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This is the first volume of a three-volume introductory course about integrable (exactly solv-
able) systems of interacting bodies. The aim of the course is to derive and analyze, on an
elementary mathematical and physical level, the Bethe ansatz solutions, ground-state proper-
ties and the thermodynamics of integrable many-body systems in many domains of physics:
Nonrelativistic one-dimensional continuum Fermi and Bose gases; One-dimensional quantum
models of condensed matter physics like the Heisenberg, Hubbard and Kondo models; Rela-
tivistic models of the (1+1)-dimensional Quantum Field Theory like the Luttinger model, the
sine-Gordon model and its fermionic analog the Thirring model; Two-dimensional classical
models, especially the symmetric Coulomb gas. In the first part of this volume, we deal with
nonrelativistic one-dimensional continuum Fermi and Bose quantum gases of spinless (iden-
tical) particles with specific types of pairwise interactions like the short-range δ-function and
hard-core interactions, and the long-range 1/x2 interaction. The second part is devoted to the
description of the Quantum Inverse Scattering Method, as the universal method for generating
and solving integrable models, and to the analysis of the related Yang-Baxter equation, as the
consistency condition for the factorization of the multi-particle scattering. With the aid of this
method, we present the complete solution of spin- 1

2
fermions with δ-function interactions.
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1 Introduction

In classical mechanics, a dynamical system of interacting bodies with 2N -dimensional phase
space is said to be integrable if there existN conserved functions (charges) which Poisson bracket
vanishes. A system in the Quantum Field Theory (QFT) is called integrable if there exists an in-
finite set of mutually commuting conserved charges. The existence of the conserved charges
allows us to solve the physical system exactly and in this way to describe the modeled phenom-
ena without any approximative scheme. Although the integrability property is restricted to low
dimensions, the exact solution provides in many cases a fundamental information about physical
phenomena. In the present times we know precisely how to generate systematically integrable
models and how to solve them, explicitly or implicitly in the form of integral equations.

Integrable models are known in many domains of quantum and statistical physics:

• Nonrelativistic one-dimensional continuum Fermi and Bose quantum gases with specific
types of pairwise interactions like the short-range δ-function and hard-core interactions,
the long-range 1/x2 interaction, etc.

• One-dimensional lattice and continuum quantum models of condensed matter physics like
the Heisenberg model of interacting quantum spins, the Hubbard model of hopping elec-
trons with one-site interactions between electrons with opposite spins, the Kondo model
of the interaction of a conduction band with a localized spin impurity, etc.

• Relativistic models of the QFT in a (1+1)-dimensional spacetime like the Luttinger model,
the sine-Gordon model and its fermionic analog the Thirring model, etc.

• Two-dimensional lattice and continuum classical models in thermal equilibrium like the
Ising model of interacting ±1 spins, the six- and eight-vertex models, the Coulomb gas of
±1 charges interacting logarithmically, etc.

Integrable systems can be either homogeneous, i.e. formulated in a finite domain with peri-
odic boundary conditions or taken as infinite (the thermodynamic limit), or inhomogeneous, e.g.
in the presence of a hard-wall boundary impenetrable to particles. We shall restrict ourselves to
homogeneous systems.

The complete solution of an integrable one-dimensional quantum-mechanical model pro-
ceeds in few steps.

• The first step is to reduce the problem of calculating the spectrum of a Hamiltonian to
solving a set of coupled algebraic equations. In this way the original problem of exponen-
tial complexity is reduced to the one of polynomial complexity. The coupled equations are
known, for historical reasons, as the Bethe ansatz equations and have an adjective which
depends on the type of the system under consideration or on the applied method. The
adjectives are “coordinate” for spinless particles treated in the direct format, “nested” for
particles with internal degrees of freedom like spin, “algebraic” for an inverse scattering
formulation, etc.

• The next step is to find the solution of the Bethe equations which corresponds to the ground
state (zero-temperature thermodynamics), i.e. the eigenstate of the Hamiltonian with the
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lowest energy. In dependence on the Hamiltonian parameters, this problem can be trivial or
nontrivial, explicitly solvable only in the thermodynamic limit by using a continualization
procedure.

• The third step consists in the construction of low-lying excitations upon the ground state
and in finding the asymptotic expression for their energy in the thermodynamic limit.

• The fourth step is the derivation of the thermodynamics (the free energy) for the system at
temperature T > 0 (the “Thermodynamic Bethe ansatz”).

• The last step is the evaluation of the correlation functions of interacting bodies at some
distance. Much attention is devoted to this topic at present, but we shall not discuss it.

The solution of the equilibrium statistical mechanics of an integrable classical model formulated
on a two-dimensional lattice consists in the diagonalization of a row-to-row transfer matrix whose
largest eigenvalue determines the thermodynamic limit of the free energy. From this point of
view, the problem resembles technically the one of finding the ground-state energy of a quantum-
mechanical model in spatial dimension reduced by one.

In the next paragraphs, we shall summarize briefly milestones in the history of integrable
many-body systems.

The most important integrable system was certainly the quantum-mechanical model of mag-
netism proposed by Heisenberg [1]. The Heisenberg Hamiltonian of N interacting particles with
spin 1

2 on a one-dimensional chain reads

H = −1
2

N∑
n=1

(
Jxσx

nσx
n+1 + Jyσy

nσy
n+1 + Jzσ

z
nσz

n+1

)
, (1.1)

where σα
n (α = x, y, z) are the Pauli spin operators on site n = 1, 2, . . . , N (see Appendix A

for definitions), satisfying periodic boundary conditions σα
N+1 = σα

1 , and {Jx, Jy, Jz} are real
coupling constants. When Jx 6= Jy 6= Jz , this model is called the XYZ model. The special
cases Jx = Jy 6= Jz and Jx = Jy = Jz = J correspond to the XXZ and XXX models, respec-
tively. The eigenvectors and the eigenvalues of the completely isotropic XXX Hamiltonian were
found in the pioneering work [2] by Bethe in 1931. In the ferromagnetic case J > 0, the Bethe
ansatz equations provide an exact answer for the (trivial) ground-state properties and low-lying
excitations of string type (an n-string is a group of n roots in the complex momentum/rapidity
plane distributed symmetrically and equidistantly around the real axis). In the antiferromagnetic
case J < 0, the nontrivial ground state was constructed by Hultén [3]. He derived from the
asymptotic N → ∞ limit of Bethe’s equations a linear integral equation for a particle distribu-
tion function in the momentum space, the solution of which provides an explicit expression for
the ground-state energy per site. More than twenty years later des Cloizeaux and Pearson [4]
constructed excitations upon the antiferromagnetic ground state and found the asymptotic ex-
pression for their energy. The generalization of Bethe’s method to the XXZ model, made by
Yang and Yang [5, 6], was straightforward and brought the topic to a higher mathematical level.
The solution of the XYZ model, given by Baxter in 1971 [7]- [10], was a breakthrough. Baxter
discovered a link between the quantum one-dimensional XXZ and XYZ models and the equi-
librium statistical mechanics of two-dimensional classical systems, the so-called six-vertex and
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eight-vertex models, respectively. He observed that the eigenstates of the transfer matrix of the
six-vertex model are independent of one of the model parameters. Consequently, there exists an
infinite family of commuting transfer matrices which originates from the so-called “Yang-Baxter
equation” fulfilled by the Boltzmann weights of the six-vertex model. The same observation
takes place also in the case of the eight-vertex model, for which Baxter obtained a system of
Bethe-like transcendental equations. With the aid of these equations he was able to calculate the
ground-state energy of the XYZ model and its critical properties which are non-universal in a
weak sense: although the critical indices depend on model’s parameters, but their ratios do not.
The asymptotic energy of low-lying excitations of the XYZ model was obtained by Johnson,
Krinsky and McCoy [11].

The fundamental property of integrable particle systems, possessing an infinite number of
conservation laws, is the factorization property of the multi-particle scattering into a sequence
of two-particle ones. The two-particle scattering is elastic, i.e. not only the total momentum but
also both individual particle momenta are conserved. In this context, the Yang-Baxter equation
is the consistency condition for elements of the two-particle scattering matrix which ensures the
invariance of the three-particle (and, consequently, multi-particle) scattering with respect to the
order in which two-particle scatterings are accomplished. The concept of the transfer matrix and
the Yang-Baxter equation as the consistency condition played a central role in a program called
the “Quantum Inverse Scattering Method” (QISM), established in late seventies by Faddeev,
Sklyanin, Takhtajan and their co-workers [12,13]. The method is based on a relationship between
integrable many-body models and integrable evolution equations [14, 15]. An important feature
of the method, the algebraic construction of eigenstates of the transfer matrix [16, 17], gave an
alternative name for it: the “algebraic Bethe ansatz”. The systematic search for the solutions of
the Yang-Baxter equation [18] resulted in the appearance of “Quantum Groups” [19, 20].

Another important group of integrable models are nonrelativistic one-dimensional continuum
Fermi and Bose (the relationship between the spin and statistics is usually ignored, for mathemat-
ical reasons) quantum gases with specific types of pairwise interactions. The crucial model was
the one of spinless (identical) bosons with attractive or repulsive δ-function interactions, initiated
in 1963 by Lieb and Liniger [21, 22]. While the attractive bosons exhibit a collapse in the ther-
modynamic limit, the thermodynamic limit of the repulsive boson system is well behaved and the
Bethe ansatz equations provide the ground-state (zero-temperature) properties as well as the en-
ergy of low-lying excitations. In 1969 Yang and Yang [23] derived from the Bethe equations the
thermodynamic properties of repulsive δ-function bosons at finite temperatures; this was the first
exact treatment of thermodynamics for an interacting many-body system. The crucial observa-
tion was that also the holes, i.e. unoccupied energy levels, contribute to the entropy of the system.
Since the spectrum of excitations energies is relatively simple (the momenta are real, so there are
only strings of length n = 1), the thermodynamics is determined by a coupled pair of integral
equations for the distribution functions of the excitation energy and of the equilibrium particle
(hole) densities in the momentum space. The other spinless particle systems with integrable in-
teractions, like the hard-core and the long-range 1/x2 ones, were treated analogously [24, 25].
The generalization of the Bethe ansatz method to systems of particles with internal degrees of
freedom turned out to be complicated because in the scattering the internal states of the particles
can be changed. The problem of spin- 1

2 (two-state) fermions with δ-function interactions was
solved in 1967 by Yang [26] and Gaudin [27] by using the “nested Bethe ansatz” and the Yang-
Baxter equation as the consistency condition. The excited states of this model form strings of
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various lengths n = 1, 2, . . .. The final result for the thermodynamics [28–30] is thus expressible
in terms of the solution of an infinite set of coupled nonlinear integral equations, one for each
string length n, known as the “Thermodynamic Bethe ansatz”. These equations can be analyzed
analytically only in special limits, e.g. in the limits of zero and infinite temperatures or interac-
tion strengths. The same structure of the Thermodynamic Bethe ansatz was observed in the case
of the Heisenberg model [31, 32]. The strings can be avoided in a simpler method developed by
Destri and de Vega [33, 34] which leads to a single nonlinear integral equation.

The technique of the nested Bethe ansatz was applied to other models of the condensed
matter physics. The lattice version of the spin- 1

2 fermion system with δ-function interactions,
the Hubbard model, was solved by Lieb and Wu in 1968 [35]. The exact solution showed the
absence of a conducting-insulating Mott transition in the one-dimensional version of this model.
The Kondo model, reflecting effects of the interaction of a conduction band with a localized spin
impurity, was solved by Andrei [36] and Wiegmann [37].

The Bethe ansatz technology was successfully applied also to integrable models of the QFT
in a (1+1)-dimensional spacetime, like the sine-Gordon model and its fermionic equivalent the
Thirring model [38], to obtain their exact scattering matrices and the mass spectrum [39,40], the
vacuum energy as a function of renormalized parameters of the theory [41], the relation between
the coupling constant and the physical mass scale [42], etc.

As concerns the equilibrium statistical mechanics of classical systems, the first milestone oc-
curred in 1944 when Onsager solved the two-dimensional Ising model [43]. His exact solution
showed the universality of critical phenomena and the fact that the critical indices in two dimen-
sions are not mean-field like. Further lattice models of special interest were the vertex ones,
in which the local state variables are localized on the edges connecting nearest-neighbor sites.
Three cases of the six-vertex model – antiferroelectric F [44], ferroelectric KDP [45] and ice [46]
– were solved by Lieb. The general case of the six-vertex model was solved by Sutherland [47].
The exact solution of the eight-vertex model by Baxter [7,9] has already been mentionned in the
context of the XYZ Heisenberg model.

The statistical models mentionned above are defined on a regular discrete lattice structure.
There exists another family of classical statistical models, the so-called fluids, formulated in the
continuum space. Concepts and methods used in the two fields are usually very different and
the overlap between the physical communities is small. While there exist many exactly solvable
two-dimensional lattice models, nontrivial fluid systems were solvable only in one dimension.
A modest contribution of the present author and his co-workers consists in solving exactly the
thermodynamics of the first continuum fluid in dimension higher than one: the two-dimensional
Coulomb gas of ±1 pointlike charges interacting via the logarithmic potential [48, 49]. The
exact solution of a two-dimensional Coulomb gas with the charge asymmetry +1,−1/2 is also
available [50].

There exist few monographs about the present subject. Those, which I consider as the most
relevant and therefore belong to my library, are presented in the chronological order in what fol-
lows. The famous book by Baxter [51] concerns integrable models of the equilibrium statistical
mechanics. Gaudin summarizes his experience with the Bethe ansatz and the ground-state anal-
ysis in the technically rather difficult book [52]. Mattis’s encyclopedia of exactly solved models
in one dimension [53] contains over 80 reprinted papers with a short summary for each topic.
The book by Korepin and Essler [54] contains reprinted articles in the field of condensed mat-
ter physics. The Yang-Baxter equation, the general structure of its solutions and the Quantum
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groups are in the center of interest of the book [55]. Takahashi’s book [56] is an encyclopedia
of the results about the thermodynamics of integrable many-body systems. Sutherland concen-
trates in his book [57] on nonrelativistic Fermi and Bose gases in one dimension with internal
degrees of freedom, a special interest is devoted to models with long-range interactions. The
one-dimensional Hubbard model is reviewed in detail in a recent book [58].

A natural question arises: why to write another course about integrable systems? The main
motivations are the following:

• The published books are usually oriented to a restricted area of models and methods. The
present course encompasses all important kinds of integrable models, including the ones of
the (1+1)-dimensional QFT. It is intended for non-specialists who would like to understand
methods of other branches of physics and potentially use these methods in their own field.

• The mathematical level of some of the books is very high and requires a preliminary study
of specific topics from the literature. The present course is self-contained, made mathemat-
ically as simple as possible. Only an elementary knowledge of the quantum mechanics and
the equilibrium statistical physics is required. This makes the text accessible to graduate
students, which is in agreement with the novel strategy of Acta Physica Slovaca (APS).

• The methods and techniques presented in the published books are usually traditional. We
intend to include also modern trends in the Thermodynamic Bethe ansatz which, to my
knowledge, are not included in the standard textbooks.

• The course is not intended as an encyclopedia of the obtained results in the field of inte-
grable systems; I apologize myself to everybody who contributed relevantly to the field
and his work is not cited. For each particular model, the course contains a detailed deriva-
tion of the Bethe ansatz equations, the specification of the ground state, the construction
of the thermodynamic Bethe ansatz and a discussion about physical consequences which
follow from the exact results.

The character and the aims of the course reflect my own experience in the equilibrium statis-
tical mechanics of lattice models and continuum fluids. In the past, a small group of theoretical
physicists at our Institute of Physics created a “lecture club” in the field of integrable models.
There was no particular relationship between our work of that time and this topic, which we
considered to be of general importance and therefore appealing. I benefited personally from
the series of lectures given by all members of our group and afterwards I was able to teach
the subject occasionally PhD. students of our Institute and Comenius University in Bratislava.
One of the topics of my special interest became Coulomb fluids, classical and quantum, two-
dimensional and higher-dimensional. This was just in time of great discoveries in the QFT in
a (1+1)-dimensional spacetime. Being able to read the papers and to adopt the results from the
sine-Gordon model, we contributed to the equilibrium statistical mechanics by solving exactly
the two-dimensional Coulomb gas. Although this was a relatively simple task, a deep under-
standing of integrable models was a necessary condition. My long-time collaborator Bernard
Jancovici from LPT (Université de Paris Sud) in Orsay told me that, of course, he and his co-
workers were aware about the relationship between the two-dimensional Coulomb gas and the
(1+1)-dimensional sine-Gordon theory, but they were not able to grasp recent results obtained in
this integrable field theory, although they participated on the same conferences as well-known
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experts in the QFT. To my opinion, a narrow specialization and a separation of communities is a
feature of the contemporary physics. When Editor in Chief of APS asked me to write a review
about the subject of my interest, I hesitated between writing a specialized article about Coulomb
gases and a more extensive course about integrable many-body systems. Since I remember how
many articles I had to find and read to understand the subject in his many relevant aspects, I
decided to write an extensive course. I hope that, perhaps, this will help somebody to save time
and to find new results in his own field.

The material is divided into three volumes as follows:

• The first volume is divided into two parts. In the first part, we deal with nonrelativistic
one-dimensional continuum Fermi and Bose quantum gases of identical spinless particles.
The second part is devoted to the description of the QISM and to the analysis of the Yang-
Baxter equation. We present the complete solution of spin- 1

2 fermions with δ-function
interactions.

• The second volume will concern integrable Heisenberg models, especially with spin- 1
2 , but

also the isotropic ones with general spin S. The thermodynamics will be derived by using
traditional methods based on the string hypothesis as well as a simpler method [33, 34]
which leads to a single nonlinear integral equation.

• In the first part of the third volume devoted to systems of the condensed matter physics,
we plan to review the exact solutions of the Hubbard model and of the Kondo effect.
The second part concerns the results of the Thermodynamic Bethe ansatz for relativistic
(1+1)-dimensional models of the QFT, namely the sine-Gordon model and its fermionic
equivalent – the Thirring model. The models will be first treated semiclassically, then their
full quantum description will be given. The relationship between these models and the
two-dimensional classical Coulomb gas will be explained and the exact thermodynamics
of the latter model will be derived.

This volume is organized as follows.
As a first one-dimensional nonrelativistic model of spinless Bose and Fermi gases, we treat in

Sect. 2 the one with δ-function interactions which is nontrivial only in the case of bosons. After a
detailed derivation of the Bethe ansatz equations, the ground state of the model and its energy are
discussed. In the attractive regime, the ground state in the sector ofN particles corresponds to an
N -string of energy ∝ N3 which leads to the thermodynamic collapse. In the repulsive regime,
the ground state has all momenta real and the thermodynamic limit N → ∞ is well behaved.
This is the opportunity to document Hultén’s continualization procedure [3] and to derive an
integral equation for the ground-state particle density in momentum space which is analyzed in
special limits of the interaction strength.

The form of the Bethe ansatz equations is common for various integrable spinless Bose and
Fermi gases, only a phase-shift function depends on the particular type of pair interaction. Also
the choice of quantum numbers corresponding to the ground state is the same, which enables us
to perform in Sect. 3 a general analysis of low-lying excited states and of the zero-temperature
thermodynamics.

The general analysis of the finite-temperature thermodynamics, based on the hole concept of
Yang and Yang [23], is the subject of Sect. 4. For both zero-temperature and finite-temperature
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thermodynamics, the model system worked out into detail is that of bosons with repulsive δ-
function interactions.

Probably the simplest integrable model – the one-dimensional gas of Bose or Fermi particles
with hard-core interactions, is studied in Sect. 5.

The one-dimensional system of Bose and Fermi particles with a periodic version of the long-
range interaction 1/x2 is the subject of Sect. 6. In contrast to systems with short-range interac-
tions, the two-particle wavefunction becomes a superposition of plane waves only at asymptoti-
cally large distances between particles; this fact is behind the name “asymptotic Bethe ansatz”.
The model is obtained naturally as an answer to the following task: find a pair interaction for
which the ground-state wavefunction is of a pair-product form. Excited states, ground-state prop-
erties and finite-temperature thermodynamics of the model are also derived.

Sect. 7 is the first one devoted to the explanation of principles and applications of the QISM.
The Yang-Baxter equation for the elements of the two-particle scattering matrix is derived and
special types of its solutions are shown. An elementary introduction to noncommutative ge-
ometry and Quantum groups is given. We introduce important operators constructed from the
elements of the scattering matrix, like the Lax operators, the transfer and monodromy matrices,
and derive for them a hierarchy of Yang-Baxter relationships. A family of commuting transfer
matrices is obtained.

In Sect. 8 we show how to diagonalize the family of commuting transfer matrices and how
to generate from these transfer matrices integrable one-dimensional lattice quantum systems like
the Heisenberg model. This section explains a link between two-dimensional classical and one-
dimensional quantum models.

Sect. 9 brings another application of the QISM formalism in the context of the periodic
boundary conditions for integrable systems of particles with internal degrees of freedom. In this
case, the transfer matrix is inhomogeneous since the building elements of the scattering matrix
are site-dependent. We show how to diagonalize these inhomogeneous transfer matrices. The
resulting equations are the ones of the nested Bethe ansatz.

The formalism of Sect. 9 is applied to spin- 1
2 fermions with δ-function interactions. The

nested Bethe ansatz equations and the ground state properties, which are well behaved in the
thermodynamic limit, are obtained for both repulsive and attractive regimes in Sect. 10. The
finite-temperature thermodynamics of the model is derived in Sect. 11.

Appendix A describes an explicit construction of spin operators on a chain. The subject of
Appendix B is the description of doubly-periodic elliptic functions which are generalizations of
the trigonometric functions in the complex plane.



Spinless particles with δ-function interactions: Bethe ansatz and the ground state 821

BOSE AND FERMI GASES

2 Spinless particles with δ-function interactions: Bethe ansatz and the ground state

Elementary particles have internal degrees of freedom called spins (see Appendix A). The par-
ticle with spin S = 0, 1

2 , 1,
3
2 , 2, . . . can be in one of (2S + 1) different states, which means

that the corresponding spin Hilbert space has dimension (2S + 1). The integer values of the
spin S = 0, 1, 2, . . . correspond to bosons, the wavefunction of which is symmetric with respect
to any interchange of two particles. The half-odd integer values S = 1

2 ,
3
2 , . . . correspond to

fermions, the wavefunction of which is antisymmetric with respect to any interchange of two
particles. The relation between the spin and the statistics of identical particles is the physical
postulate. The boson and fermion systems are mathematically well defined for an arbitrary value
of the spin and we shall ignore this physical postulate.

2.1 Definitions and basic formalism

We shall first consider a general one-dimensional system of N identical spinless (one-state) S =
0 particles j = 1, 2, . . . , N of mass m. The particles are localized on a circle of length L, i.e.
their coordinates are constrained to the line

0 ≤ xj ≤ L, j = 1, 2, . . . , N (2.1)

with imposed periodic boundary conditions, and interact pairwisely by a potential v(x − x′) =
v(x′ − x). In the units of h̄ = 2m = 1, the quantum Hamiltonian reads

H = −
N∑

j=1

∂2

∂x2
j

+
N∑

j>k=1

v(xj − xk). (2.2)

The energy spectrum of the particle system is determined by the time-independent Schrödinger
equation

Hψ(x1, x2, . . . , xN ) = Eψ(x1, x2, . . . , xN ), (2.3)

where the wavefunction ψ satisfies periodic boundary conditions

ψ(· · · , xj , · · ·) = ψ(· · · , xj + L, · · ·), j = 1, 2, . . . , N. (2.4)

The wavefunction ψ is determined up to a constant which is fixed by the normalization to unity of
the integral of |ψ|2 over theN -particle coordinate space. In this review, the proper normalization
of the wavefunction will be irrelevant and therefore not required.

The spinless particles are supposed to obey boson/fermion statistics expressed by the sym-
metry/antisymmetry property of the wavefunction under the exchange of an arbitrary pair of
particles. Since the system is one-dimensional, the N particles can be ordered from the left to
the right in N ! ways. Let SN denotes the symmetric group of all N ! permutations of numbers
(12 . . . N). The ordering sectors are labeled by the permutations Q = (Q1, Q2, . . . , QN) ∈ SN

according to the prescription

Q : 0 ≤ xQ1 < xQ2 < · · · < xQN ≤ L. (2.5)
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For example, in the case of N = 3 particles, Q = (132) labels the ordering x1 < x3 < x2,
Q = (213) labels the ordering x2 < x1 < x3, etc. The fundamental sector, identified with the
identity permutation I = (12 . . . N), corresponds to the particle ordering

I : 0 ≤ x1 < x2 < · · · < xN ≤ L. (2.6)

Each sector Q is adjacent to N − 1 other sectors at the points xQ1 = xQ2, xQ2 = xQ3,. . .,
xQ(N−1) = xQN . According to principles of quantum mechanics, the wavefunction must be
continuous at these points.

Let us denote the wavefunction corresponding to the ordering sector Q as ψQ and assume
that the wavefunction of the fundamental sector (2.6),

ψI ≡ ψI(x1, x2, . . . , xN ), (2.7)

is known. In general, this function has no exchange symmetry properties with respect to particle
coordinates x1, x2, . . . , xN . In accordance with the standard symmetrization/antisymmetrization
procedure, we have

ψQ(x1, x2, . . . , xN ) = (±1)ηQψI(xQ1, xQ2, . . . , xQN ), (2.8)

where the +/− sign corresponds to bosons/fermions and ηQ is the number of transpositions of
nearest-neighbor elements which bring the permutation (Q1, Q2, . . . , QN) to (12 . . . N). We
shall often use the notation (−1)ηQ = sign(Q). The general wavefunction ψ can be formally
represented as follows

ψ(x1, x2, . . . , xN ) =
∑

Q∈SN

θ(xQ2 − xQ1)θ(xQ3 − xQ2) · · · θ(xQN − xQ(N−1))ψQ, (2.9)

where θ(x) is the Heaviside step function

θ(x) =
{

0 for x < 0,
1 for x > 0. (2.10)

For solving the particle system, it is sufficient to find the wavefunction ψI associated with
the fundamental sector I (2.6). A minor problem is that the periodic boundary conditions (2.4)
relate different Q-sectors. Indeed, the shift of x1 = 0 in the I-sector by L is identified with

ψI(x1 = 0, x2, . . . , xN ) = ψQ(x1 = L, x2, . . . , xN ), Q = (23 . . . N1). (2.11)

Since x1 = L is the largest of particle coordinates, the wavefunction on the rhs of (2.11) corre-
sponds to the ordering sector Q = (23 . . . N1) with ηQ = N − 1. Using the formula (2.8), we
finally obtain the periodic boundary condition

ψI(x1 = 0, x2, . . . , xN ) = (±1)N−1ψI(x2, . . . , xN , x1 = L), (2.12)

relating the wavefunctions in the same I-sector.
We first consider the case of the short-range δ-function potential v(x) = 2cδ(x), where 2c is

the interaction amplitude. Although this potential is not the simplest one of integrable potentials,
it was studied extensively in the past. It serves as an ”etalon” for standard methods in integrable
models. Many of the results can be proven rigorously. The case c = 0 corresponds to free
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particles, c < 0 to the particle attraction and c > 0 to the particle repulsion. Particles can pass
through each other, except the impenetrable limit c = ∞.

The Hamiltonian of the N -particle system reads

H = −
N∑

j=1

∂2

∂x2
j

+ 2c
N∑

j>k=1

δ(xj − xk). (2.13)

When particle coordinates differ from each other, like it is in any ordering sector Q (2.5), the
δ-functions have no effect and the original Schrödinger equation can be replaced by a Helmholtz
equation for free particles

−
N∑

j=1

∂2

∂x2
j

ψQ = EψQ, 0 ≤ xQ1 < xQ2 < · · · < xQN ≤ L. (2.14)

The presence of δ-functions in the Hamiltonian is equivalent to specific “boundary” conditions
whenever two nearest-neighbor particles touch one another. To see this, let us consider the case
of N = 2 particles for which the wavefunction (2.9) can be written as

ψ(x1, x2) = θ(x2 − x1)ψI(x1, x2) + θ(x1 − x2)ψ(21)(x1, x2). (2.15)

The continuity of the wavefunction at x1 = x2 requires that it holds limx2−x1→0+ ψI(x1, x2) =
limx2−x1→0− ψ(21)(x1, x2). Using the Helmholtz equation (2.14) for ψI and ψ(21) it is easy to
show that(

− ∂2

∂x2
1

− ∂2

∂x2
2

)
ψ(x1, x2) = Eψ(x1, x2) + δ(x1 − x2)

(
∂

∂x2
− ∂

∂x1

)
×
[
ψ(21)(x1, x2)− ψI(x1, x2)

]
. (2.16)

To fulfill the Schrödinger equation with the Hamiltonian (2.13), we obtain the following bound-
ary condition for the discontinuity in derivatives:(

∂

∂x2
− ∂

∂x1

)
ψ
∣∣
x2−x1→0+ −

(
∂

∂x2
− ∂

∂x1

)
ψ
∣∣
x2−x1→0−

= 2cψ
∣∣
x2=x1

. (2.17)

The same formula(
∂

∂xj
− ∂

∂xk

)
ψ
∣∣
xj−xk→0+ −

(
∂

∂xj
− ∂

∂xk

)
ψ
∣∣
xj−xk→0−

= 2cψ
∣∣
xj=xk

. (2.18)

holds for an N -particle wavefunction, where xj and xk denote the coordinates of nearest neigh-
bor particles.

2.2 Fermi gas with δ-function interactions

If the particles are fermions, the problem of the δ-function potential is trivial and reduces to the
problem of free fermions.
• N = 1: For a single particle, the solution of the Helmholtz equation (2.14) is the plane wave

ψ(x) = A exp(ikx), E = k2. (2.19)
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With regard to the periodic boundary condition ψ(x) = ψ(x + L), the wave number (quasi-
momentum) k is quantized as follows

kL = 2πI, I = 0,±1,±2, . . . . (2.20)

The particle system is formulated on a continuous line; the Hilbert space has therefore infinite
dimension and the values of the quantum number I are unbounded.

• N = 2: In the case of two fermions at positions in the fundamental sector 0 ≤ x1 < x2 ≤ L,
the most general solution of the Helmholtz equation (2.14) is a superposition of plane waves

ψI(x1, x2) = A(12)ei(k1x1+k2x2) −A(21)ei(k2x1+k1x2) (2.21)

with the energy

E = k2
1 + k2

2. (2.22)

Here, the coefficients A(12) ≡ A(k1, k2), A(21) ≡ A(k2, k1) and the minus sign is attached
to A(21) for the sake of the simplification of the formalism. In the sector Q = (21), i.e. when
0 ≤ x2 < x1 ≤ L, the formula (2.8) tells us that

ψ(21)(x1, x2) = −ψI(x2, x1)

= −A(12)ei(k1x2+k2x1) +A(21)ei(k2x2+k1x1) (2.23)

The wavefunction ψ(x1, x2) must be continuous at x1 = x2, which implies that

A(21) = A(12) (2.24)

and, as a consequence of the Pauli exclusion principle, ψ(x, x) = 0. Both sides of Eq. (2.17)
vanish identically under this condition and the δ-potential has no effect on particles which there-
fore behave like free fermions. The scattering S-matrix, which is in the present case of spinless
(one-state) fermions the scalar, is defined as follows

A(k2, k1) = S(k1, k2)A(k1, k2). (2.25)

In view of the relation (2.24), we have trivially

S(k1, k2) = 1. (2.26)

The wave numbers k1 and k2 are quantized according to the periodic boundary condition
(2.12), ψI(0, x2) = −ψI(x2, L), as follows

A(12) = A(21) exp(ik1L), A(21) = A(12) exp(ik2L). (2.27)

With regard to (2.24), these conditions are equivalent to

k1L = 2πI1
k2L = 2πI2

}
I1, I2 = integer. (2.28)

Because the wavefunction vanishes for k1 = k2 = k, the wave numbers must be unequal,
k1 6= k2 or I1 6= I2. The integers I1 and I2 may be interchanged without affecting the solution
and so we can restrict ourselves to I1 < I2.
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• Arbitrary N : In the problem of N fermions, the wavefunction in the fundamental ordering
sector I (0 ≤ x1 < x2 < . . . < xN ≤ L) has the form

ψI(x1, x2, . . . , xN ) =
∑

P∈SN

sign(P )A(P ) exp

i
N∑

j=1

kPjxj

 . (2.29)

The corresponding energy is

E =
N∑

j=1

k2
j . (2.30)

The coefficients A(P ) ≡ A(kP1, kP2, . . . , kPN ) fulfill the scattering relation

A(. . . kv, ku . . .) = S(ku, kv)A(. . . , ku, kv . . .), S(ku, kv) = 1. (2.31)

A successive application of this relation allows us to express an arbitrary coefficient A(P ) in
terms of say A(I) and in this way to find, up to the normalization, the wavefunction. In our
trivial case A(P ) is a constant, independent of the permutation P . Setting A(P ) = 1 in (2.29),
the (unnormalized) wavefunction ψI is thus expressible as the familiar Slater determinant

ψI(x1, x2, . . . , xN ) = Det
1≤j,l≤N

exp(ikjxl). (2.32)

To satisfy the periodic boundary condition for the wavefunction, the wave numbers are given by

kj = 2πIj Ij = integer (j = 1, 2, . . . , N). (2.33)

To avoid the nullity of the wavefunction, only the sets of integers I1 < I2 < . . . < IN are
allowed.

Combining Eq. (2.8) with the representation (2.29), the wavefunction in the ordering sector
Q ∈ SN is formally expressible as

ψQ(x1, x2, . . . , xN ) =
∑

P∈SN

[Q,P ]f exp

i
N∑

j=1

kPjxQj

 , (2.34)

where the “fermion” symbol [Q,P ]f means

[Q,P ]f = sign(Q)sign(P )A(kP1, kP2, . . . , kPN ). (2.35)

TheA-coefficients in different permutationP sectors are related via the scattering formula (2.31).
Since S relates directly the A-coefficients in two P sectors which differ from one another by one
nearest neighbor transposition of two numbers, the presence of sign(P ) in the definition (2.35)
fixes only the sign of S. It is more convenient to have S = 1 than S = −1.
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2.3 Bosons: Bethe ansatz equations

For the symmetric Bose wavefunction in the I sector, the condition (2.18) takes a simpler form(
∂

∂xj+1
− ∂

∂xj

)
ψI

∣∣
xj+1=xj

= cψI

∣∣
xj+1=xj

, j = 1, . . . , N − 1. (2.36)

Lieb and Liniger [21, 22] showed that the system of δ-function bosons is solvable by the co-
ordinate Bethe ansatz. The usual way how to derive the Bethe ansatz equations is to increase
successively the number of particles N = 2, 3, . . . in order to reveal the structure of the solution
for an arbitrary value of N .

• N = 2: As in the fermion case, the wavefunction is assumed to be a superposition of plane
waves in both particle ordering sectors I = (12) and (21):

ψI(x1, x2) = A(12)ei(k1x1+k2x2) −A(21)ei(k2x1+k1x2), (2.37)
ψ(21)(x1, x2) = +ψI(x2, x1)

= A(12)ei(k1x2+k2x1) −A(21)ei(k2x2+k1x1). (2.38)

This function is continuous at x1 = x2 for an arbitrary choice of the coefficients A(12) and
A(21). The boundary condition (2.36) taken at x1 = x2 implies the following relation between
the amplitudes A(12) and A(21),

A(21)
A(12)

=
k2 − k1 + ic
k1 − k2 + ic

= exp(−iθ12). (2.39)

The phase shift θ12 ≡ θ(k1 − k2) is readily shown to be given by

θ(k) = −2 arctan
(
k

c

)
, −π < θ < π. (2.40)

The phase function is antisymmetric with respect to the exchange of indices,

θ12 = −θ21. (2.41)

The (unnormalized) A-coefficients are expressible simply as

A(12) = exp
(

i
2
θ12

)
, A(21) = exp

(
i
2
θ21

)
. (2.42)

Another possible representation of the coefficients reads

A(P ) = kP1 − kP2 + ic. (2.43)

The solution for the two-body wavefunction (2.21) with the A-coefficients defined by (2.42)
has a simple interpretation. For k1 > k2, the wavefunction is the sum of an incoming wave
exp[i(k1x1 + k2x2)] and an outgoing wave − exp[i(k2x1 + k1x2)− iθ(k1 − k2)], with a phase
shift θ(k1 − k2) between them. The outgoing wave is the result of the “point scattering” of
the particles due to the δ-function potential. In the two-body scattering, the total momentum
K = k1 + k2 and the energy E = k2

1 + k2
2 are conserved. Consequently, the scattering of the

particles must be purely elastic: the particles only exchange their momenta, so that the outgoing
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momenta are k′1 = k2 and k′2 = k1. The scattering matrix, defined as in the fermion case by
scalar relation (2.25), reads

S(k1, k2) ≡ S(k1 − k2) = e−iθ(k1−k2) =
k2 − k1 + ic
k1 − k2 + ic

. (2.44)

The wave numbers k1 and k2 are quantized according to the periodic boundary condition
ψI(0, x2) = ψI(x2, L) as follows

A(12) = −A(21) exp(ik1L), A(21) = −A(12) exp(ik2L). (2.45)

With regard to (2.39), these conditions are equivalent to

k1L = 2πI1 + θ12
k2L = 2πI2 + θ21

}
I1, I2 = ±1

2
,±3

2
,±5

2
, . . . . (2.46)

Because half-odd integers I1 and I2 may be interchanged without affecting a solution, we can
restrict ourselves to I1 ≤ I2. The wave numbers must be unequal, k1 6= k2. In the opposite
case of k1 = k2 = k, it follows from Eq. (2.39) that A(21) = A(12) and the wavefunction
ψI(x1, x2) = [A(12) − A(21)] exp[ik(x1 + x2)] vanishes. Since θ(0) = 0, an immediate
consequence of k1 6= k2 is the inequality I1 6= I2, i.e. I1 < I2. Note that this exclusion rule for
the quantum numbers resembles that for fermions.

• N = 3: The solution of the three-particle problem in the fundamental sector 0 ≤ x1 < x2 <
x3 ≤ L can be represented as a superposition of plane waves with quasi-momenta permutated
among the particle coordinates,

ψI(x1, x2, x3) = A(123)ei(k1x1+k2x2+k3x3) +A(132)ei(k1x1+k3x2+k2x3)

+A(213)ei(k2x1+k1x2+k3x3) +A(231)ei(k2x1+k3x2+k1x3) (2.47)
+A(312)ei(k3x1+k1x2+k2x3) +A(321)ei(k3x1+k2x2+k1x3).

The corresponding energy is given by

E = k2
1 + k2

2 + k2
3. (2.48)

The condition (2.36) taken at x1 = x2 implies the following relation among the amplitudes,
A(213)
A(123)

= e−iθ12 ,
A(312)
A(132)

= e−iθ13 ,
A(321)
A(231)

= e−iθ23 , (2.49)

where θαβ ≡ θ(kα − kβ) with α, β = 1, 2, 3 is the obvious generalization of the previously de-
fined two-particle phase shift (2.39). The condition (2.36) taken at x2 = x3 implies the relations

A(132)
A(123)

= e−iθ23 ,
A(231)
A(213)

= e−iθ13 ,
A(321)
A(312)

= e−iθ12 . (2.50)

Using the symmetry relations θαβ = −θβα, the solution of 6 homogeneous relations in Eqs.
(2.49) and (2.50) for 6 unknown coefficients can be written in the form

A(123) = exp
[

i
2

(θ12 + θ13 + θ23)
]
,

A(213) = exp
[

i
2

(θ21 + θ23 + θ13)
]
, (2.51)

A(321) = exp
[

i
2

(θ32 + θ31 + θ21)
]
,
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etc. The formal structure of A-coefficients is evident. Another possible representation of the
coefficients is

A(P ) = (kP1 − kP2 + ic)(kP1 − kP3 + ic)(kP2 − kP3 + ic). (2.52)

The result for the three-body wavefunction (2.47) with the A-coefficients (2.51) has two
important features.
• Firstly, assuming that k1 > k2 > k3, the conservation of the total momentumK = k1+k2+k3

and energy E = k2
1 + k2

2 + k2
3 does not exclude a diffractive three-body (outgoing) scattering

term ∫ ∫ ∫
k′
1

<k′
2

<k′
3

K,E fixed

dk′1dk
′
2dk

′
3S(k′1, k

′
2, k

′
3) exp [i(k′1x1 + k′2x2 + k′3x3)] (2.53)

in a general three-body representation of the wavefunction. This diffractive term is absent in
the elastic Bethe ansatz (2.47). Multiparticle scatterings are nondiffractive in integrable models,
i.e. not only the total momentum and energy, but also a sum of any power of momenta,

∑
j k

m
j

(m = 1, 2, . . .), is conserved.
• The second important aspect is that, according to Eqs. (2.49) and (2.50), the interchange
(scattering) of two particles is independent of the third particle. This means that a multiparticle
scattering factorizes onto a product of two-body scatterings and the result does not depend on the
particular sequence of two-body collisions. If we start from the incoming amplitude A(123), we
can reach the outgoing one A(321) in two different paths:

A(123) →
{
A(213) → A(231)
A(132) → A(312)

}
→ A(321). (2.54)

It is a simple task to check by using relations (2.49) and (2.50) that both paths give the same
result

A(321)
A(123)

= exp [−i(θ12 + θ13 + θ23)] = S(k1, k2)S(k1, k3)S(k2, k3). (2.55)

This equivalence of two different paths is the precursor of the Yang-Baxter equation for the
scattering matrix.

The periodic boundary condition ψI(0, x2, x3) = ψI(x2, x3, L) implies that

A(123) = A(231)eik1L, A(213) = A(132)eik2L, A(312) = A(123)eik3L. (2.56)

The wave numbers k1, k2 and k3, no two of which are identical in order to avoid the nullity of
the wavefunction, are thus quantized as follows

k1L = 2πI1 + θ12 + θ13
k2L = 2πI2 + θ21 + θ23
k3L = 2πI3 + θ31 + θ32

 I1 < I2 < I3 = 0,±1,±2, . . . . (2.57)

We see that the three-particle solution is constructed by using the two-particle phase function
θαβ . This property is maintained also for higher N = 4, 5, . . . particle numbers.
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• Arbitrary N : In the problem of N I-ordered particles 0 ≤ x1 < x2 < . . . < xN ≤ L, the
Bethe ansatz has the form

ψI(x1, x2, . . . , xN ) =
∑

P∈SN

sign(P )A(P ) exp

i
N∑

j=1

kPjxj

 . (2.58)

This formal solution fulfills the Helmholtz equation (2.14), the corresponding energy is given by

E =
N∑

j=1

k2
j . (2.59)

Introducing the total momentum operator by

K =
N∑

j=1

−i
∂

∂xj
, (2.60)

the wavefunction (2.58) is also an eigenstate of this operator,

Kψ = Kψ, K =
N∑

j=1

kj . (2.61)

We shall now show the conditions for the coefficients A(P ) under which the Bethe ansatz
form of the wavefunction (2.58) satisfies the set of N − 1 conditions (2.36), say the one re-
lating the nearest-neighbor particles j and j + 1. The N ! terms in the wavefunction can be
paired, since each permutation P has as a pair permutation Pj,j+1 which is generated from
P by the transposition of the nearest-neighbors components Pj and P (j + 1), i.e. if P =
(P1, . . . , P j, P (j + 1), . . . , PN) then Pj,j+1 = (P1, . . . , P (j + 1), P j, . . . , PN). The pair of
terms occurs in the form

ψI = · · · sign(P )A(P ) exp(· · ·+ kPjxj + kP (j+1)xj+1 + · · ·)
−sign(P )A(Pj,j+1) exp(· · ·+ kP (j+1)xj + kPjxj+1 + · · ·) + · · · . (2.62)

For each pair of terms to individually satisfy the condition (2.36) at xj = xj+1, we must have

A(Pj,j+1)
A(P )

=
kP (j+1) − kPj + ic
kPj − kP (j+1) + ic

= exp(−iθPj,P (j+1)). (2.63)

This formula represents a generalization of the scattering relation (2.25) to an arbitrary number
of particles:

A(. . . kv, ku . . .) = S(ku, kv)A(. . . ku, kv . . .), S(ku, kv) = e−iθ(ku−kv). (2.64)

Eq. (2.63) leads to the general result valid for any permutation P :

A(P ) = exp

 i
2

N∑
j,l=1
(j<l)

θPj,P l

 . (2.65)
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There exists an alternative representation of the coefficients

A(P ) =
∏
j<l

(kPj − kPl + ic). (2.66)

The periodic boundary condition (2.12) is equivalent to the set of conditions

A(P ) = (−1)N−1A(PC) exp(ikP1L) for arbitrary P , (2.67)

where PC is the cyclic transposition of P , i.e. when P = (P1, P2, . . . , PN) then PC =
(P2, . . . , PN, P1). With respect to the result for the A-amplitudes (2.65), we obtain

exp(ikP1L) = (−1)N−1 exp

i
N∑

j=1

θP1,P j

 for arbitrary P , (2.68)

where we have used that θjj = 0. We conclude that the wave numbers k1, k2, . . ., kN are
quantized according to the set of N coupled Bethe equations

kjL = 2πIj +
N∑

l=1
(l 6=j)

θ(kj − kl)

= 2πIj −
N∑

l=1

2 arctan
(
kj − kl

c

)
, j = 1, 2, . . . , N, (2.69)

where

Ij =
{

0,±1,±2, . . . , if N=odd,
± 1

2 ,±
3
2 , . . . , if N=even. (2.70)

Only solutions with distinct wave numbers are allowed in order to avoid the nullity of the wave-
function. With regard to the equality θ(k) + θ(−k) = 0, the total particle momentum is given
by

K =
2π
L

N∑
j=1

Ij . (2.71)

The set of Bethe ansatz equations (2.69) has the same form for many other integrable systems,
only the two-body phase shift θ(k) depends on the type of the particle interaction in the particular
model. The only variables which have to be determined are the quasi-momenta k1, k2, . . . , kN

which number equals to the number of particles.
The wavefunction in the ordering sector Q ∈ SN is formally expressible as

ψQ(x1, x2, . . . , xN ) =
∑

P∈SN

[Q,P ]b exp

i
N∑

j=1

kPjxQj

 , (2.72)

where the “boson” symbol [Q,P ]b means

[Q,P ]b = sign(P )A(kP1, kP2, . . . , kPN ). (2.73)

The A-coefficients with different permutation P sectors are related via the scattering formula
(2.64).
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2.4 Bound states for attractive bosons

The general analysis of the set of nonlinear Bethe equations (2.69) is very complicated for a finite
circle length L, but simplifies substantially in the limit L→∞. We shall study this limit in order
to show fundamental differences in the energy spectra of the attractive c < 0 and repulsive c > 0
regimes.

In the case of N = 1 particle, it is clear from Eq. (2.20) that the wave number k covers
continuously the whole real axis (−∞,∞). The energy E = k2 is bounded from below by 0.

For N = 2 particles, the Bethe equations can be expressed as follows

exp(ik1L) =
k1 − k2 + ic
k1 − k2 − ic

, exp(ik2L) =
k1 − k2 − ic
k1 − k2 + ic

. (2.74)

Let us first look for the real solutions for momenta. Denoting (k1 − k2 + ic)/(k1 − k2 − ic) =
exp(iϕ) with ϕ ∈ R, one has

exp(ik1L) = exp(iϕ), exp(ik2L) = exp(−iϕ). (2.75)

In the limit L → ∞, k1 and k2 again cover continuously the whole real axis and one has the
state of two independent particles with the total energy E = k2

1 + k2
2 ≥ 0. The system of two

equations (2.74) may also exhibit complex solutions of type

k1 = u1 + iv1, k2 = u2 + iv2, (2.76)

where all u′s and v′s are real numbers. Comparing the modulus of both sides of the first equation
in (2.74), we get

exp(−2v1L) =
(u1 − u2)2 + (v1 − v2 + c)2

(u1 − u2)2 + (v1 − v2 − c)2
. (2.77)

Let us assume that v1 > 0. Then, as L→∞, the lhs of Eq. (2.77) goes to 0 and, consequently,

u1 = u2 ≡ u, v1 − v2 + c = 0. (2.78)

The multiplication of the two equation in (2.74) implies that exp[i(k1 + k2)L] = 1. In the limit
L→∞, the possible values of u cover the whole real axis and v1 + v2 = 0, so that v1 = −c/2.
Since v1 > 0, the resulting complex solution

k1 = u+ i
|c|
2
, k2 = u− i

|c|
2
, u ∈ (−∞,∞) (2.79)

exists only in the attractive case c < 0. The total momentum is K = k1 + k2 = 2u and the
energy

E = k2
1 + k2

2 =
K2

2
− c2

2
. (2.80)

This is a bound state of two particles because the mass is doubled and the binding energy is
−c2/2. The ground state with the minimum energy−c2/2 is given by K = 0, the corresponding
(symmetrized) wavefunction reads

ψ(x1, x2) = exp
( c

2
|x1 − x2|

)
. (2.81)
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The complex roots of the Bethe ansatz equations for an infinite line are usually symmetrically
and equidistantly distributed around the real axis. They are called strings; the simplest 1-string
is the point on the real axis k1 = u, the 2-string is the complex solution of type (2.79), etc.

In the three-body problem, the wave numbers k1, k2 and k3 can also be real numbers (for
both c > 0 and c < 0) or complex numbers with a nonzero imaginary part (exclusively for
c < 0). In the later case, they can form either a mixture of one 2-string and one 1-string

k1 = u+ i
|c|
2
, k2 = u− i

|c|
2
, k3 = u′ (2.82)

(u and u′ cover the whole real axis) or just one string of length 3

k1 = u+ i|c|, k2 = u, k3 = u− i|c|, (2.83)

which is a bound state of three particles with the total momentum K = 3u and the energy
E = K2/3− 2c2.

For N attractive bosons [59], there exists one N -string

kj = u+ i
|c|
2

(N + 1− 2j), j = 1, . . . , N (2.84)

with the total momentum K = Nu and the energy

E =
K2

N
−N(N2 − 1)

c2

12
. (2.85)

The minimum of the energy at K = 0 is the ground state energy in the sector of N particles, the
corresponding symmetrized wavefunction reads

ψ = exp

 c

2

∑
j<l

|xj − xl|

 . (2.86)

The ground state energy is of order N3 which corresponds to a kind of “attraction collapse” of
bosons with no thermodynamic limit. The ground state would be well behaved if we make the
negative c proportional to 1/N and then let N → ∞. The situation is different in the repulsive
case c > 0, where the ground state energy is of order N .

2.5 Uniqueness of the Bethe ansatz solution for repulsive bosons

In what follows, we shall reconsider the case of an arbitrary length L and restrict ourselves to the
repulsive regime c > 0.

We claim that for any set of quantum numbers {I1, I2, . . . , IN} the system of Bethe equations
(2.69) has a unique real solution for the momenta {k1, k2, . . . , kN}. To prove this statement, we
introduce the function

B(k1, k2, . . . , kN ) =
L

2

N∑
j=1

k2
j − 2π

N∑
j=1

Ijkj +
N∑

j>l=1

Θ(kj − kl), (2.87)
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where

Θ(k) =
∫ k

0

dk′ θ(k′) = 2k arctan
(
k

c

)
− c ln

[
1 +

(
k

c

)2
]
. (2.88)

The extremal point of the B-function, given by

∂B(k1, k2, . . . , kN )
∂kj

= 0, j = 1, 2, . . . , N, (2.89)

is the solution of the Bethe ansatz equations (2.69). Let us now consider the N × N matrix of
second derivatives of the B-function:

Bjl ≡
∂2B

∂kj∂kl
= δjl

[
L+

∑
m

2c
c2 + (kj − km)2

]
− 2c
c2 + (kj − kl)2

. (2.90)

Since for an arbitrary real vector (u1, u2, . . . , uN ) it holds∑
jl

ujBjlul = L
∑

j

u2
j +

∑
j>l

2c
c2 + (kj − kl)2

(uj − ul)2 ≥ 0, (2.91)

the matrix Bjl is positive definite and the B-function is a concave function in the N -dimensional
k-space. Moreover, for large values of momenta the B-function behaves like L

∑
j k

2
j/2 and so

it has one and only one extremum, namely a minimum. The position of this minimum in the
k-space depends, for a fixed set of quantum numbers {Ij}, on the value of c.

A convenient reference value of c is the limit c → ∞ (c−1 = 0), when the phase shift
θ(k) = 0. According to (2.69), the extremal (minimum) point occurs at

lim
c→∞

kj =
2π
L
Ij , j = 1, 2, . . . , N. (2.92)

From Eq. (2.65) we have A(P ) = 1, so that the wavefunction (2.58) in the fundamental ordering
sector I reads

ψI(x1, x2, . . . , xN ) = Det
1≤j,l≤N

exp(ikjxl). (2.93)

The determinant on the rhs of this equation is the familiar Slater determinant of free fermions
with momenta (2.92). The wavefunction is nonzero only when no two k’s are identical; the
quantum numbers {Ij} and the corresponding momenta {kj} can be ordered as follows

I1 < I2 < · · · < IN ,
2π
L
I1 = k1 < k2 < · · · < kN =

2π
L
IN . (2.94)

The interacting bosons have in the limit c → ∞ paradoxically the energy spectrum of free
fermions; we shall refer to such bosons as the (pointlike) hard-core bosons. The symmetrized
wavefunctions of the hard-core bosons is not equal to that of the corresponding free fermions,
but

Ψhard−core bosons = |Ψfree fermions|. (2.95)
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These wavefunctions constitute a complete set of eigenfunctions for the boson Hamiltonian.
Since the matrix (2.90) is positive definite, its determinant is nonzero. The minimum point

thus moves continuously in k-space as c is changing from ∞ to a positive finite value. The
subtraction of two Bethe equations (2.69) with different indices j 6= j′ implies

|(kj − kj′)L− 2π(Ij − Ij′)| = 2
N∑

l=1

∣∣∣∣arctan
(
kj − kl

c

)
− arctan

(
kj′ − kl

c

)∣∣∣∣
≤ 2N

c
|kj − kj′ |, (2.96)

where we used the inequality | arctanx − arctan y| ≤ |x − y|. Since |Ij − Ij′ | ≥ 1, from Eq.
(2.96) we find that

|kj − kj′ | ≥
2π
L

(
1 +

2n
c

)−1

(2.97)

with n = N/L being the particle density. The differences |kj−kj′ | therefore cannot turn to 0 for
an arbitrary c > 0, which means that the ordering of momenta (2.94) is preserved. It is also clear
from the structure of the Bethe equations (2.69) that the lower and upper bounds for momenta in
(2.94) do not change for finite c > 0, so that

2π
L
I1 < k1 < k2 < · · · < kN <

2π
L
IN , kj+1 − kj ≥

2π
L

(
1 +

2n
c

)−1

. (2.98)

The possible sets of quantum numbers {Ij} are the same as in the limit c → ∞ and so the
eigenfunctions constitute a complete set of the boson Hamiltonian.

2.6 Ground-state energy

In the limit c→∞, the ground state of N repulsive bosons with the lowest energy can be easily
determined. With regard to the permissible values of the momenta (2.92) no two of which are
equal, the minimum of the energy E =

∑N
j=1 k

2
j is attained by an ordered sequence of quantum

I-numbers with a unity elementary step, distributed symmetrically around 0:

−Imax,−Imax + 1, · · · , Imax − 1, Imax.

Imax is determined by the obvious equality for the number of momenta N = 2Imax + 1. Thus,
the sequence of quantum numbers corresponding to the ground state is

{I1, I2, . . . , IN} =
{
−N − 1

2
,−N − 1

2
+ 1, · · · , N − 1

2

}
. (2.99)

The quantum numbers {Ij} are integers for odd N and half-odd integers for even N , in agree-
ment with the requirement (2.70). The total momentum is K0 = 0 and the ground-state energy
reads

E0 =
(

2π
L

)2 N∑
j=1

I2
j =

π2

3L2
(N − 1)N(N + 1). (2.100)
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The Slater determinant (2.93) for the ground state (2.99) is

ψI(x1, x2, . . . , xN ) = Det
1≤j,k≤N

exp [iπ(2j − 1−N)xk/L] . (2.101)

With zk = exp(i2πxk/L), we rewrite the wavefunction as

ψI = exp

[
iπ

(1−N)
L

N∑
k=1

xk

]
Det

1≤j,k≤N
zj−1
k . (2.102)

The determinant in this expression is a van der Monde determinant,

Det
1≤j,k≤N

zj−1
k =

N∏
j>k=1

(zj − zk). (2.103)

The antisymmetrized/symmetrized ground-state wavefunctions of free fermions/(pointlike) hard-
core bosons are thus expressible as

Ψ0 =
N∏

j>k=1

ψ(xj − xk), ψ(x) =
{

sin(πx/L) for free fermions,
sin(π|x|/L) for hard-core bosons. (2.104)

The product form of the ground-state wavefunctions is appealing. Note that the function ψ(x)
has no nodes in the interval 0 < x < L, as it must be in the ground state.

Based on the continuity arguments presented in the previous subsection 2.5, the same set
of quantum I-numbers (2.99) determines the ground state for an arbitrary interaction amplitude
c > 0. Let us rewrite the Bethe equations (2.69) as follows

kj = 2π
Ij
L

+
1
L

N∑
l=1

θ(kj − kl), j = 1, 2, . . . , N (2.105)

and consider the thermodynamic limit L,N →∞, keeping the particle density n = N/L finite.
Following Hultén’s continualization procedure [3], we introduce the state density

fj =
Ij
L
, f ∈

〈
−n

2
,
n

2

〉
. (2.106)

For large L,

L df = number of I’s in the interval (f, f + df). (2.107)

We assume from the structure of the Bethe equations (2.105) that the difference kj+1 − kj > 0
is of order 1/L and define

kj+1 − kj =
1

Lρ(kj)
, ρ(k) ≥ 0. (2.108)

The meaning of the distribution ρ(k) is that, for large L,

L ρ(k)dk = number of k’s in the interval (k, k + dk). (2.109)
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ρ(k) can be understood as the ground-state particle density in k-space. Since it holds

fj+1 − fj =
Ij+1 − Ij

L
=

1
L

= ρ(kj) (kj+1 − kj) , (2.110)

we have df = ρ(k)dk. Equivalently,

d
dk
f(k) = ρ(k), f(k) =

∫ k

0

dk′ρ(k′). (2.111)

With respect to the inequalities (2.98), we expect the k’s to be distributed symmetrically with
the density ρ(k) = ρ(−k) between some as-yet unspecified limits −q and q. Thus, we can
replace any summation over k by an integral over k according to∑

k

· · · → L

∫ q

−q

dk ρ(k) · · · . (2.112)

Since there are exactly N momenta, it holds N = L
∫ q

−q
dkρ(k), or

n ≡ N

L
=
∫ q

−q

dk ρ(k). (2.113)

It is tempting to refer to q as the Fermi momentum. However, the accepted definition of the
Fermi momentum, even for an interacting fermion system, is kF = πn. The momentum limit
q of the integrals is equal to πn only in the free fermion (hard-core boson) limit c → ∞. For a
fixed finite c > 0, the dependence of q on the particle density n is determined by the condition
(2.113). It will be shown that q is related to the chemical potential of bosons. As concerns the
ground-state momentum density, it vanishes

K0

L
=
∫ q

−q

dk kρ(k) = 0. (2.114)

The ground-state energy per unit length is expressible as

e0 ≡
E0

L
=
∫ q

−q

dk k2ρ(k). (2.115)

To obtain an equation for the density ρ of the k’s in the ground state, we first continualize the
Bethe equations (2.105),

k = 2πf(k) +
1
L

∑
k′

θ(k − k′)

= 2πf(k) +
∫ q

−q

dk′ θ(k − k′)ρ(k′). (2.116)

The subsequent differentiation of these equations with respect to k leads to

1
2π

= ρ(k) +
∫ q

−q

dk′
θ′(k − k′)

2π
ρ(k′), |k| ≤ q, (2.117)
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where

θ′(k) ≡ ∂θ(k)
∂k

= − 2c
k2 + c2

. (2.118)

We make the substitutions k = qp and k′ = qp′ leading to the dimensionless variables p and p′,
redefine ρ(qp) ≡ ρ̃(p) and finally put λ = c/q, to obtain

ρ̃(p) =
1
2π

+
1
π

∫ 1

−1

dp′
λ

(p− p′)2 + λ2
ρ̃(p′), |p| ≤ 1. (2.119)

The energy density (2.115) and the particle density (2.113) are now expressible as

e0 = q3E(λ), E(λ) ≡
∫ 1

−1

dp p2ρ̃(p), (2.120)

n = qF (λ), F (λ) ≡
∫ 1

−1

dp ρ̃(p). (2.121)

We can eliminate from the formalism the momentum limit q by considering the combinations

e0
n3

=
E(λ)
F 3(λ)

,
c

n
=

λ

F (λ)
. (2.122)

Thus,

e0 = n3u
( c
n

)
(2.123)

with a certain function of interest u(x).
Eq. (2.119) is an inhomogeneous Fredholm equation of the second kind which exhibits

exactly one solution ρ̃(p) [21,22]. Although it cannot be solved explicitly for an arbitrary λ > 0,
systematic perturbation expansions can be constructed around two limits.

• In the limit λ→∞ (c→∞, hard-core bosons), Eq. (2.119) tells us that

ρ̃(p) ∼
λ→∞

1
2π
, u(x) ∼

x→∞

π2

3
. (2.124)

Note that the asymptotic value of u is in agreement with the previous result (2.100). Substituting
the λ → ∞ value of ρ̃(p) into the rhs of Eq. (2.119), we obtain its leading 1/λ correction, and
so on. The result of the iteration procedure for the function of interest u(x) is

u(x) =
π2

3

[
1− 4

x
+

12
x2

+O

(
1
x3

)]
. (2.125)

This series expansion is convergent for x > 2.

• The limit λ → 0 (c → 0, free bosons) is tricky. As λ → 0, the kernel in Eq. (2.119) becomes
a well-known representation of the δ-function,

lim
λ→0

1
π

λ

(p− p′)2 + λ2
= δ(p− p′). (2.126)
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The considered equation then takes the form ρ̃(p) = 1/(2π) + ρ̃(p), which is the indication of
the divergence of ρ̃(p) as λ→ 0.

To treat the c→ 0 limit correctly, we apply the equality

arctanx+ arctan(1/x) =
{

π/2 for x > 0,
−π/2 for x < 0, (2.127)

to all θ-functions in the discrete Bethe ansatz equations (2.69) with the momenta ordering k1 <
k2 < · · · < kN . We obtain

kjL = 2πnj +
N∑

l=1
(l 6=j)

2 arctan
(

c

kj − kl

)
, j = 1, 2, . . . , N (2.128)

with

nj = Ij +
1
2
(N + 1)− j. (2.129)

For the ground state defined by the quantum numbers (2.99), nj = 0 for all j. In the vicinity of
c = 0, we look for a solution of the type

kj =

√
2c
L
xj +O(c). (2.130)

From Eq. (2.128), all the xj have to be distinct and must satisfy

xj =
∑
l=1

(l 6=j)

1
xj − xl

. (2.131)

The xj are the zeros of the Hermite polynomial of degree N . This can be shown by inserting
the representation HN (x) = CN

∏N
j=1(x − xj) into the differential equation satisfied by this

Hermite polynomial,

H ′′
N (x)− 2xH ′

N (x) + 2NHN (x) = 0. (2.132)

The density of zeros ofHN (x) is given in the asymptotic limitN →∞ by the Wigner semicircle
law,

LρH(x) =
1
π

√
2N − x2. (2.133)

Thus,

ρ(k) = ρH(x)
dx
dk

=
1

2πc

√
4cn− k2. (2.134)

Taking into account that the momentum limit q = 2
√
cn and λ = c/q, we finally arrive at

ρ̃(p) ∼
λ→0

1
2πλ

√
1− p2, u(x) ∼

x→0
x. (2.135)
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The Fredholm integral equation (2.119) is known in the electrostatic potential theory as the
Love equation for the circular disk condenser, consisting of two circular metallic disks separated
by distance λ [60]. This analogy enables one to calculate next terms of the expansion of u(x)
around x = 0 [61]:

u(x) = x− 4
3π
x3/2 +

(
1
6
− 1
π2

)
x2 +O(x5/2). (2.136)
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3 Bethe ansatz: zero-temperature thermodynamics and excited states

In the previous sections, we have derived the (fundamental) set of Bethe equations (2.69) for
bosons with δ-function interaction, formulated on the circle of length L. For many other inte-
grable systems, the Bethe ansatz equations have the analogous form

kjL = 2πIj +
N∑

l=1
(l 6=j)

θ(kj − kl), j = 1, . . . , N, (3.1)

where the phase-shift function θ(k) depends on the particular type of particle interaction and
{Ij}N

j=1 is a set of distinct integers or half-odd integers. We shall often use the abbreviated form
of the Bethe equations

kL = 2πI(k) +
∑
k′

θ(k − k′), (3.2)

where the term k′ = k is omitted from the summation; this restriction is superfluous for the usual
case with θ(0) = 0.

All studied models possess a special point, which corresponds to either free fermions or
pointlike hard-core bosons. At this point, the ground state is characterized by the quantum num-
bers I(k) symmetrically distributed around 0 and all k’s are real. Based on the continuity ar-
guments, the ground state is characterized by the same set of quantum numbers I(k) also in a
region outside of the special point. In the thermodynamic limit, the probability distribution of
real k’s, ρ(k), satisfies the integral Eq. (2.117). To simplify the notation, this equation will be
written in a compact form

1
2π

= ρ+Gρ = (I +G)ρ. (3.3)

Here, the functions of k, like the constant 1/(2π) and ρ(k), are understood as column vectors,
I is the identity operator and G is an integral operator with a real, symmetric kernel G(k, k′) =
θ′(k−k′)/(2π), over the interval−q ≤ k′ ≤ q. To avoid confusion, we shall denote the constant
function 1 as the vector η, i.e. 1/(2π) ≡ η/(2π). Let us introduce the resolvent operator J such
that I + J is the inverse operator of I +G,

(I + J)(I +G) = (I +G)(I + J) = I. (3.4)

The operator J is an integral operator with real, symmetric kernel J(k, k′) which is not a differ-
ence kernel like G(k, k′). From Eq. (3.3), we express formally the distribution ρ as

ρ = (I + J)
η

2π
. (3.5)

Within the proposed notation, the relations for the ground-state number density (2.113), momen-
tum density (2.114) and energy density (2.115) can be written compactly as

N

L
= η+ρ,

K0

L
= k+ρ = 0,

E0

L
= (k2)+ρ, (3.6)

where the upperscript + denotes a row vector.
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3.1 Response of the ground state

Let us study the response of the system in the ground state to an external perturbation φ(k), say a
phase shift coming from the scattering on an impurity, which induces a phase factor exp[−iφ(k)]
to each particle. This perturbation causes the real ground-state momenta k to shift by a small
amount ∆(k) of the order 1/L, k → k + ∆(k). The Bethe equations (3.2) for the shifted k’s
become

[k + ∆(k)]L = 2πI(k) +
∑
k′

θ[k + ∆(k)− k′ −∆(k′)] + φ[k + ∆(k)]. (3.7)

Expanding this equation in the small quantity ∆(k) and subtracting Eq. (3.2), we obtain

∆(k)L =
∑
k′

θ′(k − k′) [∆(k)−∆(k′)] + φ(k). (3.8)

The replacement of the summation by an integral results in

∆(k)L = ∆(k)L
∫ q

−q

dk′ θ′(k− k′)ρ(k′)−
∫ q

−q

dk′ θ′(k− k′)ρ(k′)∆(k′)L+φ(k).(3.9)

With regard to Eq. (2.117) for ρ(k), this equation reduces to

2πρ(k)∆(k)L+
∫ q

−q

dk′ θ′(k − k′)ρ(k′)∆(k′)L = φ(k). (3.10)

Introducing the new function ω(k) = ρ(k)∆(k)L, the response of the system to the perturbation
φ is described by

(I +G)ω =
φ

2π
. (3.11)

The formal solution for ω is

ω = (I + J)
φ

2π
. (3.12)

Let us explore the effect of the perturbation φ on the extensive thermodynamic quantities N ,
K and E. We did not change the number of particles in the system, so that

∆N = 0. (3.13)

The change of the total momentum K is given by the sum of k’s shifts,

∆K =
∑

k

∆(k) → L

∫ q

−q

dk ρ(k)∆(k) =
∫ q

−q

dk ω(k) = η+ω. (3.14)

Using the formal solution (3.12) for ω, this expression can be rewritten as

∆K = η+(I + J)
φ

2π
= φ+(I + J)

η

2π
= φ+ρ. (3.15)
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Here, we have used the symmetricity of the kernel I(k, k′) + J(k, k′). As concerns the total
energy, since

E =
∑

k

[k + ∆(k)]2 ∼
∑

k

k2 +
∑

k

2k∆(k), (3.16)

its change is expressed by

∆E =
∑

k

2k∆(k) → L

∫ q

−q

dk 2k∆(k)ρ(k) =
∫ q

−q

dk 2kω(k)

= k+(2ω) = k+(I + J)
φ

π
= φ+(I + J)

k

π
. (3.17)

3.2 Zero-temperature thermodynamics

To study the zero-temperature thermodynamics, it is useful to define a new function ε(k) with
|k| ≤ q as the solution of the integral equation

(I +G)ε = k2 − µ. (3.18)

ε(k) is an even function of k. The constant µ is chosen such that ε(k) vanishes at the limits ±q,

ε(−q) = ε(q) = 0. (3.19)

The formal solution for ε(k) reads

ε = (I + J)k2 − (I + J)µ = (I + J)k2 − 2πµρ. (3.20)

It is easy to show from Eq. (3.18), by integration by parts and using ε(±q) = 0, that ε′(k), being
an odd function of k, satisfies the relation

(I +G)ε′ = 2k. (3.21)

The formula (3.17) for ∆E can be thus rewritten as

∆E = φ+ ε′

2π
= −ε+ φ′

2π
. (3.22)

In order to reveal the physical meaning of the introduced parameter µ, we return to the basic
formula for the ground-state energy in Eq. (3.6) and rewrite it in terms of the new function ε(k),

E0

L
= (k2)+ρ = (k2)+(I + J)

η

2π
= η+(I + J)

k2

2π

= η+ ε+ 2πµρ
2π

= η+ ε

2π
+ µ

N

L
. (3.23)

Our N -particle system of length L is in the ground state or, equivalently, at zero temperature
with zero entropy. The Gibbs relation reads

E0 = −PL+ µN, (3.24)
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where P is the pressure and µ is the chemical potential. Comparing this relation with Eq. (3.23),
the pressure is given by

P = −η+ ε

2π
≡ − 1

2π

∫ q

−q

dk ε(k) (3.25)

and the parameter µ introduced in the definition (3.18) of ε(k) is nothing but the chemical poten-
tial of particles, i.e. energy necessary to add one particle to the system.

The consistency of the formalism can be checked by increasing the size of the system L →
L + ∆L, which manifests itself in the Bethe equations (3.2) as a perturbation φ(k) = −k∆L.
Using Eq. (3.22), the change of the system length implies the following change of the energy

∆E = ε+
η

2π
∆L = η+ ε

2π
∆L. (3.26)

As follows from the Gibbs relation (3.24), ∆E = −P∆L+ µ∆N (∆N = 0 in our case). Thus,
the pressure P is identified with −η+ε/(2π), which is in agreement with the previous result
(3.25). The chemical potential µ is given by

µ =
∂E0

∂N

∣∣∣
fixed L

=
∂e0
∂n

. (3.27)

The general thermodynamic relation LdP (T, µ) = SdT + Ndµ gives at T = 0 (entropy
S = 0)

∂P

∂µ
= n. (3.28)

This relation follows also from the present formalism. Differentiating the integral Eq. (3.18)
with respect to µ and taking into account that ε(±q) = 0, we obtain

(I +G)
∂ε

∂µ
= −1,

∂ε

∂µ
= −2πρ. (3.29)

Consequently, we verify from Eq. (3.25) that

∂P

∂µ
= − 1

2π
[ε(q) + ε(−q)] ∂q

∂µ
− 1

2π

∫ q

−q

dk
∂ε(k)
∂µ

=
∫ q

−q

dk ρ(k) = n. (3.30)

3.3 Low-lying excitations

We turn now to the excitation spectrum. To understand its structure, we first consider the trivial
point of a noninteracting Fermi gas or a (pointlike) hard-core Bose gas. The uncoupled momenta
k’s are given by Eq. (2.92), the quantum numbers I1, I2, . . . , IN of the ground state are dis-
tributed according to (2.99). The “Fermi momentum” q = πn. The spectrum is evidently the
Fermi one: an elementary excitation consists in taking a particle from a “hole” state with mo-
mentum kh (|kh| < q) to a “particle” state with momentum kp above the Fermi level, |kp| > q.
The energy change ∆E = E − E0 and momentum change ∆K = K (recall that K0 = 0) of
this state with respect to the ground state are

∆E(kh, kp) = k2
p − k2

h, K(kh, kp) = kp − kh. (3.31)
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This spectrum describes adequately excitations in Fermi gases, but it is different from what we
would expect for Bose gases. The difficulty is that every excitation is described in terms of two
parameters instead of the one as is anticipated for Boson systems; there is no unique ∆E(K)
dispersion curve. Our main task in describing the Fermi spectrum in boson terms is to find a
small number of elementary energy levels from which the others can be constructed by addition.

In order to make the Fermi spectrum appear boson-like, we define two types of elementary
one-parameter excitations.

• Type I “particle excitations”: Take a particle from q to kp > q, or alternatively from −q to
kp < −q. This state has an energy and momentum given by

∆E(kp) = k2
p − q2, K(kp) =

{
kp − q for kp > q,
kp + q for kp < −q. (3.32)

The dispersion relation is obtained by eliminating kp between these equations,

∆Ep(K) = K2 + 2πn|K|, −∞ < K <∞. (3.33)

Note that although we refer to this type of excitations as to the particle ones, no particle was
added into the system (∆N = 0).

• Type II “hole excitations”: Take a particle from 0 < kh < q to q + 2π/L, or alternatively
from −q < kh < 0 to −q − 2π/L. This state has an energy and momentum given by

∆E(kh) = q2 − k2
h, K(kh) =

{
q − kh for 0 < kh < q,
−q − kh for −q < kh < 0. (3.34)

The dispersion relation thus reads

∆Eh(K) = 2πn|K| −K2, −πn < K < πn. (3.35)

Note that type II excitations are defined only for momenta with the absolute value less than πn.

With the proposed description, we have achieved a boson-like spectrum at the expense of
introducing two, particle and hole, dispersion curves. Any type I excitation can be repeated as
many times as desired, with the proviso that we take the last available k below q. The same holds
for a type II excitation. Both type I and II excitations may occur simultaneously; the fermion-
type excitation (3.31) may be generated by a successive application of type I and II excitations
say with momenta kp−q and q−kh, respectively. When we make a finite number of excitations,
the excitation energies and momenta will be additive to order 1/N . Namely, if we make n type
I excitations with momenta K1, . . . ,Kn and m type II excitations with momenta K ′

1, . . . ,K
′
m,

the energy shift will be

∆E =
n∑

j=1

∆Ep(Kj) +
m∑

j=1

∆Eh(K ′
j), (3.36)

and the total momentum will be

K =
n∑

j=1

Kj +
m∑

j=1

K ′
j . (3.37)
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When model’s parameters lie outside of the trivial free-fermion or hard-core boson point, the
picture of excitations is qualitatively the same. The only technical difficulty is that, since all k’s
are now coupled via the phase-shift functions, creating a particle or hole excitation will shift of
all momenta. These shifts can be computed with the aid of the response technique presented in
subsection 3.1. There is a minor complication. The functions of primary importance ρ(k) and
ε(k) are defined by the integral equations (3.3) and (3.18), respectively, only in the momentum
domain |k| ≤ q. However, the momenta of particle excitations |kp| ≥ q, so we use the analytic
continuations of these integral equations to define ρ(k) and ε(k) for all real values of k, including
|k| > q:

ρ(k) ≡ 1
2π

−
∫ q

−q

dk′
θ′(k − k′)

2π
ρ(k′), −∞ < k <∞; (3.38)

ε(k) ≡ k2 − µ−
∫ q

−q

dk′
θ′(k − k′)

2π
ε(k′), −∞ < k <∞. (3.39)

Creating a type I particle excitation, say at kp > q, produces the perturbation

φ(k) = θ(k − kp)− θ(k − q) (3.40)

in the Bethe equations. According the the response Eq. (3.22), the energy change is given by

∆E(kp) = k2
p − q2 − ε+

φ′

2π
= ε(kp), (3.41)

where we used the extended definition (3.39) of ε(k) and the fact that ε(q) = 0. This rela-
tion gives us a clear physical interpretation of the quantity ε(k) as the excitation energy for an
elementary excitation. The momentum is determined by using Eq. (3.15),

K(kp) = kp − q + φ+ρ = 2π [f(kp)− f(q)] . (3.42)

Here, f(k) is an analytic continuation of the state density, given by Eq. (2.116), to |k| > q:

f(k) ≡ k

2π
−
∫ q

−q

dk′
θ(k − k′)

2π
ρ(k′), |k| > q. (3.43)

Comparing this formula with Eq. (3.38) we see that the equality f ′(k) = ρ(k) takes place also
for |k| > q. The dispersion relation ∆Ep(K) is thus obtained either parametrically or explicitly
by eliminating kp between the expressions for the energy and momentum. When kp < q we
obtain the same results, except for K → −K which reflects the symmetry ∆E(|K|).

Similarly, creating a type II hole excitation at kh, 0 < kh < q, the perturbation in the Bethe
equations becomes

φ(k) = −θ(k − kh) + θ(k − q). (3.44)

The change of the energy and momentum are now given by

∆E(kh) = −k2
h + q2 − ε+

φ′

2π
= −ε(kh), (3.45)

K(kh) = −kh + q + φ+ρ = 2π [f(q)− f(kh)] . (3.46)
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These relations define the dispersion curve ∆Eh(|K|).
We notice that the energy changes ∆E(kp) and ∆E(kh), being associated with excited states,

must be positive. This is equivalent to saying that

ε(k) < 0 for |k| < q,
ε(k) > 0 for |k| > q. (3.47)

Assuming that ε(k) is a continuous function of k, these inequalities are consistent with the rela-
tion (3.19).

The group velocity of the excitations is given by

v(k) =
d(∆E)

dK
=

∆E′

K ′ =
ε′(k)

2πρ(k)
. (3.48)

This expression is valid for both the particle excitations with |k| ≥ q and the hole excitations
with |k| ≤ q. As the parameters kp or kh approach the momentum q, ∆E(kp) or ∆E(kh) go
continuously to zero, i.e. the energy spectrum is gapless. Since the only long-wavelength, low-
energy excitations are localized around q, v(q) is expected to be identical to the velocity of sound
vs,

vs = v(q) =
ε′(q)

2πρ(q)
. (3.49)

3.4 Consistency of zero-temperature thermodynamics

Within the framework of the standard thermodynamics, in the grand canonical ensemble, the
velocity of sound vs is related to the bulk thermodynamic functions by

1
mv2

s

=
1
n

∂2P

∂µ2
. (3.50)

In this part we shall show that the particle density n and ∂2P/∂µ2 are expressible in terms of the
two quantities ρ(q) and ε′(q), evaluated at the momentum limit q. Consequently, the velocity of
sound calculated from Eq. (3.50) will turn out to be identical to the one given by relation (3.49).

We start with the expression for the density n. Integrating by parts, we have

n = η+ρ = 2qρ(q)− k+ρ′. (3.51)

To obtain the equation for ρ′, we differentiate Eq. (3.3) for ρ with respect to k, with the result

ρ′(k) +
∫ q

−q

dk′
∂G(k − k′)

∂k
ρ(k′) = 0. (3.52)

Transforming the derivative ∂/∂k → −∂/∂k′ and integrating by parts, we find that

(I +G)ρ′(k) = [G(k − q)−G(k + q)]ρ(q). (3.53)

Multiplying both sides of this equation by the inverse operator of I + G, I + J , and using that
(I + J)G = −J , we obtain

ρ′(k) = −[J(k, q)− J(k,−q)]ρ(q). (3.54)
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With regard to the representation (3.51), this relation permits us to express the particle density as

n = 2qρ(q) + ρ(q)[Jk(q)− Jk(−q)]. (3.55)

Using Eq. (3.21), we can write

Jk = J(I +G)
ε′

2
= −Gε

′

2
=
ε′

2
− k. (3.56)

Consequently,

n = 2qρ(q) + ρ(q)
{
ε′(q)

2
− q −

[
ε′(−q)

2
+ q

]}
= ρ(q)ε′(q). (3.57)

The second derivative of the pressure with respect to the chemical potential can be calculated
as follows

∂2P

∂µ2
=
∂n

∂µ
=

∂

∂µ

∫ q

−q

dk ρ(k) = 2ρ(q)
∂q

∂µ
+
∫ q

−q

dk
∂ρ(k)
∂µ

. (3.58)

To obtain the equation for ∂ρ(k)/∂µ, we differentiate Eq. (3.3) for ρ with respect to µ, with the
result

∂ρ(k)
∂µ

+ ρ(q)
∂q

∂µ
[G(k − q) +G(k + q)] +

∫ q

−q

dk′ G(k − k′)
∂ρ(k′)
∂µ

= 0. (3.59)

This equation can be written formally as

(I +G)
∂ρ(k)
∂µ

= −ρ(q) ∂q
∂µ

[G(k − q) +G(k + q)]. (3.60)

The application of the operator I + J to both sides of this equation leads to

∂ρ(k)
∂µ

= ρ(q)
∂q

∂µ
[J(k, q) + J(k,−q)]. (3.61)

Inserting this representation of ∂ρ(k)/∂µ into Eq. (3.58) and using the relation (3.5), we arrive
at

∂2P

∂µ2
= 4πρ2(q)

∂q

∂µ
. (3.62)

The chemical potential µ and the limit of momentum q are linked through the constraint
ε(q) = 0. In this constraint, q occurs explicitly, since ε is evaluated at k = q, and implicitly via
µ. The differentiation of the constraint with respect to q thus leads to

0 = ε′(q) +
∂ε(q)
∂µ

∂µ

∂q
= ε′(q)− 2πρ(q)

∂µ

∂q
, (3.63)

where we used the formula (3.29). Consequently,

∂µ

∂q
=

ε′(q)
2πρ(q)

. (3.64)
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Substituting this relation into (3.62), we obtain

∂2P

∂µ2
=

8πρ3(q)
ε′(q)

. (3.65)

Finally, using (3.57) and (3.65) in the thermodynamic relation (3.50) considered in units of 2m =
1, we recover the previous result (3.49) for the sound velocity. This confirms the thermodynamic
consistency of the zero-temperature formalism of the Bethe ansatz.

3.5 Zero-temperature thermodynamics for repulsive δ-function bosons

We now document the formalism of the zero-temperature thermodynamics on the studied model
of bosons with the repulsive δ-function interaction. Due to the scaling form (2.123) of the
ground-state energy density e0, the chemical potential can be calculated from

µ =
∂e0
∂n

= 3n2u
( c
n

)
− cnu′

( c
n

)
. (3.66)

As before, we consider two limits which admit explicit results.

• In the limit of hard-core bosons c/n→∞, the large-x expansion (2.125) of the function u(x)
implies

µ = (πn)2
[
1− 16

3

(n
c

)
+ 20

(n
c

)2

+ · · ·
]
. (3.67)

In the leading order, we have

µ = (πn)2 = q2, e0 =
π2

3
n3. (3.68)

Since θ′(k) = −2c/(k2 + c2) goes to 0 in the considered limit, for an arbitrary real k the integral
Eqs. (3.38) and (3.39) exhibit trivial solutions

ρ(k) =
1
2π
, ε(k) = k2 − µ. (3.69)

Note that ε(k) fulfills the requirement ε(±q) = 0.
The pressure can be calculated from Eq. (3.24) as follows

P = µn− e0 =
2
3
π2n3. (3.70)

The same result is obtained from the pressure representation (3.25) with ε(k) substituted from
Eq. (3.69). The group velocity of excitations (3.48) and the velocity of sound (3.49) are obtained
in the form

v(k) = 2k, vs = 2q = 2πn, (3.71)

respectively.
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• In the free-boson limit c/n → 0, the small-x expansion (2.136) of u(x), when considered in
Eq. (3.66), implies

µ = 2cn
[
1− 1

π

√
c

n
+

1
2

(
1
6
− 1
π2

)
c

n
+ · · ·

]
. (3.72)

In the leading order, we have

µ = 2cn =
1
2
q2, e0 = cn2. (3.73)

To derive ε(k), we use the relation (3.29) to obtain

∂ε

∂µ
= −2πρ = −1

c

√
q2 − k2 = −1

c

√
2µ− k2. (3.74)

Consequently,

ε(k) = − 1
3c

(2µ− k2)3/2, |k| ≤ q. (3.75)

The group velocity of excitations and the velocity of sound are obtained in the form

v(k) = k (|k| ≤ q), vs = q = 2
√
cn, (3.76)

respectively. The pressure is given by

P = µn− e0 = cn2. (3.77)

The same result is attained by inserting the representation (3.75) of ε(k) into Eq. (3.25).
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4 Bethe ansatz: finite-temperature thermodynamics

In this section, we shall study the finite-temperature thermodynamics of integrable systems with
spectra described by the fundamental set of Bethe equations (3.1).

4.1 The concept of holes

At zero temperature T = 0, the particle system is in the ground state characterized by the con-
secutive sequence of quantum I-numbers given in Eq. (2.99). These quantum numbers{

−N − 1
2

,−N − 3
2

, · · · , N − 1
2

}
(4.1)

are called the “particle” ones. However, there exist other admissible quantum numbers like{
−N + 1

2
,−N + 3

2
, · · · , N + 1

2
,
N + 3

2
· · ·
}

(4.2)

which are not in the zero-temperature set; they are called the “hole” quantum numbers.
At a finite temperature T > 0, due to thermal fluctuations, some of the particle quantum

numbers (4.1) become the hole ones and, vice versa, some of the hole quantum numbers (4.2)
become the particle ones. Let us denote by {Ij}N

j=1 a given set of the particle quantum numbers
and by {Ĩ} the infinite set of the remaining hole quantum numbers. In terms of the function f(k)
defined by

2πLf(k) ≡ Lk −
N∑

l=1

θ(k − kl), (4.3)

each of the particle momenta kj is given by

Lf(kj) = Ij j = 1, 2, . . . , N. (4.4)

On the other hand, a momentum k̃, given by

Lf(k̃) = Ĩ , (4.5)

is the hole momentum corresponding to the quantum number Ĩ . Note that the function f , when
restricted to the ground state, is equivalent to the f -function introduced in subsection 2.6.

In the thermodynamic limitL,N →∞with the fixed particle density n = N/L, the particles
and holes are distributed as functions of k with densities ρ(k) and ρ̃(k), respectively:

Lρ(k)dk = number of particles in the interval (k, k + dk),
Lρ̃(k)dk = number of holes in the interval (k, k + dk). (4.6)

The particles and holes cover all admissible values of quantum numbers and so there exists a
constraint between the particle and hole densities. Namely, since

L [ρ(k) + ρ̃(k)] dk = number of particles and holes in the interval (k, k + dk)
= Lf(k + dk)− Lf(k) = Ldf(k), (4.7)
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it holds

ρ(k) + ρ̃(k) = f ′(k). (4.8)

In the thermodynamic limit, Eq. (4.3) becomes the integral equation for f ,

2πf(k) = k −
∫ ∞

−∞
dk′ θ(k − k′)ρ(k′). (4.9)

The differentiation of this equation with respect to k leads to

ρ(k) + ρ̃(k) =
1
2π

−
∫ ∞

−∞
dk′

θ′(k − k′)
2π

ρ(k′) =
1
2π

−Gρ, (4.10)

where G is the same integral operator as in the zero-temperature case, except that the integration
limits are extended to ±∞.

The particle density and the energy per unit length are determined solely by the particle
distribution,

N

L
≡ n =

∫ ∞

−∞
dk ρ(k),

E

L
≡ e =

∫ ∞

−∞
dk k2ρ(k). (4.11)

4.2 Thermodynamic equilibrium

We consider the particle system to be in thermodynamic equilibrium, at temperature T , or the
inverse temperature β = 1/(kBT ) with kB being the Boltzmann constant. In the grand canonical
ensemble with the chemical potential µ, the grand canonical partition function is defined by

Ξ =
∞∑

N=0

eβµN
∑

eigenstates
of N particles

e−βE =
∑
ρ,ρ̃

δ[χ(ρ, ρ̃)]W [ρ, ρ̃]eβµN [ρ]−βE[ρ]. (4.12)

Here, the delta function enforces the constraint between the particle and hole distributions (4.10),
represented formally as

χ(ρ, ρ̃) = 0, (4.13)

and W [ρ, ρ̃] denotes the total number of microscopic states corresponding to the given macro-
scopic particle and hole densities in k space. The fact that W has a nontrivial value is associated
with the existence of the omitted quantum numbers Ĩ which causes a degeneracy: many wave-
functions of approximately the same energy are described by the same ρ and ρ̃. In particular, for
given ρ and ρ̃, the total number of admissible k’s in the interval (k, k+dk) is L[ρ(k)+ ρ̃(k)]dk,
from which Lρ(k)dk are particle k’s and Lρ̃(k)dk are hole k’s. The number of possible choices
of states in dk is thus equal to

{L[ρ(k) + ρ̃(k)]dk}!
[Lρ(k)dk]![Lρ̃(k)dk]!

.

It is natural to introduce the entropy

S[ρ, ρ̃] = lnW [ρ, ρ̃]. (4.14)
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The contribution to the entropy from dk then reads

dS = ln
{

[L(ρ+ ρ̃)dk]!
(Lρdk)!(Lρ̃dk)!

}
∼ L [(ρ+ ρ̃) ln(ρ+ ρ̃)− ρ ln ρ− ρ̃ ln ρ̃] dk, (4.15)

where we applied Stirling’s asymptotic formula ln(n!)∼n→∞ n(lnn− 1) and omit in the nota-
tion the k-dependence of ρ and ρ̃. The total entropy per unit length is given by

S

L
≡ s =

∫ ∞

−∞
dk [(ρ+ ρ̃) ln(ρ+ ρ̃)− ρ ln ρ− ρ̃ ln ρ̃] . (4.16)

For given ρ and ρ̃, the Gibbs free energy per unit length g = G/L is defined by

g[ρ, ρ̃] =
1
L

(
− 1
β
S + E − µN

)
= − 1

β
s+ e− µn

=
∫ ∞

−∞
dk
{
− 1
β

[(ρ+ ρ̃) ln(ρ+ ρ̃)− ρ ln ρ− ρ̃ ln ρ̃] + (k2 − µ)ρ
}
. (4.17)

Using the saddle-point approximation for the thermodynamic L→∞ limit of the grand canoni-
cal partition function (4.12), we have

Ξ =
∑
ρ,ρ̃

δ[χ(ρ, ρ̃)]e−βg[ρ,ρ̃]L ∼
L,N→∞

exp (−βg[ρeq, ρ̃eq]L) , (4.18)

where the equilibrium particle and hole distributions are determined by the extremal condition
of the minimal Gibbs free energy,

δg
∣∣∣
ρ=ρeq,ρ̃=ρ̃eq

= 0. (4.19)

This condition is subject to the constraint (4.10).
With regard to Eq. (4.17), the equilibrium condition (4.19) is equivalent to

δρ̃+ ln
(
ρeq + ρ̃eq

ρ̃eq

)
+ δρ+ ln

(
ρeq + ρ̃eq

ρeq

)
+ δρ+β(µ− k2) = 0. (4.20)

From the constraint (4.10) we have

δρ̃ = −(I +G)δρ. (4.21)

The substitution of this relation into Eq. (4.20) leads to

ln
(
ρ̃eq

ρeq

)
−G ln

(
1 +

ρeq

ρ̃eq

)
+ β(µ− k2) = 0. (4.22)

Finally, introducing the notation

ρ̃eq(k)
ρeq(k)

≡ exp[βε(k)], (4.23)
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the function ε(k) (whose dependence on µ and β is not explicitly written) is the solution of the
nonlinear integral equation

k2 − µ = ε− 1
β
G ln

(
1 + e−βε

)
≡ ε(k)− 1

β

∫ ∞

−∞
dk′

θ′(k − k′)
2π

ln
[
1 + e−βε(k′)

]
. (4.24)

In dependence on the form of the shift function θ(k), the function ε(k) can be determined either
analytically or perturbatively, e.g. by iteration starting from ε(1)(k) = k2 − µ. ε(k) has physical
meaning as the excitation energy for an elementary excitation at a given temperature. From Eq.
(4.10) we obtain the relation

ρeq(k)
[
1 + eβε(k)

]
=

1
2π

−
∫ ∞

−∞
dk′

θ′(k − k′)
2π

ρeq(k′), (4.25)

which determines ρeq(k).
At zero temperature, the definition (4.24) for ε(k) reduces to the previous one (3.18). This

can be seen from the inequalities (3.47). Eq. (4.23) then implies the expected result

ρeq(k) = 0 for |k| > q,
ρ̃eq(k) = 0 for |k| < q,

at T = 0. (4.26)

From the elementary thermodynamics, the pressure P is given by

P = −G
L

= −g. (4.27)

To express the pressure in terms of ε, we return to Eq. (4.17) and rewrite it as

P = ρ+

{
µ− k2 +

1
β

[(
1 +

ρ̃

ρ

)
ln
(

1 +
ρ̃

ρ

)
− ρ̃

ρ
ln
ρ̃

ρ

]}
= ρ+

[
µ− k2 − εeβε +

1
β

(
1 + eβε

)
ln
(
1 + eβε

)]
= ρ+

[
µ− k2 + ε+

1
β

(
1 + eβε

)
ln
(
1 + e−βε

)]
. (4.28)

Using the constraint (4.10), reexpressed in the form

ρ+
(
1 + eβε

)
=

η

2π
−Gρ, (4.29)

we can simplify the last line of Eq. (4.28) as follows

P = ρ+

[
µ− k2 + ε− 1

β
G ln

(
1 + e−βε

)]
+

1
2πβ

η+ ln
(
1 + e−βε

)
. (4.30)

The expression in the brackets vanishes due to Eq. (4.24) defining ε, so that

P (µ, β) =
1

2πβ
η+ ln

(
1 + e−βε

)
≡ 1

2πβ

∫ ∞

−∞
dk ln

[
1 + e−βε(k)

]
. (4.31)
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In the limit of zero temperature (β →∞), this relation reduces to the previous one (3.25).
The chemical potential µ is usually replaced by the fugacity z defined by

z = exp(βµ). (4.32)

Considering P to be the function of (z, β), the particle density is expressible as

n =
∂P

∂µ
= z

∂

∂z
βP (z, β). (4.33)

Having the particle density – fugacity relation n = n(z, β), this relation can be (in principle)
converted, z = z(n, β), and the pressure is expressible as the function of (n, β). The expansion
of P (n, β) in powers of n is known as the virial expansion.

4.3 Thermodynamics of repulsive δ-function bosons

• In the limit c→∞, the integrals in (4.24) and (4.25) do not contribute. Therefore,

ε = k2 − µ (4.34)

and

2πρeq =
z exp(−βk2)

1 + z exp(−βk2)
, (4.35)

2πρ̃eq =
1

1 + z exp(−βk2)
. (4.36)

According to Eq. (4.31), the pressure P (c→∞) is equal to

PF =
1

2πβ

∫ ∞

−∞
dk ln

[
1 + z exp(−βk2)

]
=

1
2
√
π

(kBT )3/2
∞∑

j=1

(−1)j+1 zj

j3/2
. (4.37)

These equations correspond to the ones of a free Fermi gas, as it should be.

• In the limit c→ 0, we have θ′(k) → −2πδ(k). Eq. (4.24) thus gives

ε = k2 − µ− 1
β

ln [1 + exp(−βε)] , (4.38)

or

exp(−βε) =
1

z−1 exp(βk2)− 1
. (4.39)

From Eqs. (4.23) and (4.25), we have

2πρeq =
1

z−1 exp(βk2)− 1
, (4.40)

2πρ̃eq = 1. (4.41)
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The pressure P (c→ 0) is equal to

PB = − 1
2πβ

∫ ∞

−∞
dk ln

[
1− z exp(−βk2)

]
=

1
2
√
π

(kBT )3/2
∞∑

j=1

zj

j3/2
. (4.42)

These equations correspond to the ones of a free Bose gas.
Let us now make a general analysis of the pressure P (c) for an arbitrary coupling constant

c ∈ (0,∞) [62]. In terms of the fugacity z, the pressure of a 1D particle system of length L is
defined by

βPL = ln

( ∞∑
N=0

zN
∑

states s

e−βEs(N)

)
. (4.43)

In the case of repulsive δ-function bosons it is clear that the energy Es of state s increases with
increasing c and so the coefficient of zN decreases with increasing c. For a fixed β and z, we
thus have P (c = 0) > P (c finite) > P (c→∞). Since P (c = 0) = PB and P (c→∞) = PF,
the following inequalities take place

PF < P (c) < PB at fixed β and z. (4.44)

To derive the fugacity and virial expansions of P (c), we write down a formal expansion of
exp[−βε(k)] in powers of z:

exp [−βε(k)] =
∞∑

n=1

an(k, β)zn. (4.45)

Substituting this expansion into Eq. (4.24), we obtain

a1 = e−βk2
,

a2 = −e−βk2
Ga1, (4.46)

a3 = e−βk2
[
−Ga2 +

1
2
Ga2

1 +
1
2
(Ga1)2

]
,

etc. Within the representation (4.31), the pressure is given by

P =
1

2πβ

∫ ∞

−∞
dk
[
a1z +

(
a2 −

a2
1

2

)
z2 +

(
a3 − a1a2 +

a3
1

3

)
z3 + · · ·

]

= PF +
1

2
√
π

(kBT )3/2eβc2/2

[
1√
2
−
√

2
π

∫ √βc2/2

0

dy e−y2

]
z2 +O(z3). (4.47)

The fugacity expansion of the particle density n can be determined from this equation by using
formula (4.33). The leading terms of the virial expansion of the pressure are finally obtained in
the form

βP

n
= 1 +

{
1

2
√

2
+ eβc2/2

[√
2
π

∫ √βc2/2

0

dy e−y2
− 1√

2

]}
λn+ · · · , (4.48)
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where λ = 2
√
πβ is the thermal de Broglie wavelength, expressed in units of h̄ = 1 and 2m = 1.

Some further developments of the thermodynamic formalism for δ-function bosons can be
found in Refs. [63, 64].
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5 Particles with hard-core interactions

We now review probably the simplest one-dimensional system solvable by using the Bethe ansatz
method. The model consists of N identical spinless particles, either bosons or fermions, with a
hard core of diameter a around each particle (hard rod). The hard-core potential around a particle

v(x) =
{
∞ for |x| < a,
0 for |x| > a, (5.1)

is impenetrable for other rods. There is no other interaction among the particles.
The particles are localized on a circle of length L > Na, with the density n < 1/a. The

fundamental sector of the particle ordering I is given by

I : 0 ≤ x1 < x2 − a < x3 − 2a < · · · < xN − (N − 1)a ≤ b, (5.2)

where b = min{L − (n − 1)a, x1 + L − Na}. The particles are free inside the I-region and
therefore their wavefunction fulfill the Helmholtz equation (2.14). Since the hard-core potential
is the impenetrable one, the wavefunction has to vanish on the boundary of the I-region:

ψI(· · · , xj , xj+1 = xj + a, · · ·) = 0, j = 1, 2, . . . , N − 1. (5.3)

5.1 Bethe ansatz

For N = 2 particles, the general solution of the Helmholtz equation is the superposition of plane
waves

ψI(x1, x2) = A(12)ei(k1x1+k2x2) −A(21)ei(k2x1+k1x2) (5.4)

with the total momentum K = k1 + k2 and energy E = k2
1 + k2

2 . The boundary condition at
x2 = x1 + a, ψI(x1, x1 + a) = 0, implies that

A(21)
A(12)

= exp [−iθ(k1 − k2)] , θ(k) = ak. (5.5)

The function θ(k) is the two-body phase shift for the hard-core potential. Introducing the vari-
ables y1 = x1 and y2 = x2 − a, the (unnormalized) wavefunction is written as

ψI(x1, x2) = Det
1≤j,l≤2

exp(ikjyl). (5.6)

The wavefunction is nonzero only if k1 6= k2. The periodic boundary condition ψI(0, x2) =
ψI(x2, L) leads to the previously derived Eqs. (2.46) for the wave numbers k1 and k2, with the
shift function θ of the hard-core potential.

In analogy with the case of the δ-function potential, it is seen from the form of the boundary
conditions (5.3) that for multi-body collisions the phase shift does not depend on the order of
two-body collisions and the hard-rod system is integrable. If we define the variables yj = xj −
(j − 1)a (j = 1, 2, . . . , N), the N -body wavefunction for the fundamental particle ordering I is
expressible as

ψI(x1, x2, . . . , xN ) = Det
1≤j,l≤N

exp(ikjyl). (5.7)
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The total momentum and energy are given by K =
∑N

j=1 kj and E =
∑N

j=1 k
2
j , respectively.

The wave numbers, no two of which are identical in order to avoid the nullity of ψI , are quantized
according to the present counterpart of the Bethe equations (2.69),

kjL = 2πIj + a

N∑
l=1

(kj − kl), j = 1, 2, . . . , N. (5.8)

These equations can be rewritten as follows

kjL(1− an) = 2πIj − aK, K =
2π
L

∑
j

Ij . (5.9)

The Bethe equations apply to both bosons and fermions which therefore have the same energy
spectra. The Bose or Fermi statistics is reflected through the symmetrization/antisymmetrization
of the wavefunction (5.7) for other orderings of the particles.

Let us consider first the trivial case in which the rod diameter a is zero. For spinless fermions,
the Bethe equations (5.8) correspond to free fermions as was intuitively expected. For bosons,
contrary to the classical gas and three-dimensional hard-core Bose gas, letting a be zero does
not remove the interaction due to the restriction of the configuration space into the subspace
I in (5.2). Consequently, the boson spectrum for pointlike hard cores is identical to that of free
fermions; this situation is equivalent to that of the hard-core boson c→∞ limit of the δ-function
potential.

The point a = 0 serves as the reference point for the whole region of allowed values of
hard-core diameters 0 < a < 1/n. Based on the continuity arguments, the ground state is
characterized by the same set of quantum numbers {Ij}N

j=1 as at the point a = 0. This means
that the quantum numbers are symmetricaly distributed (with a unity step) around 0, see Eq.
(2.99), and so K0 = 0. From Eq. (5.9), we then have

kjL(1− an) = 2πIj , j = 1, 2, . . . , N, (5.10)

i.e. the particle system behaves like free fermions in a volume reduced by the hard cores.

5.2 Ground state and zero-temperature thermodynamics

In the thermodynamic limit, Eq. (3.38) for the probability distribution ρ(k), taken with θ′(k) =
a, reads

ρ(k) =
1
2π

− a

2π

∫ q

−q

dk′ρ(k′). (5.11)

ρ(k) is thus constant for any real k,

ρ(k) =
1
2π

(1− an), −∞ < k <∞. (5.12)

The ”normalization condition” for the particle density

n =
∫ q

−q

dk ρ(k) =
q

π
(1− an) (5.13)
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determines the density dependence of the momentum limit for the ground state,

q =
πn

1− an
. (5.14)

The energy density is given by

e0 =
∫ q

−q

dk k2ρ(k) =
π2

3
n3

(1− an)2
. (5.15)

The chemical potential is calculated as follows

µ =
∂e0
∂n

=
(πn)2

(1− an)3

(
1− 1

3
an

)
. (5.16)

The distribution ε(k), defined by Eq. (3.39), obeys the integral equation

ε(k) = k2 − µ−
∫ q

−q

dk′
a

2π
ε(k′). (5.17)

The solution of this equation

ε(k) = k2 − q2, −∞ < k <∞ (5.18)

satisfies the necessary condition ε(±q) = 0.
The group velocity of excitations and the velocity of sound read

v(k) =
2k

1− an
, vs =

2q
1− an

=
2πn

(1− an)2
, (5.19)

respectively.
To derive dispersion relations for the elementary particle and hole excitations, we first evalu-

ate the f -function

f(k) =
∫ k

0

dk′ ρ(k′) =
1
2π

(1− an)k. (5.20)

For particle excitations with kp > q, we have

∆E(kp) = k2
p − q2, K(kp) = (1− an)(kp − q). (5.21)

Eliminating from these relations kp, we obtain the dispersion relation for particle excitations

∆Ep(K) =
1

(1− an)2
(K2 + 2πn|K|), −∞ < K <∞. (5.22)

Similarly, for hole excitations with 0 < kh < q, we have

∆E(kh) = q2 − k2
h, K(kh) = (1− an)(q − kp) (5.23)

and the dispersion relation for hole excitations read

∆Eh(K) =
1

(1− an)2
(2πn|K| −K2), −πn < K < πn. (5.24)

The pressure is determined as follows

P = µn− e0 =
2π2

3

(
n

1− an

)3

. (5.25)

This result is reproduced by substituting ε(k) (5.18) in the pressure representation (3.25).
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5.3 Finite-temperature thermodynamics

The thermodynamics of the hard-core particle system was solved in Refs. [25, 65]. From the
integral equation (4.24) defining the distribution ε(k) and from the pressure representation (4.31)
it follows that

ε(k) = k2 − µ+ aP, (5.26)

where the pressure P is given self-consistently by

P =
1

2πβ

∫ ∞

−∞
dk ln

[
1 + e−β(k2−µ+aP )

]
. (5.27)

The equilibrium distribution ρeq(k), defined by Eq. (4.25), reads

ρeq(k) =
1
2π

(1− an)
1

eβ(k2−µ+aP ) + 1
. (5.28)

The particle number density n and the energy density e then follow from Eq. (4.11):

n =
1
2π

(1− an)
∫ ∞

−∞
dk

1
eβ(k2−µ+aP ) + 1

, (5.29)

e =
1
2π

(1− an)
∫ ∞

−∞
dk k2 1

eβ(k2−µ+aP ) + 1
, (5.30)

Note that the pointlike hard-core case a = 0 is indeed equivalent to free fermions.
Performing in (5.27) an integration by parts, we get

P =
1
π

∫ ∞

−∞
dk k2 1

eβ(k2−µ+aP ) + 1
=

2
1− an

e. (5.31)

Such explicit relation between the pressure and the energy density, which holds for all tempera-
tures and particle densities, is known as the Bernoulli equation.

Let us assume that

exp [β(aP − µ)] � 1. (5.32)

In this classical regime of the statistical mechanics, the relations (5.27) and (5.29) become

P =
1

2πβ

∫ ∞

−∞
dk e−β(k2−µ+aP ), (5.33)

n =
1
2π

(1− an)
∫ ∞

−∞
dk e−β(k2−µ+aP ). (5.34)

Combining these equations, we obtain the classical Tonks equation of state [66]

βP =
n

1− an
. (5.35)

Performing the gaussian integrals in Eqs. (5.33) and (5.34), we find

βµ =
an

1− an
+ ln

(
λn

1− an

)
, (5.36)
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where λ is the thermal de Broglie wavelength. Having relations (5.35) and (5.36) it is easy to
show that the validity of the classical approximation (5.32) is restricted to the region

λ
n

1− an
� 1. (5.37)

In order to perform a general analysis of the hard-core particle system, we introduce the
variables

µ̃ = µ− aP, ñ =
n

1− an
. (5.38)

In terms of these new variables, Eq. (5.27) [or the equivalent one (5.31)] and Eq. (5.29) read

P =
1

2πβ

∫ ∞

−∞
dk ln

[
1 + e−β(k2−µ̃)

]
,

≡ 1
π

∫ ∞

−∞
dk k2 1

eβ(k2−µ̃) + 1
, (5.39)

ñ =
1
2π

∫ ∞

−∞
dk

1
eβ(k2−µ̃) + 1

. (5.40)

The elimination of µ̃ from these relations provides P as the function of ñ and β. The elimination
procedure depends on whether the system is in the high-temperature or low-temperature regions.

• High-temperature virial expansion: By expanding the integrated functions in Eqs. (5.39) and
(5.40) in powers of z̃ = exp(βµ̃), we have

βP =
1
λ

∞∑
j=1

(−1)j+1 z̃j

j3/2
, (5.41)

ñ =
1
λ

∞∑
j=1

(−1)j+1 z̃
j

√
j
. (5.42)

The inversion of the expansion (5.42),

z̃ = λñ+
1√
2
(λñ)2 +

(
1− 1√

3

)
(λñ)3 + · · · , (5.43)

leads to

βP

ñ
= 1 +

1
23/2

(λñ) +
(

1
2
− 2

33/2

)
(λñ)2 + · · · . (5.44)

Since the dimensionless parameter is small if n
√
β � 1, this expansion converges in the high-

temperature region.

• Low-temperature virial expansion: At low temperatures, we assume that

µ̃ ≡ µ− aP > 0. (5.45)
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In terms of ε = k2 and ε0 = µ̃ > 0, Eqs. (5.39) and (5.40) can be written as

P =
1
π

∫ ∞

0

dε
√
ε

1
eβ(ε−ε0) + 1

, (5.46)

ñ =
1
2π

∫ ∞

0

dε
1√
ε

1
eβ(ε−ε0) + 1

. (5.47)

By using elementary algebra it can be shown that for an arbitrary function g it holds∫ ∞

0

dε g(ε)
1

eβ(ε−ε0) + 1
=
∫ ε0

0

dε g(ε) +
1
β

∫ ∞

−βε0

dε g
(
ε0 +

ε

β

)
sign(ε)
e|ε| + 1

. (5.48)

In the limit β → ∞, the lower bound of the second integral can be set to −∞ since the expo-
nentially small corrections are negligibly small in comparison with the powers of temperature.
Expanding g(ε0 + ε/β) in a Taylor series around the point ε0 and evaluating the integrals over ε,
we arrive at∫ ∞

0

dε g(ε)
1

eβ(ε−ε0) + 1
=

∫ ε0

0

dε g(ε) +
π2

6
(kBT )2g′(ε0)

+
7π4

360
(kBT )4g′′′(ε0) + · · · . (5.49)

Introducing k0 =
√
ε0, the series results for Eqs. (5.46) and (5.47) read

P =
2
3π
k3
0 +

π

12
(kBT )2

k0
+

7π3

960
(kBT )4

k5
0

+ · · · , (5.50)

ñ =
k0

π
− π

24
(kBT )2

k3
0

− 7π3

384
(kBT )4

k7
0

+ · · · . (5.51)

The elimination of k0 implies the desired low-temperature virial expansion

P =
2
3π

(πñ)3 +
π

6
(kBT )2

πñ
+
π3

30
(kBT )4

(πñ)5
+ · · · . (5.52)
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6 Particles with 1/x2 interactions

In this section, we shall deal with 1D many-body systems of identical particles which interact by
a long-ranged pair potential having its origin in the inverse-square potential, written in a standard
form as follows

v(x) =
2λ(λ− 1)

x2
. (6.1)

Here, the parameter λ is a dimensionless interaction strength. The potential is repulsive for
λ > 1, the limit λ→∞ corresponds to the classical regime.

The many-body system with the inverse-square interaction is well defined on an infinite line.
For a finite circle of length L, the inverse-square potential has to be substituted by a periodic one,
say by taking a lattice sum

v(x) →
∞∑

n=−∞
v(x+ nL) =

∞∑
n=−∞

2λ(λ− 1)
(x+ nL)2

=
2λ(λ− 1)π2

L2 sin2(πx/L)
. (6.2)

This is the inverse-sin-squared, or trigonometric, potential. The system has a well-defined ther-
modynamic limit which is expected to be the same as the one of the inverse-square model.

Let us substitute in Eq. (6.2) the circle length L by an imaginary parameter, π/L = ic. The
resulting potential

v(x) =
2λ(λ− 1)c2

sinh2(cx)
(6.3)

is the inverse-sinh-squared, or hyperbolic, potential. There exist two length scales in the model:
1/c is the range of the interaction and L/N = 1/n is the average nearest-neighbor spacing
between particles. In the limit of high particle densities n � c, the thermodynamic limit of the
hyperbolic model is equivalent to that of the inverse-square model. At low densities n � c, the
hyperbolic potential reduces to

v(x) ∼ 8λ(λ− 1)c2 exp(−2c|x|). (6.4)

Scaling this potential by exp(2c/n), it acts effectively only between nearest neighbors and decays
exponentially with distance. The model is known as the Toda lattice.

The hyperbolic potential can be made periodic by taking the lattice sum,

v(x) →
∞∑

n=−∞
v(x+ nL) =

∞∑
n=−∞

2λ(λ− 1)c2

sinh2[c(x+ nL)]
=

8λ(λ− 1)K2

L2sn2(2Kx/L, k)
+ const. (6.5)

Here, sn(u, k) is a Jacobi elliptic function with modulus k andK = K(k) is the complete elliptic
integral of the first kind (see Appendix B). This is the inverse-sn-squared, or elliptic, potential.

We shall study in detail the particle systems with the inverse-square and trigonometric poten-
tials, the results for other potentials are summarized in Sutherland’s book [57].
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6.1 The two-body scattering problem

The δ-function potential is the short-range one, two particles interact only when they touch one
another. The many-body wavefunction is always the superposition of plane waves, for every
positions of particles.

The inverse-square potential, and the pair potentials based on this potential, are long-ranged:
two interacting particles “feel” one another at arbitrary finite distances. The corresponding wave-
function becomes a superposition of plane waves, incoming and outgoing ones with well defined
particle momenta and the phase shift, only for asymptotically large distances between particles.
In this part, we shall solve explicitly the asymptotic two-body problem and calculate the two-
body phase shift for the inverse-square potential of interest.

Let us consider two particles, particle 1 with the coordinate x1 and particle 2 with the coor-
dinate x2, localized on an infinite line x1, x2 ∈ (−∞,∞). The time-independent Schrödinger
equation for a two body wavefunction ψ(x1, x2) is

−
(
∂2

∂x2
1

+
∂2

∂x2
2

)
ψ + v(x1 − x2)ψ = Eψ. (6.6)

The interaction potential v is symmetric and goes to zero at asymptotically large distances be-
tween the particles,

v(x) = v(−x), lim
x→∞

v(x) = 0. (6.7)

Let k1 and k2 be the asymptotic momenta of the two particles. We define the total and relative
asymptotic momenta as follows

K = k1 + k2, k = k1 − k2, (6.8)

so the energy

E = k2
1 + k2

2 =
1
2
(K2 + k2). (6.9)

In the basis of the center-of-mass and relative coordinates

X =
1
2
(x1 + x2), x = x1 − x2, (6.10)

the wavefunction of the Schrödinger equation (6.6) can be expressed in a separation-variables
form

ψ(x1, x2) = eiKXψ(x), (6.11)

where ψ(x) satisfies a relative-motion equation

− ψ′′(x) +
1
2
v(x)ψ(x) =

(
k

2

)2

ψ(x). (6.12)

For the symmetric potential (6.7), this differential equation exhibits a solution of even (boson)
parity

ψ+(x) = ψ+(−x), ψ′+(x) = −ψ′+(−x), (6.13)
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and a solution of odd (fermion) parity

ψ−(x) = −ψ−(−x), ψ′−(x) = ψ′−(−x). (6.14)

Let k1 > k2 (k > 0). Then the asymptotic wavefunction is the sum of an incoming and an
outgoing wave, with a phase shift θ±(k) between the two:

ψ±(x) ∼
{

eikx/2 − e−ikx/2−iθ±(k), x→ −∞,
±
[
e−ikx/2 − eikx/2−iθ±(k)

]
, x→∞.

(6.15)

Note that the phase shift depends, in general, on the particle statistics. Reversing the collision
we see that the phase shift must always be an odd function of k, θ±(−k) = −θ±(k).

Let us calculate the phase shifts for potentials of the present interest.

• The δ-function potential v(x) = 2cδ(x): This potential has no effect on the antisymmetric
wavefunction which vanishes at the origin. In particular, we have

ψ−(x) = 2i sin
(
kx

2

)
, θ−(k) = 0. (6.16)

In the case of the symmetric wavefunction, integrating the Schrödinger equation

− ψ′′+(x) + cδ(x)ψ+(x) =
(
k

2

)2

ψ+(x) (6.17)

across the origin and using the continuity of the wavefunction, we obtain

2ψ′+(0+) = cψ+(0). (6.18)

The asymptotic form (6.15) takes place everywhere, except the origin. We thus have

ψ′+(x)
ψ+(x)

=
k

2
cot
(
kx− θ+(k)

2

)
, x > 0. (6.19)

With regard to Eq. (6.18), we reproduce the previous result θ+(k) = −2 arctan(k/c).

• The hard-core potential (5.1): This potential is impenetrable to particles and therefore
θ− = θ+ = θ. Also in this case the asymptotic form (6.15) takes place everywhere, except
the hard-core region. The Dirichlet boundary conditions ψ(±a) = 0 lead to the phase shift
θ(k) = ak, in agreement with the previous result (5.5).

• The 1/x2 potential v(x) = 2λ(λ − 1)/x2: In the repulsive regime λ ≥ 1, this potential is
also impenetrable to particles, so that θ− = θ+ = θ. The Schrödinger equation (6.12) for this
potential reads

− ψ′′(x) +
λ(λ− 1)

x2
ψ(x) =

(
k

2

)2

ψ(x). (6.20)

Making the substitution ψ(x) =
√
xf(y) with y = kx/2, this equation takes the form

f ′′ +
f ′

y
+ f −

(
λ− 1

2

)2
f

y2
= 0. (6.21)
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Its solution is given by the Bessel function Jλ−1/2(y). Consequently,

ψ(x) =
√
xJλ−1/2

(
kx

2

)
∼

x→∞

2√
πk

cos
(
kx− πλ

2

)
. (6.22)

We conclude that the phase shift and its derivative are given by

θ(k) = π(λ− 1)sign(k), θ′(k) = 2π(λ− 1)δ(k). (6.23)

6.2 The ground-state wavefunction of a product form

The ground-state wavefunction (2.104) of free fermions or hard-core bosons on the circle of
length L has a simple product form of type

Ψ0(x1, . . . , xN ) =
N∏

j>k=1

ψ(xj − xk), (6.24)

where ψ(−x) = ±ψ(x), in dependence on the particle statistics. We might hope that there exist
specific potentials v(x) that have a ground-state wavefunction of product form, not only in the
trivial free-fermion/hard-core boson point, but for all values of potential’s parameters. This is
the motivation for the following inverse problem: find all periodic potentials v(x) for which the
Hamiltonian

H = −
N∑

j=1

∂2

∂x2
j

+
N∑

j>k=1

v(xj − xk) (6.25)

has a ground-state wavefunction of the product form (6.24).
Let us consider the fundamental ordering sector I: x1 < x2 < · · · < xN . Since the ground-

state wavefunction has no nodes, we can divide the Schrödinger equation by Ψ0 to obtain

1
Ψ0

N∑
j=1

∂2Ψ0

∂x2
j

=
N∑

j>k=1

v(xj − xk)− E0. (6.26)

Substituting into this equation the product form (6.24), carrying out the differentiations and in-
troducing the logarithmic derivative of ψ(x),

φ(x) ≡ d
dx

lnψ(x) =
ψ′(x)
ψ(x)

, φ(−x) = −φ(x) for both fermions and bosons, (6.27)

we get

2
∑
j>k

ψ′′(xj − xk)
ψ(xj − xk)

+ 2
∑

j>k>l

[φ(xj − xk)φ(xj − xl)− φ(xj − xk)φ(xk − xl)

+φ(xj − xl)φ(xk − xl)] =
∑
j>k

v(xj − xk)− E0. (6.28)



Particles with 1/x2 interactions 867

This equation can be satisfied only if

φ(x3 − x2)φ(x3 − x1)− φ(x3 − x2)φ(x2 − x1) + φ(x3 − x1)φ(x2 − x1)
= f(x3 − x1) + f(x3 − x2) + f(x2 − x1). (6.29)

Since the lhs of this equation is invariant with respect to an arbitrary interchange of coordinates,
the function f must be even: f(x) = f(−x). Using the notation x = x2 − x1 and y = x3 − x2,
so that x+ y = x3 − x1, we obtain

[φ(x) + φ(y)]φ(x+ y)− φ(x)φ(y) = f(x) + f(y) + f(x+ y). (6.30)

Solving this functional equation for the two functions φ(x) and f(x), odd and even respectively,
from Eq. (6.28) the pair potential v(x) is given by

1
2
v(x) = φ′(x) + φ2(x) + (N − 2)f(x) +

E0

N(N − 1)
. (6.31)

The functional Eq. (6.30) must hold for all x and y. We shall expand it for small y around
the point y = 0. The even function f(y) is assumed to be analytic everywhere, its expansion
around y = 0 reads f(y) = f(0) + f ′′(0)y2/2! + · · ·. The odd function φ(y) is singular at
y = 0; this becomes evident by considering the free-fermion ground-state wavefunction (2.104)
with ψ(y) = sin(πy/L), implying

φfree fermions(y) =
π

L
cot
(πy
L

)
∼

y→0

1
y
. (6.32)

This is why we assume that

φ(y) ∼
y→0

λ

y
− ay − by3 − cy5 − · · · . (6.33)

Based on this assumption, the functional Eq. (6.30) becomes

λφ′(x) + φ2(x)− 2f(x)− f(0) + y

[
λ

2
φ′′(x) + φ′(x)φ(x)− f ′(x)

]
+y2

[
λ

6
φ′′′(x)− aφ′(x) +

1
2
φ′′(x)φ(x)− 1

2
f ′′(x)− 1

2
f ′′(0)

]
+ · · · = 0. (6.34)

The requirement of the nullity of the zeroth-order term leads to

2f(x) = λφ′(x) + φ2(x)− f(0). (6.35)

Inserting here the expansion (6.33) with y = x, performing the derivative and at the end taking
the x→ 0 limit, we obtain f(0) = −λa (we shall apply this procedure also below). The nullity
of the first-order term in Eq. (6.34),

f ′(x) =
λ

2
φ′′(x) + φ′(x)φ(x), (6.36)

is ensured by the previous relation (6.35). The differentiation of this equation leads to

f ′′(x) =
λ

2
φ′′′(x) + φ′′(x)φ(x) + [φ′(x)]2 , (6.37)
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from which we find that f ′′(0) = −5λb+a2. Setting to zero the second-order term in Eq. (6.34),
after some simple algebra we arrive at

λφ′′′(x) + 6 [φ′(x) + a]2 − 30λb = 0. (6.38)

This equation can be multiplied by φ′′(x) and then integrated, with the result

λ

2
[φ′′(x)]2 + 2 [φ′(x) + a]3 − 30λb [φ′(x) + a] = −70λ2c. (6.39)

The most general solution of this differential equation is

φ′(x) + a = −λ℘(x, q), (6.40)

where ℘(x, q) is the Weierstrass elliptic function (see Appendix B) with the complex periods 2ω1

and 2ω2, and the “nome”

q = exp
[
iπ
(
ω1

ω2

)]
, Im

(
ω1

ω2

)
6= 0. (6.41)

The periods are related to our constants as follows

b

λ
=
∑
m,n

′ 1
(mω1 + nω2)4

,
c

λ
=
∑
m,n

′ 1
(mω1 + nω2)6

, (6.42)

where the symbol
∑′

m,n means the summation over all combinations of integersm and n, except
for m = n = 0. There exists another Weierstrass elliptic function ζ(x, q), such that

∂ζ(x, q)
∂x

= −℘(x, q). (6.43)

It follows from Eq. (6.40) that

φ(x) = −ax+ λζ(x, q). (6.44)

For |q| < 1, ζ(x, q) can be represented as the series

ζ(x, q) =
ζ(ω1, q)
ω1

x+
π

2ω1
cot
(
πx

2ω1

)
+

2π
ω1

sin
(
πx

ω1

) ∞∑
n=1

q2n

1− 2q2n cos(πx/ω1) + q4n
. (6.45)

The requirement of the periodicity φ(x+L) = φ(x) leads to λζ(ω1, q)/ω1−a = 0 and 2ω1 = L.
Thus, the most general solution of the functional equation (6.30) for φ(x) reads

φ(x)
λ

=
π

L
cot
(πx
L

)
+

4π
L

sin
(

2πx
L

) ∞∑
n=1

q2n

1− 2q2n cos(2πx/L) + q4n
. (6.46)

Based on the formula (6.27), the building element ψ(x) of the ground-state wavefunction takes
the form

ψ(x) = ϑλ
1

(πx
L
, q
)
, (6.47)



Particles with 1/x2 interactions 869

where ϑ1 is a Jacobi theta function.
In what follows, we shall restrict ourselves to the trigonometric case when the nome q → 0,

φ(x) = λ
π

L
cot
(πx
L

)
, ψ(x) = sinλ

(πx
L

)
. (6.48)

Note that the λ = 1 case corresponds to free fermions or hard-core bosons. It is easy to verify
that the functional equation (6.30) is indeed satisfied and that

f(x) = −1
3

(
πλ

L

)2

. (6.49)

The pair potential, which turns out to be the expected periodic version of the 1/x2 potential, and
the ground-state energy can be obtained from Eq. (6.31),

v(x) =
2λ(λ− 1)π2

L2 sin2(πx/L)
, E0 =

1
3

(
πλ

L

)2

N(N2 − 1). (6.50)

The division of the constant terms between the potential andE0 is determined by the requirement
that for an infinite line v(x) → 0 as x→∞.

6.3 Excited states for the trigonometric case

For the Hamiltonian (6.25) with the trigonometric potential (6.50), we shall look for the excited
states Ψ in the ansatz form

Ψ(x1, . . . , xN ) = Ψ0(x1, . . . , xN )Ψ̃(x1, . . . , xN ), (6.51)

i.e. we build the elementary excitations on the “background” of the ground-state wavefunction
Ψ0 of the product form (6.24). Let us consider the Schrödinger equation for the excited states,
HΨ = EΨ, and divide it by the nodeless Ψ0. In this way, we obtain the Schrödinger equation
obeyed by Ψ̃:

HΨ̃ = (E − E0)Ψ̃, (6.52)

where H is defined as a similarity transformation of the Hamiltonian H ,

Ψ−1
0 HΨ0 = H+ E0. (6.53)

For the ground-state wavefunction of the product form (6.24), the Hamiltonian H is expressible
as H = H1 +H2 with

H1 = −
N∑

j=1

∂2

∂x2
j

, H2 = −2
N∑

j>k=1

φ(xj − xk)
(

∂

∂xj
− ∂

∂xk

)
. (6.54)

Since the transformation (6.53) is not unitary,H is not hermitian, however, the energies in (6.52)
are real.
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Let us consider particles with Bose statistics and express H in a basis of (unnormalized) free
boson eigenstates

Ψb(x|n) =
∑

P∈SN

exp

2πi
L

N∑
j=1

nPjxj

 . (6.55)

Here, n = (n1, n2, . . . , nN ) represents a set of N ordered integers n1 ≤ n2 ≤ · · · ≤ nN and the
first summation runs over N ! permutations of numbers (1, 2, . . . , N).

The first term of H, the free boson Hamiltonian H1, is diagonal in the chosen basis,

H1Ψb(x|n) = E1(n)Ψb(x|n), E1(n) =
(

2π
L

)2 N∑
j=1

n2
j . (6.56)

The second term of H, H2, acts on Ψb(x|n) as follows

H2Ψb(x|n) = −2πλ
L

[
cot
(
π
x2 − x1

L

)(
∂

∂x2
− ∂

∂x1

)
+ all pairs

]
Ψb(x|n). (6.57)

Let us analyze in detail the result of the action of the particle (1, 2) term on Ψb(x|n),

− 2πλ
L

cot
(
π
x2 − x1

L

)∑
P

2πi
L

(nP2 − nP1) exp

2πi
L

N∑
j=1

nPjxj

 . (6.58)

For each permutation P = (P1, P2, P3, . . . , PN), there exists a conjugate one P1,2 which
differs from P only by exchange of P1 and P2 elements, P1,2 = (P2, P1, P3, . . . , PN). We
group such pairs of permutations, introduce the notation ϕ = 2πx/L and rewrite the expression
(6.58) as∑

pairs of P

(
2π
L

)2

λ(nP1 − nP2)
eiϕ1 + eiϕ2

eiϕ1 − eiϕ2

[
ei(nP1ϕ1+nP2ϕ2)

−ei(nP2ϕ1+nP1ϕ2)
]
exp

i
N∑

j=3

nPjϕj

 . (6.59)

If nP1 = nP2, the contribution is equal to zero. Assuming that nP1 > nP2 (the case nP1 < nP2

can be treated analogously), we have

eiϕ1 + eiϕ2

eiϕ1 − eiϕ2

[
ei(nP1ϕ1+nP2ϕ2) − ei(nP2ϕ1+nP1ϕ2)

]
= ei(nP1ϕ1+nP2ϕ2) + 2ei(nP1−1)ϕ1ei(nP2+1)ϕ2 + · · · (6.60)
· · ·+ 2ei(nP2+1)ϕ1ei(nP1−1)ϕ2 + ei(nP2ϕ1+nP1ϕ2).

Because of the presence of the first and last terms in this equation we see that H2 has a diagonal
element

E2(n) =
(

2π
L

)2

λ

N∑
j>k=1

|nj − nk|. (6.61)
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The remaining elements are off-diagonal.
The general structure of off-diagonal elements of H2 is evident from the expansion (6.60).

The nonzero off-diagonal elements of H2 connect the original state n = (n1, n2, . . . , nN ) with
any other state n′ = (n′1, n

′
2, . . . , n

′
N ) provided that n′ can be reached from n by squeezing

together a single pair (nj , nk). More precisely, assuming nj < nk, there exists a pair n′r ≤ n′s
such that n′r = nj + δ, n′s = nk − δ with 0 < δ ≤ (nk − nj)/2; all other N − 2 elements of n
and n′ are identical. If n connects to n′ then n′ cannot connect to n, and we are allowed to write
n → n′. If there exists a sequence n → n′1 → n′2 → · · · → n′ then we write n > n′; note
that if n → n′ then also n > n′. The operator H2 can be represented in the invariant Hilbert
subspace of Ψb(n) and all Ψb(n′) with n′ < n as the triangular matrix

H2(n)Ψb(n′) = E2(n)δnn′Ψb(n) +
∑

n′′<n′

[H2]n′n′′ Ψb(n′′). (6.62)

The eigenvalues of a triangular matrix are the diagonal elements. We therefore conclude that

E(n)− E0 = E1(n) + E2(n)

=
(

2π
L

)2
 N∑

j=1

n2
j + λ

N∑
j>k=1

|nj − nk|

 . (6.63)

For the ordering of integers n1 ≤ n2 ≤ · · · ≤ nN , after some algebra the energy E(n) can
be expressed as

E(n) =
N∑

j=1

k2
j , kj =

2π
L

[
nj −

λ

2
(N + 1− 2j)

]
. (6.64)

The integers {nj} are related to the usual quantum numbers {Ij} via the relation (2.129). Thus,
the ordered momenta k1 < k2 < · · · < kN are given by

kjL = 2π
[
Ij −

(λ− 1)
2

(N + 1− 2j)
]

= 2πIj + π(λ− 1)
N∑

l=1
(l 6=j)

sign(kj − kl). (6.65)

We recognize the Bethe equations with the phase shift θ(k) = π(λ− 1)sign(k). The same phase
shift was derived for the 1/x2 potential within framework of the asymptotic two-body scattering,
see formula (6.23).

6.4 Ground-state energy and zero-temperature thermodynamics

The functional Eq. (3.38) for the probability distribution ρ(k), taken with θ′(k) = 2π(λ−1)δ(k),
reads

ρ(k) =
1
2π

− (λ− 1)
∫ q

−q

dk′ δ(k − k′)ρ(k′). (6.66)
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The δ-function is outside of the integration range for |k| > q, so that

ρ(k) =
{

1/(2πλ), |k| ≤ q
1/(2π), |k| > q.

(6.67)

The normalization condition for the particle density implies

q = πλn. (6.68)

The ground-state energy per unit length is given by

e0 =
∫ q

−q

dk k2ρ(k) =
1
3
(πλ)2n3. (6.69)

This result reproduces the thermodynamic limit of the previous one (6.50).
The chemical potential is calculated as follows

µ =
∂e0
∂n

= (πλn)2 (= q2). (6.70)

The distribution ε(k) satisfies the integral equation

ε(k) = k2 − µ− (λ− 1)
∫ q

−q

dk′ δ(k − k′)ε(k′). (6.71)

The solution of this equation

ε(k) =
{

(k2 − q2)/λ, |k| < q
k2 − q2, |k| > q.

(6.72)

fulfills the condition ε(±q) = 0.
The group velocity of excitations, which is continuous function of k, and the sound velocity

read

v(k) = 2k, vs = 2q = 2πλn. (6.73)

To obtain dispersion relations for the elementary excitations, we first evaluate the function
f(k), for simplicity with k > 0,

f(k) =
∫ k

0

dk′ ρ(k′) =
{

k/(2πλ), 0 ≤ k ≤ q
q/(2πλ) + (k − q)/(2π), k > q.

(6.74)

For particle excitations with kp > q, we have

∆E(kp) = k2
p − q2, K(kp) = kp − q. (6.75)

Eliminating kp from these relation, we obtain the dispersion relation for particle excitations

∆Ep(K) = K2 + 2πλn|K|, −∞ < K <∞. (6.76)

Similarly, for hole excitations with 0 < kh < q, we have

∆E(kh) =
1
λ

(q2 − k2
h), K(kh) =

1
λ

(q − kh), (6.77)
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which gives the dispersion relation for hole excitations

∆Eh(K) = λ(2πn|K| −K2), −πn < K < πn. (6.78)

The pressure is calculated as follows

P = µn− e0 =
2
3
(πλ)2n3. (6.79)

The same result is obtained by substituting ε(k) (6.72) in the formula (3.25) for the pressure.

6.5 Finite-temperature thermodynamics

Considering θ′(k) = 2π(λ − 1)δ(k) in the integral Eq. (4.24), the distribution function ε(k) is
determined by

k2 − µ = ε(k)− λ− 1
β

ln
[
1 + e−βε(k)

]
(6.80)

or, equivalently, by

e−βε(k)
[
1 + e−βε(k)

]λ−1

= ze−βk2
. (6.81)

The temperature serves only as a scale factor in this equation. The scaling function w(k, z) =
exp[−βε(k/

√
β)] satisfies the following equation

w(k, z)[1 + w(k, z)]λ−1 = ze−k2
. (6.82)

The expression for the pressure (4.31) takes the scaling form

P =
1

β3/2
p(z, λ), p(z, λ) =

1
2π

∫ ∞

−∞
dk ln[1 + w(k, z)]. (6.83)

The formula for the equilibrium distribution ρeq follows from Eq. (4.25):

ρeq(k) =
1
2π

e−βε(k)

1 + λe−βε(k)
. (6.84)

Consequently,

n =
1

2πβ1/2

∫ ∞

−∞
dk

w(k, z)
1 + λw(k, z)

, (6.85)

e =
1

2πβ3/2

∫ ∞

−∞
dk k2 w(k, z)

1 + λw(k, z)
. (6.86)

Performing in (6.83) an integration by parts and using the relation

∂w

∂k
= −2k

w(1 + w)
1 + λw

(6.87)

obtained from the definition (6.82) of w, we get the Bernoulli equation

P = 2e, (6.88)
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valid for all temperatures and fugacities.
The transcendental equation (6.82) cannot be explicitly inverted, except for special values of

λ = 0, 1, 1/2, 2. The inversion of (6.82) can be accomplished for general λ in the fugacity series
format [25], with the following result for p(z, λ),

p(z, λ) =
1√
2π

∞∑
j=1

(−1)j+1Γ(jλ)√
jj!Γ[j(λ− 1) + 1]

zj . (6.89)
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QUANTUM INVERSE SCATTERING METHOD

7 QISM: Yang-Baxter equation

We shall now pass to systems of identical particles possessing internal degrees of freedom, some-
times called “colours”, σ = 1, . . . , l. For example, in the case of an electron σ denotes one of two
possible spin states {↑, ↓}. Before solving explicitly some of the models with coloured particles,
we describe the method based on the concept of the scattering S-matrix, known as the algebraic
Bethe ansatz or the Quantum Inverse Scattering Method (QISM). Although QISM looks a bit
abstract, it represents a powerful mean for studying integrable models. I recommend the reader
to read carefully this and the next two sections because a deep understanding of the QISM will
enable him to deal with complicated physical systems on universal ground.

7.1 Generalized Bethe ansatz

In section 2, we studied one-dimensional systems of spinless particles with δ-function interac-
tions. In both fermion and boson cases, the wavefunction in the fundamental ordering sector I:
x1 < x2 < · · · < xN was expressible as the superposition of plane waves

ψI(x1, x2, . . . , xN ) =
∑

P∈SN

sign(P )A(kP1, kP2, . . . , kPN ) exp

i
N∑

j=1

kPjxj

 , (7.1)

where the permutations P distribute the given set of wave numbers (k1, k2, . . . , kN ) among the
particle coordinates. The system ofN coloured particles on a line is characterized by the couples
of data (σ1, x1), (σ2, x2), . . . , (σN , xN ). Like in the case of spinless particles, one can define the
ordering sector of particle coordinates Q according to the prescription (2.5). If the wavefunction
of coloured particles in the ordering sector I is a superposition of plane waves, its most general
form reads

ψI(σ1, x1;σ2, x2; . . . ;σN , xN ) =
∑

P∈SN

sign(P )Aσ1σ2...σN
(kP1, kP2, . . . , kPN )

× exp

i
N∑

j=1

kPjxj

 . (7.2)

Here, the A-coefficients depend, besides the permuted wave numbers, on the ordered sequence
of particle states σ1, σ2, . . . , σN . The formula (7.2) reduces to the previous one (7.1) in the case
of spinless one-state particles since then the subscripts σ1σ2 . . . σN ≡ 11 . . . 1 are superfluous
and can be omitted.

In the ordering sector defined by the permutation Q, the wavefunction ψQ is expressible in
terms of ψI as follows

ψQ(σ1, x1;σ2, x2; . . . ;σN , xN ) = (±1)ηQψI(σQ1, xQ1;σQ2, xQ2; . . . ;σQN , xQN ), (7.3)

where the +/− sign corresponds to Boson/Fermi statistics. We respect in this formula the rule
that an exchange of particle coordinates must be accompanied by the corresponding exchange of
particle states.
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Eqs. (7.2) and (7.3) imply the form of the generalized Bethe ansatz. For fermions, in the
ordering Q-sector we have

ψQ(σ1, x1;σ2, x2; . . . ;σN , xN ) =
∑

P∈SN

[Q,P ]f exp

i
N∑

j=1

kPjxQj

 , (7.4)

where

[Q,P ]f = sign(Q)sign(P )AσQ1σQ2...σQN
(kP1, kP2, . . . , kPN ). (7.5)

For bosons, we have

ψQ(σ1, x1;σ2, x2; . . . ;σN , xN ) =
∑

P∈SN

[Q,P ]b exp

i
N∑

j=1

kPjxQj

 , (7.6)

where

[Q,P ]b = sign(P )AσQ1σQ2...σQN
(kP1, kP2, . . . , kPN ). (7.7)

In both fermion and boson cases, the A-amplitudes in different (P,Q) permutation sectors
are related via the scattering matrix. Namely, for N = 2 particles we have

Aσjσi
(kv, ku) =

∑
σ′

i
σ′

j

S
σiσj

σ′
i
σ′

j
(ku, kv)Aσ′

i
σ′

j
(ku, kv), (7.8)

where (i, j), (u, v) ∈ {(12); (21)} and S denotes the two-particle scattering matrix of dimension
l2. The scattering is elastic, i.e. not only the total momentum but also both individual momenta
are conserved. Note however that particles can change their σ-colours in the scattering process.
The two-particle S-matrix is usually represented graphically as follows

Sσ1σ2
σ′1σ′2

(k1, k2) =
�

�
��@

@
@@σ2

σ1

σ′1

σ′2

. (7.9)

The following consistency conditions for the S-matrix are required:

• Normalization: Setting ku = kv = k in (7.8) yields

S(k, k) = P, Pσ1σ2
σ′1σ′2

= δ(σ1, σ
′
2)δ(σ2, σ

′
1). (7.10)

Here, P is the transposition or permutation operator, such that P2 = I where I is the unity
matrix of dimension l2.

• Unitarity: Applying twice the operation (7.8) implies

S(k1, k2)S(k2, k1) = I. (7.11)
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• We shall also assume the T and P invariance of S(k1, k2):

Sσ1σ2
σ′1σ′2

(k1, k2) = S
σ′1σ′2
σ1σ2 (k1, k2) = Sσ2σ1

σ′2σ′1
(k1, k2). (7.12)

For an arbitrary number of particles N , the two-particle S-matrix relates the A-amplitudes in
the permutation sectors (Q,P ) and (Q̃, P̃ ) which differ from one another only by the transposi-
tion of a pair of nearest neighbors, i.e. Q̃ = Qj,j+1 and P̃ = Pj,j+1 (j = 1, 2, . . . , N − 1). This
can be expressed schematically as follows

A...σjσi...(. . . kv, ku . . .) =
∑
σ′

i
σ′

j

S
σiσj

σ′
i
σ′

j
(ku, kv)A...σ′

i
σ′

j
...(. . . ku, kv . . .). (7.13)

Applying successively the nearest-neighbor transposition rule, one can convert an arbitrary am-
plitude AσQ1σQ2...σQN

(kP1, kP2, . . . , kPN ) to the one with Q = I . In this way, the scattering of
N particles factorizes into a product of two-particle scatterings which is the fundamental prop-
erty of integrable systems.

7.2 Derivation of the Yang-Baxter equation

Possible forms of the S-matrix are very limited for integrable systems. There exists a general
constraint among the elements of the S-matrix which can be deduced from the scattering of three
particles.

Let us study the scattering process of three particles which starts from the initial state x3 ≤
x2 ≤ x1, corresponding toQ = (3, 2, 1), and ends in the final state x1 ≤ x2 ≤ x3, corresponding
to Q = I ≡ (1, 2, 3). There are two possible realizations of this three-particle scattering in terms
of the two-particle scatterings:

(a) (3, 2, 1) → (3, 1, 2) → (1, 3, 2) → (1, 2, 3);

(b) (3, 2, 1) → (2, 3, 1) → (2, 1, 3) → (1, 2, 3).
Using the prescription (7.13), the (a) sequence of two-particle scatterings is expressible as

Aσ3σ2σ1(k3, k2, k1) =
∑
σ′1σ′2

Sσ1σ2
σ′1σ′2

(k1, k2)Aσ3σ′1σ′2
(k3, k1, k2)︸ ︷︷ ︸∑

σ′3σ′′1

S
σ′1σ3

σ′′1 σ′3
(k1, k3)Aσ′′1 σ′3σ′2

(k1, k3, k2)︸ ︷︷ ︸∑
σ′′2 σ′′3

S
σ′2σ′3
σ′′2 σ′′3

(k2, k3)Aσ′′1 σ′′2 σ′′3
(k1, k2, k3), (7.14)

while the (b) sequence is identified with

Aσ3σ2σ1(k3, k2, k1) =
∑
σ′2σ′3

Sσ2σ3
σ′2σ′3

(k2, k3)Aσ′2σ′3σ1(k2, k3, k1)︸ ︷︷ ︸∑
σ′1σ′′3

S
σ1σ′3
σ′1σ′′3

(k1, k3)Aσ′2σ′1σ′′3
(k2, k1, k3)︸ ︷︷ ︸∑

σ′′1 σ′′2

S
σ′1σ′2
σ′′1 σ′′2

(k1, k2)Aσ′′1 σ′′2 σ′′3
(k1, k2, k3). (7.15)
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The final result must be the same for both sequences of two-particle scatterings, which implies
the following constraint for the elements of the S-matrix:∑

σ′1σ′2σ′3

Sσ1σ2
σ′1σ′2

(k1, k2)S
σ′1σ3

σ′′1 σ′3
(k1, k3)S

σ′2σ′3
σ′′2 σ′′3

(k2, k3)

=
∑

σ′1σ′2σ′3

Sσ2σ3
σ′2σ′3

(k2, k3)S
σ1σ′3
σ′1σ′′3

(k1, k3)S
σ′1σ′2
σ′′1 σ′′2

(k1, k2). (7.16)

This overcomplete set amounts to l6 homogeneous equations for l4 unknowns scattering-matrix
elements. Eq. (7.16) is the Yang-Baxter equation (YBE). It can be represented graphically as
follows

�
�

�
�@
@

@
@

σ1

σ2 σ3
σ′1

σ′2 σ′3
σ′′1

σ′′2σ′′3

=

�
�

�
�@

@
@

@

σ1

σ2 σ3

σ′1

σ′2σ′3

σ′′1

σ′′2σ′′3

. (7.17)

The importance of the YBE as the integrability condition consists in the fact that its validity
ensures the equivalence of all possible multiparticle scattering processes, independently of the
order in which the two-particle scatterings are performed. This is due to the fact that every
multiparticle scattering can be decomposed onto elementary three-particle scatterings.

There exist particle systems which scattering S-matrix depends only on the difference of
quasi-momenta, S(ku, kv) ≡ S(ku − kv). If it is not so, there always exists a parametrization of
wave numbers in terms of the spectral parameters (rapidities) λ, k = k(λ), such that S(ku, kv) =
S(λu − λv). In terms of the spectral parameters, the YBE (7.16) can be written as∑

σ′1σ′2σ′3

Sσ1σ2
σ′1σ′2

(λ− µ)Sσ′1σ3

σ′′1 σ′3
(λ)Sσ′2σ′3

σ′′2 σ′′3
(µ) =

∑
σ′1σ′2σ′3

Sσ2σ3
σ′2σ′3

(µ)Sσ1σ′3
σ′1σ′′3

(λ)Sσ′1σ′2
σ′′1 σ′′2

(λ− µ). (7.18)

We would like emphasize that the S-matrices in this equation differ from each other only by the
value of the spectral parameter, all other parametrizations by some variables must be taken at the
same point in the parametric space.

Let V be an l-dimensional complex vector space. Upon taking a basis {eσ, σ = 1, 2, . . . , l}
of V and writing

S(λ) (eσ1 ⊗ eσ2) =
∑
σ′1σ′2

Sσ1σ2
σ′1σ′2

(λ)
(
eσ′1

⊗ eσ′2

)
, (7.19)

the YBE (7.18) can be reexpressed as a three-site equation

S12(λ− µ)S13(λ)S23(µ) = S23(µ)S13(λ)S12(λ− µ). (7.20)

Here, Sij signifies the matrix on V1 ⊗ V2 ⊗ V3, acting as S(λ) on the ith and jth components
and as identity operator on the remaining component, e.g. S23(λ) = I ⊗ S(λ). The YBE is
completed by the initial condition

S(0) = P (7.21)
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having its origin in the normalization (7.10). Under this condition, the YBE (7.20) is identically
satisfied for λ = µ = 0 since for permutation operators it holds

P12P13P23 = P23P13P12 = P13. (7.22)

In terms of the rapidities, the unitarity condition (7.11) reads

S(λ)S(−λ) = I. (7.23)

The conditions (7.21) and (7.23) have to be satisfied by the scattering matrices of true physical
systems. When we look for the mathematical solutions of the YBE (7.18), these are determined
by this equation up to a multiplication function ρ(λ). Then, the initial condition (7.21) will be
equivalent to

S(0) = ρ(0)P (7.24)

and the unitarity condition (7.23) will be equivalent to

S(λ)S(−λ) = ρ(λ)ρ(−λ)I. (7.25)

It is useful to introduce a permuted R matrix as follows2

R(λ) = PS(λ); R(0) = I. (7.26)

The permutation operator P maps (eσ1 ⊗ eσ2) → (eσ2 ⊗ eσ1). Thus,

R(λ) (eσ1 ⊗ eσ2) =
∑
σ′1σ′2

Sσ1σ2
σ′1σ′2

(λ)
(
eσ′2

⊗ eσ′1

)
(7.27)

and the entries of the S and R matrices are related by Rσ1σ2
σ′1σ′2

= Sσ1σ2
σ′2σ′1

. The YBE (7.18) can be
rewritten in terms of the R-matrix as

(I ⊗R(λ− µ))(R(λ)⊗ I)(I ⊗R(µ)) = (R(µ)⊗ I)(I ⊗R(λ))(R(λ− µ)⊗ I). (7.28)

This form of the YBE is closely related to a braid group BN [67] which is a generalization of
the symmetric group SN of all permutations of N objects. Braid groups have many applications
in mathematics (knot theory [68]) and physics (statistical mechanics, two-dimensional conformal
field theory). An element of the braid group BN is a system of N strings joining two sets of N
points located on two parallel, top and bottom, lines. If n and n+1 are two consecutive points on
the top and bottom lines, the string starting at n on the top line can reach n+1 on the bottom line
by either under-crossing or over-crossing the string starting at n+ 1 on the top line and reaching
n on the bottom line; the corresponding elements of the braid group are denoted by σn and σ−1

n ,
respectively (see Fig. 7.1). The generators of the braid group σn (n = 1, 2, . . . , N − 1) satisfy
the relations

σnσn+1σn = σn+1σnσn+1,

σnσm = σmσn for |n−m| ≥ 2, (7.29)
σnσ

−1
n = σ−1

n σn = I.

2in some works the scattering matrix S is denoted as R and our R matrix is denoted as Ř
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σn =

1 2 n−1 n n+1 n+2 N

.... ....

aaa

aaa

=

1 2 n−1 n n+1 n+2 N

.... ....

aaa

aaa

σn
−1

Fig. 7.1. Generators of the braid group

These relations reflect an equivalent topology of the objects generated by the given sequences of
operations. In order to make a connection between the YBE (7.28) and the braid relations (7.29),
we introduce the operators Rn(λ) (n = 1, 2, . . . , N − 1) defined on the Hilbert space ⊗N

n=1Vn,
which act as R(λ) on the spaces Vn ⊗ Vn+1 and as the identity operator elsewhere:

Rn(λ) = I ⊗ · · · ⊗ I ⊗ R(λ)︸ ︷︷ ︸
(n,n+1)

⊗I ⊗ · · · ⊗ I. (7.30)

Equation (7.28) then becomes

Rn+1(λ− µ)Rn(λ)Rn+1(µ) = Rn(µ)Rn+1(λ)Rn(λ− µ), (7.31)

while

Rn(λ)Rm(µ) = Rm(µ)Rn(λ) for |n−m| ≥ 2. (7.32)

The identification of the YBE (7.31) and (7.32) with the braid group relations (7.29) is not yet
possible due to the presence of rapidity variables. This problem is avoided when we set λ = µ =
λ− µ. These equalities have two solutions:

• λ = µ = 0,

• λ = 2µ, |µ| = ∞.

The first solution is trivial since R(λ = 0) = I . The second solution, known as the braid limit,
is nontrivial. This solution depends on the particular form of the R-matrix and will be discussed
later.

For an arbitrary number of internal particle states l, the simplest S-matrix can be searched in
the ansatz form

S(λ) = b(λ)I + c(λ)P, (7.33)

where the functions b(λ) and c(λ) are as-yet unspecified. The initial condition (7.21) fixes the
λ = 0 values of these functions as follows

b(0) = 0, c(0) = 1. (7.34)

The unitarity condition (7.23) implies two constraints

b(λ)b(−λ) + c(λ)c(−λ) = 1, b(λ)c(−λ) + b(−λ)c(λ) = 0, (7.35)
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which take place for an arbitrary value of λ. Substituting the ansatz (7.33) into the YBE (7.20)
and using for the permutation operators the equalities (7.22) and

P12P13 = P13P23 = P23P12, P12P23 = P23P13 = P13P12, (7.36)

we obtain the only equation

b(λ)
c(λ)

=
b(µ)
c(µ)

+
b(λ− µ)
c(λ− µ)

. (7.37)

The solution of this equation is b(λ)/c(λ) = λ/α, where α is a complex constant which will
be set to unity for simplicity. With regard to the conditions (7.34) and (7.35), we arrive at
b(λ) = λ/

√
1− λ2 and c(λ) = 1/

√
1− λ2 (λ < 1), so that, with the proper normalization,

S(λ) =
1√

1− λ2
(P + λI) , R(λ) =

1√
1− λ2

(I + λP) . (7.38)

7.3 Lax operators, transfer and monodromy matrices

Let us now forget for a while about the origin of the “small” scattering S-matrix of dimension l2

and use it as the building element of “large” matrices, via tensor products formulated on a chain
of N sites n = 1, 2, . . . , N plus two auxiliary sites denoted as ξ and η (we could denote them
as 1 and 2, as is usual, but this might interfere with the notation of chain sites). In this part, we
introduce a hierarchy of the large matrices and derive for them relations which have the origin in
the YBE (7.18).

• Lax operators Lξn (n = 1, 2, . . . , N) are defined as follows

Lξn(λ)γξσ1...σN

γ′
ξ
σ′1...σ′

N
= S

γξσn

γ′
ξ
σ′n

(λ)δσ1σ′1
. . . δσn−1σ′

n−1
δσn+1σ′

n+1
. . . δσN σ′

N
, (7.39)

where the state indices (γξ, γ
′
ξ) of the auxiliary site ξ also run over l possible values 1, . . . , l.

Since each of the column {σ1, . . . , σN} or row {σ′1, . . . , σ′N} indices can take lN values, the
dimension of the Lax operator is lN+1. The YBE (7.18) for the S-matrix can be transcribed in
terms of Lax operators as follows

Sξη(λ− µ)Lξn(λ)Lηn(µ) = Lηn(µ)Lξn(λ)Sξη(λ− µ). (7.40)

Here, the ordinary products of Lmatrices are performed in the space ofN chain sites 1, 2, . . . , N
and two auxiliary ξ, η sites; like for example, the matrix element on the lhs has to be understood
in the following way:

[Sξη(λ− µ)Lξn(λ)Lηn(µ)]γξγη{σ1...σN}
γ′

ξ
γ′η{σ′1...σ′

N
} =

∑
γ′′

ξ
,γ′′η

∑
{σ′′1 ,...,σ′′

N
}

Sξη(λ− µ)γξγη

γ′′
ξ

γ′′η

×Lξn(λ)
γ′′ξ {σ1...σN}
γ′

ξ
{σ′′1 ...σ′′

N
}Lηn(µ)

γ′′η {σ
′′
1 ...σ′′N}

γ′η{σ′1...σ′
N
} . (7.41)

Eq. (7.40) can be understood as the standard matrix equation if we define Lξn(λ) = Ln(λ)⊗ I
and Lηn(µ) = I ⊗Ln(µ); since the elements of the matrix Ln are themselves operators, it holds
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that Lξn(λ)Lηn(µ) 6= Lηn(µ)Lξn(λ). Applying the permutation operator Pξη to both sides of
Eq. (7.41), in terms of the R matrix (7.26) we get

R(λ− µ) [Ln(λ)⊗ Ln(µ)] = [Ln(µ)⊗ Ln(λ)]R(λ− µ). (7.42)

Here, the ordinary and tensor products are considered in the (ξ, η) space; like for example, the
lhs of Eq. (7.42) has to be understood in the following way:∑

γ′′
ξ

,γ′′η

R(λ− µ)γξγη

γ′′
ξ

γ′′η
Ln(λ)

γ′′ξ
γ′

ξ
Ln(µ)

γ′′η
γ′η
, (7.43)

where the Lax operators have dimension lN in the auxiliary space of sites ξ or η.
• Monodromy matrix Tξ of dimension lN+1 is defined by

Tξ(λ)γξσ1...σN

γ′
ξ
σ′1...σ′

N
=

∑
γ2,...,γN

S
σ1γξ

σ′1γ2
(λ)Sσ2γ2

σ′2γ3
(λ) · · ·SσN γN

σ′
N

γ′
ξ

(λ). (7.44)

It can be represented graphically as follows

Tξ(λ)γξσ1...σN

γ′
ξ
σ′1...σ′

N
=

σ′1 σ′2 σ′N−1 σ′N

σ1 σ2 σN−1 σN

γξ γ′ξ
γ2 γ3 γN

. (7.45)

By an explicit evaluation of matrix products it can be shown that the monodromy matrix is
expressible as the following product of Lξn-matrices

Tξ(λ) = Lξ1(λ)Lξ2(λ) · · ·LξN (λ). (7.46)

There exists an analogy of the relation (7.40) for the monodromy matrix:

Sξη(λ− µ)Tξ(λ)Tη(µ) = Tη(µ)Tξ(λ)Sξη(λ− µ). (7.47)

To prove this relation, we take advantage of the fact that the matrices Lξn and Lηm commute for
n 6= m and write down

Tξ(λ)Tη(µ) = Lξ1(λ)Lη1(µ) · · ·LξN (λ)LηN (µ). (7.48)

Multiplying this equation from the left by Sξη(λ− µ) and then commuting successively Sξη by
using Eq. (7.40) leads to the relation (7.47). In terms of the R-matrix, Eq. (7.47) reads

R(λ− µ) [T (λ)⊗ T (µ)] = [T (µ)⊗ T (λ)]R(λ− µ). (7.49)

As before, the ordinary and tensor products are performed in the auxiliary (ξ, η) space.
• Transfer matrix T of dimension lN is defined as follows

T (λ)σ1...σN

σ′1...σ′
N

=
∑

γ1,...,γN

Sσ1γ1
σ′1γ2

(λ)Sσ2γ2
σ′2γ3

(λ) · · ·SσN γN

σ′
N

γ1
(λ). (7.50)



QISM: Yang-Baxter equation 883

The transfer matrix is obtained from the graphical representation of the monodromy matrix (7.45)
by connecting the free ends, i.e. setting γξ = γ′ξ ≡ γ1 and summing over γ1, creating in this way
the circle. Algebraically, we have

T (λ) = Trξ Tξ(λ), (7.51)

where Trξ · · · ≡
∑

γξ,γ′
ξ
δγξγ′

ξ
· · · denotes the trace in the auxiliary ξ-space.

We shall finally prove the commutation property of the set of transfer matrices {T (λ)} la-
beled by the spectral parameter λ. Multiplying both sides of Eq. (7.49) from the right by the
inverse matrix R−1(λ− µ) results in

R(λ− µ) [T (λ)⊗ T (µ)]R−1(λ− µ) = T (µ)⊗ T (λ). (7.52)

Let us trace both sides of this equation in the auxiliary ξ and η spaces. The lhs then reads∑
γξ,γη

∑
α,α′
β,β′

R(λ− µ)γξγη

αβ T (λ)α
α′T (µ)β

β′R
−1(λ− µ)α′β′

γξγη

=
∑
α,α′
β,β′

T (λ)α
α′T (µ)β

β′δαα′δββ′ = T (λ)T (µ), (7.53)

while the rhs is expressible as∑
γξ,γη

{T (µ)⊗ T (λ)}γξγη

γξγη
=
∑
γξ,γη

T (µ)γξ
γξT (λ)γη

γη
= T (µ)T (λ). (7.54)

We conclude that the commutator

[T (λ), T (µ)] = 0 for arbitrary λ and µ. (7.55)

The existence of an infinite family of commuting transfer matrices is of primary importance:
the eigenvectors of transfer matrices {T (λ)} are common, they do not depend on the spectral
parameter λ. This fact makes the explicit diagonalisation of transfer matrices possible.

7.4 Two-state solutions of the YBE

Let us restrict ourselves to the first nontrivial case l = 2 and search for possible forms of the S-
matrix which satisfy the YBE. It is convenient to consider the S-matrix in an ansatz form [9, 16]

S(λ) =
3∑

j=0

wj(λ)σj ⊗ σj , (7.56)

where σ0 = I , {σ1 ≡ σx, σ2 ≡ σy, σ3 ≡ σz} are Pauli matrices and the w-functions are as-yet
unspecified. The S-matrix can be explicitly written as

S(λ) =


a(λ) 0 0 d(λ)

0 b(λ) c(λ) 0
0 c(λ) b(λ) 0

d(λ) 0 0 a(λ)

 ,

a(λ) = w0(λ) + w3(λ)
b(λ) = w0(λ)− w3(λ)
c(λ) = w1(λ) + w2(λ)
d(λ) = w1(λ)− w2(λ)

. (7.57)
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The permutation operator P and the R-matrix read

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , R(λ) = PS(λ) =


a(λ) 0 0 d(λ)

0 c(λ) b(λ) 0
0 b(λ) c(λ) 0

d(λ) 0 0 a(λ)

 . (7.58)

In the auxiliary ξ-space, the Lax operator Lξn takes the form

Ln(λ) =
3∑

j=0

wj(λ)σj ⊗ σj
n

=
(
w0(λ)σ0

n + w3(λ)σ3
n w1(λ)σ1

n − iw2(λ)σ2
n

w1(λ)σ1
n + iw2(λ)σ2

n w0(λ)σ0
n − w3(λ)σ3

n

)
. (7.59)

Having the explicit forms of theR-matrix and the Lξn-matrix, we can look for the solution of
the YBE (7.42) in the auxiliary (ξ, η) space. Using the standard relations for the Pauli matrices
σzσ− = −σ−, σ−σz = σ−, we find that the YBE is satisfied provided that

wmw
′
lw
′′
j − wlw

′
mw

′′
k + wkw

′
jw

′′
l − wjw

′
kw

′′
m = 0 (7.60)

holds for an arbitrary permutation (j, k, l,m) of (0, 1, 2, 3). Here, we use the notation

wj ≡ wj(λ), w′j ≡ wj(µ), w′′j ≡ wj(λ− µ). (7.61)

In the most general case of unequal w-functions, there are six independent equations in the
system (7.60). Regarding them as linear homogeneous equations for the four unknowns w′′0 , w′′1 ,
w′′2 and w′′3 , they provide a nontrivial solution only if the equality

w2
j − w2

k

w2
l − w2

m

=
w′

2
j − w′

2
k

w′2l − w′2m
(7.62)

holds for an arbitrary permutation (j, k, l,m) of (0, 1, 2, 3). An obvious parametrization of the
condition (7.62) is

w2
j = p(u− uj),

w′
2
j = p′(u′ − uj),

j = 0, 1, 2, 3, (7.63)

where p, p′ are the normalization factors. When equalities (7.62) are satisfied, it follows from
(7.60) that also

w′′
2
j − w′′

2
k

w′′2l − w′′2m
=

w2
j − w2

k

w2
l − w2

m

(7.64)

must hold for all permutations (j, k, l,m). Thus,

w′′j = p′′(u′′ − uj). (7.65)

The normalization factors p, p′, p′′ are irrelevant due to the homogeneity of the system of
equations (7.60). For fixed constants u1, u2, u3, u4, each of the equations (7.60) can be regarded
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as the definition of u′′ as a function of u and u′. Differentiating with respect to u and u′, we
obtain

1
g(u)

∂u′′

∂u
+

1
g(u′)

∂u′′

∂u′
= 0, (7.66)

where

g(u) =
3∏

j=0

(u− uj)−1/2. (7.67)

When we introduce, instead of u and u′, the new variables v and v′ such that

dv
du

= g(u),
dv′

du′
= g(u′), (7.68)

Eq. (7.66) tells us that u′′ is a function of v − v′.
The differential equations (7.68) can be integrated explicitly using elliptic functions. The

Jacobi elliptic sn function with modulus l, y = sn(v, l), satisfies the differential equation(
dy
dv

)2

= (1− y2)(1− l2y2). (7.69)

If we set

sn2(v, l) =
(u− u0)(u1 − u3)
(u− u3)(u1 − u0)

, (7.70)

l2 =
(u1 − u0)(u2 − u3)
(u1 − u3)(u2 − u0)

, (7.71)

it is a simple task to verify that Eq. (7.69) reduces to the first equation in (7.68). Substituting the
expression for u,

u =
u0(u3 − u1)− u3(u0 − u1)sn2(v, l)

u3 − u1 − (u0 − u1)sn2(v, l)
(7.72)

into the representation of w2
j (7.63) and defining a parameter ζ by

sn2(ζ, l) =
u1 − u3

u1 − u0
, (7.73)

the w-functions turn out to be parametrized in terms of the Jacobi elliptic functions as follows

w0 : w1 : w2 : w3 =
sn(v, l)
sn(ζ, l)

:
cn(v, l)
cn(ζ, l)

:
dn(v, l)
dn(ζ, l)

: 1. (7.74)

The w′-functions can be obtained in the same way and their parametrization coincides, after the
substitution v → v′, with (7.74). To find the functions w′′, we substitute the expressions (7.74)
forwj and the analogous expressions forw′j in (7.60). Using the addition theorems for the Jacobi
elliptic functions, we find that

w′′0 : w′′1 : w′′2 : w′′3 =
sn(v − v′ + ζ, l)

sn(ζ, l)
:

cn(v − v′ + ζ, l)
cn(ζ, l)

:
dn(v − v′ + ζ, l)

dn(ζ, l)
: 1. (7.75)



886 Introduction to Integrable Many-Body Systems I

As is clear from the definition (7.61), the functions wj , w′j , w′′j correspond to the only function
taken at different values of the spectral parameter. To be consistent with Eqs. (7.74) and (7.75),
we must put v = λ+ ζ and v′ = µ+ ζ. Then,

w0(λ) : w1(λ) : w2(λ) : w3(λ) =
sn(λ+ ζ, l)

sn(ζ, l)
:

cn(λ+ ζ, l)
cn(ζ, l)

:
dn(λ+ ζ, l)

dn(ζ, l)
: 1. (7.76)

There exists another parametrization of the functions wj which is obtained from (7.76) ap-
plying first the imaginary Jacobi transformation (B.61) and then Landen’s transformation (B.62),
(B.63). This implies a transition from the modulus l to the modulus k = (1− l)/(1 + l). Intro-
ducing the new parameter η = i2ζ/(1+k) and taking iλ/(1+k) as λ, for the coefficients a, b, c,
d of the S-matrix representation (7.57) or the R-matrix representation (7.58), we get an elliptic
parametrization

a(λ) : b(λ) : c(λ) : d(λ) = sn(λ+ η, k) : sn(λ, k) : sn(η, k)
: k sn(λ, k) sn(η, k) sn(λ+ η, k). (7.77)

Using the formula

sn(u, k) =
1√
k

H(u)
Θ(u)

, (7.78)

where H(u) ≡ H(u, k) and Θ(u) ≡ Θ(u, k) are the Jacobi theta functions, we obtain from
(7.77) the representation

a(λ) = ρ(λ) Θ(η) Θ(λ)H(λ+ η),
b(λ) = ρ(λ) Θ(η)H(λ) Θ(λ+ η),
c(λ) = ρ(λ)H(η) Θ(λ) Θ(λ+ η), (7.79)
d(λ) = ρ(λ)H(η)H(λ)H(λ+ η).

The normalization function is determined by the initial condition (7.21) and the unitarity condi-
tion (7.23). In many problems, the normalization is not important and one simply puts ρ(λ) = 1.

The outlined procedure provides the sets of “elliptic” S-matrices, with identical values for
the modulus k and the parameter η, which satisfy the YBE (7.18). Let us now consider the case
when the modulus k tends to zero, so that the elliptic functions sn(u), cn(u) and dn(u) become
sin(u), cos(u) and 1, respectively. The parametrization (7.77) then becomes the trigonometric
one

a(λ) : b(λ) : c(λ) : d(λ) = sin(λ+ η) : sinλ : sin η : 0. (7.80)

Expressing from (7.57) the wj-functions in terms of a, b, c and d,

w0(λ) =
1
2

[a(λ) + b(λ)] ,

w1(λ) =
1
2

[c(λ) + d(λ)] ,

w2(λ) =
1
2

[c(λ)− d(λ)] , (7.81)

w3(λ) =
1
2

[a(λ)− b(λ)] ,
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we see that the parametrization (7.80) describes the case with the symmetry w1(λ) = w2(λ).
Rescaling the rapidity λ by the parameter η and then going with η to zero, the trigonometric

parametrization (7.80) becomes of the rational type

a(λ) : b(λ) : c(λ) : d(λ) = λ+ 1 : λ : 1 : 0. (7.82)

With regard to (7.81), this parametrization, being the special case of l = 2 particle states of the
result (7.38), corresponds to the symmetry w1(λ) = w2(λ) = w3(λ).

7.5 Braid-group solution

We shall now construct the braid solution (7.31) in the braid limit |λ| → ∞ from the trigonomet-
ric R-matrix with elements (7.80). Substituting λ → −iλ and considering afterwards the limit
λ→ +∞, the elements (7.80) behave asymptotically as follows

a ∼ 1
2i

eλeiη, b ∼ 1
2i

eλ, c ∼ sin η. (7.83)

It is clear that the information contained in c is lost in the considered limit and the consequent
R-matrix would be too simple to describe the braid relations. This is why we diagonally change
the basis {eσ|σ = 1, 2} to ẽσ(λ) = fσ(λ)eσ . Recalling that

R (eσ1(λ1)⊗ eσ2(λ2)) =
∑
σ′1σ′2

Rσ1σ2
σ′2σ′1

(λ1 − λ2)
(
eσ′2

(λ2)⊗ eσ′1
(λ1)

)
, (7.84)

the elements of the R-matrix in the new basis ẽσ are given by

R̃σ1σ2
σ′2σ′1

(λ1, λ2) =
fσ1(λ1)fσ2(λ2)
fσ′1

(λ1)fσ′2
(λ2)

Rσ1σ2
σ′2σ′1

(λ1 − λ2). (7.85)

In order to preserve the difference property of the R-matrix, the f -functions must be of the form
fσ(λ) = exp(ασλ) where α is a free parameter. Since R̃σ1σ2

σ′2σ′1
(λ1, λ2) 6= 0 only if σ1 + σ2 =

σ′1 + σ′2, the rescaled matrix may be written as

R̃σ1σ2
σ′2σ′1

(λ, α) = eαλ(σ1−σ′1)Rσ1σ2
σ′2σ′1

(λ). (7.86)

We shall consider a special value of the parameter α = 1. Let us define, in the braid +∞ limit,

R(+) ≡ 2ie−iη/2 lim
λ→+∞

e−λR̃(−iλ, α = 1). (7.87)

Denoting q = eiη, we obtain

R(+) =
1
√
q


q 0 0 0
0 0 1 0
0 1 (q − q−1) 0
0 0 0 q

 . (7.88)

Similarly, defining the braid −∞ limit

R(−) ≡ −2ieiη/2 lim
λ→−∞

eλR̃(−iλ, α = 1), (7.89)
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we obtain

R(−) =
√
q


q−1 0 0 0
0 −(q − q−1) 1 0
0 1 0 0
0 0 0 q−1

 . (7.90)

The R(+) and R(−) matrices are related by

R(+)R(−) = I =⇒ R(+) = (R(−))−1. (7.91)

These are the R-matrices which fulfill the YBE (7.31) and (7.32) without spectral parameters
and consequently provide a representation of the braid group.

The corresponding braid S-matrices S(+) = PR(+) and S(−) = PR(−) read

S(+) =
1
√
q


q 0 0 0
0 1 (q − q−1) 0
0 0 1 0
0 0 0 q

 , (7.92)

S(−) =
√
q


q−1 0 0 0
0 1 0 0
0 −(q − q−1) 1 0
0 0 0 q−1

 . (7.93)

With regard to the equality (7.91), they satisfy the relation

S(−) = P(S(+))−1P. (7.94)

It also holds that

S(+) − S(−) = (q − q−1)P. (7.95)

Both S(+) and S(−) fulfill the three-site YBE (7.20) without spectral parameters

S
(±)
12 S

(±)
13 S

(±)
23 = S

(±)
23 S

(±)
13 S

(±)
12 . (7.96)

In order to explain the role of the braid matrices S(+) and S(−), we shall analyze in detail
the trigonometric case of the scattering matrix of the form (7.57) with elements defined by Eq.
(7.80). Using the notation q = eiη, x = eiλ and an appropriate normalization, we have

a(x) = qx− q−1x−1,

b(x) = x− x−1,

c(x) = q − q−1, (7.97)
d(x) = 0.

The corresponding wj-functions are given by Eq. (7.81). With the aid of the obvious relation

eασz
n = (coshα)I + (sinhα)σz

n, (7.98)
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the Lax operator (7.59) is expressible in the auxiliary ξ-space as follows

Ln(x) =
(

(x
√
q)qS

z
n − (x

√
q)−1q−Sz

n (q − q−1)S−n
(q − q−1)S+

n (x
√
q)q−Sz

n − (x
√
q)−1qS

z
n

)
, (7.99)

where Sn = 1
2σn. It is a simple task to check that the YBE (7.40), written as

Sξη(x/y)Lξn(x)Lηn(y) = Lηn(y)Lξn(x)Sξη(x/y), (7.100)

is indeed fulfilled. Performing the similarity transformation

L̃ξn(x) = Q(x)Lξn(x)Q−1(x), (7.101)

S̃ξη(x/y) = [Q(x)⊗Q(y)]Sξη(x/y)[Q−1(x)⊗Q−1(y)] (7.102)

with the matrix

Q(x) =
(
x1/2 0
0 x−1/2

)
, (7.103)

the transformed S̃-matrix is expressible as

S̃(x) = (x
√
q)S(+) − (x

√
q)−1S(−), (7.104)

where S(+) and S(−) are the braid scattering matrices of interest, and the transformed Lax oper-
ator L̃ is given by

L̃(x) = (x
√
q)L(+) − (x

√
q)−1L(−) (7.105)

with

L(+) =
(
qSz

q−1/2(q − q−1)S−

0 q−Sz

)
, (7.106)

L(−) =
(

q−Sz

0
−q1/2(q − q−1)S+ qSz

)
. (7.107)

The simple x-dependence of S̃ and L̃ is appealing. The origin of the operators L(+) and L(−)

will be clearer later after the introduction of quantum groups, i.e. q-deformation of classical Lie
groups. From this point of view, the studied trigonometric case is a q-deformation of the rational
case (7.82) which results, under the scaling x = qλ, from the q → 1 limit.

7.6 Quantum groups

Investigations of integrable models within the framework of the QISM led to certain deforma-
tions of Lie algebras, called quantum groups, which play an important role in non-commutative
geometry [69]. Quantum groups possess a relatively complicated structure, explained e.g. in
monograph [55]. As an example, we shall indicate very briefly the structure of the quantum
deformation of the classical Lie group SL(2). This part has to be understood as a motivation
for mathematically oriented readers for a detailed study of quantum groups in the mentionned
monograph.
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7.6.1 Classical plane and the SL(2) group

It is instructive to describe the origin of the special linear group SL(2). A “representation space”
for SL(2) is a two-dimensional classical space of vectors

(
x
y

)
, where the coordinates x and y are

real variables which commute with one another,

xy = yx. (7.108)

In the space of functions f(x, y) =
∑

m,n fmnx
myn defined in the vector space, we consider

the partial derivative operations ∂x, ∂y which also commute with one another,

∂x∂y = ∂y∂x. (7.109)

The coordinates x, y and the derivatives ∂x, ∂y satisfy the standard commutation relations

[∂x, y] = 0, [∂y, x] = 0, [∂x, x] = 1, [∂y, y] = 1. (7.110)

To complete the scheme, we have to introduce an exterior differential d possessing the property

d2 = 0 (7.111)

and satisfying the Leibnitz rule

d(fg) = (df)g + f(dg). (7.112)

The exterior differential is formally expressible as

d = ξ∂x + η∂y, (7.113)

where ξ and η are the differentials of the basic variables,

ξ = dx, η = dy. (7.114)

The differentials commute with the coordinates and the derivatives,

[ξ, x] = [ξ, y] = [ξ, ∂x] = [ξ, ∂y] = 0,
[η, x] = [η, y] = [η, ∂x] = [η, ∂y] = 0. (7.115)

The condition (7.111) for d, considered in the form (7.113), then implies

ξη = −ηξ, ξ2 = 0, η2 = 0, (7.116)

i.e. the differentials ξ and η are the anticommuting (Grassmann) variables.
Let us consider a linear transformation(

x′

y′

)
= T

(
x
y

)
,

(
∂x′

∂y′

)
= (T t)−1

(
∂x

∂y

)
,

(
ξ′

η′

)
= T

(
ξ
η

)
, (7.117)

where the entries of the matrix

T =
(
a b
c d

)
(7.118)



QISM: Yang-Baxter equation 891

are real numbers and T t means the transpose of T . The transformation (7.117) leaves the exterior
differential (7.113) invariant,

d′ = (ξ′, η′)
(
∂x′

∂y′

)
= (ξ, η)T t(T t)−1

(
∂x

∂y

)
= (ξ, η)

(
∂x

∂y

)
= d. (7.119)

If the determinant

DetT = ad− bc = 1, (7.120)

it is easy to check that the new coordinates (x′, y′), derivatives (∂x′ , ∂y′) and differentials (ξ, η)
satisfy the differential calculus of the original variables, defined by Eqs. (7.108)-(7.110), (7.115),
(7.116). The transformation (7.117) with the matrix T (7.118) of the unity determinant constitute
an element of the Lie group SL(2) (more precisely, SL(2,R)). We say that the differential calculus
on the (x, y)-plane is covariant under this group.

The matrix T corresponds to the fundamental two-dimensional irreducible representation of
SL(2). Respecting the determinantal condition (7.120), it can be parametrized as follows

T =
(

eα eαβ
γeα e−α + γeαβ

)
, (7.121)

where α, β and γ are real numbers. The spin- 1
2 generators

Sz =
1
2

(
1 0
0 −1

)
, S+ =

(
0 1
0 0

)
, S− =

(
0 0
1 0

)
(7.122)

of the sl(2) algebra

[Sz, S±] = ±S±, [S+, S−] = 2Sz. (7.123)

satisfy the equalities

(S±)2 = 0, e2αSz

= (coshα)I + (sinhα)2Sz. (7.124)

The matrix T can be thus rewritten as

T = eγS−e2αSz

eβS+
. (7.125)

The higher-dimensional representations of the group SL(2) are obtained by considering higher-
dimensional generators of the sl(2) algebra, like the spin-1 ones (A.14), etc.

7.6.2 Quantum plane and the SLq(2) group

In analogy with the link between the classical and quantum mechanics, we introduce a two-
dimensional quantum space of vectors

(
x
y

)
with the coordinates x and y subjected to the commu-

tation property

xy = qyx. (7.126)

The “quantum deformation” parameter q is a nonzero complex number. Using (7.126), functions
of the non-commuting variables x and y can be always brought to the form of power series
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f(x, y) =
∑

m,n fmnx
myn. In analogy with the classical plane, we introduce the q-derivatives

(∂x, ∂y) and the q-differentials ξ = dx, η = dy. The exterior differential d = ξ∂x + η∂y

possesses the property d2 = 0 and satisfies the Leibnitz rule (7.112).
Similarly as in the case of the classical plane, the differential calculus on the quantum space

is defined by a set of quadratic relations among all fundamental objects: coordinates (x, y),
q-derivatives (∂x, ∂y) and q-differentials (ξ, η). These commutation relations were derived in
Ref. [70]. An essential requirement was the consistency of the quadratic algebra in the sense that
there are no independent higher-order relations. We do not go into details of the derivation and
only write down the final commutation relations between: q-derivatives

∂x∂y = q−1∂y∂x; (7.127)

q-differentials

ξη = −q−1ηξ, ξ2 = 0, η2 = 0; (7.128)

variables and q-derivatives

∂xx = 1 + q2x∂x + (q2 − 1)y∂y, ∂xy = qy∂x,
∂yx = qx∂y, ∂yy = 1 + q2y∂y; (7.129)

variables and q-differentials

xξ = q2ξx, xη = qηx+ (q2 − 1)ξy,
yξ = qξy, yη = q2ηy; (7.130)

q-derivatives and q-differentials

∂xξ = q−2ξ∂x, ∂xη = q−1η∂x,
∂yξ = q−1ξ∂y, ∂yη = q−2η∂y +

(
q−2 − 1

)
ξ∂x.

(7.131)

The differential calculus on the classical plane is restored in the classical limit q → 1.
We consider a linear transformation(

x′

y′

)
= T

(
x
y

)
,

(
∂x′

∂y′

)
= (T t)−1

(
∂x

∂y

)
,

(
ξ′

η′

)
= T

(
ξ
η

)
, (7.132)

where the entries of the quantum matrix

T =
(
a b
c d

)
(7.133)

commute with coordinates (x, y), q-derivatives (∂x, ∂y) and q-differentials (ξ, η), but not with
each other. Let us first require that after the transformation (7.132) the new coordinates (x′, y′)
also satisfy the commutation relation of type (7.126), the new q-derivatives (∂x′ , ∂y′) also sat-
isfy the commutation relation of type (7.127) and the new q-differentials (ξ′, η′) also satisfy the
commutation relations of type (7.128). The commutation properties of the entries of the matrix
T are then completely determined:

ab = qba, ac = qca, [a, d] = (q − q−1)bc,
bc = cb, bd = qdb, cd = qdc.

(7.134)
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These relations are consistent in the sense that they do not generate higher-order relations and
lead to a finitely generated quadratic algebra. The quantity

Detq T = ad− qbc = da− q−1bc (7.135)

commutes with all entries a, b, c, d of the quantum matrix T , and so it is a central element of the
algebra which defines the q-determinant of T . The differential calculus on the quantum plane
(7.126)-(7.131) is covariant under the transformation (7.132) if, in addition to the commutation
relations (7.134), it holds

Detq T = 1, (7.136)

where 1 is the unity operator. This is the quantum counterpart of the classical condition (7.120).
Under this constraint,

T−1 =
(

d −q−1b
−qc a

)
(7.137)

satisfies

TT−1 = T−1T =
(

1 0
0 1

)
. (7.138)

The transformation (7.132) with the quantum matrix T , whose elements satisfy the commu-
tation relations (7.134) and whose q-determinant (7.135) is the unity operator, constitute the
q-deformation of the Lie group SL(2), called the quantum group SLq(2).

For the future purposes, we recall the definition of Heine’s q-number

[n]q =
1− qn

1− q
(7.139)

and, for n = 1, 2, . . ., the q-number factorial

[n]q! = [n]q[n− 1]q[n− 2]q · · · [2]q[1]q, [0]q! = 1. (7.140)

We introduce also a q-generalization of the exponential function

ez
q =

∞∑
n=0

zn

[n]q!
. (7.141)

Notice that in the limit q → 1

[n]q → n, [n]q! → n!, ez
q → ez. (7.142)

We shall need another q-number

[[n]]q =
qn − q−n

q − q−1
(7.143)

which also becomes n in the limit q → 1, however, in contrast to Heine’s [n]q, it is symmetric
with respect to the interchange of q and q−1.
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To derive the generators of the group SLq(2) we parametrize the quantum T -matrix as follows

T =
(
a b
c d

)
=
(

eα eαβ
γeα e−α + γeαβ

)
. (7.144)

In order to ensure the matrix elements {a, b, c, d} to obey the commutation relations (7.134) and
the q-determinant (7.135) to be the unity operator, the noncommuting variables {α, β, γ} have
to satisfy a Lie algebra

[α, β] = (ln q)β, [α, γ] = (ln q)γ, [β, γ] = 0. (7.145)

In the derivation of this result we have used that since

eUV e−U = V + [U, v] +
1
2!

[U, [U, V ]] +
1
3!

[U, [U, [U, V ]]] + · · · , (7.146)

it holds

[U, V ] = zV ⇐⇒ eUV e−U = ezV. (7.147)

The generic form of the quantum matrix T is then given by

T = eγS−
q−2 e2αSz

eβS+

q2 , (7.148)

where the generators {Sz,S+,S−} obey the quantum algebra slq(2)

[Sz,S±] = ±S±, [S+,S−] =
q2S

z − q−2Sz

q − q−1
= [[2Sz]]q. (7.149)

The sl(2) algebra (7.123) of the generators {Sz, S+, S−} is recovered in the classical limit
q → 1.

The fundamental two-dimensional irreducible representation of the slq(2) algebra (7.149) is
provided by the spin- 1

2 generators (7.122) of the sl(2) algebra. This fact follows directly from
the relations

q±2Sz

=
q + q−1

2
I ± q − q−1

2
(2Sz) (7.150)

having their origin in Eq. (7.124). In this case, the quantities eγS−

q−2 and eβS+

q2 are the same as

eγS− and eβS+
, respectively, due to the equalities (S±)2 = 0. The three-dimensional irreducible

representation of the slq(2) algebra is provided by q-dependent generators

Sz =

 1 0 0
0 0 0
0 0 −1

 , S+ =
√

[[2]]q

 0 1/
√
q 0

0 0
√
q

0 0 0

 ,

S− =
√

[[2]]q

 0 0 0√
q 0 0

0 1/
√
q 0

 . (7.151)

The three-dimensional representation of the quantum T -matrix is obtained by substituting these
generators into the formula (7.148). For q = 1, the generators (7.151) become the ordinary
spin-1 matrices (A.14).
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7.6.3 Link between quantum groups and the YBE

We now establish the link between the structure of the quantum group SLq(2) and the solutions
(7.104) and (7.105) of the trigonometric YBE.

Let, for simplicity, the auxiliary sites ξ and η be denoted as 1 and 2, respectively. We define
the quantum matrices T1 and T2 acting separately on the two-dimensional Hilbert spaces 1 and
2:

T1 = T ⊗ 1 =
(
a b
c d

)
⊗
(

1 0
0 1

)
,

T2 = 1⊗ T =
(

1 0
0 1

)
⊗
(
a b
c d

)
.

(7.152)

From the explicit forms of T1 and T2 we find that

T1 = PT2P, (7.153)

where P is the 4 × 4 permutation matrix. Because the matrix elements {a, b, c, d} are non-
commutative, we have

T1T2 =


a2 ab ba b2

ac ad bc bd
ca cb da db
c2 cd dc d2

 6=


a2 ba ab b2

ca da cb db
ac bc ad bd
c2 dc cd d2

 = T2T1. (7.154)

It turns out that the relation between the products T1T2 and T2T1 is mediated by the braid S-
matrices S(+) (7.92) and S(−) (7.93),

T1T2S = ST2T1, S = S(+) or S(−). (7.155)

Note that the relation (7.153) implies

T1T2 = P(T2T1)P, (7.156)

so the validity of Eq. (7.155) for S(+) automatically ensures the validity of this equation for
S(−) = P(S(+))−1P . Eq. (7.155) is nothing but a compact way how to describe the commuta-
tion relations (7.134) for the entries of the quantum T -matrix.

In order to reflect the commutation relations (7.149) of the slq(2) algebra, we introduce the
Lax operators

L(+) =
(
qS

z

q−1/2(q − q−1)S−
0 q−S

z

)
(7.157)

L(−) =
(

q−S
z

0
−q1/2(q − q−1)S+ qS

z

)
. (7.158)

Note that L(±) are special realizations of the quantum T -matrices, i.e. their entries satisfy the
commutation relations (7.134). As before, we define the Lax operators acting separately on the
Hilbert spaces 1 and 2:

L
(±)
1 = L(±) ⊗ 1, L

(±)
2 = 1⊗ L(±). (7.159)
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They are related by the analogy of Eq. (7.153)

L
(±)
1 = PL(±)

2 P. (7.160)

Then, the slq(2) commutation relations (7.149) are equivalent to the equalities

SL
(±)
1 L

(±)
2 = L

(±)
2 L

(±)
1 S, S = S(+) or S(−) (7.161)

and

S(+)L
(+)
1 L

(−)
2 = L

(−)
2 L

(+)
1 S(+), S(−)L

(−)
1 L

(+)
2 = L

(+)
2 L

(−)
1 S(−). (7.162)

We used extensively the operator formula (7.147) in the derivation of these relations. Many other
equivalent relations can be derived by taking into account the equality (7.160) between L1 and
L2.

We are now ready to explain why the scattering matrix of the form (7.104) and the Lax
operator of the form (7.105) fulfill the YBE

S̃12(x/y)L̃1(x)L̃2(y) = L̃2(y)L̃1(x)S̃12(x/y). (7.163)

In each side of this equation, seven different powers of x and y occurs:

{x2, y2, x2y2, x2/y2, y2/x2, 1/(x2y2), 1}.

Setting to zero each of the polynomial coefficients, we obtain seven different equations which
relate S(±) and L(±). Besides the previous four equations (7.161) and two equations (7.162), we
obtain

S(+)L
(−)
1 L

(+)
2 + S(−)L

(+)
1 L

(−)
2 = L

(+)
2 L

(−)
1 S(+) + L

(−)
2 L

(+)
1 S(−). (7.164)

This equation is not independent, it can be derived from Eqs. (7.161) and (7.162) by using the
relation (7.160). We conclude that the formalism of slq(2) algebra is behind the structure of
trigonometric solutions of the YBE.

The worked-out example corresponds to the fundamental two-dimensional representation of
the slq(2) algebra. It is straightforward to construct solutions of the YBE which correspond to
three- and higher-dimensional representations of the slq(2) algebra.

There exists a systematic method of deformation of any classical Lie group. In specific cases,
the quantum deformation with several q-parameters is possible.
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8 QISM: Transfer matrix and its diagonalization

In the previous section, we have introduced the scattering matrix S which, if it describes an
integrable system of quantum particles with internal degrees of freedom, has to satisfy the YBE.
We afterwards forgot about the particle origin of the S-matrix and constructed from it, with
the aid of tensor products, large Lax, monodromy and transfer matrices. The fact that the S-
matrix fulfills the YBE leads to the commutation property (7.55) of an infinite set of transfer
matrices with an arbitrary value of the spectral parameter. In this part, we answer two important
questions. Firstly, we show that the transfer matrix describes real physical quantities of some
classical statistical systems formulated on a two-dimensional lattice and the associated quantum
systems on a chain. Secondly, we document how the commutation property of the set of transfer
matrix makes possible their diagonalization within the framework of the algebraic Bethe ansatz.

8.1 Vertex models on the square lattice

We consider a two-dimensional square lattice with M rows and N columns, with torus cyclic
boundary conditions row M +1 ≡ 1 and column N +1 ≡ 1. Each node (vertex) of the lattice is
joined with its 4 nearest neighbors by edges. In contrast to spin models where the spin variables
are localized at nodes of a lattice, local state variables in vertex models are defined on the edges
of a lattice. In two-state vertex models, the edge variable σ takes two values, say ±1. As an
alternative definition of the edge variable we may use an arrow: σ = +1 corresponds to the
arrow going to the right or upwards and σ = −1 corresponds to the arrow going to the left or
downwards. The configuration of four edge states {σ, σ′, γ, γ′} around a vertex is pictured in
Fig. 8.1; the variables σ, σ′ are attached to the vertical edges and γ, γ′ to the horizontal edges.
The model is called the general 16-vertex model since there are 24 = 16 distinct configurations
of edge states around a vertex. To each of the configuration of the edge states we ascribe an
energy εj (j = 1, 2, . . . , 16) and the corresponding Boltzmann weight

W σ
σ′(γ, γ

′) = exp(−βεj). (8.1)

γ γ’

σ

σ’
aaa

aaa

Fig. 8.1. The vertex configuration
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To a given configuration of arrows we associate a total energy, which is the sum of the energies
of all vertices

E =
16∑

j=1

Njεj , (8.2)

where Nj is the number of vertices with the energy εj . The statistical sum Z is defined as

Z =
∑
conf.

exp(−βE), (8.3)

where the sum goes over all possible configurations of states (arrows) on the lattice edges. The
quantity of interest is the thermodynamic limit of the free energy per node f , defined by

− βf = lim
M,N→∞

1
MN

lnZ. (8.4)

To express the statistical sum Z in a convenient way, we consider a lattice row drawn in Eq.
(7.45) with the cyclic boundary condition γξ = γ′ξ = γ1. The lower N edge arrows are fixed
in the state {σ1, σ2, . . . , σN}, the upper N edge arrows are fixed in the state {σ′1, σ′2, . . . , σ′N}.
The Boltzmann weight of the row is then the sum over γ-variables,

T σ1σ2...σN

σ′1σ′2...σ′
N

=
∑

γ1,...,γN

W σ1
σ′1

(γ1, γ2)W σ2
σ′2

(γ2, γ3) · · ·W σN

σ′
N

(γN , γ1). (8.5)

Comparing this expression with the definition of the transfer matrix

T (λ)σ1...σN

σ′1...σ′
N

=
∑

γ1,...,γN

Sσ1γ1
σ′1γ2

(λ)Sσ2γ2
σ′2γ3

(λ) · · ·SσN γN

σ′
N

γ1
(λ) (8.6)

we see that the two expressions coincide if we identify

W σ
σ′(γ, γ

′) = Sσγ
σ′γ′(λ). (8.7)

To obtain the statistical sum (8.3), we have to sum over all rows:

Z =
∑
{σ1}

· · ·
∑
{σM}

T
{σ1}
{σ2} T

{σ2}
{σ3} · · ·T

{σM}
{σ1} = TrTM , (8.8)

where the lattice periodicity was reflected via the identification {σM+1} = {σ1}. The transfer
matrix has the dimension 2N . Let us denote its eigenvalue of the greatest modulus by Λmax(N).
Inserting the representation (8.8) into the definition of the specific free energy (8.4), in the limit
M →∞ we get

− βf = lim
N→∞

1
N

ln |Λmax(N)|. (8.9)

We see that the problem of finding the free energy reduces to the problem of the diagonalization
of the transfer matrix.

We shall restrict ourselves to specific vertex models for which the number of arrows oriented
towards each lattice node is even, i.e. 0, 2 or 4. Eight admissible configurations of arrows
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1 2 3 4

5 6 7 8

aaa

aaa

Fig. 8.2. Admissible vertex configurations

around a vertex, which meet this rule, are presented in Fig. 8.2. The forbidden configurations
j = 9, . . . , 16 have infinite energies εj → ∞ (j = 9, . . . , 16). We assume that there are no
external fields, so the energies are invariant with respect to the simultaneous inversion of arrows
on the lattice:

ε1 = ε2 ≡ εa, ε3 = ε4 ≡ εb, ε5 = ε6 ≡ εc, ε7 = ε8 ≡ εd. (8.10)

We denote the corresponding Boltzmann weights as follows

a(λ) = e−βεa , b(λ) = e−βεb , c(λ) = e−βεc , d(λ) = e−βεd . (8.11)

According to (8.7), the S-matrix related to the vertex model then reads

S(λ) =


a(λ) 0 0 d(λ)

0 b(λ) c(λ) 0
0 c(λ) b(λ) 0

d(λ) 0 0 a(λ)

 . (8.12)

This is exactly the S-matrix (7.57) analyzed in the previous section.
If d(λ) 6= 0, the matrix elements admit the elliptic parametrization (7.79) under which two

transfer matrices with different values of the spectral parameter commute. The statistical lattice
system is called the 8-vertex model since there are eight admissible vertex configurations of edge
arrows.

If d(λ) = 0, i.e. the configurations 7 and 8 in Fig. 8.2 are forbidden (ε7 = ε8 → ∞), the
matrix elements admit the trigonometric parametrization (7.80). The statistical lattice system is
known as the 6-vertex model. This model satisfies the ice rule: if the oxygen atoms are located
at nodes of a lattice of coordination four, from the four hydrogen ions surrounding each oxygen
atom two are bounded to it (two arrows are oriented towards this atom) and two are bounded to
its neighbors (two arrows are oriented outwards this atom).
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8.2 Connection with quantum models on a chain

We now establish the relationship between the transfer matrix (8.6) and a quantum model formu-
lated on the chain of N sites. The elements of the S-matrix (8.12) are parametrized elliptically,
see Eq. (7.77). We shall not require the normalization of the S-matrix and simply set

a(λ) = sn(λ+ η), b(λ) = snλ, c(λ) = sn η, d(λ) = k snλ sn η sn(λ+ η), (8.13)

where the Jacobi elliptic function sn has the modulus k. We recall that, according to Eqs. (7.56)
and (7.57), the S-matrix of type (8.12) is expressible in terms of tensor products of the unity
2× 2 matrix σ0 and the Pauli matrices σx ≡ σ1, σy ≡ σ2, σz ≡ σ3 as follows

Sσ1σ2
σ′1σ′2

(λ) =
3∑

j=0

wj(λ)(σj)σ1
σ′1

(σj)σ2
σ′2
, (8.14)

where

w0 =
1
2
(a+ b), w1 =

1
2
(c+ d), w2 =

1
2
(c− d), w3 =

1
2
(a− b). (8.15)

At λ = 0, the S-matrix is proportional to the permutation matrix,

Sσ1σ2
σ′1σ′2

(λ = 0) = sn η δ(σ1, σ
′
2)δ(σ2, σ

′
1). (8.16)

At the same point, the transfer matrix (8.6) is, up to a prefactor, an operator of cyclic displace-
ment:

T (λ = 0)σ1...σN

σ′1...σ′
N

= (sn η)Nδ(σ1, σ
′
2)δ(σ2, σ

′
3) . . . δ(σN , σ

′
1). (8.17)

Thus,

T−1(λ = 0)σ1...σN

σ′1...σ′
N

= (sn η)−Nδ(σ1, σ
′
N )δ(σ2, σ

′
1) . . . δ(σN , σ

′
N−1). (8.18)

We first differentiate the expression for the transfer matrix (8.6) with respect to λ and then set
λ = 0, with the result{

d
dλ
T (λ)

}σ1...σN

σ′1...σ′
N

∣∣∣∣∣
λ=0

= (sn η)N−1
N∑

n=1

δ(σ1, σ
′
2) . . . δ(σn−2, σ

′
n−1)

× d
dλ
S

σnσn−1

σ′nσ′
n+1

(λ)
∣∣∣
λ=0

δ(σn+1, σ
′
n+2) . . . δ(σN , σ

′
1). (8.19)

For the logarithmic derivative

d
dλ

ln T (λ) = T−1(λ)
d
dλ
T (λ) (8.20)

taken at λ = 0 we thus obtain{
d
dλ

lnT (λ)
}σ1...σN

σ′1...σ′
N

∣∣∣∣∣
λ=0

=
1

sn η

N∑
n=1

δ(σ1, σ
′
1) . . . δ(σn−1, σ

′
n−1) (8.21)

× d
dλ
S

σn+1σn

σ′nσ′
n+1

(λ)
∣∣∣
λ=0

δ(σn+2, σ
′
n+2) . . . δ(σN , σ

′
N ).
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It is easy to verify that the representation of the S-matrix (8.14) can be transformed to an equiv-
alent one

Sσ1σ2
σ′1σ′2

(λ) =
3∑

j=0

pj(λ)(σj)σ1
σ′2

(σj)σ2
σ′1
, (8.22)

where

p0 =
1
2
(w0 + w1 + w2 + w3) =

1
2
(a+ c),

p1 =
1
2
(w0 + w1 − w2 − w3) =

1
2
(b+ d),

p2 =
1
2
(w0 − w1 + w2 − w3) =

1
2
(b− d), (8.23)

p3 =
1
2
(w0 − w1 − w2 + w3) =

1
2
(a− c).

Inserting this representation into the relation (8.21) and recalling from Appendix A the definition
of the spin operators on the chain, we finally arrive at

sn η
d
dλ

ln T (λ)
∣∣∣
λ=0

=
1
2

N∑
n=1

(
Jxσx

nσx
n+1 + Jyσy

nσy
n+1 + Jzσ

z
nσz

n+1

)
+
N

2
JzI, (8.24)

where

Jx = 2
∂p1

∂λ

∣∣∣
λ=0

= 1 + k sn2η,

Jy = 2
∂p2

∂λ

∣∣∣
λ=0

= 1− k sn2η, (8.25)

Jz = 2
∂p3

∂λ

∣∣∣
λ=0

= cn η dn η,

I is the 2N × 2N unity matrix and σ
(x,y,z)
N+1 ≡ σ

(x,y,z)
1 . The quantum model of interacting spins

with the chain Hamiltonian as written on the rhs of Eq. (8.24) is the XYZ Heisenberg model.
When the modulus k = 0 (trigonometric parametrization), we have the XXZ Heisenberg model
with coupling constants

Jx = Jy = 1, Jz = cos η. (8.26)

In the limit η → 0, we obtain the XXX Heisenberg model with Jx = Jy = Jz . The relation
(8.24) makes a direct link between the eigenvalue spectrum of the transfer matrix and that of the
Heisenberg Hamiltonian.

8.3 Diagonalization of the trigonometric transfer matrix

The aim of this part is the construction of an algebraic generalization of the Bethe ansatz for
finding the eigenvectors and the energy spectrum of the transfer matrix. The S-matrix with the
elliptic parametrization of the matrix elements will be considered later in connection with the
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Heisenberg XYZ model. Here, we shall restrict ourselves to the simpler case of the S-matrix
(8.12) with the trigonometric parametrization (7.80),

a(λ) = sin(λ+ η), b(λ) = sinλ, c(λ) = sin η, d(λ) = 0. (8.27)

The coefficients wj (7.81) are given by

w0 + w3 = sin(λ+ η), w0 − w3 = sinλ, w1 = w2 =
1
2

sin η. (8.28)

The Lax operator (7.59) has in the auxiliary 2× 2 ξ-space the form

Ln(λ) =
(
w0(λ)σ0

n + w3(λ)σ3
n w1(λ)σ−n

w1(λ)σ+
n w0(λ)σ0

n − w3(λ)σ3
n

)
≡
(
αn βn

γn δn

)
. (8.29)

The monodromy matrix, defined in Eq. (7.46) as the product

T (λ) =
N∏

n=1

Ln(λ), (8.30)

will be represented in the auxiliary ξ-space as follows

T (λ) =
(
A(λ) B(λ)
C(λ) D(λ)

)
, (8.31)

where each of the operator matrix elements A,B,C and D acts in the 2N -dimensional space of
indices {α1 . . . αN}. Within the framework of this representation, the transfer matrix is given by

T (λ) = TrξTξ(λ) = A(λ) +D(λ). (8.32)

The monodromy matrix T and the R-matrix R = PS satisfy the YBE (7.49),

R(λ− µ) [T (λ)⊗ T (µ)] = [T (µ)⊗ T (λ)]R(λ− µ). (8.33)

Considering the monodromy-matrix representation (8.31) in this equation leads to all possible
permutation relations between the matrices {A,B,C,D} with various values of the spectral
parameter. We write down only those which are relevant for our next purposes:

[A(λ), A(µ)] = [B(λ), B(µ)] = [C(λ), C(µ)] = [D(λ), D(µ)] = 0, (8.34)

A(λ)B(µ) =
a(µ− λ)
b(µ− λ)

B(µ)A(λ)− c(µ− λ)
b(µ− λ)

B(λ)A(µ), (8.35)

D(λ)B(µ) =
a(λ− µ)
b(λ− µ)

B(µ)D(λ)− c(λ− µ)
b(λ− µ)

B(λ)D(µ). (8.36)

We choose as a “generating” vector of the 2N -dimensional Hilbert space the tensor product
of spin-up vectors e+ =

(
1
0

)
on the chain of N sites:

Ω = e+︸︷︷︸
1

⊗ e+︸︷︷︸
2

⊗ · · · ⊗ e+︸︷︷︸
N−1

⊗ e+︸︷︷︸
N

. (8.37)
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The Lax operator Ln (8.29) acts on each site as the identity operator, except the nth site where it
acts on e+n =

(
1
0

)
as follows

αn(λ)e+n = (w0 + w3)e+n = a(λ)e+n , βn(λ)e+n = 2w1e
−
n = c(λ)e−n ,

γn(λ)e+n = 0, δn(λ)e+n = (w0 − w1)e+n = b(λ)e+n .
(8.38)

These relations can be written in a compact form

Ln(λ)e+n =
(
a(λ) [· · ·]

0 b(λ)

)
e+n , (8.39)

where the symbol [· · ·] denotes an operator matrix element, transforming the vector e+n =
(
1
0

)
to

e−n =
(
0
1

)
, whose explicit form will not be needed. The triangle form of the matrix on the rhs of

Eq. (8.39) permits us to express the action of the monodromy matrix (8.30) on the vector Ω as

T (λ)Ω =
(
aN (λ) [· · ·]

0 bN (λ)

)
Ω. (8.40)

From the representation (8.31), we obtain the action of the elements of the monodromy matrix
on the generating vector Ω:

A(λ)Ω = aN (λ)Ω, C(λ)Ω = 0, D(λ)Ω = bN (λ)Ω. (8.41)

The action of the operator B(λ) on Ω is too complicated to be written explicitly. It is clear from
the above scheme that the vectorB(λ)Ω is a superposition ofN vectors which are obtained from
Ω by substituting one e+-vector by e−-vector, at site 1, or 2,. . ., orN . More generally, the action
of the operator B(λ) on a chain vector in the sector with N −M spins up and M spins down
implies a superposition of chain vectors in the sector with N −M − 1 spins up and M + 1 spins
down. The action of the operatorB will be reflected indirectly via its commutation relations with
A (8.35) and D (8.36).

The eigenvectors of the transfer matrix T will be searched in an ansatz form

ψ(λ1, . . . , λM ) =
M∏

α=1

B(λα)Ω, (8.42)

where M = 0, 1, . . . , N and the as-yet unspecified parameters {λ1, λ2, . . . , λM} will be fixed
by some self-consistent condition. The ansatz has two important features. Firstly, since there are
just M B-operators acting on Ω, the eigenvector is searched in an invariant sector with N −M
spins up and M spins down. Secondly, the eigenvectors are not supposed to depend on the
spectral parameter λ, which is in agreement with the previous finding that two transfer matrices
with different values of the spectral parameter commute to 0. With regard to the representation
of the transfer matrix (8.32), the eigenfunction equation reads

T (λ)ψ(λ1, . . . , λM ) ≡ [A(λ) +D(λ)]
M∏

α=1

B(λα)Ω

= t(λ;λ1, . . . , λM )
M∏

α=1

B(λα)Ω. (8.43)
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Since the action of B on Ω is not known explicitly, it is necessary to commute these operators
with A and D, with the aid of the commutation relations (8.35) and (8.36); A and D then act di-
rectly on the generating vector Ω according to the relations in (8.41). To document the procedure,
we consider the expression in (8.43) containing A and make the first expansion step

A(λ)
M∏

α=1

B(λα)Ω =
[
a(λ1 − λ)
b(λ1 − λ)

B(λ1)A(λ)− c(λ1 − λ)
b(λ1 − λ)

B(λ)A(λ1)
]

×
M∏

α=2

B(λα)Ω. (8.44)

In the next step, the rhs of this equation is expanded as follows[a(λ1 − λ)
b(λ1 − λ)

a(λ2 − λ)
b(λ2 − λ)

B(λ1)B(λ2)A(λ)

−a(λ1 − λ)
b(λ1 − λ)

c(λ2 − λ)
b(λ2 − λ)

B(λ1)B(λ)A(λ2)

−c(λ1 − λ)
b(λ1 − λ)

a(λ2 − λ1)
b(λ2 − λ1)

B(λ)B(λ2)A(λ1)

+
c(λ1 − λ)
b(λ1 − λ)

c(λ2 − λ1)
b(λ2 − λ1)

B(λ)B(λ1)A(λ2)
] M∏

α=3

B(λα)Ω. (8.45)

Since the operators {B(λα)} commute with each other, the result must be symmetric with respect
to the interchange λ1 ↔ λ2. From the point of view of Eq. (8.45), this is equivalent to saying
that the following relation

c(λ1 − λ)
b(λ1 − λ)

c(λ2 − λ1)
b(λ2 − λ1)

− a(λ1 − λ)
b(λ1 − λ)

c(λ2 − λ)
b(λ2 − λ)

= −c(λ2 − λ)
b(λ2 − λ)

a(λ1 − λ2)
b(λ1 − λ2)

(8.46)

must hold. It is easy to check that within the parametrization (8.27) this equation is indeed
fulfilled. Thus, Eq. (8.45) can be reexpressed as follows[a(λ1 − λ)

b(λ1 − λ)
a(λ2 − λ)
b(λ2 − λ)

B(λ1)B(λ2)A(λ)

−c(λ1 − λ)
b(λ1 − λ)

a(λ2 − λ1)
b(λ2 − λ1)

B(λ)B(λ2)A(λ1)

−c(λ2 − λ)
b(λ2 − λ)

a(λ1 − λ2)
b(λ1 − λ2)

B(λ)B(λ1)A(λ2)
] M∏

α=3

B(λα)Ω. (8.47)

Since b(λ) = sinλ, it must hold that λ1 6= λ2. Proceeding in this way further, and repeating the
procedure also for the expression in (8.43) containing the operatorD, one ends up with the result

T (λ)ψ(λ1, . . . , λM ) = t(λ;λ1, . . . , λM )
M∏

α=1

B(λα)Ω

+
M∑

α=1

tα(λ;λ1, . . . , λM )B(λ)
M∏

β=1
(β 6=α)

B(λβ)Ω, (8.48)
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where

t(λ;λ1, . . . , λM ) = aN (λ)
M∏

α=1

a(λα − λ)
b(λα − λ)

+ bN (λ)
M∏

α=1

a(λ− λα)
b(λ− λα)

(8.49)

and

tα(λ;λ1, . . . , λM ) = −c(λα − λ)
b(λα − λ)

aN (λα)
M∏

β=1
(β 6=α)

a(λβ − λα)
b(λβ − λα)

−bN (λα)
M∏

β=1
(β 6=α)

a(λα − λβ)
b(λα − λβ)

 . (8.50)

In view of Eq. (8.48), the condition for ψ(λ1, . . . , λM ) (8.42) to be an eigenvector of the
transfer matrix is the nullity of all tα, i.e. the system of nonlinear Bethe equations[

a(λα)
b(λα)

]N

=
M∏

β=1
(β 6=α)

a(λα − λβ)
a(λβ − λα)

b(λβ − λα)
b(λα − λβ)

α = 1, 2, . . . ,M, (8.51)

which determines the set of distinct parameters {λ1, λ2, . . . , λM}. Within the trigonometric
parametrization (8.27), this set of equations takes the form(

sin(λα + η)
sinλα

)N

=
M∏

β=1
(β 6=α)

sin(λα − λβ + η)
sin(λα − λβ − η)

= −
M∏

β=1

sin(λα − λβ + η)
sin(λα − λβ − η)

α = 1, 2, . . . ,M. (8.52)

The corresponding eigenvalue of T (λ) is t(λ;λ1, . . . , λM ) given by Eq. (8.49),

t(λ) = sinN (λ+ η)
M∏

α=1

sin(λα − λ+ η)
sin(λα − λ)

+ sinN (λ)
M∏

α=1

sin(λ− λα + η)
sin(λ− λα)

. (8.53)

It is sometimes useful to perform the shift in rapidities λα → λα−η/2 to obtain the symmetrized
form of the Bethe equations. The described method of the diagonalization of the transfer matrix
is called the algebraic Bethe ansatz.

Using the relationship (8.24), the energy eigenvalues E of the XXZ Hamiltonian

HXXZ = −1
2

N∑
n=1

(
σx

nσx
n+1 + σy

nσy
n+1 + cos ησz

nσz
n+1

)
(8.54)

are expressible in terms of t(λ) (8.53) as follows

E = − sin η
d
dλ

ln t(λ)
∣∣∣
λ=0

+
N

2
cos η. (8.55)
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After simple algebra, we find that

E = −N
2

cos η + sin η
M∑

α=1

[cot(λα + η)− cot(λα)] . (8.56)

The advantage of the outlined QISM consists in its universal applicability to an arbitrary
integrable model. At first stage, it is necessary to introduce an S-matrix which fulfills the Yang-
Baxter equation. The transfer matrix constructed from this S-matrix is then related to a quantum
Hamiltonian on the discrete chain. Finally, the diagonalization of the transfer matrix proceeds
along the above lines. We repeat once more that the S-matrix used in the QISM is not the
S-matrix associated with the resulting quantum model. For example, the S-matrix of the one-
dimensional Heisenberg XXZ model is a scalar.
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9 QISM: Treatment of boundary conditions

There exists another important application of the QISM in the context of the treatment of bound-
ary conditions for one-dimensional quantum systems of particles with internal degrees of free-
dom, solvable by using the generalized Bethe ansatz. The S-matrix in this problem is the true
scattering matrix of the particle system which satisfies all necessary consistency conditions and
is properly normalized.

9.1 Formulation of boundary conditions

We start with fermions on the line 〈0, L〉, for which the generalized Bethe ansatz in the ordering
sector

Q : 0 ≤ xQ1 < xQ2 < · · · < xQN ≤ L (9.1)

has the form given by (7.4) and (7.5),

ψQ(σ1, x1; . . . ;σN , xN ) =
∑

P∈SN

sign(Q) sign(P )AσQ1...σQN
(kP1, . . . , kPN )

× exp

i
N∑

j=1

kPjxQj

 . (9.2)

Let the smallest of the particle coordinates xQ1 be equal to 0. The periodic boundary condition
corresponds to the invariance of ψ with respect to the shift of xQ1 by L, i.e. the transformation

xQ1 = 0 → x̃Q1 = L, x̃Q2 = xQ2, . . . , x̃QN = xQN . (9.3)

Since after the shift the coordinate x̃Q1 becomes the largest one, the new ordering sector is
Q̃ = (Q2, Q3, . . . , QN,Q1). The invariance of the wavefunction under the shift

ψQ(σ1, x1; . . . ;σN , xN ) = ψQ̃(σ1, x̃1; . . . ;σN , x̃N ) (9.4)

is equivalent to the relation∑
P∈SN

sign(Q) sign(P )AσQ1σQ2...σQN
(kP1, kP2, . . . , kPN )

× exp (ikP1 · 0 + ikP2xQ2 + · · ·+ ikPNxQN )

=
∑

P∈SN

sign(Q̃) sign(P )AσQ2...σQN σQ1(kP1, . . . , kP (N−1), kPN )

× exp
(
ikP1xQ2 + · · ·+ ikP (N−1)xQN + ikPNL

)
. (9.5)

Let us assign to each permutation P = (P1, P2, . . . , PN) on the rhs of (9.5) the conjugate one
P̃ ≡ (P̃1, P̃2, . . . , P̃N) = (PN,P1, P2, . . . , P (N − 1)). Since sign(Q̃) = (−1)N−1sign(Q)
and sign(P ) = (−1)N−1sign(P̃ ), the rhs of Eq. (9.5) can be rewritten as∑

P̃∈SN

sign(Q) sign(P̃ )AσQ2...σQN σQ1(kP̃2, . . . , kP̃N , kP̃1)

× exp (ikP̃2xQ2 + · · ·+ ikP̃NxQN + ikP̃1L) . (9.6)
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Redefining formally P̃ → P , we thus get

AσQ2...σQN σQ1(kP2, . . . , kPN , kP1) = exp(−ikP1L)
×AσQ1σQ2...σQN

(kP1, kP2, . . . , kPN ). (9.7)

Note that this equation holds for an arbitrary choice of the permutations P and Q.
The same procedure can be applied also for Bose particles. In the generalized Bethe ansatz

for bosons

ψQ(σ1, x1; . . . ;σN , xN ) =
∑

P∈SN

sign(P )AσQ1...σQN
(kP1, . . . , kPN )

× exp

i
N∑

j=1

kPjxQj

 . (9.8)

the factor sign(Q) is missing. This brings an additional factor (−1)N−1 since the factor in
sign(P ) = (−1)N−1sign(P̃ ) is not compensated. We find that

AσQ2...σQN σQ1(kP2, . . . , kPN , kP1) = (−1)N−1 exp(−ikP1L)
×AσQ1σQ2...σQN

(kP1, kP2, . . . , kPN ). (9.9)

The two relations (9.7) and (9.9) can be unified in one equation

AσQ2...σQN σQ1(kP2, . . . , kPN , kP1) = (∓1)N−1 exp(−ikP1L)
×AσQ1σQ2...σQN

(kP1, kP2, . . . , kPN ), (9.10)

where the −/+ sign corresponds to bosons/fermions.

9.2 Boundary conditions and the inhomogeneous transfer matrix

For the special choice P = Q = (1, 2, . . . , N), Eq. (9.10) takes the form

Aσ2...σN σ1(k2, . . . , kN , k1) = (∓1)N−1 exp(−ik1L)
×Aσ1σ2...σN

(k1, k2, . . . , kN ). (9.11)

The A-coefficient on the lhs of this equation differs from the one on the rhs by the presence of
the particle state σ1 and the corresponding wave number k1 on the right side of the sequence. We
would like to have an equation which relates the A-coefficients with the same ordering of state
indices and wave numbers. To accomplish this aim, we shall apply the two-particle scattering
formula (7.13),

A...σjσi...(. . . kv, ku . . .) =
∑
σ′

i
σ′

j

S
σiσj

σ′
i
σ′

j
(ku, kv)A...σ′

i
σ′

j
...(. . . ku, kv . . .), (9.12)

to the A-coefficient on the lhs of Eq. (9.11) in order to “commute” successively k1 with all other
wave numbers k2, k3, . . . , kN :

Aσ2...σN σ1(k2, . . . , kN , k1) =
∑

γ2σ′
N

Sσ1σN

γ2σ′
N

(k1, kN )Aσ2...γ2σ′
N

(k2, . . . , k1, kN )
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=
∑

σ′
1

,...,σ′
N

γ2,...,γN−1

Sσ1σN

γ2σ′
N

(k1, kN ) Sγ2σN−1

γ3σ′
N−1

(k1, kN−1) · · ·

×SγN−1σ2

σ′1σ′2
(k1, k2)Aσ′1σ′2...σ′

N
(k1, k2, . . . , kN ). (9.13)

The quantization condition for k1 (9.11) is thus transformed to the eigenvalue problem

T1 A = (∓1)N−1 exp(−ik1L) A (9.14)

for the matrix

T1
σ1σ2...σN

σ′1σ′2...σ′
N

=
∑

γ2,...,γN−1

Sσ1σN

γ2σ′
N

(k1, kN )Sγ2σN−1

γ3σ′
N−1

(k1, kN−1) · · ·SγN−1σ2

σ′1σ′2
(k1, k2). (9.15)

We introduce the rapidities {λj}N
j=1 which parametrize the wave numbers {kj = k(λj)}N

j=1 in
such a way that S(kj , kl) = S(λj − λl). Moreover, we assume that the S-matrix possesses the
T and P symmetries (7.12). The T1-matrix can be then reexpressed as follows

T1
σ1σ2...σN

σ′1σ′2...σ′
N

=
∑

γ2,...,γN−1

SσN σ1
σ′

N
γ2

(λ1 − λN )SσN−1γ2

σ′
N−1γ3

(λ1 − λN−1)

· · ·Sσ2γN−1

σ′2σ′1
(λ1 − λ2). (9.16)

Let us define the inhomogeneous transfer matrix

T (λ;λ1, . . . , λN )σ1...σN

σ′1...σ′
N

=
∑

γ1,...,γN

SσN γ1
σ′

N
γ2

(λ− λN ) SσN−1γ2

σ′
N−1γ3

(λ− λN−1)

· · ·Sσ2γN−1

σ′2γN
(λ− λ2) S

σ1γN

σ′1γ1
(λ− λ1). (9.17)

At the point λ = λ1, the initial condition Sσ1γN

σ′1γ1
(0) = δ(σ1, γ1)δ(σ′1, γN ) implies

T1 = T (λ = λ1;λ1, . . . , λN ). (9.18)

We conclude that the quantization of the wave number k1 due to the periodic boundary conditions
is determined by the eigenvalue equation

T1 A = (∓1)N−1 exp(−ik1L) A, T1 = T (λ = λ1;λ1, . . . , λN ). (9.19)

The above procedure can be performed for other choices of the permutations P and Q in
Eq. (9.10). We obtain the following eigenvalue equations determining the wave numbers kj

(j = 1, . . . , N):

Tj A = (∓1)N−1 exp(−ikjL) A, Tj = T (λ = λj ;λ1, . . . , λN ). (9.20)

The original problem of boundary conditions is thus reduced to the problem of the diagonaliza-
tion of the inhomogeneous tranfer matrix (9.17).
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9.3 Diagonalization of the inhomogeneous transfer matrix

The transfer matrix (9.17) is by the structure very similar to the one defined in the QISM by Eq.
(7.50). A minor difference is the opposite order of indices σ, σ′. An important difference is that
the spectral parameters of the S-matrices are site-dependent. As we shall see, this complication
does not prevent from the diagonalization of the inhomogeneous transfer matrix (9.17) by using
an inhomogeneous version of the QISM.

The S-matrices in the definition of the transfer matrix (9.17) are considered in the form (8.12)
with the trigonometric parametrization (8.27) of the matrix elements a, b, c and d = 0. As before,
the transfer matrix is the trace of the monodromy matrix T in the auxiliary ξ-space,

T (λ;λ1, . . . , λN ) = Trξ Tξ(λ;λ1, . . . , λN ). (9.21)

The monodromy matrix is expressible as the product of local Lax Lξn-matrices defined by Eq.
(7.39),

Tξ(λ;λ1, . . . , λN ) = LξN (λ− λN )Lξ(N−1)(λ− λN−1) · · ·Lξ1(λ− λ1). (9.22)

The Yang-Baxter equations, obtained within the homogeneous QISM, now take the following
forms. The counterpart of the Yang-Baxter Eq. (7.40) reads

Sξη(λ− µ)Lξn(λ− λn)Lηn(µ− λn) = Lηn(µ− λn)Lξn(λ− λn)Sξη(λ− µ). (9.23)

Here, the local shift by the spectral parameter λn is canceled in the subtraction of the spectral
parameters λ− µ. The analogy of the Yang-Baxter Eq. (7.47) is then

Sξη(λ− µ)Tξ(λ;λ1, . . . , λN )Tη(µ;λ1, . . . , λN )
= Tη(µ;λ1, . . . , λN )Tξ(λ;λ1, . . . , λN )Sξη(λ− µ). (9.24)

Introducing R(λ) = PSξη(λ), this equation takes an equivalent form

R(λ− µ) [T (λ;λ1, . . . , λN )⊗ T (µ;λ1, . . . , λN )]
= [T (µ;λ1, . . . , λN )⊗ T (λ;λ1, . . . , λN )]R(λ− µ). (9.25)

In analogy with the representation (8.29), the local Lax operator Lξn is expressible in the
ξ-space as

Ln(λ− λn) =
(
αn(λ− λn) βn(λ− λn)
γn(λ− λn) δn(λ− λn)

)
. (9.26)

The operator matrix elements act on the local vector e+n =
(
1
0

)
in the following way:

αn(λ− λn)e+n = a(λ− λn)e+n , βn(λ− λn)e+n = c(λ− λn)e−n ,

γn(λ− λn)e+n = 0, δn(λ− λn)e+n = b(λ− λn)e+n .
(9.27)

These relations can be written in a compact form

Ln(λ− λn)e+n =
(
a(λ− λn) [· · ·]

0 b(λ− λn)

)
e+n . (9.28)
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The monodromy matrix is expressible in the auxiliary ξ-space as

T (λ;λ1, . . . , λN ) =
(
A(λ;λ1, . . . , λN ) B(λ;λ1, . . . , λN )
C(λ;λ1, . . . , λN ) D(λ;λ1, . . . , λN )

)
. (9.29)

According to (9.21), the transfer matrix is given by

T (λ;λ1, . . . , λN ) = A(λ;λ1, . . . , λN ) +D(λ;λ1, . . . , λN ). (9.30)

The Yang-Baxter equation (9.25) implies the commutation rules for the matrices A, B, C and D
which are the same as the ones (8.34)-(8.36) derived in the homogeneous QISM. Note that the
original shifts of spectral parameters λ and µ by {λn}N

n=1 are canceled in parameters a(µ− λ),
b(µ−λ) and c(µ−λ) and the inhomogeneity does not enter into the commutation relations of the
operator B with A or D. When the monodromy matrix acts on the generating vector Ω (8.37),
the representation (9.22) and Eq. (9.28) imply

T (λ;λ1, . . . , λN )Ω =
(∏N

n=1 a(λ− λn) [· · ·]
0

∏N
n=1 b(λ− λn)

)
Ω. (9.31)

Comparing Eqs. (9.29) and (9.31) with one another, the elements of the monodromy matrix act
on the generating vector Ω as follows

AΩ =
N∏

n=1

a(λ− λn) Ω, C Ω = 0, DΩ =
N∏

n=1

b(λ− λn) Ω. (9.32)

The eigenvectors of the transfer matrix T = A+D are searched in the ansatz form

ψ(λ1, . . . , λN ; Λ1, . . . ,ΛM ) =
M∏

α=1

B(Λα;λ1, . . . , λN )Ω, (9.33)

where the parameters Λ1, . . . ,ΛM are as-yet undetermined. Similarly as in the homogeneous
case, the eigenvector is a superposition of tensor products of N − M spins up and M spins
down. Performing the whole commutation procedure between Eqs. (8.44)-(8.47), we end up
with a counterpart of the relation (8.48), where the eigenvalue of the transfer matrix (8.49) is
replaced by

t(λ;λ1, . . . , λN ; Λ1, . . . ,ΛM ) =
N∏

n=1

a(λ− λn)
M∏

α=1

a(Λα − λ)
b(Λα − λ)

+
N∏

n=1

b(λ− λn)
M∏

α=1

a(λ− Λα)
b(λ− Λα)

(9.34)

and the nullity of tα for α = 1, 2, . . . ,M implies the Bethe equations determining the parameters
Λ1, . . . ,ΛM as the functions of {λn}N

n=1:

N∏
n=1

a(Λα − λn)
b(Λα − λn)

=
M∏

β=1
(β 6=α)

a(Λα − Λβ)
a(Λβ − Λα)

b(Λβ − Λα)
b(Λα − Λβ)

α = 1, 2, . . . ,M. (9.35)
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Eq. (9.20) tells us that the rapidities λ1, . . . , λN , or equivalently the wave numbers k1 =
k(λ1), . . . , kN = k(λN ), are determined by

(∓1)N−1 exp(−ikjL) = t(λ = λj ;λ1, . . . , λN ; Λ1, . . . ,ΛM ) j = 1, . . . , N. (9.36)

Due to b(0) = 0, the second term in (9.34) vanishes for λ = λj and we have the quantization
conditions

(∓1)N−1 exp(−ikjL) =
N∏

n=1

a(λj − λn)
M∏

α=1

a(Λα − λj)
b(Λα − λj)

, j = 1, . . . , N. (9.37)

The M + N coupled equations (9.35) and (9.37) for M + N unknowns {Λα} and {kj} are
referred to as the “nested” Bethe equations.
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10 Spin- 1
2 fermions with δ-function interactions: Nested Bethe ansatz

In this section, we apply the QISM to the spin- 1
2 particles interacting via the δ-function potential,

with the Hamiltonian

H = −
N∑

j=1

∂2

∂x2
j

+ 2c
N∑

j>k=1

δ(xj − xk). (10.1)

We first derive the two-body scattering matrices for both Fermi and Bose systems and show that
they fulfill the YBE. Then we restrict ourselves to the system of spin- 1

2 fermions, which is of
physical interest, and derive for it the nested Bethe equations. The ground-state energy will be
determined from these equations in both repulsive (c > 0) and attractive (c < 0) regimes.

10.1 The two-body scattering problem

We consider two particles (σ1, x1) and (σ2, x2) in the ordering sector Q : xQ1 < xQ2. The
generalized Bethe ansatz for the wavefunction reads

ψQ(σ1, x1;σ2, x2) =
∑

P∈S2

[Q,P ] exp(ikP1xQ1 + ikP2xQ2), (10.2)

where, for the time being, the same symbol [Q,P ] is used for both fermion and boson coeffi-
cients. Without any restriction on the ordering of the particle coordinates, the wavefunction is
expressible as follows

ψ(σ1, x1;σ2, x2) = θ(x2 − x1)
{

[12, 12]ei(k1x1+k2x2) + [12, 21]ei(k2x1+k1x2)
}

+θ(x1 − x2)
{

[21, 12]ei(k1x2+k2x1) + [21, 21]ei(k2x2+k1x1)
}
. (10.3)

The requirement of continuity of ψ at x1 = x2 implies the relation

[12, 12] + [12, 21] = [21, 12] + [21, 21]. (10.4)

Using the formula dθ(x)/dx = δ(x), it is straightforward to show that(
− ∂2

∂x2
1

− ∂2

∂x2
2

)
ψ = (k2

1 + k2
2)ψ + ei(k1+k2)x1 iδ(x1 − x2)(k1 − k2)

×{[12, 12] + [21, 12]− [12, 21]− [21, 21]} . (10.5)

The wavefunction ψ then satisfies the N = 2 Schrödinger equation

Hψ ≡
[
− ∂2

∂x2
1

− ∂2

∂x2
2

+ 2cδ(x1 − x2)
]
ψ = Eψ (10.6)

if the energy is given by

E = k2
1 + k2

2 (10.7)

and the coefficients are constrained by

i(k1− k2) {[12, 12] + [21, 12]− [12, 21]− [21, 21]}+ 2c {[12, 12] + [12, 21]} = 0.(10.8)
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Eqs. (10.4) and (10.8) represent the formal solution of the problem of the coefficients [Q,P ]
which is the same for fermions and bosons. We see that the wave numbers k1 and k2 occur only
as the difference k1 − k2, so the λ-rapidities are identical to wave numbers,

k1 = λ1, k2 = λ2, λ1 − λ2 = λ. (10.9)

Let us first consider the fermions for which

[Q,P ] ≡ [Q,P ]f = sign(Q)sign(P )AσQ1σQ2(kP1, kP2). (10.10)

When the two fermions have the same spin, say σ1 = σ2 = +, Eqs. (10.4) and (10.8) imply the
only condition

A++(k2, k1) = A++(k1, k2). (10.11)

With regard to the definition of the S-matrix (7.8), we thus have

S++
++(λ) = 1, S++

+−(λ) = S++
−+(λ) = S++

−−(λ) = 0. (10.12)

The result for the diagonal element S++
++ has already been obtained in the treatment of identical

(spinless) fermions, see Eq. (2.31). The nullity of the other elements in (10.12) is due to the spin
conservation law

Sσ1σ2
σ′1σ′2

(λ) = 0 if σ1 + σ2 6= σ′1 + σ′2. (10.13)

For σ1 = σ2 = −, we obtain analogously A−−(k2, k1) = A−−(k1, k2) which implies

S−−−−(λ) = 1. (10.14)

For σ1 = + and σ2 = −, the solution of Eqs. (10.4) and (10.8) can be written in the matrix form(
A−+(k2, k1)
A+−(k2, k1)

)
=

1
k1 − k2 + ic

(
k1 − k2 ic

ic k1 − k2

)(
A+−(k1, k2)
A−+(k1, k2)

)
. (10.15)

The corresponding nonzero S-matrix elements read

S+−
+−(λ) = S−+

−+(λ) =
λ

λ+ ic
, S+−

−+(λ) = S−+
+−(λ) =

ic
λ+ ic

. (10.16)

From the obtained results, the fermion S-matrix, which will be denoted as Sf , is the one of the
form (7.57) with d(λ) = 0 and the rational elements

a(λ) = 1, b(λ) =
λ

λ+ ic
, c(λ) =

ic
λ+ ic

. (10.17)

Since it is expressible as

Sf (λ) =
λ

λ+ ic
I +

ic
λ+ ic

P, (10.18)

Sf belongs to the family of the simplest S-matrices (7.33) which fulfill the YBE via the equality
(7.37). The matrix Sf (λ), being derived for the true particle system, is properly normalized.
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Both the initial condition Sf (λ = 0) = P and the unitarity condition Sf (λ)Sf (−λ) = I are
satisfied.

If the particles are spin- 1
2 bosons, we set

[Q,P ] ≡ [Q,P ]b = sign(P )AσQ1σQ2(kP1, kP2) (10.19)

in Eqs. (10.4) and (10.8). When the two bosons have the same spin, the nonzero S-matrix
elements read

S++
++(λ) = S−−−−(λ) =

ic− λ

ic+ λ
. (10.20)

This result has been derived in the treatment of identical (spinless) bosons, see Eq. (2.44). When
the two bosons have different spins, we find that(

A−+(k2, k1)
A+−(k2, k1)

)
=

1
k1 − k2 + ic

(
k2 − k1 ic

ic k2 − k1

)(
A+−(k1, k2)
A−+(k1, k2)

)
. (10.21)

The resulting S-matrix, denoted as Sb, has the form

Sb(λ) = − λ

λ+ ic
I +

ic
λ+ ic

P. (10.22)

It also fulfills the YBE and both the initial and unitarity conditions.

10.2 Nested Bethe equations for spin- 1
2 fermions

In what follows, we shall deal with spin- 1
2 fermions which are of physical interest. The general-

ization of the above results to the case of N fermions is straightforward. The generalized Bethe
ansatz wavefunction (9.2) is by the construction antisymmetric with respect to the simultaneous
exchange of two-particle spin and coordinate variables. This fact ensures that the Schrödinger
equation is trivially satisfied when three or more fermions interact with each other at the same
point. The only non-trivial case to consider is the presence of two fermions with opposite spins
at the same point. Requiring the continuity of the wavefunction and solving the matching condi-
tions at the boundaries of each ordering sectorQ, we get the expected nearest-neighbor scattering
between the amplitudes

A...σjσi...(. . . kv, ku . . .) =
∑
σ′

i
σ′

j

S
σiσj

σ′
i
σ′

j
(ku, kv)A...σ′

i
σ′

j
...(. . . ku, kv . . .), (10.23)

where Sσiσj

σ′
i
σ′

j
(ku, kv) are the elements of the fermion Sf -matrix (10.18) taken at λ = ku − kv .

For a given set of wave numbers {kj}N
j=1, the total momentum and energy read

K =
N∑

j=1

kj , E =
N∑

k=1

k2
j . (10.24)

The scattering formula (10.23) confirms the integrability of the fermion system for an arbi-
trary number of particles and enables us to apply the machinery of the inhomogeneous QISM.
With regard to the trivial parametrization of the wave numbers k = λ and the explicit forms
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(10.17) of the Sf -matrix elements {a, b, c}, the nested Bethe ansatz equations (9.37) and (9.35)
take the form

exp(−ikjL) =
M∏

α=1

(
Λα − kj + ic

Λα − kj

)
, j = 1, . . . , N ; (10.25)

N∏
j=1

(
Λα − kj + ic

Λα − kj

)
=

M∏
β=1

(β 6=α)

(
Λα − Λβ + ic
Λα − Λβ − ic

)
,

= −
M∏

β=1

(
Λα − Λβ + ic
Λα − Λβ − ic

)
, α = 1, . . . ,M. (10.26)

It is useful to symmetrize these equations by shifting the variables Λα → Λα− ic/2, which does
not change the possible values of the wave numbers, with the result

exp(ikjL) =
M∏

α=1

(
kj − Λα + ic′

kj − Λα − ic′

)
, j = 1, . . . , N ; (10.27)

N∏
j=1

(
Λα − kj + ic′

Λα − kj − ic′

)
= −

M∏
β=1

(
Λα − Λβ + ic
Λα − Λβ − ic

)
, α = 1, . . . ,M, (10.28)

where c′ = c/2.
Although the above Bethe equations determine uniquely the energy spectrum of the spin-

1
2 fermions with δ-function interactions, it is instructive to mention the formal structure of the
eigenfunctions, in particular, theA-coefficients. ForN = 2 particles, the matrix equation (10.15)
is solved by

A−+(kP1, kP2) = kP2 − Λ− ic′, A+−(kP1, kP2) = kP1 − Λ + ic′, (10.29)

where Λ is a free parameter. Inserting these expressions into the boundary condition (9.11),

A−+(k2, k1) = exp(−ik1L)A+−(k1, k2), (10.30)

we obtain that Λ is just equal to the variable Λ1 obeying the Bethe equation (10.27). This result
was extended to the case of N − 1 fermions with spin up and M = 1 fermion with spin down
by McGuire [71, 72]. For the down-spin being at the position y(= 1, 2, . . . , N) in the N -state
sequence, he proved that

A+...+ −︸︷︷︸
y

+...+(kP1, . . . , kPN ) ≡ AP (y) = FP (y,Λ = Λ1), (10.31)

where

FP (y,Λ) =
y−1∏
j=1

(kPj − Λ + ic′)
N∏

l=y+1

(kPl − Λ− ic′) . (10.32)

The case M = 2 was solved in Ref. [73], the solution for a general number of M down-spins
in an N -particle system was derived in Refs. [26, 27]. If the M down-spins are at the integer
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positions 1 ≤ y1 < y2 < . . . < yM ≤ N in the N -state sequence, the corresponding A-
coefficient is expressible in terms of {Λj}M

j=1 as follows

AP (y1, y2, . . . , yM ) =
∑

R∈SM

A(R)FP (y1,ΛR1)FP (y2,ΛR2) · · ·FP (yM ,ΛRM ), (10.33)

where R denotes permutations of numbers (12 . . .M) and

A(R) = sign(R)
∏
j<l

(λRj − λRl − ic). (10.34)

10.3 The ground state

The character of the ground state depends on whether we are in the repulsive region c > 0 or the
attractive region c < 0. In order to simplify the formalism, we always assume that the number of
fermions N is even and the number of down-spin fermions M is odd. This restriction does not
mean any loss of generality since we are interested in the thermodynamic limit L,N,M → ∞,
with the fixed fermion density n = N/L and the fixed density of down-spin fermions n− =
M/L. The density of up-spin fermions is n+ = n − n−. Due to the invariance of the energy
spectrum with respect to the flip + ↔ − of spins of all particles, it is sufficient to study the case
M ≤ N/2, i.e. n− ≤ n/2.

10.3.1 Repulsive regime c > 0

In the repulsive region c > 0, all k-roots and Λ-roots of the Bethe equations (10.27) and (10.28)
are real in the ground state. We can therefore take the logarithm of the Bethe equations, with the
result

kjL = 2πIj −
M∑

α=1

θ (2(kj − Λα)) , j = 1, . . . , N ; (10.35)

N∑
j=1

θ (2(Λα − kj)) = 2πJα +
M∑

β=1

θ(Λα − Λβ), α = 1, . . . ,M. (10.36)

Here, Ij is an integer (half-odd integer) for even (odd) M and Jα is an integer (half-odd integer)
for odd (even) N −M ; only solutions with distinct quantum numbers {Ij} and distinct quantum
numbers {Jα} are allowed in order to avoid the nullity of the wavefunction. The phase-shift
function θ is now defined by

θ(x) = 2 arctan
(x
c

)
. (10.37)

The total momentum is given by

K =
N∑

j=1

kj =
2π
L

 N∑
j=1

Ij +
M∑

α=1

Jα

 . (10.38)
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Eqs. (10.35) and (10.36) will also be used in an alternative form

k = 2π
I(k)
L

− 1
L

∑
Λ

θ (2(k − Λ)) , (10.39)

1
L

∑
k

θ (2(Λ− k)) = 2π
J(Λ)
L

+
1
L

∑
Λ′

θ(Λ− Λ′). (10.40)

Studying the ground state in the (pointlike) hard-core limit c → ∞ we find that, as usual,
it corresponds to quantum numbers Ij and Jα symmetrically distributed around zero, with the
unity step:

Ij =
N + 1

2
− j (j = 1, . . . , N), Jα =

M + 1
2

− α (α = 1, . . . ,M). (10.41)

In the thermodynamic limit L,N,M →∞, we can perform a continualization procedure analo-
gous to that for spinless bosons. We introduce the state density of I’s and J’s,

f(k) =
I(k)
L

, g(Λ) =
J(Λ)
L

, (10.42)

which are related to the particle density in k-space ρ(k) and the down-spin particle density in
Λ-space σ(Λ) as follows

f(k) =
∫ k

0

dk′ ρ(k′), g(Λ) =
∫ Λ

0

dΛ′ σ(Λ′). (10.43)

We expect the real k’s and Λ’s to be distributed symmetrically around zero, ρ(k) = ρ(−k) and
σ(Λ) = σ(−Λ), between some limits ±q and ±Q, respectively. The normalization requires that

n ≡ N

L
=
∫ q

−q

dk ρ(k), n− ≡
M

L
=
∫ Q

−Q

dΛσ(Λ). (10.44)

The ground-state momentum (10.38) per unit length vanishes,

K

L
=
∫ q

−q

dk kρ(k) +
∫ Q

−Q

dΛ Λσ(Λ) = 0. (10.45)

The ground-state energy per unit length is expressible as

e0 ≡
E0

L
=
∫ q

−q

dk k2ρ(k). (10.46)

The equations for the distributions ρ(k) and σ(Λ) are obtained by the continualization of the
Bethe equations (10.39) and (10.40):

k = 2π
∫ k

0

dk′ ρ(k′)−
∫ Q

−Q

dΛσ(Λ)θ (2(k − Λ)) , (10.47)∫ q

−q

dk ρ(k)θ (2(Λ− k)) = 2π
∫ Λ

0

dΛ′ σ(Λ′) +
∫ Q

−Q

dΛ′ σ(Λ′)θ(Λ− Λ′). (10.48)
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The differentiation of Eq. (10.47) with respect to k and the differentiation of Eq. (10.48) with
respect to Λ, together with the formula ∂θ(nk)/∂k = 2nc/(n2k2 + c2), lead to

ρ(k) =
1
2π

+
2c
π

∫ Q

−Q

dΛ
σ(Λ)

4(k − Λ)2 + c2
, (10.49)

σ(Λ) =
2c
π

∫ q

−q

dk
ρ(k)

4(k − Λ)2 + c2
− c

π

∫ Q

−Q

dΛ′
σ(Λ′)

(Λ− Λ′)2 + c2
. (10.50)

These coupled equations, supplemented by the normalization conditions (10.44), determine the
distributions ρ(k) and σ(Λ). Their explicit solution is accessible only in special cases.

In the limit Q→ 0, we obtain ρ(k) = 1/(2π) bellow the Fermi level |k| ≤ q = πn, which is
the expected result valid for spinless fermions.

In the limitQ→∞, Eq. (10.50) can be treated by the technique of the Fourier transformation
for the distribution σ. Using the integral formula

1
π

∫ ∞

−∞
dΛ

e−iΛξ

1 + Λ2
= e−|ξ| (10.51)

available due to the residuum theorem, we get

σ(Λ) =
1
2c

∫ q

−q

dk
ρ(k)

cosh[π(k − Λ)/c]
. (10.52)

Since

n− =
∫ ∞

−∞
dΛσ(Λ) =

1
2

∫ q

−q

dk ρ(k) =
n

2
, (10.53)

the limit Q → ∞ corresponds to n+ = n−. This is the absolute ground state, with the energy
minimized over all possible magnetizations for the fixed particle number N .

Another interesting case is the limit c → 0+. With regard to the representation of the δ-
function as the limit

lim
c→0

1
π

c

(x− x′)2 + c2
= δ(x− x′), (10.54)

Eqs. (10.49) and (10.50) lead to the uniform distributions

ρ(k) =
{

1/π for |k| ≤ Q,
1/(2π) for Q < |k| ≤ q,

σ(Λ) =
1
2π

for |Λ| ≤ Q, (10.55)

where the limits Q = πn− and q = πn+. At c = 0, we have

Λα =
π

L
(M + 1− 2α), α = 1, . . . ,M. (10.56)

Since the density of k’s is twice larger than the density of Λ’s in the interval 〈−Q,Q〉, for each
Λα there exist two k’s with the same value,

kα,1 = kα,2 = Λα, α = 1, . . . ,M. (10.57)

The remaining N − 2M k’s are uniformly distributed over the interval πn− < |k| < πn+.
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10.3.2 Attractive regime c < 0

In the limit c→ 0−, each Λα of the ground state remains to lie on the real axis and forms a bound
state with the corresponding wave numbers kα,1 and kα,2, which become complex conjugates of
one another. Namely, in the thermodynamic limit L→∞,

kα,1 = Λα + ic′ +O(e−L/L0), kα,2 = Λα − ic′ +O(e−L/L0). (10.58)

We can document this fact by analyzing the nested Bethe equations (10.27) and (10.28) for the
simplest case of N = 2 and M = 1:

eik1L =
k1 − Λ + ic′

k1 − Λ− ic′
, eik2L =

k2 − Λ + ic′

k2 − Λ− ic′
, (10.59)

Λ− k1 + ic′

Λ− k1 − ic′
Λ− k2 + ic′

Λ− k2 − ic′
= 1. (10.60)

The multiplication of the first two equations implies

ei(k1+k2)L = 1 =⇒ k1 = k + iκ, k2 = k − iκ (10.61)

with k and κ being real numbers. The relation for κ reads

e2κL =
(k − Λ)2 + (κ− c′)2

(k − Λ)2 + (κ+ c′)2
. (10.62)

For c > 0 and L → ∞, the solution of this equation is trivial κ = 0. For c < 0 and L → ∞,
we obtain κ = c′ and k = Λ, in accordance with formula (10.58). The remaining N − 2M
k′s, which are not in pairs bounded with some Λ, are real. With regard to Eq. (10.35), they are
determined by

kjL = 2πIj −
M∑

α=1

θ(2(kj − Λα)), j = 1, . . . , N − 2M. (10.63)

Our aim is to obtain an equation for Λα which does not involve the complex-conjugate wave
numbers. We first multiply with one another the Bethe equations (10.27) for kα,1 and kα,2,

exp(ikα,1L) =
kα,1 − Λα + ic′

kα,1 − Λα − ic′
∏
β 6=α

(
Λα − Λβ + ic

Λα − Λβ

)
, (10.64)

exp(ikα,2L) =
kα,2 − Λα + ic′

kα,2 − Λα − ic′
∏
β 6=α

(
Λα − Λβ

Λα − Λβ − ic

)
, (10.65)

with the result

exp(2iΛαL) =
kα,1 − Λα + ic′

kα,1 − Λα − ic′
kα,2 − Λα + ic′

kα,2 − Λα − ic′
∏
β 6=α

(
Λα − Λβ + ic
Λα − Λβ − ic

)
. (10.66)

For the couple of complex conjugates kβ,1 and kβ,2 with the index β 6= α it is easy to show that

Λα − kβ,1 + ic′

Λα − kβ,1 − ic′
Λα − kβ,2 + ic′

Λα − kβ,2 − ic′
=

Λα − Λβ + ic
Λα − Λβ − ic

. (10.67)
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Eq. (10.28) can be thus rewritten as

Λα − kα,1 + ic′

Λα − kα,1 − ic′
Λα − kα,2 + ic′

Λα − kα,2 − ic′

N∏
j=2M+1

Λα − kj + ic′

Λα − kj − ic′
= 1. (10.68)

Comparing this equation with (10.66), we arrive at the equality

exp(2iΛαL) =
N−2M∏

j=1

Λα − kj + ic′

Λα − kj − ic′
∏
β 6=α

(
Λα − Λβ + ic
Λα − Λβ − ic

)
(10.69)

which includes only real wave numbers. Taking the logarithm, we end up with

2ΛαL = 2πJα −
M∑

β=1

θ(Λα − Λβ)−
N−2M∑

j=1

θ(2(Λα − kj)). (10.70)

The energy is given by

E =
M∑

α=1

[
(Λα + ic′)2 + (Λα − ic′)2

]
+

N−2M∑
j=1

k2
j . (10.71)

The quantum numbers in the crucial Eqs. (10.63) and (10.70), which correspond to the
ground state, are

Ij = (N − 2M + 1− 2j) /2 j = 1, . . . , N − 2M,

Jα = (M + 1− 2α) /2 α = 1, . . . ,M.
(10.72)

In the continuum limit, we can introduce the distribution function ρ(k) of only real k’s and the
distribution function σ(Λ) of Λ’s or, equivalently, of complex conjugate pairs of k’s. Differenti-
ating the continuous versions of Eqs. (10.63) and (10.70) with respect to k and Λ, respectively,
we obtain

ρ(k) =
1
2π

− 2|c|
π

∫ Q

−Q

dΛ
σ(Λ)

4(k − Λ)2 + c2
, (10.73)

σ(Λ) =
1
π
− 2|c|

π

∫ q

−q

dk
ρ(k)

4(k − Λ)2 + c2
− |c|

π

∫ Q

−Q

dΛ′
σ(Λ′)

(Λ− Λ′)2 + c2
. (10.74)

These integral equations have to be supplemented by the expressions for the particle number
densities

n = 2
∫ Q

−Q

dΛσ(Λ) +
∫ q

−q

dk ρ(k), (10.75)

n+ − n− =
∫ q

−q

dk ρ(k), (10.76)

and for the ground-state energy per unit length

e0 =
∫ Q

−Q

dΛ
(

2Λ2 − c2

2

)
σ(Λ) +

∫ q

−q

dk k2ρ(k). (10.77)
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In contrast to attractive bosons (spinless or with an arbitrary spin), there exist bound states of
only two fermions and the system has the well behaved thermodynamic limit.

In the special case n− = n+ = n/2 we have ρ(k) = 0, i.e. a fluid composed of only bounded
pairs with the density

n

2
=
∫ Q

−Q

dΛσ(Λ). (10.78)

The simple integral equation

σ(Λ) =
1
π
− |c|

π

∫ Q

−Q

dΛ′
σ(Λ′)

(Λ− Λ′)2 + c2
(10.79)

for the distribution function of pairs σ(Λ) is treatable by techniques for one-component systems.
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11 Thermodynamics of spin- 1
2 fermions with δ-function interactions

Thermodynamics of the δ-function fermions was derived in Refs. [28–30]. The basic concept
of particles and holes, developed for one-component systems in Section 4, is in many aspects
applicable to the present case and we shall not repeat details of the method.

11.1 Repulsive regime c > 0

11.1.1 TBA equations

To construct the thermodynamic Bethe ansatz (TBA), we have to understand the nature of k-
roots and Λ-roots of the Bethe equations (10.27) and (10.28). In the repulsive region c > 0,
all k-roots are real. The Λ-roots organize themselves into a collection of strings of various
lengths n = 1, 2, . . .. A particular solution of the Bethe equations is thus characterized by a
set of non-negative integers {Mn}∞n=1, where Mn is the number of strings of length n. Since
the total number of Λ-roots is equal to M , the possible numbers of strings are constrained by∑∞

n=1 nMn = M . For a given n, real numbers Λn
α (α = 1, . . . ,Mn) denote the string centers.

The Λ-roots, which belong to the given n-string α, are distributed symmetrically and equidis-
tantly around the real axis:

Λ(n,r)
α = Λn

α + ic′(n+ 1− 2r), r = 1, 2, . . . , n. (11.1)

We introduce the function

en(Λ) ≡ Λ + inc′

Λ− inc′
(11.2)

and present for it some important product relations over the strings. The product relation for a
string of length n (11.1) reads

n∏
r=1

em(Λ(n,r)
α ) =

min(n,m)∏
l=1

en+m+1−2l(Λn
α). (11.3)

The product relation for two strings of length n and m reads

n∏
r=1

m∏
s=1

e2(Λ(n,r)
α − Λ(m,s)

β ) = Enm(Λn
α − Λm

β ), (11.4)

where

Enm(Λ) ≡ e|n−m|(Λ)e2|n−m|+2(Λ) · · · e2n+m−2(Λ)en+m(Λ). (11.5)

Finally, for any real Λ and n > 0 we have

ln en(Λ) = i [π − θn(Λ)] (mod 2πi), θn(Λ) ≡ 2 arctan
(

Λ
nc′

)
. (11.6)

Note that from the definition (10.37) it holds θ ≡ θ2.
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The Bethe equations (10.27) can be rewritten in terms of e-functions as follows

exp(ikjL) =
M∏

α=1

e1(kj − Λα) =
∞∏

n=1

Mn∏
α=1

n∏
r=1

e1(kj − Λ(n,r)
α )

=
∞∏

n=1

Mn∏
α=1

en(kj − Λn
α), (11.7)

so that only string centers enter into the representation of k-roots. The Bethe equations (10.28)
are expressible as

N∏
j=1

e1(Λα − kj) = −
M∏

β=1

e2(Λα − Λβ)

= −
∞∏

m=1

Mm∏
β=1

m∏
s=1

e2(Λα − Λ(m,s)
β ). (11.8)

Let Λα belongs to the n-string (11.1) and let us make a product over all Λ-roots from this string:

N∏
j=1

n∏
r=1

e1(Λ(n,r)
α − kj) = −

∞∏
m=1

Mm∏
β=1

n∏
r=1

m∏
s=1

e2(Λ(n,r)
α − Λ(m,s)

β ). (11.9)

Then, according to Eqs. (11.3)-(11.5), for string centers it holds

N∏
j=1

en(Λn
α − kj) = −

∞∏
m=1

Mm∏
β=1

Enm(Λn
α − Λm

β ). (11.10)

Taking the logarithm of of Eqs. (11.7) and (11.10), we obtain

kjL = 2πIj −
∞∑

n=1

Mn∑
α=1

θn(kj − Λn
α), (11.11)

N∑
j=1

θn(Λn
α − kj) = 2πJn

α +
∞∑

m=1

Mm∑
β=1

Θnm(Λn
α − Λm

β ), (11.12)

where

Θnm(Λ)=(1−δnm)θ|n−m|(Λ)+2θ|n−m|+2(Λ)+ · · ·+2θn+m−2(Λ)+θn+m(Λ).(11.13)

Ij are distinct integers (half-odd integers) for even (odd)M1 +M2 + · · ·. Jn
α are distinct integers

(half-odd integers) for odd (even) N −Mn, constrained by −Jn
max ≤ Jn

α ≤ Jn
max. The value of

the bound Jn
max is found from the condition

Λn
α →∞ for Jn

α = Jn
max +

1
2
, (11.14)
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which tells us that the string momentum has to reach its maximum value just one elementary
step beyond Jn

max. Since θn(Λ → ∞) = π (n > 0), the condition (11.14) is equivalent to the
constraint

|Jn
α | ≤

1
2

(
N − 1−

∞∑
m=1

tnmMm

)
, tnm = 2min(n,m)− δnm. (11.15)

Similarly as in the case of one-component systems, for any set of admissible quantum num-
bers {Ij , Jn

α} there exists a unique set of the particle Bethe solutions {kj ,Λn
α}. The set of

admissible quantum numbers {Ĩ , J̃n}, which are not in {Ij , Jn
α}, define the hole Bethe solutions

{k̃, Λ̃n}. In terms of the function f(k) defined by

2πLf(k) ≡ Lk +
∞∑

n=1

Mn∑
α=1

θn(k − Λn
α), (11.16)

the particle and hole wave numbers are given by

Lf(kj) = Ij , j = 1, . . . , N ; Lf(k̃) = Ĩ . (11.17)

In terms of the n-string function gn(Λ) defined by

2πLgn(Λ) =
N∑

j=1

θn(Λ− kj)−
∞∑

m=1

Mm∑
β=1

Θnm(Λ− Λm
β ), (11.18)

the particle and hole n-string Λ’s are given by

Lgn(Λn
α) = Jn

α , α = 1, . . . ,Mn; Lgn(Λ̃n) = J̃n. (11.19)

In the thermodynamic limit, we can replace the summations in Eqs. (11.16) and (11.18) by
integrals in the standard way

N∑
j=1

· · · → L

∫ ∞

−∞
dk ρ(k) · · · ,

Mn∑
α=1

· · · → L

∫ ∞

−∞
dΛσn(Λ) · · · , (11.20)

where ρ(k) and σn(Λ) are the particle distribution functions of k-roots and n-string Λ centers,
respectively. The continualized equations read

2πf(k) = k +
∞∑

n=1

θn ∗ σn(k), (11.21)

2πgn(Λ) = θn ∗ ρ(Λ)−
∞∑

m=1

Θnm ∗ σm(Λ), (11.22)

where the symbol ∗ denotes the convolution

f ∗ g(x) =
∫ ∞

−∞
dy f(x− y)g(y). (11.23)
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By the definition, the hole distribution functions ρ̃(k) and σ̃n(Λ) are related to their particle
counterparts via

ρ(k) + ρ̃(k) =
df(k)

dk
, σn(Λ) + σ̃n(Λ) =

dg(Λ)
dΛ

. (11.24)

These equations can be put into the form

1
2π

= ρ(k) + ρ̃(k)−
∞∑

n=1

an ∗ σn(k), (11.25)

an ∗ ρ(Λ) = σ̃n(Λ) +
∞∑

m=1

Anm ∗ σm(Λ), (11.26)

where

an(k) ≡ 1
2π

dθn(k)
dk

=
1
π

nc′

k2 + (nc′)2
n = 1, 2, . . . (11.27)

and

Anm(Λ) = δ(Λ)δnm +
1
2π

dΘnm(Λ)
dΛ

= δ(Λ)δnm + (1− δnm)a|n−m|(Λ)

+2a|n−m|+2(Λ) + · · ·+ 2an+m−2(Λ) + an+m(Λ). (11.28)

It is easy to derive the Fourier transforms of the quantities an and Anm:

ân(ω) = e−nc′|ω|, Ânm(ω) = coth(c′|ω|)
[
e−|n−m|c′|ω| − e−(n+m)c′|ω|

]
. (11.29)

For reasons which will be clear later, we introduce the “inverse” matrix functionA−1
nm(Λ) defined

by the relation

∞∑
n′=1

(
A−1

nn′ ∗An′m

)
(Λ) = δ(Λ)δnm. (11.30)

By using the convolution theorem∫ ∞

−∞
dx eiωx (f ∗ g) (x) = f̂(ω)ĝ(ω) (11.31)

and after some algebra, we get

Â−1
nm(ω) = δnm − ŝ(ω) (δn,m+1 + δn,m−1) , (11.32)

where

ŝ(ω) =
1

2 cosh(c′ω)
, s(x) =

1
4c′

sech
(πx

2c′
)
. (11.33)

We assume that the system of spin- 1
2 fermions is in an external magnetic field h ≥ 0 whose

presence changes the energy by −h(N − 2M). In the grand canonical ensemble characterized
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by the inverse temperature β and the chemical potential µ, the Gibbs free energy per unit length
is given by

g = − 1
β

S

L
+
E

L
− µ

N

L
, (11.34)

where

E

L
=

∫
dk k2ρ(k)− h

(
N

L
− 2

M

L

)
, (11.35)

N

L
=

∫
dk ρ(k),

M

L
=

∞∑
n=1

n

∫
dΛσn(Λ), (11.36)

S

L
=

∫
dk [(ρ+ ρ̃) ln(ρ+ ρ̃)− ρ ln ρ− ρ̃ ln ρ̃]

+
∞∑

n=1

∫
dΛ [(σn + σ̃n) ln(σn + σ̃n)− σn lnσn − σ̃n ln σ̃n] . (11.37)

The Gibbs free energy is a functional of the particle distributions {ρ, σn} and the hole distribu-
tions {ρ̃, σ̃n}. In the thermodynamic equilibrium, it attains its minimum under the constraints
(11.25) and (11.26). The variational condition δg = 0 is equivalent to

0 =
∫

dk β(k2 − µ− h)δρ(k) +
∞∑

n=1

2nβh
∫

dΛ δσn(Λ)

−
∫

dk
[
ln
(
ρ+ ρ̃

ρ

)
δρ+ ln

(
ρ+ ρ̃

ρ̃

)
δρ̃

]
(11.38)

−
∞∑

n=1

∫
dΛ
[
ln
(
σn + σ̃n

σn

)
δσn + ln

(
σn + σ̃n

σ̃n

)
δσ̃n

]
.

From the constraints (11.25) and (11.26), we have

δρ̃ = −δρ+
∞∑

n=1

an ∗ δσn, δσ̃n = an ∗ δρ−
∞∑

m=1

Anm ∗ δσm. (11.39)

Substituting these relations into Eq. (11.38) and setting to zero the coefficients of δρ(k) and
{δσn(Λ)}∞n=1, we obtain a set of integral equations for the ratios

eβε(k) ≡ ρ̃(k)
ρ(k)

, ηn(Λ) ≡ σ̃n(Λ)
σn(Λ)

n = 1, 2, . . . . (11.40)

Taking into account the symmetries Anm = Amn and an(k) = an(−k), these integral equations
read

βε = β(k2 − µ− h)−
∞∑

n=1

an ∗ ln(1 + η−1
n ), (11.41)

ln(1 + ηn) = 2nβh− an ∗ ln
(
1 + e−βε

)
+

∞∑
m=1

Anm ∗ ln(1 + η−1
m ). (11.42)



928 Introduction to Integrable Many-Body Systems I

The knowledge of ε(k) and {ηn(Λ)}∞n=1 enables us to determine the particle distribution func-
tions ρ(k) and {σn(Λ)}∞n=1 from the constraints (11.25) and (11.26), rewritten as

[1 + eβε(k)]ρ(k) =
1
2π

+
∞∑

n=1

an ∗ σn(k), (11.43)

an ∗ ρ(Λ) = ηn(Λ)σn(Λ) +
∞∑

m=1

Anm ∗ σm(Λ). (11.44)

Using Eqs. (11.34)-(11.37), (11.41) and (11.42), the pressure P = −g is given by

βP =
∫

dk
2π

ln
[
1 + e−βε(k)

]
. (11.45)

At a given temperature, ε(k) and β−1 ln ηn(Λ) can be interpreted as the energy of excitations
related to the distribution functions ρ(k) and σn(Λ), respectively [29]. The result for the pressure
thus coincides with the one valid for one-component systems.

The resulting equations (11.41) and (11.42) can be further simplified. The convolution of the
n = 1 Eq. (11.42) with the s-function (11.33), when combined with Eq. (11.41) and the formula
s ∗A1n ≡ s ∗ (an−1 + an+1) = an, yields

βε = β(k2 − µ)−R ∗ ln
(
1 + e−βε

)
− s ∗ ln(1 + η1), (11.46)

where R = a1 ∗ s. Forming the convolution of Eq. (11.42) with the inverse matrix function A−1

and using the relations

∞∑
m=1

A−1
nm ∗ am = sδn1,

∞∑
m=1

A−1
nm ∗m = 0, (11.47)

we arrive at

ln η1 = s ∗
[
ln(1 + η2)− ln

(
1 + e−βε

)]
, (11.48)

ln ηn = s ∗ ln [(1 + ηn−1)(1 + ηn+1)] , n ≥ 2. (11.49)

These equations are not complete to determine all ηn because they do not contain the magnetic
field h. We return to the generic Eq. (11.42) to deduce its leading n → ∞ asymptotic. Since
limn→∞ an → 0, the leading asymptotic is

lim
n→∞

ln ηn

n
= 2βh. (11.50)

Eqs. (11.46) and (11.48)-(11.50) are known as the TBA equations. They can always be treated
numerically. Explicit solutions of the TBA equations are possible only in special limits. These
equations can also serve as a systematic tool for developing series expansions.
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11.1.2 Special cases

• The limit c→ 0+: The functions s(x) and R(x) have the zero width in this limit and they can
be replaced by 1

2δ(x). The TBA equations then take the form

βε = β(k2 − µ)− 1
2
[
ln
(
1 + e−βε

)
+ ln(1 + η1)

]
, (11.51)

ln η1 =
1
2
[
ln(1 + η2)− ln

(
1 + e−βε

)]
, (11.52)

ln ηn =
1
2

ln [(1 + ηn−1)(1 + ηn+1)] , n ≥ 2, (11.53)

lim
n→∞

ln ηn

n
= 2βh. (11.54)

Eq. (11.53) is a difference equation whose general solution reads

ηn =
(
anb− a−nb−1

a− a−1

)2

− 1. (11.55)

The free parameters a and b are determined by the asymptotic condition (11.54), a = exp(β|h|),
and by the relation (11.52),

b2 =
1 + exp[β(k2 − µ+ h)]
1 + exp[β(k2 − µ− h)]

. (11.56)

After obtaining ε(k) from (11.51), the pressure (11.45) is given by

βP =
∫

dk
2π

ln
[(

1 + e−β(k2−µ+h)
)(

1 + e−β(k2−µ−h)
)]
. (11.57)

This is the well-known expression for noninteracting (c = 0) Fermi gas in a magnetic field.

• The limit c → ∞: The functions s(x) and R(x) are infinitely wide in this limit. This means
that the contributions R ∗ ln(1 + e−βε) and s ∗ ln(1 + e−βε) vanish in the TBA equations and
the functions ηn(Λ) become Λ-independent. The TBA equations are simplified to

ln η1 =
1
2

ln(1 + η2), ln ηn =
1
2

ln [(1 + ηn−1)(1 + ηn+1)] n ≥ 2, (11.58)

with limn→∞(ln ηn)/n = 2βh. Their solution is

ηn =
(

sinh[(n+ 1)βh]
sinh(βh)

)2

− 1. (11.59)

Thus,

ε(k) = k2 − µ− 1
2β

ln(1 + η1) = k2 − µ− ln[2 cosh(βh)]. (11.60)

The pressure is given by

βP =
∫

dk
2π

ln
[
1 + 2 cosh(βh)eβ(µ−k2)

]
. (11.61)
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The system looks like to be composed of free fermions where each energy level k2 can only be
occupied by either spin-up or spin-down.

• The fugacity expansion: To obtain the expansion of thermodynamic quantities in the fugacity
z = exp(βµ) � 1, we set

e−βε(k) =
∞∑

n=1

An(k, β)zn, (11.62)

1 + ηn(Λ) = bn(Λ, β) + cn(Λ, β) + dn(Λ, β) + · · · . (11.63)

Substituting these expansions into the TBA equations (11.46)-(11.50) and comparing the terms
of the order z0 and z1, we get the conditions

lnA1 + βk2 = s ∗ ln b1,
A2

A1
= R ∗A1 + s ∗ c1

b1
(11.64)

and

ln(bn − 1) = s ∗ (ln bn−1 + ln bn+1), b0 = 1; (11.65)
cn

bn − 1
= s ∗

(
cn−1

bn−1
+
cn+1

bn+1

)
,

c0
b0

= −A1. (11.66)

The set of equations (11.65), complemented by the asymptotic limn→∞(ln bn)/n = 2βh, has
the solution

bn = f2
n, fn =

sinh[(n+ 1)βh]
sinh(βh)

. (11.67)

The Fourier transform of Eq. (11.66),

ĉn
fn−1fn+1

=
1

2 cosh(c′ω)

(
ĉn−1

f2
n−1

+
ĉn+1

f2
n+1

)
, n ≥ 1, (11.68)

is the difference equation whose converging solution is

ĉn = C(ω)
(
fnfn−1e−(n+2)c′|ω| − fnfn+1e−nc′|ω|

)
. (11.69)

The initial condition c0/b0 = −A1 implies

ĉ1 = Â1

(
e−3c′|ω| − f2e−c′|ω|

)
. (11.70)

Let us set h→ 0, for simplicity, i.e. fn = n+ 1. The relations in Eq. (11.64) then imply

A1 = 2e−βk2
, A2 = e−βk2

∫
dp
π

c

(k − p)2 + c2
e−βp2

(11.71)

and the pressure is given by

βP =
∫

dk
2π

[
A1z +

(
A2 −

1
2
A2

1

)
z2 + · · ·

]
=

√
πβ

2π

[
2z + z2

(
−
√

2 +
1√
2

∫
dp
π

c′

p2 + (c′)2
e−2βp2

)
+ · · ·

]
. (11.72)
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11.2 Attractive regime c < 0

If c < 0, the general structure of N k-roots and M Λ-roots of the Bethe equations (10.27) and
(10.28) is more complicated. In particular, there can be M ′ ≤ M real Λ′-roots accompanied by
two complex k-roots which form a bounded pair of up-spin and down-spin fermions:

kα,1 = Λ′α + i|c′|, kα,2 = Λ′α − i|c′|, α = 1, 2, . . . ,M ′. (11.73)

We have seen that in the ground state all available Λ-roots belong to this category. The remaining
M −M ′ Λ-roots form the strings of length n = 1, 2 . . ., which are analogous to those in the
repulsive case,

Λ(n,r)
α = Λn

α + i|c′|(n+ 1− 2r), r = 1, 2, . . . , n; α = 1, 2, . . . ,Mn. (11.74)

There must holdM = M ′+
∑∞

n=1 nMn. The remainingN−2M ′ unpaired k-roots {kj}N−2M ′

j=1

lie on the real axis.
The derivation of the TBA equations goes basically along the same lines as in the repul-

sive case. We shall not repeat the derivation procedure; the original paper [30] or Section 13
of the monograph [56] are recommended to those who are interested in details. The novelty is
that, besides the particle and hole densities of the unpaired k-roots, {ρ, ρ̃}, and n-string cen-
ters {σn, σ̃n}∞n=1, we need to introduce these quantities also for the bounded Λ′-roots, {σ′, σ̃′}.
Defining

eβτ ≡ σ̃′

σ′
, (11.75)

the TBA equations read

βτ = 2β
[
k2 − (c′)2 − µ

]
+ a2 ∗ ln

(
1 + e−βτ

)
+ a1 ∗ ln

(
1 + e−βε

)
, (11.76)

βε = s ∗
[
ln
(
1 + eβτ

)
− ln(1 + η1)

]
, (11.77)

ln η1 = s ∗
[
ln
(
1 + e−βε

)
+ ln(1 + η2)

]
, (11.78)

ln ηn = s ∗ [ln(1 + ηn−1) + ln(1 + ηn+1)] , n ≥ 2, (11.79)

where

an(k) =
1
π

n|c′|
k2 + (nc′)2

. (11.80)

The asymptotic condition is

lim
n→∞

ln ηn

n
= 2βh. (11.81)

The pressure is given by

βP =
∫

dk
2π

ln
[
1 + e−βτ(k)

]
+
∫

dk
2π

ln
[
1 + e−βε(k)

]
. (11.82)

The thermodynamics is explicitly available in special case, like the c→ 0− limit, zero tempera-
ture, etc. [56].
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Appendix A: Spin and spin operators on chain

Spin of a particle

In quantum mechanics, spin operator S = (Sx, Sy, Sz) is a non-classical kind of angular mo-
mentum intrinsic to an elementary particle. Spin components obey commutation relations anal-
ogous to those valid for components of the orbital angular momentum,

[Sα, Sβ ] = ih̄
∑

γ=x,y,z

εαβγS
γ , (A.1)

where εαβγ is the antisymmetric tensor (εxyz = 1, εyxz = −1, etc.). The operator S2 = (Sx)2 +
(Sy)2 + (Sz)2 commutes to zero with each of the spin components. In the common basis of S2

and say Sz , the eigenvectors are given by

S2|s, σ〉 = h̄2s(s+ 1)|s, σ〉, (A.2)
Sz|s, σ〉 = h̄σ|s, σ〉, (A.3)

where s and σ are quantum numbers related to the operators S2 and Sz , respectively. The raising
and lowering spin operators S± = Sx ± iSy act on these eigenvectors as follows

S±|s, σ〉 = h̄
√
s(s+ 1)− σ(σ ± 1)|s, σ ± 1〉. (A.4)

To obtain a finite-dimensional representation of the spin algebra, the possible values of σ must
include σ = s, for which S+|s, s〉 = 0, and σ = −s, for which S−|s,−s〉 = 0. This means that
the component of spin angular momentum measured along the z-axis can only take the values
h̄σ with σ ∈ {−s,−s+ 1, . . . , s}. Since the total number 2s+ 1 of σ-values must be a positive
integer, the allowed values of the quantum number s are s = 0, 1

2 , 1,
3
2 , 2, etc.

The wave function of a quantum particle with spin s depends on its position in space r as
well as its spin state σ ∈ {−s,−s+1, . . . , s}, ψ ≡ ψ(σ, r). For systems of N identical particles
with spin s, the value of s determines the statistics of particles. Namely, interchanging any two
of the particles we must have

ψ(· · · ;σj , rj ; · · · ;σk, rk; · · ·) = (−1)2sψ(· · · ;σk, rk; · · · ;σj , rj ; · · ·). (A.5)

For bosons with s=0 or 1 or 2 etc., the prefactor (−1)2s reduces to +1 and so the wavefunction
is symmetric with respect to any interchange of two particles. For fermions with s = 1

2 or 3
2 or 5

2
etc., the prefactor (−1)2s reduces to −1 and so the wavefunction is antisymmetric with respect
to any interchange of two particles. As a consequence, no two fermions in the same spin state
can occur at the same point of the space (Pauli exclusion principle).

It is often useful to have at one’s disposal explicit matrix representations of spin operators. In
units of h̄ = 1, the spin operator of a spin- 1

2 Fermi particle is given by S = (1/2)(σx, σy, σz),
where

σx ≡ σ1 =
(

0 1
1 0

)
, σy ≡ σ2 =

(
0 −i
i 0

)
, σz ≡ σ3 =

(
1 0
0 −1

)
(A.6)
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are the Pauli matrices. The Pauli matrices fulfill the obvious product relations

(σα)2 = I, σασβ = iεαβγσ
γ for α 6= β (A.7)

and their trace vanishes. In the basis formed by the operator Sz

Sze+ = +
1
2
e+, e+ =

(
1
0

)
; (A.8)

Sze− = −1
2
e−, e− =

(
0
1

)
, (A.9)

the eigenvector e+ corresponds to the “up” spin state and the eigenvector e− corresponds to the
“down” spin state. The raising and lowering combinations of the spin operators

S+ ≡ Sx + iSy =
(

0 1
0 0

)
, S− ≡ Sx − iSy =

(
0 0
1 0

)
(A.10)

act on the eigenvectors as follows

S+e+ = S−e− = 0; S+e− = e+, S−e+ = e−. (A.11)

The 2× 2 matrices

Sz =
1
2

(
1 0
0 −1

)
, S+ =

(
0 1
0 0

)
, S− =

(
0 0
1 0

)
(A.12)

correspond to the two-dimensional (spin- 1
2 ) irreducible representation of the generators of the

sl(2) algebra

[Sz, S±] = ±S±, [S+, S−] = 2Sz. (A.13)

For spin-1 particles, the spin matrices obeying the sl(2) algebra (A.13) read

Sz =

 1 0 0
0 0 0
0 0 −1

 , S+ =
√

2

 0 1 0
0 0 1
0 0 0

 , S− =
√

2

 0 0 0
1 0 0
0 1 0

 . (A.14)

The basis is formed by the eigenvectors of the operator Sz

e+ =

 1
0
0

 , e0 =

 0
1
0

 , e− =

 0
0
1

 , (A.15)

with the eigenvalues +1, 0, −1, respectively.
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Spin operators on a chain

Operators are usually defined in quantum mechanics implicitly via operator relations. It is some-
times useful to have at one’s disposal an explicit representation of an operator as a matrix in some
basis forming the Hilbert space. The standard way how to increase the dimension of the Hilbert
space is the tensor (direct) product of two or more subspaces.

Let us consider general matrices (operators) A of arbitrary dimension a × a′ with elements
Aσσ′ ≡ Aσ

σ′ , where σ = 1, . . . , a numerates rows and σ′ = 1, . . . , a′ numerates columns. The
“standard” product of two matrices A and B, with the dimension constraint a′ = b, is the matrix
of dimension a× b′ defined by

(A ·B)σ
σ′ =

∑
σ′′

Aσ
σ′′B

σ′′

σ′ . (A.16)

The tensor product of two matrices A and B is defined as follows

(A⊗B)σ1σ2
σ′1σ′2

= Aσ1
σ′1
Bσ2

σ′2
. (A.17)

The resulting matrix is indexed by σ = (σ1, σ2) and σ′ = (σ′1, σ
′
2), and as such has the dimension

ab× a′b′. Explicitly,

A⊗B =


A11B A12B . . . A1a′B
A21B A22B . . . A2a′B

...
...

. . .
...

Aa1B Aa2B . . . Aaa′B

 . (A.18)

The generalization of the tensor product to more than two matrices is straightforward,

(A⊗B⊗C)σ1σ2σ3
σ′1σ′2σ′3

= Aσ1
σ′1
Bσ2

σ′2
Cσ3

σ′3
, (A.19)

etc.
As concerns combinations of standard and tensor products of matrices, there exists a simple

rule. Let us consider the product (A ⊗ B) · (C ⊗ D) with the matrix dimensions a′ = c and
b′ = d. Via a sequence of rearrangements

[(A⊗B) · (C⊗D)]σ1σ2
σ′1σ′2

=
∑

σ′′1 σ′′2

(A⊗B)σ1σ2
σ′′1 σ′′2

(C⊗D)σ′′1 σ′′2
σ′1σ′2

=
∑

σ′′1 σ′′2

Aσ1
σ′′1
Bσ2

σ′′2
C

σ′′1
σ′1
D

σ′′2
σ′2

= (A ·C)σ1
σ′1

(B ·D)σ2
σ′2

(A.20)

= [(A ·C)⊗ (B ·D)]σ1σ2
σ′1σ′2

we see that

(A⊗B) · (C⊗D) = (A ·C)⊗ (B ·D). (A.21)

Similarly,

(A1 ⊗B1 ⊗C1) · (A2 ⊗B2 ⊗C2) = (A1 ·A2)⊗ (B1 ·B2)⊗ (C1 ·C2) (A.22)
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provided that the matrix dimensions a′1 = a2, b′1 = b2, c′1 = c2, and so on.
Let us consider a chain of N lattice sites n = 1, 2, . . . , N . For each site n, we introduce the

chain spin- 1
2 operators of dimension 2N × 2N

Sα
n = I ⊗ . . .⊗ I︸ ︷︷ ︸

n−1

⊗ Sα︸︷︷︸
n

⊗I ⊗ . . .⊗ I︸︷︷︸
N

, (A.23)

where I is the unity 2 × 2 matrix and Sα (α = x, y, z) is one of the three SL(2) generators
(A.12). The explicit matrix representation of the chain spin operator reads

(Sα
n )σ1...σn...σN

σ′1...σ′n...σ′
N

= δ(σ1, σ
′
1) · · · (Sα)σn

σ′n
· · · δ(σN , σ

′
N ). (A.24)

Based on the multiplication rule (A.22), there exists an important rule concerning the ordinary
product of two chain spin operators: first one has to perform the matrix products of every two
2 × 2 matrices at the corresponding n = 1, 2, . . . , N sites and the resulting 2N × 2N matrix is
simply the tensor product of these N matrices. As an example, the product of two spin operators
Sα

n and Sα′

n′ for two different sites n 6= n′ reads

Sα
nSα′

n′ = I︸︷︷︸
1

⊗ . . .⊗ I ⊗ Sα︸︷︷︸
n

⊗I ⊗ . . .⊗ Sα′︸︷︷︸
n′

⊗I ⊗ . . .⊗ I︸︷︷︸
N

. (A.25)

It stands to reason that

[Sα
n,S

α′

n′ ] = 0 for n 6= n′, (A.26)

i.e., for two different sites the chain spin operators resemble Bose operators.
Let V be two-dimensional vector space isomorphic to C2. We shall choose as its basis or-

thonormal vectors e+ (spin up) and e− (spin down) defined in Eqs. (A.8) and (A.9), respectively.
The Hilbert space for the chain is V1 ⊗ V2 ⊗ . . . ⊗ VN . The vector basis for chain spin oper-
ators is generated by all possible 2N tensor products of the the basis site vectors on the chain.
We adopt the convention according to which a basis vector |n1, n2, . . . , nM 〉 corresponds to the
tensor product of M vectors e− put on the set of ordered lattice sites

n1 < n2 < . . . < nM (A.27)

and (N −M) vectors e+ put on all remaining sites:

|n1, n2, . . . , nM 〉 = e+︸︷︷︸
1

⊗e+ . . .⊗ e+ ⊗ e−︸︷︷︸
n1

⊗e+ ⊗ . . . e+ ⊗ e−︸︷︷︸
n2

⊗ . . .⊗ e+︸︷︷︸
N

.(A.28)

Equivalently,

|n1, n2, . . . , nM 〉 = S−n1
S−n2

. . .S−nM
|0〉, (A.29)

where |0〉 is the tensor product of N spin-up vectors e+,

|0〉 = e+︸︷︷︸
1

⊗e+ ⊗ . . . e+ ⊗ e+︸︷︷︸
N

. (A.30)

Since the total number of these orthogonal vectors is(
N

0

)
+
(
N

1

)
+ · · ·+

(
N

N

)
= 2N ,
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they form a complete basis of the 2N -dimensional Hilbert space.
We can proceed analogously in the case of spin-s operators in order to construct an orthogonal

basis of the (2s+ 1)N -dimensional Hilbert space.
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Appendix B: Elliptic functions

A single-valued nonconstant function f of a complex variable z is said to be elliptic if it has two
periods 2ω1 and 2ω2,

f(z + 2mω1 + 2nω2) = f(z), m, n integers. (B.1)

The ratio of the periods must not be purely real,

Im
(
ω1

ω2

)
6= 0, (B.2)

since if it is, the function reduces to either a singly periodic function for rational ω2/ω1 or a
constant for irrational ω2/ω1. The z-plane can be partitioned into period parallelograms the
vertices of which are the points z0 + 2mω1 + 2nω2; if the function f(z) is known within and on
a period parallelogram, its value can be determined at any point of the complex plane by applying
relation (B.1). Let a and b be the sides of the period parallelogram and α be the angle between
the sides. The nome q is then defined as

q = eiπτ , τ =
ω1

ω2
=
a

b
eiα. (B.3)

The periods are labeled such that Im(τ) > 0, i.e. |q| < 1. Although elliptic functions depend
on two complex variables, the argument z and the nome q, for brevity the parameter q will be
omitted in the notation whenever possible.

The standard Liouville theorem is generalized to elliptic functions as follows: An elliptic
function which is analytic inside and on a period parallelogram, is a constant. An elliptic function
has no singularities, except for poles in the finite part of the complex plane. Elliptic functions
with a single pole of order 2 per a period parallelogram are called Weierstrass elliptic functions;
they arise as solutions to differential equations of the form

∂2

∂z2
f = A+Bf + Cf2. (B.4)

Elliptic functions with simple poles are called Jacobi elliptic functions; they arise as solutions to
differential equations of the form

∂2

∂z2
f = A+Bf + Cf2 +Df3. (B.5)

Any elliptic function is expressible in terms of either Weierstrass or Jacobi elliptic functions.
The definitions of elliptic functions, their basic properties and relationships are presented in

monographs [74, 75] and partially in Refs. [16, 51, 76]. Here, we list and indicate proofs of only
those formulae which are used in the main text.

The Weierstrass functions

The Weierstrass elliptic function ℘(z) is defined by

℘(z) =
1
z2

+
∑
m,n

′
[

1
(z − 2mω1 − 2nω2)2

− 1
(2mω1 + 2nω2)2

]
, (B.6)
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where the symbol
∑′

m,n means the summation over all combinations of integersm and n, except
for the one m = n = 0. Obviously, it holds

℘(z + 2mω1 + 2nω2) = ℘(z), m, n integers, (B.7)

i.e. ℘(z) is doubly periodic with half-periods ω1 and ω2. ℘(z) has second-order poles at points
z = 2mω1 + 2nω2. It is an even function,

℘(z) = ℘(−z). (B.8)

To obtain the differential equation from which ℘(z) arises, we expand the function f(z) ≡
℘(z)− z−2 around the origin:

f(z) ≡ ℘(z)− z−2 =
1
2!
f ′′(0)z2 +

1
4!
f (4)(0)z4 + · · · , (B.9)

where we have used that f(0) = 0 and f(z) is even, i.e. f ′(0) = f ′′′(0) = · · · = 0. Writing
Ωmn ≡ 2mω1 + 2nω2, from (B.6) we obtain

f ′′(0) = 6
∑
m,n

′
Ω−4

mn, f (4)(0) = 120
∑
m,n

′
Ω−6

mn. (B.10)

We introduce the so-called elliptic invariants

g2 = 60
∑
m,n

′
Ω−4

mn, g3 = 140
∑
m,n

′
Ω−6

mn, (B.11)

in terms of which

℘(z) = z−2 +
g2
20
z2 +

g3
28
z4 +O(z6), (B.12)

∂

∂z
℘(z) = −2z−3 +

g2
10
z +

g3
7
z3 +O(z5). (B.13)

Taking into account that ℘(z) = z−2 + O(z2) and after simple algebra, these equations imply
the relation[

∂

∂z
℘(z)

]2
− 4℘3(z) + g2℘(z) + g3 = O(z2). (B.14)

The function on the lhs of (B.14) is an elliptic function, with no singularities (the poles of order
2 at z = 0 and at points z = 2mω1 + 2nω2 were subtracted). By Liouville’s elliptic-function
theorem, it is therefore a constant. Taking z → 0 we have O(z2) → 0, so that[

∂

∂z
℘(z)

]2
= 4℘3(z)− g2℘(z)− g3. (B.15)

Differentiating this equation with respect to z, we obtain the second-order differential equation

∂2

∂z2
℘(z) = 6℘2(z)− g2

2
, (B.16)

which is of type (B.4).
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There exists another Weierstrass function ζ(z) defined by

ζ(z) =
1
z
−
∫ z

0

du
[
℘(u)− 1

u2

]
. (B.17)

The function is expressible as the sum over (m,n)-integers,

ζ(z) =
1
z

+
∑
m,n

′
[

1
z − 2mω1 − 2nω2

+
1

2mω1 + 2nω2
+

z

(2mω1 − 2nω2)2

]
. (B.18)

The shift of the argument z by 2ω1 and 2ω2 results in

ζ(z + 2ω1) = ζ(z) + 2ζ(ω1), ζ(z + 2ω2) = ζ(z) + 2ζ(ω2). (B.19)

For |q| < 1, ζ(z) can be represented as the convergent series

ζ(z) =
ζ(ω1)
ω1

z +
π

2ω1
cot
(
πz

2ω1

)
+

2π
ω1

∞∑
n=1

q2n

1− q2n
sin
(
πnz

ω1

)
. (B.20)

The theta functions

The theta function ϑ4(z, q) with |q| < 1 is defined as the sum of the series

ϑ4(z, q) =
∞∑

n=−∞
(−1)nqn2

ei2πnz, (B.21)

which converges absolutely for all complex z and represents an entire (i.e. analytic everywhere)
function of z. This series representation is the Fourier transform of an infinite-product form

ϑ4(z, q) =
∞∏

n=1

[
1− 2q2n−1 cos(2πz) + q2(2n−1)

]
(1− q2n). (B.22)

Since it holds

ϑ4(z + 1) = ϑ4(z), ϑ4(z + τ) = −1
q
e−i2πzϑ4(z) (B.23)

[see the definition of τ in Eq. (B.3)], ϑ4(z) is the quasi-doubly-periodic function of z, with
quasi-periods 1 and τ . The remaining three theta functions are defined as follows

ϑ1(z, q) = −iq1/4eiπzϑ4

(
z +

τ

2
, q
)
,

ϑ2(z, q) = q1/4eiπzϑ4

(
z +

1
2

+
τ

2
, q

)
, (B.24)

ϑ3(z, q) = ϑ4

(
z +

1
2
, q

)
.

Also these functions are quasi-doubly-periodic in z, with quasi-periods 1 and τ . Whereas ϑ1(z)
is an odd function of z, the functions ϑ2(z), ϑ3(z), ϑ4(z) are even:

ϑ1(z) = −ϑ1(−z), ϑ2(z) = ϑ2(−z), ϑ3(z) = ϑ3(−z), ϑ4(z) = ϑ4(−z). (B.25)
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The theta functions have simple zeros:

ϑ1(z) = 0 at z = m+ nτ,
ϑ2(z) = 0 at z = m+ 1

2 + nτ,
ϑ3(z) = 0 at z = m+ 1

2 +
(
n+ 1

2

)
τ,

ϑ4(z) = 0 at z = m+
(
n+ 1

2

)
τ,

(B.26)

where m and n are integers. There exist many important addition formulae involving four theta
functions, their derivatives, multiples and sums of their arguments. For example, the theta func-
tions ϑ1 and ϑ4 fulfill the functional relations

ϑ1(u+ x)ϑ1(u− x)ϑ1(v + y)ϑ1(v − y)
−ϑ1(u+ y)ϑ1(u− y)ϑ1(v + x)ϑ1(v − x)

= ϑ1(u+ v)ϑ1(u− v)ϑ1(x+ y)ϑ1(x− y),
ϑ4(u+ x)ϑ4(u− x)ϑ4(v + y)ϑ4(v − y)
−ϑ4(u+ y)ϑ4(u− y)ϑ4(v + x)ϑ4(v − x) (B.27)
= −ϑ1(u+ v)ϑ1(u− v)ϑ1(x+ y)ϑ1(x− y),

ϑ4(u+ x)ϑ4(u− x)ϑ1(v + y)ϑ1(v − y)
−ϑ4(u+ y)ϑ4(u− y)ϑ1(v + x)ϑ1(v − x)

= ϑ4(u+ v)ϑ4(u− v)ϑ1(x+ y)ϑ1(x− y).

A class of identities involving the squares of Jacobi theta functions reads

ϑ2
1(z)ϑ

2
4(0) = ϑ2

3(z)ϑ
2
2(0)− ϑ2

2(z)ϑ
2
3(0),

ϑ2
2(z)ϑ

2
4(0) = ϑ2

4(z)ϑ
2
2(0)− ϑ2

1(z)ϑ
2
3(0),

ϑ2
3(z)ϑ

2
4(0) = ϑ2

4(z)ϑ
2
3(0)− ϑ2

1(z)ϑ
2
2(0), (B.28)

ϑ2
4(z)ϑ

2
4(0) = ϑ2

3(z)ϑ
2
3(0)− ϑ2

2(z)ϑ
2
2(0).

The special z = 0 case of the last identity is

ϑ4
4(0) = ϑ4

3(0)− ϑ4
2(0). (B.29)

To prove these identities, it is sufficient to note that the ratio of the lhs and the rhs of each identity
is an entire and doubly periodic function. According to the Liouville elliptic-function theorem,
this function is a constant which can be readily determined by choosing a special point in the
complex plane.

The modulus k and the conjugate (supplementary) modulus k′ are defined by

k =
ϑ2

2(0)
ϑ2

3(0)
= 4

√
q

∞∏
n=1

(
1 + q2n

1 + q2n−1

)4

, (B.30)

k′ =
ϑ2

4(0)
ϑ2

3(0)
=

∞∏
n=1

(
1− q2n−1

1 + q2n−1

)4

. (B.31)

Due to the equality (B.29), they are constrained by

k2 + k′2 = 1. (B.32)
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The half-period magnitudes K and K ′ are defined by

K =
π

2
ϑ2

3(0) =
π

2

∞∏
n=1

(
1 + q2n−1

1− q2n−1
· 1− q2n

1 + q2n

)2

, (B.33)

K ′ = − ln q
π
K = −iτK. (B.34)

K and K ′ are also expressible as the complete elliptic integrals of the first kind of modulus k
and k′, respectively:

K =
∫ π/2

0

dφ√
1− k2 sin2 φ

, K ′ =
∫ π/2

0

dφ√
1− k′2 sin2 φ

. (B.35)

The Jacobi theta functions are related to the theta functions as follows

H(u) ≡ ϑ1

(
u

2K , q
)
, H1(u) ≡ ϑ2

(
u

2K , q
)
,

Θ1(u) ≡ ϑ3

(
u

2K , q
)
, Θ(u) ≡ ϑ4

(
u

2K , q
)
.

(B.36)

They are entire functions of the complex variable u. Their simple zeros are located:

H(u) = 0 at u = 2mK + 2inK ′,
H1(u) = 0 at u = (2m+ 1)K + 2inK ′,
Θ1(u) = 0 at u = (2m+ 1)K + i(2n+ 1)K ′,
Θ(u) = 0 at u = 2mK + i(2n+ 1)K ′,

(B.37)

where m and n are any integers. The reflection properties of the functions read

H(u) = −H(−u), H1(u) = H1(−u), Θ1(u) = Θ1(−u), Θ(u) = Θ(−u). (B.38)

The function H satisfies the quasi-periodic relations

H(u+ 2K) = −H(u), H(u+ 2iK ′) = −1
q

exp
(
− iπu
K

)
H(u) (B.39)

with the quasi-periods 2K and 2iK ′. The remaining Jacobi theta functions are related to H as
follows

H1(u) = H(u+K),

Θ(u) = −iq1/4 exp
(

iπu
2K

)
H(u+ iK ′), (B.40)

Θ1(u) = Θ(u+K) = q1/4 exp
(

iπu
2K

)
H(u+K + iK ′).

They are also the doubly quasi-periodic functions of u, with the same quasi-periods 2K and
2iK ′. The Jacobi theta functions fulfill the addition formulae analogous to (B.27)-(B.29),

H(u+ x)H(u− x)H(v + y)H(v − y)
−H(u+ y)H(u− y)H(v + x)H(v − x) (B.41)

= H(u+ v)H(u− v)H(x+ y)H(x− y)

and so on.



942 Introduction to Integrable Many-Body Systems I

The Jacobi elliptic functions

The Jacobi elliptic functions snu ≡ sn(u, k), cnu ≡ cn(u, k) and dnu ≡ dn(u, k) are defined
by

snu =
1√
k

H(u)
Θ(u)

=
1√
k

ϑ1(v)
ϑ4(v)

, (B.42)

cnu =

√
k′

k

H1(u)
Θ(u)

=

√
k′

k

ϑ2(v)
ϑ4(v)

, (B.43)

dnu =
√
k′

Θ1(u)
Θ(u)

=
√
k′
ϑ3(v)
ϑ4(v)

, (B.44)

where v = u/(2K). These functions are meromorphic since their only singularities are simple
poles at u = 2mK + i(2n+ 1)K ′ (m,n are any integers). Their reflection properties are

snu = −sn(−u), cnu = cn(−u), dnu = dn(−u). (B.45)

It follows from the relations (B.40) that the Jacobi elliptic functions are periodic/anti-periodic
with periods 2K and 2iK ′:

sn(u+ 2K) = −snu,
cn(u+ 2K) = −cnu,
dn(u+ 2K) = dnu,

sn(u+ 2iK ′) = snu;
cn(u+ 2iK ′) = −cnu;
dn(u+ 2iK ′) = −dnu.

(B.46)

The half-period shifts are described by the relations

sn(u+K) =
cnu
dnu

,

cn(u+K) = −k′ snu
dnu

,

dn(u+K) = k′
1

dnu
,

sn(u+ iK ′) =
1

k snu
;

cn(u+ iK ′) = −i
dnu
k snu

;

dn(u+ iK ′) = −i
cnu
snu

.

(B.47)

The addition theorems for the Jacobi elliptic functions have the form

sn(u+ v) =
snu cn v dn v + cnu dnu sn v

1− k2sn2u sn2v
,

cn(u+ v) =
cnu cn v − snu dnu sn v dn v

1− k2sn2u sn2v
, (B.48)

dn(u+ v) =
dnu dn v − k2snu cnu sn v cn v

1− k2sn2 u sn2v
.

The Jacobi elliptic functions also arise from the inversion of the incomplete elliptic integral
of the first kind

u = F (ξ, k) =
∫ ξ

0

dφ√
1− k2 sin2 φ

(0 < k2 < 1), (B.49)
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giving the Jacobi amplitude

ξ ≡ am(u, k) = F−1(u, k). (B.50)

In terms of the Jacobi amplitude,

sn(u, k) = sin ξ, cn(u, k) = cos ξ, dn(u, k) =
√

1− k2 sin2 ξ. (B.51)

According to this representation, it holds

sn2u+ cn2u = 1, k2sn2u+ dn2u = 1. (B.52)

The Jacobi elliptic functions are doubly periodic generalizations of the trigonometric functions.
Indeed, if k → 0, the supplementary modulus k′ → 1, the half-periods K → π/2, K ′ →∞ and
ξ = u, so that

sn(u, 0) = sinu, cn(u, 0) = cosu, dn(u, 0) = 1. (B.53)

The integral representation (B.49) together with the relations (B.51) allow us to derive ex-
plicit expressions for the derivatives of the Jacobi elliptic functions with respect to the argument.
From (B.49) we get

du
dξ

=
1√

1− k2 sin2 ξ
=

1
dn(u, k)

. (B.54)

Consequently,

∂

∂u
sn(u, k) =

∂ sin ξ
∂ξ

∂ξ

∂u
= cnu dnu . (B.55)

Similarly,

∂

∂u
cn(u, k) = −snu dnu ,

∂

∂u
dn(u, k) = −k2snu cnu . (B.56)

With regard to the equalities (B.52), the Jacobi elliptic functions can be defined as solutions to
the differential equations

∂y

∂u
=

√
(1− y2)(1− k2y2), y = sn(u, k);

∂y

∂u
= −

√
(1− y2)(k′2 + k2y2), y = cn(u, k); (B.57)

∂y

∂u
= −

√
(1− y2)(y2 − k′2), y = dn(u, k).

Differentiating these equations with respect to u, we obtain

∂2y

∂u2
= −(1 + k2)y + 2k2y3, y = sn(u, k);

∂2y

∂u2
= −(1− 2k2)y − 2k2y3, y = cn(u, k); (B.58)

∂2y

∂u2
= (2− k2)y − 2y3, y = dn(u, k).
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These equations are of type (B.5). Higher-order derivatives are calculable by repeated application
of the relations (B.57) and (B.58).

For u = 0 we have ξ = 0, which implies

sn 0 = 0, cn 0 = dn 0 = 1, (B.59)

independently of modulus k. The Jacobi elliptic functions are regular in the neighborhood of
u = 0. Using MacLaurin’s theorem, their power series expansions can be found by calculating
the higher-order derivatives at u = 0 according to the above prescription. The final result is:

snu = u− 1
3!

(1 + k2)u3 +
1
5!

(1 + 14k2 + k4)u5 − · · · ,

cnu = 1− 1
2!
u2 +

1
4!

(1 + 4k2)u4 − · · · , (B.60)

dnu = 1− 1
2!
k2u2 +

1
4!

(4k2 + k4)u4 − · · · .

The imaginary Jacobi transformation makes a bridge between the Jacobi elliptic functions of
argument u and modulus k and the ones of argument iu and supplementary modulus k′:

sn(u, k) =
1
i
sn(iu, k′)
cn(iu, k′)

,

cn(u, k) =
1

cn(iu, k′)
, (B.61)

dn(u, k) =
dn(iu, k′)
cn(iu, k′)

.

The connection between the Jacobi elliptic functions of argument u and modulus k with those
of argument ũ and modulus l given by

ũ = (1 + k′)u, l =
1− k′

1 + k′
, (B.62)

follows from the Landen transformation:

sn(ũ, l) = (1 + k′)
sn(u, k)cn(u, k)

dn(u, k)
,

cn(ũ, l) =
1− (1 + k′)sn2(u, k)

dn(u, k)
, (B.63)

dn(ũ, l) =
1− (1− k′)sn2(u, k)

dn(u, k)
.

The half-period magnitudes Kl and K ′
l , associated with modulus l, are related to the ones Kk

and K ′
k, associated with modulus k, via

Kl =
1 + k′

2
Kk, K ′

l = (1 + k′)K ′
k, τl = 2τk. (B.64)
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[50] L. Šamaj: J. Stat. Phys. 111 (2003) 261
[51] R. J. Baxter: Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1982)
[52] M. Gaudin: La Fonction d’Onde de Bethe (Masson, Paris, 1983)
[53] D. C. Mattis: The Many-Body Problem (An Encyclopedia of Exactly Solved Models in One Dimen-

sion (World Scientific,Singapore,1993)
[54] V. E. Korepin, F. H. L. Essler: Exactly Solvable Models of Strongly Correlated Electrons (World

Scientific,Singapore,1994)
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[58] F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper, V. E. Korepin: The One-Dimensional Hubbard

Model (Cambridge University Press, Cambridge, 2005)
[59] J. B. McGuire: J. Math. Phys. 5 (1964) 622
[60] L. N. Sneddon: Mixed Boundary Value Problem in Potential Theory (North-Holland, Amsterdam,

1966)
[61] M. Gaudin: Phys. Rev. A 4 (1971) 386
[62] C. P. Yang: Phys. Rev. A 2 (1970) 154
[63] G. Kato, M. Wadati: Phys. Rev. E 63 (2001) 036106
[64] G. Kato, M. Wadati: J. Phys. Soc. Jpn. 70 (2001) 1924
[65] M. Wadati, G. Kato: Chaos, Solitons & Fractals 14 (2002) 23
[66] L. Tonks: Phys. Rev. 50 (1936) 955
[67] J. Birman: Ann. Math. Studies 82 (1974) 1
[68] J. Birman: Bull. Am. Math. Soc. 28 (1983) 253
[69] A. Connes: Noncommutative geometry (Academic Press, San Diego, 1994)
[70] J. Wess, B. Zumino: Nucl. Phys. B (Proc. Suppl.) 18 (1990) 302
[71] J. B. McGuire: J. Math. Phys. 6 (1965) 432
[72] J. B. McGuire: J. Math. Phys. 7 (1965) 123
[73] M. Flicker, E. H. Lieb: Phys. Rev. 161 (1967) 179
[74] K. G. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum (Königsberg, 1829)
[75] E. T. Whittaker, G. N. Watson: A Course of Modern Analysis, 4th edn. (Cambridge University Press,

Cambridge, 1927)
[76] I. S. Gradshteyn, I. M. Ryzhik: Tables of Integrals, Series, and Products,, 5th edn. (Academic Press,

London, 1994)


	Introduction
	Spinless particles with -function interactions: Bethe ansatz and the ground state
	Definitions and basic formalism
	Fermi gas with -function interactions
	Bosons: Bethe ansatz equations
	Bound states for attractive bosons
	Uniqueness of the Bethe ansatz solution for repulsive bosons
	Ground-state energy

	Bethe ansatz: zero-temperature thermodynamics and excited states
	Response of the ground state
	Zero-temperature thermodynamics
	Low-lying excitations
	Consistency of zero-temperature thermodynamics
	Zero-temperature thermodynamics for repulsive -function bosons

	Bethe ansatz: finite-temperature thermodynamics
	The concept of holes
	Thermodynamic equilibrium
	Thermodynamics of repulsive -function bosons

	Particles with hard-core interactions
	Bethe ansatz
	Ground state and zero-temperature thermodynamics
	Finite-temperature thermodynamics

	Particles with 1/x2 interactions
	The two-body scattering problem
	The ground-state wavefunction of a product form
	Excited states for the trigonometric case
	Ground-state energy and zero-temperature thermodynamics
	Finite-temperature thermodynamics

	QISM: Yang-Baxter equation
	Generalized Bethe ansatz
	Derivation of the Yang-Baxter equation
	Lax operators, transfer and monodromy matrices
	Two-state solutions of the YBE
	Braid-group solution
	Quantum groups
	Classical plane and the SL(2) group
	Quantum plane and the SLq(2) group
	Link between quantum groups and the YBE


	QISM: Transfer matrix and its diagonalization
	Vertex models on the square lattice
	Connection with quantum models on a chain
	Diagonalization of the trigonometric transfer matrix

	QISM: Treatment of boundary conditions
	Formulation of boundary conditions
	Boundary conditions and the inhomogeneous transfer matrix
	Diagonalization of the inhomogeneous transfer matrix

	Spin-12 fermions with -function interactions: Nested Bethe ansatz
	The two-body scattering problem
	Nested Bethe equations for spin-12 fermions
	The ground state
	Repulsive regime c>0
	Attractive regime c<0


	Thermodynamics of spin-12 fermions with -function interactions
	Repulsive regime c>0
	TBA equations
	Special cases

	Attractive regime c<0

	Acknowledgment
	Appendix A: Spin and spin operators on chain
	Appendix B: Elliptic functions
	References

