → ∞ edges was used.
Unlike in the type I stability, it is not know if this can be avoided in general.

Some results — The investigation of the 1RSB stability as we just described can be very
simply incorporated to the population dynamics method used to solve the survey propagation
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Fig. D.1. (Color online) The complexity as a function of energy for the coloring of random regular graphs.
The 1RSB stable parts of the curves are in bold red.

equations. This means that on random regular graphs the stability equations become algebraic,
as the values of surveys do not depend on the index of the edge. In fig. D.1 we present the result
for coloring of random regular graphs.

On all the parts of fig. D.1 the complexity function is plotted against energy, Σ(e) (2.32). This
function is the main output of the 1RSB energetic method, the SP-y equations. The parameter y
corresponds to the slope of the complexity function y = ∂Σ(e)/∂e. Note that only the concave
parts of the curves are physical.

The red parts of the Σ(e) curves are the 1RSB stable parts. It seems to be a general fact that
the instability of type I happens first for large values of y, and the instability of the type II for
small values of y. The unphysical (convex) branch is always type II instable. The instability of
type I is sometimes completely absent.

An important observation is that the stability of the 1RSB energetic solution does not guar-
antee the stability of the full 1RSB solution. Differently said, the soft fields can destabilize the
full solution. On the other hand also the opposite is true — the instability of the clusters corre-
sponding to m = 0 does not imply the instability of the dominating clusters at m∗. We thus want
to stress that the results of [MPRT04, RBMM04, MMZ06, KPW04] and others have to be taken
with these two facts in mind.
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D.2 1RSB stability at general m and T

The stability of the full 1RSB equations at a general value of the parameter m and of the temper-
ature T is a more difficult task. We are not aware of any study where this would be practically
considered for models on random graphs, apart from [KZ08b]. We review shortly the main
findings and difficulties.

Type I — Divergence of the inter-cluster spin glass susceptibility (D.2) is equivalent to the non-
convergence of the probability distributions P i→j(ψi→j) (2.24). But here arrives the biggest
problem, how to judge if a probability distribution converges? The probability distribution
P i→j(ψi→j) is represented by a population of random elements picked from this distribution.
How to decouple the randomness coming from this sampling and the one coming from the even-
tual non-convergence? Of course, provided that the numerical difficulty does not rise to the level
of directly solving the 2RSB equations. This is not known in general and it is a technical but
important open problem in the subject.

One interesting observation can be made, however: If the RS solution is instable then the
1RSB solution at m = 1 is type I instable. Indeed, if the mean value of the probability distribu-
tion does not converge then the 1RSB solution is type I instable. At the value m = 1 the mean
(A.3) satisfies the simple belief propagation equations, as explained in app. A.

Type II — Divergence of the intra-cluster spin glass susceptibility (D.4) is much easier to
investigate on a general level. It is equivalent to checking if the 1RSB iteration are stable against
small changes in the probabilities ψ. Arguably the simplest way to do so is the deviation of two
replicas method, described for the RS stability in app. C.1. We first find a fixed point of the
1RSB equations (2.24) using the population dynamics method. Then we create a second copy of
the populations representing the distributions P i→j(ψi→j). We perturb infinitesimally every of
its elements ψi→j . The 1RSB is type II stable if and only if the two copies converge to the same
point. The noise propagation and other methods from C.1 can be used equivalently.

Some results and connection to the SP-y stability — Figure D.2 depicts the results for the
stability of type II in the space of the parameters m and temperature T . The 1RSB solution is
type II stable above the red curve mII.

It is interesting to state the connection between the general m, T stability and the energetic
zero temperature limit. The parameter m = yT when T → 0, thus when the stability of the
frozen fields is relevant for the full stability the parameter yIIT gives the slope of mII(T ) near to
zero T . This indeed seems to be the case, as shown in fig. D.2.

Based on the arguments above, it seems reasonable that the following assumptions are cor-
rect:

(i) The stability of the energetic method gives the full stability for small m and T .

(ii) If the RS solutions is stable then the 1RSB is stable type I at m = 1.

(iii) If the 1RSB at a given temperature is type I (II resp.) stable at a given m, then it is type I
(II resp.) stable for all smaller (larger resp.) m.
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Fig. D.2. (Color online) Example of m-T diagrams for the 4-state anti-ferromagnetic Potts model on c-
regular random graphs (left c = 10, right c = 13). A nontrivial solution of the 1RSB eq. (2.24) exists
above the curve mex (green). The curves in blue m∗ represent the thermodynamic value of the parameter
m. The red curve mII is the lower border of the type II stable region. The straight lines (yIIT and y∗T )
represent the slopes corresponding to the energetic 1RSB solution yT = m in T → 0. The energetic 1RSB
solution is type II stable for y > yII. The line yIIT seems to give correctly the slope of mII. This suggest
that the stability of frozen variables is equivalent to the full stability for small m and T . Other examples of
diagrams of this type are presented in [KZ08b].

Assuming as above, the stability of the 1RSB solution in the region where the RS solution is
stable is given by the type II (Gardner) stability, which we know how to investigate. The result
is depicted e.g. in fig. 5.6. This would mean that the stability of type II is always more important
for the thermodynamical solution. And in particular that in the random coloring problem for
q ≥ 4 the 1RSB solution is stable in all the colorable phase.

The situation for 3-coloring is more subtle as 3-coloring is not RS stable for c ≥ cd. However,
from assumption (i) follows that the interval of connectivities (cs, cG) = (4.69, 5.08) is 1RSB
stable at small temperatures. Thus we expect also all the colorable phase to be 1RSB stable
(otherwise the phase diagram at fig. 5.6 would have to present a sort of re-entrant behaviour).
This would also be in agreement with the situation in the fully connected ferromagnetic 3-state
Potts model [GKS85] 1.

1This is a contra-example to the common claim that in the systems with continuous dynamical transition (Td =
Tlocal) the 1RSB solution is not stable.
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E Populations dynamics

Population dynamics is a numerical method to solve efficiently distributional equations of type
(1.32) or (2.24) and compute observables of type (1.33) or (2.25a). In this context it was devel-
oped in [MP01]. As the form of the 1RSB equations was more or less known before, and they
were solved approximatively using various forms of the variational ansatz, see e.g. [BMW00],
it may be argued that the population dynamics technique was the crucial ingredient which made
the spin glass models on random graphs solvable. Recently rigorous versions of this method
were developed to analyze the performance of decoding algorithms [RU01], the name density
evolution is often used in this context.

The main idea is to represent the probability distribution by a population (sample) of N
elements drawn independently at random from this distribution. The algorithm starts from a
random list and it mimics T iterations of the distributional equations and (hopefully) converges
to a good representation of the desired fixed point. Several generalizations or subtleties are
encountered and we describe some of them in the following. Consider the a random constraint
satisfaction model specified by degree distribution R(k) of constraints, and Q(l) of variables,
the excess degree distributions r(k) and q(l) are given by (1.8).

E.1 Population dynamics for belief propagation

The simplest version of the population dynamics is used to solve

• Belief propagation distributional equations (1.23a-1.23b) and compute the corresponding
average free energy (1.20), entropy, etc. The complete replica symmetric solution is ob-
tained this way.

• Survey propagation distributional equations, obtained from (1.41-1.42), and compute the
average complexity function (1.43). The satisfiability transition is obtained this way.

The pseudocode for the procedures POPULATION-DYNAMICS and ONE-MEASUREMENT
follows. To compute the observable Φ (free energy, entropy, complexity, etc.) we first call
procedure POPULATION-DYNAMICS with T = Tequil (equilibration time) and sufficiently large
N . After we repeat ONE-MEASUREMENT plus POPULATION-DYNAMICS with T = Trand

(randomization time) and M sufficiently large, but smaller than N . And finally we compute
averages and error bars of these measurements.

In some problems the constraints are themselves random (negations inK-SAT, interactions in
a spin glass etc.). The choice of this quenched randomness is then done at line 9 of POPULATION-
DYNAMICS, and at line 8 of ONE-MEASUREMENT.

The population {ψ} is randomly initialized to a random assignment at line 1 of POPULATION-
DYNAMICS. That is all the zero components of the surveys (1.41-1.42) are zero, and the beliefs
are completely biased, i.e., either (1, 0) or (0, 1). Such a choice is justified from the analogy with
the reconstruction on trees where the proper initial condition is given by (2.11).

Satisfactory results are usually obtained with the population sizes and times of order N ≈
104 − 105, Tequil ≈ 103 − 104, Trand ≈ 10, M ≈ N . But these values may change problem
from problem and a special care have to be taken about the numerics every time as basically no
convergence theorems are known for a general case.
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POPULATION-DYNAMICS(r(k), q(l), N, T )
1 Initialize randomly N -component array {ψ};
2 for t = 1, . . . , T :
3 do for i = 1, . . . , N :
4 do Draw an integer k from the distribution r(k);
5 for d = 1, . . . , k:
6 do Draw an integer l from the distribution q(l);
7 Draw indexes j1, . . . , jl uniformly in {1, . . . , N};
8 Compute χd from {ψj1 , . . . , ψjl} according to eq. (1.16b);
9 Compute ψnew from {χ1, . . . , χk} according to eq. (1.16a);

10 ψi ← ψnew;
11 return array {ψ};

ONE-MEASUREMENT(R(k),Q(l), q(l), N,M)
1 Initialize Φconstraint = 0; Φvariable = 0;
2 for i = 1, . . . ,M : � Compute the constraint part.
3 do Draw an integer k from the distributionR(k);
4 for d = 1, . . . , k:
5 do Draw an integer l from the distribution q(l);
6 Draw indexes j1, . . . , jl uniformly in {1, . . . , N};
7 Compute χd =

∏l
n=1 ψjn ;

8 Compute Znew from {χ1, . . . , χk} according to eq. (1.19a);
9 Φconstraint ← Φconstraint + logZnew;

10 for i = 1, . . . ,M : � Compute the variable part.
11 do Draw an integer l from the distribution Q(l);
12 Draw indexes j1, . . . , jl uniformly in {1, . . . , N};
13 Compute Znew from {ψj1 , . . . , ψjl} according to eq. (1.19b);
14 Φvariable ← Φvariable + (l − 1) logZnew;
15 return (αΦconstraint − Φvariable)/M ;

E.2 Population dynamics to solve 1RSB at m = 1

The general 1RSB equations for general random graph ensemble require a population dynamics
with population of populations. We will explain this in sec. E.5. Treating the population of
populations requires a lot of CPU time and it is not very precise, thus anytime we have the
opportunity to avoid this we have to take it. One such opportunity is the simplification of the
1RSB equations at m = 1 explained in appendix A. Conveniently, both the clustering and the
condensation transitions are obtained this way.

The population dynamics method have to be adapted to solve eq. (A.10) and to measure the
entropy of states (A.11). We give the m = 1 generalization of the procedure POPULATION-
DYNAMICS, the changes in ONE-MEASUREMENT are then straightforward. Note that lines 11
and 13 take in general 2k steps as we need to compute probability of every combination of the
set {s1, . . . , sk}.
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PD-(m = 1)-GENERALIZATION(r(k), q(l), N, T )
1 {ψRS} ← POPULATION-DYNAMICS(r(k), q(l), N, T );
2 Initialize N -component arrays {ψ1 ← 1} and {ψ0 ← 0};
3 for t = 1, . . . , T :
4 for i = 1, . . . , N :
5 do Draw an integer k from the distribution r(k);
6 for d = 1, . . . , k:
7 do Draw an integer ld from the distribution q(l);
8 Draw indexes j(d, 1), . . . , j(d, ld) uniformly in {1, . . . , N};
9 Compute χRS

d from {ψRS
j(d,1), . . . , ψ

RS
j(d,ld)} according to eq. (1.16b);

10 s← 1;
11 Choose {s1, . . . , sk} with prob. given by the 2nd line of eq. (A.10);
12 s← 0;
13 Choose {r1, . . . , rk} with prob. given by the 2nd line of eq. (A.10);
14 for d = 1, . . . , k:
15 do Compute χ1

d from {ψsdj(d,1), . . . , ψ
sd
j(d,ld)} according to eq. (1.16b);

16 Compute χ0
d from {ψrdj(d,1), . . . , ψ

rd
j(d,ld)} according to eq. (1.16b);

17 Compute ψRS
new from {χRS

1 , . . . , χRS
k } according to eq. (1.16a);

18 Compute ψ1
new from {χ1

1, . . . , χ
1
k} according to eq. (1.16a);

19 Compute ψ0
new from {χ0

1, . . . , χ
0
k} according to eq. (1.16a);

20 ψRS
i ← ψRS

new;
21 ψ1

i ← ψ1
new;

22 ψ0
i ← ψ0

new;
23 return arrays {ψRS}, {ψ1}, {ψ0};

E.3 Population dynamics with reweighting

A simplification of the 1RSB equations (2.24) arises for the ensemble of random regular graphs,
there the distribution Pi→j(ψi→j) over clusters is the same for every edge (ij). In the cor-
responding population dynamics a special care have to be taken about the reweighting term(
Zi→j

)m
.

We describe two different strategies to deal with the reweighting. In the first one REWEIGHTING-
FASTER the elements of the population have all the same weight and thus in each sweep the
population needs to be re-sampled and some less probable elements might be lost. In the second
strategy REGULAR-REWEIGHTING-PRECISE each element has its own weight, no re-sampling
is needed, but the search of a random element, at the line 10, takes logN steps. Thus the first
strategy is faster, the second one is slightly more precise. Which one is eventually better seems
to be problem specific.

Consider a population {ψ} where each element ψi has weight wi. The weights are computed

from the BP update (1.16a-1.16a) as wi =
(
Za→i

∏
j∈∂a−i Z

j→a
)m

.
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REWEIGHTING-FASTER(N, {ψ}, {w})
1 wtot ← 0;
2 for i = 1, . . . , N :
3 do wtot ← wtot + wi;
4 � zi is the cumulative distribution of indexes i;
5 z0 = 0;
6 for i = 1, . . . , N :
7 do zi ← zi−1 + wi/wtot

8 � Trick to make a list of ordered random numbers ni in O(N) steps.
9 G← 0;

10 for i = 1, . . . , N :
11 do ni ← − log RAND;
12 � RAND outputs a random number in the interval (0, 1).
13 G← G+ ni;
14 G← G− log RAND;
15 n1 ← n1/G;
16 for i = 2, . . . , N :
17 do ni ← ni/G;
18 ni ← ni + ni−1;
19 � Finally making the new population.
20 p← 0;
21 for i = 1, . . . , N
22 do while (ni > zp) p← p+ 1;
23 ψnew

i ← ψp;
24 return array {ψnew};

REGULAR-REWEIGHTING-PRECISE(r(k), q(l), N, T,m)
1 Initialize randomly N -component arrays {ψ} and {w};
2 for t = 1, . . . , T :
3 for i = 1, . . . , N :
4 do Draw an integer k from the distribution r(k);
5 Znew ← 1;
6 for d = 1, . . . , k:
7 do Draw an integer l from the distribution q(l);
8 for n = 1, . . . , l:
9 do Create cumulative probability distribution from weights {w};

10 Draw index jn from this cumulative distribution;
11 Compute χd from {ψj1 , . . . , ψjl} according to eq. (1.16b);
12 Znew ← Znew · Zd, where Zd is the norm. from eq. (1.16b);
13 Compute ψnew from {χ1, . . . , χk} according to eq. (1.16a);
14 Znew ← Znew · Zd, where Zd is the norm. from eq. (1.16a);
15 ψi ← ψnew;
16 wi ← (Znew)m;
17 return array {ψ}, weights {w};
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E.4 Population dynamics with hard and soft fields

Fraction of frozen variables (again on random regular graphs for simplicity) can be obtained by
solving equation (4.10). To compute the value r(m) a population needs to be kept for the soft part
of the distribution Psoft, eq. (4.2). It is important to stress that when evaluating the if conditions
on lines 15,19 and 23 we consider as frozen only the incoming fields created at line 13.

PD-HARD-SOFT(r(k), q(l), N, T,m)
1 Initialize randomly N -component array {ψ ← RAND};
2 η ← 1;
3 for t = 1, . . . , T :
4 do i← 1;
5 h← 0; Zhard ← 0; Zsoft ← 0;
6 while i ≤ N :
7 do Draw an integer k from the distribution r(k);
8 Znew ← 1;
9 for d = 1, . . . , k:

10 do Draw an integer l from the distribution q(l);
11 for r = 1, . . . , l:
12 do if RAND < η
13 then Set ψr to be a frozen field;
14 else Draw ψr uniformly from {ψ};
15 if No contradiction between the frozen fields in {ψ1, . . . , ψl}
16 then Compute χd from {ψ1, . . . , ψl} using eq. (1.16b);
17 Znew ← Znew · Zd, Zd is the norm. from (1.16b);
18 else goto line 7;
19 if No contradiction between the frozen fields in {χ1, . . . , χk}
20 then Compute ψnew from {χ1, . . . , χk} according to eq. (1.16a);
21 Znew ← Znew · Zd, where Zd is the norm. from eq. (1.16a);
22 else goto line 7;
23 if ψnew is a frozen field
24 then Zhard ← Zhard +

(
Znew

)m
;

25 h← h+ 1;
26 else Zsoft ← Zsoft +

(
Znew

)m
;

27 ψi ← ψnew;
28 wi ← (Znew)m;
29 i← i+ 1;
30 r ← (Zsofth)/(ZhardN);
31 Update η according to eq. (4.10);
32 {ψ} ← REWEIGHTING-FASTER(N, {ψ}, {w});
33 return array {ψ}, η;
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E.5 The population of populations

The general 1RSB equations take form (2.33), the order parameter P[P (ψ)] is a distribution
(over the graph ensemble) of distributions (over the clusters). It can be represented by a popula-
tion {{ψ}} of N -component populations {ψ}i, where i = 1, . . . ,M . We sketch here the corre-
sponding population dynamics of populations. Again this has been first described in [MP01].

POPULATION-OF-POPULATIONS(r(k), q(l), N,M, T,m)
1 Initialize randomly M ×N -component array {{ψ}};
2 for t = 1, . . . , T :
3 do for i = 1, . . . ,M :
4 do Draw an integer k from the distribution r(k);
5 for d = 1, . . . , k:
6 do Draw an integer ld from the distribution q(l);
7 Draw indexes i(d, 1), . . . , i(d, ld) uniformly in {1, . . . ,M};
8 {ψ}new ← ONE-STEP({{ψ}}, {i(1, 1), . . . , i(k, lk)}, {l}, k,N,m);
9 {ψ}i ← {ψ}new;

10 return array {{ψ}};

ONE-STEP({{ψ}}, {i(1, 1), . . . , i(k, lk)}, {l}, k,N,m)
1 for j = 1, . . . , N :
2 do Znew ← 1;
3 for d = 1, . . . , k:
4 do Draw indexes j(d, 1), . . . , j(d, ld) uniformly in {1, . . . , N};
5 Compute χd from {ψi(d,1),j(d,1), . . . , ψi(d,ld),j(d,ld)} using (1.16b);
6 Znew ← Znew · Zd, Zd is the norm. from (1.16b);
7 Compute ψnew from {χ1, . . . , χk} according to eq. (1.16a);
8 Znew ← Znew · Zd, Zd is the norm from (1.16a);
9 wj ←

(
Znew

)m
;

10 ψj ← ψnew;
11 {ψ} ← REWEIGHTING-FASTER(N, {ψ}, {w});
12 return array {ψ};

Depending on the problem we are about to solve the population of populations might also be
combined with the reweighting of populations or the separation of the frozen and soft fields, see
e.g. appendix D of [ZK07].

E.6 How many populations needed?

We make a summary of which level of the population dynamics technique is needed depending
on the problem. References are just examples and are biased towards works presented in this
thesis.

• Analytical solution

– Belief propagation on regular graphs [ZM06, ZK07, ZM08].
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– General warning propagation with integer warnings [ZM06, RSZ07].

– Frozen variables at m = 1 [ZK07, ZM08].

– Survey propagation on regular graphs (frozen variables at m = 0, energetic cavity)
[KPW04] or [ZK07, ZM08].

• Single population

– General belief propagation in models with discrete variables [ZM06, ZK07, ZM08].

– General survey propagation (1RSB atm = 0, energetic cavity) on model with integer
warnings [RSZ07, ZM08], or very precise numerics in [MMZ06].

– 1RSB at m = 1 [MM06a, MRTS08] or [KMRT+07, ZK07].

– 1RSB on random regular graphs [KMRT+07, ZK07].

– 2RSB at m = 0 (energetic cavity) on regular graphs [Riv05].

• Population of populations

– General 1RSB (also finite temperature) [MP01, MPR05, MRTS08] or [KMRT+07,
ZK07, KZ08b].

– 2RSB of random regular graphs [KZ08b].

– 2RSB at m = 0 (energetic cavity).

– 3RSB at m = 0 (energetic cavity) on regular graphs.

We are not aware on any work where the last two points would be implemented. More levels
of replica symmetry breaking would require more levels of populations. We are not aware of
any work where more than population of populations would be treated. Rather than pushing the
numerics in this direction new theoretical works are needed for models where the 1RSB solution
is not correct.
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F Algorithms

Here we do not aim to provide a complete summary of algorithms used to solve the random
constraint satisfaction problems. We just define and briefly discuss algorithms which were used,
generalized or tested in the context of this thesis. Strictly speaking we are almost always dealing
with incomplete solvers, that is algorithms which might find a solution but never provide a cer-
tificate of unsatisfiability. It is an open and interesting questions if the methods presented in this
thesis can imply something for certification of unsatisfiability.

F.1 Decimation based solvers

A large class of algorithms for CSPs is based on the following iterative scheme:

DECIMATION

1 repeat Choose a variable i ;
2 Choose a value si ;
3 Assign i the value si and simplify the formula;
4 until Solution or contradiction is found;

The nontrivial part is how to choose a variable in step 1 and how to choose its value in step 2.
In the following we describe several more or less sophisticated or efficient strategies.

Note that all these strategies can be improved by backtracking, that is if a contradiction was
found we return to the last variable where another value than the one we chose was possible and
make this choice instead.

F.1.1 Unit Clause propagation

One of the simplest (and obvious) strategies is to choose and assign a variable which is present in
a constraint which is compatible with only one value of that variable. In K-SAT this is equivalent
to assigning variables belonging to clauses which contain only this variable, hence the name unit
clause. If no such variable exists one possibility (the random heuristics) is to choose an arbitrary
variable and assign it a random value from the available ones. The unit clause propagation
combined with the random heuristics (without backtracking) is not very efficient solver of K-
SAT. But the situation is more fortunate for some other constraint satisfaction problems. The
most interesting example being perhaps the 1-in-K SAT [ACIM01] and [RSZ07]. The random 1-
in-K SAT exhibits a sharp satisfiability phase transition for K ≥ 3. Moreover, if the probability
of negation of variables lies in the interval (0.2726, 0.7274) (for K = 3) then:

• In the satisfiable phase the unit clause propagation combined with the random heuristics
finds a solution with finite probability in every run.

• In the unsatisfiable phase every run of the unit clause propagation leads to a contradiction
with finite probability after the assignment of the very first variable.

Hence, with random restarts the random 1-in-3 SAT is almost surely solvable in polynomial time
in the whole phase space (given the probability of a negation is as specified above). At the same
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time the 1-in-3 SAT is an NP-complete problem, it thus provides a rare example of an on average
easy NP-complete problem with a satisfiability phase transition.

Unit clause propagation is the main element of all the exact solvers of constraint satisfaction
problems. The most studied example being the Davis-Putnam-Logemann-Loveland (DPLL) al-
gorithm [DP60, DLL62] for K-SAT which combines the unit clause propagation with the pure
literal elimination (pure literal appears either only negated or non-negated) with backtracking. It
was mostly this algorithm which was used when the connection between the algorithmical hard-
ness and phase transitions was being discovered [MSL92, CKT91]. Moreover, all the modern
complete solvers of the satisfiability problem follow a similar, more elaborated, path.

F.1.2 Belief propagation based decimation

Belief propagation [Pea82] computes, or on general graphs approximates, marginal probabilities.
These can then be used to find an actual solution. In some problems the marginals give the
solution directly, e.g. in the error correcting codes [Gal68], in the matching [BSS05, BSS06], or
the random field Ising model at zero temperature [KW05, Che08] etc. In constraint satisfaction
problems, typically, marginals do not give a direct information about a solution. For example
in coloring of random graphs, the BP equations always converge to all marginals being equal to
1/q. Belief propagation based decimation strategies have been studied recently.

In every cycle of the algorithm DECIMATION, the belief propagation equations are updated
until they converge or a maximal number of updates per variable Tmax is reached. At least
two strategies how to choose the decimated variable and its value were tested and studied, see
e.g. [KMRT+07] and [MRTS07]:

• Uniform BP decimation – Choose a variable at random and assign its value according to
the marginal probability estimated by BP.

• Maximal BP decimation – Find the variable with the most biased BP marginal and assign
it the most probable value.

The other two combinations where a random variables is assigned its most probable value or
when the most biased variable is assigned random value according to its marginal probability
can be think of. The BP decimation, as described above, runs in quadratic time. In eventual
practical implementations a small fraction of variables should be decimated at each step, thus
reducing the computational complexity to linear (or log-linear if the maximum convergence time
increases as logN ).

The empirically best strategy is the maximal BP decimation. This can be understood from
the fact that this strategy aims to destroy the smallest possible number of solutions in every step,
as argued on a more quantitative level in [Par03]. We gave as an example the performance of
the maximal BP decimation in the 3- and 4-coloring of random Erdős-Rényi graphs [ZK07] in
fig. 3.3.

The uniform BP decimation is less successful, because it aims not only to find a solution
but also to sample solutions uniformly at random. Indeed, if an exact calculation of marginal
probabilities would be used instead of the BP estimates the uniform exact decimation would lead
to a perfect sampling. The uniform exact decimation is a process which can be analyzed using the
cavity method. The result then sheds light on the limitations of the BP decimation. This analysis
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was developed in [MRTS07], and we give an example for the factorized occupation problems in
the following.

F.1.3 Maximal BP decimation on the random coloring

We implemented the maximal BP decimation algorithm on the random graph coloring. We
chose Tmax = 10, if a solutions is not found we restart with Tmax = 20 and eventually once
again with Tmax = 40. The fraction of successful runs is plotted in fig. 3.3 and we see that
this algorithm works even in condensed phase where the BP marginals are not asymptotically
correct, or in a phase where the equations do not even converge. The non-convergence of the
belief propagation equations is ignored (in 3-coloring from the beginning, in 4-coloring after a
small fraction, typically around 10%, of variables was fixed). It thus seems that in coloring the
BP decimation is a very robust algorithm.

What is the reason for the failure of the maximal BP decimation at higher connectivities? A
straightforward suggestion would be that is should not work in the condensed phase where the
BP marginals are not asymptotically correct. But we do not observe anything particular in the
performance curves at the condensation transition. A second natural suggestion would be that
BP should converge in order that the algorithm works, this also does not seem to be the case, as
BP does not converge in the 3-coloring for connectivity c > 4 and yet the algorithm is perfectly
able to find solutions. Moreover, even in 4-coloring where the BP equations converge on large
formulas in all the satisfiable phase, after a certain (rather small) fraction of variables is decimated
the convergence is lost. As we argued in appendix C the non-convergence of BP is equivalent
to the local instability of the replica symmetric solution. It thus seems that the reduced problem,
after a certain fraction of variable was fixed, is even harder from the statistical physics perspective
than the original problem. Yet, this does not seem to be fatal for the finding of solutions. Finally,
in the region where the BP decimation algorithm really does not succeed we observed that a
precursor of the failure exists. The normalizations in the BP equations (1.16a-1.16b) gradually
decreases to zero, meaning that the incoming beliefs become almost contradictory.

F.1.4 Analysis of the uniform exact decimation

The uniform exact decimation after θN steps is equivalent to taking a solution uniformly at
random and fixing its first θN variables. Such a procedure can be analyzed [MRTS07] and
conclusions made about the influence of small errors in the BP estimates of marginals.

Given an instance of the CSP, consider a solution {s} taken uniformly at random and reveal
the value of each variable with probability θ. Denote Φ the fraction of variables which were
either revealed or are directly implied by the revealed ones. To compute Φ(θ) we derive the
cavity equations on a tree. Denote Φi→bs the probability that a variable i is fixed conditioned on
the value s of the variable i and on the absence of the edge (ib):

Φi→bs = θ + (1− θ)

[
1−

∏
a∈∂i−b

(1− qa→is )

]
. (F.1)

Meaning that the variable i was either revealed or not, and if not it is implied if at least one of the
incoming constraints implies it. The qa→is is a probability that constraint a implies variable i to
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be s conditioned on: 1) variable i taking the value s ∈ {s} in the solution we chose, 2) variable
i was not revealed directly and 3) the edge (ai) is absent.

We write the expression for qa→is only for random occupation CSPs on random regular graphs
where the replica symmetric equation is factorized. Then also qa→is and Φi→bs are factorized, that
is independent of a, b, i. The conditioned probability qs is the ratio of the probability that variable
i takes the value s and is implied by the constraint a and probability that variable i takes the value
s:

q1 =
1

ψ1Zreg

∑
Ar=0
Ar+1=1

(
k

r

)
(ψ1)lr(ψ0)l(k−r)

s1∑
s=0

(
r

s

)
Φk−r0 Φr−s1 (1− Φ1)s, (F.2a)

q0 =
1

ψ0Zreg

∑
Ar=1
Ar+1=0

(
k

r

)
(ψ1)lr(ψ0)l(k−r)

s0∑
s=0

(
k − r
s

)
Φr1Φk−r−s0 (1− Φ0)s, (F.2b)

where l = L − 1, k = K − 1. The indexes s1, s0 in the second sum of both equations are the
largest possible but such that s1 ≤ r, s0 ≤ K − 1 − r, and

∑s1
s=0Ar−s = 0,

∑s0
s=0Ar+1+s =

0. The terms Φr1Φk−r−s0 (1 − Φ0)s and Φr−s1 ΦK−r−1
0 (1 − Φ1)s are the probabilities that a

sufficient number of incoming variables was revealed such that the out-coming variable is implied
(not conditioned on its value). The first sum goes over all the possible numbers of 1’s being
assigned on the incoming variables, r. The term ψlr1 ψ

l(k−r)
0 is then the probability that such

a configuration took place. The cavity probabilities that the corresponding variable takes value
0/1, ψ0, ψ1 are taken from the BP equations (4.16a-4.16b), Zreg is the normalization in (4.16a-
4.16b). The first condition on r takes care about the values of the incoming neighbours being
compatible with the value of the variable i on which is conditioned, the second condition on r is
satisfied if and only if the value of the variable i is implied by the incoming configuration.

Once a solution for qs is found (from initial conditions Φ = θ) the total probability that a
variable is fixed is computed as

Φ(θ) = θ + (1− θ)
{
µ1[1− (1− q1)L] + µ0[1− (1− q0)L]

}
, (F.3)

where µ0, µ1 are the total BP marginals, µs = ψLs /(ψ
L
0 + ψL1 ).

Notice the complete analogy between eqs. (F.2b-F.2a) and the equations for hard fields at
m = 1 (4.20b-4.20a). To compute the function Φ(θ) for a general CSP on a general graph
ensemble a derivation in the lines of app. A have to be adapted, see also [MRTS07]. Finally
note that as the probabilities ψ1, ψ0 are taken from the belief propagation equations the form
(F.2b-F.2a) is not correct in the condensed phase (but in the locked problems the satisfiable phase
is never condensed).

F.1.5 The Failure of Decimation in the Locked problems

In the locked problems, see sec. 4.3, the BP decimation algorithm does not succeed to find a
satisfying assignment even at the lowest possible connectivity. To give an example in the 1-or-3-
in-5 SAT on truncated Poissonian graphs the maximal BP decimation succeeds to find a solution
in only about 25% at the lowest average connectivity l = 2, and this fraction drops down to
less than 5% at already l = 2.3 (to be compared with the clustering threshold ld = 3.07, or the
satisfiability threshold ls = 4.72).
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Fig. F.1. (Color online) Analytical analysis of the BP inspired uniform decimation. Number of variables
directly implied Φ(θ) plotted against number of variables fixed θ.

Interestingly, the precursors of the failure of the BP decimation algorithm observed in the
graph coloring are not present in the locked problems. In particular the BP equations converge
during all the process and the normalizations in the BP equations (1.16a-1.16b) stays finite.
However, the above analysis of the function Φ(θ) sheds light on the origin of the failure.

In fig. F.1 we compare the function Φ(θ) (F.3) with the experimental performance of the
uniform BP decimation. Before the failure of the algorithm (when a contradiction is encountered)
the two curves collapse perfectly. The reason why the algorithm fails to find solutions is now
transparent.

• Avalanche of direct implications – In some cases the function Φ(θ) has a discontinuity
at a certain spinodal point θs (θs ≈ 0.46 at L = 3 of the 1-or-3-in-5 SAT). Before θs
after fixing one variable there is a finite number of direct implications. As the loops are of
order logN these implications never lead to a contradiction. At the spinodal point θs after
fixing one more variable and extensive avalanche of direct implications follows. Small
(order 1/N ) errors in the previously used BP marginals may thus lead to a contradiction.
This indeed happens in almost all the runs we have done. For more detailed discussion
see [MRTS07].

• No more free variables – The second reason for the failure is specific to the locked prob-
lems, more precisely to the problems where Φ = 1 is a solutions of (F.2a-F.2b). In these
cases function Φ(θ) → 1 at some θ1 < 1 (θ1 ≈ 0.73 at L = 4 of 1-or-3-in-5 SAT).
In other words if we reveal a fraction θ > θ1 of variables from a random solution, the
reduced problem will be compatible with only that given solution. Again a little error in
the previously fixed variables and the BP uniform decimation ends up in a contradiction.
If on the contrary the function Φ(θ) reaches value 1 only for θ = 1 then the residual en-
tropy is positive and there should everytime be some space to correct previous small errors,
demonstrated on a non-locked problem in fig. F.2.

These two reasons of failure of the BP uniform decimation seems quite different. But they
have one property in common. As the point of failure is approached we observe a divergence
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Fig. F.2. (Color online) Left: For comparison, the BP uniform decimation works well on the non-locked
problems, the example is for bicoloring. Right: Comparison of the maximal and uniform decimation.
Number of directly implied variables is plotted against number of variables which were free just before
being fixed. Behaviour of the two decimation strategies is similar.

of the ratio between the number of variables which were not directly implied before being fixed
and the number of directly implied variables, see fig. F.2. This ratio can also be computed for
the maximal BP decimation and no quantitative difference is observed for the locked problems,
thus the two reasons above explain also the failure of the, otherwise more efficient, maximal BP
decimation.

F.1.6 Survey propagation based decimation

The seminal works [MPZ02, MZ02] not only derived the survey propagation equations, but also
suggested it as a base for a decimation algorithm for random 3-SAT. The performance is spectac-
ular, near to the satisfiability threshold on large random 3-SAT formulas it works faster than any
other known algorithm. SP based decimation seem to be able to find solutions in O(N logN)
time up to the connectivity α = 4.252 in 3-SAT [Par03] (to be compared with the satisfiability
threshold αs = 4.267).

Survey propagation equations (1.41-1.42) aim to compute the probability (over clusters) that
a certain variables is frozen to take a certain value. This information can then be used to design a
strategy for the DECIMATION algorithm. In particular, as long as the result of survey propagation
is nontrivial (not all pi→a0 = 1) the variable with the largest bias |pi+ − pi−| is chosen and is
assigned the more probable value. After a certain fraction of variables is decimated the fixed
point of the survey propagation on the reduced formula is trivial. The suggestion of [MPZ02,
MZ02] is that such a reduced formula is easily satisfiable and some of the well known heuristic
algorithms may be used to solve it (Walk-SAT, see the next section F.2.2, was used in the original
implementation). Note also that the original implementation of [MPZ02, MZ02] decimated a
fraction of variables at each DECIMATION step, thus reducing significantly the computational
time.

Originally, the success of the survey propagation based algorithm was contributed to the
fact that survey propagation equations take into account the clustering of solutions. This was,
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however, put in doubt since. To give an example, in the locked problems, see sec. 4.3, the survey
propagation equations give an identical fixed point as the belief propagation and as we argued
in the previous section F.1.2 the maximal BP decimation fails to find solutions in the locked
problem in the whole range of connectivities.

The true reason for the high performance of survey propagation in 3-SAT thus stays an open
problem. For example, and unlike with BP, there are usually no problems with SP convergence
during the decimation. Two very interesting observations were made in [KSS07a] for SP the
decimation algorithm on K-SAT. First, the SP decimation indeed makes the formula gradually
simpler for local search algorithms, see sec. F.2.2, again in contrast with BP decimation. Second,
the SP decimation on K-SAT does not create any (or a very small number) of direct implications
(unit clauses) during the process. Given that creation of direct implication makes the decimation
fail in the locked problems, as we just showed, this might be a promising direction for a new
understanding.

F.2 Search of improvement based solvers

Here we describe another large class of CSPs solvers, the search of improvement algorithms. All
these algorithms start with a random assignment of variables. Then different rules are adopted to
gradually improve this assignment and eventually to find a solution. The most typical example
of that strategy is the simulated annealing [KGV83] or stochastic local search algorithms like
Walk-SAT [SLM92, SKC94].

F.2.1 Simulated annealing

In physics simulated annealing is a popular and very universal solver of optimization problems.
It is based on running the Metropolis [MRR+53] (or other Monte Carlo) algorithm and gradually
decreasing the temperature-like parameter. Simulated annealing algorithm respects the detailed
balance condition, after large time it thus converges to the equilibrium state, and it is thus guar-
anteed to find the optimal state in a finite time for a finite system size. In general, the time can
of course depend exponentially on the system size, and in such a case it is not really of practical
interest.

We argued in chap. 2 that at the clustering (dynamical) transition the equilibration time of a
detailed balance local dynamics diverges. However, the clusters which appear at the dynamical
energy Ed > 0 have bottom at an energy Ebottom ≤ Ed and numerical performance of the
simulated annealing in the 3-coloring of random graphs [vMS02] suggests that Ebottom might
be zero even if Ed is positive. More precise numerical investigation of this point is, however,
needed.

F.2.2 Stochastic local search

Solving K-SAT by a pure random walk was suggested in [Pap91]:



Algorithms 291

PURE-RANDOM-WALK-SAT(Tmax)
1 Draw a random assignment of variables;
2 T ← 0;
3 repeat Draw a random unsatisfied constraint a;
4 Flip a random variable i belonging to a;
5 T ← T + 1;
6 until Solution is found or T > NTmax;

In random 3-SAT this simple strategy seems to work in linear time up to αRW ≈ 2.7 [SM03].
Improvements of the PURE-RANDOM-WALK-SAT have led to a large class of so-called stochas-
tic local search algorithms. All are based on a random walk in the configurational space with
more complicated rules about which variables would be flipped. The version called WALKSAT
introduced in [SKC94, SKC96] became, next to the DPLL-based exact solvers, the most widely
used solver of practical SAT instances. In random 3-SAT the Walk-SAT with p = 0.5 was shown
to work in linear time up to about αWS = 4.15 [AGK04].

WALKSAT(Tmax, p)
1 Draw a random assignment of variables;
2 T ← 0;
3 repeat Pick a random unsatisfied constraint a;
4 if Exists a variable i in a that is not necessary in any other constraint;
5 then Flip this variable i;
6 else if RAND < p;
7 then Flip a random variable i belonging to a;
8 else Flip i (from a) that minimizes the # of unsat. constraints;
9 T ← T + 1;

10 until Solution is found or T > NTmax;

Several other variants of stochastic local search on random 3-SAT were studied in [SAO05]
showing that with a proper tuning of parameters like p the linear performance can be extended up
to at least α ≈ 4.20. Finally a version of the stochastic local search called ASAT was introduced
in [AA06]. In random 3-SAT ASAT works in a linear time at least up to α = 4.21 [AA06].
We adapted the implementation of ASAT and studied its performance in coloring and on the
occupation CSPs.

ASAT(Tmax, p)
1 Draw a random assignment of variables;
2 T ← 0;
3 Create the list {v} of variables which are present in unsatisfied constraints.
4 repeat Pick a random variable i from the list {v};
5 Compute the change of energy ∆E if the value of i is flipped.
6 if ∆E ≤ 0;
7 then Flip i;
8 else if RAND < p;
9 then Flip i;

10 else Do nothing;
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11 Update list {v} of variables which are present in unsatisfied constraints.
12 T ← T + 1;
13 until Solution is found or T > NTmax;

In the coloring problem where variables take one from more than two possible values, the
only modification of ASAT is that we choose a random value into which the variable is flipped
on line 5. The performance for the 4-coloring of Erdős-Rényi graphs was sketched in fig. 2.3.

There are two free parameters in the ASAT algorithm, the maximal number of steps per
variable Tmax and, more importantly, the greediness (temperature-like) parameter p, which need
to be optimized. In [AA06] and [ZK07] it was observed that in the random K-SAT and random
coloring problems the optimal value of p does not depend on the system size N , neither very
strongly on the constraint density α. But these observation might be model dependent, as it
indeed seems to be the case for the locked problems.

F.2.3 Belief propagation reinforcement

A ”search of improvement” solver can also be based on the belief propagation equations. The
idea of the belief propagation reinforcement, introduced in [CFMZ05] 1, is to write belief prop-
agation equations with an external ”magnetic” field (site potential) µisi

ψa→isi =
1

Za→i

∑
Asi+

P
sj

=1

∏
j∈∂a−i

χj→asj , (F.4a)

χi→asi =
1

Zi→a
µisi

∏
b∈∂i−a

ψb→isi , (F.4b)

and then iteratively update this field in order to make the procedure converge to a solution given
by the direction of the external field ri = argmaxsiµ

i
si . At every step the configuration given

by the direction of the external field is regarded as the current configuration which is being
improved.

The question is how to update the external field. The basic idea is to choose the local potential
µisi in some way proportional to the current value of the total marginal probability χisi , which is
computed without the external fields as

χisi =
1
Zi

∏
b∈∂i

ψb→isi . (F.5)

How exactly, and how often should the value of local potential be updated is open to many
different implementations, some of them can be found in [BZ06, DRZ08]. The same as in the
local search algorithm it is not well understood, beyond a purely experimental level, how the
details of the implementation influence the final performance. We tried several ways and the best
performing seemed to be the following

µi1 = (π)li−1, µi0 = (1− π)li−1, if ξi0 > ξi1 , (F.6a)
µi1 = (1− π)li−1, µi0 = (π)li−1, if ξi0 ≤ ξi1 , (F.6b)

1Strictly speaking the reinforcement strategy was fist introduced for the survey propagation equations, but the concept
is the same for belief propagation.
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where 0 ≤ π ≤ 1/2, li is the degree of variable i and the auxiliary variable ξisi is computed
before updating the field µi

ξisi = (µisi)
1

li−1 χisi . (F.7)

BP-REINCORCEMENT(Tmax, n, π)
1 Initialize µisi and ψa→isi randomly;
2 T ← 0;
3 Compute the current configuration ri = argmaxsiµ

i
si ;

4 repeat Make n sweeps of the BP iterations (F.4a-F.4b);
5 Update all the local fields µisi according to (F.6a-F.6b);
6 Update ri = argmaxsiµ

i
si ;

7 T ← T + 1;
8 until {r} is a solution or T > Tmax;

How should the strength of the forcing π be chosen? Empirically we observed three different
regimes:

a) πBP−like < π < 0.5: When the forcing is weak the BP-REINFORCEMENT converges very
fast to a BP-like fixed point, the values of the local fields do not point towards any solution.
On contrary many constraints are violated by the final configuration {ri}.

b) πconv < π < πBP−like: The BP-REINFORCEMENT converges to a solution {ri}.

c) 0 < π < πconv: When the forcing is too strong the BP-REINFORCEMENT does not
converge. And many constraints are violated by the configuration {ri} which is reached
after Tmax steps.

When the constraint density in the CSP is large the regime b) disappears and πconv = πBP−like.
For an obvious reason our goal is to find πconv < π < πBP−like. The point πBP−like is very easy
to find, because for larger π the convergence of BP-REINFORCEMENT to a BP-like fixed point
happens in just several sweeps. Thus in all the runs we chose π to be just bellow πBP−like, that is
to hit the possible gap between πBP−like and πconv. The value of π chosen in this way does not
seem to depend on the size of the system, it, however, depends slightly on the constraint density.

Experimentally it seems that the optimal number of BP sweeps on line 4 of BP-REINFORCEMENT
is very small, typically n = 2, in agreement with [CFMZ05]. We observed with a surprise that
when n is much larger not only the total running time is larger but the overall performance of the
algorithm is worse.

In the regime where the BP-REINFORCEMENT algorithm performs well the median running
time T seems to be independent of the size, leading to an overall linear time complexity. The
total CPU time is comparable to the time achieved by the stochastic local search ASAT.

There is an imperfection of our implementation of the BP-REINFORCEMENT, because in
small fraction of cases, for all connectivities, the algorithm is blocked in a configuration with
only 1-3 violated constraints. If this happens we reinforce stronger the problematic variables
which sometimes shifts the problem to a different part of the graph, where it might be resolved.
Also a restart leads to a solution.
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We tested the BP-REINFORCEMENT algorithm mainly in the occupation CSPs, the results
are shown in sec. 4.3. Survey propagation reinforcement can be implemented in a similar way,
as was done originally in [CFMZ05].
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[AZ08] John Ardelius and Lenka Zdeborová. Exhaustive enumeration unveils clustering and freezing
in random 3-sat. Phys. Rev. E, 78:040101(R), 2008.

[BB04] J. P. Bouchaud and G. Biroli. On the Adam-Gibbs-Kirkpatrick-Thirumalai-Wolynes scenario
for the viscosity increase of classes. J. Chem. Phys., 121:7347–7354, 2004.

[BCKM98] J.-P. Bouchaud, L. Cugliandolo, J. Kurchan, and M Mézard. Out of equilibrium dynamics
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[BMWZ03] A. Braunstein, M. Mézard, M. Weigt, and R. Zecchina. Constraint satisfaction by survey
propagation. In Allon Percus, Gabriel Istrate, and Cristopher Moore, editors, Computational
Complexity and Statistical Physics, page 107. Oxford University Press, 2003.
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