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In this article, we review the principles of macroscopic quantum electrodynamics and discuss
a variety of applications of this theory to medium-assisted atom-field coupling and dispersion
forces. The theory generalises the standard mode expansion of the electromagnetic fields in
free space to allow for the presence of absorbing bodies. We show that macroscopic quan-
tum electrodynamics provides the link between isolated atomic systems and magnetoelectric
bodies, and serves as an important tool for the understanding of surface-assisted atomic relax-
ation effects and the intimately connected position-dependent energy shifts which give rise to
Casimir–Polder and van der Waals forces.
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1 Introduction

In this article we review the basic principles, latest developments and important applications of
macroscopic quantum electrodynamics (QED). This theory extends the well-established quan-
tum optics in free space (Sec. 2) to include absorbing and dispersing magnetoelectric bodies in
its Hamiltonian description. In that way, a connection is established between isolated atomic sys-
tems (atoms, ions, molecules, Bose–Einstein condensates) and absorbing materials (dielectrics,
metals, superconductors). This is achieved by means of a quantisation scheme for the medium-
assisted electromagnetic fields (Sec. 3).

We set the scene by reviewing the basic elements of quantum optics in free space (Sec. 2).
Beginning with the quantisation of the electromagnetic field in free space in a Lagrangian formal-
ism (Sec. 2.1.1) and based on Maxwell’s equations (Sec. 2.1.2), we briefly review two important
applications, the lossless beam splitter (Sec. 2.1.3) and the mode summation approach to Casimir
forces (Sec. 2.1.4). We introduce minimal-coupling and multipolar-coupling schemes (Sec. 2.2)
and discuss important consequences of the quantised atom-field coupling, spontaneous decay
and the Lamb shift (Sec. 2.2.2). For completeness, we briefly review optical Bloch equations
(Sec. 2.2.3) and the Jaynes–Cummings model (Sec. 2.2.4).

The main part of this review deals with macroscopic quantum electrodynamics (Sec. 3) and
its applications (Secs. 4–6). Macroscopic quantum electrodynamics provides the foundations for
investigations into quantum-mechanical effects related to the presence of magnetoelectric bodies
or interfaces such as dispersion forces and medium-assisted atomic relaxation and heating rates.
The quantisation scheme is based on an expansion of the electromagnetic field operators in terms
of dyadic Green functions, the fundamental solutions to the Helmholtz equation (Sec. 3.1.2). We
discuss the principles of coupling atoms to the medium-assisted electromagnetic field by means
of the minimal-coupling and multipolar-coupling schemes (Sec. 3.3), the latter of which will be
used extensively throughout the article. After deriving the basic relations, we first focus our at-
tention on medium-assisted atomic relaxation rates (Sec. 4). We present examples of modified
spontaneous decay, near-field spin relaxation, heating and local-field corrections. As we fre-
quently refer to a number of explicit formulas for multilayered media, we have collected some
of the most important relations in the Appendix (App. A).

The Kramers–Kronig relations provide a close connection between the relaxation rates (line
widths) and the corresponding energy shifts (Lamb shifts). The Lamb shift already exists in
free space where the bare atomic transition frequencies are modified due to the interaction with
the quantum vacuum. Because the quantum vacuum, i.e. the electromagnetic field fluctuations,
are altered due to the presence of magnetoelectric bodies, these energy shifts become position-
dependent and hence lead to dispersion forces. We develop the theory of Casimir, Casimir–Polder
(CP) and van der Waals (vdW) forces on the basis of those field fluctuations (Sec. 5). Amongst
other examples, we discuss under which circumstances the results based on mode summations
and perfect boundary conditions (introduced in Sec. 2.1.4) can be retrieved.

Finally, we apply the theory of macroscopic quantum electrodynamics to strong atom-field
coupling effects in microresonators (Sec. 6). Here we discuss leaky optical cavities from a field-
theoretic point of view (Sec. 6.1) which provides insight into input-output coupling at semi-
transparent cavity mirrors and generalizes the Jaynes–Cummings model (Sec. 2.2.4). We further
present an example for entanglement generation between two atoms that utilizes surface-guided
modes on a spherical microresonator (Sec. 6.2.2).
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2 Elements of vacuum quantum electrodynamics

Let us begin our investigations of quantum electrodynamics by revisiting some of the basics of
this theory — QED in free space. There are essentially two ways of approaching the quantisation
of the electromagnetic field. In the quantum field theory literature (see, e.g. [1]), the formal
route is taken in which a Lagrangian is postulated that fulfils certain general requirements such
as relativistic covariance (Sec. 2.1.1). In order to stress the intimate connection with classical
optics [2], we instead follow a second approach by sticking to classical Maxwell theory as long
as possible before quantising (Sec. 2.1.2).

A simple application of the mode expansion that will be employed in this section is the de-
scription of the lossless beam splitter (Sec. 2.1.3) which will be extended to lossy devices in
Sec. 3.2. The mode expansion approach will also be used to discuss the Casimir force between
two perfectly conducting plates (Sec. 2.1.4). As we will later see in Sec. 5.1, this interpretation
cannot be upheld if the rather severe approximation of perfectly conducting plates is being weak-
ened. Instead, we will have to describe Casimir forces (and related forces) in terms of fluctuating
dipole forces.

Next, we consider the coupling of the quantised electromagnetic field to charged particles
(Sec. 2.2). We will introduce the notion of Kramers–Kronig relations and discuss simple atom-
field phenomena such as spontaneous decay, the Lamb shift, the optical Bloch equations and the
Jaynes–Cummings model of cavity QED. These examples will play a major role in our subse-
quent discussion of macroscopic QED (Secs. 4 and 5).

2.1 Quantisation of the electromagnetic field in free space

In this section, we briefly describe the theory of quantum electrodynamics in free space. We out-
line both the usual Lagrangian formalism and the more ad hoc approach via Maxwell’s equations
that highlights the connections with classical optics.

2.1.1 Lagrangian formalism

Within the framework of U(1)-gauge theories, the coupling between the fermionic matter fields
and the electromagnetic field is described by a gauge potentialAµ = (φ/c,A) which is identified
as the four-vector of scalar and vector potentials. In order to determine the dynamics of Aµ in
the Lagrangian formalism, a Lorentz covariant combination in terms of derivatives of Aµ has to
be sought, the simplest of which is the combination

L =
∫
d4xL = − 1

4µ0

∫
d4xFµνF

µν =
1
2

∫
dt

∫
d3r

[
ε0E2(r, t)− 1

µ0
B2(r, t)

]
(2.1)

with the (covariant) anti-symmetric tensor

Fµν = ∂µAν − ∂νAµ =


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0

 . (2.2)
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Recall that the contravariant components of a four-vector xµ can be derived from its covariant
components xµ by contraction with the metric tensor gµν = diag(1,−1,−1,−1), xµ = gµνxν .

The equations of motion that follow from the Lagrangian density (2.1),

∂µF
µν = 0 , ∂µε

µνρσFρσ = 0 (2.3)

[εµνρσ: completely anti-symmetric symbol], are equivalent to Maxwell’s equations

∇ ·B(r, t) = 0 , (2.4)
∇×E(r, t) = −Ḃ(r, t) , (2.5)
∇ ·D(r, t) = 0 , (2.6)

∇×H(r, t) = Ḋ(r, t) . (2.7)

They have to be supplemented with the free-space constitutive relations

D(r, t) = ε0E(r, t) , (2.8)

H(r, t) =
1
µ0

B(r, t) , (2.9)

that connect the dielectric displacement field D(r, t) with the electric field E(r, t) and the mag-
netic field H(r, t) with the induction field B(r, t).

Returning to the Lagrangian (2.1), one constructs the canonical momentum to the four-
potential as

Πµ =
δL

δȦµ
. (2.10)

Its spatial components are proportional to the electric field, Π = −ε0E, whereas the component
Π0 vanishes due to the anti-symmetry of Fµν . This means that there is no dynamical degree of
freedom associated with the zero component of the momentum field. Hence, the dynamics of the
electromagnetic field is constrained. Using the canonical momenta, one introduces a Hamiltonian
by means of a Legendre transform as

H =
1
2

∫
dt

∫
d3r

[
ε0E2(r, t) +

1
µ0

B2(r, t)
]
. (2.11)

An additional complication arises due to the gauge freedom of electrodynamics. From the
definition of Fµν , Eq. (2.2), it is clear that adding the four-divergence of an arbitrary scalar
function Λ,

Aµ 7→ Aµ + ∂µΛ , (2.12)

does not alter the equations of motion, i.e. Maxwell’s equations. One is therefore free to choose
a gauge function Λ that is best suited to simplify actual computations. Clearly, any physically
observable quantities derived from the electromagnetic fields are independent of this choice of
gauge. A particular choice that preserves the relativistic covariance of Maxwell’s equations is
the Lorentz gauge in which one imposes the constraint ∂µA

µ = 0. In quantum optics, where
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relativistic covariance is not needed because the external sources envisaged there rarely move
with any appreciable speed, the Coulomb gauge is often chosen. Here, one sets

φ = 0 , ∇ ·A = 0 , (2.13)

which obviously breaks relativistic covariance. Hence, in free space there are only two indepen-
dent components of the vector potential. The scalar potential is identically zero; this is actually
a consequence of the requirement ∇ ·A = 0 rather than a separate constraint. In the Coulomb
gauge, the Poisson bracket between the dynamical variables and their respective canonical mo-
menta reads

{A(r, t),Π(r′, t)} = δ⊥(r− r′) (2.14)

where δ⊥(r) denotes the transverse δ function. With the relations E = −Π/ε0 and B = ∇×A,
the Poisson bracket for these fields simply read

{E(r, t),B(r′, t)} = − 1
ε0

∇× δ⊥(r− r′) , (2.15)

which serves as the fundamental relation between the electromagnetic fields. At this point,
canonical field quantisation can be performed in the usual way by means of the correspondence
principle. Upon quantisation, the Poisson bracket has to be replaced by (i~)−1 times the commu-
tator and Hamilton’s equations of motion have to replaced by Heisenberg’s equations of motion.

2.1.2 Maxwell’s equations

Instead of using the field-theoretic Lagrangian language, we adopt a slightly simpler approach
to quantisation that keeps aspects of the classical theory for as long as possible. Maxwell’s
equations (2.5) and (2.7) can equivalently be expressed in terms of the vector potential [derivable
from Eq. (2.2)]

E(r, t) = −Ȧ(r, t) , B(r, t) = ∇×A(r, t) . (2.16)

The vector potential A(r, t) in the Coulomb gauge (2.13) obeys the wave equation

∆A(r, t)− 1
c2

Ä(r, t) = 0 . (2.17)

The solutions to Eq. (2.17) can be found by separation of variables, i.e. we make the ansatz

A(r, t) =
∑

λ

Aλ(r)uλ(t) (2.18)

which amounts to a mode decomposition. The mode functions Aλ(r) obey the Helmholtz equa-
tion

∆Aλ(r) +
ω2

λ

c2
Aλ(r) = 0 (2.19)
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where we defined the separation constant as ω2
λ for later convenience. One can read Eq. (2.19)

as an eigenvalue equation for the Hermitian operator −∆ having eigenvalues ω2
λ/c

2 and eigen-
vectors Aλ(r). Because of the Hermiticity of the Laplace operator, the mode functions form a
complete set of orthogonal functions, albeit strictly only in a distributional sense. Hence,∫

d3rA∗
λ(r) ·Aλ′(r) = Nλδλλ′ ,

∑
λ

1
Nλ

Aλ(r)⊗A∗
λ(r′) = δ⊥(r− r′) (2.20)

where Nλ denotes a normalization factor.
The Helmholtz equation (2.19) is easily solved in cartesian coordinates. The solutions are

plane waves Aλ(r) = eσ(k)eik·r where the magnitude of the wavevector k obeys the dispersion
relation k2 = ω2

λ/c
2. For each wavevector k there are two orthogonal polarisations with unit

vectors eσ(k) obeying eσ(k) · eσ′(k)= δσσ′ and eσ(k) · k = 0. Hence, the sum over λ has in
fact the following meaning:∑

λ

≡
2∑

σ=1

∫
d3k

(2π)3/2
. (2.21)

In cylindrical or spherical coordinates the solutions to the scalar Helmholtz equation can be
written in terms of cylindrical and spherical Bessel functions, respectively (see Appendix A.4.2
and A.4.3).

The temporal part of the wave equation reduces to the differential equation of a harmonic
oscillator,

üλ(t) + ω2
λuλ(t) = 0 , (2.22)

with solutions uλ(t) = e±iωλtuλ. Combining spatial and temporal parts, we obtain the mode
decomposition for the vector potential as (ω = kc)

A(r, t) =
2∑

σ=1

∫
d3k

(2π)3/2
eσ(k)

[
ukσe

i(k·r−ωt) + u∗kσe
−i(k·r−ωt)

]
, (2.23)

where we have explicitly taken care of the reality of the vector potential by imposing the condi-
tion ukσ(t) = u∗−kσ(t).

Writing the expressions (2.16) for the electric field and the magnetic induction in terms of
the vector potential (2.23),

E(r, t) = i

2∑
σ=1

∫
d3k

(2π)3/2
eσ(k)ω

[
ukσe

i(k·r−ωt) − u∗kσe
−i(k·r−ωt)

]
, (2.24)

B(r, t) = i

2∑
σ=1

∫
d3k

(2π)3/2
[k× eσ(k)]

[
ukσe

i(k·r−ωt) − u∗kσe
−i(k·r−ωt)

]
, (2.25)

the Hamiltonian (2.11) reads

H = −1
2

2∑
σ,σ′=1

∫∫∫
d3r d3k d3k′

(2π)3

[
ε0(eσ · eσ′)ωω′ +

1
µ0

(k× eσ) · (k′ × eσ′)
]

×
[
ukσe

i(k·r−ωt) − u∗kσe
−i(k·r−ωt)

] [
uk′σ′ei(k′·r−ω′t) − u∗k′σ′e−i(k′·r−ω′t)

]
.(2.26)
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Using the orthogonality of the polarisation vectors eσ · eσ′ = δσσ′ as well as the relation (k ×
eσ) · (k× eσ′)= k2(eσ · eσ′), and integrating over r and k′ leaves us with

H = 2ε0
2∑

σ=1

∫
d3k ω2|ukσ|2 . (2.27)

The complex-valued functions ukσ can then be split into their respective real and imaginary parts
as

qkσ =
√
ε0 (ukσ + u∗kσ) , pkσ = −iω

√
ε0 (ukσ − u∗kσ) , (2.28)

which finally yields the classical Hamiltonian in the form

H =
1
2

2∑
σ=1

∫
d3k

(
p2
kσ + ω2q2kσ

)
. (2.29)

In this way, we have converted the Hamiltonian (2.11) of the classical electromagnetic field into
an infinite sum of uncoupled harmonic oscillators with frequencies ω = kc. The functions qkσ

and pkσ are thus analogous to the position and momentum of a classical particle of mass m
attached to a spring with spring constant k = mω2.

The conversion of a field Hamiltonian into a set of uncoupled harmonic oscillators is the
essence of every free-field quantisation scheme. In cartesian coordinates it is equivalent to a de-
composition into uncoupled Fourier modes (or alternatively into Bessel–Fourier modes if cylin-
drical or spherical coordinates are used). Note that the introduction of mode functions with
the completeness and orthogonality relations (2.20) circumvents the usual problem of having to
perform field quantisation in a space of finite extent, followed by the limiting procedure to un-
bounded space at the end of the calculation. The analogy with classical mechanics can be pushed
even further by noting that the functions qkσ and pkσ obey the Poisson bracket relation

{qkσ, pk′σ′} = δ(k− k′)δσσ′ . (2.30)

Quantisation is then performed by regarding the classical c-number functions qkσ and pkσ

as operators in an abstract Hilbert space H, and by replacing the Poisson brackets (2.30) by the
respective commutators times (i~)−1 [3]:

qkσ 7→ q̂kσ , pkσ 7→ p̂kσ , [q̂kσ, p̂k′σ′ ] = i~δ(k− k′)δσσ′ . (2.31)

By returning to the complex amplitude functions, now with different normalisation factors,

âσ(k) =
√

ω

2~

(
q̂kσ +

ip̂kσ

ω

)
, â†σ(k) =

√
ω

2~

(
q̂kσ −

ip̂kσ

ω

)
, (2.32)

which obey the commutation rules[
âσ(k), â†σ′(k′)

]
= δ(k− k′)δσσ′ , (2.33)
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we can write the operator of the vector potential in the Schrödinger picture as

Â(r) =
2∑

σ=1

∫
d3k

(2π)3/2

√
~

2ε0ω
eσ

[
eik·râσ(k) + e−ik·râ†σ(k)

]
. (2.34)

The plane-wave expansion (2.34) is a special case of the more general mode expansion

Â(r) =
∑

λ

[
Aλ(r)âλ + A∗

λ(r)â†λ
]
. (2.35)

The amplitude operators âλ and â†λ then obey the commutation rules[
âλ, â

†
λ

]
= δλλ′ . (2.36)

Finally, by introducing the amplitude operators via Eq. (2.32), the Hamiltonian (2.29) is con-
verted into diagonal form

Ĥ =
1
2

∑
λ

~ωλ

(
â†λâλ + âλâ

†
λ

)
=
∑

λ

~ωλ

(
â†λâλ +

1
2

)
(2.37)

where the second equality follows from application of the commutation relation (2.36). The last
term in (2.37) is an infinite, but additive, constant, the quantum-mechanical ground-state energy.

With the expansion (2.35) at hand, it is now straightforward to write down the mode expan-
sion of the operators of the electric field and the magnetic induction as

Ê(r) = i
∑

λ

ωλ

[
Aλ(r)âλ −A∗

λ(r)â†λ
]
, (2.38)

B̂(r) =
∑

λ

[
∇×Aλ(r)âλ + ∇×A∗

λ(r)â†λ
]
. (2.39)

Using these expressions, we arrive at the (equal-time) commutation relations for the electromag-
netic field operators as[

Ê(r), B̂(r′)
]

= i
∑

λ

ωλ {Aλ(r) · [∇×A∗
λ(r′)] + A∗

λ(r) · [∇×Aλ(r′)]}

= − i~
ε0

∇× δ⊥(r− r′) (2.40)

where we have chosen a normalization factor Nλ = ~/(2ε0ωλ) as in Eq. (2.34) and used the
orthogonality relation (2.20). This commutator agrees with the canonical commutator implied
by the Poisson bracket (2.15) on imposing the correspondence principle. The commutation rule
(2.40) tells us that the quantised electromagnetic field is a bosonic vector field. Its elementary
excitations, the photons, of polarisation σ and wavevector k are annihilated and created by the
amplitude operators âkσ and â†kσ .

Note that the operators of the electric field and the magnetic induction describe the electro-
magnetic degrees of freedom alone. The operators of the dielectric displacement D̂(r) and the
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-�

-

�

-

�

d

â1(ω)

b̂2(ω)

b̂1(ω)

â2(ω)

-
x

Fig. 2.1. Simple one-dimensional model of a beam splitter of thickness d, consisting possibly of several
layers of different materials.

magnetic field Ĥ(r), which in free space are trivially connected to Ê(r) and B̂(r) via Eqs. (2.8)
and (2.9), in general contain both electromagnetic as well as matter degrees of freedom. We
will see later in the context of macroscopic quantum electrodynamics that the same commuta-
tion rules (2.40) can be upheld even in the presence of magnetoelectric matter. The proof of the
validity of this commutation provides a cornerstone of macroscopic QED.

2.1.3 Lossless beam splitter

Many propagation problems involving classical as well as quantised light involves finding the
eigenmodes of the geometric setup and expanding the electromagnetic fields in terms of those
modes. The plane-wave expansion in empty space was the simplest case imaginable. Manipu-
lating light using passive optical elements such as beam splitters, phase shifters or mirrors are
classic examples of mode matching problems at interfaces between dielectric or metallic bodies
and empty space that can be solved by mode expansion approaches.

In most cases of interest, it is possible to restrict one’s attention to a one-dimensional prop-
agation problem by choosing a particular linear polarisation and considering one vector compo-
nent of the electromagnetic field only. For example, let us consider light propagation along the
x-direction in which case the electric-field operator turns into a scalar operator

Ê(x) = i

∫
dk c|k|A(k, x)â(k)− i

∫
dk c|k|A∗(k, x)â†(k) . (2.41)

The mode functions A(k, x) satisfy the one-dimensional Helmholtz equation

d2

dx2
A(k, x) + n2(x)k2A(k, x) = 0 (2.42)

with a spatially dependent (real) refractive index n(x) =
√
ε(x). The simplest model of a loss-

less beam splitter involves assuming a refractive index profile with piecewise constant refractive
index (Fig. 2.1)

n(x) =
{
n, |x| ≤ d/2,
1, |x| > d/2. (2.43)
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Fig. 2.2. A plane wave eikx with k > 0 (left figure) or k < 0 (right figure) impinges onto a beam splitter
from the left or right, respectively, and splits into transmitted and reflected parts.

The solutions to the Helmholtz equation (2.42) with the refractive index profile (2.43) are
once again plane waves that can be constructed similar to the familiar quantum-mechanical prob-
lem of wave scattering at a potential barrier (Fig. 2.2). If an incoming plane wave eikx from the
left (k > 0) impinges onto the barrier, it will split into a reflected wave R(ω)e−ikx and a trans-
mitted wave T (ω)eikx. Similarly, if a plane wave eikx enters from the right (k < 0), it will
split into a reflected wave R′(ω)e−ikx and a transmitted wave T ′(ω)eikx with as yet unspecified
reflection and transmission coefficients R(ω), R′(ω), T (ω) and T ′(ω), respectively. Hence, the
mode functions A(k, x) can be written as

A(k, x) =
√

~
4πε0ωA

{
eikx +R(ω)e−ikx , x ≤ −d

2

T (ω)eikx , x ≥ d
2

k > 0 , (2.44)

A(k, x) =
√

~
4πε0ωA

{
T ′(ω)eikx , x ≤ −d

2

eikx +R′(ω)e−ikx , x ≥ d
2

k < 0 , (2.45)

where A is a normalisation area. The transmission and reflection coefficients can be obtained
by requiring continuity of the vector potential (the quantum-mechanical wave function) and its
first derivative at the beam-splitter interfaces. This requirement is analogous to the well-known
conditions of continuity in classical electromagnetism. The result can be found in textbooks (see,
e.g., [2]) as

T (ω) =
1− r2

1− r2e2indω/c
ei(n−1)dω/c , (2.46)

R(ω) = −re−idω/c + reindω/cT (ω) , (2.47)

where r = (n − 1)/(n + 1) =
√

ε−1√
ε+1

is the Fresnel reflection coefficient for p-polarised waves
(see App. A.4.1).

For a single dielectric plate, the transmission coefficients T (ω) and T ′(ω) and the reflection
coefficients R(ω) and R′(ω) are identical. For multilayered dielectrics, this is not necessarily
the case. There are, however, a number of physical principles that restrict the form of these
coefficients. For example, Onsager reciprocity [4] requires the magnitudes of the transmission
coefficients to be identical, |T (ω)| = |T ′(ω)|. In Sec. A.1 we will give details how this can be
seen from general properties of the dyadic Green tensor. Moreover, energy conservation (photon
number conservation, probability conservation) dictates that the squared moduli of transmission
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and reflection coefficients must add up to unity,

|T (ω)|2 + |R(ω)|2 = 1 . (2.48)

The correctness of Eq. (2.48) can be immediately checked by applying Eqs. (2.46) and (2.47).
We see from Fig. 2.1 that the electric field can be decomposed into its incoming and outgoing

parts associated with the photonic amplitude operators âi(ω) and b̂i(ω), respectively. The total
electric field is thus the sum of field components travelling to the right (k > 0) and to the left
(k < 0), whose amplitudes transform as

b̂1(ω) = T (ω)â1(ω) +R′(ω)â2(ω) , (2.49)

b̂2(ω) = R(ω)â1(ω) + T ′(ω)â2(ω) . (2.50)

For the transformed amplitude operators to represent photons, they have to obey similar commu-
tation rules as the untransformed operators, hence we must have[

b̂i(ω), b̂†j(ω
′)
]

= δijδ(ω − ω′) . (2.51)

It follows that |T (ω)|2 + |R′(ω)|2 = |T ′(ω)|2 + |R(ω)|2 = 1 and T (ω)R∗(ω)+R′(ω)T
′∗(ω) =

0. These requirements can be fulfilled if we set T ′(ω) = T ∗(ω) and R′(ω) = −R∗(ω). The
transformation rules of the photonic amplitude operators can thus be combined to a matrix equa-
tion of the form [â(ω) = [â1(ω), â2(ω)]T, b̂(ω) = [b̂1(ω), b̂2(ω)]T]

b̂(ω) = T (ω) · â(ω) (2.52)

where the transformation matrix

T (ω) =
(

T (ω) R(ω)
−R∗(ω) T ∗(ω)

)
(2.53)

is defined upto a global phase. Because of its structure, T (ω) is a unitary matrix, and in particular,
T (ω) ∈ SU(2) [5–10]. The unitarity of the transformation matrix reflects the energy conservation
requirement.

The input-output relations (2.52) can be converted from a matrix relation to an operator equa-
tion as

b̂(ω) = Û†â(ω)Û (2.54)

where the unitary operator Û is given by

Û = exp

−i ∞∫
0

dω [â†(ω)]T ·Φ(ω) · â(ω)

 , T (ω) = exp [−iΦ(ω)] . (2.55)

Using that operator, the quantum state of light impinging onto the beam splitter transforms as

%̂out = Û %̂inÛ
† . (2.56)
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This can be easily verified by noting that the expectation value of any operator that depends
functionally on the amplitude operators â(ω) and â†(ω) can be computed either by transforming
the amplitude operators using the input-output relations (2.54), or by transforming the quan-
tum state using Eq. (2.56). The input-output relations would then correspond to the Heisenberg
picture, whereas the quantum-state transformation could be regarded as its Schrödinger picture
equivalent.

Note that, despite the fact that the matrix T (ω) describes an SU(2) transformation, the uni-
tary operator Û in general does not. As the n-photon Fock space is the symmetric subspace
of the n-fold tensor product of single-photon Hilbert spaces [11], the quantum-state transfor-
mation (2.56) can be regarded as a transformation according to a subgroup of SU(2n) where
n is the total number of photons impinging onto the beam splitter. For example, in the basis
{|0, 0〉, |1, 0〉, |0, 1〉, |2, 0〉, |1, 1〉, |0, 2〉} the unitary operator Û has the matrix representation

U =



1 0 0 0 0 0
0 T −R∗ 0 0 0
0 R T ∗ 0 0 0
0 0 0 T 2

√
2T ∗R∗ R∗2

0 0 0
√

2TR (|T |2 − |R|2) −
√

2T ∗R∗

0 0 0 R2 −
√

2TR T ∗2

 (2.57)

which is block-diagonal with respect to the Fock layers of total photon numbers (0, 1, 2). This
again expresses photon-number conservation. The unitary matrix U thus has the structure of a
direct product,

U =
∞⊕

n=0

Un . (2.58)

The fact that the matrix transforming the quantum states acts on the symmetric subspace of a
tensor product Hilbert space means that it can be constructed from permanents of the transmis-
sion matrix T [12] that is responsible for the operator transformation (2.52). Let us define the
set Gn,N of all non-decreasing integer sequences ω as

Gn,N = {ω : 1 ≤ ω1 ≤ . . . ≤ ωn ≤ N} . (2.59)

Then the unitary transformation of an N -mode Fock state |n1, . . . , nN 〉 with a total of n photons
can be written as [Ω = (1n1 , 2n2 , . . . , NnN )] [13, 14]

Û |n1, . . . , nN 〉 =

(∏
i

ni!

)−1/2 ∑
ω∈Gn,N

1
µ(ω)

per T [ω|Ω]|m1(ω), . . . ,mN (ω)〉 (2.60)

in which the mi(ω) are the multiplicities of the occurrence of the value i in the non-decreasing
integer sequence ω and µi(ω) =

∏
imi(ω)!. The notation T [ω|Ω] thereby stands for the matrix

whose row and column indices are drawn from the non-decreasing integer sequences ω and Ω,
respectively, and whose elements are taken from the transformation matrix T . For example,
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the matrix T [(1, 1)|(1, 2)] contains the elements
(
T11 T12

T11 T12

)
. The symbol per denotes the

permanent of a matrix T which is defined as

per T =
∑

σ∈Sn

n∏
i=1

Tiσi
(2.61)

where Sn is the (symmetric) group of permutations.
For example, the probability amplitude of finding exactly one photon in each beam splitter

output when feeding two photons into its input ports, is given by the permanent of the beam
splitter transformation matrix itself,

〈1, 1|Û |1, 1〉 = per T = T11T22 + T12T21 = |T |2 − |R|2 . (2.62)

For a symmetric beam splitter with vanishing permanent, this probability is zero, and the Hong–
Ou–Mandel quantum interference effect is observed [15]. The appearance of a matrix function
such as the permanent in the context of single or networks of beam splitters is one particular
example of the links that exist between quantum optics and matrix theory.

For lossy beam splitters, neither the conservation law (2.48) nor the direct product structure
of the matrix representation U of the unitary transformation operator [Eq. (2.57)] hold. They
will have to be replaced by a generalized conservation law and a generalized unitary operator
that include material absorption (see Sec. 3.2).

2.1.4 Casimir force between two perfectly conducting parallel plates

One of the most intriguing consequences of quantising the electromagnetic field (or indeed any
other field theory) is the existence of an infinite ground-state energy

E0 =
1
2

∑
λ

~ωλ (2.63)

which is present even if no photon is. It might be argued that this vacuum energy would not be
physically relevant as all photon energies can be referred to this base level. Because no absolute
energy measurements can be done, only relative with respect to this ground-state energy, that en-
ergy would not be measurable. This reasoning, however, is incorrect. To see why, it is instructive
to look at the quantities the ground-state energy depends on. Inspection of Eq. (2.63) reveals that
is the mode structure itself that determines its magnitude. In other words, the base level from
which photon energies are counted can be changed by altering the number and the structure of the
allowed electromagnetic modes. One way to achieve that is to confine the electromagnetic field
in a geometric structure with appropriate boundary conditions that limits the number of available
modes, for example between two perfectly conducting parallel plates (see Fig. 2.3). Because of
the boundary conditions for the electromagnetic field at the plates surfaces, the modes perpen-
dicular to the plates are discrete with wave numbers kz = nπ/d, n ∈ N. Hence, the lowest wave
number that is supported in the interspace between the plates is∝ 1/d. After replacing the mode
sum in Eq. (2.63) by an integral over wave vectors, we find that the ground-state energy scales
as 1/d3. Because the ground-state energy clearly decreases with decreasing plate separation d,
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Fig. 2.3. Electromagnetic modes confined between two perfectly conducting parallel plates of separation d
lead to an attractive force. The figure on the right shows some of the allowed modes with the cavity walls.

there exists an attractive force between them. By dimensional arguments, this force per unit area
L2 must be proportional to

F

L2
∝ −~c

d4
. (2.64)

A more detailed calculation yields the correct numerical prefactor (we will follow the deriva-
tion presented in Chap. 3.2.4 in Ref. [1]). First note that the ground-state energy in a box of
volume L2d with L� d is

E0(d) =
1
2

∑
λ

~ωλ =
~c
2

∑
λ

|kλ| =
~cL2

2

∫
d2k‖

(2π)2

[
|k‖|+ 2

∞∑
n=1

(
k2
‖ +

n2π2

d2

)1/2
]

(2.65)

where we have used the fact that for kz > 0 there are two possible polarisations σ whereas there
is only one independent polarisation if kz = 0. This expression is, of course, infinite. To render
this expression finite, we subtract the contribution of free space,

E0(∞) =
~cL2

2

∫
d2k‖

(2π)2

∞∫
0

dn 2

√
k2
‖ +

n2π2

d2
(2.66)

where the double counting of the polarisation state at n = 0 does not influence the value of the
integral. The ground-state energy per unit area L2 is thus, using polar coordinates,

E0(d)− E0(∞)
L2

=
~c
2π

∞∫
0

dk k

k
2

+
∞∑

n=1

√
k2 +

n2π2

d2
−

∞∫
0

dn

√
k2 +

n2π2

d2

 . (2.67)

This expression still seems to diverge for large wave numbers k and has to be regularised. For
this purpose, we introduce a cut-off function f(k) such that

f(k) =
{

1 , k < kmax

0 , k � kmax
(2.68)
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Fig. 2.4. Smooth cut-off function f(k) that falls to zero for large enough wave numbers.

where the cut-off wave number kmax could be chosen to be of the order of the inverse atomic
size or, more appropriately, to correspond to a frequency larger than the plasma frequency of the
material that the plates consist of (see Fig. 2.4). The physical background to the latter requirement
is that the permittivity of a metal is for frequencies larger than the plasma frequency ωP well
described by ε(ω) ≈ 1− ω2

P /ω
2. Thus, for ω � ωP even metals become transparent and fail to

provide the required boundary conditions.
After change of variables to u = d2k2/π, one obtains the convergent expression

E0(d)− E0(∞)
L2

=
~cπ2

4d3

1
2
F (0) +

∞∑
n=1

F (n)−
∞∫
0

dnF (n)

 (2.69)

with

F (n) =

∞∫
0

du
√
u+ n2f

(
π
√
u+ n2/d

)
=

∞∫
n2

du
√
uf
(
π
√
u/d

)
. (2.70)

The expression in brackets in Eq. (2.69) can be computed using the Euler-McLaurin resummation
formula

1
2
F (0) +

∞∑
n=1

F (n)−
∞∫
0

dnF (n) = −
∞∑

m=1

B2m

(2m)!
F (2m−1)(0) (2.71)

where theBk are the Bernoulli numbers. Since we have constructed the cut-off function such that
f(0) = 1 and f (k)(0) = 0, the only non-zero contribution to Eq. (2.71) arises fromF ′′′(0) = −4,
together with B4 = −1/30. Hence,

E0(d)− E0(∞)
L2

= − π2

720
~c
d3

(2.72)

which leads to a force per unit area as

F

L2
= − π2

240
~c
d4

(2.73)
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Tab. 2.1. Casimir forces for parallel plates and cylindrical and spherical shells.

geometry Casimir force Ref.

planar −π
2~cL2

240d4
[16]

cylinder −0.02712~cz
R3

[17]

sphere +
0.045~c
R2

[18]

which is precisely Eq. (2.64) upto a numerical factor of π2/240 ≈ 0.041.
Similar calculations yield the Casimir forces for cylindrical and spherical shells as shown

in Tab. 2.1. Note here that the Casimir forces in both planar and cylindrical geometries are
attractive, whereas in case of a spherical shell it is repulsive. The latter result seems to contradict
our intuition that a restriction of the number of modes always leads to an attractive force. In order
to resolve this conundrum, one needs to look closer at the mode structure inside and outside a
cylindrical or spherical shell.

In the mode-summation approach that forms the basis of the calculations referred to above,
one has to regularise the wave number integral at its upper limit by assuming a cut-off frequency
above which the plates have to become transparent (for cylindrical and spherical shells one some-
times assumes two half-cylinders or hemispheres whose separation provides the necessary reg-
ularisation). This argument already suggests that the interpretation of the Casimir force as a
mode restriction between perfect conductors cannot be upheld rigorously, and must be replaced
by something that involves the dielectric properties of the plates.

Let us interrupt the flow of the argument at this point and mention a classical analogue that
can serve as an intuitive guidance to the problem of Casimir energies: the problem of determining
altitudes on land. On literally all geophysical maps, the altitude of landmarks such as mountains,
lakes, and human dwellings is given in terms of its altitude with respect to the average sea level.
So one could say that the average sea level represents the level of the infinite ground-state energy.
And in exactly the same way in which one is not interested in the altitude of a mountain with
respect to the sea floor, we shall be content with measuring the photon energies from the infinite
ground-state level. On the other hand, one might ask the question how the sea level can be
properly defined given that there are tides, wind and waves that distort that level. As we will see
later, it is exactly these fluctuations that are responsible for the Casimir effect in the quantum-
mechanical setting.

2.2 Interaction of the quantised electromagnetic field with atoms

After we have determined how to quantise the electromagnetic field in free space, we will now
couple external sources to the field and focus on the atomic degrees of freedom. For this purpose,
let us begin again with classical Maxwell’s equations which, in the presence of external sources,



Elements of vacuum quantum electrodynamics 693

read

∇ ·B(r, t) = 0 , (2.74)
∇×E(r, t) = −Ḃ(r, t) , (2.75)
∇ ·D(r, t) = ρ(r, t) , (2.76)

∇×H(r, t) = j(r, t) + Ḋ(r, t) . (2.77)

The charge density ρ(r, t) and the current density j(r, t) fulfil the equation of continuity

ρ̇(r, t) + ∇ · j(r, t) = 0 (2.78)

which states that any change of the charge distribution within a region of space is accompanied
by a flow of current across the boundary of that region.

The charge density for an ensemble of point charges qα is given by

ρ(r, t) =
∑
α

qαδ[r− rα(t)] (2.79)

where rα(t) denotes their classical trajectory. From the continuity equation (2.78) it then follows
that the current density is

j(r, t) =
∑
α

qαṙα(t)δ[r− rα(t)] . (2.80)

In order to promote the charges to proper dynamical variables, we have to supplement Maxwell’s
equations with Newton’s equations of motion for particles with mass mα,

mαr̈α = qα [E(rα, t) + ṙα ×B(rα, t)] . (2.81)

Introducing scalar and vector potentials as in free space,

B(r, t) = ∇×A(r, t) , E(r, t) = −Ȧ(r, t)−∇φ(r, t) , (2.82)

we obtain their respective wave equations in the Coulomb gauge ∇ ·A(r, t) = 0 as

∆φ(r, t) = − 1
ε0
ρ(r, t) , (2.83)

∆A(r, t)− 1
c2

Ä(r, t) = −µ0

[
j(r, t)− ε0∇φ̇(r, t)

]
. (2.84)

Equation (2.83) is Poisson’s equation with the solution

φ(r, t) =
1

4πε0

∫
d3r′

ρ(r, t)
|r− r′|

=
1

4πε0

∑
α

qα
|r− rα(t)|

(2.85)

where in the second equality we have used Eq. (2.79). The expression on the rhs of Eq. (2.84) is
a transverse current density which can be written in terms of the total current density as

j⊥(r, t) = j(r, t)−∇
∫
d3r′

∇ · j(r′, t)
4π|r− r′|

(2.86)
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Fig. 2.5. Individual charged particles are combined to a coarse-grained system at position rA.

using the continuity equation (2.78).
The above equations of motion for the electromagnetic field and the charged particles can be

derived from the classical Hamiltonian function

H =
1
2

∫
d3r

[
ε0E2(r, t) +

1
µ0

B2(r, t)
]
+
∑
α

1
2mα

[pα − qαA(rα)]2+
∑

α6=α′

qαqα′

8πε0|rα − rα′ |

(2.87)

in which the last term describes the Coulomb interaction between the charged particles. Note
that the particle momentum pα = mαṙα+qαA(rα) is different from the mechanical momentum
mαṙα due to the interaction with the electromagnetic field.

The Hamiltonian (2.87) is referred to as the minimal-coupling Hamiltonian because the elec-
tromagnetic field couples to the microscopic degrees of freedom of the individual charged parti-
cles such as position and momenta. This microscopic description is often rather unwieldy, and
an alternative approach in terms of global quantities is sought. A particularly important situa-
tion arises if the individual charged particles constitute an ensemble of bound charges such as
electrons and nuclei in an atom or a molecule. Let us introduce a coarse-grained charge dis-
tribution ρ̄ and current density j̄ associated with that atomic system at centre-of-mass position
rA =

∑
α(mα/mA)rα (mA =

∑
αmα: total mass) (Fig. 2.5),

ρ̄(r, t) =

(∑
α

qα

)
δ[r− rA(t)] , j̄ =

(∑
α

qα

)
ṙA(t)δ[r− rA(t)] . (2.88)

Note that this charge density is zero for globally neutral systems. In order to make up for the
difference between the actual charge distribution (2.79) and Eq. (2.88), we define the microscopic
polarisation field via the implicit relation

∇ ·PA(r, t) = −ρ(r, t) + ρ̄(r, t) . (2.89)

Adding this polarisation to the electric field, we define the modified displacement field as

D(r, t) = ε0E(r, t) + P(r, t) (2.90)
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which obeys the modified Coulomb law

∇ ·D(r, t) = ρ̄(r, t) . (2.91)

Note that for globally neutral systems, the displacement field is a transverse vector field. From
the implicit relation (2.89), one can show that the polarisation can be written as [19]

PA(r) =
∑
α

qαr̄α

1∫
0

ds δ(r− rA − sr̄α) (2.92)

(r̄α = rα− rA, relative particle coordinates). Analogously, the magnetisation field is introduced
via the relation

∇×MA(r) = j(r)− j̄(r)− ṖA(r) (2.93)

which can be written as [19]

MA(r) =
∑
α

qα

1∫
0

ds sr̄α × ˙̄rαδ(r− rA − sr̄α) . (2.94)

As before, field quantisation is performed by replacing the relevant c-number quantities by
Hilbert space operators and postulating their canonical commutation rules. In contrast to rel-
ativistic quantum electrodynamics, the charged particles are not treated within second quanti-
sation, i.e. in quantum optics electrons, atoms, molecules etc. cannot be created or annihilated.
Instead, their quantum character is contained in their respective position and momenta, for which
we postulate the canonical commutation rules

[rα,pα′ ] = i~δαα′I . (2.95)

At the moment, it seems as if we have not achieved anything other than rewriting the charge
density in terms of a new vector field that itself, by construction, depends on the original micro-
scopic variables. To proceed, one either has to solve the microscopic dynamics explicitly which
is only possible for sufficiently small systems, or one can invoke statistical arguments that relate
the polarisation field causally to the electric field by means of a (in general nonlinear) response
ansatz. The latter approach leads to the theory of macroscopic QED (Sec. 3).

A direct treatment of the microscopic dynamics can be considerably simplified by casting the
atom-field ineractions appearing in the minimal-coupling Hamiltonian (2.87) into its alternative
multipolar form. To that end, we transform the dynamical variables by means of a Power–Zienau
transformation Ô′ = Û ÔÛ†, where the unitary operator [20–22]

Û = exp
[
i

~

∫
d3r P̂A(r) · Â(r)

]
(2.96)

depends on the polarisation (2.92) and the vector potential (2.35) of the electromagnetic field.
Expressing the Hamiltonian (2.87) in terms of the transformed variables and applying a leading-
order expansion in terms of the relative particle coordinates, one obtains the electric-dipole



696 Macroscopic QED — concepts and applications

Hamiltonian for a neutral atomic system (cf. also Sec. 3.3)

Ĥ ′ =
∑

λ

~ωλ

(
â†λâλ +

1
2

)
+
∑
α

p̂′2α
2mα

+
1

2ε0

∫
d3r P̂2

A(r)− d̂ · Ê′(rA). (2.97)

Here,

d̂ =
∑
α

qαr̂α =
∑
α

qαˆ̄rα . (2.98)

is the electric dipole moment operator, and the transformed electric field

Ê′(r) = Ê(r) +
1
ε0

P̂⊥
A(r) (2.99)

can be given in terms of the transformed bosonic operators â′λ via an expansion analogous to
Eq. (2.38). The multipolar Hamiltonian is highly advantageous in comparison to the minimal
coupling one (2.87) since the atom-field interaction Ĥint = −d̂ · Ê(rA) consists of a single term.
For this reason, we will exclusively employ it throughout the remainder of this section and drop
the primes distinguishing the multipolar variables.

2.2.1 Heisenberg equations of motion

The electric-dipole interaction Hamiltonian Ĥint = −d̂ ·Ê(rA), can again be expanded in modes
according to the description given above. In particular, the operator of the electric field strength
is given by Eq. (2.38). For the atomic system we choose to expand its free Hamiltonian and the
dipole moment in terms of its energy eigenbasis |n〉. The atomic flip operators will be denoted
by Âmn ≡ |m〉〈n|, and they obey the commutation rule[

Âmn, Âkl

]
= Âmlδnk − Âknδlm . (2.100)

With these preparations, the electric-dipole Hamiltonian (2.97) takes the form

Ĥ =
∑

λ

~ωλ

(
â†λâλ +

1
2

)
+
∑

n

~ωnÂnn − i
∑
m,n

ωmnÂmndmn · Â(rA)

=
∑

λ

~ωλ

(
â†λâλ +

1
2

)
+
∑

n

~ωnÂnn

−i
∑
m,n

∑
λ

ωmnÂmndmn ·Aλ(rA)âλ + h.c. (2.101)

This Hamiltonian governs the dynamics of the atom-field system via Heisenberg’s equation
of motion

˙̂
O =

1
i~

[
Ô, Ĥ

]
. (2.102)
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Applying the commutation rules (2.36) and (2.100), the equations of motions for the photonic
amplitude operators and the atomic flip operators read

˙̂
Amn = iωmnÂmn +

1
~
∑

k

∑
λ

(ωnkdnkÂmk − ωkmdkmÂkn)

×
(
Aλ(rA)âλ −A∗

λ(rA)â†λ
)
, (2.103)

˙̂aλ = −iωλâλ +
1
~
∑
m,n

Âmndmn ·A∗
λ(rA). (2.104)

In most cases of interest it is sufficient to concentrate on two out of the potentially many atomic
levels, a ground state |g〉 and an excited state |e〉 separated by a transition frequency ωe − ωg =
ωA. The three relevant atomic flip operators, the Pauli operators, will be denoted by σ̂ ≡ |g〉〈e|,
σ̂† ≡ |e〉〈g|, σ̂z ≡ |e〉〈e| − |g〉〈g|. Together with the identity operator Î ≡ |e〉〈e|+ |g〉〈g| in that
two-dimensional Hilbert space, they generate the group SU(2). Finally, Heisenberg’s equations
of motion reduce in the rotating-wave approximation to

˙̂σ = −iωAσ̂ −
i

~
d · Ê(+)(rA)σ̂z, (2.105)

˙̂σz =
2i
~

d · Ê(+)(rA)σ̂† + h.c., (2.106)

˙̂aλ = −iωλâλ +
ωλ

~
d∗ ·A∗

λ(rA)σ̂ , (2.107)

where the positive-frequency part Ê(+)(rA) of the electric field is given by the first term in
Eq. (2.38). We can attempt to solve Eq. (2.107) by formally integrating it,

âλ(t) = e−iωλtâλ +
ωλ

~
d∗ ·A∗

λ(rA)

t∫
0

dt′ e−iωλ(t−t′)σ̂(t′) . (2.108)

The first term in this equation is the free evolution of the photonic amplitude operators whereas
the second term is due to the interaction with the two-level atom. The time integral contains
the solution to Eq. (2.105) which itself is unknown. Thus, the integral can only be computed
approximately. For this purpose, we split up the fast time evolution e−iωAt from the atomic flip
operator and define a slowly-varying quantity ˆ̃σ(t) as

ˆ̃σ(t) = σ̂(t)eiωAt . (2.109)

Then, the time integral can be approximated as

t∫
0

dt′ e−iωλ(t−t′)σ̂(t′) =

t∫
0

dt′ e−iωλ(t−t′)e−iωAt′ ˆ̃σ(t′)

≈ ˆ̃σ(t)

t∫
0

dt′ e−iωλ(t−t′)e−iωAt′ = σ̂(t)

t∫
0

dt′ ei(ωA−ωλ)(t−t′) (2.110)
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Fig. 2.6. Functions s(x) and c(x) showing how they can be approximated by the functions πδ(x) and
P(1/x), respectively.

where the atomic flip operator has been taken out of the integral at the upper time. This is only
possible if the amplitude operator ˆ̃σ(t) is almost constant over the time scale |ωA − ωλ|−1. This
in fact also means that the interaction between the electromagnetic field and the two-level atom
must not be too large. Because the atomic flip operator has been taken out of the time integral, all
memory effects of the atom-field interaction have been neglected. This is known as the Markov
approximation.

The remaining integral can be easily evaluated as

t∫
0

dt′ ei(ωA−ωλ)(t−t′) =
sin(ωA − ωλ)t
ωA − ωλ

+i
[1− cos(ωA − ωλ)t]

ωA − ωλ
≡ s(ωA−ωλ)+ic(ωA−ωλ)

(2.111)

which we have split into its real and imaginary parts. The function s(ωA−ωλ) is sharply peaked
at ωλ = ωA (Fig. 2.6). If all quantities that contain either of these functions are averaged or
cannot be resolved over sufficiently long times, then we can set

s(x) 7→ πδ(x) , c(x) 7→ P 1
x

(2.112)

[P: principal value] thereby introducing little error.
If we re-insert the formal solution to Eq. (2.107) into Eqs. (2.105) and (2.106), we obtain the

equations of motion of the atomic flip operators in the Markov approximation as

˙̂σ = −i
(
ωA + δω − iΓ

2

)
σ̂ − i

~
σ̂zÊ

(+)
free(rA) · d , (2.113)

˙̂σz = −Γ (1 + σ̂z) +
2i
~
σ̂†Ê(+)

free(rA) · d− 2i
~
σ̂Ê(−)

free(rA) · d∗ , (2.114)
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where Ê(±)
free(rA, t) denotes the freely evolving electric field operator which, for example, de-

scribes the action of an external (classical) driving field. The symbols Γ and δω are abbreviations
for the following objects:

Γ =
2π
~2

∑
λ

ω2
λ|Aλ(rA) · d|2δ(ωA − ωλ) , (2.115)

δω =
1
~2

∑
λ

P
(

ω2
λ

ωA − ωλ

)
|Aλ(rA) · d|2 , (2.116)

whose relevance will become clear in the next section.

2.2.2 Spontaneous decay and Lamb shift

The equation of motion for the population inversion operator σ̂z , Eq. (2.114), can be solved easily
if no external electric field is present. In this case the equation of motion reduces to

˙̂σz = −Γ (1 + σ̂z) . (2.117)

Rewriting the inversion operator in terms of the projectors onto the excited and ground states, σ̂z

= |e〉〈e| − |g〉〈g| ≡ σ̂ee − σ̂gg , we find for the excited-state projector the simple relation

˙̂σee = −Γσ̂ee 7→ σ̂ee(t) = e−Γ(t−t′)σ̂ee(t′) . (2.118)

Hence, the quantity Γ determines the rate with which a two-level atom decays spontaneously
from its excited state to its ground state.

Using the expansion (2.38), the decay rate Eq. (2.115) can be written as

Γ =
2π
~2

∑
λ

d · 〈0|Ê(+)(rA)⊗ Ê(−)(rA)|0〉 · d∗δ(ωA − ωλ) , (2.119)

which has to be understood in such a way that the δ function is placed under the mode sum.
Hence, the rate with which the atom loses its excitation depends on the strength of the vacuum
fluctuations of the electric field at the frequency of the atomic transition. In a certain sense, spon-
taneous decay can be viewed as stimulated emission driven by the fluctuating electromagnetic
field. Using the plane-wave expansion (2.34), we obtain the well-known result for the sponta-
neous decay rate in vacuum

Γ0 =
2π
~2

∑
σ

∞∫
0

ω2dω

c3(2π)3

∫
dΩ

~ω
2ε0
|eσ · d|2δ(ωA − ω) =

ω3
A|d|2

3π~ε0c3
. (2.120)

From the above, it should have become clear that the rate of spontaneous decay can be mod-
ified by altering the mode structure of the electromagnetic field. We have seen previously in
Sec. 2.1.4 that the presence of boundary conditions for the electromagnetic field modifies the
mode structure and hence the strength of the vacuum field fluctuations at the atomic transition
frequency ωA. As a simple example, let us consider a radiating dipole located close to a per-
fectly conducting mirror. Depending on its orientation with respect to the mirror surface, its
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Fig. 2.7. An atomic dipole d̂ in front of a perfectly conducting mirror and its image d̂′ for (a) parallel and
(b) perpendicular orientation of the dipole with respect to the mirror.

rate of spontaneous decay is either completely suppressed or doubled with respect to its free
space rate (Fig. 2.7). Suppression occurs when the dipole is parallel to the mirror and hence the
dipole and its image are antiparallel and cancel each other [Fig. 2.7(a)]; doubling follows for
perpendicular orientation where the dipole and its image are parallel [Fig. 2.7(b)].

The quantity δω that arises in the context of weakly interacting systems in the Markov ap-
proximation, Eq. (2.116), induces a shift of the atomic transition frequency, the Lamb shift.
Rewriting the Lamb shift using the plane-wave expansion (2.34), we find

δω =
1

~2c3

∑
σ

P
∞∫
0

dω

(2π)3
ω2

ωA − ω

∫
dΩ

~ω
2ε0
|eσ ·d|2 =

|d|2

6π2~ε0c3
P

∞∫
0

dω
ω3

ωA − ω
(2.121)

which is clearly infinite. This is yet another artefact of quantum theory in free space which can
be remedied by mass renormalisation (for details, see e.g. Ref. [23]). For our purposes it is
sufficient to argue that the ‘bare’ atomic transition frequency ωA is unobservable because the
interaction with the electromagnetic vacuum field can never be switched off and hence the only
observable quantity is the renormalised frequency ωA + δω. However, in the following section
we will again show how the presence of boundary conditions and, in particular, dielectric matter
can modify the Lamb shift by an additional finite (and thus measurable) amount.

At this point it is perhaps interesting to observe that spontaneous decay and the Lamb shift
are intimately connected by a causality relation analogous to the Kramers–Kronig relations that
we will encounter in the next section. In fact, it is easy to see that Γ and δω, taken as functions of
the atomic transition frequency ωA, form a Hilbert transform pair. Rewriting the integral (2.111)
as

lim
t→∞

t∫
0

dt′ ei(ωA−ωλ)(t−t′) =

∞∫
0

dτ ei(ωA−ωλ)τ =

∞∫
−∞

dτ ei(ωA−ωλ)τΘ(τ) , (2.122)

one observes that this is nothing else than the Fourier transform of the Heaviside step function
Θ(t). This in turn can be interpreted at the causal transform of the function f(ω) = 1, and
the functions s(x) and c(x) are its real and imaginary parts. Due to the definition of a causal
transform, and by Titchmarsh’s theorem [24], s(x) and c(x) and therefore Γ and δω are Hilbert
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transform pairs and mutually connected via Kramers–Kronig relations. Hence, knowledge of the
spontaneous decay rate at all frequencies gives access to the Lamb shift and vice versa.

2.2.3 Optical Bloch equations

In this section we will return to Heisenberg’s equations of motion for the atomic quantities in
Markov approximation, Eqs. (2.113) and (2.114), and solve them under the assumption of an
external driving field prepared in a single-mode coherent state |α〉 with frequency ωλ. Hence,
we set

〈α|Ê(+)
free(rA, t)|α〉 = iωλAλ(rA)αe−iωλt , 〈α|Ê(−)

free(rA, t)|α〉 = −iωλA∗
λ(rA)α∗eiωλt .

(2.123)

In a frame that co-rotates with the angular frequency ωλ, Heisenberg’s equations of motion re-
duce to

˙̂σ = iδσ̂ − Γ
2
σ̂ +

Ω
2
σ̂z , (2.124)

˙̂σz = −Γ (1 + σ̂z)− Ωσ̂† − Ω∗σ̂ , (2.125)

where δ = ωλ−ωA− δω is the detuning and Ω = 2ωλα
~ Aλ(rA) ·d denotes the Rabi frequency.

The density operator of any two-level (or spin-1/2) system can be written in terms of the
Pauli operators as

%̂ =
1
2

(
Î + u · σ̂

)
(2.126)

where u = (u, v, w)T is a real vector with norm |u| ≤ 1 and σ̂ is the vector of Pauli matrices.
Converting Eqs. (2.124) and (2.125) into equations of motion for the Bloch vector u one finds
the matrix equation u̇

v̇
ẇ

 =

 0 −δ ΩR

δ 0 ΩI

−ΩR −ΩI 0

 u
v
w

− Γ
2

 u
v

2(1 + w)

 . (2.127)

For negligible spontaneous decay Γ, the Bloch equations take on the form of the gyroscopic
equations

u̇ = β × u (2.128)

with β = (−ΩI ,ΩR, δ)T . Its solution is then given by

u(t) = − Ω√
δ2 + Ω2

sin(
√
δ2 + Ω2t) , (2.129)

v(t) = − δΩ
δ2 + Ω2

[
1− cos(

√
δ2 + Ω2t)

]
, (2.130)

w(t) = −1 +
Ω2

δ2 + Ω2

[
1− cos(

√
δ2 + Ω2t)

]
. (2.131)
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Hence, the time evolution of the Bloch vector on time scales t� 1/Γ is described by precession
of the Bloch vector with frequency

√
δ2 + Ω2 along the surface of a cone with opening angle

1
2 arccos[δΩ/(δ2 + Ω2)].

In the long-time limit, t→∞, the solution of the optical Bloch equations reaches its steady-
state value. In the stationary state, when u̇ = 0, the solution to the full Bloch equations is

ust = − δΩ
Ω2

2 + δ2 + (Γ
2 )2

, vst = −
Γ
2 Ω

Ω2

2 + δ2 + (Γ
2 )2

, wst = −1+
Ω2

2
Ω2

2 + δ2 + (Γ
2 )2

. (2.132)

In the weak driving limit, Ω � (Γ, δ), the induced atomic dipole moment ust + ivst takes the
form

ust + ivst ≈ −
Ω

δ − iΓ/2
(2.133)

whose real and imaginary parts fulfil the Kramers–Kronig relations when integrated over the
mode frequency ωλ. Recall that both the spontaneous decay rate Γ and the Lamb shift δω (via the
detuning δ) are contained in (2.133). In this weak-coupling regime, the induced dipole is thus de-
scribed by a linear susceptibility. Its imaginary part, being proportional to the spontaneous decay
rate Γ, describes a loss channel for the incident field. The concept of linear-response functions
and their role in the quantisation of the electromagnetic field in the presence of magnetoelectric
matter will be detailed in Sec. 3.

2.2.4 Jaynes–Cummings model

In a sense the opposite limit to the case described in Sec. 2.2.3 is obtained if one considers a
situation in which the mode structure of the electromagnetic field has been altered in such a way
that discrete field modes interact with the atomic system. We have previously seen in connection
with the Casimir effect (Sec. 2.1.4) that this can be achieved in resonators of Fabry-Perot type
where the allowed modes in a cavity of length d have discrete wave numbers kz = nπ/d. The
half distance between two neighboring modes, c/(2d), is called the free spectral range.

If a two-level atom with transition frequency ωA is almost resonant with one of the cav-
ity modes, one can treat the coupled atom-field system approximately by a single-mode model
described by the Jaynes–Cummings Hamiltonian [25–27]

Ĥ = ~ωâ†â+
1
2

~ωAσ̂z − ~g
(
âσ̂† + â†σ̂

)
. (2.134)

The coupling constant g, which we have given the dimension of a frequency, can be read off
from Heisenberg’s equations of motion as g = iωA

~ d ·Aλ(rA). Because we have assumed near
resonance between atomic transition and the relevant cavity field mode, we have employed the
rotating-wave approximation and subsequently dropped counter-rotating terms in the Hamilto-
nian (2.134).

The assumption that effectively only a single field mode interacts with the two-level atom
implies a sharply peaked, comb-like, density of field modes. This requires a discretisation of the
modes inside the cavity that can only be achieved with (almost) perfectly reflecting cavity walls.



Elements of vacuum quantum electrodynamics 703

-�
d

2 4 6 8 10
kd

0.2

0.4

0.6

0.8

1

T

Fig. 2.8. Equivalent potential model of a cavity with highly reflecting walls (left panel). The transmission
coefficient is sharply peaked at the cavity resonances (right panel). The line widths of these resonances
decrease with increasing reflectivity of the cavity walls.

In reality, the material making up the cavity mirrors shows some transmission, part of which is
of course wanted in order to be able to probe the cavity field from the outside. In effect, each of
the cavity mirrors can be treated as a beam splitter (Sec. 2.1.3). For one-dimensional light prop-
agation the equivalent potential encountered by the vector potential is a double barrier (Fig. 2.8).
Analytical solutions for the transmission coefficient have been first obtained in Ref. [28]. How-
ever, the problem becomes simpler by assuming that the barriers are δ functions with strength
g [29]. Then the transmission coefficient near one of the cavity resonances ωC can be written as

T (ω) '
Γ
2

Γ
2 + i(ω − ωC)

(2.135)

where the line width Γ is inversely proportional to the barrier height g. Associating the bar-
rier height with the squared index of refraction of the mirror material, one finds that the better
the reflective properties of the mirrors [recall that r = (

√
ε − 1)/(

√
ε + 1)] the narrower the

resonances.
The Jaynes–Cummings model is one of the few exactly solvable models of interacting quan-

tum systems. The Hamiltonian (2.134) is in fact block diagonal in the basis {|n, e〉, |n+ 1, g〉},

Ĥ

(
|n, e〉
|n+ 1, g〉

)
= ~

(
nω + 1

2ωA −g
√
n+ 1

−g
√
n+ 1 (n+ 1)ω − 1

2ωA

)(
|n, e〉
|n+ 1, g〉

)
. (2.136)

Its eigenfrequencies are

ωn,± =
(
n+

1
2

)
ω ± 1

2
∆n (2.137)

where we have defined the Rabi splitting ∆n =
√
δ2 + Ω2

n which depends on the detuning δ =
ωA−ω and the n-photon Rabi frequency Ωn = 2g

√
n+ 1. The eigenstates |n,±〉 of the Jaynes–

Cummings Hamiltonian are superpositions of the unperturbed eigenstates {|n, e〉, |n+ 1, g〉},(
|n,+〉
|n,−〉

)
=
(

cos Θn − sinΘn

sinΘn cos Θn

)(
|n+ 1, g〉
|n, e〉

)
, (2.138)
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Fig. 2.9. Energy level diagram of the resonant Jaynes–Cummings model. Apart from the collective ground
state |0, g〉, the states {|n, e〉, |n+1, g〉} are doubly degenerate. This degeneracy is lifted by the interaction.

where the rotation angles are

sinΘn =
Ωn√

(∆n − δ)2 + Ω2
n

, cos Θn =
∆n − δ√

(∆n − δ)2 + Ω2
n

. (2.139)

For resonant interaction, δ = 0, the unperturbed eigenstates are pairwise degenerate (Fig. 2.9).
This degeneracy is lifted by the atom-field interaction. The level splitting ∆n depends on the
number of photons. Note that even if there is initially no photon present, the exact eigenstates
will be split by an amount Ω0 = 2g, the vacuum Rabi splitting. This splitting, or ‘dressing’, of
the bare energy levels is equivalent to the Lamb shift which we found in Sec. 2.2.2. However,
it should be noted that the vacuum Lamb shift was due to the interaction with electromagnetic
modes of all frequencies, whereas in the Jaynes–Cummings model the level shift arises from the
interaction with a single discrete mode that has been selected by the resonator.

Because the Jaynes–Cummings Hamiltonian can be explicitly diagonalized, the unitary evo-
lution operator is also known explicitly and reads

Û(t) = e−iĤt~ = eiωAt/2|0, g〉〈0, g|+
∑
σ=±

∞∑
n=0

e−iωn,σt|n, σ〉〈n, σ|

= eiωAt/2|0, g〉〈0, g|+
∞∑

n=0

e−i(n+1/2)ωt
[
e−i∆nt/2|n,+〉〈n,+|+ ei∆nt/2|n,−〉〈n,−|

]
= eiωAt/2|0, g〉〈0, g|+

∞∑
n=0

e−i(n+1/2)ωt
{[

cos ∆nt
2 + i δ

∆n
sin ∆nt

2

]
|n+ 1, g〉〈n+ 1, g|

+
[
cos ∆nt

2 − i
δ

∆n
sin ∆nt

2

]
|n, e〉〈n, e|+ iΩn

∆n
sin ∆nt

2 (|n+ 1, g〉〈n, e|+ |n, e〉〈n+ 1, g|)
}
.

(2.140)
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The last equality in Eq. (2.140) expresses the unitary time evolution in terms of the unperturbed
eigenstates.

An important special case is the dispersive limit in which the detuning δ is large compared
to the relevant n-photon Rabi frequency, δ � Ωn. In this limit, the level splitting can be approx-
imated by ∆n ' δ + Ω2

n/(2δ) = δ + 2g2(n + 1)δ, and the exact eigenstates are approximately
the unperturbed eigenstates, |n,+〉 ' |n, e〉 and |n,−〉 ' |n+ 1, g〉. Under this approximation,
the unitary evolution operator can be written as

Û ' eiωAt/2|0, g〉〈0, g|+
∞∑

n=0

e−i(n+1/2)ωt

×
[
e−i(δ/2+g2(n+1)/δ)t|n, e〉〈n, e|+ ei(δ/2+g2(n+1)/δ)t|n+ 1, g〉〈n+ 1, g|

]
(2.141)

or, with the free Hamiltonian Ĥ0 = ~ωâ†â+ 1
2~ωAσ̂z ,

Û ' exp
(
− i

~
Ĥ0t

)[
exp

(
− ig

2

δ
(n̂+ 1)t

)
|e〉〈e|+ exp

(
ig2

δ
n̂t

)
|g〉〈g|

]
(2.142)

It is instructive to note that the evolution operator the dispersive limit, Eq. (2.142), is quadratic in
the interaction strength g. This means that it results in an effective nonlinear atom-field interac-
tion. In order to investigate this claim in more detail, let us rewrite Eq. (2.142) in the following
form. The term in square brackets contains, apart from a linear Stark shift of the excited state
|e〉, a factor e−ig2n̂σ̂zt/δ which is the result of an effective nonlinear Hamiltonian

Ĥeff = ~
g2

δ
â†âσ̂z . (2.143)

Comparing Eq. (2.143) with the Jaynes–Cummings Hamiltonian (2.134) we see that the trilinear
Hamiltonian (2.143) does not appear in the original Jaynes–Cummings model. The appearance
of such an effective Hamiltonian is solely due the far off-resonant interaction. This is just one
example of a generic nonlinear interaction such as those studied in Sec. 3.4.
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3 Macroscopic quantum electrodynamics

Having established the framework of quantum electrodynamics in free space, we are now in a
position to generalise the theory to magnetoelectric background materials. Before we go ahead
with our program, let us first discuss the intrinsic difficulties associated with magnetoelectric
media.

Let us assume we wanted to naively extend a plane-wave expansion of the electromagnetic
field to include dielectrics. We would then try to replace the plane wave solutions eik·r to the
Helmholtz equation by eink·r where n ≡ n(ω) is the index of refraction of the dielectric. In
order to conform with standard requirements from statisctical physics, the refractive index must
be a complex function of frequency n(ω) = η(ω) + iκ(ω) that satisfies the Kramers–Kronig
relations

η(ω)− 1 =
1
π
P

∞∫
−∞

dω′
κ(ω′)
ω′ − ω

, κ(ω) = − 1
π
P

∞∫
−∞

dω′
η(ω′)− 1
ω′ − ω

. (3.1)

Due to the inevitable imaginary part of the refractive index, the plane waves are generically
damped. That in turn means that they do not form a complete set of orthonormal functions
needed to perform a Fourier decomposition of the electromagnetic field. The consequences of
this failure are quite severe; either one insists on bosonic commutation rules for the photonic
amplitude operators âλ and â†λ which subsequently lead to wrong commutation relations between
the operators of the electric field Ê(r) and the magnetic induction B̂(r), or one postulates the
correctness of the latter and ends up with amplitude operators in their Fourier decomposition that
do not have the interpretation of annihilation and creation operators of photonic modes.

The reason for the failure of this naive quantisation scheme is easily found. The introduction
of the index of refraction n(ω) means that there exists an underlying (microscopic) theory that
couples the free electromagnetic field to some dielectric matter, the effect of which is taken into
account only by means of the response function n(ω). In doing so, the matter-field coupling is
hidden from view but is nevertheless present. The damped plane waves eink·r have therefore to
be regarded as eigensolutions of the combined field-matter system, and not of the electromagnetic
field alone.

3.1 Field quantisation in linear absorbing magnetoelectrics

The above arguments necessarily lead one to consider the electromagnetic field interacting with
an atomic system coupled to a reservoir that is responsible for absorption. An explicit matter-field
coupling theory that achieves field quantisation in dielectric matter on the basis of a microscopic
model has been developed by Huttner and Barnett [30,31] (Sec. 3.1.1). This Hamiltonian model
can be generalised to an effective Langevin noise model (Sec. 3.1.2) which forms the basis of the
remainder of this article.

3.1.1 Huttner–Barnett model

Historically, the first successful attempt at quantising the electromagnetic field in an absorbing
dielectric material is due to Huttner and Barnett [30,31]. They considered a Hopfield model [32]
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of a homogeneous and isotropic bulk dielectric in which a harmonic oscillator field representing
the medium polarisation is linearly coupled to a continuum of harmonic oscillators standing for
the reservoir (first line in Fig. 3.1). Such a model leads to an essentially unidirectional energy
flow — from the medium polarisation to the reservoir — which means that the energy is ab-
sorbed. Strictly speaking, because a single harmonic oscillator is coupled to a continuum, the
revival time is infinite, hence an excitation stored in the continuum of harmonic oscillators will
not return to the medium polarisation in any finite time. The overall system of radiation, matter
polarisation, reservoir and their mutual couplings are regarded as a Hamiltonian system whose
Lagrangian reads

L =
∫
d3rL =

∫
d3r (Lem + Lmat + Lint) (3.2)

where

Lem =
ε0
2

[(
Ȧ + ∇φ

)2

− c2 (∇×A)2
]
, (3.3)

Lmat =
µ

2

(
Ẋ2 − ω2

0X
2
)

+
1
2

∞∫
0

dω µ
(
Ẏ2

ω − ω2Y2
ω

)
, (3.4)

Lint = −α
(
A · Ẋ + φ∇ ·X

)
−

∞∫
0

dω v(ω)X · Ẏω . (3.5)

Here Lem and Lmat are the free Lagrangian densities of the radiation field and the matter, respec-
tively, where φ and A are the scalar and vector potentials in the Coulomb gauge (∇ ·A = 0),
and X and Yω the medium and reservoir oscillator fields with density µ, respectively. In the in-
teraction part, Lint, α is the electric polarisability and the medium-reservoir coupling constants
v(ω) are assumed to be square integrable.

Upon introducing the canonical momenta

Π =
∂L
∂Ȧ

= ε0Ȧ , (3.6)

P =
∂L
∂Ẋ

= µẊ− αA , (3.7)

Qω =
∂L
∂Ẏω

= µẎω − v(ω)X , (3.8)

one can perform the Legendre transformation and construct a Hamiltonian H = Hem +Hmat +
Hint. In Fourier space,

A(r) 7→ A(k) =
2∑

λ=1

Aλ(k)eλ(k) , (3.9)

X(r) 7→ X(k) = X‖(k)ek +
2∑

λ=1

Xλ(k)eλ(k) , (3.10)
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are the longitudinal and transverse components of the vector potential and the matter polarisation,
respectively. Similar decompositions are made for all other fields.

As in free space, one introduces mode amplitudes according to

aλ(k) =
√

ε0

2~k̃c

[
k̃cAλ(k) +

i

ε0
Πλ(k)

]
, (3.11)

bλ(k) =
√

µ

2~ω̃

[
ω̃Xλ(k) +

i

µ
Qλ(k)

]
, (3.12)

bλ(k, ω) =
√

µ

2~ω

[
−iωXλ(k, ω) +

1
µ
Qλ(k, ω)

]
(3.13)

where

k̃2 = k2 +
α2

µε0c2
, ω̃2 = ω2 +

∞∫
0

dω
v2(ω)
µ2

. (3.14)

The expressions (3.14) reflect the level shifts due to the interaction between fields. Indeed, we
have encountered such shifts already in vacuum QED (Lamb shift, dressed energy levels in the
Jaynes–Cummings model etc.). Similar decompositions can be made for the longitudinal fields
which we will not consider here [33].

The amplitude operators are then promoted to Hilbert space operators with the usual bosonic
commutation relations[

âλ(k), â†λ′(k′)
]

= δλλ′δ(k− k′) , (3.15)[
b̂λ(k), b̂†λ′(k′)

]
= δλλ′δ(k− k′) , (3.16)[

b̂λ(k, ω), b̂λ′(k′, ω′)
]

= δλλ′δ(k− k′)δ(ω − ω′) . (3.17)

The transverse Hamiltonian can be expressed in terms of the annihilation and creation operators
as

Ĥ = Ĥem + Ĥmat + Ĥint (3.18)

with

Ĥem =
2∑

λ=1

∫
d3k ~k̃c â†λ(k)âλ(k) , (3.19)

Ĥmat =
2∑

λ=1

∫
d3k

{
~ω̃ b̂†λ(k)b̂λ(k) +

∞∫
0

dω ~ω b̂†λ(k, ω)b̂λ(k, ω)

+
~
2

∞∫
0

dω V (ω)
[
b̂†λ(k) + b̂λ(−k)

] [
b̂†λ(−k, ω) + b̂λ(k, ω)

]}
, (3.20)

Ĥint =
i~
2

2∑
λ=1

∫
d3kΛ(k)

[
â†λ(−k) + âλ(k)

] [
b̂†λ(k) + b̂λ(−k)

]
(3.21)
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Â, Ê
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Fig. 3.1. Two-step diagonalisation of the Huttner–Barnett model. In the first step, the polarisation field and
the harmonic-oscillator heat bath form dressed-matter operators. These are then combined in the second
step with the free electromagnetic field to form polariton operators.

where V (ω) = [v(ω)/µ](ω/ω̃)1/2 and Λ(k) = [ω̃α2/(µcε0k̃)]1/2. The Hamiltonian is clearly
bilinear in all annihilation and creation operators, and can therefore be diagonalised by a Bogoli-
ubov (squeezing) transformation, that is, by a linear transformation involving both annihilation
and creation operators. In the present context, the procedure is known as a Fano-type diagonalisa-
tion [34]. The diagonalisation is performed in two steps. In the first step, the matter Hamiltonian
Ĥmat is diagonalised first (second line in Fig. 3.1), leading to

Ĥmat =
2∑

λ=1

∫
d3k

∞∫
0

dω ~ω B̂†
λ(k, ω)B̂λ(k, ω) . (3.22)

In the second step, the dressed-matter operators B̂λ(k, ω) and B̂†
λ(k, ω) are combined with the

photonic operators to the diagonal Hamiltonian

Ĥ =
2∑

λ=1

∫
d3k

∞∫
0

dω ~ω f̂†λ(k, ω)f̂λ(k, ω) . (3.23)

Diagonalization of the longitudinal field components can be achieved analogously. Adding
the resulting expression to Eq. (3.23) and Fourier transforming gives

Ĥ =
∫
d3r ~ω f̂†(r, ω) · f̂(r, ω) (3.24)

which is depicted in the last line in Fig. 3.1. Due to the bosonic commutation relation of the
amplitude operators, the commutation rule for the new dynamical variables are[

f̂(r, ω), f̂†(r′, ω′)
]

= δ(r− r′)δ(ω − ω′) . (3.25)



710 Macroscopic QED — concepts and applications

Inverting the Bogoliubov transformation that has led to the polariton-like operators Ĉλ(k, ω)
and Ĉ†λ(k, ω) and subsequent Fourier transformation leaves one with an expression for the vector
potential Â(r) and the polarisation field P̂(r) in terms of the dynamical variables f̂(r, ω) and
f̂†(r, ω). The expansion coefficients turn out to be the dyadic Green tensor for a homogeneous
and isotropic bulk material with a dielectric permittivity that is constructed from the microscopic
coupling parameters α, v(ω) and µ [30, 35]. Later, this theory has been extended to inhomoge-
neous dielectrics where Laplace transformation techniques have been used to solve the resulting
coupled differential equations [36]. However, neither of these expressions for the resulting fields
contains any hints towards their underlying microscopic model, so it seems quite natural to start
from the source-quantity representation of the electromagnetic field instead.

3.1.2 Langevin-noise approach

From now on, we leave the microscopic models behind and concentrate on the phenomenological
Maxwell’s equations, assuming that the relevant response functions such as dielectric permittivity
and magnetic permeability are known from measurements. Maxwell’s equations of classical
electromagnetism, in the presence of magnetoelectric background media read, in the absence of
other external sources or currents,

∇ ·B(r) = 0 , (3.26)
∇×E(r) = −Ḃ(r) , (3.27)
∇ ·D(r) = 0 , (3.28)

∇×H(r) = Ḋ(r) . (3.29)

They have to be supplemented by constitutive relations that connect the electric and magnetic
field components. Assuming for a moment that the medium under consideration is not bian-
isotropic, we can write

D(r) = ε0E(r) + P(r) , H(r) =
1
µ0

B(r)−M(r) (3.30)

where P(r) and M(r) denote the polarisation and magnetisation fields, respectively.
Polarisation and magnetisation are themselves complicated functions of the electric field

E(r) and the magnetic induction B(r). Assuming that the medium responds linearly and lo-
cally to externally applied fields, the most general relations between the fields that are consistent
with causality and the linear fluctuation-dissipation theorem can be cast into the form

P(r, t) = ε0

∞∫
0

dτ χe(r, τ)E(r, t− τ) + PN(r, t) , (3.31)

M(r, t) =
1
µ0

∞∫
0

dτ χm(r, τ)B(r, t− τ)−MN(r, t) (3.32)

where PN(r, t) and MN(r, t) are the noise polarisation and magnetisation, respectively, that are
associated with absorption in the medium with electric and magnetic susceptibilities χe(r, τ) and
χm(r, τ).
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The Fourier transformed expressions (3.31) and (3.32) convert the constitutive relations (3.30)
into

D(r, ω) = ε0ε(r, ω)E(r, ω)+PN(r, ω) , H(r, ω) = κ0κ(r, ω)B(r, ω)−MN(r, ω) , (3.33)

[κ(r, ω) = µ−1(r, ω)] where

ε(r, ω) = 1 +

∞∫
0

dτ χe(r, τ)eiωτ , κ(r, ω) = 1−
∞∫
0

dτ χm(r, τ)eiωτ (3.34)

are the relative dielectric permittivity and (inverse) magnetic permability, respectively. An im-
mediate consequence of the causal relation (3.34) is the validity of Kramers–Kronig (Hilbert
transform) relations between the real and imaginary parts of the susceptibilities in Fourier space,

Reχ(r, ω) =
1
π
P

∞∫
−∞

dω′
Imχ(r, ω′)
ω′ − ω

, Imχ(r, ω) = − 1
π
P

∞∫
−∞

dω′
Reχ(r, ω′)
ω′ − ω

. (3.35)

Using the expressions (3.34) for the dielectric permittivity and the magnetic permeability,
Maxwell’s equations for the Fourier components can thus be written as

∇ ·B(r, ω) = 0 , (3.36)
∇×E(r, ω) = B(r, ω) , (3.37)

ε0∇ · [ε(r, ω)E(r, ω)] = ρN(r, ω) , (3.38)

∇× [κ(r, ω)B(r, ω)] + i
ω

c2
ε(r, ω)E(r, ω) = µ0jN(r, ω) . (3.39)

Here we have introduced the noise charge density

ρN(r, ω) = −∇ ·PN(r, ω) (3.40)

and noise current density

jN(r, ω) = −iωPN(r, ω) + ∇×MN(r, ω) , (3.41)

respectively, which by construction obey the continuity equation.
Equations (3.38) and (3.39) now contain source terms. Hence, the electromagnetic field in

absorbing media is driven by Langevin noise forces that are due to the presence of absorption
itself. Moreover, the particular combination in which the noise polarisation and magnetisation
enter Maxwell’s equations, Eq. (3.41), suggests that dielectric and magnetic properties cannot
be uniquely distinguished. For example, one might include the magnetisation in the transverse
polarisation in which case the constitutive relations (3.30) would have to be altered. This simple
observation implies that the constitutive relations in the present form cannot be the fundamental
relations. Instead, the noise current density appears as the fundamental source of the electromag-
netic field. This becomes even more apparent if one allows for spatial dispersion that makes the
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dielectric response functions nonlocal in configuration space. It is therefore expedient to rewrite
Eqs. (3.38) and (3.39) as

∇×∇×E(r, ω)− ω2

c2
E(r, ω) = iµ0ωj(r, ω) , (3.42)

and to consider the most general linear response relation between the current density and the
electric field in the form of a generalised Ohm’s law as

j(r, ω) =
∫
d3r′ Q(r, r′, ω) ·E(r′, ω) + jN(r, ω) (3.43)

where Q(r, r′, ω) is the complex conductivity tensor in the frequency domain [37].
The Onsager–Lorentz reciprocity theorem demands the conductivity tensor to be reciprocal,

Q(r, r′, ω) = QT(r′, r, ω). The two spatial arguments must be kept separate in general, except
for translationally invariant bulk media in which the conductivity only depends on the difference
r−r′, i.e. in this case Q(r, r′, ω) ≡ Q(r−r′, ω). We assume that, for chosen ω, the conductivity
tensor is sufficiently well-behaved. By that we mean that it tends to zero sufficiently rapidly as
|r− r′| → ∞ and has no non-integrable singularities. However, δ functions and their derivatives
must be permitted to allow for the spatially nondispersive limit. The real part of Q(r, r′, ω),

σ(r, r′, ω) = Re Q(r, r′, ω) =
1
2
[
Q(r, r′, ω) + Q+(r′, r, ω)

]
, (3.44)

is connected with the dissipation of electromagnetic energy and for absorbing media, as an inte-
gral kernel, associated with a positive definite operator [37]. Under suitable assumptions on the
causality conditions satisfied by its temporal Fourier transform Q(r, r′, t), the conductivity ten-
sor is analytic in the upper complex ω half-plane, satisfies Kramers–Kronig (Hilbert transform)
relations, and obeys the Schwarz reflection principle

Q(r, r′,−ω∗) = Q∗(r, r′, ω) . (3.45)

We now identify the current density (3.43) as the one entering macroscopic Maxwell’s equa-
tions in the frequency domain. The medium-assisted electric field thus satisfies an integro-
differential equation of the form

∇×∇×E(r, ω)− ω
2

c2
E(r, ω)− iµ0ω

∫
d3r′ Q(r, r′, ω) ·E(r′, ω) = iµ0ωjN(r, ω) . (3.46)

The unique solution to the Helmholtz equation (3.46) is

E(r, ω) = iµ0ω

∫
d3r′ G(r, r′, ω) · jN(r′, ω) (3.47)

where G(r, r′, ω) is the classical Green tensor that satisfies Eq. (3.46) with a tensorial δ function
source,

∇×∇×G(r, s, ω)− ω
2

c2
G(r, s, ω)−iµ0ω

∫
d3r′ Q(r, r′, ω) ·G(r′, s, ω) = δ(r−s) (3.48)
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together with the boundary conditions at infinity. It inherits all properties such as analyticity
in the upper complex ω half-plane, the validity of the Schwarz reflection principle, as well as
Onsager–Lorentz reciprocity from the conductivity tensor, viz.

G(r′, r, ω) = GT(r, r′, ω) , (3.49)
G(r, r′,−ω∗) = G∗(r, r′, ω) . (3.50)

In addition, the Green tensor satisfies an important integral relation that can be derived as follows.
The integro-differential equation (3.48) can be rewritten as∫

d3sH(r, s, ω) ·G(s, r′, ω) = δ(r− r′) (3.51)

where the integral kernel H(r, r′, ω)= ∇×∇×δ(r−r′)−ω2/c2δ(r−r′)−iµ0ωQ(r, r′, ω) is
reciprocal, from which Eq. (3.49) follows. With that, the complex conjugate of Eq. (3.51) reads∫

d3sG+(r, s, ω) ·H+(s, r′, ω) = δ(r− r′) . (3.52)

If we now multiply Eq. (3.51) from the left with G+(s′, r, ω) and integrate over r, then multiply
Eq. (3.52) from the right with G(r′, s′, ω) and integrate over r′, and finally subtract the resulting
two equations, we find that for real ω the integral equation

µ0ω

∫
d3s

∫
d3s′ G(r, s, ω) · σ(s, s′, ω) ·G+(s′, r′, ω) = Im G(r, r′, ω) (3.53)

holds [38] (see also App. A).
Up until this point, all our investigations regarded classical electrodynamics. In order to

quantise the theory, we have to regard the Langevin noise sources jN(r, ω) as operators with the
commutation relation[̂

jN(r, ω), ĵ†N(r′, ω′)
]

=
~ω
π
δ(ω − ω′)σ(r, r′, ω) , (3.54)

which follows from the fluctuation-dissipation theorem associated with the linear response (3.43).
In this way, the operator of the electric field strength is given by the operator-valued version of
Eq. (3.47) as

Ê(r) =

∞∫
0

dω Ê(r, ω) + h.c. , Ê(r, ω) = iµ0ω

∫
d3r′ G(r, r′, ω) · ĵN(r′, ω) . (3.55)

The consistency of this quantisation procedure can be proven by checking the fundamental
equal-time commutation relation between the operators of the electric field and the magnetic
induction. Using Faraday’s law, Eq. (3.37), we find the frequency components of the magnetic
induction field as

B̂(r) =

∞∫
0

dω B̂(r, ω) + h.c. , B̂(r, ω) = µ0∇×
∫
d3r′ G(r, r′, ω) · ĵN(r′, ω) . (3.56)
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Hence, the equal-time commutator reads, on using the commutation relation (3.54) and the inte-
gral formula (3.53), as

[
Ê(r), B̂(r′)

]
=

2i~µ0

π
∇r′ ×

∞∫
0

dω ω Im G(r, r′, ω) =
~

πε0c2
∇r′ ×

∞∫
−∞

dω ωG(r, r′, ω) ,

(3.57)

where the second equality follows from the Schwarz reflection principle. Using the analyticity
properties of the Green tensor in the upper complex ω half-plane, we then convert the integral
along the real ω axis into a large semi-circle in the upper half-plane. From the integro-differential
equation (3.48) and the properties of the conductivity tensor Q(r, r′, ω) we find the asymptotic
form of the Green tensor for large frequencies as

G(r, r′, ω)
|ω|→∞
' − c

2

ω2
δ(r− r′) , (3.58)

so that the equal-time field commutator takes its final form of[
Ê(r), B̂(r′)

]
= − i~

ε0
∇× δ(r− r′) = − i~

ε0
∇× δ⊥(r− r′) . (3.59)

The striking feature is that the field commutator (3.59) is exactly the same as in free-space
quantum electrodynamics [Eq. (2.40)], despite the presence of an absorbing dielectric back-
ground material. This fact reinforces the view that the fields E and B represent the degrees
of freedom of the electromagnetic field alone and have little to do with any material degrees of
freedom. The apparent discrepancy with the notion of the expansion (3.55) as a medium-assisted
electric field is resolved by interpreting the Green tensor as the integral kernel of a projection op-
erator onto the electromagnetic degrees of freedom. Finally, the Langevin noise currents ĵN(r, ω)
can be renormalized to a bosonic vector field by taking the ‘square-root’ of the tensor σ(r, r′, ω)
(which exists because of its positivity in case of absorbing media). Writing

σ(r, r′, ω) =
∫
d3sK(r, s, ω) ·K+(r′, s, ω) , (3.60)

and defining

ĵN(r, ω) =
(

~ω
π

)1/2 ∫
d3r′ K(r, r′, ω) · f̂(r′, ω) (3.61)

where[
f̂(r, ω), f̂†(r′, ω′)

]
= δ(ω − ω′)δ(r− r′) , (3.62)

the expansion (3.55) of the frequency components of the operator of the electric field strength
finally becomes

Ê(r, ω) = iµ0ω

√
~ω
π

∫
d3r′

∫
d3sG(r, r′, ω) ·K(r′, s, ω) · f̂(s, ω) . (3.63)
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Hamiltonian: In order to complete the quantisation scheme, we need to introduce a Hamil-
tonian as a function of the Langevin noise sources ĵN(r, ω) and ĵ†N(r, ω) or, equivalently, in
terms of the bosonic dynamical variables f̂(r, ω) and f̂†(r, ω). Imposing the constraint that the
Hamiltonian should generate a time evolution according to[̂

jN(r, ω), Ĥ
]

= ~ωĵN(r, ω) , (3.64)

the Hamiltonian must be of the form [38]

Ĥ = π

∞∫
0

dω

∫
d3r

∫
d3r′ ĵ†N(r, ω) · ρ(r, r′, ω) · ĵN(r′, ω) (3.65)

where ρ(r, r′, ω) is the inverse of the integral operator associated with σ(r, r′, ω). In terms of
the bosonic dynamical variables, the Hamiltonian is diagonal,

Ĥ =

∞∫
0

dω

∫
d3r ~ω f̂†(r, ω) · f̂(r, ω) (3.66)

which is its most commonly used form [33, 39, 40]. Perhaps surprisingly, it closely resembles
its free-space counterpart, Eq. (2.37), in that it is bilinear in its dynamical variables. The rea-
son behind this behaviour is that any linear reponse theory can be derived from an underlying
microscopic model that is bilinear in its constituent amplitude operators which, after a suitable
Bogoliubov-type transformation, leads to a Hamiltonian of the form (3.66). An example is pro-
vided by the Huttner–Barnett model of a homogeneous, isotropic dielectric (Sec. 3.1.1).

Spatially local, isotropic, inhomogeneous dielectric media: We now apply the general theory
to some special cases that are of practical importance. Let us begin with the simplest, and histori-
cally first, example of a spatially nondispersive, isotropic and inhomogeneous dielectric material
that shows no magnetic response. The neglect of spatial dispersion makes the conductivity tensor
Q(r, r′, ω) strictly local, so that σ(r, r′, ω)= σ(r, ω)δ(r − r′). Furthermore, isotropy means
that σ(r, ω) = σ(r, ω)I . If we then make the identification σ(r, ω) = ε0ωImχ(r, ω) where
χ(r, ω) is the dielectric susceptibility, Eq. (3.63) becomes

Ê(r, ω) = i

√
~
πε0

ω2

c2

∫
d3r′

√
Imχ(r′, ω) G(r, r′, ω) · f̂(r′, ω) (3.67)

which yields the well-known quantisation scheme for a locally responding dielectric material
[33, 39, 41–46].

Spatially dispersive homogeneous bulk media: As a second example, we consider an in-
finitely extended homogeneous material for which Q(r, r′, ω) is translationally invariant [38,47].
That is, it is only a function of the difference r− r′. In this case, we represent σ(r, r′, ω) as the
spatial Fourier transform

σ(r, r′, ω) =
∫

d3k

(2π)3
σ(k, ω)eik·(r−r′) . (3.68)
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A similar decomposition can be made for the integral kernel K(r, r′, ω). For an isotropic
medium without optical activity, the Fourier components σ(k, ω) can be written as [37]

σ(k, ω) = σ‖(k, ω)
k⊗ k
k2

+ σ⊥(k, ω)
(

I − k⊗ k
k2

)
(3.69)

and similarly for K(k, ω), where the expansion coefficients have to be replaced by their positive
square-roots σ1/2

‖ (k, ω) and σ1/2
⊥ (k, ω)

Clearly, the decomposition (3.69) is not unique as σ(k, ω) can be equivalently decomposed
into

σ(k, ω) = σ‖(k, ω)I − k× γ(k, ω)I × k (3.70)

where

γ(k, ω) =
[
σ⊥(k, ω)− σ‖(k, ω)

]
/k2 . (3.71)

Since both σ‖(k, ω) and σ⊥(k, ω) have to be real and positive to yield a positive definite integral
kernel σ(k, ω), the new variable γ(k, ω) is real, too. However, it does not have a definite sign.
If, on the other hand, one forces γ(k, ω) to be positive, then the tensor

K ′(k, ω) = σ
1/2
‖ (k, ω)I ± γ1/2(k, ω)I × k (3.72)

is the positive square-root of the integral kernel σ(k, ω). The kernels K ′(k, ω) and K(k, ω),
despite being different, are related by a unitary transformation [38].

Spatially local magnetoelectric media: The local limit of the above theory has a rather inter-
esting structure. If one assumes that the functions σ‖(k, ω) and γ(k, ω) vary sufficiently slowly
with k and possess well-defined long-wavelength limits limk→0 σ‖(k, ω) = σ‖(ω) > 0 and
limk→0 γ(k, ω) = γ(ω) > 0, one finds the approximation

σ(r, r′, ω) = σ‖(ω)δ(r− r′)− γ(ω)∇× δ(r− r′)×
←−
∇′ . (3.73)

The full conductivity tensor associated with that real part (real and imaginary parts are related by
a Hilbert transform) is then

Q(r, r′, ω) = Q(1)(ω)δ(r− r′)−Q(2)(ω)∇× δ(r− r′)×
←−
∇′ (3.74)

with the identifications

Q(1)(ω) = −iε0ω [ε(ω)− 1] , Q(2)(ω) = −iκ0 [1− κ(ω)] /ω , (3.75)

where ε(ω) is the dielectric permittivity and µ(ω) = 1/κ(ω) the (para-)magnetic permeability
of the medium. Note that the requirement γ(ω) > 0 implies that Imκ(ω) < 0 for ω > 0, from
which it follows that µ(ω → 0) > 1 [4]. This in turn means that this theory can only describe
paramagnetic materials. Diamagnetic materials are intrinsically nonlinear as their response func-
tions themselves depend on the magnetic field and thus are excluded from a linear-response
formalism.
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The noise current density that is derived from the kernel

K ′(r, r′, ω) = σ
1/2
‖ (ω)δ(r− r′)∓ γ1/2(ω)∇× δ(r− r′) (3.76)

[which follows from Eq. (3.73)] can be decomposed into longitudinal and transverse parts,
ĵN(r, ω) = ĵN‖(r, ω) +ĵN⊥(r, ω) with

ĵN‖(r, ω) =

√
~ε0
π
ω
√

Im ε(ω) f̂‖(r, ω) , (3.77)

ĵN⊥(r, ω) =

√
~ε0
π
ω
√

Im ε(ω)f̂⊥(r, ω)∓ i
√

~κ0

π
∇×

[√
Imµ(ω)
|µ(ω)|2

f̂⊥(r, ω)

]
.

(3.78)

The distinction between longitudinal and transverse components of the noise current density
(and subsequently the bosonic dynamical variables) is essentially a projection formalism, and
the f̂‖(⊥)(r, ω) are termed projective variables [38].

Another, more frequently used decomposition is obtained by redistributing the electric part of
the transverse noise current density. In this way, two new sets of independent bosonic variables,
f̂e(r, ω) and f̂m(r, ω), are introduced that lead to an equivalent decomposition of the noise current
according to [33, 40]

ĵNe(r, ω) =

√
~ε0
π
ω
√

Im ε(r, ω) f̂e(r, ω) , (3.79)

ĵNm(r, ω) = ∓i
√

~κ0

π
∇×

[√
Imµ(r, ω)
|µ(r, ω)|2

f̂m(r, ω)

]
, (3.80)

in which the possible spatial dependencies of the dielectric permittivity and the paramagnetic
permeability have been reinstated (see Ref. [38] for details). The Hamiltonian (3.66) takes the
form

Ĥ =
∑

λ=e,m

∫
d3r

∞∫
0

dω ~ω f̂†λ(r, ω) · f̂λ(r, ω) . (3.81)

Finally, the electric field (3.63) and the magnetic induction can be written as

Ê(r, ω) =
∑

λ=e,m

∫
d3r′ Gλ(r, r′, ω) · f̂λ(r′, ω) , (3.82)

B̂(r, ω) =
1
iω

∑
λ=e,m

∫
d3r′ [∇×Gλ(r, r′, ω)] · f̂λ(r′, ω) (3.83)

with the definitions

Ge(r, r′, ω) = i
ω2

c2

√
~
πε0

Im ε(r, ω) G(r, r′, ω) , (3.84)

Gm(r, r′, ω) = −iω
c

√
~
πε0

Imµ(r, ω)
|µ(r, ω)|2

[
G(r, r′, ω)×

←−
∇′
]
, (3.85)
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where G(r, r′, ω) is the usual classical Green tensor satifying Eq. (3.48). The latter Helmholtz
equation condenses to (see also App. A)

∇× κ(r, ω)∇×G(r, r′, ω)− ω2

c2
ε(r, ω)G(r, r′, ω) = δ(r− r′) . (3.86)

For completeness, we mention that the integral relation (3.53) can be cast into the form

∑
λ=e,m

∫
d3sGλ(r, s, ω) ·G+

λ (r′, s, ω) =
~
πε0

ω2

c2
Im G(r, r′, ω) . (3.87)

Alternatively, the electric and magnetic noise current densities (3.79) and (3.80) can be recast
into the form of noise polarisation and magnetisation fields

ĵNe(r, ω) = −iωP̂N(r, ω) , ĵNm(r, ω) = ∇× M̂N(r, ω) . (3.88)

Then, the electromagnetic fields read in terms of these noise fields as

Ê(r, ω) =
ω2

ε0c2

∫
d3r′ G(r, r′, ω) · P̂N(r′, ω)

−iµ0ω

∫
d3r′

[
G(r, r′, ω)×

←−
∇′
]
· M̂N(r′, ω) , (3.89)

B̂(r, ω) = iµ0ω

∫
d3r′ [∇×G(r, r′, ω)] · P̂N(r′, ω)

−µ0

∫
d3r′

[
∇×G(r, r′, ω)×

←−
∇′
]
· M̂N(r′, ω) , (3.90)

D̂(r, ω) = −i ω
c2
ε(r, ω)

∫
d3r′

[
G(r, r′, ω)×

←−
∇′
]
· M̂N(r′, ω)

+
ω2

c2

∫
d3r′ [ε(r, ω)G(r, r′, ω) + δ(r− r′)] · P̂N(r′, ω) , (3.91)

Ĥ(r, ω) = −i ω

µ(r, ω)

∫
d3r′ [∇×G(r, r′, ω)] · P̂N(r′, ω)

−
∫
d3r′

[
∇×G(r, r′, ω)×

←−
∇′

µ(r, ω)
+ δ(r− r′)

]
· M̂N(r′, ω) . (3.92)

Statistical properties: Thermal expectation values of the electromagnetic field can be obtained
from those of the dynamical variables. Assuming the electromagnetic field in thermal equilib-
rium with temperature T , it may be described by a (canonical) density operator

%̂T =
e−ĤF /(kBT )

tre−ĤF /(kBT )
(3.93)
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[kB : Boltzmann constant]. Thermal averages 〈. . .〉T = tr[. . . %̂T ] of the dynamical variables are
thus given by

〈f̂λ(r, ω)〉T = 0 = 〈f̂†λ(r, ω)〉T , (3.94)

〈f̂λ(r, ω)⊗ f̂λ′(r′, ω′)〉T = 0 = 〈f̂†λ(r, ω)⊗ f̂†λ′(r′, ω′)〉T , (3.95)

〈f̂†λ(r, ω)⊗ f̂λ′(r′, ω′)〉T = n̄th(ω)δλλ′δ(r− r′)δ(ω − ω′) , (3.96)

〈f̂λ(r, ω)⊗ f̂†λ′(r′, ω′)〉T = [n̄th(ω) + 1] δλλ′δ(r− r′)δ(ω − ω′) , (3.97)

where

n̄th(ω) =
∑

mme−m~ω/(kBT )∑
m e−m~ω/(kBT )

=
1

e~ω/(kBT ) − 1
(3.98)

is the average thermal photon number. This translates into the statistical properties of the elec-
tromagnetic fields as follows:

〈Ê(r, ω)〉T = 0 = 〈Ê†(r, ω)〉T , (3.99)

〈Ê(r, ω)⊗ Ê(r′, ω′)〉T = 0 = 〈Ê†(r, ω)⊗ Ê†(r′, ω′)〉T , (3.100)

〈Ê†(r, ω)⊗ Ê(r′, ω′)〉T =
~
πε0

n̄th(ω)
ω2

c2
Im G(r, r′, ω)δ(ω − ω′) , (3.101)

〈Ê(r, ω)⊗ Ê†(r′, ω′)〉T =
~
πε0

[n̄th(ω) + 1]
ω2

c2
Im G(r, r′, ω)δ(ω − ω′) , (3.102)

〈B̂(r, ω)〉T = 0 = 〈B̂†(r, ω)〉T , (3.103)

〈B̂(r, ω)⊗ B̂(r′, ω′)〉T = 0 = 〈B̂†(r, ω)⊗ B̂†(r′, ω′)〉T , (3.104)

〈B̂†(r, ω)⊗ B̂(r′, ω′)〉T =
~µ0

π
n̄th(ω)Im

[
∇×G(r, r′, ω)×

←−
∇
]
δ(ω − ω′) ,(3.105)

〈B̂(r, ω)⊗ B̂†(r′, ω′)〉T =
~µ0

π
[n̄th(ω) + 1] Im

[
∇×G(r, r′, ω)×

←−
∇
]
δ(ω − ω′) .

(3.106)

These expressions will be needed for the calculation of relaxation rates (Sec. 4) and dispersion
forces (Sec. 5).

3.1.3 Duality transformations

An important symmetry of the Maxwell’s equations in free space is duality where interchanging
electric and magnetic fields yields the same differential equations. Here we will show that this
type of symmetry can be established even within the framework of macroscopic quantum elec-
trodynamics. At first, we consider macroscopic QED without external charges and currents. We
group the fields into dual pairs and rewrite Maxwell’s equations as

∇ ·
(√

µ0D̂√
ε0B̂

)
=
(

0
0

)
, ∇×

(√
ε0Ê√
µ0Ĥ

)
+
∂

∂t

(
0 1
−1 0

)(√
µ0D̂√
ε0B̂

)
=
(
0
0

)
, (3.107)
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where the constitutive relations are combined to(√
µ0D̂√
ε0B̂

)
=

1
c

(√
ε0Ê√
µ0Ĥ

)
+
( √

µ0P̂√
ε0µ0M̂

)
. (3.108)

A general rotation D(θ) in the space of dual pairs can be written as(
x
y

)?

= D(θ)
(
x
y

)
, D(θ) =

(
cos θ sin θ
− sin θ cos θ

)
. (3.109)

It is easily checked that Maxwell’s equations (3.107) in free space with constitutive relations
(3.108) is invariant under rotations of the form (3.109).

In the presence of spatially local magnetoelectric materials, the constitutive relations in fre-
quency space can be further specified to(√

µ0D̂√
ε0B̂

)
=

1
c

(
ε 0
0 µ

)(√
ε0Ê√
µ0Ĥ

)
+
(

1 0
0 µ

)( √
µ0P̂N√
ε0µ0M̂N

)
. (3.110)

Invariance of the constitutive relations (3.110) under the duality transformation (3.109) requires
that(

ε? 0
0 µ?

)
= D(θ)

(
ε 0
0 µ

)
D−1(θ) =

(
ε cos2 θ + µ sin2 θ (µ− ε) sin θ cos θ
(µ− ε) sin θ cos θ ε sin2 θ + µ cos2 θ

)
(3.111)

which can be fulfilled in two ways. The first is obtained if the dielectric permittivity of the
material equals its magnetic permeability, ε = µ. This is achieved in free space as well as by
certain metamaterials, for example by a perfect lens with ε = µ = −1 [48]. In this case duality
is a continuous symmetry which holds for all angles θ.

Generally, duality holds only for discrete values of the rotation angle, θ = nπ/2 with n ∈ Z.
In this case, the transformation results in(
ε
µ

)?

=
(

cos2 θ sin2 θ
sin2 θ cos2 θ

)(
ε
µ

)
,

( √
µ0P̂N√
ε0µ0M̂N

)?

=
(

cos θ µ sin θ
−ε−1 sin θ cos θ

)( √
µ0P̂N√
ε0µ0M̂N

)
.

(3.112)

It should be remarked that, not only are Maxwell’s equations invariant under the discrete duality
transformation, but also the Hamiltonian that generates them. To see this, one can derive the
transformation properties of the dynamical variables from the relations (3.112) which read for
θ = nπ/2 as(

f̂e
f̂m

)?

=
(

cos θ −i(µ/|µ|) sin θ
−i(|ε|/ε) sin θ cos θ

)(
f̂e
f̂m

)
. (3.113)

These transformations obviously leave the Hamiltonian (3.81) invariant. Combining all relevant
transformation relations, we can collect the duality relations for all electromagnetic fields, the
linear response functions, and dipole moments, in Tab. 3.1. These relations allow one to establish
novel results for magnetic (electric) materials and atoms in terms of already known results from
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Partners Transformation
Ê, Ĥ: Ê? = cµ0Ĥ, Ĥ? = −Ê/(cµ0)
D̂, B̂: D̂? = cε0B̂, B̂? = −D̂/(cε0)
P̂, M̂: P̂? = M̂/c, M̂? = −cP̂

P̂A, M̂A: P̂?
A = M̂A/c, M̂?

A = −cP̂A

d̂, m̂: d̂? = m̂/c, m̂? = −cd̂
P̂N, M̂N: P̂?

N = µM̂N/c, M̂?
N = −cP̂N/ε

f̂e, f̂m: f̂?
e = −i(µ/|µ|)f̂m, f̂?

m = −i(|ε|/ε)f̂e
ε, µ: ε? = µ, µ? = ε
α, β: α? = β/c2, β? = c2α

Tab. 3.1. Effect of the duality transformation.

their corresponding dual electric (magnetic) counterparts. Finally, duality does not only hold
on the operator level in macroscopic QED without external charges and currents, but can also
be established for derived atomic quantities. It is shown in Ref. [49] that dispersion forces as
well as decay rates are all duality invariant, provided that the bodies are stationary and located
in free space and that local-field corrections are applied when considering atoms embedded in a
medium. The duality invariance of dispersion forces is further discussed and exploited in Sec. 5.

3.2 Light propagation through absorbing dielectric devices

In a previous section (Sec. 2.1.3) we developed the theory of quantum-state transformation at
lossless beam splitters which accounts for a unitary transformation between the photonic am-
plitude operators associated with incoming and outgoing light. Unitarity is directly related to
conservation of photon number during the beam splitter transformation. It is already intuitively
clear that in the presence of losses, i.e. absorption, photon-number conservation and thus unitar-
ity cannot be upheld, at least not on the level of the photonic amplitude operators. Having said
that, because we have constructed a bilinear Hamiltonian of the electromagnetic field even in the
presence of absorbing dielectrics, Eq. (3.81), there will be a unitary evolution associated with the
medium-assisted electromagnetic field, but not with the (free) electromagnetic field alone.

In order to see how the restricted evolution emerges, we consider again a one-dimensional
model of a beam splitter that consists of a (planarly) multilayered dielectric structure surrounded
by free space (see Fig. 2.1). As opposed to a mode decomposition in the lossless case, we seek
the Green function associated with the light scattering at the multilayered stack. In this one-
dimensional model, the Green function reduces to a scalar function which can be constructed by
fitting bulk Green functions at the interfaces between regions of piecewise constant permittivity
[50]. Knowledge of the Green function amounts to knowledge of the transmission, reflection and
absorption coefficients associated with impinging light of frequency ω. Similar decompositions
can be made for three-dimensional structures with translational invariance [51].

It turns out that the input-output relations (2.52) have to be amended by a term associated
with absorption in the beam splitter,

b̂(ω) = T (ω) · â(ω) + A(ω) · ĝ(ω) , (3.114)



722 Macroscopic QED — concepts and applications

where ĝi(ω) denote (bosonic) variables associated with excitations in the dielectric material (de-
vice operators) with complex refractive index n(ω) = η(ω) + iκ(ω), and A(ω) the absorption
matrix. This expression is a direct consequence of the expansion of the electromagnetic field
operators in terms of the dynamical variables. It is shown in Ref. [50] that the device operators
are integrated dynamical variables over the beam splitter and read

ĝ1,2(ω) = i

√
ω

2cλ±(d, ω)
ein(ω)ωd/(2c)

d/2∫
−d/2

dx
[
ein(ω)ωx/c ± e−in(ω)ωx/c

]
f̂(x, ω) (3.115)

where

λ±(d, ω) = e−κ(ω)ωd/c

{
sinh[κ(ω)ωd/c]

κ(ω)
± sin[η(ω)ωd/c]

η(ω)

}
. (3.116)

The transmission and absorption matrices obey the relation

T (ω) · T +(ω) + A(ω) ·A+(ω) = I (3.117)

which serves as the generalisation of the above-mentioned energy conservation relation (2.48).
Equation (3.117) says that the probabilities of a photon being transmitted, reflected or absorbed
add up to one. Hence, photon numbers and thus energy is conserved only if one includes absorp-
tion. For a single plate of thickness d surrounded by vacuum, the matrix elements read [33, 50]

T11(ω) = T22(ω) = −e−iωd/cr(ω)
[
1− t1(ω)e2in(ω)ωd/cD(ω)t2(ω)

]
, (3.118)

T12(ω) = T21(ω) = e−iωd/ct1(ω)ein(ω)ωd/cD(ω)t2(ω) , (3.119)

A11(ω) = A21(ω) =
√
η(ω)κ(ω)e−iωd/(2c)t1(ω)D(ω)

√
λ+(d, ω)

×
[
1 + ein(ω)ωd/cr(ω)

]
, (3.120)

A12(ω) = −A22(ω) =
√
η(ω)κ(ω)e−iωd/(2c)t1(ω)D(ω)

√
λ−(d, ω)

×
[
1− ein(ω)ωd/cr(ω)

]
. (3.121)

The interface reflection and transmission coefficients are functions of the index of refraction and
are defined as

r(ω) =
n(ω)− 1
n(ω) + 1

, t1(ω) =
2

1 + n(ω)
, t2(ω) =

2n(ω)
1 + n(ω)

, (3.122)

and the factorD(ω) = [1−r2(ω)e2in(ω)ωd/c]−1 accounts for multiple reflections inside the plate.
These coefficients are special cases of the generalised Fresnel coefficients for p-polarisation and
normal incidence (see App. A.4).

The input-output relations (3.114) translate into a generalised quantum-state transformation
formula. For this purpose, we need to look into an enlarged Hilbert space for the electromagnetic
field and the dielectric object. With the four-dimensional vectors α̂(ω) = [â(ω), ĝ(ω)]T and
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β̂(ω) = [b̂(ω), ĥ(ω)]T, the input-output relations can be extended to a unitary matrix transfor-
mation of the form

β̂(ω) = Λ(ω) · α̂(ω) (3.123)

where the unitary 4 × 4-matrix Λ(ω) is an element of the group SU(4) and can be expressed in
terms of the transmission and absorption matrices as [52]

Λ(ω) =
(

T (ω) A(ω)
−S(ω) ·C−1(ω) · T (ω) C(ω) · S−1(ω) ·A(ω)

)
(3.124)

where C(ω) =
√

T (ω) · T +(ω) and S(ω) =
√

A(ω) ·A+(ω). Given a density operator %̂ as
a functional of the input operators α̂, %̂in = %̂in[α̂(ω), α̂†(ω)], the transformed density operator
of the photonic degress of freedom alone is then [52]

%̂
(F )
out = tr(D)

{
%̂in

[
Λ+(ω) · α̂(ω),ΛT(ω) · α̂†(ω)

]}
, (3.125)

where tr(D) denotes the trace over the device variables. As a first illustrative example, we con-
sider the transformation of coherent states at an absorbing beam splitter. If we assume that both
the incoming electromagnetic field as well as the beam splitter are prepared in two-mode co-
herent states |α〉 and |β〉 with respective amplitudes α and β, application of the input-output
relations (3.114) [or equivalently, the quantum-state transformation (3.125)] reveals that the out-
going fields are prepared in a two-mode coherent state

|α′〉 = |T ·α + A · β〉 . (3.126)

Hence, the transformed amplitudes are determined not only by the transmission matrix T but
also by the absorption matrix A [33].

This theory has wide-ranging applications that include nonclassicality studies of light prop-
agation through optical elements and entanglement degradation in optical fibres [53, 54]. We
mention here two important results relating to propagation of two-mode quantum states of light
through optical fibres. Consider a two-mode squeezed vacuum state with squeezing parameter ξ
being sent through identical optical fibres of length l that are held at a temperature T . We regard
the optical fibres as essentially one-dimensional objects whose effect on the quantum states of
light propagating through them can be described by the input-output theory presented above. The
optical fibres are characterized by their absorption length labs which implies that we approximate
their transmission coefficient associated with them by |T |2 = e−l/labs . Furthermore, a nonzero
temperature T gives rise to a mean thermal photon number n̄th = [e~ω/(kBT ) − 1]−1.

As a two-mode squeezed vacuum is a Gaussian state, it is fully characterized by its first and
second moments, the mean and covariances of its Wigner function or characteristic function,
respectively. For the quantum state under consideration, the mean is zero and its covariance
matrix is

Γ =


c 0 s 0
0 c 0 −s
s 0 c 0
0 −s 0 c

 ,
c = cosh 2ξ ,
s = sinh 2ξ . (3.127)
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The covariance matrix Γ transforms under an arbitrary completely positive map as

Γ 7→ Γ′ = A · Γ ·AT + G (3.128)

where G is a positive symmetric matrix and A an arbitrary matrix, provided that the resulting
covariance matrix Γ′ is a valid covariance matrix, i.e. obeys Heisenberg’s uncertainty relation
Γ′ + iΣ ≥ 0 [Σ: symplectic matrix]. The non-orthogonality of the matrix A is a direct con-
sequence of dissipation, and G is the additional noise as required by the fluctuation-dissipation
theorem. The general structure (3.128) clearly also follows from the application of the quantum-
state transformation formula (3.125).

Using the input-output relations (3.114), we find that the entries in the covariance matrix Γ
change according to [55]

c 7→ c|T |2 + |R|2 + (2n̄th + 1)(1− |T |2 − |R|2) , s 7→ s|T |2 , (3.129)

which translates into a transformation of the covariance matrix as

Γ 7→ |T |2Γ +
[
|R|2 + (2n̄th + 1)(1− |T |2 − |R|2)

]
I (3.130)

from which the matrices A and G can be read off as A = |T |I and G = [|R|2 +(2n̄th +1)(1−
|T |2 − |R|2)]I , respectively.

The entanglement content of a two-mode squeezed vacuum state, expressed in terms of its
negativity [56], is EN = 2ξ. At zero temperature, and neglecting coupling losses into the fi-
bres, the maximal amount of entanglement (in the limit of infinite initial squeezing) that can be
transmitted through the fibres is EN,max = − ln

(
1− e−l/labs

)
. For finite initial squeezing, and

at finite temperature T , the state becomes separable, i.e. it loses all its entanglement, after the
separability length

lS =
labs

2
ln
[
1 +

1
2n̄th

(
1− e−2ξ

)]
. (3.131)

Note that at zero temperature this separability length is infinite, i.e. in this case it is always
possible to transmit some entanglement over arbitrary distances.

3.3 Medium-assisted interaction of the quantised electromagnetic field with atoms

Up until now, our emphasis has been on devising a quantisation scheme for the electromagnetic
field in the presence of magnetoelectric background materials, but without external sources. The
starting point had been the definition of derived electromagnetic quantities such as the displace-
ment field D and the magnetic field H in terms of the matter-related quantities P and M, the po-
larisation and magnetisation fields [Eq. (3.30)]. However, the definition of the latter is not unique
as parts of them may be associated with magnetoelectric background media, whereas other parts
could be attributed to additional atomic or molecular sources not included in the background mat-
ter. It is these additional sources that give rise to a successful theory of microscopic-dielectric
interfaces.

In close analogy to the free-space case, the medium-assisted electromagnetic field can be
coupled to an atomic system consisting of non-relativistic spinless charged particles via the
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minimal-coupling scheme. The dynamics of the combined atom-field system is governed by
the Hamiltonian

Ĥ =
∑

λ=e,m

∫
d3r

∞∫
0

dω ~ω f̂†λ(r, ω) · f̂λ(r, ω) +
∑
α

[p̂α − qαÂ(r̂α)]2

2mα

+
∑

α6=α′

qαqα′

8πε0|r̂α − r̂α′ |
+
∫
d3r ρ̂A(r)φ̂(r) (3.132)

where

ρ̂A(r) =
∑
α

qαδ(r− r̂α) (3.133)

is the charge density of the particles. The vector and scalar potentials Â(r) and φ̂(r) of the
medium-assisted electromagnetic field are expressed in terms of the dynamical variables f̂(r, ω)
and f̂†(r, ω) as

Â(r) =

∞∫
0

dω
1
iω

Ê⊥(r, ω) + h.c. , −∇φ̂(r) =

∞∫
0

dω Ê‖(r, ω) + h.c. . (3.134)

The total electromagnetic fields are the sums of the medium-assisted fields and the fields
associated with the atomic system,

Ê(r) = Ê(r)−∇φ̂A(r) , (3.135)

B̂(r) = B̂(r) , (3.136)

D̂(r) = D̂(r)− ε0∇φ̂A(r) , (3.137)

Ĥ(r) = Ĥ(r) , (3.138)

where

φ̂A(r) =
∫
d3r′

ρ̂A(r′)
4πε0|r− r′|

(3.139)

is the scalar potential of the charged particles. In those cases in which the atomic system consists
of sufficiently localized particles such as in an atom or molecule, it is expedient to introduce
shifted particle coordinates ˆ̄rα = r̂α − r̂A relative to the center of mass r̂A =

∑
α(mα/mA)r̂α

[with the total mass mA =
∑

αmα]. Expanding the vector and scalar potentials Â(r) and φ̂(r)
around the center of mass, the Hamiltonian (3.132) simplifies for globally neutral atomic systems
[qA =

∑
α qα = 0] to the electric dipole Hamiltonian

Ĥ = ĤF + ĤA + ĤAF (3.140)
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where

ĤF =
∑

λ=e,m

∫
d3r

∞∫
0

dω ~ω f̂†λ(r, ω) · f̂λ(r, ω) , (3.141)

ĤA =
∑
α

p̂2
α

2mα
+
∑

α6=α′

qαqα′

8πε0|r̂α − r̂α′ |
, (3.142)

ĤAF = d̂ · ∇φ̂(r)
∣∣∣
r=r̂A

−
∑
α

qα
2mα

p̂α · Â(r̂A) +
∑
α

q2α
2mα

Â2(r̂A) . (3.143)

Recall that the electric dipole moment is given by Eq. (2.98).
Equations (3.141)–(3.143) could form the starting point for investigations into interaction

of the medium-assisted electromagnetic field with atomic systems in the long-wavelength ap-
proximation. However, as for free-space QED, the treatment can be considerably simplified by
transforming using the alternative multipolar coupling scheme. To this end, we again apply a
Power–Zienau transformation [20–22]

Û = exp
[
i

~

∫
d3r P̂A(r) · Â(r)

]
(3.144)

where the polarisation P̂A is still defined by Eq. (2.92), but the vector potential Â is given by
Eq. (3.134) in the presence of magnetoelectrics, as opposed to the expansion (2.35) valid in
free space. The unitary operator transformation Ô′ = Û ÔÛ† with the operator (3.144) leads to
transformed dynamical variables f̂ ′λ(r, ω) as [57]

f̂ ′λ(r, ω) = f̂λ(r, ω) +
1

~ω

∫
d3r′ P̂⊥

A(r′) ·G+
λ (r, r′, ω) (3.145)

and thus transformed electric fields (2.99). The magnetic induction field remains unchanged
by this transformation, B̂′(r) = B̂(r), because it clearly commutes with the operator of the
vector potential. Other quantities that remain unchanged are those that depend solely on the
atomic position operators r̂′α = r̂α such as the atomic scalar potential, φ̂′A(r) = φ̂A(r), and
the polarisation and magnetisation fields. The atomic momentum operators, however, transform
as [57]

p̂′α = p̂α − qαÂ(r̂α)−
∫
d3r Ξ̂α(r)× B̂(r) (3.146)

where we have defined the auxiliary vectors

Ξ̂α(r) = qαΘ̂α(r)− mα

mA

∑
β

qβΘ̂β(r) +
mα

mA
P̂A(r) , (3.147)

Θ̂α(r) = ˆ̄rα

1∫
0

ds sδ(r− r̂A − sˆ̄rα) . (3.148)
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With these preparations, we can now write down the Hamiltonian (3.132) in terms of the
transformed variables as

Ĥ ′ =
∑

λ=e,m

∫
d3r

∞∫
0

dω ~ω f̂ ′λ
†(r, ω) · f̂ ′λ(r, ω) +

1
2ε0

∫
d3r P̂2

A(r)

−
∫
d3r P̂A(r) · Ê′(r) +

∑
α

1
2mα

[
p̂′α +

∫
d3r Ξ̂α(r)× B̂(r)

]2
. (3.149)

It should be mentioned that, due to the unitary nature of the Power–Zienau transformation, the
commutation relations between the transformed atomic position and momentum operators r̂′α and
p̂′α as well as between the transformed dynamical variables f̂ ′λ(r, ω) and f̂ ′λ

†(r, ω) are unchanged.
The fields Ê′(r) and B̂′(r) have to be thought of as being expanded in terms of the transformed
dynamical variables in the same way as the untransformed fields are expanded in terms of the
untransformed dynamical variables.

In the long-wavelength approximation, one replaces the function δ(r− r̂A−sˆ̄rα) by its value
at s = 0, δ(r− r̂A), so that the polarisation and the auxiliary fields reduce to

P̂A(r) = d̂δ(r−r̂A) , Θ̂α(r) =
1
2
ˆ̄rαδ(r−r̂A) , Ξ̂α(r) = qαΘ̂α(r)+

mα

2mA
P̂A(r) . (3.150)

Upon using these simplifications, we obtain the multipolar Hamiltonian (3.149) in long-wave-
length approximation as

Ĥ ′ = Ĥ ′
F + Ĥ ′

A + Ĥ ′
AF (3.151)

where

Ĥ ′
F =

∑
λ=e,m

∫
d3r

∞∫
0

dω ~ω f̂ ′λ
†(r, ω) · f̂ ′λ(r, ω) , (3.152)

Ĥ ′
A =

∑
α

p̂′α
2

2mα
+

1
2ε0

∫
d3r P̂2

A(r) , (3.153)

Ĥ ′
AF = −d̂ · Ê′(r̂A)− m̂′ · B̂′(r̂A) +

∑
α

q2α
8mα

[
ˆ̄rα × B̂′(r̂A)

]2
+

3
8mA

[
d̂× B̂′(r̂A)

]2
+

p̂′A
mA
·
[
d̂× B̂′(r̂A)

]
, (3.154)

where

m̂′ =
1
2

∑
α

qα
mα

ˆ̄rα × ˆ̄p′α (3.155)

is the magnetic dipole operator, p̂′A =
∑

α p̂′α, and ˆ̄p′α = p̂′α − (mα/mA)p̂′A.
At the moment, the magnetic dipole moment operator comprises only the contribution from

the angular momentum. Spin can be included via a Pauli interaction term in Eq. (3.132) leading
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to

m̂′ =
∑
α

[
qα

2mα

ˆ̄rα × ˆ̄p′α + γαŝα

]
(3.156)

(ŝα: particle spin, γα: gyromagnetic ratio) [58].
The scheme can be easily extended to include more than one atomic subensemble. In the

minimal-coupling scheme, this leads to interatomic Coulomb interactions in Eq. (3.132) which
is why the multipolar-coupling scheme is strongly preferable. In this case, Eq. (3.151) generalises
to [130]

Ĥ ′ = Ĥ ′
F +

∑
A

[
Ĥ ′

A + Ĥ ′
AF

]
, (3.157)

where the dynamics of each atom is given by a Hamiltonian of the form (3.153) and each atom
couples individually to the electromagnetic field via coupling Hamiltonians of the form (3.154).

As in the free-space case, we will henceforth treat all atom-field couplings within the frame-
work of the multipolar coupling scheme and drop all primes denoting multipolar variables.

3.4 Nonlinear quantum electrodynamics

In all previous (as well as all subsequent) sections we have concentrated on magnetoelectric
background materials whose dielectric (and magnetic) response to an external perturbation can be
described within the framework of linear-response theory. That is, polarisation and magnetisation
fields are linearly and causally related to the primary electromagnetic fields. For purely dielectric
media, this means that [cf. Eq. (3.31)]

P(r, t) = ε0

∞∫
0

dτ χ(r, τ)E(r, t− τ) + PN(r, t) (3.158)

where χ(r, τ) is the dielectric susceptibility. However, many materials show nonlinear behaviour,
i.e. their dielectric response has to be described by a polarisation with a component that depends
quadratically (cubically, quartically etc.) on the external electric field. In free space where
dispersion and absorption are disregarded and a mode expansions of the electromagnetic field
can be used, the effect of these nonlinear polarisations is to add interaction Hamiltonians that
are cubic (quartic, quintic etc.) in the photonic amplitude operators (see, e.g. [59]). These
effective Hamiltonians arise from off-resonant interactions with atomic systems in rotating-wave
approximation [see, e.g. Eq. (2.143)]. Our aim is to extend this theory to nonlinear processes in
absorbing matter where mode expansions generally do not hold.

For this purpose, we consider an interaction Hamiltonian in its most general normal-ordered
form corresponding to a χ(2) medium. Using the abbreviation k as a short-hand for the collection
of spatial and frequency variables k ≡ (rk, ωk), this interaction Hamiltonian can be written
as [60]

ĤNL =
∫
d1 d2 d3αijk(1,2,3)f̂†i (1)f̂j(2)f̂k(3) + h.c. (3.159)
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with an as yet unknown coupling tensor αijk(1,2,3) that will eventually have to be (linearly)
related to the second-order nonlinear susceptibility χ(2)

ijk. The integration initially ranges over all
frequencies, even including those frequencies that would not guarantee energy conservation.

The Hamiltonian (3.159), together with the Hamiltonian ĤL of the linear theory (we include
the index L here to distinguish it from the nonlinear interaction Hamiltonian), is now used to
construct the time-dependent Maxwell equations such as Faraday’s law ∇× Ê(r) = − ˙̂B(r) as

∇× Ê(r) = − 1
i~

[
B̂(r), ĤL + ĤNL

]
. (3.160)

The fields Ê(r) and B̂(r) have to be thought of as being expanded in terms of the dynamical
variables f̂(r, ω) and f̂†(r, ω). Since Faraday’s law is valid irrespective of the presence of matter,

and by definition [B̂(r), ĤL]/(i~)= ˙̂B(r), we must have[
B̂(r), ĤNL

]
= 0 , (3.161)

which is a condition that is needed in the next step. We write Ampère’s law ∇× Ĥ(r) = ˙̂D(r),
using Faraday’s law, as

∇×∇× Ê(r) = −µ0
¨̂D(r) = −µ0

¨̂DL(r)− µ0
¨̂PNL(r) (3.162)

where we split up the total displacement field D̂(r) into its linear part,

D̂L(r) = ε0ε(r, ω)Ê(r) + P̂(N)
L (r) , (3.163)

and some nonlinear polarisation P̂NL(r). Heisenberg’s equations of motion then imply that

∇×∇× Ê(r) =
µ0

~2

[[
D̂L(r), ĤL

]
, ĤL

]
+
µ0

~2

[[
D̂L(r), ĤL

]
, ĤNL

]
+
µ0

~2

[[
D̂L(r), ĤNL

]
, ĤL

]
+
µ0

~2

[[
P̂NL(r), ĤL

]
, ĤL

]
(3.164)

where we kept only those terms that are at most linear in the coupling tensor αijk. The terms
that have been left out have to be included into higher order nonlinear processes. The first term
on the rhs of Eq. (3.164) is by definition equal to the lhs of the same equation. The second term
on its rhs vanishes because of the constraint (3.161). The remaining two terms have to satisfy[

D̂L(r), ĤNL

]
= −

[
P̂NL(r), ĤL

]
(3.165)

which yields a solution for the nonlinear polarisation P̂NL(r). Note that the double commutator
has been reduced to a single commutator as it turns out that a general solution would have to
include functionals that commute with ĤL whose contributions can be shown to diverge [61] and
thus have to be discarded.

The way to solve Eq. (3.165) is to view its rhs as being the Liouvillian generated by ĤL, i.e.
L̂L• = (i~)−1[•, ĤL], whose inverse can be formally written as

P̂NL(r) = − 1
i~
L̂−1

L

[
D̂L(r), ĤNL

]
. (3.166)
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The action of the inverse Liouvillian on an operator Ô is given by

L̂−1
L Ô = lim

s→0

∞∫
0

dt e−ste−iĤLt/~ÔeiĤLt/~ (3.167)

which can be checked by direct calculation, with the result that

P̂NL(r) = − 1
i~

lim
s→0

∞∫
0

dt e−ste−iĤLt/~
[
D̂L(r), ĤNL

]
eiĤLt/~ . (3.168)

Before we continue solving this equation, we remark that due to the decomposition of the linear
displacement field (3.163) into a reactive part and a Langevin noise contribution P̂L(r), the
nonlinear polarisation also contains a contribution, P̂(N)

NL (r)= −(i~)−1L̂−1
L [P̂(N)

L (r), ĤL], that
disappears identically with vanishing absorption and can thus be regarded as the nonlinear noise
polarisation. The result of the Liouvillian inversion can be cast into the form [60, 61]

P̂NL,m(r) =
1
i~

√
~ε0
π

∫
d0 d2 d3

√
Im ε(0)
ω2 + ω3

αnjk(0,2,3)
ω2

c2
ε(r, ω)Gmn(r,0)f̂j(2)f̂k(3)

+
1
i~

√
~ε0
π

∫
d0 d1 d3

√
Im ε(0)
ω1 − ω3

α∗imk(1,0,3)
ω2

c2
ε(r, ω)Gmn(r,0)f̂†k(3)f̂i(1)

+h.c. + P̂
(N)
NL,m(r) (3.169)

with

P̂
(N)
NL,m(r) =

1
i~

√
~ε0
π

∫
d0 d2 d3

√
Im ε(0)
ω2 + ω3

αnjk(0,2,3)δ(r− s)f̂j(2)f̂k(3)

+
1
i~

√
~ε0
π

∫
d0 d1 d3

√
Im ε(0)
ω1 − ω3

α∗imk(1,0,3)δ(r− s)f̂†k(3)f̂i(1)

+h.c. (3.170)

and the notation 0 = (s, ω).
From Eqs. (3.169) and (3.170) it is hard to see how the coupling tensor αijk has to be related

to the nonlinear susceptibility. Instead, we invoke comparison with the definition of the nonlinear
polarisation from classical nonlinear response theory [59],

PNL,m(r, t) = ε0

t∫
−∞

dτ ′ dτ ′′ χ(2)
mrs(r, t−τ ′, t−τ ′′)Er(r, τ ′)Es(r, τ ′′)+P

(N)
NL,m(r, t) (3.171)

and introduce slowly varying electric fields whose (non-overlapping) amplitudes are centred at
the mid-frequencies Ωi with Ω0 = Ω1 + Ω2 such that

P̃NL,m(r,Ω, t) = ε0χ
(2)
mrs(r,Ω0,Ω1,Ω2)Ẽr(r,Ω1)Ẽs(r,Ω2) + P̃

(N)
NL,m(r,Ω0, t) . (3.172)
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Expressing the electric fields in Eq. (3.172) in terms of slowly varying dynamical variables and
comparing with the slowly varying version of Eq. (3.169) yields the sought after relation between
αijk and χ(2)

ijk as [60, 61]

αijk(r,Ω0, s2,Ω2, s3,Ω3) =
~2

iπc2

√
π

~ε0

√
Im ε(s2,Ω2)Im ε(s3,Ω3)

Im ε(r2,Ω0)

×Hli(r,Ω0)

[
χ

(2)
imn(r,Ω2,Ω3)
ε(r,Ω0)

Gmj(r, s2,Ω2)Gnk(r, s3,Ω3)

]
(3.173)

where Hli(r,Ω0) are the cartesian components of the Helmholtz operator, or equivalently, the
integral operator associated with the inverse dyadic Green function.

Reinserted into the nonlinear interaction Hamiltonian (3.159), and combined with the dy-
namical variables, Eq. (3.173) will yield a formulation in terms of electromagnetic field op-
erators. What becomes immediately clear, though, is that ĤNL will not be of the form ĤNL

∝ χ
(2)
ijkÊ

†
i ÊjÊk as in standard nonlinear optics. Mathematically, the reason is that there is no

third Green tensor in Eq. (3.173). Instead, an inverse Green function (or Helmholtz operator) has
to be dealt with which, by formally expanding it into a power series, will lead to additional con-
tributions to the standard nonlinear interaction. The physical reason for this behaviour has to be
sought in the fact that, from a microscopic point of view, an effective nonlinear interaction does
not take place in free space but rather inside the absorbing medium where the local electric field
is altered by the presence of the dielectric material. To account for that, local-field corrections
such as those discussed in Sec. A.6 have to be included which automatically yields additional
contributions to the nonlinear interaction Hamiltonian that are not of the standard form.
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4 Atomic relaxation rates

The first set of applications we consider in this review regards the theory of atomic transition
rates. In this section we discuss the influence of dielectric bodies towards atomic relaxation and
heating rates, and some of their experimental ramifications.

To begin, it is necessary to study the dynamics of internal atomic degrees of freedom in
the presence of absorbing magnetoelectric matter. In Sec. 3.3 we derived the Hamiltonian of
the system comprising the medium-assisted electromagnetic field, the atomic system and their
mutual interaction (here taken in the electric dipole approximation) as

Ĥ = ĤF + ĤA + ĤAF (4.1)

with

ĤF =
∑

λ=e,m

∫
d3r

∞∫
0

dω ~ω f̂†λ(r, ω) · f̂λ(r, ω) (4.2)

the Hamiltonian of the medium-assisted electromagnetic field [Eq. (3.152)] in the presence of
magnetoelectric bodies. The free atomic Hamiltonian ĤA [Eq. (3.153)] is expanded into atomic
energy eigenstates |n〉,

ĤA =
∑

n

~ωnÂnn , (4.3)

with the corresponding eigenenergies ~ωn, and the atomic flip operators Âmn = |m〉〈n| obeying
the commutation rules[

Âkl, Âmn

]
= δlmÂkn − δknÂml . (4.4)

The electric-dipole interaction Hamiltonian ĤAF which, in multipolar coupling, is given by
ĤAF = −d̂ · Ê(rA) [first term in Eq. (3.154)], is expanded in terms of the energy eigenstates as

ĤAF = −
∑
m,n

dmn · Ê(rA)Âmn (4.5)

where dmn = 〈m|d̂|n〉 are the matrix elements of the dipole operator. Recall that we have
dropped all primes on the electromagnetic field operators that indicate the multipolar coupling.

In similar fashion to the free-space theory outlined in Sec. 2.2.1, the internal atomic dynamics
is governed by the solution to the coupled set of Heisenberg’s equations of motion (ωmn =
ωm − ωn)

˙̂
Amn =

i

~

[
Âmn, Ĥ

]
= iωmnÂmn

+
i

~
∑

k

∞∫
0

dω

[(
dnkÂmk − dkmÂkn

)
· Ê(rA, ω)

+Ê†(rA, ω) ·
(
dnkÂmk − dkmÂkn

)]
(4.6)
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and

˙̂fλ(r, ω) =
i

~

[
f̂λ(r, ω), Ĥ

]
= −iωf̂λ(r, ω) +

i

~
∑
m,n

dmn ·G∗
λ(rA, r, ω)Âmn . (4.7)

We formally integrate Eq. (4.7) as

f̂λ(r, ω, t) = e−iωtf̂λ(r, ω) +
i

~
∑
m,n

t∫
0

dτ e−iω(t−τ)dmn ·G∗
λ(rA, r, ω)Âmn(τ) (4.8)

and reinsert this formal solution into Eq. (4.6) and obtain

˙̂
Amn(t) = iωmnÂmn(t) +

i

~
∑

k

∞∫
0

dω

{
e−iωt

[
dnkÂmk(t)− dkmÂkn(t)

]
· Ê(rA, ω)

+eiωtÊ†(rA, ω) ·
[
dnkÂmk(t)− dkmÂkn(t)

]}
+ Ẑmn(t) (4.9)

where

Ẑmn(t) = −µ0

~π
∑
k,l,j

∞∫
0

dω ω2

t∫
0

dτ

×
{[

e−iω(t−τ)Âmk(t)Âlj(τ)− eiω(t−τ)Âlj(τ)Âmk(t)
]
dnk · Im G(rA, rA, ω) · dlj

−
[
e−iω(t−τ)Âkn(t)Âlj(τ)− eiω(t−τ)Âlj(τ)Âkn(t)

]
dkn · Im G(rA, rA, ω) · dlj

}
(4.10)

is the zero-point contribution to the internal atomic dynamics due to the second term in Eq. (4.8).
A self-consistent solution is obtained if Eq. (4.9) is formally integrated as

Âmn(t) = eiω̃mntÂmn(0) +
i

~
∑

k

∞∫
0

dω

t∫
0

dτ eiω̃mn(t−τ)

×
{
e−iωτ

[
dnkÂmk(τ)− dmkÂkn(τ)

]
· Ê(rA, ω)

+eiωτ Ê†(rA, ω) ·
[
dnkÂmk(τ)− dmkÂkn(τ)

]}
, (4.11)

reinserted into Eq. (4.9), and (thermal) expectation values being taken. The ω̃mn are the shifted
atomic transition frequencies. Using the thermal expectation values for the electromagnetic field
operators given in Sec. 3.1.2, Eqs. (3.99)–(3.102), what remains is a set of coupled differential
equations for the atomic quantities,

〈 ˙̂
Amn〉T = iωmn〈Âmn〉T + 〈Ẑmn〉T + 〈T̂mn〉T , (4.12)
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where the thermal contributions 〈T̂mn〉T read (n̄th = [e~ω/(kBT ) − 1]−1)

〈T̂mn〉T =
µ0

~π
∑
k,l

∞∫
0

dω ω2n̄th(ω)

t∫
0

dτ
[
e−iω(t−τ) + eiω(t−τ)

]
×
{
eiω̃mk(t−τ)

[
〈Âml〉T dnk · Im G(rA, rA, ω) · dkl − 〈Âlk〉T dnk · Im G(rA, rA, ω) · dlm

]
−eiω̃kn(t−τ)

[
〈Âkl〉T dkm · Im G(rA, rA, ω) · dnl − 〈Âln〉T dkm · Im G(rA, rA, ω) · dlk

]}
,

(4.13)

recall Eq. (4.10). These sets of equations form the basis for all following investigations in internal
atomic dynamics.

4.1 Modified spontaneous decay and body-induced Lamb shift, local-field corrections

For weak atom-field coupling, these expressions can be further evaluated using the Markov ap-
proximation (see Sec. 2.2.1) in which the expectation values at times τ can be related to those at
the upper limit t of the time integrals as

〈Âmn(τ)〉T ' e−iω̃mn(t−τ)〈Âmn(t)〉T . (4.14)

The time integrals themselves are approximated as in the free-space theory by

t∫
0

dτ e−i(ω−ω̃mn)(t−τ) ' πδ(ω − ω̃mn) + iP 1
ω − ω̃mn

. (4.15)

Introducing the atomic density matrix elements σmn = 〈m|σ̂|n〉 = 〈Ânm〉, the set of differ-
ential equations reduces to

σ̇nn(t) = −Γnσnn(t) +
∑

k

Γknσkk(t) , (4.16)

σ̇mn(t) =
[
−iω̃mn −

1
2

(Γm + Γn)
]
σmn(t) , m 6= n . (4.17)

These equations resemble closely those obtained in free-space theory. One can identify indi-
vidual decay rates Γnk from state |n〉 to |k〉, and total loss rates Γn =

∑
k Γnk of a level |n〉.

The individual rates contain zero-point [superscript (Z)] as well as thermal [superscript (T )]
contributions, Γnk = Γ(Z)

nk + Γ(T )
nk , with

Γ(Z)
nk =

2µ0

~
ω̃2

nkΘ(ω̃nk)dnk · Im G(rA, rA, ω̃nk) · dkn , (4.18)

Γ(T )
nk =

2µ0

~
ω̃2

nkdnk · Im G(rA, rA, |ω̃nk|) · dkn [Θ(ω̃nk)n̄th(ω̃nk) + Θ(ω̃kn)n̄th(ω̃kn)] .

(4.19)
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Similarly, the shifted atomic transition frequencies ω̃mn = ωmn + δωm − δωn depend on the
frequency shifts δωm =

∑
k δωnk where the zero-point and thermal contributions to the level

shift induced by a single level |k〉 read

δω
(Z)
nk =

µ0

π~
P

∞∫
0

dω ω2 dnk · Im G(S)(rA, rA, ω) · dkn

ω̃nk − ω
, (4.20)

δω
(T )
nk =

µ0

π~
P

∞∫
0

dω ω2dnk · Im G(rA, rA, ω) · dkn

[
n̄th(ω)
ω̃nk − ω

+
n̄th(ω)
ω̃nk + ω

]
. (4.21)

In δω(Z)
nk , we have explicitly used the scattering part G(S)(rA, rA, ω) of the dyadic Green func-

tion because we assume that the vacuum-induced Lamb shift has already been included into the
bare atomic transition frequencies ωmn.

Spontaneous decay of a two-level atom: As an instructive example, let us consider a two-
level atom with energy levels |g〉 and |e〉 separated by an energy ~ωA = ~ωeg which we assume
to contain the free-space Lamb shift. At zero temperature, the spontaneous decay rate Γ ≡ Γ(Z)

of the excited state |e〉 is then given by Eq. (4.18) as [62, 63]

Γ =
2ω2

A

~ε0c2
d · Im G(rA, rA, ωA) · d∗ (4.22)

where we have neglected the shift in the atomic transition frequency ωA. This is the same result
one would obtain using perturbation theory, i.e. Fermi’s Golden Rule. We have noted previously
that the rate of spontaneous decay in free space is proportional to the strength of the vacuum fluc-
tuations of the electric field [Eq. (2.119)] which, by Eq. (3.102), is now seen to be proportional
to the imaginary part of the dyadic Green function,

〈0|Ê(rA, ω)⊗ Ê†(rA, ωA)|0〉 =
~
πε0

ω2
A

c2
Im G(rA, rA, ωA)δ(ω − ωA) , (4.23)

which underpins our interpretation of ω2
AIm G(rA, rA, ωA) as the local density of states. The

rate Γ0 of spontaneous decay in vacuum, Eq. (2.120), is recovered by inserting the free-space
Green tensor G(0)(r, r′, ω) into Eq. (4.22).

To give a nontrivial example of how Eq. (4.22) can be used for investigating atom-surface
interactions, we consider a two-level atom placed near a planar dielectric half-space with permit-
tivity ε(ω). The Green function for this structure is known (see Appendix A), and the result in
the limit zAω/c� 1 reads [64, 65]

Γ = Γ0
3
8

(
1 +
|dz|2

|d|2

)(
c

ωAzA

)3 Im ε(ωA)
|ε(ωA) + 1|2

+O(z−1
A ) . (4.24)

Hence, a dipole oriented perpendicular to a planar surface decays twice as fast as a dipole parallel
to it. Note the difference to the spontaneous decay rate near a perfect mirror which approaches
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Fig. 4.1. Atom at the centre of a spherical microcavity of radius Rcav.

finite values (2Γ0 for perpendicular dipole orientation, 0 for parallel dipole orientation) in the on-
surface limit. In reality, however, nonradiative decay processes cause the near-field spontaneous
decay rate to diverge.

Another important example, which has been used to investigate modified spontaneous decay
inside a dielectric host medium [33, 63], is that of an atom in a spherical microcavity of radius
Rcav (Fig. 4.1). We use the dyadic Green function presented in Appendix A and note that, if
the atom is located at the centre of the microcavity, only the TM-wave spherical vector wave
functions Npm1(k) do not vanish. Inserting the result into Eq. (4.22) yields [33, 63]

Γ = Γ0

[
1 + Re r22p (l = 1)

]
(4.25)

where the reflection coefficient r22p for l = 1 takes the form

r22p (l = 1) =
[i+ ρ(n+ 1)− iρ2n− ρ3n2/(n+ 1)]eiρ

sin ρ− ρ(cos ρ+ in sin ρ) + iρ2n cos ρ− ρ3(cos ρ− in sin ρ)n2/(n2 − 1)
(4.26)

[n = n(ω) =
√
ε(ω) and ρ = RcavωA/c]. In the near-field limit, i.e. when the size of the

microcavity is much smaller than the atomic transition wavelength, we can expand in powers of
ρ = RcavωA/c� 1 and obtain [see also Eq. (A.79)]

Γ = Γ0 Im

{
3(ε− 1)
2ε+ 1

(
c

ωARcav

)3

+
9[4ε2 − 3ε− 1]

5(2ε+ 1)2

(
c

ωRcav

)
+ i

9ε2n
(2ε+ 1)2

+O(Rcav)

}
(4.27)

[ε ≡ ε(ωA), n ≡
√
ε(ωA)].

The leading terms in both examples, Eqs. (4.24) and (4.27), are proportional to the inverse
cube of the atom-surface distance. This is attributed to resonant energy transfer to the absorb-
ing dielectric surroundings which is a nonradiative decay process [65–69]. The next-to-leading
terms, the induction terms, are proportional to the inverse atom-surface distance and correspond
to absorption of real photons. The nonradiative decay rates make it impossible to hold atoms or
molecules near dielectric or metallic surfaces and use their internal states for coherent manip-
ulation. The correct quantum-statistical description of the dielectric bodies also imply that the
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suppression of spontaneous decay of a dipole parallel to a mirror surface (see Sec. 2.2.2) cannot
be observed.

As the near-field contributions are proportional to the imaginary part of the permittivity,
Im ε(ωA), these terms will vanish if absorption can be disregarded at the atomic transition fre-
quency ωA. In this case, the spontaneous decay rate is modified to [63, 70]

Γ = Γ0

(
3ε(ωA)

2ε(ωA) + 1

)2

n(ωA) . (4.28)

The results for a small spherical cavity can also be used to study the decay of atoms embedded
inside a medium. In this real-cavity model, the cavity implements the local-field correction
arising due to the difference between the macroscopic field and the local field experienced by the
atom. Using the local-field corrected Green tensor from Appendix A.6 one can show that, for
weakly absorbing media, Eq. (4.28) remains valid for arbitrary geometries when written in the
form

Γloc = Γ
(

3ε(ωA)
2ε(ωA) + 1

)2

, (4.29)

where Γ is the uncorrected decay rate. For absorbing media, the more general result

Γ = ΓC +
2ω2

A

c2~ε0
d · Im

[(
3ε(ωA)

2ε(ωA) + 1

)2

G(S)(rA, rA, ωA)

]
· d∗ (4.30)

holds, where ΓC is the near-field rate (4.27) [71].

4.2 Sum rules for the local density of states

One of the principal cornerstones of macroscopic QED is the validity of Kramers–Kronig rela-
tions (3.35) for the response functions such as the dielectric permittivity, the magnetic permeabil-
ity or the generalised conductivity. Equally important are sum rules that follow from asymptotic
limits of these Hilbert transforms. Examples for sum rules in optics are the optical theorem
that relates the imaginary part of the forward scattering amplitude to the total scattering cross
section [2], or the Thomas–Reiche–Kuhn oscillator strength rule [72]. A particularly relevant
relation for our purposes is the integral relation [73]

∞∫
0

dω [η(ω)− 1] = 0 (4.31)

satisfied by the real part η(ω) of the complex index of refraction n(ω) =
√
ε(ω)µ(ω) = η(ω) +

iκ(ω). This follows from the superconvergence theorem for Hilbert transform pairs [74]. It
means that the propagation properties of light in a dielectric medium are redistributed in such
a way that, averaged over the whole frequency axis, the (real part of the) refractive index is the
same as in vacuum.

Because macroscopic QED is inherently based on linear response theories, it is conceivable
that quantities such as spontaneous decay rates would obey certain sum rules, too. Recall from
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Sec. 2.2.2 that the rate of spontaneous decay and the Lamb shift form a Hilbert transform pair.
We will now try to derive a sum rule for the rate of spontaneous decay, and investigate integrals
of the form

∞∫
0

dω
Γ− Γ0

Γ0
=

∞∫
0

dω
6πc
ω|d|2

d · Im G(S)(rA, rA, ω) · d∗ , (4.32)

where Γ0 is the free-space decay rate (2.120) and G(S)(rA, rA, ω) the scattering part of the
dyadic Green function. Hence, we are seeking to compute the integral

∞∫
0

dω
c

ω
Im G(S)(rA, rA, ω) = Im

∞∫
−∞

dω
c

2ω
G(S)(rA, rA, ω) (4.33)

where we have used the Schwarz reflection principle (3.50).
For the sake of definiteness, we imagine the radiating atom being placed inside a dielectric

structure such as the spherical microcavity sketched in Fig. 4.1. In fact, any generic situation
will involve an atom in free space surrounded by some dielectric material, although not neces-
sarily in a spherically symmetric way. The scattering part of the dyadic Green function for any
arrangement of dielectric bodies can always be expanded into a Born series (see Appendix A.5)
as

G(S)(rA, rA, ω) =
ω2

c2

∫
Vχ

d3s′ χ(s′, ω)G(0)(rA, s′, ω) ·G(0)(s′, rA, ω)

+
(
ω2

c2

)2 ∫∫
Vχ

d3s′d3s′′ χ(s′, ω)χ(s′′, ω)G(0)(rA, s′, ω) ·G(0)(s′, s′′, ω) ·G(0)(s′′, rA, ω)

+ . . . (4.34)

where G(0)(r, r′, ω) is the free-space Green tensor and χ(r, ω) the dielectric susceptibility of
the material surrounding the radiating atom. The integration extends over the total volume of the
body, but excludes the location of the atom. The free-space Green tensor can be read off from
Eqs. (A.18) and (A.19), setting q(ω) = ω/c. The first thing to note is that all terms containing
the δ function involving the location rA of the atom do not contribute to the Born series.

As a function of ω, the free-space Green tensor has single and double poles at ω = 0 whose
contributions to the integral (4.33) give rise to contributions that can be computed as follows.
Concentrating on the first term in the Born series expansion, we need to look at contributions of
the form f(ω) =

∑
n cnχ(s′, ω)e2iωρ/c/ωn with n = 1, 2, 3 whose residues at ω = 0 are [75]

Res f(ω)|ω=0 =
3∑

n=1

cn
(n− 1)!

n−1∑
m=0

(2i)m

m!
χ(n−1−m)(s′, 0) . (4.35)

These terms arise from a short-distance or, equivalently, low-frequency expansion of the Green
tensor. It is seen from Eq. (A.18) that they can be traced back to the longitudinal part of the
free-space Green tensor. Hence, all these pole contributions, in any order of the Born series,
arise from either purely longitudinal terms ∝ ω2jG(0)‖(rA, s′, ω) · · · G(0)‖(s(j+1), rA, ω) or
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from those in which one (and only one) of the longitudinal Green tensors has been replaced by
a transverse part G(0)⊥(s(i), s(i+1), ω) [75]. Subtracting these terms from the total scattering
Green tensor,

G(S)′(rA, rA, ω) = G(S)(rA, rA, ω)

−ω
2

c2

∫
Vχ

d3s′ χ(s′, ω)G(0)‖(rA, s′, ω) ·G(0)‖(s′, rA, ω)

−ω
2

c2

∫
Vχ

d3s′ χ(s′, ω)G(0)‖(rA, s′, ω) ·G(0)⊥(s′, rA, ω)

−ω
2

c2

∫
Vχ

d3s′ χ(s′, ω)G(0)⊥(rA, s′, ω) ·G(0)‖(s′, rA, ω)

−
(
ω2

c2

)2 ∫∫
Vχ

d3s′d3s′′ · · · , (4.36)

and noting that all other contributions containing non-negative powers of ω vanish after contour
integration, it becomes obvious that

∞∫
0

dω
c

ω
Im G(S)′(rA, rA, ω) = 0 . (4.37)

This in turn means that we can define a modified spontaneous decay rate Γ′ which is constructed
from G(S)′(rA, rA, ω), that obeys the sum rule

∞∫
0

dω
Γ′ − Γ0

Γ0
= 0 . (4.38)

From its construction, it is clear that Γ′ excludes dipole-dipole interactions. Because nonradiative
contributions to the decay rate have been subtracted from Γ, we can also interpret the sum rule
(4.38) as a conservation of the integrated local density of states associated with photonic final
states. Recalling our discussion following Eq. (4.31) this means that a magnetoelectric medium
merely redistributes the photonic density of states across the frequency axis, but remain at the
free-space level on average.

Finally, we make the connection to local-field corrections. The local-field corrected single-
point Green tensor, obtained after discarding the terms containing Rcav in Eq. (A.79), is one
example of a modified Green tensor (4.36) that leads to a valid sum rule for spontaneous decay
rates. In this way, a connection is established to the theory in Ref. [76] which is strictly valid
only in nonabsorbing materials.

4.3 Heating of polar molecules

In a previous section we argued that at very small atom-body distances, nonradiative decay will
dominate. Given that this would require the atom or molecule to be held at distances much
smaller than the (optical) wavelength, this effect will hardly be seen in a controlled experiment.
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Tab. 4.1. Properties of various diatomic radicals (electronic ground state, rotation and vibration constants,
dipole moment and its derivative at equilibrium bond length, reduced mass) and life times τr and τv of their
rovibrational ground states against rotational and vibrational heating at room temperature (T = 293K) in
free space [78].

Spec. Be(GHz) ωe(THz) µe(10−30Cm) µ′e(10−21C) τr(s) τv(s)
LiH 222 42.1 19.6 60.5 2.1 25
CaF 10.5 18.4 10.2 172 3,400 4.7
BaF 6.30 14.1 11.7 285 7,200 1.8
YbF 7.20 15.2 13.1 195 4,400 4.1
LiRb 6.60 5.55 13.5 21.4 4,900 128
NaRb 2.03 3.21 11.7 12.6 70,000 1,400
KRb 1.15 2.26 0.667 1.89 6.7×107 120,000
LiCs 5.80 4.92 21.0 28.4 2,600 80
NaCs 17.7 2.94 19.5 21.4 330 580
KCs 92.8 1.98 8.61 6.93 62 12,000
RbCs 0.498 1.48 7.97 4.41 2.5×106 63,000

The situation is changed dramatically when the transition wavelength in question is very large,
say longer than a centimeter. This is the case for polar molecules since the spacings between
neighbouring rotational and vibrational levels are relatively large. Molecules whose projection Λ
of the total orbital angular momentum L̂ vanishes (Λ = 0) are best described by Hund’s coupling
case (b) [77]. In this scheme, the molecular eigenstates |S,N, J,M〉|v〉 are characterized by the
quantum numbers J and M of the total angular momentum and its projection on the space-fixed
z-axis, the total spin quantum number S (Ŝ), the rotational quantum number N (N̂ = Ĵ − Ŝ)
and the vibrational quantum number v. For deeply bound states, the rotational and vibrational
eigenenergies are [77]

EN = hBeN(N + 1), N = 0, 1, . . . Ev = hωe

(
v + 1

2

)
, v = 0, 1, . . . (4.39)

where Be and ωe are the rotational and vibrational constants, typical values of which are listed
in Tab. 4.1.

Even at room temperature, the first few rotationally and vibrationally excited states may
be considerably populated due to heating out of the ground state, placing severe limits on the
coherent manipulation of polar molecules in their ground states. According to Eqs. (4.19), the
respective heating rate is given by

Γ =
2µ0

~
∑

k

ω2
k0n̄th(ωk0)d0k · Im G(rA, rA, ωk0) · dk0, (4.40)

where frequency shifts [Eqs. (4.20) and (4.21)] can typically be neglected. For a molecule in free
space, use of the Green tensor (A.20) leads to [78, 79]

Γ0 =
∑

k

Γ0k =
∑

k

ω3
0k|d0k|2

3π~ε0c3
n̄th(ωk0). (4.41)
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In order to evaluate these rates, the relevant dipole matrix elements need to be determined. For
rotational transitions, this can best be done using Hund’s case (a) basis |S,Λ,Σ,Ω, J,M〉, where
Λ, Σ and Ω denote the projections of L̂, Ŝ and Ĵ onto the internuclear axis (Ω = Λ + Σ). In this
basis, one has [77]

dmn = 〈ΩJM |d̂|Ω′J ′M ′〉 = µe〈ΩJM |û|Ω′J ′M ′〉

= µe

[
(u−1

mn − u+1
mn)

ex√
2

+ (u−1
mn + u+1

mn)
i ey√

2
+ u 0

mnez

]
, (4.42)

where µe is the molecular dipole moment at the equilibrium internuclear separation, û = r̂/|r̂|
and

uq
mn = (−1)M−Ω

√
(2J + 1)(2J ′ + 1)

(
J 1 J ′

−M q M ′

)(
J 1 J ′

−Ω 0 Ω′

)
. (4.43)

Relating the two bases via

|S,N, J,M〉 =
S∑

Ω=−S

(−1)J−S
√

2N + 1
(
J S N
Ω −Ω 0

)
|Ω, J,M〉 (4.44)

one finds∑
k

d0k ⊗ dk0 = 1
3µ

2
eI (4.45)

for the molecules under consideration. For (ro-)vibrational heating, the dipole matrix elements
follow from [77]

〈vΩJM |d̂|v′ Ω′JM ′〉 = µ′e〈ΩJM |û|Ω′J ′M ′〉〈v|q̂|v′〉, (4.46)

〈v = 1|q̂|v′ = 0〉 =
√

~
4πmωe

(4.47)

(µ′e: derivative of the dipole moment at equilibrium bond length, m: reduced mass) to be

∑
k

d0k ⊗ dk0 =
~µ′2e

12πmωe
I. (4.48)

Combining the above results, one can calculate life times τ0 = Γ−1
0 of polar molecules in

free space against rotational and vibrational heating out of the ground state at room temperature
(T = 293K) which are listed in Tab. 4.1. Since the rotational transition frequencies lie typically
well below the maximum of the thermal spectrum (17THz at T = 293K), rotational heating
mostly affects light molecules like LiH whose transition frequency is largest. For this molecule,
rotational heating severely limits the life time of the ground state to about 2 seconds. Vibrational
heating, on the contrary, mostly affects the fluorides whose vibrational transition frequencies are
very close to the peak of the thermal spectrum; associated lifetimes lie in the range of a few sec-
onds only. The rotational and vibrational heating rates exhibit strong temperature-dependences
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via the thermal photon number, so the impact of both heating channels can be considerably re-
duced by lowering the environment temperature.

Just like spontaneous decay, heating can be considerably enhanced when molecules are
placed close to surfaces. Using the decomposition G = G(0) + G(S) of the Green tensor into
its free-space part and the scattering part accounting for the presence of the surface and recalling
Eqs. (4.45) and (4.48), the ground state heating rate (4.41) can be written as [78]

Γ(zA) = Γ0

[
1 +

2πc
ωk0

Im trG(S)(rA, rA, ωk0)
]

(4.49)

(zA: atom-surface separation), where G(S) is given in App. A.4. Note that due to our neglect
of the frequency shifts, Eqs. (4.20) and (4.21), the heating rate separates into the temperature-
dependent factor Γ0 as given by Eq. (4.41) and a purely position-dependent part.

In the nonretarded limit, zA|
√
ε(ωnk)|ωnk/c� 1, the position-dependence is approximately

given by [78]

Γ(zA) = Γ0

(
1 +

z3
nr

z3
A

)
, znr =

c

ωk0

3

√
Im ε(ωk0)

2|ε(ωk0) + 1|2
. (4.50)

For metals with Drude permittivity

ε(ω) = 1− ω2
P

ω(ω + iγ)
(4.51)

and for sufficiently small transition frequencies ωk0 � γ ≤ ωP , one has

znr = c 3

√
γ

2ω2
Pω

2
k0

(4.52)

and the condition zA|
√
ε(ωnk)|ωnk/c� 1 is not even valid for very small atom-surface separa-

tions. Instead, the heating rate is well approximated by the empirical formula [78]

Γ(zA) = Γ0

(
1 +

z2
c

z2
A

+
z3
nr

z3
A

)
, zc '

3c
4

4

√
γ

2ω2
Pω

3
k0

(4.53)

which is valid for distances zA ≤ zc (zc being the critical distance for which surface-induced
heating becomes comparable to free-space heating).

In the opposite retarded limit, zAωnk/c � 1, the ground-state heating rate is approximately
given by [78]

Γ(zA) = Γ0

[
1 +

c

2zAωk0
Im

(
1−

√
ε(ωk0)

1 +
√
ε(ωk0)

e2izAωk0/c

)]

= Γ0

[
1− c

2zAωk0
sin
(

2zAωnk

c

)]
(4.54)

where the second equality holds for good conductors. The distance-dependence is thus governed
by attenuated oscillations away from the surface where the oscillation period equals twice the
molecular transition wavelength.



Atomic relaxation rates 743

1 5 10 50 100 500

1.000

0.500

0.100

0.050

0.010

0.005

0.001

CaF

Γ(s−1)

zA(µm)

1 5 10 50 100 500

1.000

0.500

0.100

0.050

0.010

0.005

0.001

NaCs

Γ(s−1)

zA(µm)

Fig. 4.2. Heating rates for CaF and NaCs as a function of distance from a gold surface (ωP = 1.37×
1016rad/s, γ = 4.12×1013rad/s). Solid lines: total heating rate. Dotted lines: vibrational excitation rate.
Dashed lines: rotational excitation rate [78].

The spatial dependence of the molecular heating rates over the entire distance rates is shown
in Fig. 4.2 for CaF and NaCs. It is seen that vibrational heating dominates for CaF and results
in rapid oscillations of the heating rate as a function of distance. For short distances, rotational
heating strongly increases and begins to contribute to the total heating rate. For NaCs, rota-
tional heating slightly dominates for moderate distances, although the oscillations associated
with vibrational heating are still manifest in the total heating rate. At distance smaller than about
10µm, rotational heating becomes stringly dominant. The results show that molecular heating
can strongly increase in close proximity to surfaces, thus placing severe limits on the miniaturi-
sation of molecular traps.

4.4 Spin-flip rates

In cold-atom physics, where microengineered magnetoelectric or metallic structures are de-
signed to magnetically trap ultracold atoms (e.g. 87Rb) in a well-defined Zeeman sublevel of
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Fig. 4.3. Schematic set-up of a wire trap creating a confining trapping potential for low-field seeking
atoms (left figure) (picture taken from Ref. [85]). Typical experimental set-up using a Z-shaped wire and a
reflective gold surface (right figure) [picture courtesy of E.A. Hinds].

their respective hyperfine ground states (cf. Fig. 4.3), typical transition frequencies range from
100 kHz . . . 10 MHz (for reviews, see [80–82]). The equivalent free-space wavelengths are thus
on the order of several metres. As typical atom-surface distances are in the sub-millimeter range,
the atoms are in the deep near field of the relevant (magnetic) transitions.

In complete analogy to electric-dipole transitions, we can investigate magnetic-dipole transi-
tions using the approximate interaction Hamiltonian (3.154)

ĤAF = −m̂ · B̂(rA) . (4.55)

From the statistical properties of the electromagnetic field and our previously used arguments
regarding Fermi’s Golden Rule we already know that the spin transition rate is proportional
to the strength of the (thermal) magnetic field fluctuations, Γ ∝ 〈B̂(rA, ω)⊗ B̂†(rA, ωA)〉T .
If we assume an atom to be in its electronic ground state, the magnetic moment vector m̂ is
proportional to the electronic spin operator Ŝ (the nuclear spin operator Î is smaller by a factor
of me/mp, i.e. the ratio between electron and proton mass; we also assume that the ground state
has L = 0). It can then be shown that the transition rate between two magnetic sublevels |i〉 and
|f〉 is [84]

Γ =
2µ0

~
m · Im

[
∇×G(rA, rA, ωA)×

←−
∇′
]
·m∗ [n̄th(ωA) + 1] (4.56)

=
2µ0(µBgS)2

~
〈f |Ŝ|i〉 · Im

[
∇×G(rA, rA, ωA)×

←−
∇′
]
· 〈i|Ŝ|f〉 [n̄th(ωA) + 1]

[m = 〈f |m̂|i〉, µB : Bohr magneton, gS ≈ 2]. Note that this rate corresponds to the rates associ-
ated with electric transitions as given by Eqs. (4.18), (4.19) by means of a duality transformation
d ↔ m/c, ε ↔ µ, cf. the transformation properties (A.8) and (A.9) of the Green tensor given
in App. A.2. An experiment using 87Rb atoms in their |F = 2,mF = 2〉 hyperfine ground state
has revealed spin flip lifetimes on the order of seconds for distances between 20 . . . 100µm [85].
Figure 4.4 shows the experimental data together with the theoretical predictions according to
Eq. (4.56) where the Green function for a three-layered cylindrical medium was used [84] (see
also App. A.4.2).
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a2
a1
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rA

z

z(µm)

τ(s)

Fig. 4.4. Trapping lifetime τ = 1/Γ as a function of the atom-surface distance z (right figure). Experi-
mental data taken from Ref. [85], theoretical curve taken from Ref. [84]. The geometry is depicted on the
left. The wire consisted of a Cu core (inner radius a1 = 185 µm) and a 55 µm thick Al cladding.

It is instructive to investigate certain asymptotic regimes in which analytical approximations
to the expected spin flip lifetime can be given. For this purpose, we consider an atom at a
distance d away from a planar metallic surface with skin depth δ and with thickness h. Its Green
tensor can be found in App. A.4.1. The skin depth δ is related to the dielectric permittivity
by ε(ω) = 2ic2/(ω2δ2). Together with the transition wavelength λ, there are four different
length scales involved, of which λ is by far the longest and can be taken to be infinite. From the
remaining three length scales one can find three experimentally relevant extreme cases that can
be summarised in the following expression [86, 87]:

τ

τ0
=
(

8
3

)2 1
n̄th + 1

(ω
c

)3



d4

3δ
, δ � d, h ,

δ2d

2
, δ, h� d ,

δ2d2

2h
, δ � d� h .

(4.57)

Here, τ0 = 1/Γ0 is the trapping lifetime in free space which, for a transition frequency ωA =
2π 400kHz, amounts to 3 · 1025s [88]. For fixed values of (d, h) there are two distinct functional
dependencies on the skin depth δ. These two scaling laws can be supported by rather intuitive
explanations. If the skin depth is larger than the remaining length scales (i.e. the material is
more dielectric), the magnetic field fluctuations weaken. As their strength is proportional to
the imaginary part of the permittivity and hence the squared inverse skin depth, the lifetime
increases quadratically with the skin depth δ [second and third lines of Eq. (4.57)]. If, on the
other hand, the skin depth is the smallest length scale, the effective volume diminishes from
which fluctuations emanate which leads to a lifetime increase with decreasing skin depth [first
line in Eq. (4.57)]. This in turn means that there is a pronounced lifetime minimum when the
skin depth is on the order of the atom-surface distance (Fig. 4.5). To either side of this minimum,
the expected lifetime increases drastically. However, choosing a surface material with larger skin
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δ(µm)

τ(s)

Fig. 4.5. Left panel: Trapping lifetime as a function of skin depth for a thin substrate layer (h = 1µm,
dashed line) and a half-space (solid line). The atom-surface distance was chosen as d = 50µm, the transi-
tion frequency is ωA = 2π 560kHz [87]. Right panel: Spin flip lifetime τ near a superconducting Nb slab
(Tc = 9.2K) as a function of atom-surface distance. Dashed line: two-fluid model; symbols: Eliashberg
theory with various elastic scattering rates [89].

depth limits its capability to generate strong enough magnetic traps. On the other hand, natural
materials with skin depths below 50µm at room temperature and 1 MHz are impossible to find.

A possible solution is to make use of superconductors on the assumption that due to the
supercurrent magnetic field fluctuations are shielded away from the vacuum-superconductor in-
terface, and hence spin transitions are suppressed. For a bulk superconductor with conductivity
σ(ω) = σ′(ω) + iσ′′(ω) and σ′′(ω)� σ′(ω), we can rewrite the first line of Eq. (4.57) as [89]

τ

τ0
=
(

8
3

)2 (ωµ0)1/2d4

n̄th + 1

(ω
c

)3 [σ′′(ω)]3/2

σ′(ω)
. (4.58)

In the London two-fluid model [90] one assumes that the two types of charge carriers, normal
and superconducting, react to an external field according to Ohm’s law jn = σnE and the London
relation Λ∂js

∂t = E, respectively. As a function of temperature, the fraction of normal conducting
electrons follows the Gorter–Casimir expression nn(T )/n0 = (T/Tc)4 [91]. With the plasma
frequency ωP and the elastic scattering rate γ of the electrons, the conductivity can be written in
the form

σ(ω) = ε0ω
2
P

{
1
γ

(
T

Tc

)4

+
i

ω

[
1−

(
T

Tc

)4
]}

. (4.59)

Although the two-fluid model does not fully capture the rich dynamics of superconductors (as
it neglects coherence effects and dissipation), it gives a relatively accurate and intuitive picture
of the strength of the magnetic field fluctations. More elaborate models such as the Eliashberg
theory prove that with regards to spin transitions the two-fluid model is perfectly adequate [89].
In Fig. 4.5 we show the distance-dependence of the spin flip lifetime for the two-fluid model
of superconducting Nb (dashed line) and the corresponding results for an Eliashberg calculation
with varying elastic scattering rates (symbols).
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5 Dispersion forces

Dispersion forces such as Casimir forces between bodies [16, 92], Casimir–Polder (CP) forces
between atoms and bodies [93, 94] and van der Waals (vdW) forces between atoms [94, 95]
are effective electromagnetic forces that arise as immediate consequences of correlated quantum
ground-state fluctuations. The total Lorentz force on an arbitrary macroscopic or atomic charge
distribution characterised by a charge density ρ̂ and a current density ĵ occupying a volume V is
given by

F̂ =
∫

V

d3r
[
ρ̂(r)Ê(r) + ĵ(r)× B̂(r)

]
. (5.1)

To see how this quantum force acquires a nonzero average even in the absence of external
electromagnetic fields due to correlated zero-point fluctuations, let us consider the example of
a neutral, stationary ground-state atom A. Expressing the atomic charge and current densities
in terms of polarisation and magnetisation [recall Eqs. (2.92) and (2.93)], the Lorentz force can
equivalenty be represented as [57, 96, 97]

F̂ = ∇A

∫
d3r

[
P̂A(r) · Ê(r) + M̂A(r) · B̂(r)

]
(5.2)

(∇A: derivative with respect to the atomic centre-of-mass position). The quantum averages of
both the electric and the magnetic field vanish in the absence of external fields, 〈Ê〉 = 〈B̂〉 = 0,
and for an unpolarised and unmagnetised atom so do the atomic polarisation and magnetisation,
〈P̂A〉 = 〈M̂A〉 = 0. In the absence of correlations, this would imply that the average net force
on the atom is vanishing, 〈F̂〉 = 0. However, both the electromagnetic and atomic fields are
subject to nonvanishing zero-point fluctuations, 〈Ê2〉, 〈B̂2〉, 〈P̂2

A〉, 〈M̂2
A〉 6= 0. These quantities

are mutually correlated and thus lead to a nonvanishing dispersion force: For a nonmagnetic
atom, one can show that this force is given by ( [98], cf. also Sec. 5.2.1 below)

F =
~µ0

4πi
∇A

∫ ∞

0

dω ω2 Im
[
α(ω)trG(S)(rA, rA, ω)

]
(5.3)

=
~µ0

4πi
∇A

∫ ∞

0

dω ω2
[
Imα(ω)trRe G(S)(rA, rA, ω) + Reα(ω)tr Im G(S)(rA, rA, ω)

]
.

In accordance with the fluctuation-dissipation theorem, the real and imaginary parts of the atomic
and field response functions (i.e. atomic polarisability and the Green tensor of the electromag-
netic field) represent the reactive and fluctuating behaviours of these systems. Hence, the first
term in the above equation correspond to the atomic zero-point fluctuations (Imα) giving rise to
an induced electromagnetic field (Re G), while the second term is due to the fluctuations of the
electromagnetic field (Im G) giving rise to an induced atomic polarisation (Reα). Both fluctua-
tion sources thus contribute equally to the CP force. This interpretation is in contrast to the mode
summation picture in which only the electromagnetic field fluctuations are taken into account,
and the only role of the matter is to provide the perfect boundary conditions.

It is worth noting that for small separations, dispersion forces are primarily due to the atomic
zero-point fluctuations which interact via the instantaneous Coulomb interaction. Dispersion
forces where first postulated by J. D. van der Waals [99] and theoretically analysed by F. London
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[95] and J. E. Lennard-Jones [93] in this nonretarded limit. The zero-point fluctuations of the
transverse electromagnetic field become important in the retarded limit of large separations, as
was shown by H. B. G. Casimir and D. Polder [94]. To honour these two major steps, one often
uses the notion vdW forces for all nonretarded dispersion forces on atoms and the term CP force
for fully retarded ones — in contrast to the naming convention adopted throughout this work.

5.1 Casimir forces

The Casimir force (for general literature and reviews, see Refs. [23, 97, 100–104]) on a body of
permittivity ε(r, ω) and permeability µ(r, ω) occupying a volume V can be found by calculating
the ground-state expectation value of the Lorentz force (5.1)

F =
∫

V

d3r
{
〈{0}|

[
ρ̂(r)Ê(r′) + ĵ(r)× B̂(r′)

]
|{0}〉

}
r′→r

(5.4)

(|{0}〉: ground-state of the body-assisted electromagnetic field) where the coincidence limit
r′ → r must be performed in such a way that unphysical divergent self-force contributions
are discarded after the vacuum expectation value has been evaluated. Using the relations

ρ̂(r, ω) = −ε0∇ ·
{

[ε(r, ω)− 1]Ê(r, ω)
}

+
1
iω

∇ · ĵ
N
(r, ω), (5.5)

ĵ(r, ω) = −iωε0[ε(r, ω)− 1]Ê(r, ω)

+∇×
{
κ0[1− κ(r, ω)]B̂(r, ω)

}
+ ĵ

N
(r, ω), (5.6)

the field expansions (3.82), (3.83) and the expectation values (3.99)–(3.106), one finds for a
homogeneous body at zero temperature [105]

F =
~
π

∫
V

d3r

∫ ∞

0

dω

(
ω2

c2
∇ · ImG(S)(r, r, ω)

+ tr
{

I ×
[
∇×∇× −ω

2

c2

]
ImG(S)(r, r, ω)×

←−
∇′
})

= − ~
π

∫
V

d3r

∫ ∞

0

dξ

(
ξ2

c2
∇ ·G(S)(r, r, iξ)

− tr
{

I ×
[
∇×∇× +

ξ2

c2

]
G(S)(r, r, iξ)×

←−
∇′
})

, (5.7)

where the coincidence limit has been performed by replacing the Green tensor with its scattering
part. Here and in the following, the gradients ∇ and

←−
∇′ are understood to act on the first and

second arguments of the Green tensor, respectively.
Alternatively, the Casimir force can be equivalently expressed in terms of a surface integral

rather than a volume integral. To that end, one makes use of the relation

ρ̂(r)Ê(r) + ĵ(r)× B̂(r) = ∇ · T̂ (r)− ε0
∂

∂t

[
Ê(r)× B̂(r)

]
(5.8)
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with the Maxwell stress tensor

T̂ (r) = ε0Ê(r)⊗ Ê(r) + µ−1
0 B̂(r)⊗ B̂(r)− 1

2

[
ε0Ê2(r) + µ−1

0 B̂2(r)
]
I . (5.9)

This can be used to rewrite Eq. (5.4) in the form

F =
∫

∂V

da · 〈{0}|
{
ε0Ê(r)⊗ Ê(r′) + µ−1

0 B̂(r)⊗ B̂(r′)

− 1
2

[
ε0Ê(r) · Ê(r′) + µ−1

0 B̂(r) · B̂(r′)
]
I
}
|{0}〉 (5.10)

[note that the last term in Eq. (5.8) does not contribute in the stationary case]. Evaluating the
field expectation values according to Eqs. (3.99)–(3.106), one finds that (T = 0) [106]

F =
~
π

∫ ∞

0

dω

∫
∂V

da ·
{[

ω2

c2
ImG(r, r, ω)−∇× ImG(r, r, ω)×

←−
∇′
]

−1
2
tr
[
ω2

c2
ImG(r, r, ω)−∇× ImG(r, r, ω)×

←−
∇′
]
I

}
= −~

π

∫ ∞

0

dξ

∫
∂V

da ·
{[

ξ2

c2
G(r, r, iξ) + ∇×G(r, r, iξ)×

←−
∇′
]

−1
2
tr
[
ξ2

c2
G(r, r, iξ) + ∇×G(r, r, iξ)×

←−
∇′
]
I

}
. (5.11)

The general expressions (5.7) and (5.11) can be used to calculate Casimir forces between
bodies of arbitrary shape. In particular, Eq. (5.11) in connection with the Green tensor for planar
multilayered dielectrics (App. A.4.1) immediately leads to the famous Lifshitz formula [92] for
the Casimir force between two dielectric half-spaces [107]. In the limit of perfectly conducting
plates, one recovers the mode summation formula (2.73).

5.2 Casimir–Polder forces

Similarly to the Casimir force, the Casimir–Polder force on a single atom (for a general overview,
see Refs. [23, 26, 100, 108, 109]) can be calculated as an effective Lorentz force starting from
expression (5.1), where the electromagnetic field acts on the atomic charge and current distribu-
tions. In general, this force is a time-dependent quantity which can only be found by solving the
coupled atom-field dynamics [57, 96, 97]. In this section, we restrict our attention to the force
on a ground-state atom with the body-assisted field being in its vacuum state, and we ignore the
effect of motion on the CP force. For this stationary problem, the CP force can alternatively be
derived from the atom-field coupling energy, following the approach originally used by Casimir
and Polder [94].

Such an approach can be justified by means of a Born–Oppenheimer approximation by as-
suming that the fast internal (electronic) motion effectively decouples from the slow centre-of-
mass motion. To see this, we express the total multipolar Hamiltonian (3.149) in terms of the
centre-of-mass momentum p̂A =

∑
α∈A p̂α and the internal momenta p̂α = p̂α−(mα/mA)p̂A

to obtain

Ĥ =
p̂2

A

2mA
+ Ĥ int

A + ĤF + ĤAF , (5.12)
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where

Ĥ int
A =

p̂2
α

2mα
+

1
2ε0

∫
d3r P̂2

A(r) =
∑

k

~ωkÂkk (5.13)

[Âkk = |k〉〈k|] is the internal atomic Hamiltonian associated with the electronic motion and the
field Hamiltonian ĤF is given by Eq. (3.152). The influence of atomic motion on the atom-field
interaction can be discarded by formally letting mA →∞, leading to

ĤAF = −
∫
d3r P̂A(r) · Ê(r)−

∫
d3r M̂A(r) · B̂(r)

+
∑
α∈A

1
2mα

[∫
d3r Θ̂α(r)× B̂(r)

]2
, (5.14)

where the three terms describe the electric, paramagnetic and diamagnetic interactions with the
electromagnetic field, respectively. Having thus separated the internal and centre-of-mass motion
as far as possible, we can apply the Born–Oppenheimer approximation by integrating out the
internal motion for given values of r̂A and p̂A, leading to an effective Hamiltonian for the centre-
of-mass motion,

Ĥeff =
p̂2

A

2mA
+ E + ∆E. (5.15)

Here, E is the energy of the uncoupled atom-field system and ∆E is the energy shift due to the
atom-field coupling ĤAF. Since we have neglected the influence of motion on the atom-field
interaction, the energy shift does not depend on p̂A so that we may write

∆E = ∆E0 + ∆E(r̂A), (5.16)

where ∆E0 is the well-known (free-space) Lamb shift (2.121) [23]. By means of the commuta-
tion relations

[
r̂A, p̂A

]
= i~I , the effective Hamiltonian thus generates the following equations

of motion for the centre-of-mass coordinate:

mA
˙̂rA =

1
i~

[
mAr̂A, Ĥeff

]
= p̂A, (5.17)

F̂ = mA
¨̂rA =

1
i~

[
mA

˙̂rA, Ĥeff

]
= −∇AU(r̂A) (5.18)

where the CP potential

U(r̂A) = ∆E(r̂A) (5.19)

is the position-dependent part of the energy shift, as suggested by Casimir and Polder. In many
cases, the centre-of-mass motion is effectively classical and position and velocity in Eqs. (5.17)
and (5.18) can be treated as c-number parameters. In the following, it is not necessary to distin-
guish the classical from the quantum case and we drop the operator hats for convenience.
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Fig. 5.1. Schematic representation of single-photon interactions (a) and the second-order energy shift (b).
Solid lines represent atomic states and dashed lines stand for photons. We do not distinguish electric and
magnetic interactions.

5.2.1 Perturbation theory

For weak atom-field coupling, the ground-state energy shift (5.16) can be obtained from a per-
turbative calculation. While the coupling Hamiltonian (5.14) presents very general basis for this
purpose, the calculation can often be simplified by applying the long-wavelength approxima-
tion (which is valid provided that the atom-body separations are large with respect to the atomic
radius) and neglecting the weak diamagnetic interaction, so that [cf. Eq. (3.154)]

ĤAF = −d̂ · Ê(rA)− m̂ · B̂(rA) (5.20)

This Hamiltonian being linear in both atomic and field variables, ∆E is to leading order given
by the second-order energy shift

∆E =
∑
I 6=G

〈0|ĤAF |I〉〈I|ĤAF |0〉
EG − EI

, (5.21)

where |G〉= |0〉|{0}〉 denotes the (uncoupled) ground state of Ĥ int
A + ĤF and the relevant inter-

mediate states |I〉 = |k〉|1λ(r, ω)〉 are those where the atom is excited, with a single-quantum
excitation of the field being present, |1λ(r, ω)〉 = f̂†λ(r, ω)|{0}〉. The formal sum in Eq. (5.21)
thus represents discrete summations over λ and the vector index as well as integrations over r
and ω. Recalling the field expansions (3.82) and (3.83), the matrix elements of the electric and
magnetic dipole interactions are found to be

〈0|〈{0}|d̂ · Ê(rA)|1λ(r, ω)〉|k〉 = d0k ·Gλ(rA, r, ω), (5.22)

〈0|〈{0}|m̂ · B̂(rA)|1λ(r, ω)〉|k〉 =
m0k ·∇A ×Gλ(rA, r, ω)

iω
(5.23)

The matrix elements and the second-order energy shift are schematically depicted in Fig. 5.1.
As the energy shift is quadratic in ĤAF , it contains purely electric, purely magnetic and mixed
electric–magnetic contributions. The latter are proportional to d0k⊗mk0, so for nonchiral atoms,
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they can be excluded by means of a parity argument (d̂ is odd and m̂ is even under parity). After
substitution of Eqs. (5.22) and (5.23), we thus only retain the purely electric and magnetic terms,
which upon using the integral relation (3.87) leads to

∆E = −µ0

π

∑
k

∫ ∞

0

dω

ωk0 + ω

[
ω2d0k · Im G(rA, rA, ω) · dk0

m0k ·∇ × Im G(rA, rA, ω) ×
←−
∇′ ·mk0

]
. (5.24)

The Casimir–Polder potential (5.19) can be extracted from this energy shift by discarding
the position-independent contribution associated with the bulk part of the Green tensor G(0) and
only retaining its scattering part G(S). The result can be further simplified by writing Im G=
(G − G∗)/(2i), making use of the Schwarz reflection principle, Eq. (3.50), and transforming
the integrals along the real axis into ones along the purely imaginary axis (cf. Ref. [57]). The
resulting ground-state CP potential is given by [57, 66, 96, 98, 100, 110–113]

U(rA) = Ue(rA) + Um(rA), (5.25)

with

Ue(rA) =
~µ0

2π

∫ ∞

0

dξ ξ2tr
[
α(iξ) ·G(S)(rA, rA, iξ)

]
=

~µ0

2π

∫ ∞

0

dξ ξ2α(iξ)trG(S)(rA, rA, iξ), (5.26)

Um(rA) =
~µ0

2π

∫ ∞

0

dξ tr
[
β(iξ) ·∇×G(S)(rA, rA, iξ)×

←−
∇′
]

=
~µ0

2π

∫ ∞

0

dξ β(iξ)tr
[
∇×G(S)(rA, rA, iξ)×

←−
∇′
]
, (5.27)

denoting the electric and magnetic parts of the potential and

α(ω) = lim
ε→0

2
~
∑

k

ωk0d0k ⊗ dk0

ω2
k0 − ω2 − iωε

= lim
ε→0

2
3~
∑

k

ωk0|d0k|2

ω2
k0 − ω2 − iωε

I = α(ω)I (5.28)

β(ω) = lim
ε→0

2
~
∑

k

ωk0m0k ⊗mk0

ω2
k0 − ω2 − iωε

= lim
ε→0

2
3~
∑

k

ωk0|m0k|2

ω2
k0 − ω2 − iωε

I = β(ω)I (5.29)

being the atomic polarisability and magnetisability. The second lines of equalities in Eqs. (5.26)–
(5.29) above hold for isotropic atoms.

When considering CP forces on atoms that are embedded in a body or a medium, one has to
account for the fact that the local electromagnetic field interacting with the atom differs from the
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macroscopic one employed in our derivation. This difference gives rise to local–field corrections
which can be implemented via the real-cavity model by assuming the atom to be surrounded by
a small free-space cavity (recall the discussion in Sec. 4.1). In order to apply this procedure
to our results (5.26) and (5.27), one has to replace the Green tensor by its local-field corrected
counterpart as given in App. A.6 which, after discarding position-independent terms, results
in [58, 114]

Ue(rA) =
~µ0

2π

∫ ∞

0

dξ ξ2α(iξ)
[

3ε(iξ)
2ε(iξ) + 1

]2
trG(S)(rA, rA, iξ), (5.30)

Um(rA) =
~µ0

2π

∫ ∞

0

dξ β(iξ)
[

3
2µ(iξ) + 1

]2
tr
[
∇×G(S)(rA, rA, iξ)×

←−
∇′
]
, (5.31)

where ε(ω) = ε(rA, ω) and µ(ω) = µ(rA, ω) denote the permittivity and permeability of the
host body at the position of the atom. For an atom situated in free space, the local-field correction
factors are equal to unity and one recovers Eqs. (5.26) and (5.27).

It is instructive to study the behaviour of the total CP potential under a duality transformation,
which in this case amounts to a simultaneous global exchange α ↔ β/c2 and ε ↔ µ (see
Tab. 3.1). Using the associated transformation laws (A.8) and (A.9) of the Green tensor as given
in App. A.2, one sees that the duality transformation results in an exchange Ue ↔ Um of the
free-space potentials (5.26) and (5.27), so that the total potential is invariant with respect to
a duality transformation [49]. The transformation laws (A.85) and (A.86) for the local-field
corrected Green tensor imply that the same is true for an embedded atom, provided that local-
field corrections are taken into account. The duality invariance of the CP potential is very useful
when considering specific geometries: Once the electric CP potential of an atom in a particular
magnetoelectric environment has been calculated, that of a magnetic one can be obtained by
simply replacing α→ β/c2 and exchanging ε↔ µ.

5.2.2 Atom in front of a plate

Let us apply the general results to an isotropic atom which is placed above (zA > 0) a magne-
toelectric plate of thickness d, permittivity ε(ω) and permeability µ(ω), see Fig. 5.2. Using the
Green tensor of this very simple geometry as given App. A.4.1, the electric CP potential (5.26)
reads [96, 115]

Ue(zA) =
~µ0

8π2

∫ ∞

0

dξ ξ2α(iξ)
∫ ∞

ξ/c

dκz e
−2κzzA

[
rs −

(
2
κ2

zc
2

ξ2
− 1
)
rp

]
(5.32)

where rs and rp are the reflection coefficients of the half space for s- and p-polarised waves
and κz = Im kz , with k being the wave vector of these waves in free space. By virtue of the
duality invariance, we can obtain the magnetic potential from the above expression by replacing
α→ β/c2 and exchanging ε↔ µ, which is equivalent to an exchange of rs and rp [cf. Eq. (A.35)
in App. A.4.1] [58, 116]:

Um(zA) =
~µ0

8π2

∫ ∞

0

dξ ξ2
β(iξ)
c2

∫ ∞

ξ/c

dκz e
−2κzzA

[
rp −

(
2
κ2

zc
2

ξ2
− 1
)
rs

]
. (5.33)
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Fig. 5.2. An atom interacting with a magnetoelectric plate.

Perfect mirror: A perfect mirror is realized for a perfectly conducting plate (ε → ∞) or
an infinitely permeable one (µ → ∞), in which cases the reflection coefficients are given by
rs = −rp = ∓1, respectively. In this particularly simple case, the κz-integrals in Eqs. (5.32)
and (5.33) can be performed, so that the total CP potential (5.25) reads

U(zA) = ∓ ~
16π2ε0z3

A

∫ ∞

0

dξ

[
α(iξ)− β(iξ)

c2

]
e−2ξzA/c

[
1 + 2

ξzA

c
+ 2

ξ2z2
A

c2

]
, (5.34)

where the upper (lower) is valid for the perfectly conducting (infinitely permeable) mirror. This
result includes the famous Casimir–Polder potential of a polarisable atom in front of a perfectly
conducting wall [94]. In the retarded limit zA � c/ωmin (ωmin: minimum of all relevant atomic
transition frequencies), the ξ-integral is effectively limited to a region where the approximations
α(iξ)' αA(0) and βA(iξ)' β(0) are valid and after integration one obtains [117]

U(zA) = ∓ 3~cα(0)
32π2ε0z4

A

± 3~β(0)
32π2ε0cz4

A

. (5.35)

In the non-retarded limit zA � c/ωmax (ωmax: maximum of all relevant atomic transition fre-
quencies), the factors αA(iξ) and βA(iξ) limits the ξ-integral in Eq. (5.34) to a range where
we may approximately set e−2ξzA/c' 1 and neglect the second and third terms in the square
brackets. The integral can then be performed with the aid of the definitions (5.28) and (5.29)

U(zA) = ∓ 〈d̂2〉
48πε0z3

A

± 〈m̂2〉
48πε0c2z3

A

, (5.36)

with the first term being the Lennard-Jones potential [93].
The results (5.34)–(5.36) show that a perfectly conducting plate attracts polarisable atoms

and repels magnetisable ones. For the nonretarded limit, this behaviour can be made plausible
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Fig. 5.3. Image dipole construction for an (a) electric (b) magnetic dipole in front of a perfectly conducting
plate.

by noting that the CP potential is due to the interaction of the atomic dipole moment with its
image in the plate [93]. The image of an electric dipole moment d̂, located at a distance zA away
from a perfectly conducting plate, is constructed by a reflection at the xy-plane, together with
an interchange of positive and negative charges and is hence given by d̂′ = (−d̂x,−d̂y, d̂z), cf.
Fig 5.3(a). The average interaction energy of the dipole and its image is hence given by [118]

Ue(zA) =
1
2
〈d̂ · d̂′ − 3d̂z d̂

′
z〉

4πε0(2zA)3
= − 〈d̂2〉

48πε0z3
A

, (5.37)

in agreement with Eq. (5.36), where the factor 1/2 accounts for the fact that the second dipole is
induced by the first one.

On the contrary, a magnetic dipole m̂ behaves like a pseudo-vector under reflection, so its
image is given by m̂′ = (m̂x, m̂y,−m̂z), cf. Fig 5.3(b). The interaction energy of the magnetic
dipole and its image reads

Um(zA) =
1
2
〈m̂ · m̂′ − 3m̂zm̂

′
z〉

4πε0(2zA)3
=
〈m̂2〉

48πε0z3
A

, (5.38)

again in agreement with Eq. (5.36). The different signs of the CP potential associated with
polarisable/magnetisable atoms can thus be understood from the different reflection behaviour of
electric and magnetic dipoles.

Half space: Let us next consider a semi-infinite magnetoelectric half space of finite permittivity
and permeability, which is a good model for plates whose thickness is large with respect to the
atom-surface separation. Using the reflection coefficients (A.35) in App. A.4.1, the electric and
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magnetic potentials (5.32) and (5.33) take the forms [58, 96, 115, 116, 119, 120]

Ue(zA) =
~µ0

8π2

∫ ∞

0

dξ ξ2α(iξ)
∫ ∞

ξ/c

dκz e
−2κzzA

[
µ(iξ)κz − κ1z

µ(iξ)κz + κ1z

−
(

2
κ2

zc
2

ξ2
− 1
)
ε(iξ)κz − κ1z

ε(iξ)κz + κ1z

]
(5.39)

Um(zA) =
~µ0

8π2

∫ ∞

0

dξ ξ2
β(iξ)
c2

∫ ∞

ξ/c

dκz e
−2κzzA

[
ε(iξ)κz − κ1z

ε(iξ)κz + κ1z

−
(

2
κ2

zc
2

ξ2
− 1
)
µ(iξ)κz − κ1z

µ(iξ)κz + κ1z

]
(5.40)

with

κ1z = Im k1z =

√
ξ2

c2
[
ε(iξ)µ(iξ)− 1

]
+ κ2 , (5.41)

where k1 is the wave vector inside the half space. In the retarded limit zA � c/ωmin (with ωmin

being the minimum of all relevant atom and medium resonance frequencies) the potentials take
the asymptotic forms [121]

Ue(zA) = − 3~cα(0)
64π2ε0z4

A

∫ ∞

1

dv

[( 2
v2
− 1
v4

)ε(0)v −
√
n2(0)− 1 + v2

ε(0)v +
√
n2(0)− 1 + v2

− 1
v4

µ(0)v −
√
n2(0)− 1 + v2

µ(0)v +
√
n2(0)− 1 + v2

]
, (5.42)

Um(zA) = − 3~β(0)
64π2ε0cz4

A

∫ ∞

1

dv

[( 2
v2
− 1
v4

)µ(0)v −
√
n2(0)− 1 + v2

µ(0)v +
√
n2(0)− 1 + v2

− 1
v4

ε(0)v −
√
n2(0)− 1 + v2

ε(0)v +
√
n2(0)− 1 + v2

]
(5.43)

[n(0) =
√
ε(0)µ(0)], while in the nonretarded limit n(0)zA � c/ωmax (ωmax: maximum of all

relevant atom and medium resonance frequencies), they are well approximated by

Ue(zA) = − ~
16π2ε0z3

A

∫ ∞

0

dξ α(iξ)
ε(iξ)− 1
ε(iξ) + 1

, (5.44)

Um(zA) =
~µ0

32π2zA

∫ ∞

0

dξ ξ2
β(iξ)
c2

[ε(iξ)− 1][ε(iξ) + 3]
ε(iξ) + 1

(5.45)

for a dielectric half space and by

Ue(zA) =
~µ0

32π2ε0zA

∫ ∞

0

dξ ξ2α(iξ)
[µ(iξ)− 1][µ(iξ) + 3]

µ(iξ) + 1
, (5.46)

Ue(zA) = − ~
16π2ε0z3

A

∫ ∞

0

dξ
β(iξ)
c2

µ(iξ)− 1
µ(iξ) + 1

(5.47)
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Fig. 5.4. The potential of a polarisable ground-state two-level atom (transition frequency ωA, dipole matrix
element d) in front of a magnetoelectric half space is shown as a function of the distance between the atom
and the half space for different values of µ(0) (ωPe/ω10 = 0.75, ωTe/ω10 = 1.03, ωTm/ω10 = 1,
γe/ω10 = γm/ω10 = 0.001) [115].

for a purely magnetic one. One can summarise these results by stating that the CP potential is at-
tractive for two objects of the same (electric/magnetic) nature, e.g. a polarisable atom interacting
with a dielectric half space, while being repulsive for two objects of different nature.

In contrast to what is suggested by the findings for a perfect mirror, the different cases fur-
thermore lead to different power laws in the nonretarded limit, with attractive potentials being
proportional to 1/z3

A and repulsive ones following a much weaker 1/zA behaviour. When either
the atom or the half space simultaneously exhibit electric and magnetic properties, both attractive
and repulsive force components are present, which may be combined to form a potential barrier.
This is illustrated in Fig. 5.4, where we show the potential (5.39) of a polarisable ground-state
two-level atom near a magnetoelectric half space, whose permittivity and permeability have been
modelled by the single-resonance forms

ε(ω) = 1 +
ω2

Pe

ω2
Te − ω2 − iωγe

, µ(ω) = 1 +
ω2

Pm

ω2
Tm − ω2 − iωγm

. (5.48)

It is seen that repulsive force components may lead to a potential barrier at intermediate distances
while attractive forces always dominate close to the surface due to their stronger power law. For
a polarisable atom, repulsive force components are associated with the magnetic properties of
the half space, so the barrier increases in height as µ(0) increases. It follows from the retarded
limit (5.42) that the threshold for barrier formation is µ(0) − 1 ≥ 3.29[ε(0) − 1] for a weakly
magnetoelectric half space and µ(0) ≥ 5.11ε(0) for a strongly magnetoelectric one.
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Plate of finite thickness: Finally, we consider a plate of arbitrary thickness d. Use of the
appropriate reflection coefficients (A.36) in Eqs. (5.32) and (5.33) leads to the potentials [115]

Ue(zA) =
~µ0

8π2

∫ ∞

0

dξ ξ2α(iξ)
∫ ∞

ξ/c

dκz e
−2κzzA

×
{

[µ2(iξ)κ2
z − κ2

1z] tanh(κ1zd)
2µ(iξ)κzκ1z + [µ2(iξ)κ2

z + κ2
1z] tanh(κ1zd)

−
(

2
κ2

zc
2

ξ2
− 1
)

[ε2(iξ)κ2
z − κ2

1z] tanh(κ1zd)
2ε(iξ)κzκ1z + [ε2(iξ)κ2

z + κ2
1z] tanh(κ1zd)

}
, (5.49)

Um(zA) =
~µ0

8π2

∫ ∞

0

dξ ξ2
β(iξ)
c2

∫ ∞

ξ/c

dκz e
−2κzzA

×
{

[ε2(iξ)κ2
z − κ2

1z] tanh(κ1zd)
2ε(iξ)κzκ1z + [ε2(iξ)κ2

z + κ2
1z] tanh(κ1zd)

−
(

2
κ2

zc
2

ξ2
− 1
)

[µ2(iξ)κ2
z − κ2

1z] tanh(κ1zd)
2µ(iξ)κzκ1z + [µ2(iξ)κ2

z + κ2
1z] tanh(κ1zd)

}
. (5.50)

For a sufficiently thick plate, d � zA, one may approximate tanh(κ1zd) ' 1 to recover the
half-space results (5.39) and (5.40). In the opposite limit of a thin plate, n(0)d � zA, the
approximation κ1zd� 1 results in

Ue(zA) =
~µ0d

8π2

∫ ∞

0

dξ ξ2α(iξ)
∫ ∞

ξ/c

dκz e
−2κzzA

[
µ2(iξ)κ2 − κ2

1z

2µ(iξ)κ

−
(

2
κ2

zc
2

ξ2
− 1
)
ε2(iξ)κ2

z − κ2
1z

2ε(iξ)κz

]
(5.51)

Um(zA) =
~µ0d

8π2

∫ ∞

0

dξ ξ2
β(iξ)
c2

∫ ∞

ξ/c

dκz e
−2κzzA

[
ε2(iξ)κ2 − κ2

1z

2ε(iξ)κ

−
(

2
κ2

zc
2

ξ2
− 1
)
µ2(iξ)κ2

z − κ2
1z

2µ(iξ)κz

]
. (5.52)

As for the half space, these potentials reduce to simple power laws for large and small atom-
surface separations. In the retarded limit, the thin-plate potentials read

Ue(zA) = − ~cα(0)d
160π2ε0z5

A

[
14ε2(0)− 9

ε(0)
− 6µ2(0)− 1

µ(0)

]
, (5.53)

Um(zA) = − ~β(0)d
160π2ε0cz5

A

[
14µ2(0)− 9

µ(0)
− 6ε2(0)− 1

ε(0)

]
, (5.54)

while for nonretarded distances, they become

Ue(zA) = − 3~d
64π2ε0z4

A

∫ ∞

0

dξ α(iξ)
ε2(iξ)− 1
ε(iξ)

, (5.55)

Um(zA) =
~µ0d

64π2z2
A

∫ ∞

0

dξ ξ2
β(iξ)
c2

[ε(iξ)− 1][3ε(iξ) + 1]
ε(iξ)

(5.56)
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Fig. 5.5. The potential of a polarisable ground-state two-level atom in front of a magnetoelectric plate is
shown as a function of the atom-plate separation for different values of the plate thickness d [µ(0)= 5;
whereas all other parameters are the same as in Fig. 5.4] [115].

for a purely electric plate and

Ue(zA) =
~µ0d

64π2z2
A

∫ ∞

0

dξ ξ2α(iξ)
[µ(iξ)− 1][3µ(iξ) + 1]

µ(iξ)
, (5.57)

Um(zA) = − 3~d
64π2ε0z4

A

∫ ∞

0

dξ
β(iξ)
c2

µ2(iξ)− 1
µ(iξ)

(5.58)

(5.59)

for a purely magnetic one. A comparison with the findings of Sec. 5.2.2 shows that when moving
from a thick to a thin plate, all power laws are increased by one inverse power as a result of the
linear dependence on d/zA. This similarity is due to the common microscopic origins of both
forces (Sec. 5.4).

The general behaviour of the CP potential for a thin plate being very similar to that for thick
plates, one may expect that repulsive force components may lead to potential barriers regardless
of the plate thickness. This is confirmed in Fig. 5.5, where we display the potential (5.49) of a
polarisable atom near plates of various thicknesses. We have chosen sufficiently strong magnetic
properties to ensure the existence of a potential barrier. It is very low for a thin plate, reaches a
maximal height for some intermediate thickness and then lowers slowly towards the asymptotic
half space value as the thickness is further increased.
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Fig. 5.6. An atom interacting with a magneto-electric sphere.

5.2.3 Atom in front of a sphere

As a second application of the general theory, let us consider an atom placed above at distance
rA from the center of a magneto-electric sphere of radius R, permittivity ε(ω) and permeability
µ(ω), see Fig. 5.6. After substitution of the Green tensor (A.59) from App. A.4.3, the electric
potential (5.26) in the presence of the sphere is given by [122]

Ue(rA) = − ~µ0

8π2c

∫ ∞

0

dξ ξ3α(iξ)
∞∑

l=1

(2l + 1)

{[
h

(1)
l (krA)

]2
rl
s + l(l + 1)

×
[
h

(1)
l (krA)
krA

]2
rl
p +

[
1
krA

d[rAh
(1)
l (krA)]
drA

]2
rl
p

}
, (5.60)

where the sphere’s reflection coefficients for s- and p-polarised spherical waves read

rl
s = −

µ(iξ)
[
zjl(z)

]′
jl(z1)− jl(z)

[
z1jl(z1)

]′
µ(iξ)

[
zh

(1)
l (z)

]′
jl(z1)− h(1)

l (z)
[
z1jl(z1)

]′ , (5.61)

rl
p = −

ε(iξ)
[
zjl(z)

]′
jl(z1)− jl(z)

[
z1jl(z1)

]′
ε(iξ)

[
zh

(1)
l (z)

]′
jl(z1)− h(1)

l (z)
[
z1jl(z1)

]′ (5.62)

[z = kR, k = iξ/c, z1 = k1R, k1 = n(iξ)k, n(ω) =
√
ε(ω)µ(ω), h(1)

l (z): spherical Han-
kel functions of the first kind, jl(z): spherical Bessel functions]. Using the duality invariance
discussed in Sec. 5.2.1, the respective magnetic potential (5.27) can be obtained by making the
replacements α → β/c2 and ε ↔ µ, which as in the case of the half space amounts to an
exchange rs ↔ rp:

Um(rA) = − ~µ0

8π2c

∫ ∞

0

dξ ξ3
β(iξ)
c2

∞∑
l=1

(2l + 1)

{[
h

(1)
l (krA)

]2
rl
p + l(l + 1)

×
[
h

(1)
l (krA)
krA

]2
rl
s +

[
1
krA

d[rAh
(1)
l (krA)]
drA

]2
rl
s

}
. (5.63)
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In the limit of a large sphere, R � zA = rA − R, the main contribution to the sums in
Eqs. (5.60) and (5.63) is due to terms with large n and one recovers the half-space results (5.44)–
(5.47), as expected. For a sufficiently small sphere, n(0)R� rA, the sums effectively reduce to
terms with l = 1, and one finds

Ue(rA) = − ~
32π3ε20r

6
A

∫ ∞

0

dξ α(iξ)
[
α�(iξ)g(ξrA/c)−

β�(iξ)
c2

h(ξrA/c)
]
, (5.64)

Um(rA) = − ~
32π3ε20r

6
A

∫ ∞

0

dξ
β(iξ)
c2

[
β�(iξ)
c2

g(ξrA/c)− α�(iξ)h(ξrA/c)
]

(5.65)

with g(x) = 2e−2x(3 + 6x + 5x2 + 2x3 + x4) and h(x) = 2x2e−2x(1 + 2x + x2), where we
have introduced the small sphere’s polarisability [118]

α�(ω) = 4πε0R3 ε(ω)− 1
ε(ω) + 2

(5.66)

as well as its magnetisability

β�(ω) =
4πR3

µ0

µ(ω)− 1
µ(ω) + 2

. (5.67)

It is worth noting that in the small-sphere limit the electric and magnetic properties of the sphere
completely separate. Furthermore, as will be seen in Sec. 5.3.2 below, the potentials (5.64) and
(5.65) of an atom interacting with a small sphere have exactly the same form as that of two atoms,
with the sphere’s polarisability and magnetisability replacing those of the second atom. In the
retarded limit rA � c/ωmin, the sphere potentials further reduce to

Ue(rA) = −23~cα(0)α�(0)
64π3ε20r

7
A

+
7~α(0)β�(0)
64π3ε20c

2r7A
, (5.68)

Um(rA) = −23~cβ(0)β�(0)
64π3ε20c

4r7A
+

7~β(0)α�(0)
64π3ε20c

2r7A
, (5.69)

while in the retarded limit rA � c/ωmax one has

Ue(rA) = − 3~
16π3ε20r

6
A

∫ ∞

0

dξ α(iξ)α�(iξ) +
~

16π3c3ε20r
4
A

∫ ∞

0

dξ ξ2α(iξ)
β�(iξ)
c2

,

(5.70)

Um(rA) = − 3~
16π3ε20r

6
A

∫ ∞

0

dξ
β(iξ)
c2

β�(iξ)
c2

+
~

16π3c3ε20r
4
A

∫ ∞

0

dξ ξ2
β(iξ)
c2

α�(iξ).

(5.71)

The hierarchy of signs and power laws of these potentials is closely analogous to that found for a
half space or a thin plate: A polarisable atom is attracted to an electric sphere and repelled from a
magnetic one, while the findings for a magnetisable atom are exactly opposite. Again, attractive
and repulsive potentials follow the same (1/r7A) power laws in the retarded limit, while for short
distances attractive potentials (with their 1/r6A power law) dominate over the repulsive (1/r4A)
ones.
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5.3 Van der Waals forces

The simultaneous interaction of two atoms with the electromagnetic field leads to the vdW force
between them (for general literature and reviews, see [22, 97, 100, 123–127]), which may sensi-
tively depend on their magneto-electric environment. In close analogy to the single-atom case,
velocity-independent vdW forces between ground-state atoms can be derived from an atom-field
coupling energy. Starting point is the two-atom generalization

Ĥ =
p̂2

A

2mA
+

p̂2
B

2mB
+ Ĥ int

A + Ĥ int
B + ĤF + ĤAF + ĤBF (5.72)

of the Hamiltonian (5.12), where the internal dynamics of the atoms is given by Hamiltonians
of the type (5.13) and each atom individually interacts with the electromagnetic field via an
interaction Hamiltonian of the form (5.14). Applying the Born–Oppenheimer approximation by
integrating the internal atomic dynamics for given center-of-mass positions r̂A, r̂B and momenta
p̂A, p̂B , one obtains the effective Hamiltonian

Ĥeff =
p̂2

A

2mA
+

p̂2
A

2mA
+ E + ∆E. (5.73)

Here, E denotes the energy of the two uncoupled atoms and the field, and the energy shift

∆E = ∆E0 + ∆E(r̂A) + ∆E(r̂B) + ∆E(r̂A, r̂B), (5.74)

can be separated into a position-independent part (which contains the Lamb shifts of both atoms),
two parts depending only on the positions of one of the atoms and a genuine two-atom part. The
Hamiltonian (5.73) generates the following equations of motion for atom A:

mA
˙̂rA =

1
i~

[
mAr̂A, Ĥeff

]
= p̂A, (5.75)

F̂A = mA
¨̂rA =

1
i~

[
mA

˙̂rA, Ĥeff

]
= −∇AU(r̂A)−∇AU(r̂A, r̂B) (5.76)

(similarly for atom B). The atom is thus subject to two forces, the CP force, which as discussed
in the previous Sec. 5.2 can be derived from the CP potential (5.19), and the vdW force which
is due to the additional atom. The associated vdW potential is given by the two-atom part of the
energy shift

U(r̂A, r̂B) = ∆E(r̂A, r̂B) (5.77)

and it describes not only the direct, free-space interaction of the two atoms but also accounts
for modifications of this interactions due to the presence of magnetoelectrics. As a conse-
quence, Newton’s third law F̂AB = −F̂BA does not necessarily hold for the vdW force F̂AB =
−∇AU(r̂A, r̂B), due to the contribution of the bodies to the momentum balance.

5.3.1 Perturbation theory

In close analogy to the single-atom case, the vdW potential can for sufficiently weak atom-field
coupling be obtained from a perturbative calculation of the energy shift. With each atom being



Dispersion forces 763

Tab. 5.1. Intermediate states contributing to the two-atom vdW interaction, where we have used the short-
hand notations |1µ〉 = |1λµiµ(rµ, ωµ)〉, |1µ1ν〉 = |1λµiµ(rµ, ωµ)1λν iν (rν , ων)〉.

Case |I〉 |II〉 |III〉
(1) |kA, 0B〉|11〉 |0A, 0B〉|12,13〉 |0A, lB〉|14〉
(2) |kA, 0B〉|11〉 |kA, lB〉|{0}〉 |kA, 0B〉|12〉
(3) |kA, 0B〉|11〉 |kA, lB〉|{0}〉 |0A, lB〉|12〉
(4) |kA, 0B〉|11〉 |kA, lB〉|12,13〉 |kA, 0B〉|14〉
(5) |kA, 0B〉|11〉 |kA, lB〉|12,13〉 |0A, lB〉|14〉
(6) |0A, lB〉|11〉 |0A, 0B〉|12,13〉 |kA, 0B〉|14〉
(7) |0A, lB〉|11〉 |kA, lB〉|{0}〉 |kA, 0B〉|12〉
(8) |0A, lB〉|11〉 |kA, lB〉|{0}〉 |0A, lB〉|12〉
(9) |0A, lB〉|11〉 |kA, lB〉|12,13〉 |kA, 0B〉|14〉

(10) |0A, lB〉|11〉 |kA, lB〉|12,13〉 |0A, lB〉|14〉

linearly coupled to the electromagnetic field via an interaction (5.20), two-atom contributions
start to appear in the fourth-order energy shift

∆E =
∑

I,II,III 6=0

〈G|ĤAF +ĤBF |III〉〈III|ĤAF +ĤBF |II〉
(EG − EIII)

× 〈II|ĤAF +ĤBF |I〉〈I|ĤAF +ĤBF |0〉
(EG − EII)(EG − EI)

, (5.78)

where |G〉= |0A〉|0B〉|{0}〉 is now the (uncoupled) ground state of Ĥ int
A + Ĥ int

B + ĤF. In or-
der to give a nonvanishing contribution to the energy shift, the intermediate states |I〉 and |III〉
must be such that one of the atoms and a single quantum of the fundamental fields are excited,
while three possibilities exist for the intemediate states |II〉: Either both atoms are in the ground
state and two field quanta are excited [|1λ(r, ω)1λ′(r′, ω′)〉 = 1√

2
f̂†λ(r, ω)f̂†λ′(r′, ω′)|{0}〉], or

both atoms are excited and the field is in its ground state or both atoms and two field quanta
are excited. When invoking the additional requirement that each atom must undergo exactly two
transitions, there is a total of ten possible combinations of intermediate states, which are listed
in Tab. 5.1. The fourth-order energy shift (5.78) thus involves both transitions from zero- to
single-quantum excitations and those between single- and two-quantum excitations of the elec-
tromagnetic field. The former are given by Eqs. (5.22) and (5.23), the latter can, upon recalling
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the field expansions (3.82) and (3.83), be found to be

〈kA|〈1λ1i1(r1, ω1)|d̂A · Ê(rA)|1λ2i2(r2, ω2)1λ3i3(r3, ω3)〉|0A〉

=
δ(13)√

2

[
dk0

A ·Gλ2(rA, r2, ω2)
]
i2

+
δ(12)√

2

[
dk0

A ·Gλ3(rA, r3, ω3)
]
i3
, (5.79)

〈kA|〈1λ1i1(r1, ω1)|m̂A · B̂(rA)|1λ2i2(r2, ω2)1λ3i3(r3, ω3)〉|0A〉

=
δ(13)√

2

{
mk0

A ·∇A×Gλ2(rA, r2, ω2)
}

i2

iω2
+
δ(12)√

2

{
mk0

A ·∇A×Gλ3(rA, r3, ω3)
}

i3

iω3

(5.80)

with

δ(µν) = δλµλν δiµiν (rµ − rν)δ(ωµ − ων). (5.81)

Comparison with Eqs. (5.22) and (5.23) reveals that the matrix element for the one- to two-
photon transition is equivalent to the two possible combinations of one photon being created and
one propagating freely. This is schematically depicted in Fig. 5.7(a).

The various contributions to the vdW potential can be calculated by substituting the interme-
diate states from Tab. 5.1 and the matrix elements (5.22), (5.23), (5.79) and (5.80) into Eq. (5.78).
Let us begin with the intermediate-state combination (1) from Tab. 5.1, the calculation of which
is schematically represented in Fig. 5.7(b). After expanding the product in Eq. (5.78), evaluating
the delta functions (5.81) and making use of the integral relation (3.87), one obtains

∆E(1) = − µ2
0

~π2

∑
k,l

∫ ∞

0

dω

∫ ∞

0

dω′
(

1
D(1a)

+
1

D(1b)

)

×
{
ω2ω′2d0k

A · Im G(rA, rB , ω) · d0l
Bd0k

A · Im G(rA, rB , ω
′) · d0l

B

+ ωω′
[
d0k

A · Im G(rA, rB , ω)×
←−
∇′ ·m0l

B

] [
m0l

B ·∇× Im G(rB , rA, ω
′) · d0k

A

]
+ ωω′

[
m0k

A ·∇× Im G(rA, rB , ω) · d0l
B

] [
d0l

B · Im G(rB , rA, ω
′)×
←−
∇′ ·m0k

A

]
+
[
m0k

A ·∇× Im G(rA, rB , ω)×
←−
∇′ ·m0l

B

] [
m0l

B ·∇× Im G(rB , rA, ω
′)
←−
∇′ ·m0k

A

]
.

(5.82)

Note that the single- to two-photon transition (5.79) [or (5.80)] with its two possible processes
[Fig. 5.7(a)] enters the energy shift quadratically, so after expanding the product, four different
terms arise, see Fig. 5.7(b). They can be grouped into pairs of equal terms, so one ends up
with only two distinct contributions. After assuming real dipole matrix elements, these two only
differ in their frequency denominators D(1a) and D(1b) which are given in Tab. 5.2. The energy
shift (5.82) contains electric-electric contributions (where both atoms undergo purely electric
transitions), magnetic-magnetic contributions (where both atoms undergo magnetic transitions)
and mixed electric-magnetic and magnetic-electric ones. As in the single-atom case, we have
assumed nonchiral atoms and discarded all those contributions where at least one atom undergoes
an electric and a magnetic transition.
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Fig. 5.7. Schematic representation of three-photon interactions (a) and the contribution (1) to the fourth-
order energy shift (b). Solid lines represent atomic states and dashed lines stand for photons. We do not
distinguish electric and magnetic interactions.

The contributions to the energy shift which are associated with the remaining intermediate-
state combinations listed in Tab. 5.1 can be calculated in a similar way; all contributions are
depicted in Fig. 5.8 (cf. also Ref. [22]). The contributions (4)–(6), (9) and (10) contain two-
photon states, so they correspond to two disctinct terms, similar to the contribution (1) studied
above. However, for the contributions (4), (5), (9) and (10), one of those two terms separates into
two single-atom processes [diagrams (4b), (5b), (9b) and (10b) of Fig. 5.8] and does hence not
contribute to the vdW potential. For real dipole matrix elements, all genuine two-atom contri-
butions only differ from Eq. (5.82) by the frequency denominators D(i) and possibly also by the
sign of the terms in the third and fourth lines of the equation; signs and denominators are listed
in Tab. 5.2. The total vdW potential U(rA, rB) = ∆E(rA, rB) =

∑
i ∆E(i) can be obtained by
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Tab. 5.2. Signs and frequency denominators associated with the intermediate-state combinations given in
Tab. 5.1.

Case Sign Denominator
(1) + D(1a) = (ωk0

A + ω)(ω + ω′)(ωl0
B + ω′),

+ D(1b) = (ωk0
A + ω)(ω + ω′)(ωl0

B + ω)
(2) ± D(2) = (ωk0

A + ω)(ωk0
A + ωl0

B )(ωk0
A + ω′)

(3) + D(3) = (ωk0
A + ω)(ωk0

A + ωl0
B )(ωl0

B + ω′)
(4) ± D(4a) = (ωk0

A + ω)(ωk0
A + ωl0

B + ω + ω′)(ωk0
A + ω′)

(5) ± D(5a) = (ωk0
A + ω)(ωk0

A + ωl0
B + ω′ + ω′)(ωk0

B + ω)
(6) + D(6a) = (ωl0

B + ω)(ω + ω′)(ωk0
A + ω′),

+ D(6b) = (ωl0
B + ω)(ω + ω′)(ωk0

A + ω)
(7) + D(7) = (ωl0

B + ω)(ωk0
A + ωl0

B )(ωk0
A + ω′)

(8) ± D(8) = (ωl0
B + ω)(ωk0

A + ωl0
B )(ωl0

B + ω′)
(9) ± D(9a) = (ωl0

B + ω)(ωk0
A + ωl0

B + ω + ω′)(ωk0
A + ω)

(10) ± D(10a) = (ωl0
B + ω)(ωk0

A + ωl0
B + ω + ω′)(ωl0

B + ω′)

summing all contributions with the aid of the identity

∫ ∞

0

dω

∫ ∞

0

dω′
[

1
D(1a)

+
1

D(1b)
± 1
D(2)

+
1

D(3)
± 1
D(4)

± 1
D(5)

+
1

D(6a)
+

1
D(6b)

+
1

D(7)
± 1
D(8)

± 1
D(9)

± 1
D(10)

]
f(ω, ω′)

=
∫ ∞

0

dω

∫ ∞

0

dω′
4(ωk

A + ωl
B + ω)

(ωk
A + ωl

B)(ωk
A + ω)(ωl

B + ω)

(
1

ω + ω′
∓ 1
ω − ω′

)
f(ω, ω′)

(5.83)

which holds because the remaining parts f(ω, ω′) of the integrands in Eq. (5.82) are symmetric
with respect to an interchange of ω and ω′. The ω′-integral can be performed with the help of

∫ ∞

0

dω′ω′
(

1
ω + ω′

+
1

ω − ω′

)
Im G(rB , rA, ω

′)

= −π
2
ω[G(rB , rA, ω) + G∗(rB , rA, ω)] . (5.84)

Transforming the ω-integral to run along the positive imaginary axis, one finds [58,100,128–130]

U(rA, rB) = Uee(rA, rB) + Uem(rA, rB) + Ume(rA, rB) + Umm(rA, rB), (5.85)
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Fig. 5.8. Schematic representation of all two-atom contributions to the fourth-order energy shift.

Uee(rA, rB) =− ~µ2
0

2π

∫ ∞

0

dξ ξ4tr
[
αA(iξ) ·G(rA, rB , iξ) ·αB(iξ) ·G(rB , rA, iξ)

]
=− ~µ2

0

2π

∫ ∞

0

dξ ξ4αA(iξ)αB(iξ)tr
[
G(rA, rB , iξ) ·G(rB , rA, iξ)

]
,

(5.86)
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Uem(rA, rB)

= −~µ2
0

2π

∫ ∞

0

dξ ξ2tr
[
αA(iξ) ·G(rA, rB , iξ)×

←−
∇′ · βB(iξ) ·∇×G(rB , rA, iξ)

]
= −~µ2

0

2π

∫ ∞

0

dξ ξ2αA(iξ)βB(iξ)tr
{[

G(rA, rB , iξ)×
←−
∇′] · [∇×G(rB , rA, iξ)

]}
,

(5.87)

Ume(rA, rB)

= −~µ2
0

2π

∫ ∞

0

dξ ξ2tr
[
βA(iξ) ·∇×G(rA, rB , iξ) ·αB(iξ) ·G(rB , rA, iξ)×

←−
∇′
]

= −~µ2
0

2π

∫ ∞

0

dξ ξ2βA(iξ)αB(iξ)tr
[
∇×G(rA, rB , iξ) ·G(rB , rA, iξ)×

←−
∇′
]
, (5.88)

Umm(rA, rB)

= −~µ2
0

2π

∫ ∞

0

dξtr
[
βA(iξ)·∇×G(rA, rB , iξ)×

←−
∇′ ·βB(iξ)·∇×G(rB , rA, iξ)×

←−
∇′
]

= −~µ2
0

2π

∫ ∞

0

dξβA(iξ)βB(iξ)

× tr
{[

∇×G(rA, rB , iξ)×
←−
∇′] · [∇×G(rB , rA, iξ)×

←−
∇′]}, (5.89)

where the atomic polarisabilities and magnetisabilities are given by Eqs. (5.28) and (5.29) and
the respective second lines of these equalities hold for isotropic atoms. In close similarity to the
single-atom CP potential (5.25)–(5.27), the two-atom vdW potential can hence be expressed in
terms of the atomic response functions and the Green tensor of the electromagnetic field, where
the latter connects the positions of the two atoms.

In order to treat the interaction of atoms which are embedded in a magnetoelectric, we have
to generalise the above results by taking into account local-field effects. In close analogy to the
single-atom case, this can be achieved via the real-cavity model by substituting the respective
local-field corrected Green tensors (A.80), (A.82)–(A.84) from App. A.6 into Eqs. (5.86)–(5.89)
resulting in [58, 114]

Uee(rA, rB) =− ~µ2
0

2π

∫ ∞

0

dξ ξ4αA(iξ)αB(iξ)
[

3εA(iξ)
2εA(iξ) + 1

]2[ 3εB(iξ)
2εB(iξ) + 1

]2
× tr

[
G(rA, rB , iξ) ·G(rB , rA, iξ)

]
, (5.90)

Uem(rA, rB) =− ~µ2
0

2π

∫ ∞

0

dξ ξ2αA(iξ)βB(iξ)
[

3εA(iξ)
2εA(iξ) + 1

]2[ 3
2µB(iξ) + 1

]2
× tr

{[
G(rA, rB , iξ)×

←−
∇′] · [∇×G(rB , rA, iξ)

]}
, (5.91)
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Fig. 5.9. Interaction of two atoms embedded in a bulk magneto-dielectric medium.

Ume(rA, rB) =− ~µ2
0

2π

∫ ∞

0

dξ ξ2βA(iξ)αB(iξ)
[

3
2µA(iξ) + 1

]2[ 3εB(iξ)
2εB(iξ) + 1

]2
× tr

[
∇×G(rA, rB , iξ) ·G(rB , rA, iξ)×

←−
∇′
]
, (5.92)

Umm(rA, rB) =− ~µ2
0

2π

∫ ∞

0

dξβA(iξ)βB(iξ)
[

3
2µA(iξ) + 1

]2[ 3
2µB(iξ) + 1

]2
× tr

{[
∇×G(rA, rB , iξ)×

←−
∇′] · [∇×G(rB , rA, iξ)×

←−
∇′]},

(5.93)

where εA(ω) = ε(rA, ω) and µA(ω) = µ(rA, ω) (and similarly for atom B).

The behaviour of the vdW potential under a duality transformation α↔ β/c2, ε↔ µ follows
immediately from the respective transformation laws of the Green tensor derived in Apps. A.2
and A.6. Using Eqs. (A.8)–(A.11), one sees that the free-space potentials (5.86)–(5.89) transform
into one another according to Uee ↔ Umm, Uem ↔ Ume, so that the total vdW potential (5.85)
is duality invariant [49]. The same is true for embedded atoms when including local-field correc-
tions, as Eqs. (A.87)–(A.90) show. The duality invariance can be exploited when applying the
general potentials to specific geometries; e.g., after calculation of Uee for a certain magnetoelec-
tric body, Umm can be obtained by replacing α→ β/c2 and exchanging ε↔ µ.

5.3.2 Two atoms inside a bulk medium

Let us first consider the vdW potential of two isotropic atoms that are embedded in an infinite
homogeneous bulk medium of permittivity ε(ω) and permeability µ(ω) (Fig. 5.9). Using the
bulk Green tensor (A.17), the local-field corrected potentials (5.90) and (5.91) take the forms
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[58, 114, 131, 132]

Uee(rA, rB) =− ~
16π3ε20r

6
AB

∫ ∞

0

dξ αA(iξ)αB(iξ)
81ε2(iξ)

[2ε(iξ) + 1]4
g[n(iξ)ξrAB/c],

(5.94)

Uem(rA, rB) =
~µ2

0

16π3r4AB

∫ ∞

0

dξ ξ2αA(iξ)βB(iξ)
81ε2(iξ)µ2(iξ)

[2ε(iξ) + 1]2[2µ(iξ) + 1]2

× h[n(iξ)ξrAB/c], (5.95)

[rAB = |rA−rB |; n(ω) =
√
ε(ω)µ(ω), refractive index of the medium] with g(x) = e−2x(3+

6x + 5x2 + 2x3 + x4) and h(x) = e−2x(1 + 2x + x2). Making use of duality invariance, we
can apply the replacements α ↔ β/c2, ε ↔ µ to directly infer the remaining two potentials
[58, 114, 131, 132]

Ume(rA, rB) =
~µ2

0

16π3r4AB

∫ ∞

0

dξ ξ2βA(iξ)αB(iξ)
81µ2(iξ)ε2(iξ)

[2µ(iξ) + 1]2[2ε(iξ) + 1]2

× h[n(iξ)ξrAB/c], (5.96)

Umm(rA, rB) =− ~µ2
0

16π3r6AB

∫ ∞

0

dξ βA(iξ)βB(iξ)
81µ2(iξ)

[2µ(iξ) + 1]4
g[n(iξ)ξrAB/c].

(5.97)

These results and their retarded and nonretarded limits given below generalise the well-known
free space potentials [117, 133–136]; in particular, Uee reduces to the famous Casimir–Polder
potential of two polarisable ground state atoms in free space for ε = µ = 1 [94]. In free space,
the potential between two electric or two magnetic atoms is attractive and that between an electric
and a magnetic one is repulsive, in agreement with the general heuristic rule that dispersion forces
between objects of the same electric/magnetic nature are attractive and those between objects of
opposite nature are repulsive.

An inspection of Eqs. (5.94)–(5.97) reveals that a bulk magneto-electric medium can influ-
ence the strengths of the various two-atom interactions, but cannot change their signs. In order
to discuss the effect of the medium in more detail, it is useful to consider the limits of large
and small interatomic separations. In the retarded limit rAB � c/ωmin, the potentials are well
approximated by

Uee(rA, rB) = −23~cαA(0)αB(0)
64π3ε20r

7
AB

81ε2(0)
n(0)[2ε(0) + 1]4

, (5.98)

Uem(rA, rB) =
7~cµ0αA(0)βB(0)

64π3ε0r7AB

81ε(0)µ(0)
n(0)[2ε(0) + 1]2[2µ(0) + 1]2

, (5.99)

Ume(rA, rB) =
7~cµ0βA(0)αB(0)

64π3ε0r7AB

81µ(0)ε(0)
n(0)[2µ(0) + 1]2[2ε(0) + 1]2

, (5.100)

Umm(rA, rB) = −23~cµ2
0βA(0)βB(0)

64π3r7AB

81µ2(0)
n(0)[2µ(0) + 1]4

. (5.101)

In this case, the influence of the medium on all four types of potentials is very similar: The
coupling of each atom to the field is screened by a factor 3ε(0)/[2ε(0) + 1]2 for polarisable
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Fig. 5.10. Interaction of two atoms in the presence of a magnetoelectric half space.

atoms, and a factor 3µ(0)/[2µ(0) + 1]2 for magnetisable atoms; in addition, the reduced speed
of light in the medium leads to a further reduction of the potential by a factor n(0). In the
nonretarded limit rAB � c/ωmax, the medium-assisted potentials simplify to

Uee(rA, rB) =− 3~
16π3ε20r

6
AB

∫ ∞

0

dξ αA(iξ)αB(iξ)
81ε2(iξ)

[2ε(iξ) + 1]4
, (5.102)

Uem(rA, rB) =
~µ2

0

16π3r4AB

∫ ∞

0

dξ ξ2αA(iξ)βB(iξ)
81ε2(iξ)µ2(iξ)

[2ε(iξ) + 1]2[2µ(iξ) + 1]2
,

(5.103)

Ume(rA, rB) =
~µ2

0

16π3r4AB

∫ ∞

0

dξ ξ2βA(iξ)αB(iξ)
81ε2(iξ)µ2(iξ)

[2ε(iξ) + 1]2[2µ(iξ) + 1]2
,

(5.104)

Umm(rA, rB) =− 3~µ2
0

16π3l6

∫ ∞

0

dξ βA(iξ)βB(iξ)
81µ2(iξ)

[2µ(iξ) + 1]4
. (5.105)

The potentials Uee and Umm are thus again reduced, where in the nonretarded limit, Uee is only
influenced by the electric properties of the medium and Umm only by the magnetic ones. On
the contrary, the mixed potentials Uem and Ume are enhanced by a factor of up to 81/16 in the
nonretarded limit.

5.3.3 Two atoms near a half space

A modification of the vdW interaction does not only occur for atoms embedded in a medium,
but can also be induced by a magnetoelectric body placed near to atoms in free space. To see
this, let us consider the body-assisted vdW interaction of two atoms placed above (zA, zB > 0) a
semi-infinite half space of permittivity ε(ω) and permeability µ(ω), see Fig. 5.10. For simplicity,
we assume both atoms to be isotropic and nonmagnetic, so that U = Uee as given by Eq. (5.86).
Separating the Green tensor into its bulk (free-space) and and scattering parts according to G =



772 Macroscopic QED — concepts and applications

G(0) + G(S), the potential reads [130]

U(rA, rB) =− ~µ2
0

2π

∫ ∞

0

dξ ξ4αA(iξ)αB(iξ)tr
[
G(0)(rA, rB , iξ) ·G(0)(rB , rA, iξ)

]
− ~µ2

0

2π

∫ ∞

0

dξ ξ4αA(iξ)αB(iξ)tr
[
G(0)(rA, rB , iξ) ·G(S)(rB , rA, iξ)

+ G(S)(rA, rB , iξ) ·G(0)(rB , rA, iξ)
]

− ~µ2
0

2π

∫ ∞

0

dξ ξ4αA(iξ)αB(iξ)tr
[
G(S)(rA, rB , iξ) ·G(S)(rB , rA, iξ)

]
.

(5.106)

The first term is the free-space potential U0(rA, rB) which is due to a direct exchange of two
photons between the two atoms according to one of the various processes depicted in Fig. 5.8.
The second and third terms represent the body-induced modification of the potential; they are
due to processes where one or both of the two exchanged photons are scattered of the surface of
the half space before being absorbed. The free-space part of the potential is just a special case
of the bulk-medium potential (5.94) calculated in Sec. 5.3.2, while the body-induced change
can be found by employing the free-space Green tensor (A.20) from App. A.3 together with
the scattering tensor of the half space from App. A.4.1. As the resulting expressions are rather
involved due to the large number of geometric parameters, we only give analytical formulae for
some simple special cases.

Perfect mirror: We first consider a perfect mirror, with the reflection coefficients being given
by rs = −rp = −1 for a perfectly conducting plate and by rs = −rp = 1 for an infinitely
permeable one. In the retarded limit zA, zB , rAB � c/ωmin, the vdW potential in the special
case xAB � zA + zB = z+ can be given in closed form [130, 137, 138]

U(rA, rB) = −23~cαA(0)αB(0)
64π3ε20

[
1
r7AB

∓ 32
23

x2
AB + 6r2AB

r3ABz+(rAB + z+)5
+

1
z7
+

]
(5.107)

(rAB = |rA − rB |, xAB = |xA − xB |) where the first term in square brackets is the free-space
potential due to the direct exchange of two photons and the second and third terms represent the
mirror-induced modification of the potential due to scattering of one or two photons of the mirror
surface (where the different signs refer to the two cases of a conducting or permeable mirror).
An infinitely permeable plate thus always leads to an enhancement of the retarded interaction
of two polarisable atoms whereas two cases need to be distinguished for a perfectly conducting
one: When the atoms are aligned parallel to the plate (zAB = |zA− zB | = 0), Eq. (5.107) shows
that the potential is always reduced due to the presence of the plate, while for a perpendicular
alignment (xAB = 0), the potential of reduced if zB/zA . 4.90 (atom A being closer to the
plate than atom B).

In the nonretarded limit zA, zB , rAB � c/ωmax, the vdW potential in the presence of a
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perfect mirror is found to be [130, 137, 138]

U(rA, rB) = − 3~
16π3ε20

∫ ∞

0

dξ αA(iξ)αB(iξ)

×
[

1
r6AB

∓
4x4

AB − 2z2
ABz

2
+ + x2

AB(z2
+ + z2

AB)
3r5ABr

5
+

+
1
r6+

]
(5.108)

(r+ =
√
x2

AB + z2
+ ). For a parallel alignment of the two atoms, a perfectly conducting plate

thus reduces the vdW potential of two polarisable atoms while a permeable plate leads to an
enhancement. In particular in the on-surface limit z+ → 0, the reduction and enhancement
factors with respect to the free-space potential are given by 2/3 and 10/3. On the contrary, for a
vertical alignment the potential is reduced by a conducting plate while for a permeable plate it is
reduced if zB/zA . 14.82 (atom A being closer to the plate than atom B).

The enhancement and reduction of the nonretarded vdW interaction due to a perfect mirror
can be understood from the interaction of the fluctuating atomic dipole moments A and B and
their images A′ and B′ in the plate, with

Ĥdipole = V̂AB + V̂AB′ + V̂BA′ (5.109)

being the corresponding interaction Hamiltonian. Here, V̂AB denotes the direct interaction be-
tween dipole A and dipole B, while V̂AB′ and V̂BA′ denote the indirect interaction between
each dipole and the image induced by the other one in the plate. The leading contribution to the
two-atom energy shift is of second order in Ĥdipole,

∆E(rA, rB) = −
∑

(k,l) 6=(0,0)

〈0A|〈0B |Ĥint|lB〉|kA〉〈kA|〈lB |Ĥint|0B〉|0A〉
~(ωk0

A + ωl0
B )

. (5.110)

The three terms in Eq. (5.108) can be identified as different contributions to this energy shift:
The first term is due to contributions that are quadratic in the direct interaction V̂AB and is al-
ways attractive due to the global minus sign in Eq. (5.110). The third term which is associated
with quadatic contributions of indirect dipole-image interactions V̂AB′ or V̂BA′ is attractive for
the same reason and thus always acts as an enhancement of the free-space potential. The second
term in Eq. (5.108) is due to mixed direct-indirect interactions, its sign is negative for attrac-
tive dipole-image interactions (thus tending to enhance the free-space potential) and positive for
repulsive dipole-image interactions (leading to a reduction). The overall effect of the perfect
mirror thus depends on the attraction or repulsion of the dipole-image interaction and, in the case
of repulsion, on the relative strength of the mixed contributions compared to the purely indirect
one.

We begin our investigations with the case of two (polarisable) atoms placed aligned parallely
to a perfectly conducting plane. The image-dipole construction [Fig. 5.11(a)] reveals that the in-
direct interactions V̂AB′ and V̂BA′ are repulsive, explaining why the second term in Eq. (5.108)
acts to reduce the interaction. Equation (5.108) shows that it is always dominant over the en-
hancing purely indirect interaction, leading to an overall reduction of the free-space potential.
The image-dipole construction further reveals that the quantity r+ entering the mirror-induced
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Fig. 5.11. Image dipole construction for two (a,b) electric and (c,d) magnetic dipoles in front of a perfectly
conducting plate.

modification of the potential is simply the distance between an atom and the image of the other
atom. Let us consider next the case of perpendicular alignment of the two atoms. As seen from
the image-dipole construction [Fig. 5.11(b)], the indirect interactions are attractive in this case,
so that the mirror enhances the potential, in agreement with Eq. (5.108).

The case of two polarisable atoms near an infinitely permeable plate can be addressed by
studying the interaction of two magnetisable atoms near a perfectly conducting plate instead,
since the two problems are equivalent by virtue of duality. Noting that magnetic dipoles be-
have as pseudovectors under spatial reflection, one finds that for parallel alignment of the two
atoms the dipole-image interaction is attractive [Fig. 5.11(c)] like the dipole-dipole interaction,
so all mirror-induced terms enhance the free-space potential as predicted by Eq. (5.108). For per-
pendicular alignment the indirect dipole-image interaction is seen to be repulsive [Fig. 5.11(d)],
so the mixed direct–indirect interaction tends to reduce the interaction [cf. the second term in
Eq. (5.108)] while the purely indirect one acts towards an enhancement. For small atom-atom
separations, the former clearly dominates due to the enhanced strength of the direct interaction,
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Fig. 5.12. The vdW potential for two identical two-level atoms (transition frequency ωA) aligned parallel
(zAB = 0) to the surface of an (a) purely dielectric half space (ωPe/ωA = 3, ωTe/ωA = 1, γe/ωA =
0.001) (b) purely magnetic half space (ωPm/ωA = 3, ωTm/ωA = 1, γm/ωA = 0.001) is shown as
a function of the interatomic separation rAB . The potential is normalised with respect to the free-space
potential U0(rAB). The atom-half-space separations are zA = zB = 0.01c/ωA (solid line), 0.2c/ωA

(dashed line), and c/ωA (dotted line) [130].

leading to a reduction of the overall potential while for large atom-atom separations, an enhance-
ment due to the influence of the purely indirect interaction may be expected. The two cases are
obviously separated by the inequality given below Eq. (5.108).

Magnetodielectric half space: For a semi-infinite half space of finite permittivity ε(ω) and
permeability µ(ω), the vdW potential (5.106) is found by substitution of the free-space Green
tensor (A.20) and the scattering Green tensor from App. A.4.1 together with the reflection coeffi-
cients (A.35) of the half space. The arising integrals over frequency and wave-vector components
have to be solved numerically in order to obtain the half-space assisted potential for arbitrary in-
teractomic and atom-half space distances. The results are shown in Figs. 5.12 and 5.13 for two
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Fig. 5.13. The vdW potential for two two-level atoms aligned perpendicular (xAB = 0) to an (a) purely
dielectric half space and (b) purely magnetic half space is shown as a function of the interatomic separation
rAB . The distance between atom A (which is closer to the surface of the half space than atom B) and
the surface is zA = 0.01c/ω10 (solid line), 0.2c/ω10 (dashed line), and c/ω10 (dotted line). All other
parameters are the same as in Fig. 5.12 [130].

identical two-level atoms with the permittivity and permeability of the half space being given
by the single-resonance models (5.48), where we display the relative modification of the vdW
potential with respect to its free-space value U0 as found from Eq. (5.94).

Figure 5.12 shows the case of the two atoms being aligned parallel to the surface of the half
space (zAB = 0). In agreement with the findings for a perfect mirror, Eqs. (5.107) and (5.108),
the potential is always reduced by a purely dielectric half space [Fig. 5.12(a)] and enhanced by a
purely magnetic one [Fig. 5.12(b)]. The relative reduction/enhancement becomes noticeable as
soon as the interatomic separation becomes comparable to the atom-surface distance, it saturates
for large interatomic separations. The figure further shows that the relative reduction for a di-
electric half space has a pronounced minimum, the enhancement due to a magnetic one increases
monotonically with interatomic distance.
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Fig. 5.14. Two atoms interacting with a magneto-electric sphere.

In Fig. 5.13, we study the case of perpendicular alignment (xAB = 0). In agreement with
the perfect-mirror results (5.107) and (5.108), a purely dielectric half space is found to always
enhance the potential. The enhancement sets in when interatomic and atom-surface distances
become equal, reaches a maximum in some cases (i.e., whenever the atom-surface separation
of the closer atom A is sufficiently small) and saturates for large interatomic distances. At first
glance, the findings for a purely magnetic half-space seem to indicate a global enhancement
which monotonically increases with the interatomic separation, thus being in contradiction with
the perfect-mirror result (5.108). However, a closer look [cf. inset in Fig. 5.13(b)] reveals that
for very small interatomic and atom-surface separations a reduction can indeed be found, as
predicted by Eq. (5.108).

5.3.4 Two atoms near a sphere

In order to demonstrate the effect of different geometries on the vdW potential, consider next to
polarisable atoms placed at distances rA and rB from the center of a magneto-electric sphere of
radius R, permittivity ε(ω) and permeability µ(ω), with the separation angle of the two atoms
being denoted by θAB , see Fig. 5.14.

The sphere-assisted vdW potential is given by Eq. (5.106) where the scattering Green tensor
G(S) for the sphere can be found in App. A.4.3. For a small sphere (R � rA, rB) in the
nonretarded limit (rA, rB , rAB � c/ωmax), one can show that the sphere-induced part U� =
U − U0 of the potential reduces to [139]

U�(rA, rB) =
3~
[
1− 3(eA · eB)(eB · eAB)(eAB · eA)

]
64π4ε30r

3
Ar

3
Ar

3
AB

∫ ∞

0

dξ αA(iξ)αB(iξ)α�(iξ)

(5.111)

[eA = rA/rA, eB = rB/rB , eAB = (rA − rB)/rAB] where α�(ω) is the polarisability of the
sphere as given by Eq. (5.66). When replacing the sphere by a third atom C (α� → αC), our
results coincides with the Axilrod–Teller potential of three atoms [140]. The sign of the three-
body potential (5.111) depends on the geometric arrangement of the three objects. For instance,
an attractive potential is found when they are placed in a straight line while the potential is
repulsive when they form an equilateral triangle.
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Fig. 5.15. The vdW potential for two identical two-level atoms placed at equal distance (rA = rB) from the
center of an (a) purely dielectric sphere (b) purely magnetic sphere is shown as a function of the interatomic
angle θAB . The potential is normalised with respect to the free-space potential U0(θAB). The sphere
radius is R = c/ωA and the distances of the atoms from the centre of the sphere are rA = rB = 1.03c/ωA

(solid line), 1.3c/ωA (dashed line), and 2c/ωA (dotted line). The medium parameters are the same as in
Fig. 5.12 [139].

In Fig. 5.15, we show the total vdW potential of two identical two-level atoms placed at equal
distance from a purely dielectric or purely magnetic sphere whose magnetoelectric response
is given by Eqs. (5.48). For small separation angles and atom-sphere separations, the sphere-
induced modification of the vdW potential is very similar to our findings for two atoms placed in
parallel alignment with respect to a half space: A dielectric sphere reduces the potential, while
a magnetic one leads to an enhancement. However, the figure also shows that the behaviour is
reversed as the angular separation grows. For an electric sphere, this enhancement of the potential
for large angular separations can be understood from the fact that the Axilrod–Teller potential is
attractive when the atoms and the sphere are situated on a straight line.
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5.4 Relation between dispersion forces

The three types of dispersion forces considered in the previous three sections have a common
origin and are thus closely related. To see this, let us start from the Casimir force (5.7) on a
dielectric body of volume V1 which is situated in free space and interacts with a second dielectric
body of volume V2. Assuming the first body to consist of a dilute gas of atoms [number density
η1(r), polarisability α(ω)] such that the linearised Clausius–Mosotti law [118]

ε(r, ω)− 1 =
η(r)α(ω)

ε0
(5.112)

holds, one can make use of the linear Born expansion given in App. A.5 to show that [105]

F = −
∫

V1

d3r η(r)∇U(r) (5.113)

where U(r) is the Casimir–Polder potential (5.26). To leading order in the atomic polarisability,
the Casimir force on the body is simply the sum of the CP forces on the atoms contained inside
it. One can repeat the exercise for the second body to find

U(rA) =
∫

V2

d3r η(r)U(rA, r), (5.114)

so the CP potential U(r) of each atom in body 1 with body 2 is due to its vdW interactions (5.86)
with the atoms in body 2. Combining these results, one has [105]

F = −
∫

V1

d3r η(r)
∫

V2

d3r′ η(r′)∇U(r, r′) . (5.115)

Hence, to leading order the Casimir force between the two bodies is a sum over all possible vdW
forces between atoms in body 1 and atoms in body 2. For weakly dielectric bodies, both Casimir
and CP forces may thus be regarded as a consequence of two-atom vdW forces. These results
naturally generalise to weakly magnetic bodies and magnetic atoms.

For bodies with a stronger magnetoelectric response, this simple additivity breaks down due
to the influence of many-atom interactions [141–144]. For instance, using the exact Clausius–
Mosotti law [118]

ε(r, ω)− 1 =
η(r)α(ω)/ε0

1− η(r)α(ω)/(3ε0)
, (5.116)

together with the full Born expansion, one can show that the CP potential (5.114) generalises
to [143, 144]

U(rA) =
∞∑

K=1

1
K!

∫
· · ·
∫
d3r1 η(r1) · · · d3rK η(rK)U(rA, r1, . . . , rK) (5.117)

where U(r1, . . . , rN ) denotes N -atom vdW potentials [145, 146]. The full CP potential of a
single atom in the presence of a body is just due to the whole hierarchy of its 2, 3, . . . N -atom
interactions with the body atoms.
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Tab. 5.3. Asymptotic power laws for the forces between (a) two atoms, (b) an atom and a small sphere, (c)
an atom and a thin ring, (d) an atom an a thin plate, (e) an atom and a half space and (f) for the force per
unit area between two half spaces. In the table heading, e stands for an electric object and m for a magnetic
one. The signs + and − denote repulsive and attractive forces, respectively.

Distance→ Retarded Nonretarded
Object combination→ e↔ e e↔ m e↔ e e↔ m

Dual object combination→ m↔ m m↔ e m↔ m m↔ e
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To illustrate the close relation between dispersion forces, let us look at a few simple examples,
most of which have already been studied throughout this Sec. 5. In Tab. 5.3, we list signs and
leading power laws of the dispersion forces between two atoms (Sec. 5.3.2), an atom interacting
with a small sphere (Sec. 5.2.3), a thin ring [144], a thin plate (Sec. 5.2.2) and a semi-infinite
half space (Sec. 5.2.2), and that between two half spaces [147,148]. For weakly magnetoelectric
objects, the rows (b)–(f) of the table follow by pairwise summation of the vdW forces displayed
in row (a): Summation over the compact volumes of a small sphere (b) or a thin ring (c) does not
change the respective power laws, while summation over an infinite volume lowers the leading
inverse power according to the number of infinite dimensions. So, the leading inverse powers
are lowered by two and three for the interaction of an atom with a thin plate of infinite lateral
extension (d) and a half space (e), respectively. The power laws for the force between two half
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spaces (f) can then be obtained from the atom-half-space force (e) by integrating over the three
infinite dimensions where integration over z lowers the leading inverse powers by one while the
trivial integrations over x and y yield an infinite force, i.e., a finite force per unit area. Note that
all of these power laws remain valid for objects with stronger magnetoelectric bodies, so we can
conclude that many-atom interactions do not change the asymptotic power laws.

The common features of all dispersion forces listed in the table are as follows: Forces be-
tween objects of the same (electric/magnetic) nature are attractive while those between objects
of opposite nature are repulsive. The combinations e ↔ e and m ↔ m obviously lead to the
same behaviour of the force as an immediate consequence of duality invariance, the same hold
for the combinations e ↔ m and m ↔ e. Attractive and repulsive forces generally follow the
same power law in the retarded limit, while in the nonretarded limit attractive forces are stronger
by two inverse powers in the object separation.

5.5 Thermal effects

The Casimir–Polder force acting on a stationary atom at finite temperatures can be derived from
the Lorentz force (5.2) which for a stationary nonmagnetic atom in electric dipole approximation
takes the simple form

F(rA, t) =
〈[

∇d̂ · Ê(r)
]
r=rA

〉
. (5.118)

This expression can be evaluated using the statistical averages of the relevant electromagnetic
field operators given in Eqs. (3.99)–(3.102). We use the multipolar-coupling Hamiltonian (3.151)
in electric-dipole approximation to solve the coupled dynamics of the electromagnetic field and
the atom which, upon using the solutions to the equations of motion for the internal atomic
dynamics (Sec. 4), reads as [149]

F(rA, t) =
iµ0

π

∑
n,k

∞∫
0

dω ω2 ∇dnk · Im G(S)(r, rA, ω) · dkn

∣∣∣
r=rA

t∫
0

dτ 〈Ânn(τ)〉

×
{
n̄th(ω)e[i(ω+ωnk)−(Γn+Γk)/2](t−τ) + [n̄th(ω) + 1] e[−i(ω−ωnk)−(Γn+Γk)/2](t−τ)

}
+ c.c.

(5.119)

After evaluating the τ integral in Markov approximation and the ω integral using countour-
integral techniques, the thermal Casimir–Polder force on an atom in an incoherent superposition
of energy eigenstates is given by F(rA, t) =

∑
n σnn(t)Fn(rA) with force components

Fn(rA) = −µ0kBT

∞∑
N=0

(
1− 1

2δN0

)
ξ2N

× ∇tr
{
[αn(iξN ) + αn(−iξN )] ·G(S)(rA, r, iξN )

}∣∣
r=rA

+ µ0

∑
k

{
Θ(ω̃nk)Ω2

nk[n̄th(Ωnk) + 1]∇dnk ·G(S)(r, rA,Ωnk) · dkn

∣∣
r=rA

− Θ(ω̃kn)Ω∗2
knn̄th(Ω∗

kn)∇dnk ·G(S)(r, rA,Ω∗
kn) · dkn

∣∣
r=rA

+ c.c.
}

(5.120)
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[Ωnk = ω̃nk + i(Γn + Γk)/2] and atomic polarisability

αn(ω) =
1
~
∑

k

[
dnk ⊗ dkn

−Ωnk − ω
+

dkn ⊗ dnk

−Ω∗
nk + ω

]
. (5.121)

One important feature of the result (5.120) is the appearance of resonant force contributions
proportional to n̄th(ωnk) and n̄th(ωnk)+1 which are due to absorption and emission of photons,
respectively. Even for ground-state atoms there exists a resonant force contribution

Fres
0 (rA) = −1

3
µ0ω

2
k0n̄th(ωk0)|d0k|2∇AtrRe G(S)(rA, rA, ωk0) (5.122)

associated with absorption of thermal photons at the atomic transition frequency ωk0. This result
is in contrast to the frequently used Lifshitz result [150]

FLifshitz
0 (rA) = −µ0kBT

∞∑
N=0

(
1− 1

2δN0

)
ξ2Nα(iξN )∇AtrG(S)(rA, rA, iξN ) (5.123)

which only contains the non-resonant force contributions. Clearly, because of the thermalisation
of the atom, these resonant forces can only be observed on time scales that are short compared
to the inverse ground-state heating rates Γ−1

0k . As their magnitude scales with the mean thermal
number n̄th(ωk0), the atomic transition frequency must not be too large in comparison with the
ambient temperature, ~ωk0 . kBT . Ideal candidates to observe these resonant force contribu-
tions would therefore be polar molecules whose vibrational and rotational frequencies are small
enough to yield large thermal photon numbers at room temperature, and whose heating times can
reach several seconds (see also Sec. 4.3) [78].

The atom thermalises after times much longer than Γ−1
0k and reaches its stationary (thermal)

state

σ̂T =
exp

[
−
∑

n ~ω̃nÂnn/(kBT )
]

tr exp
[
−
∑

n ~ω̃nÂnn/(kBT )
] , ω̃n = ωn + δωn (5.124)

in the long-time limit. In this limit all resonant force contributions cancel, and the Casimir–Polder
force can be written in the form (5.123) only if the atomic polarisability has been identified with
the thermal polarisability

αT (ω) =
∑

n

σT,nnαn(ω) . (5.125)

Without this identification, the equilibrium force (5.123) is generally larger than the one obtained
from Eq. (5.120). The microscopic degrees of freedom of an atomic system thus give rise to a
rich additional structure of CP forces, which is not explicitly present in the macroscopic Casimir
force.
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6 Cavity QED effects

In this final section, we turn our attention to the application of macroscopic QED to strong atom-
field coupling scenarios. This is of particular interest in cases when the atom or molecule is
confined in resonator-like structures in which the photon round-trip time is short compared to the
atomic relaxation time.

6.1 Quantum-state extraction from a high-Q cavity

The interaction of a two-level atom with light in a resonant cavity is of fundamental importance
to our understanding of quantum optics, and provides a playground to test ideas of quantum infor-
mation processing such as the generation of entangled quantum states of two or more atoms [151]
or the realization of single-photon sources. In a previous section (Sec. 2.2.4) we described the
idealised situation of perfectly coherent atom-light interaction that led to the Jaynes–Cummings
model. Within this model it is possible to completely transfer the excitation of a two-model atom
to the cavity field and back coherently. The idea to use a high-Q cavity to deterministically gen-
erate single photons in well-defined quantum states is at the heart of cavity QED [152,153]. Here
we will examine the closely related problem of how to extract a photon from a cavity within the
framework of macroscopic QED which provides us with the means to treat leaky cavities in a
quantum-theoretically consistent way [51].

For simplicity, we will focus on one-dimensional cavities such as in Fig. 6.1 where region 0
denotes a perfect mirror, region 2 the semi-transparent mirror, region 1 the cavity interspace, and
region 3 the free space surrounding the system. In order to calculate the response of the atom-
cavity system, we assume that the atom is initially being prepared in its excited state |e〉 and the
cavity field is in its ground state |{0}〉. Then, the state vector at a later time can be expanded into

|ψ(t)〉 = Ce(t)|e〉|{0}〉+
∫
dz

∞∫
0

dω Cg(z, ω, t)e−iωt|g〉|1(z, ω)〉 . (6.1)

The Schrödinger equation with the electric-dipole Hamiltonian (3.154) yields coupled equations

Fig. 6.1. The semi-transparent mirror of the cavity (region 2) is modeled by a dielectric plate, and the atom
inside the cavity (region 1) can be embedded in some dielectric medium. Figure taken from Ref. [51].
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of motion for the unknown coefficients Ce(t) and Cg(z, ω, t) as

Ċe(t) = − d√
π~ε0A

∞∫
0

dω
ω2

c2

∫
dz
√

Im ε(z, ω)G(zA, z, ω)Cg(z, ω, t)e−i(ω−ωA)t ,

(6.2)

Ċg(z, ω, t) =
d∗√
π~ε0A

ω2

c2

√
Im ε(z, ω)G∗(zA, z, ω)Ce(t)ei(ω−ωA)t (6.3)

[A: cross-sectional area of the cavity]. Inserting the formal solution of Eq. (6.3) into Eq. (6.2)
yields an integro-differential equation

Ċe(t) =

t∫
0

dt′K(t− t′)Ce(t′) (6.4)

with the integral kernel

K(t) = − |d|2

π~ε0A

∞∫
0

dω
ω2

c2
e−i(ω−ωA)tImG(zA, zA, ω) . (6.5)

The spectral response is carried by the Green functionG(z, z′, ω) which has to be determined
by adjusting the boundary conditions at the interfaces between the regions of piecewise constant
permittivity. Because of multiple scattering inside the cavity region 1, the Green function has
poles at the complex frequencies Ωk = ωk − iΓk/2 where the condition

D1(Ωk) = 1 + r13(Ωk)e2iε1(Ωk)Ωkl/c = 0 (6.6)

[r13: generalized Fresnel reflection coefficient (A.36)] is met. We assume that the line widths Γk

are much smaller than the line separations Γk � (ωk+1 − ωk−1)/2 so that the integration over
frequency in the kernel can be restricted to subintervals ∆k = [(ωk−1 +ωk)/2, (ωk +ωk+1)/2].
Near a cavity resonance, the time integral in Eq. (6.4) can then be performed in the Markov
approximation to provide the cavity-induced shift of the atomic transition frequency as [51]

δω =
∑
k′

αk′

4|ω̃A − Ωk′ |2

[
ω̃Aωk′ − |Ωk′ |2 − ω̃AΓk′

4π
ln
(
ωk′

ωA

)]
, (6.7)

with

αk =
4|d|2

~ε0Al
sin2

[ωkzA

c

]
(6.8)

[ω̃A = ωA − δω]. Within these approximations, the kernel function K̃(t) for the excited-state
probability amplitude C̃e(t) = Ce(t)e−iδωt is then

K̃(t) = −1
4
αkΩke

−i(Ωk−ω̃A)t . (6.9)
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Fig. 6.2. The efficiency of single-photon Fock state preparation η(t) (solid curve) and the excited-state
probability |C̃e(t)|2 (dashed curve) for ωk = 2 × 108Γk, αk = 5 × 10−7Γk, ωk − ω̃A = 0.1Γk, and the
radiative damping rate γk = 0.9Γk. Taken from Ref. [51].

The solution for C̃e(t) is the prerequisite for the calculation of the photon extraction ef-
ficiency η(t) from the cavity [51], which is defined as the probability of having the outgo-
ing field prepared in a single-photon Fock state. The result for a typical situation is shown in
Fig. 6.2. For very long times, a sufficiently high-Q cavity and almost exact resonance, the ex-
traction efficiency approaches η(t) → γkrad/Γk. Here, the γkrad is the radiative damping rate
γkrad = c/(2l)|Tk|2 and Tk the transmission coefficient Tk = t13(Ωk)eiωkl/c. The decay rate
Γk of a cavity resonance is the sum of the radiative damping rate γkrad and the absorptive damp-
ing rate γkabs = c/(2l)|Ak|2 where Ak is the absorption coefficient at the cavity resonance
frequency ωk. Hence, the extraction efficiency in the stationary limit is [154, 155]

η(t)→ γkrad

γkrad + γkabs
. (6.10)

For intermediate times, the efficiency shows an oscillating (tidal) behaviour. Thus, during each
emission/re-absorption cycle within the cavity, the single-photon wave function builds up outside
the cavity until the steady-state solution (empty cavity) is reached.

6.2 Spherical microcavities

Spherical microresonators possess a rich structure of field resonances to which an atom can be
coupled when placed inside (whispering gallery modes) or outside (surface-guided modes) the
resonator.

6.2.1 Atom inside a spherical microcavity

In cases in which the atom is embedded in a spherical microcavity, we can distinguish between
large and small cavities, weak and strong coupling. In Sec. 4.1 we have discussed the case in
which an atom was placed inside a very small cavity. This led us to the notion of local-field
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Fig. 6.3. Scheme of the spherical cavity with outer radius R1 and inner radius R2.
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Fig. 6.4. Spontaneous decay rate Γ/Γ0 as a function of frequency (left panel). Excited-state probability
|Ce(t)|2 as a function of decay time (right panel). For parameters, see text. Figures taken from Ref. [156].

corrections. We now have a brief look at a cavity whose radius is much larger than the relevant
atomic transition frequency. In view of the three-layered structure depicted in Fig. 6.3, we thus
require thatR2ωA/c� 1. Then, the rate of spontaneous decay can be calculated from Eq. (4.26)
in the limit of thick cavity walls as [156]

Γ ' Γ0Re
[
n(ωA)− i tan(R2ωA/c)
1− in(ω) tan(R2ωA/c)

]
. (6.11)

The left panel in Fig. 6.4 depicts the normalized decay rate Γ/Γ0 as a function of frequency. We
assume a single-resonance Drude–Lorentz model (5.48) with ωP = 0.5ωT and γ = 0.01ωT .
The microresonator has parameters R2 = 30λT and R1 −R2 = λT . One observes narrow-band
enhancement (Γ/Γ0 � 1) alternating with broadband suppression (Γ/Γ0 � 1) of spontaneous
decay. The narrow peaks are located at the cavity resonances.

When the atomic transition frequency approaches one of the cavity resonances, the atom-field
coupling becomes stronger. At resonance, when ωA = ωC where ωC is one of the resonance
frequencies of the microcavity, the time evolution for the excited-state occupation probability is
the one of a damped oscillator with damping constant δωC , the width of the cavity resonance. For
small material absorption, γ � ωT , ωP , ω

2
P /ωT , the cavity resonance line can be approximated
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by a Lorentzian with width

δωC =
cΓ0

R2Γ(ωC)
. (6.12)

In the strong-coupling regime when the condition Γ(ωC) � δωC is fulfilled, the excited-state
probability

|Ce(t)|2 = e−δωCt cos2
(√

Γ(ωC)δωC

2
t

)
(6.13)

shows damped Rabi oscillations with Rabi frequency Ω =
√

2Γ(ωC)δωC . The right panel
in Fig. 6.4 shows the temporal evolution of the excited-state occupation probability for ωA =
1.046448ωT , Γ0λT /(2c) = 10−6, and γ = 10−4ωT (solid line), γ = 5× 10−4ωT (dashed line),
and γ = 10−3ωT (dotted line). The other parameters are the same as those used for the curves in
the left panel. For comparison, the exponential decay in free space is also shown (dashed-dotted
line).

6.2.2 Atom outside a spherical microcavity

Atoms need not be located inside a closed dielectric or metallic structure in order to be coupled
strongly to the electromagnetic field. Instead of whispering gallery modes that are due to total
internal reflection inside a sphere, surface-guided modes can be excited on the outside surface of
a spherical microcavity [157]. Assuming again a Drude–Lorentz model for the permittivity of
the dielectric sphere that features a band gap between the transverse resonance frequency ωT and
the longitudinal resonance frequency ωL =

√
ω2

T + ω2
P . It is clear that for frequencies below

ωT (ωA < ωT ) whispering gallery modes are excited, whereas for frequencies within the band
gap (ωT < ωA < ωL) surface-guided modes are excited.

Figure 6.5 shows the rate of spontaneous decay of a radially oriented dipole very close (zA =
rA −R = 0.1λA) to a microsphere of radius R = 2λA. In this near-field limit, the decay rate is
approximately given by Eq. (4.24) for a planar interface,

Γ⊥

Γ0
=

3Im ε(ωA)
4|ε(ωA) + 1|2

(
c

ωAzA

)3

+O(1) . (6.14)

The strong enhancement in the band-gap region (ωT < ωA < ωL) is due to surface-guided
modes.

These surface excitations can be used to induce entanglement between two atoms located
diametrically opposite around the microsphere [157,159]. If the two atoms A and B are initially
prepared in their respective excited and ground states, their combined initial state can be written
in terms of the (entangled) coherent superpositions |±〉 = (|eA, gB〉 ± |gA, eB〉)/

√
2 which are

initially equally excited. Associated with these superpositions are decay rates

Γ±
Γ0

=
3
2

∞∑
l=1

Re
{
l(l + 1)(2l + 1)

(kArA)2
h

(1)
l (kArA)

×
[
jl(kArA) + r

(11)
p,l (ωA)h(1)

l (kArA)
] [

1∓ (−1)l
]}

(6.15)
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Fig. 6.5. Left panel: Decay rate as a function of the atomic transition frequency for a radially oscillating
dipole near a microsphere of radius R = 2λA. The chosen parameters are ωP = 0.5ωT , γ = 10−4ωT ,
∆r = 0.1λA. Figure taken from Ref. [158]. Right panel: Frequency dependence of the decay rates Γ±
for two radially oriented dipoles at ∆rA = ∆rB = 0.02λA. The other parameters are ωP = 0.5ωT ,
γ = 10−6ωT , R = 10λT [159].

[kA = ωA/c; jl(z) and h(1)
l (z), spherical Bessel and Hankel functions; r(11)p,l (ωA), generalized

reflection coefficient given in Sec. A.4.3]. If the atomic transition frequency ωA coincides with
one of the microsphere resonances l, the single-atom decay rate can be approximated by [158]

Γ
Γ0
' 3

2
l(l + 1)(2l + 1)Re


[
h

(1)
l (kArA)
kArA

]2

r
(11)
p,l (ωA)

 (6.16)

and therefore the decay rates of the superposition states reduce to Γ± ' Γ[1 ∓ (−1)l]. This
means that if l is even (odd), the state |−〉 (|+〉) decays much faster than the state |+〉 (|−〉).
The frequency dependence of Γ± is shown on the right panel in Fig. 6.5. Hence, depending
on l one of the superposition states |±〉 is superradiant while the other is subradiant. After the
superradiant combination has decayed, the two atoms reside in the subradiant entangled state |+〉
or |−〉.
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7 Outlook

The theory of macroscopic quantum electrodynamics is a powerful tool that provides the link
between isolated atomic ensembles and absorbing solid-state surfaces. It extends the well-
established field of free-space quantum optics to new horizons. It is remarkable that, at least
within the framework of causal linear response, one finds a Hamiltonian description of the
medium-assisted electromagnetic field that does not have to fall back onto a master equation
description. Instead, unitary evolution equations can be found that take into account absorp-
tion processes as well. Examples of such unitary evolutions include the absorbing beam splitter
(Sec. 3.2) and internal atomic dynamics (Sec. 4). In many cases, macroscopic quantum elec-
trodynamics can provide more information than perturbative calculations, as exemplified by the
theory of thermal Casimir–Polder forces (Sec. 5.5).

Obvious extensions towards nonlinear interaction Hamiltonians (Sec. 3.4) will be further
studied to bridge the gap between classical descriptions of nonlinear processes to include both
linear and nonlinear absorption, and to establish the connection with microscopic models of
effective nonlinear interactions. Such a theory is likely to provide detailed information on the
quantum state of light that emerges from, e.g. spontaneous parametric down-conversion crystals,
and on the effect of higher-order nonlinearities.

As it is evident from our collection of examples, for the time being we have always assumed
that all macroscopic bodies as well as all atomic systems are at rest. Such a restriction is clearly
not necessary. Center-of-mass motion of atomic systems can be accounted for by either imposing
a classical trajectory or more consistently by solving Newton’s equations of motion in addition
to Maxwell’s equations. To assume a classical trajectory for an atom or a molecule means to
neglect the backaction onto the motion which in many cases can be justified.

For example, from our discussion in Sec. 5 it is clear that an atom moving parallel to a planar
dielectric surface will not only experience a Casimir–Polder force in the direction perpendicular
to its motion, but also in the direction of its motion. This effect is sometimes called quantum
friction and can be understood in two ways. In our intuitive picture of Casimir–Polder forces
being caused by forces between the atomic dipole and image dipoles in the magnetoelectric
material, one can view quantum friction as a drag effect acting on the image dipoles due to finite
conductivity or even resonances. Another way to view quantum friction is as an interaction with
the surface plasmon at the magnetoelectric interface.

Taking the quantum-mechanical character of atomic position and momentum into account
will lead one to a theory of motional heating that is important in particular in ion traps. The
opposite effect of cooling to the motional ground state, enhanced by coupling to a resonant
microcavity, can also be understood within the framework of macroscopic quantum electrody-
namics.

Eventually, understanding how motion affects dispersion forces acting on isolated atomic
systems will lead to a theory of a quantum theory of moving dielectric materials which thus
far only exists for strictly non-absorbing materials. This in of fundamental interest as it makes
contact with the low-energy limit of effective action in quantum field theory.
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A Dyadic Green functions

The notorious problem one perpetually faces in macroscopic QED is to find the Green tensor or
dyadic Green function (DGF) associated with the classical electromagnetic scattering problem.
This is not unusual as the DGF generalizes the usual mode expansion in free space to the solution
of a more general boundary value problem. In what follows we will restrict ourselves to the
special case of spatially local magnetoelectric materials. Extensions to materials with spatial
dispersion can be found in Ref. [38].

We will need to look for the fundamental solution to the Helmholtz equation[
∇× κ(r, ω)∇×−ω

2

c2
ε(r, ω)

]
E(r, ω) = iµ0ωj(r, ω) (A.1)

with in principle arbitrary dielectric permittivity ε(r, ω) and inverse magnetic permeability κ(r, ω)
= µ−1(r, ω). The solution to Eq. (A.1) can be written in terms of the DGF as

E(r, ω) = iµ0ω

∫
d3r′ G(r, r′, ω) · j(r′, ω) (A.2)

where the dyadic Green function satisfies[
∇× κ(r, ω)∇×−ω

2

c2
ε(r, ω)

]
G(r, r′, ω) = δ(r− r′). (A.3)

Together with the boundary condition that G(r, r′, ω) vanishes as |r − r′| → ∞, Eq. (A.3)
has a unique solution provided that the strict inequalities Im ε(r, ω) > 0 and Imµ(r, ω) > 0
hold. Physically, these requirements mean that all dielectric materials have to be passive, i.e.
absorbing, media.

A.1 General properties

The dyadic Green function inherits the analytical properties of the permittivity and permeability.
That is, it is meromorphic in the upper complex frequency half-plane, and the Schwarz reflection
principle

G∗(r, r′, ω) = G(r, r′,−ω∗) (A.4)

holds. The Onsager reciprocity theorem requires that the DGF satisfies the additional relation

G(r′, r, ω) = GT(r, r′, ω) . (A.5)

Particularly useful is the following integral relation involving products of Green functions,∫
d3s

{
ω2

c2
Im ε(s, ω)G(r, s, ω) ·G∗(s, r′, ω)

+Imκ(s, ω)
[
G(r, s, ω)×

←−
∇
]
· [∇×G∗(s, r′, ω)]

}
= Im G(r, r′, ω) . (A.6)

This relation is essentially the linear fluctuation-dissipation theorem, written in terms of the
dyadic Green function.
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A.2 Duality relations

Another useful property of the DGF is its behaviour under a duality transformation. The dual
DGF is defined by the equation[

∇× κ?(r, ω)∇×−ω
2

c2
ε?(r, ω)

]
G?(r, r′, ω) = δ(r− r′) (A.7)

with ε? = µ = 1/κ, κ? = 1/µ? = 1/ε, i.e., it is the solution to the Helmholtz equation with ε
and µ exchanged. By applying the duality transformation to the field expansions (3.89)–(3.92),
using the transformation rules listed in Tab. 3.1 and comparing coefficients, one can easily verify
the following relations between the original DGF and its dual [49]:

ω2

c2
G?(r, r′, ω) = −κ(r, ω)∇×G(r, r′, ω)×

←−
∇′κ(r′, ω)

−κ(r, ω)δ(r− r′), (A.8)

∇×G?(r, r′, ω)×
←−
∇′ = −ε(r, ω)

ω2

c2
G(r, r′, ω)ε(r′, ω) + ε(r, ω)δ(r− r′), (A.9)

∇×G?(r, r′, ω) = −ε(r, ω)G(r, r′, ω)×
←−
∇′κ(r′, ω), (A.10)

G?(r, r′, ω)×
←−
∇′ = −κ(r, ω)∇×G(r, r′, ω)ε(r′, ω) , (A.11)

In the next subsections, we will list the explicit forms of dyadic Green functions for important
highly symmetric geometric arrangements of magnetoelectric bodies.

A.3 Bulk material

The simplest situation one can envisage is one of a homogeneous, isotropic dielectric medium.
In this case, the dielectric permittivity ε(ω) and magnetic permeability µ(ω) do not depend on
the spatial position. This means that the magnetoelectric material and hence the dyadic Green
function that describes it must be translationally invariant. Thus, the DGF can only depend on
the difference between the coordinates % = r− r′, G(r, r′, ω) ≡ G(%, ω). We can therefore use
Fourier transform techniques to solve Eq. (A.3). Defining

G(k, ω) =
∫

d3k

(2π)3/2
G(%, ω)e−ik·% , (A.12)

the Fourier transformed Helmholtz equation is

−k× k×G(k, ω)− ω2

c2
ε(ω)µ(ω)G(k, ω) = µ(ω)I . (A.13)

This is now an algebraic equation that can be easily solved. To do so, we decompose the unit
tensor into its transverse and longitudinal parts with respect to the wave vector k,

I =
(

I − k⊗ k
k2

)
+

k⊗ k
k2

. (A.14)
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Note that

−k× k× ≡ k2

(
I − k⊗ k

k2

)
(A.15)

is transverse. Hence, the Green tensor is, after inserting into the inverse Fourier transform,

G(%, ω) =
∫

d3k

(2π)3/2
eik·%µ(ω)

[
c2

k2c2 − ω2ε(ω)µ(ω)

(
I − k⊗ k

k2

)
− c2

ω2ε(ω)µ(ω)
k⊗ k
k2

]
(A.16)

which can be transformed back into configuration space using contour integral methods. Noting
that the dielectric permittivity ε(ω) and the magnetic permeability µ(ω) have no poles or zeros
in the upper complex frequency half-plane, the result is

G(%, ω) =
[
∇⊗∇ +

ω2

c2
ε(ω)µ(ω)I

]
eiq(ω)%µ(ω)
4πq2(ω)%

(A.17)

[q2(ω) = ω2

c2 ε(ω)µ(ω)]. After evaluating the derivatives one arrives at a decomposition into
transverse and longitudinal parts as

G‖(%, ω) = −µ(ω)
4πq2

[
4π
3
δ(%)I +

(
I − 3%⊗ %

%2

)
1
%2

]
, (A.18)

G⊥(%, ω) =
µ(ω)
4πq2

{(
I − 3%⊗ %

%2

)
+ q3

[(
1
q%

+
i

(q%)2
− 1

(q%)3

)
I

−
(

1
q%

+
3i

(q%)2
− 3

(q%)3

)
%⊗ %

%2

]
eiq%

}
. (A.19)

In particular, in free space where ε(ω) = 1, we find that

G(0)(%, ω) = − c2

3ω2
δ(%) +

ω

4πc

[
f

(
c

ω%

)
I + g

(
c

ω%

)
%⊗ %

%2

]
ei%ω/c (A.20)

with f(x) = x+ ix2 − x3 and g(x) = x+ 3ix2 − 3x3.

A.4 Layered media: planar, cylindrical, spherical

A more challenging situation arises if one considers magnetoelectric materials that are structured
to form boundaries of certain symmetry. What we envisage here are examples of stratified ma-
terials in planar, cylindrical and spherical geometries. The idea is to expand the dyadic Green
function in terms of vector wave functions associated with the symmetry of the problem. The
success of this procedure is directly related to the problem of separability of the Helmholtz op-
erator ∇ × µ−1(r, ω)∇× −ω2

c2 ε(r, ω). There are only a few coordinate systems in which this
operator is separable [160], namely the cartesian, cylindrical, spherical and spheroidal coordi-
nate systems. Hence, only there can the solution to the three-dimensional Helmholtz operator be
reduced to seeking the scalar solution of a one-dimensional wave equation.
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Tab. A.1. Pilot vectors and scalar eigenfunctions that are regular at the origin for cartesian, cylindrical
and spherical coordinate systems. The functions Jn(kr) and jl(kr) denote cylindrical and spherical Bessel
functions, respectively. The P m

l (cos θ) are associated Legendre polynomials.

coordinate system pilot vector scalar eigenfunctions
cartesian (x, y, z) ez ψ(k, r) = eikxxeikyyeikzz

cylindrical (r, ϕ, z) ez ψn(kr, kz, r) = Jn(krr)einϕeikzz

spherical (r, θ, ϕ) er ψl,m(k, r) = jl(kr)Pm
l (cos θ)eimϕ

The scalar Helmholtz equation takes the form(
∆ + k2

)
ψ(k, r) = 0 (A.21)

[k2 = ω2

c2 ε(r, ω)]. Table A.1 lists the scalar eigenfunctions that are regular at the origin for
cartesian, cylindrical and spherical coordinate systems.

The scalar wave function ψ(k, r) is then used to construct the irrotational (L) and solenoidal
(M and N) eigenfunctions with respect to a pilot vector c as [161]

L(k, r) = ∇ψ(k, r) , (A.22)
M(k, r) = ∇× [ψ(k, r)c] , (A.23)

N(k, r) =
1
k

∇×∇× [ψ(k, r)c] . (A.24)

Because of the orthogonality of the scalar eigenfunctions,∫
d3r ψ(k, r)ψ(−k′, r) = (2π)3δ(k− k′) , (A.25)

the vector wave function M, N and L are mutually orthogonal.
Due to the Helmholtz theorem, these three types of eigenfunctions form a complete set of

basis functions for the Helmholtz operator. The dyadic Green tensor, written in terms of these
eigenfunctions, takes the form of a Fourier integral

G(r, r′, ω) =
∫
d3k [M(k, r)⊗ a(k) + N(k, r)⊗ b(k) + L(k, r)⊗ c(k)] (A.26)

with yet unknown expansion coefficients a(k), b(k) and c(k) which can be obtained using
the mutual orthogonality of the vector wave functions. The interested reader is referred to the
excellent textbook [161] for further details.

For us, it suffices to know that these vector wave functions can be used to determine the (un-
bounded) dyadic Green function in various coordinate systems. Our interest is now focussed onto
some physically relevant situations in which two (or more) dielectric materials form a planarly,
cylindrically or spherically layered structure. More specifically, if one were to consider only two
adjoining materials, one would be looking at two half-spaces joined by a planar interface, an
infinitely long wire or a dielectric sphere, respectively (see Fig. A.1).
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ε1(ω)
ε1(ω)

ε1(ω)

µ1(ω)
µ1(ω) µ1(ω)ε2(ω)

ε2(ω)

ε2(ω)

µ2(ω)

µ2(ω)

µ2(ω)

R

R

Fig. A.1. Inhomogeneous dielectrics for which the dyadic Green function is analytically known.

The unbounded DGFs for each individual dielectric material have to be joined at the common
interface(s) across which the transverse field components of electric and magnetic fields have to
be continuous. Let n be a unit vector normal to the interface r = rS between two dielectrics.
Then Maxwell’s equations imply that at the interface

n×G(fs) = n×G[(f+1)s] , (A.27)
1
µf

n×∇×G(fs) =
1

µf+1
n×∇×G[(f+1)s] , (A.28)

where the superscripts denote that the source point r′ connects to the f ield point r via a Green
function G(fs). The dyadic Green function can then be decomposed into two parts, an un-
bounded DGF G(0)(r, r′, ω) that represents direct propagation from r′ to r in an unbounded
medium, and a scattering part G(S)(r, r′, ω) that describes the contributions from multiply re-
flected and transmitted waves,

G(fs)(r, r′, ω) = G(0,fs)(r, r′, ω)δfs + G(S,fs)(r, r′, ω) . (A.29)

Mathematically speaking, the scattering part of the DGF has to be included in order to fix the
boundary conditions at the medium interfaces, whereas the DGF of the unbounded medium is
responsible for the correct boundary conditions at infinity.

A.4.1 Planarly layered media

There are two distinct methods for finding the dyadic Green function for planarly layered media.
Here we will describe the Weyl expansion method [41,162] that gives very compact expressions
for the DGF. The second method using vector wave functions [163] is somewhat less transparent
and will be reserved for cylindrically and spherically layered media.

The Weyl expansion is based on the translational invariance of the dyadic Green function
with respect to the directions parallel to the planar interface,

G(r, r′, ω) =
∫

d2k‖

(2π)2
eik‖·(ρ−ρ′)µ(ω)G(k‖, z, z′, ω) (A.30)

[r = (ρ, z)]. The matrix components for the scattering part of the DGF (we drop the superscript
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S for notational convenience) associated with reflection from the interface are given by [41,162]

G(11)
xx (k‖, z, z′, ω) =

i

2k1z
eik1z(|z|+|z′|)

[
−rp(ω)

k2
1zk

2
x

k2
1k

2
‖

+ rs(ω)
k2

y

k2
‖

]
, (A.31)

G(11)
xy (k‖, z, z′, ω) =

i

2k1z
eik1z(|z|+|z′|)

[
−rp(ω)

k2
1zkxky

k2
1k

2
‖
− rs(ω)

kxky

k2
‖

]
, (A.32)

G(11)
xz (k‖, z, z′, ω) =

i

2k1z
eik1z(|z|+|z′|)

[
rp(ω)

k1zkx

k2
1

]
, (A.33)

G(11)
xz (k‖, z, z′, ω) =

i

2k1z
eik1z(|z|+|z′|)

[
−sgn(z′)rp(ω)

k2
‖

k2
1

]
, (A.34)

where k2
i = (ω2/c2)εi(ω)µi(ω) and k2

iz = k2
i − k2

‖. The functions rs(ω) and rp(ω) are the
Fresnel coefficients of s- and p-polarised waves,

rs(ω) =
µ2(ω)k1z − µ1(ω)k2z

µ2(ω)k1z − µ1(ω)k2z
, rp(ω) =

ε2(ω)k1z − ε1(ω)k2z

ε2(ω)k1z − ε1(ω)k2z
. (A.35)

The remaining vector components can be deduced by employing the replacement rule G(11)
yy =

G
(11)
xx (kx ↔ ky) and the reciprocity theorem G(r, r′, ω) = GT(r′, r, ω) which translates into

G(11)(k‖, z, z′, ω) = G(11)T(−k‖, z′, z, ω).
The Fresnel reflection coefficients (A.35) describe a single planar interface. For more than

one interface, say a planar layer of thickness d, the reflection coefficients can be combined (for
both polarisations) as

r̃12 =
r12 + r23e

2ik2zd

1− r21r23e2ik2zd
(A.36)

where rij is the Fresnel coefficient for the interface between layers i and j.
The matrix components of the scattering part of the DGF associated with transmission through

the planar interface are

G(12)
xx (k‖, z, z′, ω) =

i

2k1z
eik1z|z|+ik2z|z′|

[
tp(ω)

k1zk2zk
2
x

k1k2k2
‖

+ ts(ω)
k2

y

k2
‖

]
, (A.37)

G(12)
xy (k‖, z, z′, ω) =

i

2k1z
eik1z|z|+ik2z|z′|

[
tp(ω)

k1zk2zkxky

k1k2k2
‖

+ ts(ω)
kxky

k2
‖

]
,(A.38)

G(12)
xz (k‖, z, z′, ω) =

i

2k1z
eik1z|z|+ik2z|z′|

[
sgn(z′)tp(ω)

k1zkx

k1k2

]
, (A.39)

G(12)
zx (k‖, z, z′, ω) =

i

2k1z
eik1z|z|+ik2z|z′|

[
sgn(z′)tp(ω)

k2zkx

k1k2

]
, (A.40)

G(12)
zz (k‖, z, z′, ω) =

i

2k1z
eik1z|z|+ik2z|z′|

[
tp(ω)

k2
‖

k1k2

]
. (A.41)
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The transmission coefficients for s- and p-polarised waves are

ts(ω) =

√
µ1(ω)
µ2(ω)

[1 + rs(ω)] , tp(ω) =

√
ε1(ω)
ε2(ω)

[1 + rp(ω)] , (A.42)

The remaining vector components can again by symmetry arguments such as G(12)
yx = G

(12)
xy and

G
(12)
yz = G

(12)
xz (kx ↔ ky), G(12)

zy = G
(12)
zx (kx ↔ ky) and G(12)

yy = G
(12)
xx (kx ↔ ky).

A.4.2 Cylindrically layered media

For the two examples that follow here, we use the expansion of the DGF in terms of vector wave
functions. We first define the cylindrical vector wave functions [164, 165] that depend on the
radial (η) and axial (h) components of the wave number [k2 = ε(ω)µ(ω)ω2/c2 = η2 + h2] as

M e
o nη(h)=

[
∓n
%
Zn(η%)

sin
cos

nϕ e% −
dZn(η%)
d%

cos
sin

nϕ eϕ

]
eihz , (A.43)

N e
o nη(h)=

1
k

[
ih
dZn(η%)
d%

cos
sin

nϕ e% ∓ ih
n

%
Zn(η%)

sin
cos

nϕ eϕ + η2Zn(η%)
cos
sin

nϕ ez

]
eihz .

(A.44)

The trigonometric functions have to be chosen appropriately for the even and odd types of func-
tions. In terms of those, the dyadic Green function for a cylindrical wire can be written in the
form [164, 165]

G(11)(r, r′, ω) =
iµ1

8π

∞∫
−∞

dh

∞∑
n=0

(2− δn0)
η2
1

×
[
r11MMM(1)

e
o nη1

(h)⊗M
′(1)
e
o nη1

(−h) + r11NNN(1)
e
o nη1

(h)⊗N
′(1)
e
o nη1

(−h)

+ r11NMN(1)
o
e nη1

(h)⊗M
′(1)
e
o nη1

(−h) + r11MNM(1)
o
e nη1

(h)⊗N
′(1)
e
o nη1

(−h)
]
, (A.45)

G(21)(r, r′, ω) =
iµ1

8π

∞∫
−∞

dh

∞∑
n=0

(2− δn0)
η2
1

×
[
t21MMM e

o nη2(h)⊗M
′(1)
e
o nη1

(−h) + t21NNN e
o nη2(h)⊗N

′(1)
e
o nη1

(−h)

+ t21NMN o
e nη2(h)⊗M

′(1)
e
o nη1

(−h) + t21MNM o
e nη2(h)⊗N

′(1)
e
o nη1

(−h)
]
, (A.46)

G(12)(r, r′, ω) =
iµ2

8π

∞∫
−∞

dh

∞∑
n=0

(2− δn0)
η2
2

×
[
t12MMM(1)

e
o nη1

(h)⊗M′
e
o nη2

(−h) + t12NNN(1)
e
o nη1

(h)⊗N′
e
o nη2

(−h)

+ t12NMN(1)
o
e nη1

(h)⊗M′
e
o nη2

(−h) + t12MNM(1)
o
e nη1

(h)⊗N′
e
o nη2

(−h)
]
, (A.47)
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G(22)(r, r′, ω) =
iµ2

8π

∞∫
−∞

dh

∞∑
n=0

(2− δn0)
η2
2

×
[
r22MMM e

o nη2(h)⊗M′
e
o nη2

(−h) + r22NNN e
o nη2(h)⊗N′

e
o nη2

(−h)

+ r22NMN o
e nη2(h)⊗M′

e
o nη2

(−h) + r22MNM o
e nη2(h)⊗N′

e
o nη2

(−h)
]
. (A.48)

In this compact notation, a superscript (1) means that the function Zn in the respective vector
wave function is a Hankel function of the first kind, H(1)

n . Without that superscript, it is under-
stood that the Bessel function Jn is used.

The reflection and transmission coefficients are determined by a 4× 4-matrix equation

T (H,V ) =
[
F

(H,V )
2

]−1

· F (H,V )
1 (A.49)

with

F H
j =


∂H(1)

n (ηjR)
∂R ∓ ζjH(1)

n (ηjR)
R

∂Jn(ηjR)
∂R ∓ ζjJn(ηjR)

R

0 ρjH
(1)
n (ηjR) 0 ρjJn(ηjR)

± ζjτjH(1)
n (ηjR)
R

τj∂H(1)
n (ηjR)
∂R ± ζjτjJn(ηjR)

R
τj∂Jn(ηjR)

∂R

τjρjH
(1)
n (ηjR) 0 ρjJn(ηjR) 0

 , (A.50)

F V
j =


± ζjH(1)

n (ηjR)
R

∂H(1)
n (ηjR)
∂R ± ζjJn(ηjR)

R
∂Jn(ηjR)

∂R

ρjH
(1)
n (ηjR) 0 ρjJn(ηjR) 0

τj∂H(1)
n (ηjR)
∂R ∓ ζjτjH(1)

n (ηjR)
R

τj∂Jn(ηjR)
∂R ∓ ζjτjJn(ηjR)

R

0 τjρjH
(1)
n (ηjR) 0 τjρjJn(ηjR)

 , (A.51)

and the abbreviations

τj =
√
εj

µj
, ζj =

ihn

kj
, ρj =

η2
j

kj
. (A.52)

With these preparations, the reflection and transmission coefficients can be derived as(
r11MM,NN

r11NM,MN

)
= −

(
T

(H,V )
11 T

(H,V )
12

T
(H,V )
21 T

(H,V )
22

)−1(
T

(H,V )
13

T
(H,V )
23

)
, (A.53)

(
t21MM,NN

t21NM,MN

)
=

(
T

(H,V )
31 T

(H,V )
32

T
(H,V )
41 T

(H,V )
42

)(
r11MM,NN

r11NM,MN

)
+

(
T

(H,V )
33

T
(H,V )
43

)
, (A.54)

(
t12MM,NN

t12NM,MN

)
=

(
T

(H,V )
11 T

(H,V )
12

T
(H,V )
21 T

(H,V )
22

)−1(
1
0

)
, (A.55)

(
r22MM,NN

r22NM,MN

)
=

(
T

(H,V )
31 T

(H,V )
32

T
(H,V )
41 T

(H,V )
42

)(
t12MM,NN

t12NM,MN

)
. (A.56)

Note that, in contrast to planarly or spherically layered media, s- and p-polarised waves, repre-
sented by the M and N vector wave functions, becomes mixed for all angular momenta n > 0.
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A.4.3 Spherically layered media

Similarly to the cylindrically layered case, we use the expansion of the dyadic Green function in
terms of vector wave functions. The spherical vector wave functions are given by [166]

M e
o ml(k) = ∓ m

sinΘ
zl(kr)Pm

l (cos Θ)
sin
cos

mϕ eΘ − zl(kr)
dPm

l (cos Θ)
dΘ

cos
sin

mϕ eϕ,

(A.57)

N e
o ml(k) =

l(l + 1)
kr

zl(kr)Pm
l (cos Θ)

cos
sin

mϕ er

+
z′l(kr)
kr

[
dPm

l (cos Θ)
dΘ

cos
sin

mϕ eΘ ∓
m

sinΘ
Pm

l (cos Θ)
sin
cos

mϕ eϕ

]
. (A.58)

With the help of those, the dyadic Green function for a dielectric sphere is [166]

G(11)(r, r′, ω) =
iµ1k1

4π

∑
e,o

∞∑
l=1

l∑
m=0

(2− δl0)
2l + 1
l(l + 1)

(l −m)!
(l +m)!

×
[
r11s M(1)

e
o ml

(k1)⊗M
′(1)
e
o ml

(k1) + r11p N(1)
e
o ml

(k1)⊗N
′(1)
e
o ml

(k1)
]
, (A.59)

G(21)(r, r′, ω) =
iµ1k1

4π

∑
e,o

∞∑
l=1

l∑
m=0

(2− δl0)
2l + 1
l(l + 1)

(l −m)!
(l +m)!

×
[
t21s M e

o ml(k2)⊗M
′(1)
e
o ml

(k1) + t21p N e
o ml(k2)⊗N

′(1)
e
o ml

(k1)
]
, (A.60)

G(12)(r, r′, ω) =
iµ2k2

4π

∑
e,o

∞∑
l=1

l∑
m=0

(2− δl0)
2l + 1
l(l + 1)

(l −m)!
(l +m)!

×
[
t12s M(1)

e
o ml

(k1)⊗M′
e
o ml(k2) + t12p N(1)

e
o ml

(k1)⊗N′
e
o ml(k2)

]
, (A.61)

G(22)(r, r′, ω) =
iµ2k2

4π

∑
e,o

∞∑
l=1

l∑
m=0

(2− δl0)
2l + 1
l(l + 1)

(l −m)!
(l +m)!

×
[
r22s M e

o ml(k2)⊗M′
e
o ml(k2) + r22p N e

o ml(k2)⊗N′
e
o ml(k2)

]
. (A.62)

For the following, it is convenient to define the Ricatti functions

ηl(kiR) :=
1
x

d[xjl(x)]
dx

∣∣∣∣
x=kiR

, ξl(kiR) :=
1
x

d[xh(1)
l (x)]
dx

∣∣∣∣∣
x=kiR

. (A.63)

In terms of those, the Mie scattering coefficients read

r(11)s = − µ1k2ηl(k2R)jl(k1R)− µ2k1ηl(k1R)jl(k2R)

µ1k2ηl(k2R)h(1)
l (k1R)− µ2k1ξl(k1R)jl(k2R)

, (A.64)

r(11)p = − µ1k2ηl(k1R)jl(k2R)− µ2k1ηl(k2R)jl(k1R)

µ1k2ξl(k1R)jl(k2R)− µ2k1ηl(k2R)h(1)
l (k1R)

, (A.65)
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r(22)s = −
µ1k2ξl(k2R)h(1)

l (k1R)− µ2k1ξl(k1R)h(1)
l (k2R)

µ1k2ηl(k2R)h(1)
l (k1R)− µ2k1ξl(k1R)jl(k2R)

, (A.66)

r(22)p = −
µ1k2ξl(k1R)h(1)

l (k2R)− µ2k1ξl(k2R)h(1)
l (k1R)

µ1k2ξl(k1R)jl(k2R)− µ2k1ηl(k2R)h(1)
l (k1R)

, (A.67)

t(12)s =
µ1k2[ηl(k2R)h(1)

l (k2R)− ξl(k2R)jl(k2R)]

µ1k2ηl(k2R)h(1)
l (k1R)− µ2k1ξl(k1R)jl(k2R)

, (A.68)

t(12)p =
µ1k2[ξl(k2R)jl(k2R)− ηl(k2R)h(1)

l (k2R)]

µ1k2ξl(k1R)jl(k2R)− µ2k1ηl(k2R)h(1)
l (k1R)

, (A.69)

t(21)s =
µ2k1[ηl(k1R)h(1)

l (k1R)− ξl(k1R)jl(k1R)]

µ1k2ηl(k2R)h(1)
l (k1R)− µ2k1ξl(k1R)jl(k2R)

, (A.70)

t(21)p =
µ2k1[ξl(k1R)jl(k1R)− ηl(k1R)h(1)

l (k1R)]

µ1k2ξl(k1R)jl(k2R)− µ2k1ηl(k2R)h(1)
l (k1R)

. (A.71)

Note that the transmission coefficients ts,p can be further simplified by using the Wronski deter-
minant between spherical Bessel and Hankel functions.

A.5 Born series expansion

In most situations, the geometric arrangement of dielectric bodies is not symmetrical enough
to yield a separable Helmholtz operator in which case an expansion into vector wave functions
would be feasible (Sec. A.4). Instead, we will describe an iterative method known from quantum
mechanics and quantum field theory as Born (or Dyson) series expansion of the dyadic Green
function. This method applies to an arbitrary arrangement of dielectric bodies but, in general,
converges quickly only if the dielectric contrast between bodies and the surrounding material is
sufficiently small.

Let us assume that from an arrangement of dielectric bodies, described by a dielectric per-
mittivity ε(r, ω), one can separate a part whose DGF G(0)(r, r′, ω) is analytically known (e.g.
vacuum, bulk material or layered media) and is described by a permittivity ε0(r, ω) (see, for
example, Fig. A.2). The dyadic Green functions are solutions to the respective Helmholtz
equations

∇×∇×G(r, r′, ω)− ω2

c2
ε(r, ω)G(r, r′, ω) = δ(r− r′) , (A.72)

∇×∇×G(0)(r, r′, ω)− ω2

c2
ε0(r, ω)G(0)(r, r′, ω) = δ(r− r′) . (A.73)

Subtracting both equations from one another, we find that the difference between both DGFs
[scattering Green function G(S)(r, r′, ω)] solves the inhomogeneous Helmholtz equation

∇×∇×G(S)(r, r′, ω)− ω2

c2
ε0(r, ω)G(S)(r, r′, ω)

=
ω2

c2
δε(r, ω)

[
G(0)(r, r′, ω) + G(S)(r, r′, ω)

]
(A.74)
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Fig. A.2. Dielectric body of arbitrary shape in front of a dielectric wall. The whole arrangement of bodies
is described by a permittivity ε(r, ω). The DGF for the half-space alone [with permittivity ε0(r, ω)] is
known and can be used as starting point for the Born series.
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Fig. A.3. Diagrammatic representation of the Born series, Eq. (A.76). Each arrow corresponds to the
propagation according to the Green tensor G(0), each intermediate vertex at position s(i) contributes with
a weight factor ω2

c2
δε(s(i), ω). The integration is over all intermediate positions s(i).

where δε(r, ω) ≡ ε(r, ω) − ε0(r, ω) is the perturbation from the permittivity ε0(r, ω). Equa-
tion (A.74) bears some resemblance to the Helmholtz equation (A.1) for the electric field, with
the current density iµ0ωj(r, ω) being replaced by the rhs of Eq. (A.74). Its formal solution is
therefore

G(S)(r, r′, ω) =
∫
d3sG(0)(r, s, ω) · ω

2

c2
δε(s, ω)

[
G(0)(s, r′, ω) + G(S)(s, r′, ω)

]
. (A.75)

Because the unknown scattering DGF G(S)(r, r′, ω) appears on both sides of Eq. (A.75), making
it a Fredholm integral equation of the second kind, one can solve it iteratively as [144]

G(S)(r, r′, ω) =
ω2

c2

∫
d3s′ G(0)(r, s′, ω) · δε(s′, ω)G(0)(s′, r′, ω)

+
(
ω2

c2

)2 ∫∫
d3s′d3s′′ G(0)(r, s′, ω) · δε(s′, ω)G(0)(s′, s′′, ω) · δε(s′′, ω)G(0)(s′′, r′, ω)

+ . . . (A.76)

Equation (A.76) is known as the Born (or Dyson) series expansion of the scattering dyadic
Green function G(S)(r, r′, ω). It has a simple diagrammatic representation as shown in Fig. A.3.
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The field propagates from the source point r′ to the observation point r via the intermediate
positions s(i). Each of the arrows represents the dyadic Green function G(0) (which we assumed
to be analytically known), and each intermediate position (or vertex) s(i) carries a weight factor
ω2

c2 δε(s(i), ω). The intermediate positions are integrated over, and the number of those points
increases with the order of the iteration.

As the Born series (A.76) is a perturbation series in δε(r, ω), it is clear that fast convergence
is only guaranteed for small enough permittivity (or equivalently, refractive index) contrast. It
should be noted, however, that the series does always eventually converge to its unique solution
G(S)(r, r′, ω).

A.6 Local-field corrected Green tensors

While the DGF G(r, r′, ω) connects the macroscopic electric field E(r) with a macroscopic
source j(r′) [recall Eq. (A.2)], we are often interested in the coupling of the local electromagnetic
field to microscopic sources such as atoms. For atoms which are embedded in a magnetoelectric
medium, this difference between microscopic and macroscopic quantities leads to local-field
corrections which can be implemented via the real-cavity model: One assumes that both field
point r1 and source point r2 are not situated directly in the medium but surrounded by small
free-space cavities of radius Rcav (cf. Fig. A.4). Modifying the original permittivity ε(r, ω) and
(inverse) permeability κ(r, ω) describing the present media to

εloc(r, ω), κloc(r, ω) =

{
1 if |r− r1| < Rcav or |r− r2| < Rcav,

ε(r, ω), κ(r, ω) else,
(A.77)

the required local-field corrected DGF Gloc can be found as the solution to[
∇× κloc(r, ω)∇×−ω

2

c2
εloc(r, ω)

]
G(r, r′, ω) = δ(r− r′). (A.78)

The real-cavity model thus accounts for the fact that an atom occupies some space within the
host medium, where the cavity radius is of the order of one half the lattice constant of the latter.

For magnetoelectrics (but not for metals), the condition |√εµ|Rcavω/c�1 is typically valid
for the relevant frequencies of the electromagnetic field. In this case, the effect of the introduced
cavities can be studied in a perturbative way by means of the spherical DGFs given in Sec. A.4.3.
One finds that the local-field corrected single-point DGF is given by [71, 167]

G
(S)
loc (r1, r1, ω) =

ω

6πc

{
3(ε1 − 1)
2ε1 + 1

c3

ω3R3
cav

+
9[ε21(5µ1 − 1)− 3ε1 − 1]

5(2ε1 + 1)2
c

ωRcav

+ i

[
9ε1n3

1

(2ε1 + 1)2
− 1
]}

1 +
(

3ε1
2ε1 + 1

)2

G(S)(r1, r1, ω) (A.79)

where G is the uncorrected DGF, εi = ε(ri, ω) denotes the permittvity of the unperturbed host
medium at the source and field points (similarly for µ) and ni=

√
εiµi is the respective refractive

index. The first term in Eq. (A.79) represents contributions to the electric field which are reflected
at the interior of the cavity and never reach the surrounding medium [type (i) in Fig. A.4(a)].
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(a)

(b)

(i)

(ii)

(ii)

(iii)

(iii)

r1

r1

r2

Fig. A.4. Real-cavity model for applying local-field corrections to (a) single- and (b) two-point DGFs.
Three typical contributions (i)–(iii) to the corrected DGFs are schematically indicated.

The second term represents contributions which are transmitted into the host medium and, after
possible transmissions and reflections, transmitted back into the cavity [type (ii)]; each of the
transmissions through the cavity surface gives rise to one factor in round brackets. Processes
where the field is backreflected from the outside of the cavity [type (iii)] have been neglected
since they are of higher order in the small parameter |√εµ|Rcavω/c. Similarly, the local-field
corrected two-point DGF is found to be [71]

Gloc(r1, r2, ω) =
3ε1

2ε1 + 1
3ε2

2ε2 + 1
G(r1, r2, ω) for r1 6= r2. (A.80)

Equation (A.80) represents the transmission of the field out of the first cavity, transmissions and
reflections within the host medium, followed by a transmission into the second cavity [type (ii) of
Fig. A.4(b)]; each of the transmissions at the cavity surfaces gives rise to one of the two factors.
Again, reflections at the outside of either cavity have been neglected [type (iii)].

When describing magnetic interactions, the curl of the DGF typically arises. Local-field
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corrections in such situations cannot simply be obtained by taking the curl of Eqs. (A.79) and
(A.80) above, since the implementation of the local-field correction via the real-cavity model
does not commute with this vector operation. Instead, the local-field correction has to applied
after taking the curl. One finds the single-point DGF [58]

∇×G(S)(r1, r1, ω)×
←−
∇′∣∣

loc

= − ω3

2πc2

{
µ1−1
2µ1+1

c3

ω3R3
cav

+
3
5
µ2

1(5ε1−1)−3µ1−1
(2µ1+1)2

c

ωRcav
+ i

[
3µ1n

3
1

(2µ1+1)2
− 1

3

]}
I

+
(

3
2µ1+1

)2

∇ ×G(S)(r1, r1, ω) ×
←−
∇′ (A.81)

and the two-point DGFs [58]

∇×G(r1, r2, ω)
∣∣
loc

=
3

2µ1 + 1
3ε2

2ε2 + 1
G(r1, r2, ω) for r1 6= r2, (A.82)

G(r1, r2, ω)×
←−
∇′∣∣

loc
=

3ε1
2ε1 + 1

3
2µ2 + 1

G(r1, r2, ω) for r1 6= r2, (A.83)

∇×G(r1, r2, ω)×
←−
∇′∣∣

loc
=

3
2µ1 + 1

3ε2
2ε2 + 1

G(r1, r2, ω) for r1 6= r2. (A.84)

The behaviour of the local-field corrected Green tensors under a duality transformation (cf.
Sec. A.2) can be easily derived by combining Eqs. (A.79)–(A.82) with Eqs. (A.8)–(A.11):

ω2

c2
G

(S)?
loc (r1, r1, ω) = −∇×G(S)(r1, r1, ω)×

←−
∇′∣∣

loc
, (A.85)

∇×G(S)?(r1, r1, ω)×
←−
∇′∣∣

loc
= −ω

2

c2
G

(S)
loc (r1, r1, ω), (A.86)

ω2

c2
G?

loc(r1, r2, ω) = −∇×G(r1, r2, ω)×
←−
∇′∣∣

loc
for r1 6= r2,(A.87)

∇×G?(r1, r2, ω)×
←−
∇′∣∣

loc
= −ω

2

c2
Gloc(r1, r2, ω) for r1 6= r2, (A.88)

∇×G?(r, r′, ω)
∣∣
loc

= −G(r1, r2, ω)×
←−
∇′∣∣

loc
for r1 6= r2, (A.89)

G?(r, r′, ω)×
←−
∇′|loc = −∇×G(r1, r2, ω)

∣∣
loc

for r1 6= r2. (A.90)
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[62] S. Scheel, L. Knöll, D.-G. Welsch, S.M. Barnett: Phys. Rev. A 60 (1999) 1590
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[107] C. Raabe, L. Knöll, D.-G. Welsch: Phys. Rev. A 68 (2003) 033810
[108] E.A. Hinds: Adv. At. Mol. Opt. Phys. 28 (1991) 237
[109] E.A. Hinds: Adv. At. Mol. Opt. Phys. Suppl. 2 (1994) 1
[110] A.D. McLachlan: Proc. R. Soc. Lond. Ser. A 271 (1963) 387
[111] G.S. Agarwal: Phys. Rev. A 11 (1975) 243
[112] J. Schwinger, L.L. DeRaad Jr., K.A. Milton: Ann. Phys. 115 (1978) 1



808 Macroscopic QED — concepts and applications

[113] I.V. Bondarev, P. Lambin: Phys. Rev. B 72 (2005) 035451
[114] A. Sambale, S.Y. Buhmann, D.-G. Welsch, M.S. Tomaš: Phys. Rev. A 75 (2007) 042109
[115] S.Y. Buhmann, T. Kampf, D.-G. Welsch: Phys. Rev. A 72 (2005) 032112
[116] M.J. Mehl, W.L. Schaich: Surf. Sci. 99 (1980) 553
[117] T.H. Boyer: Phys. Rev. 180 (1969) 19
[118] J.D. Jackson, Classical Electrodynamics, 3rd edn., Wiley, New York 1998
[119] S. Kryszewski: Mol. Phys. 78 (1993) 1225
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1151
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