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The internal structure of a particle – an atom or other quantum system in which the excita-
tion energies are discrete – undergoes change when exposed to pulses of near-resonant laser
light. This tutorial review presents basic concepts of quantum states, of laser radiation and
of the Hilbert-space statevector that provides the theoretical portrait of probability amplitudes
– the tools for quantifying quantum properties not only of individual atoms and molecules
but also of artificial atoms and other quantum systems. It discusses the equations of motion
that describe the laser-induced changes (coherent excitation), and gives examples of laser-
pulse effects, with particular emphasis on two-state and three-state adiabatic time evolution
within the rotating-wave approximation. It provides pictorial descriptions of excitation based
on the Bloch equations that allow visualization of two-state excitation as motion of a three-
dimensional vector (the Bloch vector). Other visualization techniques allow portrayal of more
elaborate systems, particularly the Hilbert-space motion of adiabatic states subject to various
pulse sequences. Various more general multilevel systems receive treatment that includes
degeneracies, chains and loop linkages. The concluding sections discuss techniques for cre-
ating arbitrary pre-assigned quantum states, for manipulating them into alternative coherent
superpositions and for analyzing an unknown superposition. Appendices review some ba-
sic mathematical concepts and provide further details of the theoretical formalism, including
photons, pulse propagation, statistical averages, analytic solutions to the equations of motion,
exact solutions of periodic Hamiltonians, and population-trapping “dark” states.
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Introduction 249

1 Introduction

Atoms and molecules have long held interest, first of philosophers who debated their existence,
then by spectroscopists who gained understanding of their internal structure, and more recently
by physicists and chemists who use laser light to alter that structure, perhaps only briefly. This
tutorial reviews some of the simplest notions of atomic and optical physics, namely how single
atoms (or other simple quantum systems) are affected by laser light – a subject that is sometimes
regarded as a part of quantum optics [1]. Starting with basic notions of atoms, quantum states
and radiation, I will proceed to discuss the relevant equations of motion that govern alterations of
atomic structure as a result of this interaction. Several examples illustrate the physics principles,
those of coherent atomic excitation [2, 3, 4]. These principles have relevance to such basic
concerns as the detection and quantitative analysis of trace amounts of chemicals [5], the catalysis
or control of chemical reactions [6, 7], the alignment of molecules [8] and the processing of
quantum information [9].

To place these contemporary applications into historical context I shall begin, in this intro-
ductory section and the next, by reviewing a few basic concepts: atoms as structured particles,
and the clues to that structure provided by spectroscopy; quantum states and probabilities; and
the parameters with which we characterize laser radiation. As will be emphasized, the underlying
physics has broader application than atoms and molecules: a wide variety of quantum systems
have the required discrete energies that enable coherent excitation of the sort described here.

The next sections, starting with Sec. 3, provide the mathematical foundation for describing
the atom response to coherent radiation, first with a wavefunction (Sec. 3.2) and then with aid
of abstract vector spaces for describing probability amplitudes (Sec. 3.4). These mathematical
tools allow a discussion of the equations of motion needed to describe changes (Secs. 4 and 5).

Following these elementary notions will come the simplest of examples of the theory of
radiation-induced changes to atomic structure, the “two-level atom” (or two-state quantum sys-
tem) [10, 11], see Sec. 6. Section 7 offers an alternative view of the changes that take place
within an atom as it acquires excitation energy.

Laser-induced excitation of free atoms or molecules inevitably deals with the effects of
spherical or cylindrical symmetry, and the consequent degeneracy of energy levels 2. Sec-
tion 8 presents some of the basic theoretical principles needed to understand such symmetry-
constrained excitation, based on the use of quantum states having well defined angular momen-
tum. One consequence is the transfer of excitation probability by a combination of coherent
excitation and incoherent excitation, known as optical pumping; cf. Sec. 8.3.

Section 9 mentions several important refinements of the simple theory, needed when describ-
ing the response of actual atoms: allowance for probability loss, treatment of ensemble averages
that account for the distribution of attributes within an atomic beam (cf. also Appendix F), and
extensions of the theory beyond the simple two-state rotating wave approximation (cf. also Ap-
pendix L).

The theoretical tools of the earlier sections – the essential-states approximation, rotating wave
approximation and adiabatic changes – next find application, in Sec. 10, to three-state systems,
with particular emphasis on stimulated Raman processes. These involve two independent fields,

2Quantum states that have the same energy are said to be degenerate, and are often termed sublevels of a given energy
level.
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often termed “pump” and “Stokes” fields. The process of stimulated Raman adiabatic passage
(STIRAP) described there relies in part on the creation of a “dark” quantum state, a quantum-
state superposition that is not excited by the radiation, cf. Sec. 10.6 and Appendix M.

Section 11 extends the theory to some simple examples of multilevel systems in which the
linkage patterns form simple chains, branched chains or loops. Many of these cases have analytic
solutions; some reveal unexpected dynamics.

Whereas the bulk of this review aims to describe complete alteration of atomic structure,
from an initial state to a single final state, Sec. 12 discusses a few examples of excitation tech-
niques that can create superpositions of quantum states or, from such superpositions, produce
other predetermined superpositions. Section 13 discusses some procedures for analyzing such
structures once they are created.

Apart from one section dealing with changes induced by incoherent interactions (Sec. 4), this
article deals almost entirely with aspects of coherent excitation. It assumes that the responsible
interaction is laser radiation. It is possible, under appropriate conditions, to achieve coherent
changes in other ways. A simple example occurs in the idealized model of two trapped atoms,
such as might be held within an optical lattice, cf. Sec. 2.3. By altering the separation between
the two atoms in a controlled way one can produce coherent changes of the sort governed by the
time-dependent Schrödinger equation, but for DC fields. Basically one considers the controlled
formation of a molecule from two atoms. Such situations will not be considered explicitly here.

A series of appendices provides some mathematical background and further details on sev-
eral of the topics. The bibliography, though lengthy, is not intended to be comprehensive, only
indicative of available literature. The tools of internet search engines now make completeness
less important.

The overall presentation emphasises theory, rather than experiment. It stresses the mathemat-
ical formulation, specifically the time-dependent Schrödinger equation, aimed at both computa-
tion and analytical solutions to the resulting coupled ordinary differential equations (ODEs). It
particularly aims to provide ways of visualizing the excitation process using pictures involving
abstract vector spaces.

1.1 Atoms: Structured particles

The 19th century saw the general acceptance of atoms as the smallest particles of matter that re-
tained some of the chemical properties of aggregates. This notion, dating back to Greek philoso-
phers, led to the fruitful quantitative explanation of vapor properties based upon atoms as moving
mass points, the kinetic theory of gases [12].

But atom vapors have additional properties, made evident through observation of light emit-
ted from hot gases or transmitted through cool vapor, see Fig. 1. Such properties underly the
science of spectroscopy [13].

Spectroscopists recognized that the radiation emitted from an optically thin source of hot
atoms contained features centered around discrete wavelengths, appearing as bright spectral lines
[14]. By contrast, cooler atoms would absorb, from a continuous blackbody source, discrete
wavelengths, appearing as dark spectral lines 3. Figure 2 illustrates this property [2, §1.1].

3 Although I have referred to spectral lines as having discrete frequencies, close examination reveals that the spectral
features – the frequency distribution of light added or removed – occur over a small range of frequencies: the spectral
lines have a finite width [2, §1.8]. These line widths convey useful information about the lifetime of the excited state and
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Fig. 1. Schematic definition of the spectroscopic atom: light from a source passes through a slit and then
through a dispersing element (here a prism) which separates the radiation into constituent frequencies. An
absorber, when present, removes selected frequencies. (after Fig. 1.1-2 of [2])

A b s o r p t i o n : m i s s i n g c o l o r s
E m i s s i o n : a d d e d c o l o r s

ω →← λ

Fig. 2. Schematic illustration of emission spectra (comprising bright spectral lines) and absorption spectra
(dark lines).

The wavelengths of these spectral lines were found to be uniquely characteristic of each
chemical element, each different molecule, as suggested by Fig. 3. Evidently the vapor atoms
carried with them, in some internal structure, the capability to produce these spectral lines as
unique characteristic “fingerprints”.

Detailed records of the wavelengths (or better, the wavenumbers – the inverses of vacuum-
recorded wavelengths) of numerous spectra revealed that all spectral lines obeyed a spectroscopic
combination principle: each wavenumber 4 ν̃ ≡ 1/λ of a spectral line could be expressed as the
difference of two spectroscopic term values Ẽ. That is, the wavenumbers were all expressible in

about the environment within which the emitting or absorbing atom resides [15]. Section 9 discusses some effects that
act to broaden the range of frequencies for which atoms respond.

4Wavenumbers and term values have dimensions of inverse lengths, often expressed in units of Kayser, 1 cm−1 or
kiloKayzer, kK.
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ω →← λ

Fig. 3. Different elements, even different isotopes, have different spectra, here shown schematically. (after
Fig. 1.1-3 of [2])

the form

ν̃ = Ẽi − Ẽj . (1)

where the integers i and j identify the term values in a suitable ordered list. The explanation of
this empirical rule emerged from several sources, including the Lorentz theory of electrons [16]
– light negatively charged particles, bound to heavy positively charged nuclei, that absorb and
emit radiation – together with the early quantum theory of Bohr, according to which the electron
motion within an atom could have only discrete energies En. The index n here identifies a entry
in an ordered list of energies, in which the lowest value is termed the ground state energy.

Taken together with the Planck theory of discrete radiation quanta, of energy hν, these the-
ories provided an interpretation of the well established spectroscopic combination principle as a
conservation of energy,

hν = Ei − Ej . (2)

That is, the frequencies of spectral lines, multiplied by Planck’s constant h ≡ 2π~, corresponded
to differences of excitation energies 5. These discrete values are Bohr frequencies,

ωij = |Ei − Ej |/~. (3)

Figure 4 illustrates this principle.
Spectroscopists found that not all possible pairs of energies produced spectral lines; they

devised various empirical selection rules to classify “allowed” and “forbidden” transitions 6.
Drawing on the Lorentz theory of electrons [2, §8.2] (see Appendix I), the intensity of the spectral
lines were parametrized by oscillator strengths [see eqn. (404)] [17].

5The discrete electromagnetic energy hν ≡ ~ω needed to produce excitation of a single atom, or emitted during
deexcitation, defines a photon; cf. Appendix A.4.

6Spectroscopists, seeking patterns, found that the energy levels of free atoms could be classified as being one of two
classes, termed even parity and odd parity. Transitions were generally not observed without a parity change.
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Emit Absorb

E1

E2

E3

E4

Fig. 4. Schematic illustration of the Bohr atom: internal energies are discrete; transitions to lower energies
(left-hand arrows) produce emission lines, while absorption of discrete frequencies (right-hand arrows)
produces excitation. (after Fig. 1.1-4 of [2])

The energy selectivity implied by the Bohr principle expressed with eqn. (2) – the unique
association of specific energy states with specific frequencies – makes possible the quantitative
analysis of atom samples to determine the relative abundance of constituent atoms and molecules,
even allowing an experimenter to distinguish the several isotopes 7. Traditional spectroscopy,
making use of the distribution of frequencies absorbed and emitted by sources, provides a widely
used tool for analytical chemistry [19], of forensic science [20], in archeology and art conserva-
tion [21], for industrial process control [22], for remote sensing of the environment [23] and has
use in astrophysics for the study of distant stars [24]. These techniques use wavelengths rang-
ing from x-rays [25] to radio [26]. When supplemented with symmetry-based constraints (e.g.
angular momentum selection rules), and used with carefully timed pulses, the Bohr condition
underlies the procedures presented in this review for manipulating internal motions of atoms.
However, the theory presented in the present review deals with radiation whose properties (co-
herence) differ in an essential way from the radiation used in traditional spectroscopy [27]. This
property makes possible a variety of improvements in the selectivity of traditional processes
[28]. It also allows manipulations of quantum structures in ways that would be impossible with
incoherent light sources.

Laser light sources provide important tools for spectroscopic studies of matter and for mea-
suring pre-existing properties, but they also create opportunities to alter the internal structure
of atoms. It is with such deliberate changes of atomic structure that the present article deals.
Numerous books and reviews attest to the current interest in this subject [6, 7]. In turn, these
laser-induced modifications permit one to produce, through emission of light from restructured
atomic sources, tailored radiation fields, either in cavities [29] or propagating in free space; see

7The small but resolvable isotope shift of spectral lines underlies the procedures that make possible the separation of
isotopes, even in commercially useful amounts [18].
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Appendix A.1.

1.2 Atoms: Discrete quantum states

Basic quantum theory requires that when some motion is constrained within a finite region of
space, and the system is isolated from uncontrollable external influences, the energy of that mo-
tion can take only discrete values – it is quantized 8. Common examples of energy quantization
include

• The motion of electrons bound to nuclei of atoms or molecules by Coulomb forces

• Vibrations of molecular parts

• Rotation of molecular frameworks

• The orientation energy of nuclear spins in an external magnetic field

• Energies of electrons and holes in quantum dots

• Center of mass motion of atoms or ions held in a trap.

In all these cases, and many others, the total energy of the constrained particle – the sum of ki-
netic and potential energies – is restricted to take only discrete values, between which radiative
transitions can occur at discrete frequencies. It is these transitions, and the corresponding struc-
ture changes, that are the subject of the present article. Numerous textbooks present systematic
discussions of atomic and molecular structure [30]; these details are not needed for the present
discussion.

The discrete energies of electrons bound within atoms, revealed by spectroscopy, are asso-
ciated with discrete states of motion – structures whose (internal) kinetic and potential energies
combine in only specific discrete ways. Such motions, distinguishable by energy, are the quan-
tum states [31] [2, § 1.3] with which we are here concerned 9. These quantum states are the
quantum mechanical counterparts of the states of motion that particularize, for specified initial
conditions, the dynamics of classical systems – those whose behavior follows the laws of motion
first enunciated by Newton, e.g. trajectories of planets, missiles and atoms in beams.

Although actual atoms and molecules have dimensions of nanometers or less, many larger
objects are affected by quantum-mechanical behavior and have discrete energies. Quantum dots
are macroscopic objects, composed of millions of atoms, in which electrons are confined and
hence have discrete energy states [32]. Bulk superconductors are composed of many pairs of
electrons that condense, as Cooper pairs, into a single quantum state; these allow the sort of
discrete-state transitions, and quantum-state manipulation, discussed here [33].

In general quantum systems have several degrees of freedom. For example, a molecular
framework has both rotational and vibrational motions, as well as alignments of each nuclear

8As discussed in textbooks on quantum theory, the discreteness is one consequence of the basic mathematical proper-
ties of the time-independent Schrödinger equation together with boundary conditions; cf. Sec. 3.2. It follows also from
the non-commuting nature of the operators representing angular momentum.

9More particularly, we deal with information about the quantum system, as embodied in the wavefunctions and
statevectors discussed in subsequent sections. Traditional classical descriptions of motion, by contrast, typically concern
trajectories of particles: how positions vary with passing time under the influence of applied forces.
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spin. The correlations between several degrees of freedom, whether in a single particle, several
particles, or particles and photons, lead to useful applications of quantum mechanics. Appendix
D.1 comments on an important property of systems with several degrees of freedom – correlation
and entanglement. Throughout this review, however, I shall consider just a single degree of
freedom.

To simplify the discussion, I shall refer specifically to atomic electrons as the system of
interest, although the physics applies to any system for which discrete energy states exist. The
discrete allowed energies (the internal energy of the atom) can be organized into an ordered list,
a catalog in which integers form labels:

E1, E2, E3, · · · .

Several such discrete-energy systems typically form a part of courses in elementary quantum
mechanics: the harmonic oscillator (a model of vibrating molecules), the rigid rotor (a model
for molecular rotation) and the hydrogen atom [34]. The recognition of such quantization was
important in the development of quantum theory during the first decades of the 20th century.
It unified the work of spectroscopists by providing an explanation for the discreteness of the
discrete frequencies seen in emission spectra or the corresponding dark spectral lines appearing
in absorption spectra. Historically, spectroscopy offered the key experimental basis for under-
standing the internal structure of atoms and molecules. Nowadays atomic structure calculations
and quantum chemistry calculations can provide detailed predictions of the discrete energies of a
variety of atoms, starting with hydrogen, and of various molecules [35]. But for many purposes
the details of the internal structure of atoms need not be considered; it is only necessary to have
available a table of discrete energies (or wavenumbers) together with some parameters that ex-
press the intensity of each spectral line, such as the oscillator strength [36]. Indeed, only those
simple parameters are needed for quantifying the theory of coherent excitation presented in this
review.

1.3 Probabilities

A fundamental principle of quantum theory is that any single measurement of the internal energy
of an atom must be one of the values from the allowed list of quantized energies. More generally,
any single measurement of some attribute (e.g. orientation) can only show a value associated
with one of the allowed discrete quantum states 10.

However, a succession of measurements will not always produce the same energy, or reveal
the same quantum state. Typically the results will appear as a distribution of values, randomly
occurring but with well defined statistical characteristics such as mean and variance. This distri-
bution of many results, when normalized by dividing by the number of cases, bears interpretation
as a distribution of probabilities for finding the allowable quantum states. A key observable for
describing the effect of laser radiation on an atom is the probability Pn of excitation into state
n, defined by considering numerous ensembles, in each of which there is observed Nn examples
of state n. The probability that, in a series of measurements, each at time t following identical

10 Unconstrained motion in free space has no such limitation to discrete values of observations; the energies and other
observables are associated with a continuum of values rather than the discrete sets discussed here.
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preparation, the observed system will be found in the quantum state bearing index n in some
catalog, is

Pn(t) =
Nn(t)

N1(t) +N2(t) + · · ·
. (4)

I will refer to Pn(t) either as an excitation probability at time t or as a time dependent popu-
lation in state n at time t, and to alterations of these probabilities as population transfer. Such
probabilities form one of several key links between the formalism of quantum theory and the
real world of experimental physics 11. Other links include the effect of laser induced changes
upon dipole moments, measurable by their effect on radiation propagating through a medium of
altered atoms, cf. Appendix A.5.

1.4 Laser radiation

Visible light, in common with radio waves, x-rays and all other forms of electromagnetic radia-
tion, is a manifestation of electromagnetic fields; cf. Appendix A.1. These, in turn, are subject
to the laws of quantum mechanics, in the form of a quantum field theory [37]. Within this the-
ory fields have a granularity: they have indivisible quanta of fixed energy increment. For the
electromagnetic field the quantum is the photon [38]; a quantum of energy ~ω, cf. Appendix
A.4. Although it is tempting to attribute particulate attributes to photons, a photon is localized in
space only upon being absorbed (destroyed) at the location of a detector. In emission, or in free
space, it is delocalized, either as a wavepacket or an infinite train. Although the discreteness of
photons has important implications, particularly for atoms in cavities [39], the fields of ordinary
laser pulses contain such large numbers of photons that their quantization can be neglected. We
therefore treat all excitation-producing laser fields as classical entities, whose time dependence
can be specified without considerations of the underlying quantum nature 12. Only when we
discuss discrete excitation or de-excitation events does the mention of photons become useful.

Like all electromagnetic radiation in free space, laser radiation can be described as a trav-
eling electric field (a vector E having magnitude and direction) paired with and perpendicular
to a traveling magnetic field B. Over the small size of an atom, these fields can generally be
regarded as plane waves, meaning that all spatial variation occurs in a single direction, that of
propagation 13. In this (longitudinal) direction the electric and magnetic field vectors are pe-
riodic, with spatial period equal to the wavelength. The instantaneous direction of the electric
vector E, perpendicular (transverse) to the propagation direction, defines the polarization of the
radiation [40]. Figure 5 illustrates the geometry of a laser-beam electric field for two common
polarization choices, linear and circular.

11This operational definition of excitation probability rests on the implied assumption that every measurement occurs
on a system that has undergone a specific common preparation procedure. Typically this preparatory step places the
system in its lowest energy state, an assumption that holds for most of the present discussion. However, other precondi-
tioning procedures are possible; one then must deal with conditional probabilities (transition probabilities) of finding the
system in state n at time t, given that it was known to be in state m at time t0.

12Single-photon fields occur in many applications of coherent excitation, notably those experiments involving single
atoms in single-mode cavities. For discussions of such fully quantum-mechanical field-atom interactions see ref. [39]
and Appendix L.2.

13As wavelengths become shorter, this approximation fails. The physics of x-ray interaction differs in detail from the
formalism presented here for optical excitation.
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Fig. 5. A laser beam is a traveling electric and magnetic field. The direction of the electric vector (transverse
to the propagation direction) defines the polarization direction. Shown here are examples of linear and
circular polarization. (after Fig. 1.5-1) of [2])

The effects of radiation upon unbound particles are dominated by momentum considerations;
one can regard each photon of a directed beam as carrying linear momentum, of magnitude ~ω/c,
in the direction of propagation. The absorption of radiation thereby introduces a momentum
change ∆p = ~ω/c that alters the velocity of an absorbing particle and which thereby acts on
bulk matter as radiation pressure [41] or to cool and trap individual particles [42]. Appendix J
mentions aspects of such interactions that have relevance to coherent excitation, particularly the
correlation of internal excitation with center of mass motion.

However, bound particles (e.g. those responsible for internal structure and excitation) are
affected primarily by the Lorentz force [43],

F = eE + (e/c)v ×B, (5)

exerted on a charge emoving with velocity v by the electric and magnetic vectors of the radiation,
evaluated at the origin of a coordinate system fixed to the atom center of mass.

The dominant such force, for transitions induced by radiation of optical frequencies, is that
of the electric field acting on the charges [2, §3.3]. This produces an interaction energy −d ·E
proportional to the component of the electric dipole moment d along the direction of the electric
field, evaluated at the atomic center of mass 14. The corresponding magnetic interaction,−m ·B,
is that of a magnetic moment m and a magnetic field 15. Transitions involving this interaction
typically occur in the radio-frequency regime and are observed as nuclear magnetic resonance
(NMR) [26].

Our concern will be with optical frequencies and with the electric field acting on the bound
constituents of an atom. For a stationary atom the electric field of a pulsed traveling plane
wave has the form of a pulsed periodically oscillating electric field. Two cases have interest,
distinguished by their polarization.

14This electric-field interaction is responsible for the Stark shift of energies in the presence of static electric fields; the
dipole moment for such interactions is typically an induced dipole moment, proportional to the electric field strength.

15 This magnetic-field interaction produces the Zeeman shift of energies in the presence of static magnetic fields.
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1.4.1 Polarization

When the traveling-wave field is linearly polarized we can express the electric field at a fixed
point (the atomic center of mass) as

E(t) = êE(t) cos(ωt− ϕ). (6)

Here ω is the carrier frequency, ϕ is the phase, the unit vector ê defines the polarization direction
(perpendicular to the propagation axis), and the real-valued function E(t) is the pulse envelope16.
The force exerted by this field moves a charge back and forth along a line, in a plane perpendic-
ular to the laser propagation axis. The alternating changes of linear momentum average to zero
over one optical cycle.

To treat circularly polarized light we allow the unit vector and the envelope to be complex-
valued, and we write the field as 17

E(t) = Re [êÊ(t) exp(−iωt)]. (7)

The complex-valued envelope Ê(t) now incorporates the field phase eiϕ,

Ê(t) = |Ê |eiϕ = ER(t) + iEI(t). (8)

Taking the propagation direction to lie in the horizontal plane we introduce horizontal (H) and
vertical (V) unit vectors, from which we construct helicity vectors [2, §1.5] 18

ê±1 = ∓ 1√
2
[êH ± iêV ]. (9)

The field now appears as the sum of two periodic exponentials; for a single helicity vector the
field construction reads 19.

E(t) = 1

2
êqÊ(t) exp(−iωt)− 1

2
ê−qÊ∗(t) exp(+iωt). (10)

To make evident the rotating nature of the electric field direction, in a vertical plane, we can write
this as

E(t) =
ER(t)√

8
[êH cos(ωt) + qêV sin(ωt)]

+
EI(t)√

8
[êH sin(ωt)− qêV cos(ωt)]. (11)

When q = +1 this field produces a force that twists a charge distribution, at the steady rate of the
carrier frequency ω, in a counterclockwise direction; the field exerts a torque. When q = −1 the

16Typically we choose the direction of linear polarization to be the Cartesian z axis, because this facilitates the evalu-
ation of the dipole interaction when using eigenstates of angular momentum.

17The symbol i denotes the imaginary number i =
√
−1.

18The field associated with positive helicity, ê+1, undergoes rotation of a positive screw as it propagates. When
the field travels toward the observer this appears as a counter-clockwise rotation. In optics this is termed left-circular
polarization. The negative helicity field, associated with unit vector ê−1, corresponds to right-circularly polarized light.
cf. J. D. Jackson, Classical Electrodynamics, (Wiley, New York, 1962), p. 274

19The amplitude Ê(t) associated with exp(−iωt) is traditionally known as the positive frequency part, while Ê∗(t) is
known as the negative frequency part.
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Fig. 6. The Poincaré sphere, with labels of particular polarizations: right circular (R), left circular (L),
linear horizontal (H) and linear vertical (V). [after Fig. 9-3 of E. L. O’Neil, Introduction to Statistical
Optics, (Addison-Wesley, Reading, Mass., 1963); cf. [2] Fig. 1.5-2.]

twisting force is in a clockwise direction. The twisting motion tends to impart angular momentum
to the charge, as it moves in a circular path under the influence of such a field. Unlike the linear
motion forced by linear polarization, the torque and the ensuing circular motion is always in the
same sense – clockwise or counterclockwise.

The unit vector for the most general field, elliptical polarization, is expressible as a superpo-
sition of any two independent unit vectors in the plane transverse to the propagation direction. A
useful choice is the two helicity vectors, with a superposition parametrized by two angles,

ê(ϑ, ϕ) = cos(ϑ/2)ê+1 + eiϕ sin(ϑ/2)ê−1. (12)

The display of these angles, and the resulting polarization, appears on the Poincaré sphere, shown
in Fig. 6. Points at opposite sides of the sphere represent independent, orthogonal unit vectors.

For monochromatic light the motion of the electric field vector, along a line or on a more
general ellipse, occurs at the carrier frequency of the light, ω. However, when an experimenter
introduces modulation of the field this exactly periodic motion need not occur. For example, the
modulation may cause the electric vector, while predominantly linearly polarized, to undergo a
slow, controlled, rotation of the plane of polarization.

When the fields are those within a cavity, or between reflecting surfaces, they are subject to
boundary conditions that select standing waves rather than running waves. Typically the bound-
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aries impose nodes of the electric field at the cavity walls. Within such a bounded region, of
length L in the x direction, the field has the structure 20

E(x, t) = Re ê exp(−iωt)
√

2E(t) sin(kx), (13)

where k is restricted to discrete values k = πm/L for positive integer n.

1.4.2 Intensity

The field constructed in this way is parametrized, in part, by the carrier frequency and the po-
larization direction (or, for elliptically polarized light, the ratio of the two field amplitudes asso-
ciated with helicity vectors ê±1). To quantify the strength of the field-induced force we use the
intensity (see Appendix A.2),

I(t) = 1

2
cε0|E(t)|2. (14)

Each of these parameters is, in principle, under the control of an experimenter, and can have
predetermined time dependence. Detectors exist that can measure each of these parameters, and
techniques exist for crafting pulses with nearly any desired time-dependent combination of these
characteristics [48].

1.4.3 Phase

In practice all laser radiation only maintains purely sinusoidal oscillations for a finite time. In-
evitably flucutations in the phase or frequency alter these after a finite coherence time. The
inverse of this time, the laser bandwidth, characterizes the range of frequencies that contribute
to the radiation. Various models and theoretical techniques exist for treating the random fluc-
tuations that underlie this incoherence [44][2, Chap. 23]. For the present article I shall assume
that the coherence time is much longer than any time interval of interest for radiation-induced
changes (but generally also much shorter than the radiative lifetime).

The phase ϕ originates from several sources. When we idealize the radiation as a beam we
typically express the travelling-wave nature of the field at a point with spatial coordinates x, y, z
through a function such as exp[iΦ(x, y, z, t)] where

Φ(x, y, z, t) = kx(x− x0) + ky(y − y0) + kz(z − z0)− ω(t− t0) + χ ≡ ϕ− ωt (15)

describes the moving wavefronts of the field, periodic in space and time. The real numbers
kx, ky, kz form Cartesian components that define the wave vector k.

The value of this function, and hence the phase ϕ, depends, in part, on the choice of reference
position x0, y0, z0; away from this location there occurs a position-dependent phase. When one
compares the field at the centers of mass for several atoms, there will occur a different phase
for each atom. If the atoms are moving, then there will occur a time dependent phase from the
changing values of atom position. When the atoms are separated by distances comparable to a
wavelength, then deviations from plane-wave behavior (e.g. the curved wavefronts of Gaussian
beams) introduces additional phase differences.

20The factor
√

2 is introduced so that in all cases the mean value of |E|2, averaged over space and time, is |E|2/2.
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The constant χ together with the temporal phase ωt0 describes the moment when the electric
vector of a linearly polarized field passes through zero or, for a circularly polarized field, points
in a specified direction. This moment is not controllable experimentally, although as long as the
field remains that of a (modulated) sinusoid of the sort assumed here, this phase remains constant,
and can be taken to be zero.

Such conditions, and the assumed null phase, can hold only for time intervals shorter than
the coherence time of the laser. For longer times the phase ϕ must be regarded as random.
Such is the case for the phases of pulses that are well separated in time. It is also the case for
fields of different carrier frequency; it is not possible to assign both fields the same moment of
zero-crossing.

The real number χ parametrizes the intrinsic phase of the field emerging from the laser. It
can be regarded as an (unknown) constant for the duration of a coherence time, but over longer
time intervals it describes the inevitable randomness of a laser field.

Although an experimenter is unable to fix the absolute value of the constant phase ϕ, it is
possible to impose phase modulation upon the laser field, e.g. sinusoidal modulation. Such
manipulation alters the frequencies present in the laser spectrum.

1.5 Restrictions

The limitation to discrete quantum states implies a limit on the radiation wavelength of the laser
excitation: bound particles become unbound as their excitation energy increases beyond some
limit, the binding energy. For an electron bound within an atom the result is photoionization.
For an atom vibrating within a molecule the result is photodissociation. Energies beyond the
ionization or dissociation limit are not constrained to be discrete – they can take any value within
a continuum. In turn, the particle is no longer localized; it is not constrained to be found within
a finite volume.

To avoid such situations, and deal only with discrete quantum states, the wavelength of the
radiation must be sufficiently long that the photon energy ~ω does not exceed the binding energy
of the excited state (or states). The limitation to long wavelengths (i.e. laser radiation in the
visible or infrared regions of the spectrum), and correspondingly low-energy photons, allows us
to employ a nonrelativistic description of the system: particle velocities are all much slower than
the speed of light. This approximation is implicit in all of the present discussion.

We must also require that the electric field of the radiation be weaker than the Coulomb
field that holds the electron within the atom, so that the behavior of the bound electron will be
dominated by the forces that provide the structure of the free atom. In the opposite extreme, of a
very intense pulse, the behavior is predominantly that of a charge moving under the influence of
the laser field, and perturbed by a Coulomb force [45]. A relativistic description is then needed.
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2 Interacting with single atoms

Quantum theory offers the basic formalism for dealing with individual atoms exposed to con-
trolled radiation fields. Several experimental techniques provide acceptable approximations to
this ideal. The following paragraphs note some of these examples.

2.1 Particle beams

The simplest experimental realization of a single atom or molecule occurs in particle beams [46].
These are produced by allowing a suitable vapor source – say a noble gas or vaporized solid – to
expand through a nozzle into a vacuum chamber. The atoms pass through a series of apertures,
from which emerges a collimated beam, as shown in Fig. 7. Typically the density of the beam is
sufficiently low that collisions are infrequent, and so the result is an ensemble of essentially free
particles, localized in position and momentum, moving on average with velocity v.

This atomic beam then passes across one or more laser beams, usually at right angles to the
laser-propagation axes. In moving with velocity v across the spatially varying laser-beam profile
(typically a Gaussian) of electric field F(x), an atom experiences a time varying electric field
E(t) = F(x/v). (Appendix F.1 provides more details.)

Because there is a distribution of velocities within the atomic beam, not all atoms experience
the same field duration. Furthermore, because of velocity-imparted Doppler shifts, proportional
to the velocity v⊥ transverse to the beam, the atoms experience different laser frequencies. In
consequence, one observes an average over various atomic conditions. Appendix F discusses
these and other aspects of beam interactions that lead to averages.

2.2 Trapped particles

Numerous techniques exist to obtain single isolated ions or atoms, held in place (in vacuum) by
suitable electric and magnetic fields [47]. Beams of charged particles can, by use of suitably
controlled electromagnetic fields, be slowed and brought to rest, held by electric and magnetic

Fig. 7. Schematic presentation of atomic beam excitation: Atoms emerge from a vapor source into vacuum,
through apertures (a spatial filter), forming a collimated beam. This passes through a laser beam (the
excitation region), which produces changes in the atom internal structure. A beam detector monitors the
result.
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Fig. 8. Schematic presentation of trapped atom excitation: A travelling pulse of near-monochromatic radia-
tion passes a stationary (trapped) atom. The travelling field appears, to the fixed atom, as a time-dependent
electric field transverse to the propagation direction.

forces within a confined region. Alternatively, neutral beams can be photoionized within regions
where trapping fields are present, and held there by suitable fields. Conceptually simpler are
the various magneto-optical traps that can, when present within a cold sample of gas, trap an
individual atom. Section 2.3 below mentions arrays of traps for neutral particles.

Once a particle is trapped, it can be placed within the relatively narrow waist of a focused
laser beam, and there be subject to controlled radiation. It is possible, with suitable pulse-shaping
techniques, to irradiate a single trapped atom with a pulse whose temporal and frequency char-
acteristics are crafted to produce a desired result [48]. Figure 8 shows the essential elements of
the interaction: a travelling electromagnetic wave and a stationary atom.

In this way it is possible to make repeated observations upon a single atom. Quantum theory
provides predictions of time averages of such observations – of sets of histories that provide the
counterpart of ensemble averages.

2.3 Optical lattices

An electric dipole in an inhomogeneous electric field possesses a spatially varying potential en-
ergy −d ·E(r). Thus it experiences a force (the negative gradient of the energy) in the direction
of the field gradient. When the dipole is an induced moment, proportional to the electric field,
then the force is proportional to the gradient of the square of the electric field, i.e. to the gradient
of the intensity. This is termed variously, the gradient force and the ponderomotive force.

The required potential energy of the induced dipole is obtained from the cycle-averaged
square of the electric field as

U = − 1

2
α(ω){|E|2}av, (16)

where α(ω) is the the frequency-dependent (dynamic) polarizability; cf. Sec. 10.3.2. The force
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resulting from this energy is 21

F = −∇U = 1

2
α(ω)∇{|E|2}av. (17)

Macroscopic dielectric particles are typically attracted into regions of high field. It is this behav-
ior that makes possible the use of tightly focused laser beams as “optical tweezers”. For an atom
or molecule the frequency dependence of the polarizability changes sign as the frequency varies
from red to blue about a resonance, and so the force can either repel the particle from regions of
intense field or attract the particle toward a high field region.

For light near resonant at a Bohr frequency ωB , the induced dipole will be in phase with
the electric field if the carrier frequency ω is smaller than the resonant frequency, i.e. it is “red-
detuned”. The gradient force will then be in the direction of increasing field, and the particle
will be drawn toward regions of high intensity. A “blue-detuned” laser field induce a force that
repels the particle from the high-field region. A standing-wave optical field will, through this
mechanism, provide a periodic array of potential troughs in which cold atoms will be trapped.
A combination of two orthogonal standing waves will create an optical lattice of wells in which
cold atoms, or Bose-Einstein condensates, can be trapped [49].

2.4 Atoms in solids

Stationary quantum systems described by a few discrete quantum states can be obtained in var-
ious other ways. For example, suitable chemical preparations can create impurity atoms held
within a solid matrix. The electrons of such atoms are held by both Coulomb attraction to a
nucleus and repulsion from nearby atomic electrons. Although experiments may not distinguish
between individual atoms, each one can have well-characterized discrete energies, and can be
regarded as a simple atom of the sort discussed here [50]. To describe the aggregate collection
of atoms one must include an average over the various atom environments, as discussed in Sec.
9.1.

Other techniques are used to fabricate small solid regions in which electron-hole pairs are
localized – quantum dots [32]. Because the excitations involve confined motion, the energies are
discrete. The theory presented here provides a description of the laser-induced changes to such
excitations.

2.5 The isolated-atom idealization

The discussion that follows will be based on several assumptions about quantum systems inter-
acting with optical radiation.

• No collisions

• No radiative decay

• No interruptions of strict laser periodicity

• No thermal surroundings

21The derivative operator ∇, used to produce the gradiant of a scalar field is a vector with Cartesian components
{∂/∂x, ∂/∂y, ∂/∂z}.
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• No random long range interactions.

Given these assumptions, we deal with coherent excitation of a single atom 22. The relevant equa-
tion of motion is the time dependent Schrödinger equation (TDSE) for the statevector, discussed
in Sec. 5.

2.6 Simple questions

Numerous questions come to mind when considering an atom exposed to radiation, most no-
tably: What is the effect of a particular pulse of radiation? Alternatively, one might ask: Given
some initial probability distribution of quantum states, how can one produce a desired final dis-
tribution? That is, what choice of radiation parameters – carrier frequency, pulse duration, peak
intensity, etc. – will produce some desired change in the quantum state 23.

To answer such questions quantitatively it is necessary to have an equation of motion for the
probabilities, i.e. some differential equation of the form

d

dt
Pn(t) = ? ? (18)

in which the right-hand side depends upon radiation parameters as well as a set of populations.
Given such a set of differential equations we can, in principle, carry out the implied integration,
starting from specified initial conditions, say Pn(0). Section 4.2 and Appendix H.1 provide
examples of these equations.

Several forms of these equations have merit; the choice depends, in part, upon which of sev-
eral regimes of laser intensity holds interest. The coherent-excitation regimes, and the associated
idealized physical descriptions, fit generally into three classes:

Weak: In this regime an individual pulse has very little effect upon the initial probability
distributions; it represents a perturbation of the initial state, and can be treated by time-
dependent perturbation theory, as mentioned in Sec. 6.1.

Strong: In this regime there occurs a significant change in probability distributions; Rabi
oscillations, discussed in the following sections, are an example. Perturbation theory fails,
and one must find alternative approaches. This is the regime treated in the present review,
based on equations of motion for a few selected quantum-state probabilities.

Ultrastrong: When the pulse is sufficiently intense, the electric field of the laser over-
whelms the Coulomb field that binds the electrons to the nucleus, and photoionization can
occur within a few optical cycles 24. The use of a few essential bound quantum states, and
their equations of motion, no longer provides a satisfactory description and new models,
alternative approaches, are needed [52], often based on numerical evaluation of wavefunc-
tions [53]. I will not discuss this regime.

22It proves convenient to refer to the system as an “atom”, though the descriptions apply equally well to other systems
with discrete bound energies.

23 Traditionally the change was from an initially populated ground state, but more recent interest lies with other states,
even superpositions of states.

24Under suitable conditions stabilized bound states may exist even in such very strong fields [51].
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3 Picturing changes

Because the uncertainty principle limits the simultaneous measurement of position and momen-
tum (hence velocity), it is not possible to follow any details of particle trajectories within the
small confines of an atom; only statistical properties of motion have possibility of observation. I
will offer several ways of visualizing the effect of optical radiation, starting from a rather clas-
sical portrait of the sort that Lorentz might have used, relating this to the wavefunction portraits
that form the basis of quantum chemistry, and concluding with a rather abstract description based
on the use of statevectors in Hilbert space.

3.1 Classical force

To picture most graphically the effect of laser radiation upon an atom we can consider the effect
of an electric field acting upon an electron bound within an atom. Lorentz suggested picturing the
electron, a point particle, as subject to a steady Coulomb binding force which holds the electron
in an equilibrium position, a picture that can be made exact with the aid of quantum theory (cf.
Appendix I). The inevitable wavelike properties of a bound electron, imposed by quantum theory,
forces us to picture a distribution of negative electric charges – an electron cloud.

Acting upon such a charge cloud the electric field produces a time varying force. The simplest
illustration is the force produced by linearly polarized light, say in the x direction, as in eqn. (6)
with unit vector êx. This field exerts a periodic force, alternately in the +x direction and then in
the−x direction, see Fig. 9. Responding to this force, the electron cloud must move, periodically
toward +x and then toward −x. This motion appears as a “shaking” of the charge cloud at the
radiation frequency ω 25.

When the frequency of the radiation satisfies the Bohr condition, eqn. (2), this simple periodic
motion of the charge cloud undergoes a gradual secular change, a distortion of the charge cloud
into a distribution recognizable as the result of an atomic transition – a gain of internal energy,
from the field.

The effect of a classical periodic force upon harmonic motion is well known, familiar to
every child who has mastered the art of a playground swing: when the force is in phase with
the motion, then there occurs an increase in the amplitude of the motion – an increase of swing
energy. When the force is timed to oppose the velocity, then the motion diminishes – the swing
energy decreases. Similar effects are to be expected, and are observed, in the action of a periodic
electric field upon the motion of a charge cloud. Specifically the atom, having gained energy
from the field, then proceeds to lose it and return to the initial unexcited state. This gain and
subsequent loss occurs periodically; the frequency is known as the Rabi frequency [2, §3.4].

3.2 The wavefunction

The charge-cloud picture of an atomic transition is most directly presented by means of a wave-
function [54]. For a particle obeying quantum mechanics (say an atomic electron), all measurable

25Circularly polarized light forces a “spinning” motion of the charge cloud, about an axis through the center of mass.
This motion is not evident for a charge distribution that has cylindrical symmetry about the rotation axis, as does the 1s
state of hydrogen, but it becomes evident for excited states whose charge distributions have angular nodes.
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Fig. 9. The electric field of the laser forces oscillations of the electron cloud

properties are deducible from a wavefunction Ψ(t, r) such that the probability of electron being
at position r at time t is proportional to the absolute square

P (t, r) = |Ψ(t, r)|2. (19)

The electron must be somewhere, and so the spatial integral, at any time, must be unity,∫
dr |Ψ(t, r)|2 = 1. (20)

The electron carries an electric charge, and so the probability density |Ψ(t, r)|2 times the electron
charge e bears interpretation as the charge density. The expectation value of the electric dipole
moment, needed for evaluating the influence of the atom upon radiation (see Appendix A.5), is
evaluated from the integral

〈d(t)〉 = e

∫
dr r |Ψ(t, r)|2. (21)

The exact distribution of charge probability, often termed an electron orbital [55] [2, §19.1]
ψ(r), is a solution to the time-independent Schrödinger equation, a second-order partial differ-
ential equation supplemented by boundary conditions, whose multiple solutions I here label by a
simple integer n, 26[

− ~2

2m
∇2 + V (r)− (En − E∞)

]
ψn(r) = 0. (22)

26The presence of the constant E∞ here is in keeping with the convention that bound energies En should be positive,
measured from the smallest value E1. The combination En −E∞ is therefore negative for bound states; positive values
represent scattering states, available for any energy.
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The second-order spatial derivative expresses kinetic energy; the potential energy – responsible
for the binding force – is V (r). Here E∞ is the minimum energy required for photoionization
and En, the energy of state n, is the energy of excitation above the ground state.

To complete the mathematical definition of the quantum system we require boundary condi-
tions. For bound states (those for which En < E∞) these are that the wavefunction should be
confined in space,

ψn(r) → 0 as r →∞. (23)

With this constraint the solutions for positive values of (En − E∞) exist only for particular
discrete values (the eigenenergies).

For a particle that can exist in two, and only two, quantum states, we describe the possible
probability distributions with two single-particle wavefunctions (orbitals), ψ1(r) and ψ2(r), such
that, if the particle is known to be in state n, and is free from external disturbances, its spatial
distribution is (independent of time),

Pn(t, r) = |ψn(r)|2. (24)

Because, by assumption, the particle can only be found in one of these two quantum states, then
even when external forces are present the wavefunction must always be some superposition,

Ψ(t, r) = c1(t)ψ1(r) + c2(t)ψ2(r), (25)

with time-varying complex-valued coefficients cn(t). The probability of the electron being in
state n at time t is

Pn(t) = |cn(t)|2, (26)

and hence the cn(t) are probability amplitudes. The probability of the electron being at position
r at time t is

P (t, r) = P1(t)|ψ1(r)|2 + P2(t)|ψ2(r)|2 + 2 Re [c1(t)∗c2(t)ψ1(r)∗ψ2(r)]. (27)

The first two terms are recognizable as expressing the individual charge distributions – these
one expects from classical probabilities. The final term expresses quantum mechanical interfer-
ence; it makes possible nodes of zero probability from individual orbitals whose probabilities are
everywhere nonzero.

Free-space orbitals can be classified according to their spatial symmetries, such as are labeled
with orbital angular momentum and parity. (By definition, odd parity wavefunctions undergo a
sign change when the coordinates are reversed.) These labels permit statements of selection rules
governing transitions; cf. Sec 8.1.

3.3 Wavefunction changes: Distortion and excitation

A simple semiclassical description 27 of laser radiation acting upon an atom is as follows. The
laser provides a periodic electric field. This periodic field in turn exerts a periodic force upon

27The term “semiclassical” appears often; it refers to physics in which the atom or other quantum system obeys laws
of quantum mechanics, while the radiation field obeys only the classical Maxwell field equations (cf. Appendix A.1) and
is not quantized.
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1s 2px

Fig. 10. Slow transformation of orbital in 1s → 2px transition. The frame at the left shows the initial
charge distribution for the 1s orbital, the frame at the right shows the charge distribution for the 2px orbital.
The middle frame shows a superposition of these two orbitals. With time the charge distribution proceeds
through each of these frames, from left to right, and then from right to left, as the excitation probability
underges Rabi oscillations. Colors indicate phase. [after pictures generated using the Java applet from
http://www.falstad.com/qmatomrad/]

bound electrons. (Because the atom nucleus is much more massive, it remains essentially sta-
tionary.) Over time this periodic force adds energy to the bound electrons – a transition occurs
between discrete states of internal energy of the atom, see Fig 10. Subsequently a reversing
transition occurs as energy leaves the bound electrons.

A very nice graphical illustration of this process, an animated version of Fig. 10, has been
created by Paul Falsted, available from his web site,

http://www.falstad.com/qmatomrad/. (28)

There one can see, for example, the effect of a periodic electric field, directed along the x axis
and resonant with the 1s−2p transition of hydrogen, on the two relevant hydrogenic orbitals: the
ground state 1s orbital (null orbital angular momentum, even parity) and the excited-state 2px

orbital (unit orbital angular momentum, odd parity, selected by electric field polarization from
the three possible degenerate 2p orbitals px, py, pz appropriate to linear polarization; the orbitals
p−1, p0, p+1 are appropriate to angular momentum) 28.

One sees, in the Java applet, at first a small periodic wiggling of the spherically symmetric
charge cloud of the 1s state. These are small perturbations of the otherwise stationary charge
distribution at the radiation frequency ω. It is during this initial time that the Lorentz model
applies: the electron behaves like a driven harmonic oscillator, moving about an equilibrium
position under the influence of a periodic force.

Over many cycles at the driving frequency ω one observes a distortion of the cloud: a nodal
surface appears, and the cloud takes on an increasingly bimodal appearance, though still subject
to a continual small oscillation along the x axis. The charge distribution is distinctly asymmetric.
A diagram shows the internal energy steadily increasing.

28The wavelength of the 1s − 2p transition in hydrogen, responsible for the “Lyman α” spectral line, lies in the far
ultraviolet, at 121.6 nm; it has not been possible to demonstrate Rabi oscillations with this short wavelength. Amongst
other problems, the radiation will simultaneously photoionize the excited state. Rydberg atoms, those with large principal
quantum number, offer better choices for demonstrations but not for simplest picturing of wavefunctions because they
have more nodes [56].

http://www.falstad.com/qmatomrad/
http://www.falstad.com/qmatomrad/
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In time the charge distribution becomes that of the 2px orbital of hydrogen: two lobes of
equal probability but opposite sign. At this moment a transition has been completed, 1s → 2p,
and the internal energy is that of a 2p state.

But, with continued presence of the periodic driving field, the wavefunction continues to
respond. It continues to undergo small oscillations together with a gradual change of form, until
it appears once more as the spherical 1s distribution, and the energy has returned to that of the
ground state.

These effects continue as long as the field is present: a rapidly varying perturbation at the
driving frequency ω (i.e. a shaking of the charge cloud), together with a slower periodic varia-
tion of excitation probability (a distortion of the charge cloud), at the Rabi frequency Ω [57] [2,
§2.7]. As will be noted below, the latter is a measure of the cycle-averaged interaction energy
between atom and field, and can be altered by changing the intensity of the light. If the field is
that of eqn. (6) then the Rabi frequency is Ω = −d12E/~, where d12 is the electronic transition-
dipole moment. The square of the Rabi frequency is proportional to the oscillator strength and
the intensity. Subsequent sections of the present review provide the theoretical basis for un-
derstanding the quantitative properties of Rabi oscillations and other manifestations of coherent
excitation.

The picture presented here, of periodic linear displacements of the electron charge-cloud
and slower distortions, holds for an electric field that is linearly polarized. When the field is
circularly polarized there is no linear displacement. Instead the atom undergoes rotation under
the influence of the field-induced torque. Again slow distortions occur, at the Rabi frequency,
but these changes occur in a framework that rotates steadily at the carrier frequency.

Periodic distortion of an electron cloud, as discussed here, relies on the two-state approxi-
mation. When the electric field becomes sufficiently strong (i.e. the interaction energy exceeds
the binding energy), this simple picture fails. Instead, one must include an infinite number of
additional quantum states, including an ionization continuum, in order to depict more extensive
distortion of the wavefunction (cf. Sec 10.3.2). These additional states allow a portrait in which,
for example, a single cycle of the field forces the electron cloud to leave the vicinity of the
nucleus and move away – ionization occurs [58].

3.4 The statevector; Hilbert spaces

The wavefunction of a single particle offers a simple interpretation of the particle as a probability
cloud – a distribution of electric charge when the particle is an electron. When one considers the
several electrons that comprise all atoms heavier than hydrogen, there is a challenge to depict
the resulting multi-dimensional wavefunction: for two electrons it is a function of six spatial
dimensions and two spin coordinates. The description of atoms within a molecule requires an
even larger number of dimensions, associated with rotational and vibrational degrees of freedom.
Thus for all but the simplest systems, those whose important properties are associated with only
one or two spatial coordinates, there is little possibility of extracting simple pictures of excitation
dynamics from wavefunctions 29. An alternative approach has therefore found favor, one based

29An important exception occurs with descriptions of wavepackets formed from molecular vibrational states. Pictures
of these provide valuable insight into the dynamics of laser-induced unimolecular reactions, such as photodissociation;
cf. Sec. refsec-wavepackets.
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on the use of an abstract vector space to represent probability amplitudes. This approach forms
the basis of the present review.

The needed quantum mechanics is based upon the recognition that, whatever the electron
trajectories may be within the confines of an atom, whatever may be the rotational and vibra-
tional motions of the molecular framework, the internal energies of atoms and molecules form
a discrete set that can be ordered, in part, by increasing value, E1, E2, . . ., together with a con-
tinuum for energies above some limit. For any atom or molecule there are an infinite number of
discrete internal energy states. Each can often be assigned various identifying quantum-number
labels, such as those associated with angular momentum; the single index 1 or 2 would then be
understood as standing for the more complete list of identifying labels.

Because the quantum states of interest here are discrete, they can be associated with an ab-
stract vector space, a mathematical construct in which each individual coordinate is associated
with one of the possible quantum states. There are as many dimensions as there are quantum
states; in many situations there is an infinite number of these.

The multidimensional vector spaces of interest in quantum mechanics have several distin-
guishing properties that mark them as Hilbert spaces [59]. Appendix B.2 discusses the basic
properties of such constructs and summarizes relevant notation. In such a space lengths and an-
gles are well defined, and the coordinates, along the coordinate axes, are complex-valued num-
bers, i.e. with real and imaginary parts. At the heart of the mathematics of quantum mechanics
there is therefore the connection 30

quantum states ↔ Hilbert-space unit vectors. (29)

As it turns out, most coherent excitation by lasers, and the consequent state manipulation, in-
volves relatively few quantum states – primarily only those for which the laser frequencies sat-
isfy (at least approximately) the Bohr resonance condition (2). Thus the Hilbert space of interest
has finite dimension, say N .

A basic postulate of quantum theory is that, because the possible internal structures of the
atom – the quantum system – must be expressible as one of the allowed quantum states any
particular quantum state can be represented as a single point in this abstract space. This system
point can be regarded as a vector from the coordinate origin: the statevector Ψ.

The connection between the abstract mathematics of a Hilbert space and the world of exper-
imental physics occurs through the coordinates of the statevector: the projection of vector Ψ on
axis ψn, denoted 〈ψn|Ψ〉 or 〈n|Ψ〉, when squared absolutely, is the probability Pn,

Pn = |〈ψn|Ψ〉|2. (30)

This equation lies at the heart of the association of quantum theory with the mathematics of
Hilbert space – the mapping of physically observable sets of atomic properties that distinguish
each quantum state, onto the mathematics of an abstract vector space in which the coordinates are
complex numbers. It is notable that this postulated connection leaves the phase of the probability
amplitude unspecified; only its magnitude has direct connection with probability.

30For greatest clarity one should distinguish the unit vectors in Hilbert space with the quantum states with which they
are associated, but common usage applies the term “state” to both concepts, quantum state and Hilbert-space unit vector,
speaking of the latter as basis states.
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3.5 Hilbert-space coordinates and probability amplitudes

As is the case with any vector, in any mathematical space, the statevector must be expressible by
its coordinates. With the present notation this construction reads

Ψ = c1 ψ1 + c2 ψ2 + · · · , (31)

where cn is a complex-valued number, the probability amplitude, whose absolute square is the
probability, Pn = |cn|2. Because probabilities should sum to unity 31, the numbers cn are
constrained by the normalization

|c1|2 + |c2|2 + · · · = 1, (32)

and the statevector has unit length,

|Ψ| = 1. (33)

It may happen that the system is known to be in a single quantum state, say state 1. Then the
statevector has the form

Ψ = eiφ1ψ1, (34)

where φ1 is a real-valued phase 32. In all other cases the statevector is a superposition of basis
states. Because the complex-valued probability amplitudes cn require not only magnitudes |cn|
but phases φn for complete definition, the statevector generally incorporates phase relationships
between its constituent coordinates. These have no counterpart in conventional probability the-
ory: the statevector generally is a coherent superposition of quantum states, as expressed by eqn.
(31).

When one deals with degenerate quantum states, i.e. states sharing a common energy, the
choice of unit vectors is somewhat arbitrary 33. This flexibility in choosing a Hilbert-space co-
ordinate system means, for example, that what appears to be a superposition of two states may,
by suitably redefining basis states, appear as a single quantum state. Such coordinate trans-
formations are an example of a traditional goal of physics: to find a simple way of expressing
complicated behavior. I will discuss several examples.

3.6 Time dependence

When excitation occurs, the state of motion changes; there occurs a corresponding time depen-
dence of the statevector, indicated by including a time argument, Ψ(t). When the statevector
varies with time, then the projections onto the fixed reference frame also change with time,
thereby providing the time-dependent probabilities

Pn(t) = |〈ψn|Ψ(t)〉|2. (35)

31Section 5.8 discusses situations which violate this requirement.
32The overall phase of the statevector, φ1 in this case, is not observable. Thus it is usually convenient to omit it. As

will be noted, this overall phase choice is related to the arbitrariness in setting the zero of energy.
33When external fields act on the atom the degeneracy is less (is at least partially “lifted”). It is common to use the

symmetry properties of such a field, expressed using the mathematics of group theory, to label the resulting quantum
states. In the absence of any external field we are at liberty to use any convenient group representation to classify the
degenerate states; each such classification leads to a different Hilbert-space basis of unit vectors; cf. Appendix C.4.
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It is customary to assume, as I shall, that the N quantum states associated with N -dimensional
Hilbert space are complete, meaning that certainly, with unit probability, the system will be found
in one of these states. This requirement means that the individual-state probabilities sum to unity

Σn=1,NPn(t) = 1. (36)

It follows that the statevector has unit length at all times,

|Ψ(t)|2 ≡ |〈Ψ(t)|Ψ(t)〉|2 =
∣∣∣Σn〈Ψ(t)|ψn〉〈ψn|Ψ(t)〉

∣∣∣2 = Σn=1,NPn(t) = 1. (37)

Thus any change to the statevector must be characterizable as a generalized rotation in Hilbert
space 34. The unit sum property is often expressed as a completeness relationship, in which N
orthonormal unit vectors provide an expansion of unity,

Σn=1,N |ψn〉〈ψn| ≡ Σn=1,N |n〉〈n| = 1. (38)

3.7 Two-state Hilbert spaces

The simplest example of a Hilbert-space description is that of a two-state system (or two-level
atom) [10, 60], as in the hydrogenic excitation example discussed above. We have two fixed unit
vectors, ψ1 and ψ2, and the statevector must be some superposition of these, say 35

Ψ(t) = c1(t)ψ1 + c2(t)ψ2. (39)

The two corresponding propabilities P1(t) and P2(t) are the squared projections of the statevec-
tor upon the Hilbert-space axes,

P1(t) = |c1(t)|2, P2(t) = |c2(t)|2. (40)

Figure 11 illustrates this abstract space.

3.7.1 The Bloch sphere

The time dependent coordinates cn(t) are generally complex-valued functions of time; we there-
fore require four real numbers to specify the projections of the statevector. However, the condi-
tion of unit norm, eqn. (33), provides one real number, so that only three real-valued parameters
are required. One way to choose these is to write the statevector in a form akin to eqn. (12),

Ψ = exp(−iζ)
[
cos(θ/2)ψ1 + sin(θ/2)e−iφψ2

]
, (41)

meaning

c1 = exp(−iζ) cos(θ/2), c2 = exp(−iζ − iφ) sin(θ/2). (42)

34The motion may appear as a rotation in the full N -dimensional Hilbert space, but the overall effect of pulsed change
may appear as a reflection within a subspace .

35When dealing with quantum information such a system is known as a qubit; the states are conventionally denoted
|0〉 and |1〉. When treating spin-half particles the states are typically denoted |↑〉 and |↓〉. .
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Fig. 11. The statevector for two dimensions, showing projections onto the two unit vectors ψ1 and ψ2.
Although two dimensions – a single angle and fixed unit length – often suffice to describe a statevector,
more generally a third dimension is needed, to describe the relative phase between two projections, as
discussed in the following section.

The probabilities associated with this expression,

P1 = cos2(θ/2) = 1

2
[1 + cos θ], (43)

P2 = sin2(θ/2) = 1

2
[1− cos θ], (44)

are independent of the relative phase φ (and of the overall phase ζ), and sum to unity. The
connection between the angle parametrization and the probability amplitudes can be seen from
the following table.

θ c1 c2
0 1 0
π/2 1/

√
2 eiφ/

√
2

π 0 eiφ

3π/2 −1/
√

2 eiφ/
√

2
2π -1 0
4π 1 0

The two angles represent a statevector as a point on a unit sphere, the Bloch sphere 36 [2,
§8.1]. The south pole of this sphere represents population entirely in state 1, while the north pole
represents population in state 2. The equator represents a phased 50:50 coherent superposition
of the two states. This parametrization is similar to that used with the Poincaré sphere, Fig. 6,

36This abstract vector space has real-valued coordinates; it is an example of a state space rather than a Hilbert space.
Mathematicians refer to the Bloch sphere, or the Poincaré sphere, as Riemann spheres that provide a “compactification
of the complex-number line”.
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for describing general elliptical polarization of light, as shown in eqn. (12). As with that picture,
points on opposite sides of the Bloch sphere represent orthogonal states.

The connection between the Bloch angles and the probability amplitudes cn is often ex-
pressed through bilinear products of the two probability amplitudes (see also Appendix H.1):

2c1c∗1 = 2 cos2(θ/2) = 1 + cos θ = 2P1,
2c2c∗2 = 2 sin2(θ/2) = 1− cos θ = 2P2,
2c1c∗2 = 2eiφ cos(θ/2) sin(θ/2) = eiφ sin θ.

(45)

Section 7 illustrates the usefulness of the Bloch sphere for presenting a simple visualization of
various pulse effects.

3.7.2 Multiple states and the Bloch sphere

The general construction of a statevector involves N quantum states and a corresponding N -
dimensional Hilbert space,

Ψ = c1ψ1 + c2ψ2 + · · ·+ cNψN . (46)

This specification involves N complex-valued amplitudes cN , meaning 2N real numbers. The
overall normalization requirement Σn|cn|2 = 1 provides one number, and the overall phase,
unobservable, provides a second number. Thus we require N − 1 pairs of real numbers. For this
purpose it is possible to generalize the two Bloch-sphere angles (θ, φ) to a set of N − 1 angle
pairs,

(θ1, φ1), · · · , (θN−1, φN−1).

In this way we expect that a statevector in N dimensions can be represented by N − 1 points on
the Bloch sphere.

One way to associate the states of certain classes of N -state systems with sets of two-state
systems follows from the use of a Morris-Shore (MS) transformation, as described in Appendix
M. In the MS basis each point on the Bloch sphere moves independently, in accord with well
defined two-state equations. But their connection with the originalN -state description is through
a transformation that makes evolution indirectly associated with the original Hamiltonian.

More generally one can use a mathematical device used by Majorana to express the connec-
tion between a set of 2S particles, each a two state system (and hence representable as spin one
half cf. Appendix C.2), and a statevector having 2S + 1 Hilbert-space coordinates (and hence a
representation of total spin S) [61]. Applied to the present case the Majorana approach considers
the N = 2S + 1 roots xn of the polynomial equation 37

ΣN
n=1cn hn−1x

n−1 = 0. (47)

Majorana chose the parameters hn to be

hn =
(−1)n+1√

(N − n)!(n+ 1)!
, (48)

37The statevector coefficients cn have indices n = 1, . . . , N −1. These are associated in the polynomial with powers
xN−1, · · · , x0.
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but other choices can be used (e.g. hn = 1). Each complex-valued root can be expressed as a
pair of angles,

xn = tan(θn/2)eiφn . (49)

Each of these define a point on a unit sphere – the Bloch sphere The complete description of
the statevector consists of N − 1 points on the Bloch sphere. This association, between the N
probability amplitudes cn and the set of N − 1 Bloch angles, holds for any statevector.

The Majorana decomposition, eqn. (47) taken with the parameters of eqn. (48), is particularly
useful when theN -state RWA Hamiltonian is expressible using matrix representations of angular
momentum, i.e. spin matrices, as defined in Appendix C.2. Sec. 11.3 discusses this case. With
such a Hamiltonian the motion of the statevector in N dimensions has portrayal as a rotation,
defined by three Euler angles 38. The motion of the points on the Bloch sphere therefore undergo
rotations defined by these same Euler angles. Thus for this class of N -state Hamiltonians there
is a simple portrait of time evolution of N − 1 points on the Bloch sphere.

3.8 Typical goals

Traditional goals for pulsed excitation include the production of complete population transfer,
from the initially populated state 1 to the excited state 2,

Ψ = ψ1 → eiϕ ψ2. (50)

When the phase ϕ is zero this corresponds to a rotation of the statevector by 90 degrees (a rotation
of the Bloch angle θ by π). Alternatively, we might wish to maximise the induced dipole moment
(for use with nonlinear optics, cf. Appendix A.5), by producing the coherent superposition

Ψ = ψ1 → βψ1 + αψ2, |α|2 + |β|2 = 1. (51)

For null phase this corresponds to a rotation of the statevector by 45 degrees (a rotation of the
Bloch angle by π/2).

Each of these objectives can be obtained by producing a predetermined portion of a Rabi
oscillation. However, other procedures are possible, often providing advantages. In particular,
alternative schemes based upon adiabatic changes are much less sensitive to details of the pulse;
they are basically independent of the time integral of the Rabi frequency, for example, and are
therefore termed robust. Later sections will discuss some of these alternatives.

Although population changes have traditionally drawn attention, the more detailed manipu-
lation of quantum states needed for quantum information processing require the ability to alter
phases. One might then wish to produce the change

Ψ = ψ1 → eiϕ ψ1. (52)

Such a phase change only becomes observable when there are several states; it might be imple-
mented in a two-state system as the alteration

Ψ = c1ψ1 + c2ψ2 → eiϕc1ψ1 + c2ψ2. (53)

This is a special case of the general quantum-state manipulation

Ψ = c1ψ1 + c2ψ2 → c′1ψ1 + c′2ψ2. (54)
38In this context the Euler angles have no connection with rotations of objects in ordinary Euclidean space; they are

simply three parameters.
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3.9 Equations of motion for changes

To describe changes of an atom subject to external fields we require an equation of motion for
the probabilities – or for probability amplitudes. There are two regimes of excitation that have
simple equations.

• Historically, the first regime to be considered was that of thermal radiation or, more gener-
ally, incoherent light sources – those having broad bandwidth, such as occur in the atomo-
spheres of stars or laboratory plasmas. The approach was first suggested by Einstein, and
leads to a set of first-order ordinary differential equations for probabilities – rate equations
for changes in probabilities [2, §2.2].

• The second regime, that of coherent excitation, became of practical interest with the intro-
duction of laser light sources. It relies on differential equations for probability amplitudes
– the time dependent Schrödinger equation [2, Chap. 3].

Each of these sets of equations is an idealization, appropriate to different assumptions about the
excitation. A more generally applicable approach requires a formalism that bridges these two
extremes, a density matrix, cf. Sec. H.1.
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4 Incoherence: the Einstein equations

The early discussions of radiative transitions followed the approach of Einstein, who postulated
that one could describe the effects of resonant radiation by means of simple rate equations that
express rates of change of number densities as being the difference between gains and losses [2,
§2.2]. Three mechanisms contribute to this change:

I. The absorption of radiation, proportional to the radiation intensity

II. Stimulated emission, proportional to the intensity;

III. Spontaneous emission of radiation, independent of intensity and parametrized by the Ein-
stein A coefficient A21.

The resulting radiative rate equations provide a set of coupled ordinary differential equations for
the probabilities Pn(t), having the form

d

dt
Pn(t) = ΣmRmn(t)Pm(t), (55)

where Rmn(t) is the rate of change in level n produced by level m, i.e. the transition probability
per unit time for m → n. These coefficients incorporate the three mechanisms itemezed above.
These coupled linear differential equations take simplest form when we place the probabilities
into a column vector (cf. Appendix B.1)),

P(t) =

 P1(t)
P2(t)

...

 . (56)

The equations then appear as a matrix equation [cf. eqn. (416)]

d

dt
P(t) = R(t)P(t), (57)

where R is the square matrix of rate coefficients 39.

4.1 The Einstein rates

Rather than deal with radiation beams, and intensity, Einstein considered steady broadband spec-
tral radiation energy density u(ν) in a cavity (with dimension of energy per unit volume per Hz),
and wrote the rate of excitation, from state 1 to state 2, in the form

R12 = B12u(ν). (58)

The radiative deexcitation transitions, 2 → 1, combining stimulated and spontaneous emission,
were postulated to occur at the rate

R21 = B21u(ν) +A21. (59)

39The matrix element Rnm is the rate Rmn
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The connection between the Einstein A and B coefficients, deduced originally from thermody-
namic arguments, is

B21 =
(λ0)3

4~
A21 (60)

where λ0 = 2πc/ω0 is the resonance wavelength of the transition.
Although rate equations, andA andB coefficients, remain widely used, the original equations

require modification for use with narrow-bandwidth radiation. This proceeds by considering the
absorption of a directed beam, such as eqn (6). The relevant rate equation for the incremental
reduction of steady intensity along the propagation axis z, through cold matter, is

d

dz
I(z) = −α(ω)I(z). (61)

Resonant excitation from state 1 to state 2 occurs when a pulse, of carrier frequency ω, passes
through matter. Let the number density of absorbers (atoms in state 1 per unit volume) beN1. In
the absence of any previous excitation (i.e. N2 = 0), the linear absorption coefficient α(ω), with
dimensions of inverse length, is expressible in terms of an absorption cross section σ(ω), with
dimensions area per atom,

α(ω) = N1
σ(ω)
~ω

. (62)

In turn, the explicit frequency dependence can be placed into a single function, either s(ω) or
s(ν) = s(ω)/2π, by writing

σ(ω) = σtots(ν), with
∫ ∞

0

dν s(ν) = 1. (63)

The frequency-integrated cross section can be written in terms of Einstein A and B coefficients
as

σtot =
(λ0)2

8π
A21 =

~ω0

c
B21. (64)

Appendix A.6 defines additional parameters with which to express the ability of an atom to
absorb or emit radiation.

4.2 The two-state rate equations

The radiative rate equations can be expressed in several ways. Expressed in terms of laser inten-
sity I(t) the relevant equations for a two-state atom subjected to narrow-bandwidth near-resonant
radiation read [62]

d

dt
P1(t) = −B12s(ν)

I(t)
c
P1(t) + [A21 +B21s(ν)

I(t)
c

]P2(t), (65)

d

dt
P2(t) = − d

dt
P1(t). (66)
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The radiative rates appearing here can be expressed in several ways, e.g.

R12(t) = B12s(ν)
I(t)
c

= σ(ω)
I(t)
~ω

, (67)

R21(t) = A21 + 2B21s(ν)
I(t)
c

= A21[1 + 2n̄(t)] = A21

[
1 +

I(t)
Isat

]
. (68)

Here n̄(t) is the mean number of interacting photons, i.e. the photon flux I(t)/~ω within the
cross section σ(ω),

n̄(t) =
B21s(ν)I(t)

cA21
=
s(ν)I(t)λ2

4~ω
= σ(ω)

I(t)
~ω

, (69)

and Isat is the saturation intensity appropriate to the carrier frequency ω,

Isat =
~ωA21

2σ(ω)
=

cA21

2B21s(ν)
=

2~c
λ3s(ν)

. (70)

4.3 Solutions to the rate equations

The effects of radiation take simpler form when expressed in terms of the population inversion,

w(t) ≡ P2(t)− P1(t). (71)

With the assumption B12 = B21 appropriate for nondegenerate transitions the rate equation for
population inversion reads

d

dt
w(t) = −R(t) w(t)−A21. (72)

where

R(t) = R12(t) +R21(t). (73)

The solution to this equation is

w(t) = [w(0)− w(∞)] exp
[
−

∫ t

0

dt′ R(t′)
]

+ w(∞). (74)

For steady illumination this solution monotonically approaches the asymptotic value

w(∞) =
−A21

A21 + 2B21s(ν)I(t)
=

−1
1 + I(t)/Isat

=
−1

1 + 2n̄
. (75)

That is, the populations saturate at constant values. The inversion approaches the final equi-
librium value w(∞) at a rate that increases with intensity I(t) (or mean photon number n̄) but
which is never less than the spontaneous emission rateA21. The instantaneous excitation, at time
t, depends on the time integrated intensity (known as pulse fluence),∫ t

0

dt′ R(t′) = A21t+
σ(ω)
~ω

∫ t

−∞
dt′ I(t′). (76)
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Pn

A t

0.21

5

P2

Fig. 12. Excitation probabilityP2 vs. decay lifetimesA t for various intensities of the radiation, as measured
by the mean photon number, n̄ = 0.2, 1, 5. There is initially no excitation. (after Fig. 2.2-2 of [2])

This behavior contrasts with that of coherent excitation, for which the relevant parameter is the
time integral of the electric field amplitude; cf. Sec. 6.2.

The final saturated inversion w(∞) depends upon the ratios of the several rates, but if B12 =
B21, as is the case for nondegenerate transitions, then the inversion can never exceed w(∞) = 0,
meaning in turn that the excitation probability P2 can never exceed P2 = 0.5. This value is only
approached if the stimulated rate is much larger than the spontaneous rate, B21s(ν)I(t) � A21

or, equivalently, n̄� 1, as will occur for sufficiently high intensity I(t). Figure 12 illustrates the
behavior.

4.4 Comments

Such radiative rate equations, supplemented with additional rates for collision-induced popula-
tion changes, have been adequate for the description of numerous environments in which the
radiation is incoherent. Examples include hot dense gases or the atmospheres of stars [63]. But
they are not applicable to excitation of isolated atoms by laser radiation. Such radiation has a
long coherence time; during shorter intervals its effects cannot be described adequately by rate
equations that assume random environmental fluctuations. Instead we require the apparatus of
quantum mechanics, not only to explain the existance of discrete energy levels but also to de-
scribe the changes induced by coherent radiation; cf. Sec. 5 below.

Although the Einstein B coefficients play no direct role in the description of excitation by
coherent light, the notion of spontaneous emission remains of importance. For isolated atoms
in free space the possibility of radiative excitation to a selected quantum state implies an ever
present possibility of spontaneous emission, with a lifetime equal to the inverse of the sum of all
possible spontaneous emission rates from that state. Only laser-induced procedures that are sig-
nificantly shorter in duration than the spontaneous-emission lifetime will be considered in most
of the present article (an exception is the discussion of optical pumping, Sec. 8.3). Because the
spontaneously radiated field is that of a single photon – a single increment of an electromagnetic
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field mode – these rates can be altered by modifying the field modes, say by placing the atom in a
suitable cavity [64], or into a solid whose structure has been designed to allow only selected radi-
ation modes to propagate (a photonic crystal) [65]. Such techniques allow extension of coherent
excitation to various discrete states of solids.
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5 Coherence: The Schrödinger equation

Information about a quantum system that remains free of randomizing disturbances 40 resides
not with probabilities but within a statevector Ψ(t), as discussed in Sec. 3.4. Effects of coherent
changes are therefore described by an equation of motion for Ψ(t),

d

dt
Ψ(t) =?? (77)

As with rate equations, the equation should be linear, thereby allowing superpositions. Because
probabilities must sum to unity 41, the statevector remains of unit length during any procedure.
Changes to the statevector, in its Hilbert-space setting, must therefore fit the form of multidimen-
sional unitary transformations (e.g. rotations or reflections). The relevant equation of motion,
governing the changes induced in the system by laser pulses, as represented by motion of the
statevector in Hilbert space, is the time-dependent Schrödinger equation (TDSE) 42,

d

dt
Ψ(t) = − i

~
H(t)Ψ(t), (78)

involving, on the right-hand side, the imaginary unit i ≡
√
−1 and the time-dependent Hamilto-

nian energy operator H(t) (cf. Appendix B.4). The Dirac constant, ~ = 1.054×10−34 Joule sec,
serves merely to convert energy units into angular frequency units; many authors choose time
scales such that they set ~ = 1.

We wish to find the time dependent statevector Ψ(t), an N−dimensional column vector in
the Hilbert space of physical states, cf. Appendix B.2. To do so we must solve the TDSE subject
to initial conditions that specify the statevector at some time ti, typically taken either as ti = 0
or ti → −∞, before the laser field appears. Usually the required condition is that the statevector
should initially align with one of the unit vectors (i.e. it should represent a single unperturbed
state), say that associated with the quantum state having energy E1.

When used to describe laser-induced changes, the Hamiltonian has two parts:

H(t) = Hat + Hint(t). (79)

The first, constant, contribution, Hat, incorporates the energies of the (bare) atom in the absence
of the laser radiation. The Hilbert-space unit vectors are eigenvectors of this operator,

Hatψn = Enψn. (80)

Its eigenvalues are the observable energies E1, E2, · · ·, of the free, undisturbed atom. Thus, by
construction, the matrix Hat is diagonal (in the basis of physical states); the elements of Hat are
the unperturbed energies of the system, En.

The matrix elements of the interaction Hint(t) can, in principle, be obtained from the wave-
functions of the system. Suppose, for example, that we deal with a single electron, and that the

40The succession of measurements on any quantum system produces random results, unless the system is in an eigen-
state of the measurement operator. The randomness mentioned here is additional beyond that intrinsic randomness of
quantum measurement, and refers to the Hamiltonian itself having random fluctuations.

41Section 5.8 discusses situations which violate this requirement.
42Traditionally the time derivative appears in the TDSE as a partial derivative, ∂/∂t, to allow the inclusion of spatial

coordinates; the equation then applies to a wavefunction Ψ(r, t).
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interaction energy of this electron with the field, at position r and time t is V (r, t). Using the
discrete wavefuntions ψn(r) ≡ 〈r|ψn〉 one can evaluate the matrix elements of the interaction
Hamiltonian as the integral

Hint
ij (t) =

∫
drψi(r)∗V (r, t)ψj(r). (81)

As noted in the following section, the interaction typically allows parametrization in terms of
experimentally measurable quantities (e.g oscillator strengths and intensities) and so it is not
necessary to have any wavefunctions.

An aside: this review concerns excitation by laser radiation, and hence the appropriate form
of the interaction is one in which there is a carrier at the laser frequency ω. All of the mathemat-
ical machinery presented below, with rotating coordinate frames and the rotating-wave approxi-
mation, hold for DC fields (ω = 0) if we take the Bohr frequency to be zero, E2−E1 = 0, i.e. if
we consider degenerate states. Then the interaction strength d12E(t)/~ is termed the Majorana
frequency and the population oscillations are termed Majorana oscillations[2, §3.4].

5.1 Essential states

Only if the carrier frequency nearly matches a Bohr frequency will any appreciable population
ever appear in an quantum state other than those initially populated (cf. Sec. 7.3). Thus although
there may be an infinite number of quantum states, very few of those participate in the excitation
dynamics. We can therefore restrict attention to a finite subspace of the infinite Hilbert space, say
one of N dimensions – the N essential states. In this subspace the statevector has the expression

Ψ(t) = c1(t)ψ1 + c2(t)ψ2 + · · ·+ cN (t)ψN . (82)

Although only N states appear explicitly here, the other states have important effects. They
are responsible for the polarizability of the atom, i.e. for the occurrence of an induced dipole
moment which, when the laser field is present, supplements the direct transition dipole moment.
These produce multiphoton transitions and laser-induced energy shifts. Section 10.3.2 discusses
simple examples.

The expansion displayed in eqn. (82) holds in a fixed Hilbert space, spanned by N unit vec-
tors ψn whose coordinates are the time-varying complex numbers cn(t). Although we speak of
N dimensions, each of the coordinate vectors can be considered as comprising a two-dimensional
space in the complex plane; we require 2N real numbers to specify the location of the statevector.

The probability amplitudes cn(t) of eqn. (82) must be chosen such that the resulting statevec-
tor satisfies the TDSE, eqn. (78). To assure this behavior we substitute the construction (82) into
eqn. (78) and require that the resuting equation be fulfilled along each coordinate. We thereby
obtain a set of N coupled ordinary differential equations for the probability amplitudes. For two
states these are 43

d

dt
c1(t) = − i

~
[E1c1(t) + V (t)∗c2(t)] , (83)

43Although the distinction between V and V ∗ for a classical field involves only a phase, when one treats quantized
radiation the interaction V ∗, originating with the negative-frequency part of the field, is associated with the creation of a
photon, while V , based on the positive-frequency part of the field, is associated with photon annihilation. I have followed
this convention when using complex-valued Rabi frequencies: Ω̂∗ is associated with an increase of field energy while Ω̂
accompanies radiation absorption; see Appendix A.4.
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d

dt
c2(t) = − i

~
[E2c2(t) + V (t)c1(t)] , (84)

where V (t) is the interaction energy Hint(t) evaluated between states 2 and 1. In general this
may be a complex number, but the Hamiltonian must be Hermitian (meaning Hij = H∗

ji) in
order that the statevector should retain unit length; cf. Appendix B.5.

It is important to recognize that, unlike rate equations, the Schrödinger equation treats single
quantum states, not degerate states. To treat degeneracy when describing coherent excitation it
is necessary to treat each quantum state separately; cf. Sec. 9.1.

5.2 Undisturbed statevectors: rotating axes

In the absence of any interaction V (t) the equations for the probability amplitudes are, for each
state,

d

dt
cn(t) = − i

~
Encn(t). (85)

These have the simple solutions

cn(t) = exp(−iEnt/~)cn(0), (86)

and thus the statevector at time t is expressible as

Ψ(t) = Σn exp(−iEnt/~)cn(0)ψn. (87)

This construction can be regarded as expressing a fixed superposition,

Ψ(t) = Σncn(0)ψ′n(t), (88)

of time-dependent basis vectors ψ′n(t),

ψ′n(t) ≡ exp[−iEnt/~]ψn. (89)

Each of these unit vectors rotates, with constant angular velocity En/~, in a complex-number
plane. To visualize the resulting Hilbert-space motion we can express the unit vectors as two-
dimensional axes in the complex plane, ψn = ψR

n + iψI
n and, with the abbreviation ωn = En/~

write

exp(−iEnt/~)ψn = [cos(ωnt)ψR
n − sin(ωnt)ψI

n]
−i[sin(ωnt)ψR

n − cos(ωnt)ψI
n], (90)

thereby displaying explicitly the steady turning of the rotating coordinate axes.
In such a rotating coordinate system the expansion coefficients cn remain fixed, in the absence

of any interaction. More generally, for a constant Hamiltonian that includes interaction it is
similarly advantageous to use a rotating frame to present the description of the statevector. The
particular rotating-coordinate choice of eqn. (89) is known as the Dirac picture or interaction
picture, in contrast to the original rigid framework, known as the Schrödinger picture. The Dirac
picture has the property that the Hamiltonian matrix, in this picture, has no diagonal elements.
In recompense, the off-diagonal elements have exponential phases that vary with time.
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We shall find it more convenient to introduce, in subsequent sections, a third class of frame-
works, known as the rotating-wave picture (see Sec 5.6 below). With this choice the Hamiltonian
matrix has, as diagonal elements, differences between Bohr frequecies and carrier frequencies,
i.e. detunings. Furthermore, under suitable conditions, the off-diagonal elements vary only
slowly with time.

5.3 The electric-dipole interaction

The interaction of bound particles with laser light almost always originates with the electric-
dipole interaction 44 [66]. This means that the interaction energy operator is the projection of the
electric dipole moment d onto the electric field 45,

Hint(t) = −d ·E(t). (91)

Here E(t) is the time varying electric field at the center of mass of the atom. This expression
applies to nearly all commonly considered (i.e. “allowed”) transitions. For a single laser beam
we write the field E(t) as in eqns. (6) or (7).

Typically there exist selection rules [67] (see Sec. 8.1) such that, for a given pair of states i, j
only one polarization direction ê gives a nonzero transition moment. I shall refer to the possible
nonzero array of values for the interaction Hamiltonian, fixed by nonzero dipole transition mo-
ments, as a linkage pattern 46. The possible dipole transition moments – the possible linkages –
are fixed for any given atom or molecule; statevector manipulation takes place through control
of the magnitude and direction of the electric field E(t).

The dipole transition moment between states i and j, projected onto the field unit vector ê, is

dij = 〈ψi|d·ê|ψj〉. (92)

For a single-electron orbital this is obtainable from the spatial integral

dij = e

∫
drψi(r)∗r·êψj(r), (93)

where e is the electron charge. Alternatively, the magnitude of the dipole moment (but not the
phase) can be extracted from experimental spectroscopic data such as oscillator strengths or
Einstein A coefficients; see Appendix A.6.

The directional properties of the electric field, relative to a coordinate system fixed with the
atom, appears here embodied in the scalar product of d with E. For linear polarization we can
write the two-state interaction as

V (t) = −d12E(t) cos(ωt− ϕ) ≡ ~Ω(t) cos(ωt− ϕ), (94)

44These produce the “allowed” transitions of spectroscopy. Other possibilities include magnetic dipole, electric
quadrupole and induced electric-dipole interactions [2, §2.8]; these are responsible for some, but not all, “forbidden”
transitions.

45Because orientations are quantized, there occur discrete values for this interaction; see Sec. 8.1.
46This pattern has the properties of a graph; see Appendix B.8.
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where, by suitable choice of phase ϕ, the field amplitude E(t) can be taken as real 47. For circular
polarization, of helicity q, the needed expression is the sum of two terms,

V (t) = ~Ωq(t) exp(−iωt) + ~Ω−q(t) exp(+iωt). (95)

Typically selection rules pick just one of these; cf. Sec. 8.1 and Sec. 8.2. More generally, for
elliptical polarization, the interaction is the sum of two helicity components.

When the field is that of a standing wave, e.g. eqn. (13), rather than a traveling wave,
the field structure leads to spatial dependence of the Rabi frequency, which becomes Ω(x, t) =
d21E(t)

√
2 sin(kx)/~. A stationary atom positioned at a field node will experience no excitation,

whereas an atom at an antinode will be be subject to maximum interaction.

5.4 Excitation viewed in rotating coordinates

For an idealized monochromatic interaction the function V (t) changes periodically at the carrier
frequency ω. As discussed in Sec. 3.3, when the polarization is circular the effect is a steady
torque – a steady rotation at the carrier frequency ω – that tends to alter angular momentum,
first adding and then subtracting as a series of transitions. When the polarization is linear the
relatively rapid field variation produces a shaking of the charge distribution; much more slowly
there occurs a distortion of the charge distribution attributable to a transition. It is this latter
aspect of the motion that concerns us.

To view the two-state transition most clearly for circular polarization, and to eliminate the
relatively uninteresting small variations at the carrier frequency induced by linear polarization,
we introduce a rotating Hilbert-space coordinate,

ψ′2(t) = exp(−iωt)ψ2, (96)

that rotates at the carrier frequency ω 48. In this rotating reference frame the statevector appears
as

Ψ(t) = C1(t)ψ1 + C2(t)ψ′2(t). (97)

The probabilities are independent of the phases,

Pn(t) = |〈ψn|Ψ(t)〉|2 = |Cn(t)|2 = |cn(t)|2, (98)

but other quantities, such as the induced dipole moment, exhibit them 49,

Re 〈d(t)〉 = 〈ψ1|d|ψ2〉C1(t)∗C2(t) exp[−iωt]. (99)

47The absolute phase of the field, as parametrized with the time of electric field zero crossing, is not controllable.
During time shorter than the coherence time of the laser field it is permissible, and useful, to regard the phase as zero.
However, it is then essential to maintain this convention during subsequent time evolution, particularly if controlled phase
changes occur, as in Sec. 7.1.2.

48The coordinate change can be designed to incorporate the full local variation of the field phase Φ(x, y, z, t), as
defined in eqn. (15).

49The frequency associated with a dipole moment picks out the carrier frequency of a field that will be modified,
during propagation; cf. Appendix A.5. The time-varying dipole moment will create a field at this frequency, if it is not
already present, and will alter existing fields at this frequency.
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The resulting pair of coupled ODEs read, in vector and matrix form,

d

dt

[
C1(t)
C2(t)

]
= − i

~

[
E1 V (t)∗e−iωt

V (t)e+iωt E2 − ~ω

] [
C1(t)
C2(t)

]
. (100)

These equations are exact (in a coordinate frame rotating with angular velocity ω), within the
idealization of an isolated two-state atom that undergoes no spontaneous emission.

When the light is circularly polarized, the interaction is that of eqn. (95). When, in addition,
the transition takes place between suitable magnetic sublevels (cf. Sec. 8.1), then the interaction
V (t) embodies an exponential exp(iωt) that exactly cancels the exponentials appearing in in
these equations 50. It then becomes a straightforward exercise in numerical integration to obtain
the solutions, starting e. g. with the initial conditions

C1(0) = 1, C2(0) = 0. (101)

In principle, there is no difficulty in integrating numerically the exact two-state differential equa-
tions for any reasonable time variation of Ω(t), using appropriate numerical tools [68].

Alternatively, when the light is linearly polarized, so the interaction V (t) is that of eqn.
(94), one can again numerically integrate the coupled equations. However, it is necessary to
use integration time steps that allow sufficient resolution of the fastest changes, i.e. those at the
carrier frequency. The equations are, in fact, examples of stiff ordinary differential equations –
ODEs that have a wide range of characteristic time scales. It is not always practical to follow the
relatively rapid oscillations of the carrier frequency in order to evaluate much slower transition
changes at the Rabi frequency. Simplification then proves desirable. The following section
discusses the traditional approach.

5.5 Two-state example

Solutions to the two-state equations presented here underly the calculations used to display wave-
function changes discussed in Sec. 3.3. To illustrate that example we consider resonant excitation
by monochromatic laser light of a two-state atom that is initially unexcited. Figure 13 illustrates
one example of the resulting probabilities, when the radiation is linearly polarized. In this ex-
ample one sees very clearly the rapid linear oscillations associated with the carrier frequency,
together with the slower Rabi oscillations, at the constant Rabi frequency. Excitation by circu-
larly polarized light exerts a steady torque that produces the Rabi oscillations but not the rapid
variation at the carrier frequency.

5.6 The rotating wave approximation (RWA)

For optical radiation of commonly used laser pulses, the Rabi frequency Ω is typically 4 or 5
orders of magnitude smaller than the carrier frequency ω. That is, the photon energy ~ω is much

50The use of magnetic sublevels always involves more than two quantum states. When some of these are degenerate
then frequency alone does not limit the linkages. In addition to the link described here, say from an initial state having
magnetic quantum number M to one with quantum number M +1 via interaction V (t), there will also occur a potential
linkage to state M − 1 via interaction V (t)∗. One of these, in rotating coordinates, will involve a counter-rotating term
exp(±2iωt). The neglect of this term, through the RWA, reduces the system, for example, from three states to two; see
Sec. 8.2.
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Pn

Ωt/π

Fig. 13. Plot of probabilities Pn(t) vs. Rabi cycles Ω t/π for linearly polarized monochromatic excitation
with ω = 20Ω. Initially the system is in state 1. Note the rapid small oscillations (these are at the carrier
frequency) that slowly lead to a transition into state 2.

larger than the interaction energy ~Ω. Typical optical frequencies (the carrier) are

ω = 2πc/λ ≈ 5× 1015 sec−1 (102)

while typical Rabi frequencies (the interaction energy / ~) are less than

|Ω0| = |dE|/~ = 2.2× 108 sec−1
√
I[W cm−2]× |d|

(ea0)
(103)

≈ 2× 1011 sec−1 for I = 1 Gw/cm2. (104)

Thus for optical excitation the inequality ω � Ω0 applies. Therefore the small carrier-frequency
oscillations hold no interest; we are instead concerned with activity that takes place only over
very many optical cycles. We therefore consider probability amplitudes that are averaged over
many optical cycles. In the Schrödinger equation we make the rotating wave approximation
(RWA) 51 [2, §3.9], neglecting terms that vary as 2ωt (counter-rotating terms) when added to
constant terms

cos(ωt− ϕ)e−iωt = 1

2

[
e−iϕ + e−2iωt+iϕ

]
→ 1

2
e−iϕ. (105)

The result is the two-state RWA Schrödinger equation

d

dt

[
C1(t)
C2(t)

]
= −i

[
0 1

2 Ω(t)e−iϕ

1
2 Ω(t)eiϕ ∆

] [
C1(t)
C2(t)

]
. (106)

The Rabi frequency Ω(t) appearing here is the slowly varying real-valued function of time

Ω(t) = −d12E(t)/~. (107)

51The use of Hilbert-space coordinates that rotate at a carrier frequency dates back to early work with microwave
resonances, [69].
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There occurs a phase ϕ associated with the interaction, shown here explicitly 52. At times it
proves convenient to incorporate the phase into the Rabi frequency, and regard that as a complex-
valued quantity Ω̂(t) = eiϕΩ(t). Alternatively, one can place the phase into the Hilbert-space
unit vector, by defining ψ̂2 = e−iϕψ2.

Written more compactly in matrix form the Schrödinger equation reads

d

dt
C(t) = −iW(t)C(t), (108)

where C(t) is a two-component column vector comprising the elements Cn(t) and the 2 × 2
matrix W(t) is the RWA Hamiltonian, in frequency units,

C(t) =
[
C1(t)
C2(t)

]
, W(t) =

[
0 1

2 Ω(t)e−iϕ

1
2 Ω(t)e+iϕ ∆

]
. (109)

Like eqn. 57, the RWA Schrödinger equation (109) presents symbolically a set of linear ordinary
differential equations. It differs from the rate equations by the presence of the imaginary unit
i ≡

√
−1. This difference appears in the solution forms: rate equations have exponentials where

the Schrödinger equation has sinusoids.
The basic controls appearing here are the time-dependent Rabi frequency Ω(t) and the de-

tuning ∆, defined through the equation

~∆ ≡ E2 − E1 − ~ω. (110)

It is through manipulation of these quantities that we control the time evolution of the statevector.
Both the electric field envelope E(t) and the Rabi frequency Ω(t) can be taken as real valued at
some specific time, but in general they may be complex-valued functions of time.

5.7 Integral form of the equations

Rather than present the description of excitation in the form of ordinary differential equations, as
was done above, it sometimes proves useful to cast these into the form of integrals. For the two
state system in the RWA the integral equations read

C2(t) = e−i∆t

[
C2(t0)−

i
2

∫ t

t0

dt′ Ω(t′)ei∆t′+iϕC1(t′)
]
, (111)

C1(t) = C1(t0)−
i
2

∫ t

t0

dt′ Ω(t′)e−iϕC2(t′). (112)

These incorporate the initial conditions Cn(t0) at the initial time t0 prior to the arrival of the
excitation pulse. By taking the derivative with respect to time t one recovers the coupled ordinary
differential equations of the RWA. Like the equivalent ODEs, the integral equations involve on
the right-hand side the as yet unknown solutions, and so they are of use only with the introduction
of some further assumptions or with an iterative algorithm. Section 6.1 discusses an example of
such an approach.

52The absolute value of the phase is not controllable, and can be taken as zero at any convenient time. Only when one
compares two pulses, both within a coherence time, or pulses affecting two locations, does one need to keep track of
phases.
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5.8 Probability loss

All excited states – states whose energy exceeds that of the ground state – will eventually impart
this energy to surroundings. When collision partners are present, these can carry of the internal
energy as increased kinetic energy of the projectile, or can themselves lose kinetic energy to pro-
duce excitation. Whenever radiative excitation is possible between two states, then spontaneous
emission can transfer excitation energy from the atom to radiation. Often the result of such emis-
sion, seen as fluorescence, is one of several possible final states. These need not be amongst the
set of essential states – they may be unaffected by the particular active laser fields. Because they
are not included amongst our limited set of basis states, any transition to one of them represents
a loss of probability for finding the atom in an essential state.

When the time scale of interest – that of pulsed excitation – is much shorter than the lifetime
of any of the essential states, then we can neglect spontaneous emission. But when we consider
short-lived species, or long pulse durations, then the effects of spontaneous emission must be
included in the dynamics. This can be done rigorously with the use of a density matrix (see
Appendix H.1). However, a simpler description, using only the statevector, is possible under
some circumstances: If nearly all spontaneous-emission transitions take the system out of the
limited Hilbert subspace spanned by the essential states, then these events can be regarded as
simple probability losses. The underlying physics relies on the following observations.

Although we here treat an idealized system comprising a single isolated atom, having only
a few discrete states of interest, in reality this atom has additional states that form a continuum,
e.g. ionization or dissociation states. To treat these we imagine the atom (an ion and its associ-
ated bound electron) to be contained within a very large but finite box, so that its wavefunction
is constrained by boundary conditions. It then has discrete but closely spaced energies rather
than a continuum (the spectrum is a quasicontinuum [70]). By superposing such states we can
construct a state whose associated wavefunction is localized at a given time; the electron, though
possessing energy above the ionization limit, has not yet departed from the ion. With passing
time this wavepacket will move into other portions of the box, spreading as it does so. When we
view only a small volume around the original location of the wavepacket we have the impression
that the particle has vanished; its probability, measured by the square of a wavefunction, is spread
throughout other regions of the box.

It may very well happen that, after a recurrence time, the particle is once again seen to be
localized 53. But until then the electron behaves as a free particle. This simple picture preserves
overall probability – the electron that is removed from the atom is still within the large box. But
the probability of finding it in the immediate vicinity of the ion core has diminished. By directing
attention to only a small region of the large confining box we regard this as “lost” probability.
More precisely, the electron is not in one of the small set of discrete states (e.g. two) that we
have taken as our Hilbert space.

There exist straightforward mathematical techniques for treating situations in which a con-
tinuum of energies occur and in which, as a consequence, there appears to be probability loss
from a set of discrete states. In essence, we deal with a weak interaction linking a discrete state
with a near-continuum of excited state. We regard the time evolution as unidirectional, e.g. we

53This behavior occurs when intense laser radiation removes a bound electron and places it, as a wavepacket, onto an
elliptical trajectory that returns regularly to the ion [58]. Modelings of intense field response often rely on simulations
within a finite box; recurrences then are avoided by making the boundary have absorbing walls [53].
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include photoionization but not its inverse, radiative recombination. Under these conditions the
continuum structure retains no memory; changes are irreversable. The portion of the system that
is described by a few discrete states then appears to undergo exponential decay. That is, they
cause probability decays described by the equation

Pn(t) = exp(−Γnt)Pn(0), (113)

where Γn is the decay rate for state n. Such processes, irreversible probability loss from the
system of interest, make this an example of an open system [71]. Although proper treatment
requires a density matrix, they can be treated by replacing the real-valued energy En by the
complex-valued number En − iΓn/2.

The extension of the resonant two-state TDSE equation for the excited-state probability am-
plitude provides the equations

d

dt
C1(t) = − i

2
Ωe−iϕC2(t), (114)

d

dt
C2(t) = − i

2
ΩeiϕC1(t)− 1

2
ΓC2(t). (115)

These two coupled first-order equations can be replaced by a single second-order differential
equation; each amplitude Cn(t) obeys the same equation, recognizable as that of a damped
harmonic oscillator,

d2

dt2
Cn(t) + 1

2
Γ
d

dt
Cn(t) + 1

4
Ω2Cn(t) = 0. (116)

The system is completely described by this ODE together with the initial values Cn(0) of the
two probability amplitues.

To find solutions we test the trial solution Cn(t) = An exp(−iZt) and find that Z must
satisfy the quadratic equation

Z2 + i 1
2
ΓZ − 1

4
Ω2 = 0. (117)

Two regimes exist [2, §3.10] : a regime of underdamped oscillation when the loss rate is small,
Ω > Γ/2, and a regime of overdamping when the loss rate is large, Ω < Γ/2. The two regimes
are separated by the condition of critical damping, when Ω = Γ/2. Figure 14 shows examples
of the three regimes. I shall treat primarily situations in which the damping is slight.
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Fig. 14. Effect of ionization loss on two-state excitation. Top frame: population histories of states 1 and 2
with weak loss; behavior is underdamped Rabi oscillations. Each burst of probability into state 2 produces
a corresponding burst of ionization loss; the cumulation ionization population is shown by a dashed line.
Middle frame: critical damping: the populations undergo no oscillations. Bottom frame: overdamped
behavior; the population flows from state 1 directly into the ionization state. (after Fig. 3.10-2 of [2])
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6 Two-state coherent excitation examples

For many years the primary emphasis in textbooks on quantum mechanics was on relatively
weak fields, and the resultant slight excitation, rather than on the Rabi oscillations that attend
contemporary coherent excitation. I will comment briefly on this weak-excitation regime in Sec.
6.1. I will then consider two specific classes of more general two-state coherent excitation, each
illustrating a form of excitation that has numerous applications and which generalizes to more
complicated multi-level systems. The first examples treat impulsive excitation, in which a field
of constant intensity suddenly turns on. Such excitation produces Rabi oscillations; cf. Secs. 6.2
and 6.3. The second class occurs when there is slow variation of the detuning (e.g. a frequency
chirp) along with variation of the intensity, and population transfer occurs without oscillations;
cf. Sec. 6.5. For each of these classes I offer Hilbert-space pictures of the excitation. These
are particular cases of the many two-state models which allow solution in terms of conventional
special functions; cf. Appendix E.

6.1 Weak pulse: Perturbation theory

The model of excitation by monochromatic light is an idealization that neglects any fluctuations
in the phase or amplitude of the field, properties that affect the frequency content of the field.
One way to characterize modulated radiation is by means of Fourier transforms, expressing in
this way the distribution of frequencies present in the illumination. To examine the connection
between field frequencies and excitation we introduce the Fourier transform (FT) of the interac-
tion Hamiltonian (i.e. the transform of the electric field amplitude, not the intensity), expressed
via the FT of the pulsed Rabi frequency:

Ω̃(∆) =
1
2π

∫ ∞

−∞
dt ei∆t+iϕ Ω(t). (118)

The inverse transform provides the time varying Rabi frequency,

Ω(t) =
∫ ∞

−∞
d∆ e−i∆t−iϕ Ω̃(∆). (119)

The peak value of the Rabi frequency Ω0 ≡ Ω(t = 0) provides one measure of the strength of
the interaction; a second measure is the temporal pulse area (or Rabi angle), expressible as the
resonant (∆ = 0) contribution to this Fourier transform 54,

A∞ ≡
∫ ∞

−∞
dtΩ(t) = 2πΩ̃(0)e−iϕ. (120)

The pulse duration τ can be regarded as the ratio of temporal pulse area to peak Rabi frequency,

τ ≡ |A∞/Ω0| = 2π|Ω̃(0)/Ω0|. (121)

An important idealization of the radiation interaction occurs when conditions are such that
there is little excitation. Changes to the atom can then be regarded as small perturbations. The
resulting simplified mathematics, time dependent perturbation theory [72] [2, §4.5,17.1], starts

54Note that this quantity can be positive, negative or zero.
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from the exact relationship of eqn. (111) with C2(t0) = 0. Although this expression, when dif-
ferentiated, yields the time-dependent Schrödinger equation, it is not of immediate use because it
involves the as yet unknown ground-state amplitude C1(t). However, because the radiative inter-
action produces, by assumption, little change in the statevector, we approximate that amplitude
as the initial value

C1(t) ≈ C1(−∞) = 1. (122)

This approximation produces the first-order perturbation theory result

C2(t) ≈ −
i
2

∫ t

−∞
dt′ Ω(t′) ei∆(t′−t)+iϕ. (123)

In particular, the completed pulse produces an amplitude proportional to the FT of the Rabi
frequency,

C2(∞) ≈ − i
2

e−i∆t

∫ +∞

−∞
dt′ Ω(t′) ei∆t′+iϕ = − i

2
e−i∆tΩ̃(∆). (124)

In turn, the excitation probability |C2(∞)|2 produced by the completed pulse, to first order and
for given detuning ∆, is the absolute square of the Fourier transform of the Rabi frequency,

PI(∆) =
1
4

∣∣∣∣∫ +∞

−∞
dt Ω(t) ei∆t

∣∣∣∣2 = 1

4
|Ω̃(∆)|2. (125)

In this first-order perturbation-theory result the cumulative excitation produced by a pulse de-
pends only on the frequency content, not at all on any details of the temporal pulse shape. An
important consequence of this result is that when a pulse has no frequency component at the
given detuning, then it produces (in first order) no lasting excitation, PI(∆) = 0. The pop-
ulation transfer produced by any resonant pulse (∆ = 0) is proportional to the square of the
temporal pulse area,

PI(0) = (A∞/2)2, for ∆ = 0. (126)

This result holds only for small values of the temporal pulse area, A∞ � 1. For resonant
excitation this absence of frequency content means the pulse has zero temporal pulse area: the
electric field has equal positive and negative contributions to this area.

It is not difficult to construct counter examples, in which permanent excitation occurs despite
the absence of resonant frequencies. One in which complete population inversion can take place
even though there are no resonant components in the field, occurs with bichromatic light, as
discussed in Appendix E.6.

The evident lack of excitation predicted (to first order) by eqn. (125) does not mean that a
pulse has no lasting effect upon the atom. Indeed, exact numerical evaluation of the TDSE may
reveal complete population transfer for a pulse for which PI(∆) = 0. To treat such situations
within the context of perturbation theory it is necessary to improve the estimate ofC1(t) by using
an approximation to the exact expression

C1(t) = 1− i
2

∫ t

−∞
dt′ Ω(t′)e−iϕC2(t′). (127)
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When the radiative interaction is that of an electric-dipole moment of a free atom, the second-
order estimate requires an integral involving the product of two successive interactions, i.e. two
photons. For free atoms this vanishes exactly because of parity constraints. Then the next contrib-
utory order to the probability amplitude is third-order theory. When the first-order contribution
vanishes this gives the prescription

PIII(∆) =
1
26

∣∣∣∣∣
∫ ∞

−∞
dt′

∫ t′

−∞
dt′′

∫ t′′

−∞
dt′′′ Ω(t′)Ω(t′′)Ω(t′′′) ei∆t′−i∆t′′+i∆t′′′

∣∣∣∣∣
2

. (128)

The evaluation of this triple integral is daunting, but is possible in simple cases [73].
Time dependent perturbation theory has its most important application to the evaluation of

transitions produced by broadband radiative excitation or between a discrete state and a contin-
uum of final states, such as occurs with photoionization. Applied to such situations it produces
the traditional transition rates associated with the Fermi Golden Rule and described in basic
textbooks on quantum mechanics [34] [2, §4.5].

6.2 Resonant CW excitation

When the excitation is resonant (meaning ~ω = E2−E1), the two coupled RWA equations read

d

dt
C1(t) = − i

2
Ω(t)e−iϕ C2(t), (129)

d

dt
C2(t) = − i

2
Ω(t)eiϕ C1(t). (130)

Analytic solutions are readily found, for any variation of the pulsed Rabi frequency, by introduc-
ing a new time scale dτ = |Ω(t)|dt, cf. Appendix E.1. The result, for a system known to be in
state 1 at time t = 0, as specified by the initial conditon C1(0) = 1, is

C1(t) = cos[A(t)/2], C2(t) = −i eiϕ sin[A(t)/2]. (131)

Here A(t) is the Rabi angle (temporal pulse area), the integral to time t of the (real-valued) Rabi
frequency,

A(t) =
∫ t

−∞
dt Ω(t). (132)

The resulting populations read, independent of the field phase ϕ,

P1(t) = 1

2
[1 + cosA(t)], P2 = 1

2
[1− cosA(t)]. (133)

When the Rabi frequency remains constant, the Rabi angle is A(t) = |Ωt|, and the populations
undergo periodic Rabi oscillations at the Rabi frequency Ω. In general, for any t, the angle A(t)
can be positive, negative or zero. Figure 15 illustrates this behavior.
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Fig. 15. Rabi oscillations: top frames show statevector Ψ, bottom frames show histograms of population,
for a succession of times

6.3 Detuned CW excitation

When steady nonzero detuning occurs, along with steady intensity, then the solutions are again
oscillatory. Appendix E.2 provides exact analytic solutions for the two-state atom subject to
constant non-resonant intensity. When the population initially occupies state 1 the excited-state
RWA amplitude, from eqn. (500) of Appendix E.2, is

C2(t) = U21(t) = i
Ω̂√

∆2 + |Ω̂|2
sin(Ω̃t/2), (134)

where Ω̂ is allowed to be complex-valued, thereby incorporating the laser phase, and

Ω̃ ≡
√

∆2 + |Ω̂|2 (135)

is the nonresonant Rabi frequency. The resulting excited-state population is

P2(t) =
|Ω̂|2

2(∆2 + |Ω̂|2)
[1− cos(Ω̃t)]. (136)

When the field is not resonant the population transfer is never complete; the maximum excitation
diminishes with increasing detuning and the oscillations become more rapid. Figure 16 illustrates
this behavior.

The oscillatory behavior continues indefinitely, as long as the radiation remains constant
and coherent, and no interruptions occur. Over many Rabi cycles the time-averaged excitation,
obtained by averaging the sinusoid (to zero), is

P̄2 =
|Ω̂|2

2(∆2 + |Ω̂|2)
. (137)

On resonance, ∆ = 0, this average, P̄2 = 1
2 , is the value obtained from the rate-equation model

for a strong field and no degeneracy, in the limit of long times. In the limit of large detuning
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Ω t/π
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Fig. 16. Excitation probability P2(t) vs. Rabi cycles Ωt/π, showing population oscillations for constant
Rabi frequency Ω with detunings 0, 1 and 2 times Ω0. (after Fig. 3.7-1 of [2])

(i.e. much larger than the Rabi frequency) the excitation is negligible at all times. The range of
detunings where appreciable excitation can occur, on average, is roughly bounded by the Rabi
frequency: with larger Rabi frequencies larger detuning can contribute to excitation.

6.4 Explaining oscillations: Dressed states

Simple analytic solutions to the nonresonante two-state RWA are known for a number of analytic
forms of the time dependent Rabi frequency and detuning; see Appendix E. However, it is also
possible to find solutions in a form that readily generalizes to multilevel excitation.

We consider here excitation by a constant real-valued Rabi frequency and nonzero detuning.
The constant two-state RWA Hamiltonian matrix is that of eqn. (109.) We proceed, as sug-
gested in 19th century texts on ordinary differential equations with constant coefficients [68], by
introducing eigenvectors of the coefficient matrix,

WΦ± = ε±Φ±. (138)

The matrix W has, for the present discussion, dimension 2, and so there are two of these eigen-
vectors, labeled here with ±. Because W is, apart from conversion to frequency units, the
RWA Hamiltonian, the eigenvalues are often termed energy eigenvalues, and the eigenvectors
are known as energy eigenstates. (They are also known as dressed states [74, 75]; the original
basis states ψn are termed bare states).

The energy eigenvalues are readily found as

ε± = 1

2
[∆± Ω̃], where Ω̃ =

√
∆2 + Ω2. (139)

To find expressions for the eigenvectors we introduce an angle Θ through the definition

cot(2Θ) = ∆/Ω (140)
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and rewrite the Hamiltonian, using trigonometric identities, as

W =
Ω̃
2

[
0 sin(2Θ) e−iϕ

sin(2Θ) eiϕ 2 cos(2Θ)

]
= Ω̃

[
0 sinΘ cos Θ e−iϕ

sinΘ cos Θ eiϕ cos2 Θ− sin2 Θ

]
. (141)

It then follows that the eigenvectors are 55

Φ+ =
[

sinΘ e−iϕ

cos Θ

]
, Φ− =

[
cos Θ

− sinΘ eiϕ

]
. (142)

To picture these with the Bloch sphere of Sec. 3.7.1 we write (using alternative overall phases)

Φ± = sin(θ±/2)ψ1 + cos(θ±/2) e±iϕψ2 (143)

where

cot(θ+) = ∆/Ω, θ− = θ+ − π. (144)

The two points on the Bloch sphere representing these two eigenstates are opposite one another.
These are stationary states; they evolve in time with only a phase change. If the initial state

coincides with one of these, say Ψ(0) = Φk, then

Ψ(t) = exp(−iεkt)Φk. (145)

Usually, however, the initial statevector is a superposition of energy eigenstates. For example,
when the system is known to be in state 1 at time t = 0 the superposition is

Ψ(0) = ψ1 = eiϕ sinΘ Φ+ + cos ΘΦ−. (146)

The energy eigenstates that contribute to this construction evolve in time with simple phases; the
effect on Ψ(t) is

Ψ(t) = eiϕ sinΘ e−iε+t Φ+ + cos Θ e−iε−t Φ−. (147)

This equation presents an exact analytic solution to the posed two-state Schrödinger equation
with initial condition (146). Expressed in (rotating) bare states, through the use of eqn. (142),
the construction reads

Ψ(t) = e−i∆t/2
[(

cos(Ω̃t/2) + i cos(2Θ) sin(Ω̃t/2)
)
ψ1

− i sin(2Θ) sin(Ω̃t/2) eiϕψ′2(t)
]
. (148)

The individual bare-state populations evidently undergo oscillations. These Rabi oscillations, at
frequency Ω̃, are here seen to be manifestations of interference between two energy eigenstates
formed into a coherent time-dependent superposition, as required by the initial conditions: the
initial state is not an eigenstate of the Hamiltonian, and so the statevector cannot remain aligned
with it.

Although the population returns periodically to the ground state, the statevector acquires a
new phase with each return, namely

Ψ(t) = e−i∆t/2 ψ1. (149)
55The overall phase of each of these is arbitrary and is here chosen for convenience.
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6.5 Chirped frequency: Adiabatic passage

The production of specific changes in the statevector by resonant excitation requires careful con-
trol of the temporal pulse area. Furthermore, such excitation has limited use when the ensemble
includes a range of detunings, such as occur with Doppler shifts. An alternative pulsed excita-
tion procedure overcomes such limitations; it can produce equal excitation for a distribution of
Doppler-induced detunings, independent of the temporal pulse area. Specifically, the excitation
pulse includes not only a variation of the Rabi frequency but a monotonic sweep of the detuning.

The technique, rapid adiabatic passage (RAP) [3, 76], requires that statevector changes must
be completed during a time interval that is shorter than any incoherence-producing processes,
such as spontaneous emission – the overall action is rapid on that time scale – but that within
that time interval the detuning should change slowly with time, i.e. adiabatically. The resulting
The resulting motion of the statevector is an example of adiabatic following [77] in which the
statevector follows a path in Hilbert space defined by an adiabatic state [2, §3.6], as discussed in
Sec. 6.6 below.

The simplest idealization of RAP takes the detuning to vary linearly in time 56. The RWA
equation then reads, for real-valued Rabi frequency (ϕ = 0),

d

dt
C1(t) = − i

2
Ω(t)e−iϕ C2(t), (150)

d

dt
C2(t) = − i

2
Ω(t)eiϕ C1(t)− i(∆0 + rt)C2(t), (151)

where r is the rate at which the detuning changes and ∆0 is a fixed detuning, such as might occur
from a single Doppler shift. Such a situation occurs if the laser frequency varies linearly with
time, i.e. the frequency is chirped (basically sweeping from −∞ to +∞).

Solutions of these coupled equations obtained by direct numerical integration reveal that, if
the chirp takes place over a sufficiently long time interval, all population will transfer from the
initial state, say state 1, to the excited state, for any value of the static detuning. Indeed, the
value of ∆0 merely sets the time at which resonance occurs, t = ∆0/r. Figure 17 illustrates this
behavior. Analytic results confirm this behavior; see Appendix E.3.

6.6 Explaining adiabatic passage: adiabatic states

When the atom is subjected to a swept detuning the behavior of the population histories, or the
statevector underlying them, can best be understood with the aid of an alternative Hilbert-space
coordinate system, one in which the needed unit vectors are chosen as instantaneous eigenvectors
Φn(t) of the time varying Hamiltonian W(t),

W(t)Φn(t) = εn(t)Φn(t). (152)

These are adiabatic states [3, 78], contrasted with the diabatic states ψn(t) that form the original
basis states (in a rotating frame). We allow time variation of both the Rabi frequency (taken to

56Obviously this cannot continue indefinitely. The infinite limit is a mathematical artifice; it is only necessary that the
initial detuning be much larger than the range of static detunings of the ensemble, and that the frequency sweep continue
until the desired changes of the statevector are completed.
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Fig. 17. Example of chirped rapid adiabatic passage. Above: the electric field. Below: the population
histories. As the detuning sweeps through resonance, here at time t = 0, population transfer occurs from
initial state 1 to final state 2.

be real-valued) and the detuning. The two-state RWA Hamiltonian of eqn. (109) becomes

W(t) =
[

0 1
2 Ω(t)e−iϕ

1
2 Ω(t)eiϕ ∆(t)

]
. (153)

For the two-state system the two eigenvalues, adiabatic eigenvalues or adiabatic energies, are

ε±(t) = 1

2
[∆(t)± Ω̃(t)], where Ω̃(t) =

√
∆(t)2 + Ω(t)2. (154)

The original diagonal elements of the RWA Hamiltonian, 0 and ∆(t) in the present example, are
known as diabatic energies. The adiabatic states are as presented in eqn. (142) but now with
time varying elements, resulting from a time dependent angle Θ(t).

When the statevector initially aligns with one adiabatic state, and the RWA Hamiltonian
changes slowly, then the statevector remains aligned with this single adiabatic state; cf. Appendix
K. The adiabatic state changes with time, and so the statevector construction changes when
viewed with bare-state coordinates. The result is a transfer of population. Figure 18 illustrates
the behavior.

The following paragraphs offer further discussion of adiabatic changes, with specific refer-
ence to chirped adiabatic passage of a two-state system. Appendix K.3 discusses the conditions
needed to ensure the evolutio is adiabatic.
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Fig. 18. Top frames show statevector Ψ and two adiabatic eigenvectors Ψ±, bottom frames show histograms
of population, for three values of the detuning ∆.

6.6.1 Asymptotic forms

The adiabatic states of eqns. (142) have the property that, for extremely large positive or negative
values of the detuning ∆(t) they become aligned with the diabatic statesψ′n(t). When ∆ → −∞,
then Θ → 0 and the adiabatic states become

Φ+(t) = ψ′2(t), Φ−(t) = ψ1. (155)

When ∆ → +∞, then Θ → π/2, and the adiabatic states become

Φ+(t) = e−iϕψ1, Φ−(t) = −eiϕψ′2(t). (156)

From these asyptotic forms we can deduce the effect of sweeping the detuning.
Suppose that initially Ψ(t) is aligned with ψ1 and that the detuning is large and negative.

Then the state ψ1 is, in turn, aligned with Φ+. That adiabatic state will, when ∆ → +∞,
be aligned with ψ2. If the statevector remains always aligned with this adiabatic state then a
transition from 1 → 2 will occur as the detuning sweeps from −∞ to +∞.

Alternatively, suppose the detuning is initially large and positive, but again Ψ(t) is aligned
with ψ1. This state, for ∆ → +∞, is aligned with adiabatic state Ψ−(t). As the detuning
sweeps from +∞ to −∞ this adiabatic state will become aligned with ψ2. Again a transition
occurs from 1 → 2, if the statevector remains aligned with an adiabatic state.

Thus it does not matter whether the detuning sweep is positive or negative; in all cases adi-
abatic evolution will produce the complete interchange of population (with a possible phase
change)

Ψ(t) = ψ1 → −eiϕψ2(t), Ψ(t) = ψ2(t) → e−iϕψ1. (157)
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This is (chirped) rapid adiabatic passage. The process, though adiabatically slow, so that the
statevector remains aligned wiht an adiabatic state, must nevertheless be completed before deco-
herence effects disrupt the coherent excitation; it must be rapid compared with any spontaneous
emission lifetime of the excited state. Although the linear time dependence of the detuning pro-
vides a simple model, adiabatic passage occurs with any detuning variation that changes slowly
from very large negative to very large positive or vice versa. It is not necessary that the change
be linear or even monotonic with time.

The effects of swept detuning is easy to portray using adiabatic states. There remains a
concern: under what conditions can the statevector maintain its alignment with an adiabatic state
as the Hamiltonian varies. Appendix K.3 offers quantitative guidance. The following paragraphs
present qualtitative considerations.

6.6.2 Energy curves: crossings and avoided crossings

The constraints on adiabatic passage are often presented by viewing plots of adiabatic energies
along with plots of diabatic energies (the diagonal elements of the RWA Hamiltonian). For a
two-state system these diabatic energies are 0 and ∆(t) or, alternatively, ± 1

2 ∆(t). When there is
a sweep of detuning, then the (bare) diabatic energy curves cross – this occurs at the time when
∆(t) = 0. However, the (dressed) adiabatic curves do not share this instantaneous degeneracy:
if there is any Rabi frequency present, however small, the adiabatic curves do not cross; they
have an avoided crossing; see Appendix K.

Figure 19 illustrates the behavior of these curves, and the corresponding population histories
during adiabatic evolution, for two examples of a two-state system subject to a pulsed Rabi
frequency. The left-hand pair of frames illustrate the case when the detuning is constant. The
diabatic energies remain constant horizontal lines, while the adiabatic energies exhibit reversible
changes produced by the Rabi-frequency variation with time. With the choice of parameters
here, there occurs complete population return (CPR); cf. Appendix E.5

The right-hand pair of frames show the effect on these curves of a chirped detuning. The
diabatic curve for state 2 varies linearly with time, crossing that of state 1 at t = 0. For large
values of |t|, far from t = 0, the Rabi frequency is negligible, and the adiabatic curves follow the
diabatic curves 0 and ∆(t). However, as the Rabi frequency grows larger, the two sets of curves
differ.

To interpret the population histories associated with such curves we begin by considering the
system at early times – the left-hand side of the figures. Suppose the statevector is initially a
single bare diabatic state, ψ1. At these times there is no Rabi interaction, and so the diabatic and
adiabatic states coincide. The initial statevector is therefore aligned with a single adiabatic state;
it is represented by a system point on the coinciding diabatic and adiabatic curves.

As time increases and the energies change this system point moves across the figure, from
left to right, expressing the changes of the energies with time. Its association with a single curve
can continue only for two extreme idealizations, corresponding to either fast (diabatic) or slow
(adiabatic) changes of the RWA Hamiltonian.

During rapid change the statevector will remain aligned with the original bare diabatic state,
and the system point will therefore follow the (dashed) diabatic curve, always associated with the
energy of bare diabatic state 1, a horizontal line in this figure. The system point moves steadily
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Fig. 19. Top frames: diabatic and adiabatic energies for two-state system. Bottom frames: population his-
tories. Left: adiabatic evolution with constant detuning. Right: adiabatic evolution with chirped detuning.
Large dots on the energy curves show those associated with initial and final states; arrows show the motion
of these system points. [after Fig. 4 of Vitanov et al. Adv. Atomic Mol. Opt. Phys. bf 46 55 (2001)]

along this line, crossing the bare diabatic curve for state 2. At the end the system will still be in
bare state 1; it follows a straight-line path on the energy vs. time plot, and no transition occurs.

By contrast, when the changes occur sufficiently slowly (adiabatically) the statevector will
remain aligned with the adiabatic state. The system point will move along the (full) adiabatic
curve that initially connects with state 1. During the time when the two sets of curves differ
the system point will follow the dressed adiabatic curve, on a path that does not cross any other
curve. Initially this path is horizontal, but at later times the path changes direction, eventually
heading upward to join the diabatic curve for bare state 2 at large times; a transition will then
have occurred.

The choice between the two paths depends on how rapidly the system point moves through
the region where the interaction occurs, where the two sets of curves are not the same. If the
point moves slowly then it follows the dressed adiabatic curve and a transition occurs. If it
moves rapidly then it follows the bare diabatic curve; a curve-crossing occurs, but no transition.
When the changes cannot be clearly classified as fast or slow, the population becomes divided
between paths, and at the end the statevector is a coherent superposition of the two diabatic states.

However, if the chirp rate is too slow then the adiabatic and diabatic curves will run nearly
parallel for a long time interval. It is then not possible to regard the system point as being
associated with a single state, either diabatic or adiabatic, and the simple picture of an avoided
crossing is not appropriate; see Appendix K.4.

A quantitative description of the relative probabilities for these two extreme possibilities
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obtains from the Landau-Zener model [79] of a two-state system subject to linearly varying
detuning ∆(t) = rt and constant Rabi frequency Ω; see Appendix E.3. When the population
initially resides in state 1, the probability of finding the system in state 2 at the conclusion of the
interaction is

P2(∞) = exp(−πΩ2/|r|). (158)

When Ω2 � |r|, as occurs for small chirp rate, the motion is adiabatic, and a transition occurs.
When Ω2 � |r|, as occurs for rapid change, the motion is diabatic, and no transition occurs.

6.7 Stark-chirped rapid adiabatic passage (SCRAP)

To produce complete population transfer via adiabatic passage the detuning should sweep slowly
through resonance. Because the detuning is the difference between the Bohr transition frequency
of the atom and the laser carrier frequency, an alteration of either of these two frequencies will
produce the desired result. The Bohr frequency, being proportional to the energy difference be-
tween two stationary states, can be altered by imposing any slowly varying nonresonant electric
or magnetic field. Quasi-static electric fields, inducing Stark shifts of the energies, offer one pos-
sibility. Pulses of nonresonant laser light offer another means of subjecting the atom to a slowly
varying electric field and there by producing a (dynamic) Stark shift [80] [2, §4.3]. (Section 9.3
discusses the origin of these shifts.)

Figure 20 shows a pulse sequence that will produce population transfer by RAP. It involves
a Stark-shifting laser pulse (S) that sweeps the Bohr frequency through resonance with the fixed
laser carrier while a transition-inducing laser (P ) acts. This P pulse terminates before the S pulse
ends. The resulting adiabatic passage is, in theory, identical with that produced by a chirped
pulse; it has been called Stark-chirped rapid adiabatic passage (SCRAP) [81].

As in all adiabatic processes, the final result does not depend on details of the pulse envelope.
It does not depend on the peak value of the Rabi frequency or the temporal pulse area nor on the
details of the detuning variation with time; in this sense it is robust.

6.8 Comparison of excitation methods

Preceding sections have presented three classes of two-state excitation: incoherent, impulsive
and adiabatic. Each is associated with different forms of radiation and produces different results;
each has application to particular requirements. Figure 21 presents illustrative examples of these
three mechanisms for producing excitation.

The first, appropriate for broadband incoherent light (not monochromatic laser light ) draws
on rate equations. These predict that, at most, half of the population can be transferred to the
excited state, and that this saturation value is approached exponentially, at a rate that increases
with increasing intensity. Althouth the transfer is incomplete, the result is not a coherent super-
position; it is an incoherent mixture.

The second, resonant coherent excitation, can produce relatively rapid complete population
transfer, but the pulse must be terminated with precision if exact inversion is desired. This con-
straint requires careful control of pulse amplitude and duration (i.e. of integrated Rabi frequency)
as well as avoidance of Doppler-shifts of detunings. It can produce a coherent superposition of
the two states.



306 Coherent manipulation

F i e l d e n v e l o p e s

P
P

S S
2P o p u l a t i o n s1

t i m e

2

1

Fig. 20. Example of Stark-shifted rapid adiabatic passage. Left: a schematic diagram of energy levels,
showing near resonant P field, responsible for transitions, and nonresonant S field, producing dynamic
Stark shifts. Upper right frame: the S and P pulses, with P occurring during the rising portion of the S
pulse. Lower right: the population histories, showing complete adiabatic transfer from state 1 to state 2.

The third option, adiabatic passage, requires a larger temporal pulse area than does resonant
Rabi oscillation, but in the end it can produce a more robust result, insensitive to details of the
pulse. It too can produce a coherent superposition.

6.9 Sequential pulses

The statevector resulting from a single pulse can provide the initial state for a second pulse;
the effect of a sequence of pulses can be treated as a succession of statevector rotations. The
cumulative effect is best presented with the aid of the time evolution matrix U(t), a solution to
the Schrödinger equation that reduces to the unit matrix at the initial time, say t = 0. For a
constant interaction the relevant defining equations are

d

dt
U(t) = −iWU(t), U(0) = 1. (159)

We write the effect of a single constant interaction as

C(t) = U(t)C(0). (160)

Let a constant interaction, described by RWA Hamiltonian W(1), persist for an interval T1 after
time t1. Let this interval be followed by a succession of contiguous intervals Tm, during each of
which the interaction is treated as constant. During the mth interval the RWA Hamiltonian is a
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P2

Fig. 21. Examples of excitation probability P2 vs. time for incoherent excitation (with A = 1), adiabatic
passage (with Ω = 1) and resonant excitation (with Ω = 3π/4).

constant matrix W(m) and the time evolution operator is the associated matrix U(m)(t). Figure
22 illustrates a succession of four such intervals.

The effect of these successive interactions upon the probability amplitudes is expressible as a
succession of matrix multiplications that carry the statevector through a succession of generalized
rotations. For the three intervals of Fig. 22 the result, at the end of the pulse sequence, has the
form

C(t) = U(4)(T4)U
(3)(T3)U

(2)(T2)U
(1)(T1)C(t1), t = t1 + T1 + T2 + T3 + T4. (161)

The intervals may be of arbitrary duration consistent with the requirement that the system remain
unaffected by interruptions. In particular, by breaking the description of a general pulse into a
succession of small contiguous increments, one can describe its effect by means of a succession
of evolutions with constant interactions 57. This construction, when automated, provides a very
effective algorithm for evaluating numerically the effect of an arbitrary pulse. The intervals Tn

need not be of uniform duration, although that constraint simplifies the construction of numerical
procedures.

6.10 Pulse trains

The description of time evolution by means of independent interactions applies to any succession
of pulses [82]. In particular, there can be time intervals between the interactions, i.e. the system
is subjected to a train of pulses, separated by interaction-free intervals τn. Figure 23 illustrates
an example of such a sequence, for three pulses.

Although there is no interaction during the pauses between pulses, it is essential to account
for these intervals. Let t0 be the reference time for expressing the sinusoidal time variation of the

57The motion of the tip of the statevector can be regarded as a quantum walk.
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1 2 3
1 2 3 44

Fig. 22. A succession of four contiguous constant interactions. To clarify the extent of the separate pulses
they are shown as turning on and off during small intervals.

1 2 3
1 2 31 20

Fig. 23. A succession of three nonoverlapping pulses, of duration Tn and separated by intervals τn.

field as E(t) cos(ωt− ϕ). That is, the field phase is ϕ = ωt0. This reference time t0 also serves
to define a rotating coordinate system, earlier written as

ψ1(t) = ψ1, ψ2(t) = exp(−iωt)ψ2, (162)

and to express the RWA interaction energy as (~/2)E(t) exp(iϕ). In this reference frame the
statevector has the construction

Ψ(t) = ΣnCn(t)ψn(t). (163)

We now wish to consider a succession of independent interactions, each described by a slowly
varying RWA Hamiltonian matrix W(m)(t). Traditionally, and conveniently, one takes the start
of a pulse as the reference time for the rotating Hilbert space coordinates during a pulse, rather
than maintaining an ongoing reference system. This means that during the mth pulse we write
the statevector as

Ψ(t) = ΣnC
′
n(t)ψ(m)

n (t) (164)

where the basis states

ψ
(m)
1 (t) = ψ1, ψ

(m)
2 (t) = exp[−iω(t− tm)]ψ2, (165)
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provide the reference system appropriate to the interval that begins at time tm. That is, at time
t = tm the rotating coordinates ψ(m)

n (t) coincide with the static basis ψn. The probability
amplitudes in the pulse-centric basis of eqn. (164) incorporate phases from the ongoing carrier
frequency:

C′(t) = T(t)C(t), (166)

where

T(τ) =
[

1 exp(−iωτ)
exp(+iωτ) 1

]
. (167)

The RWA Hamiltonian W(m)(t) must incorporate the rotation of the coordinates in defining
the Rabi frequency. Typically this is taken to be a real-valued quantity at some reference time,
say t0. The ongoing rotation of the Hilbert-space coordinates then introduces phases that must
be incorporated into the Hamiltonian at the start of each pulse.

During interactionless intervals the RWA Hamiltonian is a simple diagonal matrix W0. When
detuning is present this can introduce important phase factors in the probability amplitudes.

Given these properties of the successive time evolutions, we can write the time evolution
as the product of pulse interactions, U(m)(t), free evolution exp[−iW0τm] and revisions of the
coordinate system phases, T(τ). For the three pulses of Fig. 23 the construction is

C(t) = exp[−iW0(t− t3)] interval 3
× U(3)(T3) pulse 3
× T(t3 − t2) update coordinates
× exp[−iW0τ2] interval 2
× U(2)(T2) pulse 2
× T(t2 − t1) update coordinates
× exp[−iW0τ1] interval 1
× U(1)(T1) pulse 1
× T(t1 − t0)C(t0) preliminary

(168)

The individual evolution matrices U(n)(t) appearing here may be composites, constructed as in
eqn. (161), or they may be analytic constructions appropriate to one of the many interactions for
which there exist analytic solutions to the Schrödinger equation; cf. Appendix E.

An interesting application of pulse sequences occurs with two pulses, each of which produces
a Bloch-vector rotation of π/2, i.e. a 50:50 superposition. The overall effect depends explicitly
on the phase change during the pause (cf. Sec. 7.1.2). The resulting variation of excitation,
between constructive and destructive interference is analogous to the bright and dark intensity
fringes viewed in the traditional two-slit interference experiment.

The preceding discussion assumes that there is no external field present during the pauses
between pulses. If, instead, there occurs a static energy-shifting field, perhaps differing from
pulse to pulse, then this must be regarded as a detuning and treated as in eqn. (161).

Another interesting example occurs when the pulse train consists of contiguous identical
pulses (i.e. the pauses are regarded as part of the pulse). Let the RWA Hamiltonian be written

W = 1

2

[
−∆(t) Ω(t)
Ω(t)∗ ∆(t)

]
. (169)
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Let the effect of a single pulse be expressed by the unitary matrix

U(1) =
[

(a1 + ib1) (c1 + id1)
−(c1 − id1) (a1 + ib1)

]
. (170)

Then, as shown by Vitanov and Knight [82], the effect of N pulses is obtained from the matrix

U(N) = (U(1))N =
[

cos(Nϑ) + ib1fN (ϑ) (c1 + id1)fN (ϑ)
−(c1 − id1)fN (ϑ) cos(Nϑ)− ib1fN (ϑ),

]
(171)

where

fN (ϑ) ≡ sin(Nϑ)
sinϑ

, cosϑ = a1, sinϑ =
√

1− a2
1. (172)

Thus if population is in state 1 prior to the arrival of the pulse train, the excited state population
after N pulses is

P
(N)
2 = P

(1)
2

sin2(Nϑ)
sin2 ϑ

. (173)

This is the quantum analog of the pattern of optical intensity fringes produced by a diffraction
grating.

Trains of short pulses, each different and each producing only a small change (a “kick” in
system space), have been suggested as a means of crafting specified Hilbert-space rotations [83].
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7 The vector model

As noted in Sec. 3.7.1, a simple description of a two-state system presents the statevector as
a point on a two-dimensional sphere, the Bloch sphere, parametrized by two angles. This de-
scription has several useful applications, and allows a useful generalization in which incoherent
processes are treated. The resulting formalism, in which the system properties are represented
by a vector in a three-dimensional abstract space, was first described by Feynman, Vernon and
Hellwarth 58 [84] [2, §8.5]. The following paragraphs discuss the model, equivalent to the two-
state RWA Schrödinger equation, with its simple means of depicting the dynamics of a two-state
atom. Appendix H.4 discusses an N -state generalization.

7.1 The Bloch equations

The statevector for a two-state system involves two complex-valued probability amplitudesCn(t).
With rotating coordinate 2 the construction is

Ψ(t) = C1(t)ψ1 + C2(t)ψ′2(t). (174)

The two complex amplitudes are constrained by the requirement Σn|Cn(t)|2 = 1. Furthermore,
the overall phase is not of interest. Therefore, as discussed in Sec. 3.7.1, we need only two
real-valued time-varying parameters to characterize the statevector.

The parametrization of the two-state RWA Hamiltonian of eqn. (153) requires a real-valued
detuning and a real-valued Rabi frequency with phase ϕ (or a complex-valued Rabi frequency)
59. Therefore this requires three real-valued functions for complete characterization. One may
well ask, how best to choose the several real variables for this purpose.

A very satisfactory choice of variables for the two-state atom are the three real-valued quanti-
ties now known as Bloch variables [84], cf. Sec. 3.7.1[2, §8.1]. These are often denoted u, v, w.
To emphasize their interpretation as components of a vector r in an abstract three-dimensional
space I shall use the notation r1, r2, r3 and the Bloch angles θ and φ of eqn. (45),

u(t) ≡ r1(t) = Re ρ̃12(t) = Re [C2(t)∗C1(t)] = cosφ sin θ,
v(t) ≡ r2(t) = Im ρ̃12(t) = Im [C2(t)∗C1(t)] = sinφ sin θ,
w(t) ≡ r3(t) = Ps(t)− P1(t) = |C2(t)|2 − |C1(t)2 = cos θ.

(175)

Here ρ̃(t) is the density matrix, in rotating coordinates; cf. Appendix H.1. In the absence of
probability loss this Bloch vector maintains unit length,

|r(t)|2 = r1(t)2 + r2(t)2 + r3(t)2 = 1, (176)

and hence it maps the statevector onto a point on a unit sphere (the Bloch sphere). Figure 24(a)
illustrates the Bloch vector. The 1, 2 axes are set by the initial E field phase. It is customary, and
convenient, to take this as zero, thereby fixing the relative orientation of the coordinate systems.
From the Bloch vector we evaluate the populations as

P2(t) = 1

2
[1 + r3(t)] , P1(t) = 1

2
[1− r3(t)] , (177)

58The model results rather simply from the two-state density matrix, cf. Sec. H.1.
59Because the absolute phase of the field is uncontrollable, it is convenient to set this to zero at the start of a pulse. But

subsequent manipulation of the laser field may require a later nonzero value.
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r1 = Re C1C
∗

2

r2 = Im C1C
∗

2

r3 = P2 − P1 ∆

ImΩ

ReΩ

Fig. 24. (a) The Bloch vector. The 1, 2 axes are set by the initial phase. (b) The angular velocity vector.
The projection into the 1, 2 plane is determined by the field phase ϕ.

and the dipole moment as

〈d(t)〉 = 2 Re [d12C1(t)∗C2(t) exp(−iωt)] (178)
= |d12| [r1(t) cos(ωt)− r2(t) sin(ωt)] . (179)

When the RWA applies, as here assumed, variables Cn(t) and rj(t) vary more slowly than the
carrier frequency ω. Bloch-vector component r1(t) is in phase with the electric field of the laser,
while component r2(t) is in quadrature with this field.

The two-state RWA Hamiltonian can be similarly parametrized by the real-valued coordinates
of a vector Ω̃ in a three-dimensional abstract space,

Ω̃1(t) = Re[Ω̂(t)] = Ω cosϕ,
Ω̃2(t) = −Im[Ω̂(t)] = −Ω sinϕ,
Ω̃3(t) = ∆ = ω0 − ω.

(180)

The length of this vector is the root-mean-square of the Rabi frequency (i.e. the interaction
energy) and the detuning. The polar angle of the vector is defined by the relationship

cot θ = ∆/Ω. (181)

Figure 24(b) shows this vector.
Using the TDSE it is straightforward to find equations of motion for the three Bloch variables:

d

dt

 r1
r2
r3

 =

 0 −∆ Ω sin(ϕ)
∆ 0 Ω cos(ϕ)

−Ω sin(ϕ) −Ω cos(ϕ) 0

 r1
r2
r3

 . (182)

These are the RWA Bloch equations, in a Hilbert-space reference frame rotating with angular
velocity ω [2, §8.4].
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Fig. 25. Two-state vector model, showing the action of an angular velocity vector on the Bloch vector. (a)
Resonant excitation (∆ = 0) the angular velocity vector lies along the 1 axis. The Bloch vector follows a
circular path in the 2, 3 plane. (b) The angular velocity vector lies along the 3 axis, and moves the Bloch
vector in a cone about this axis.

A useful presentation of these equations occurs when we describe the RWA Hamiltonian by
means of the vector Ω̃. Then the equation of motion for the Bloch vector r, eqn. (182), appears
as a torque equation,

d

dt
r(t) = Ω̃(t)× r(t), (183)

in which the elements of the RWA Hamiltonian appear organized into an angular velocity vector
Ω̃ (often termed the torque vector). The Bloch vector rotates, at the instantaneous rate

|Ω̃| =
√

∆2 + |Ω|2, (184)

about an axis defined by the components of the angular velocity vector. Figure 24(b) illustrates
the angular velocity vector, parametrizing the RWA Hamiltonian. The projections onto the 1, 2
axes are set by the E field phase ϕ.

By regarding the action of the angular velocity vector as producing a torque that turns the
Bloch vector it is straightforward to visualize the dynamics resulting from a simple pulse, as Fig.
25 illustrates. Frame (a) shows the Bloch vector motion for resonant excitation. Frame (b)shows
the Bloch vector motion for excitation with constant detuning.

7.1.1 Examples: Steady field

Although the torque equation for the Bloch vector holds for any pulsed excitation (within the
RWA), it is most useful when applied to situations when the RWA Hamiltonian has constant
elements. We here consider some examples.

When the excitation is resonant, and the initial state is that of population entirely in state 1, the
tip of the Bloch vector moves along a great-circle path, in the plane normal to the angular velocity
vector. The projections of this motion onto the 3 axis are the Rabi oscillations of population
inversion. Figure 26 illustrates this behavior.



314 Coherent manipulation

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1

1

3

2

time

detune = 0

Fig. 26. Left: depiction of rotating Bloch vector for resonant excitation. Right: plots of the time dependence
of the three components of the Bloch vector
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Fig. 27. As in the previous figure 26, but with detuning.

When the excitation is nonresonant the angular velocity vector lies out of the equitorial plane
of the Bloch sphere. It produces motion of the Bloch vector on a conical surface, as shown in
Fig. 27.

7.1.2 Examples: Sequential pulses

The Bloch vector and the torque equation of motion for it provide a very simple interpretation of
sequential-pulse excitation effects [82]. One of these occurs when a first pulse, of constant Rabi
frequency, ceases for some time interval before resuming. During the illumination halt there
occurs no change of the Bloch vector, but there does occur an ongoing accumulation of phase,
originating with the rotating coordinate system; cf. Sec. 6.10. This affects the orientation of the
angular velocity vector when it next acts.

Figure 28 illustrates this scenario: a pulse of constant amplitude acts for a definite time
interval, and then ceases. What do we expect the plots will be when the excitation resumes?

To analyze the effect of successive pulses we write the initial pulsed field as

E(1)(t) = Re
[
êE(t− t1)e−iω(t−t1)+iϕ1

]
, (185)
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Fig. 28. Left frame: plot of time dependence of the three components of the Bloch vector, as produced by a
resonant pulse of constant amplitude. Following the termination of this pulse there is a pause, and then the
pulse resumes. The effect of the second pulse, indicated here with question marks, depends upon the phase
change ∆ϕ.

with t1 as the time when the pulse envelope starts. That is, the envelope function appearing in
the Bloch equation is a function of the time interval τ = t− t1 measured from the pulse start; it
vanishes for t− t1 < 0. The rotating Hilbert-space coordinate associated with this field is

ψ′2(t) = e−iω(t−t1) ψ2. (186)

The second pulse begins at a later time t2, and we write the resulting field as

E(2)(t) = Re
[
êE(t− t2)e−iω(t−t2)+iϕ2

]
. (187)

To place these two expressions on a common time scale, one associated with the rotating coordi-
nate of eqn. (186), we rewrite eqn. (187) as

E(2)(t) = Re
[
êE(t− t2)e+i∆ϕ e−iω(t−t1)+iϕ1

]
. (188)

The phase increment appearing here,

∆ϕ = ω(t2 − t1)− ϕ1 + ϕ2, (189)

acts as a modifier of the field envelope E(t). We see that, in addition to any specific phase
change ϕ1 − ϕ2 between pulses there occurs an inevitable change ω(t2 − t1) associated with
the translation of the time scale used for the rotating coordinate system. This dynamic phase is
directly proportional to the steady carrier frequency ω and to the time interval t2 − t1 between
the pulses

Thus the effect of a second pulse depends on the phase of the field envelope, as parametrized
here by the phase shift ∆ϕ. Figure 29 shows two examples. In the first (top row) there occurs no
pause between pulses, ∆ϕ = 0. In the lower row, a phase delay of ∆ϕ = 0.3π occurs. As can
be seen, the result is a much smaller modulation of the population oscillations: little excitation
occurs. Instead, Bloch-vector component r1 begins to oscillate.

Figure 30 shows two more examples of possible phase increments. In the first case (top
row), for phase increment 0.55π, there is little excitation produced by the second pulse. As the
phase increment changes, to π, we see that the effect of the delay interval has been to reverse the
excitation process – essentially to reverse time.
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Ωt/π Ωt/π

∆φ = 0

Ωt/π Ωt/π

∆ϕ = 0.3π

Fig. 29. Two possible continuations of the excitation; here there pause introduces a phase change ∆ϕ = 0
(top row) or 0.3π (lower row). To the right are clock faces indicating the phase change during the pulse-free
interval.

An interesting situation occurs when the phase increment is exactly π/2. Then the second
pulse has no effect upon the Bloch vector: none of the components change, even though a pulsed
field is present. Figure 31 illustrates this behavior.

This can be understood by considering the combination of Bloch vector and angular velocity
vector. For the present example, the effect of the first pulse appears as the Bloch vector rotation
from the south pole to the equator, as shown in Fig. 32 (a).

With the phase change π/2 the second angular velocity vector acts along the 2 direction. This
is the direction of the Bloch vector, as seen in Fig. 32 (b). That is, the angular velocity vector
and the Bloch vector are parallel. Therefore this pulse produces no visible effect

In summary, the effect of the pause prior to resumption of the pulse, is as follows:

• The envelope phase shift ∆ϕ shifts the phase of the complex-valued Rabi frequency, and
hence the orientation of the angular velocity vector 60

Ω̃ = [Ω cosϕ, Ω sinϕ, ∆]T .

• Subsequent population change may be zero. If the angular velocity vector aligns with
Bloch vector (this occurs if ∆ϕ = π/2 when resonant, ∆ = 0).

• A phase change ∆ϕ = π is equivalent to time reversal.

Such effects occur only if the laser field remains coherently phased. When the delay interval
is longer than the coherence time, then the phase becomes random. The resulting effect on the
atom can only be evaluated statistically: the Bloch vector components are averages of those for
a distribution of phase changes. Rabi oscillations will not then be seen at long times.

60Here the superscript T denotes matrix transpose, i.e. replacing rows by columns.
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Ωt/π Ωt/π

∆φ = π

∆ϕ = 0.55π

Fig. 30. Other possible continuations of the excitation; here the pause introduces a phase change ∆ϕ =
0.55π (top row) or π (lower row).

Ωt/π Ωt/π

∆ϕ = 0.5π

Fig. 31. Effect of second pulse when phase delay is ∆ϕ = 0.5π. The second pulse has no effect.

7.2 Including relaxation

The presence of spontaneous emission between states 2 and 1 causes a loss of coherence as well
as a transfer of population. Other processes, such as collisions, also produce this coherence loss.
To account for such effects the needed revision of the Bloch equations are often written (here the
Rabi frequency is taken to be real valued, ϕ = 0)

d

dt
r1 = −∆ r2 −

1
T2
r1,

d

dt
r2 = +∆ r1 − Ω r3 −

1
T2
r2, (190)

d

dt
r3 = Ω r2 −

1
T1

(r3 + 1). (191)
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Fig. 32. (a) The Bloch vector rotation produce by the first pulse, of Rabi angle π/2. (b) The rephased pulse
has no effect

Here the incoherent processes are parametrized by two times, traditionally denoted T1 and T2.
The longitudinal relaxation time T1 expresses population-changing events: spontaneous emis-
sion and inelastic (energy-changing) collisions; it is the average time required for the atom to
change states (e.g. decay from the excited state to the ground state or collisional excitation). The
transverse relaxation time T2 expresses events that alter phases; it is the average time required
for spontaneous emission or elastic collisions to alter phases.

The effect of T2 is to pull the Bloch vector toward the vertical axis, towards r1 = r2 = 0.
The effect of T1 is to pull the Bloch vector toward the south pole of the Bloch sphere, towards
r3 = −1. In the absence of coherent excitation, Ω = 0, this point is the ultimate resting point of
the Bloch vector – all population resides in the ground state.

These equations model a closed system: there is no radiative decay from state 2 except to
state 1. When spontaneous emission is the only relaxation process the two relaxation times have
the connection T2 = 2T1 = 2/A21. More generally there exists the constraint

T2 ≤ 2T1. (192)

7.3 Steady-state excitation

When the illumination of the atom is steady then spontaneous emission provides a balance to the
excitation, as recognized by Einstein, and the various elements of the Bloch vector reach a steady
state. More generally, when the relaxation time T2 is short the variables r1 and r2 equilibrate with
the instantaneous value of the inversion. By setting the time derivatives 61 to zero, ṙ1 = ṙ2 = 0,
we obtain expressions appropriate to adiabatic elimination,

r̄1 = −(∆T2)r̄2, r̄2 = − (ΩT2)
1 + (∆)2T2

r3. (193)

61The overhead dot on a function of time, used for typographical simplification, denotes the time derivative.
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The inversion then obeys the rate equation

d

dt
r3 = − 1

T1

[
1 + (∆T2)2 + (ΩT1)(ΩT2)

1 + (∆T2)2
r3 + 1

]
. (194)

This has the structure of eqn. (72); it can be directly integrated, allowing for time-dependent
rates, to produce an expression of the form of eqn. (74). When the rate is constant the equilibrium
solution to this equation, obtained by setting ṙ3 = 0, is

r̄3 = − 1 + (∆T2)2

1 + (∆T2)2 + (ΩT1)(ΩT2)
. (195)

When the Rabi frequency is small, |ΩT1| � 1, the equilibrium inversion approaches the value
r̄3 = −1 descriptive of an unexcited atom. When the Rabi frequency is large, |ΩT1| � 1, the
equilibrium inversion vanishes, r̄3 = 0, meaning the two populations are equal. It is not possible
to obtain positive equilibrium inversion; the equilibrium populations must satisfy the inequality
P̄2 < P̄1.

When spontaneous emission, at rate A, provides the only incoherent process the relaxation
times are T2 = 2/A and T1 = 1/A. Then the equilibrium solutions are

r̄1 = −(2∆/A)r̄2, r̄2 = − (ΩA/2)
(A/2)2 + (∆)2

r̄3, (196)

r̄3 = − (A/2)2 + (∆)2

(A/2)2 + (∆)2 + (1/2)(Ω)2
. (197)

Under these conditions the steady-state excited-state population is

P̄2 =
(Ω/2)2

(∆)2 + (A/2)2 + (1/2)(Ω)2
. (198)

That is, the excitation is greatest, as one expects, for resonance, ∆ = 0, where it can be no larger
than P̄2 = 0.5. The dependence of this equilibrium population on detuning ∆, the excitation
spectrum, is a Lorentz profile whose full width at half maximum (FWHM) is

∆1/2 = 1

2

√
A2 + 2Ω2. (199)

In the absence of the laser radiation this is the natural line width ∆1/2 = A/2. But as the exci-
tation becomes stronger, as parametrized by the radiation power, the width increases; it exhibits
power broadening. In the limit of strong excitation the width is directly proportional to the Rabi
frequency, i.e. to the square root of the intensity.

The occurrence of power broadening depends upon the conditions of excitation, here taken to
be steady illumination with damping. When the excitation is pulsed, and observations take place
after the pulse, then power broadening does not occur [85].

This steady-state model provides a description of excitation that is useful for understanding
the frequency variation of excited-state photoionization – the excitation spectrum. By contrast,
the fluorescence radiation has its own distribution of frequencies. A spectroscopist, collecting
the fluorescence, passes this radiation through a spectrometer to determine the traditional flu-
orescence spectrum. The totality of this radiation, into all solid angles and integrated over all
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frequencies, is proportional to the product of the emission rate A and the excited state popu-
lation, a quantity available from the Bloch equation. However, the simple Bloch-vector model
presented here does not give a description of the fluorescence spectrum. When the laser field
becomes sufficiently strong that Rabi oscillations dominate the atom dynamics – coherent exci-
tation – the periodic variation of the dipole moment creates sidebands to the fluorescent signal.
These are offset from the carrier frequency and are separated by the Rabi frequency. The spec-
trum appears as a Mollow triplet [86] [2, §11.6]. The treatment of such observations requires a
more elaborate treatment than the simple average excitation probability.
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8 Degeneracy

The discrete energies En of bound states are not the only symptoms of quantum-mechanical
properties and quantization. Rotational motion of particles, associated with angular momentum,
is also quantized; only discrete orientations differing by ~ are allowed with respect to any selected
(but arbitrary) axis of quantization [2, §18.1].

For angular momentum characterized by the quantum number J there exist 2J + 1 distin-
guishable orientations. Because rotations imply electrical currents, and consequent magnetic
moments, different orientations correspond to different interactions with electric and magnetic
fields – either fields imposed externally or fields that originate with electronic motion. These
interactions alter the energy of the particle, in discrete increments associated with the discrete
orientations.

The overall angular momentum of an atom or molecule has discrete orientation energies
in an external field. These are the Zeeman energy shifts associated with static magnetic fields
[87] and Stark shifts produced by static electric fields [88]. In the absence of such external
fields the energy of a confined quantum-mechanical particle is unaffected by orientation; all
2J + 1 orientations have the same energy, and the associated quantum states are degenerate.
It is common practice, based upon terminology from atomic spectroscopy, to refer to a set of
degenerate quantum states as an energy level. The individual constituents, distinguishable by
orientation, are magnetic or Zeeman sublevels.

An important class of magnetic-moment interactions are those arising from nuclear spin. The
possible orientations of nuclear spin relative to electronic structure produces hyperfine splitting
[89], cf. Appendix G. Within a molecule the nuclear orientation energy is observed as a chemical
shift that motivates the practical use of nuclear magnetic resonance [90].

As with the quantized energies, it is possible to place the discrete set of quantum states into
a catalog, a list labeled by integers. Often it is convenient to use several quantum-number labels
for each individual state. These may identify the energy, the total angular momentum (J) and
the projection (M ) of that angular momentum upon some (arbitrary) reference axis, traditionally
chosen as the Cartesian z axis . However, for present purposes it is more convenient to use single
indices, and to express the condition of degeneracy as Ei = Ej .

When degeneracy occurs, polarization provides a means of more specifically controlling the
laser-induced excitation. Because the states of free atoms can be taken as states with well defined
angular momentum, simple selection rules on the magnetic quantum number M are associated
with particular polarizations.

8.1 Radiation polarization and selection rules

Laser-induced transitions originate, in the dipole approximation, with transition dipole-moments
within the atom. These can either emit or absorb electric dipole radiation. Typically one regards
the free atom as existing in an angular momentum state defined by the pair of quantum numbers
J,M . The formula for evaluating the dipole-transition moment between angular momentum
states is given by the Wigner-Eckert theorem, discussed in treatises on angular momentum [91]
[2, §20.5] :

〈J ′M ′|êq·r|JM〉 = (−1)J′−M ′
(

J ′ 1 J
−M ′ q M

)
ea0

√
S(J, J ′), (200)
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where (: : :) is a three-j symbol (cf. Appendix C.3), S(J, J ′) is the dimensionless transition
strength of eqn. (400) and ea0 = 2.542 debye is the atomic unit of dipole moment [2, §2.9]. The
unit vectors êq, for q = −1, 0,+1, used to define the directions of a three-dimensional vector
in a spherical basis, have the following relationship to the three unit vectors êx, êy , and êz of
Cartesian coordinates:

ê±1 = ∓ 1√
2
[êx ± iêy], ê0 = êz. (201)

The six arguments of the three-j symbol incorporate basic selection rules for dipole radiation
(electric or magetic) [67]. First, the two atomic angular momentum quantum numbers J and J ′

must form a triangle with unity as the third side. This constraint is because the dipole field has
unit angular momentum, and this must equal the change in atomic angular momentum 62. Thus
it is not possible to have a radiative transition, via single photon, between two states that each
have angular momentum J = 0. Nor is it possible to have a transition, via dipole radiation, in
which |J − J ′| > 1. Such transitions occur with quadrupole or higher multipole radiation.

The nonzero linkages amongst sublevels are restricted by the requirement

M −M ′ + q = 0. (202)

Thus the magnetic quantum numbers M and M ′ can similarly differ by no more than 1; the
choice q = 0 requires M = M ′. This constraint expressed the fact that the projection of angular
momentum onto the propagation axis (the helicity q) cannot exceed unity. When the two angular
momenta are the same, J = J ′, an additional restriction occurs: no transitions occur from
M = 0 or M ′ = 0 without a change in magnetic quantum number, i.e. there is no interaction
link M = 0 ↔M ′ = 0.

These geometrically based selection rules are

|J − J ′| = 0,±1, but not J = 0 ↔ J ′ = 0 (203)
|M −M ′| = 0,±1, but not M = 0 ↔M ′ = 0 when J = J ′ (204)

A further selection rule applies to transitions between states of free atoms, though not to
transitions in atoms held within a crystalline environment: the electric dipole transition moment
is nonzero only between states of opposite parity. This attribute refers to symmetry under coor-
dinate inversion: odd-parity states change sign whereas even parity states remain unchanged.

8.1.1 Emission: Angular momentum fields

The radiation spontaneously emitted during a transition between atomic states of well defined
angular momentum quantum numbers J,M carries also angular momentum; the relevant fields
are the angular momentum fields of Appendix A.3 [2, § 19.4]. There are three basic angular
momentum multipole fields that can be created, conventionally denoted σ+, σ− and π, each
identified with as specific change of magnetic quantum number, ∆M . The association is

∆M = 0 for π, (205)
∆M = +1 for σ+, (206)
∆M = −1 for σ−. (207)

62The electromagnetic field, being a vector field in three-dimensional Euclidean space, has intrinsic angular momen-
tum (i.e. spin) of one. Particular fields may also carry orbital angular momentum about a reference axis.
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Fig. 33. Transitions between magnetic sublevels create one of three electric dipole fields, denoted σ+, σ−
and π

Figure 33 shows examples of the transitions that produce these emission fields.
The three basic dipole fields produced by these transitions are shown in Fig. 34. The π field

vectors remain fixed in direction, although oscillating in length. The σ± fields have vectors that
rotate about the z axis, with frequency ω.

8.1.2 Absorption: Linear momentum fields

To excite an atom with laser radiation it is necessary to associate these emission fields, which are
multipole fields characterised by unit angular momentum, with laser fields, which are character-
ized by linear momentum, cf. Appendix A.3. The laser fields typically are idealized as plane
waves, meaning spatial and temporal properties governed by the phase function of eqn. (15).

A general polarization vector can be written, using Cartesian coordinates, as

ê = εzêz + εxêx + εyêy. (208)

Because the electric and magnetic fields of radiation must be transverse to the propagation di-
rection it proves useful to identify these unit vectors in a coordinate system aligned with the
propagation direction. For radiation propagating along the z axis (the quantization axis) we use
orthogonal complex spherical unit vectors (helicity states of the field), as given by eqn. (201)
and instead of eqn (208) we have the corresponding expansion

ê = ε0ê0 + ε+ê+ + ε−ê−. (209)

Figure 35 sketches the three polarization choices available with this basis.
The appearance of the three components of the polarization vector ê depend explictly upon

the choice of coordinate orientation, e.g. whether the z axis lies along the propagation direction
or along the direction of linear polarization. The choice of orientation is best described by the
three Euler angles α, β and γ [91],

êq′ = exp(iγq′)Σq=−1,0,+1êq exp(−iγq)d(1)
q,q′(β). (210)
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πσ+ σ
−

Fig. 34. Basic electric-dipole fields with definite angular momentum Left: the σ+ field appears along
the polar axis as circularly polarized, while when viewed in the equatorial plane it is horizontally linearly
polarized; center: the π field vanishes in polar directions, and is vertically polarized in the equatorial plane;
right: the σ+ field is similar to the σ+ field but has opposite sense of polarization rotation. [after Fig. 2.7
of B. W. Shore and D. H. Menzel, Principles of Atomic Spectra (Wiley, N.Y., 1968)]

Here d(1)
M,M ′(β) is the reduced rotation matrix of order 1 [2, §18.5].

The most general polarization, elliptical polarization, can be expressed as a superposition of
any two independent unit vectors that are perpendicular to the propagation direction; cf. eqn.
(12) and Fig. 6.

8.1.3 Connection, linear and angular momentum fields

The combination of energy selectivity, associated with the monochromatic nature of laser light,
and sublevel selectivity, associated with polarization, provides controls with which to manipulate
the quantum states of an atom. Figure 36 shows possible connections between the polarization
of a directed beam and the multipole fields needed for inducing transitions between angular
momentum states. By using all three independent polarization fields, each specified by a complex
amplitude, we have at most six control parameters with which to create, and detect, degenerate
superpositions, as discussed in the present article.

It is important to recognize that any rotation of the coordinates alters the apparent identifica-
tion of individual magnetic sublevels. Under rotation, parametrized by Euler angles α, β and γ,
a single angular momentum state appears as a coherent superposition of states having the same
J [91][2, §18.4],

|J,M〉rot = ΣM ′D(J)
M,M ′(α, β, γ)|J,M ′〉. (211)

Similarly, the complex-valued unit vectors that describe the direction of the electric field undergo
the transformation

êq = Σq′D(1)
q,q′(α, β, γ)êq′ , q, q′ = 0,±1. (212)

As an example, the rotation of J = 1 from x to z produces the result

|1, 0〉rot =
1√
2

[|1,−1〉 − |1,+1〉] . (213)
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Fig. 35. Examples of polarizations based on helicity, eqn. (209). Long (green) arrows show propagation
direction, shorter (black) arrows indicate polarization plane for linear (π) or circular (σ±) polarizations.

A single state becomes a superposition, and vice versa. Figure 37 illustrates the effect on a
linkage pattern of this coordinate change.

8.2 The RWA with degeneracy

The RWA for circularly (or elliptically) polarized light requires consideration of linkages in-
volving all magnetic sublevels. As an example, the interaction Hamiltonian for positive helicity
is

Hint(t) = − Re [d+1Ê(t)e−iωt] = − 1

2
d+1Ê(t)e−iωt + 1

2
d−1Ê∗e+iωt. (214)

Consider a degenerate ground level having angular momentum J = 1 linked by this Hamiltonian
to an excited state having J = 0, as in Fig. 37. Three states are coupled by this interaction; let
us label them by their magnetic quantum numbers. Set the zero of energy to be E−1 = E+1 = 0
and express the statevector as

Ψ(t) = C−1(t)ψ−1 + C0(t) e−iωtψ0 + C+1(t)ψ+1. (215)

Using angular momentum selection rules we obtain from the TDSE the three coupled equations

~
d

dt
C−1 = − i

2
[〈−1|d−1|0〉Ê∗e+iωt] e−iωtC0, (216)

~
d

dt
C0 = −i(E2 − ~ω)C0

+
i
2

e+iωt[〈0|d+1| − 1〉Êe−iωt] C−1 −
i
2

e+iωt[〈0|d−1|+ 1〉Ê∗e+iωt] C+1, (217)

~
d

dt
C+1 =

i
2
[〈−1|d+1|0〉Êe−iωt] e−iωtC0. (218)
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σ+ σ
−

π

Fig. 36. Electric dipole fields in absorption. The σ± fields at the left and right are most strongly coupled to
circularly polarized plane waves propagating vertically. The π field at the center has strongest coupling to
a vertically polarized field incident in the equatorial plane.

These equations can be written more simply as

d

dt
C−1 = − i

2
Ω∗PC0, (219)

d

dt
C0 = −i∆C0 −

i
2
ΩPC−1 −

i
2
Ω∗Se+2iωtC+1, (220)

d

dt
C+1 = − i

2
ΩSe−2iωtC0, (221)

where the Rabi frequencies are

~Ω∗P ≡ 〈−1|d−1|0〉Ê∗, ~ΩS ≡ −〈+1|d+1|0〉Ê . (222)

The RWA neglects terms that vary as twice the carrier frequency. When we omit these terms we
obtain the two-state RWA equations

d

dt
C−1 = − i

2
Ω∗PC0, (223)

d

dt
C0 = −i∆C0 −

i
2
ΩPC−1. (224)

More generally, when the radiation is elliptically polarized then the Hamiltonian will have
the form

Hint(t) = − Re [d+1ÊP (t)e−iωt + d−1ÊS(t)e−iωt]. (225)
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J = 1

M = −1 0 +1

J = 0

J = 1

M = −1 0 +1

J = 0

Fig. 37. (a) Upper frame shows Cartesian coordinate system with z axis (the quantization axis) aligned
with polarization. Lower frame shows resulting coupling of laser interaction (solid arrow) and spontaneous
emission (dashed arrows). (b) Upper frame shows Cartesian coordinate system with x axis aligned with
linear polarization. Lower fram shows couplings of laser field (solid lines), using helicity vectors (circular
polarization) to describe the electric field. Dashed lines show spontaneous emission linkages.

There will now be linkages to C0 involving both C−1 and C+1. Each linkage will have counter-
rotating terms involving exp(±i2ωt). The RWA neglects these, and provides a three-state equa-
tion, for ladder linkage, of the form

d

dt
C−1 = − i

2
Ω∗PC0,

d

dt
C0 = −i∆C0 −

i
2
ΩPC−1 −

i
2
Ω∗SC+1, (226)

d

dt
C+1 = − i

2
ΩSC0.

These equations, based on the TDSE, do not account for spontaneous emission; they only
treat the laser-induced transitions. To account for spontaneous emission, an incoherent process,
it is necessary to employ a density matrix, as discussed in Appendix H.1. Nevertheless, even
without displaying and solving the required equations of motion it is possible to make some
qualitative observations about some effects of spontaneous emission. The following sections
present some examples.

8.3 Optical pumping

Under conditions of thermal equilibrium populations are evenly distributed amongst magnetic
sublevels; each sublevel of a given J has population 1/(2J + 1). Various laser-induced pro-
cesses alter this uniform distribution. Distributions of magnetic sublevels, whether coherent or
incoherent, are commonly classed as being either oriented or aligned [2, §21.9]. Orientation
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J = 1

M = −1 0 +1

J = 1

Fig. 38. Optical pumping can produce complete transfer into a single quantum state. Left frame: Linkage
pattern for radiative transitions for J = 1 → J = 1 using circularly polarized light. Solid (red) line:
linkage of circularly polarized laser radiation. Dashed lines: allowed linkages of spontaneous emission.
Right frame: Population distributions before (above) and after (below) many optical pumping cycles of
excitation and spontaneous emission. Initially all sublevels are equally populated. Dark red fill marks the
portion affected by laser radiation, light blue fill marks the portion unaffected by laser radiation. After
optical pumping (below) all population is placed into sublevel M = +1.

means that there is a nonzero averaged magnetic moment. Alignment means that the averaged
magnetic moment is zero but the population is not uniformly distributed amongst magnetic sub-
levels – although sublevels of +M and −M have equal population.

The redistribution often takes place by a combination of coherent and incoherent processes.
Illumination of a resonant transition will transfer population into an excited state, from which
it will decay by spontaneous emission. When the ground level is degenerate (say, angular mo-
mentum J = 1) then spontaneous emission from an excited quantum state (a sublevel) will
proceed by all three polarization fields, in accord with selection ruless ∆M = 0,±1, each with
equal probability. When the illumination is steady and polarized, then there will occur cycling
of population: each absorption from a ground sublevel will be followed by spontaneous return
to another low-lying sublevel. The result, after many excitation-deexcitation cycles, will be a
redistribution of population amongst the ground sublevels – an example of optical pumping [92],
illustrated by the following figures.

As a first example, Fig. 38 illustrates how optical pumping with circularly polarized light
produces complete population transfer into a single quantum state, the sublevel having maximum
magnetic quantum number – in this case M = +1. The laser-induced excitation obeys the
selection rule ∆M = +1, while spontaneous emission returns population to all three sublevels.
Population eventually accumulates in sublevel M = J , on which the illumination has no effect.
Complete transfer will occur if, and only if, there are no spontaneous emissions other than those
that return population to the initially populated Zeeman sublevels.

As a second example, Figure 39 illustrates the redistribution that occurs when linearly po-
larized light excites atoms from angular momentum J = 1 to J = 0. The quantization axis
here is taken along the direction of linear polarization, so that the selection rule ∆M = 0 holds
for excitation. Radiative decay, by contrast, returns population to all three sublevels. Population
eventually accumulates into sublevels M = ±1, which do not undergo laser-induced excitation.
After many optical cycles the population is entirely removed from M = 0. However, the final
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J = 0

J = 1

M = −1 0 +1 e m p t y
Fig. 39. Optical pumping can produce complete depletion. Left frame: Linkage pattern for radiative tran-
sitions for J = 1 → J = 0. Solid (red) line: linkage of linearly polarized laser radiation, in a reference
system aligned with the polarization axis. Dashed lines: allowed linkages of spontaneous emission. Right
frame: As in Fig. 40, population distributions before (above) and after (below) many cycles of optical
pumping. After optical pumping (below) all population is removed from sublevel M = 0.

J = 0

J = 1

M = −1 0 +1

Fig. 40. Optical pumping can produce trapped population. Left frame: As in Fig. 39, linkage patterns
for laser radiation (solid line) and spontaneous emission (dashed lines) for linearly polarized light, in a
reference system aligned perpendicular to the polarization direction. The linear polarization is expressed as
a (coherent) superposition of two circular polarizations. Right frame: As in Fig. 39, population distributions
before (above) and after (below) many cycles of optical pumping. Dark red fill marks the portion affected by
laser radiation, light blue fill marks the portion unaffected by laser radiation. After optical pumping (below)
population is only partially removed from sublevels M = ±1, leaving a trapped coherent superposition of
quantum states. Section 10.6 offers further insight into population trapping states.

population distribution, in M = ±1, is not a coherent superposition; it is an incoherent mixture
of two quantum states.

The redistribution of population from optical pumping appears differently if we choose the
quantization axis differently. Figure 40 shows the linkages when the polarization is linear but the
quantization axis is chosen to be perpendicular to the polarization direction, say in the direction
of propagation. It is then necessary to express linear polarization as a superposition of right-
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J = 1

M = −1 0 +1

J = 2

−2 +2

J = 1

M = −1 0 +1

J = 2

−2 +2

Fig. 41. Linkage patterns for J = 2 ↔ J = 1, in the absence of spontaneous emission. (a) Linear
polarization, in direction of quantization axis. Excitation occurs through three independent linkages; two
(dark) states are unaffected. (b) Linear polarization, in helicity basis. There are two independent excitation
linkages: a five-state “letter-M” and a three-state lambda.

and left-circularly polarized light, for which the excitation selection rules are ∆M = ±1. It
might appear that, with this coordinate system, population will accumulate entirely in the M =
0 sublevel. This is not correct, as will be explained in Sec. 11.8 and Appendix M: Owing
to coherence, only a portion of the initial population is affected by the laser radiation. The
remainder is unaffected by the radiation; it remains in a population trapping state that does
not become excited and therefore does not fluoresce – a dark state coherent superposition of
M = ±1. The portion affected by the radiation, indicated by dark red fill in Fig. 39, becomes an
incoherent mixture of two quantum states after optical pumping.

The preceding examples illustrate situations in which radiative excitation produces measur-
able changes of quantum-state probabilities. However, because these rely on spontaneous emis-
sion, they do not exhibit the phase coherence that is of central concern in the present article.
For such purposes it is necessary to rely solely upon laser-induced transitions, and to deal with
coherent excitation.

8.4 General angular momentum

As angular momentum J increases, so too do the number of linkages possible between sublevels.
A simple example will illustrate some of the considerations that occur. Figure 41 illustrates
linkage patterns for a J = 2 ↔ J = 1 transition (in the absence of spontaneous emission), as
viewed with two choices of coordinates.

Frame (a), appropriate to linear polarization aligned with the quantization axis, shows that



Degeneracy 331

there are three independent two-state transitions, associated with states M = 0,±1. The states
with M = ±2 are unlinked, and do not undergo excitation; they are dark states, or population-
trapping states, meaning that they are unaffected by the laser radiation that would otherwise
produce excitation and subsequent fluorescence.

Frame (b) shows the same system but with an helicity basis for the polarizations, i.e. a
combination of right- and left-circular polarization. The linkages now appear as two independent
systems: a 5-state letter-M linkage pattern (starting with J,M = 2,−2) and a three-state lambda
linkage (starting with J,M = 2,−1). All magnetic sublevels have linkages to excited states.
This appearance is deceiving; the number of dark states cannot depend on the (arbitrary) choice
of coordinate alignment. As discussed in Appendix M, each of the independent linkage patterns
of frame (b) has a single dark state. Thus, as in the portrayal of frame (a), the full 7-state system
has two dark states.
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9 Refinements

The simple two-state quantum system has found many applications. Many other situations re-
quire only small modifications of the elementary model. Here I mention a few of these.

9.1 Statistical averages

When dealing with laser-excitation of atomic beams or with other aggregates of single atoms it
is essential to recognize that observed properties, such as excitation probabilities, originate in an
ensemble of systems, each of which differs in some parameter that affects the excitation. Each in-
dividual system within the ensemble evolves subject to a distinct RWA Hamiltonian, say W(t; e),
that depends upon a set of environmental parameters, here denoted e. The systems evolve inde-
pendently, and thus the observable probabilities are averages over probabilities obtained from
considering separate time evolutions. The required algorithm, for a discrete set of environmental
parameters ej , is

P̄n(t) = Σjp(ej) |Cn(t; ej)|2, (227)

where Cn(t; e) is the solution to the TDSE with RWA Hamiltonian W(t; e) and p(e) is the prob-
ability of finding the parameters e.

An important example of such environmental averages occurs for impurity atoms embedded
in a solid matrix. Each impurity atom may have a different set of near neighbors, and hence will
be subject to a different set of static interactions. Each such environment produces a different
shift of the basic energy levels En, and hence a different value of the detuning. The observed
properties of an ensemble of impurity atoms must average over the detuning distribution. Ap-
pendix F provides other useful examples.

It is important to recognize that there usually is no single “average” RWA Hamiltonian W̄(t)
that will reproduce the averaging of eqn. (227); one cannot write

P̄n(t) = |C̄n(t)|2, with
d

dt
C̄(t) = −iW̄(t)C̄(t). (228)

9.2 Beyond the RWA

The RWA provides a mechanism to average over rapid variations at the carrier frequency and
thereby place emphasis upon slower transition changes. The validity of this approximation im-
proves as the carrier frequency ω becomes much larger than the Rabi frequency Ω. However,
situations arise in which this condition fails. An alternative approach is then needed [93].

A particularly fruitful approach begins from an idealization of the interaction Hamiltonian
as perfectly periodic, with period equal to τ = 2π/ω for carrier frequency ω. That is, the
Hamiltonian H(t) that appears in the equation

d

dt
c(t) = − i

~
H(t)c(t) (229)

has periodicity H(t+τ) = H(t). Such situations were widely studied during the 19th century, and
their solution is now generally called Floquet theory [94] [2, §10.2]. Appendix L discusses this
approach. The extension from perfect periodicity to pulses involves adiabatic Floquet theory,
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cf. Appendix L.6 [95]. Basically these approaches increase the dimensions of the Hamiltonian
matrix; they can be viewed as enlarging the Hilbert space by introducing an additional degree of
freedom, one that has an infinite number of states, each associated with a Fourier harmonic.

9.3 The nonessential states; Effective Hamiltonian

Although the Bohr resonance condition may restrict appreciable population to only two “essen-
tial” states, this does not mean that the remaining “nonessential” states have no effect on the
dynamics. Even with miniscule excitation probability these nonessential states can have two im-
portant effects, each based on regarding them as nonresonant intermediate states in a chain of
transitions that is overall resonant. Both effects can be treated by means of an “effective” Hamil-
tonian Heff [2, §14.8]. Section 10.3.1 discusses how such an effective two-state Hamiltonian
arises from a three-state system when detuning is large. In general the elements of Heff have the
following interpretation.

The off-diagonal elements of Heff describe multiphoton transitions, the simplest of which are
two-photon transitions, such as occur with stimulated Raman scattering when the excited state is
nonresonant. Much effort dealt with calculations of these multiphoton transition rates during the
early decades of laser usage [96].

The diagonal elements of Heff can be regarded as transitions from an initial state into an
excited state and back again. From a version of the energy-time uncertainty principle,

∆× τ > ~, (230)

one expects that, as the detuning ∆ grows large (in units of Rabi frequency), the duration of
excitation τ must become small (in units of Rabi cycles). These processes, though producing
negligible excitation, produce an induced dipole moment. In turn, this induced moment, param-
eterized as a polarizability of the atom, interacts with the laser electric field to produce an energy
shift – a dynamic Stark effect [80].
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10 Three states

The next logical step beyond the two-state system is the three-state system excited by two distinct
radiative transitions. As with the previous discussion, I shall take the interaction to be that of
electric-dipole transitions, here with two laser fields, identified by letters P and S. The carrier
frequencies of the two fields, ωP and ωS respectively, are each assumed to be close to resonance
with one, and only one, of the transitions, so that each field can be uniquely identified with a
particular transition [97]. I shall assume that the P field is (near) resonance only with the 1-2
transition, while the S field is (near) resonant only with the 2-3 transition. Thus the nonzero
interactions, for linearly polarized fields, are

VP (t) = −d12EP (t) cos(ωP t+ ϕP ), (231)

VS(t) = −d23ES(t) cos(ωSt+ ϕS). (232)

Within the coherence time of the laser fields the phases ϕP and ϕS remain constant at a fixed
position, unless specifically modulated by an experimenter. Their constant absolute value is
uncontrollable, and so one of them can usually be taken as zero at some convenient initial time.
The second phase cannot be similarly chosen unless the two fields have the same frequency
and derive from the same laser field (i.e. states 1 and 3 are degenerate), through the use of
beam splitters and manipulation of differing optical paths; then a controllable phase difference
can be specified. The phases affect comparisons of successive experiments on a single atom or
simultaneous observation of several atoms. Such situations call for an average over the phases;
see Sec. 9.1.

This system has three possible linkage patterns, shown in Fig. 42. In free atoms the selection
rules for electric-dipole radiation require that linked states should have opposite parity. Thus it
is not possible to have a closed loop of excitation linkages with only electric dipole radiation
in a free atom. However, there exist alternative interactions, and alternative systems, for which
closed loops are possible; cf. Sec. 11.6.

Each of the linkage patterns shown Fig. 42 leads to a similar RWA Hamiltonian; the only
difference is in the definition of the diagonal elements – the detunings. For the ladder system the
third detuning is the sum of two single-step detunings, while for the lambda and vee linkages it
is the difference of two detunings.

The vee linkage is distinguishable from the other linkages only by the initial conditions 63:
Whereas the initial population of the lambda and ladder systems resides in one end of the linkage
chain, for the vee system population initially resides in the middle level of a chain. When the
interaction occurs, population proceeds towards the ends of the chain, from which it returns with
constructive or destructive interference of amplitudes.

Numerous papers have described coherent excitation of three-state systems [98]. Making an
obvious extension of the two-state system we write the statevector for the three-state system as

Ψ(t) = C1(t)ψ′1(t) + C2(t)ψ′2(t) + C3(t)ψ′3(t), (233)

63This distinction fails for a system that has already been subjected to coherent excitation, thereby producing a distri-
bution of population amongst the three states.
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Fig. 42. Types of three-state excitation: from left to right these are the ladder, lambda and vee linkages. The
ground state is the initial state of the three-state chain for the ladder and lambda, but is the middle state of
the vee.

where, anticipating the removal of Hamiltonian matrix elements that vary at the carrier frequen-
cies, we choose the rotating coordinates to be

ψ′1(t) = exp[−i(E0/~)t] ψ1, (234)
ψ′2(t) = exp[−i(E0/~ + ω1)t] ψ2, (235)
ψ′3(t) = exp[−i(E0/~ + ω1 ± ω2)t] ψ3. (236)

In the definition of ψ′3(t) the plus sign is used with the ladder system, the minus sign is used
with the lambda system. The energy E0 is a reference energy; it establishes an overall phase to
the statevector but is not observable. It can be chosen to simplify the appearance of the RWA
Hamiltonian.

10.1 The three-state RWA

The conversion of the Schrödinger equation into a set of ordinary differential equations for the
RWA amplitudes Cn(t), produces the matrix equation (108). The RWA Hamiltonian matrix for
a ladder linkage is (explicit time variation of elements are not shown)

W(t) = −

 ∆1
1
2 ΩP exp(−iϕP ) 0

1
2 ΩP exp(+iϕP ) ∆2

1
2 ΩS exp(−iϕS)

0 1
2 ΩS exp(+iϕS) ∆3

 . (237)

The off-diagonal elements of this matrix are half the Rabi frequencies,

ΩP = −d12EP /~, ΩS = −d23ES/~, (238)

appropriately phased. In general the amplitudes EP and ES are slowly varying, though not ex-
plicitly indicated here.
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No direct coupling between states 1 and 3 occurs in this description – the linkage pattern
does not form a closed loop. This constraint usually follows from parity selection rules, but there
are situations where such couplings must be considered; cf. Sec. 11.6. Furthermore, field P
is assumed to make no contribution to the 2-3 coupling, nor does field S contribute to the 1-2
coupling. Such couplings are, in fact, present, but they are assumed here to have the sort of rapid
time variation that has already been neglected with the use of the rotating wave approximation.

The diagonal elements of the RWA Hamiltonian matrix are detunings – combinations of
differences between Bohr transition frequencies and carrier frequencies. The basic single-field
detunings are defined by the relationships

~∆P ≡ |E2 − E1| − ~ωP , ~∆S ≡ |E3 − E2| − ~ωS . (239)

From these, with further choice of the energy zero point E0, we fix the detunings of the RWA
Hamiltonian. A common choice, useful when we consider a chain of excitations involving Rabi
frequencies of comparable magnitude and all population resides initially in state 1, is

∆1 = 0, (240)
∆2 = ∆P , (241)
∆3 = ∆P ±∆S , (242)

where the plus sign is used for the ladder linkage and the minus sign for the lambda linkage.

10.2 Resonance with equal Rabi frequencies

A simple theoretical situation occurs when both Rabi frequencies are constant and equal, and the
two transitions are each resonant. The RWA Hamiltonian then reads 64

W = −1
2

 0 Ω 0
Ω 0 Ω
0 Ω 0

 . (243)

Figure 43 illustrates the histories of excited-state populations (states 2 and 3) for a ladder linkage
in which population starts in state 1. The solutions are periodic. Starting from state 1 population
flows into state 2 and then arrives, completely, in state 3. From there it returns to the initial
state for further periodic cycling. Population arrives in state 2 both in transit to state 3 and on
returning. Thus the population oscillations of this state are twice as fast as those for states 1 and
3.

These solutions readily apply to resonant pulsed excitation, so long as all Rabi frequencies
share the same time dependence, say Ω(t) = f(t)Ω0. The RWA Hamiltonian then factors as
W(t) = f(t)W. By introducing the time scale (cf. Appendix E.1)

τ(t) =
∫ t

−∞
dt′ f(t′) (244)

we obtain the equation

d

dτ
C(τ) = −iWC(τ), (245)

64This matrix is a multiple of the spin-one matrix Sx of Appendix C.2. The solutions are therefore special cases of
those described in Sec. 11.3.
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Fig. 43. Population histories of intermediate state 2 and final state 3 for resonant excitation, ∆1 = ∆2 = ∆3

and equal Rabi frequencies, Ω += ΩS ≡ Ω.

in which the RWA Hamiltonian W is constant. The solutions are those discussed above, but
with the scaled time variable τ(t). This rescaling technique allows the solution to any resonant
equations in terms of solutions for a constant RWA Hamiltonian.

10.3 Large intermediate detuning

When intermediate-state detuning is present, the excitation dynamics can exhibit a variety of
characteristics, depending on how the detuning compares with the Rabi frequencies. A par-
ticularly simple, and useful, example occurs when the detuning is much larger than the Rabi
frequencies.

Consider the three-state Hamiltonian for a ladder linkage induced by simultaneous P and S
fields (here, for typograhical simplicity, the Rabi frequencies are taken as complex (denoted Ω̂),
incorporating the phases of the fields)

d

dt
C1 = −i∆1C1 −

i
2
Ω̂∗PC2,

d

dt
C2 = −i∆2C2 −

i
2
Ω̂PC1 −

i
2
Ω̂∗SC3, (246)

d

dt
C3 = −i∆3C3 −

i
2
Ω̂SC2.

When the excitation is completely resonant at each step then ∆1 = ∆2 = ∆3, and the two
Rabi frequencies have equal magnitudes, Ω̂P = Ω̂S ≡ Ω̂, then there occurs periodic excitation
from state 1, through state 2, to an complete transfer into state 3, followed by a return. Figure
43 illustrates this periodic behavior. When the intermediate-state detuning ∆2 becomes large,
less population reaches state 2. However, as long as there is two-photon resonance, meaning
∆1 = ∆3 with the present description, population will continue to reach state 3. Figure 44
illustrates the population histories that result when intermediate-state detuning is large but two-
photon resonance prevails.
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Fig. 44. Population histories of intermediate state 2 and final state 3 for large detuning (∆ = 20 × Ω).
The smooth black curve shows prediction of effective two-state system, an approximation that becomes
increasingly accurate as the detuning grows larger and the population reaching state 2 diminishes.

In the limit of very large intermediated detuning ∆2, negligible population occurs in state 2.
However, there occurs a periodic population transfer – Rabi oscillation – between states 1 and 3.
The description of this phenomena involves the reduction of the three-state system to an effective
two-state system using adiabatic elimination of state 2.

10.3.1 Adiabatic elimination

When the detuning ∆2 of the intermediate state 2 is very large, meaning ∆2| � |Ω| as we shall
now assume, then the derivative of C2 varies rapidly. We are not concerned with such rapid
variations, and we average them out by taking an average over many cycles. The average of the
derivative vanishes, and we can solve the resulting equation for the average amplitude C̄2,

C̄2 = − 1
2∆2

[
Ω̂PC1 + Ω̂∗SC3

]
, (247)

which thereby becomes linked (adiabatically) to states 1 and 2. Using this result we can adi-
abatically eliminate the occurrence of state 2 in the equations of motion [2, §4.3]. The result
is

d

dt
C1 = −i∆1C1 + i

|Ω̂P |2

4∆2
C1 + i

Ω̂∗P Ω̂∗S
4∆2

C3, (248)

d

dt
C3 = −i∆3C3 + i

Ω̂SΩ̂P

4∆2
C1 + i

|Ω̂S |2

4∆2
C3. (249)

The result is expressible as an effective two-state RWA Hamiltonian

Weff =
[

∆1 +M11 M12

M∗
12 ∆3 +M22

]
, (250)

involving a two-photon interaction M, i.e. an interaction involving the product of two electric-
field amplitudes, expressed here as the product of two Rabi frequencies.
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10.3.2 The effective Hamiltonian

The elements of M presented above have the form

M11 = |EP |2 α11(ωP ), (251)
M22 = |ES |2 α22(ωS), (252)
M12 = EPES α12(ωP ). (253)

The coefficients αnm are elements of the polarizability tensor 65 [99].
In any real atom there are many nonresonant states, and each of them can be regarded as

an appropriate intermediate state in the three-state chain considered here. Thus the effective
Hamiltonian should sum over all possible intermediate states. A further alteration of the formula
is needed to account properly for the counter-rotating tems that the RWA neglects. With these
two corrections one obtains the following expression for the polarizability

αnm(ω) = Σk
dnkdkm

4~

[ 1
Ek − En − ~ω

+
1

Ek − En + ~ω

]
. (254)

The first of the bracketed fractions dominates for a frequency near a resonance; the second term
originates in the counter-rotating terms of the Hamiltonian.

The diagonal elements of M are energy shifts induced by the electric field of the laser, com-
monly termed dynamic Stark shifts, by contrast to the static shifts produced by slowly varying
(DC) electric fields.. The magnitude of this shift is proportional to the laser intensity and to the
frequency-dependent polarizability, This polarizability produces also an off-diagonal element, a
two-photon interaction

M12 = EPES α12(ωP ). (255)

This appears, in the ladder linkage as a two-photon Rabi frequency, while for the lambda link-
age it is the stimulated Raman Hamiltonian. These situations require the two-photon resonance
condition

E3 − E1 = ~(ωP ± ωS), (256)

where the positive sign accompanies the ladder linkage, the negative sign the lambda linkage.
The off-diagonal elements of M bear interpretation as multiphoton transitions, in the present

example two-photon (between states of common parity). More generally the effective Hamilto-
nian produces N -photon transitions, e.g. three-photon (between states of opposite parity). These
elements of the effective Hamiltonian replace the Rabi frequency used in all of the preceding dis-
cussions. It is important to recognize that any interaction that produces a multiphoton transition
will also produce a dynamic Stark shift.

10.4 Weak probe field: Autler-Townes splitting

Laser-induced excitation from the ground state to an excited state can always be followed by
fluorescence, because both the Rabi frequency and the Einstein A coefficient involve the same

65This tensor usually is shown with subscripts that identify the Cartesian components of the two electric fields that
appear in its construction.
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Fig. 45. (a) A weak probe field P couples the initially populated state 1 with an excited state 2, which in
turn is coupled by a strong transition to state 3. The linkages are shown as resonant. (b) The couplings in
the adiabatic (dressed) basis of the two strongly coupled states. The strong S field acts to split the resonance
transition for the weak P field, thereby preventing population transfer from state 1 to the excited state 2
without revision of the P -field detuning.

dipole-transition moment. This fluorescence is strongest when the laser frequency is tuned to the
Bohr transition frequency of the two state system: as a function of this frequency the fluorescence
signal of an isolated atom traces out a Lorentzian profile, whose width is the lifetime of the
excited state and whose central peak coincides with the Bohr frequency; cf. Sec. 7.3.

When laser-induced excitation from the ground state (via P field) occurs in the presence of
a second laser-induced excitation (the S field) we must enlarge our mathematical description
from a two-state system to a three-state system. The fluorescence from the first excited state
now can be modified by the S field, as a result of population flow within a three state system.
When the S field is sufficiently strong (i.e. with Rabi frequency much larger than that of the
first-step P transition) then the excitation dynamics changes dramatically: once the system is in
an excited state, it undergoes many S-field induced Rabi oscillations between the two strongly
coupled states 2 and 3 before returning to the ground state via the P -field coupling. These Rabi
oscillations affect the fluorescence signal: instead of observing the single Lorentz profile of the
two-state system, one observes a splitting of the peak into two components, the Autler-Townes
doublet [100]. The following paragraphs explain the origin of this effect. 66

Consider the situation when the population initially resides in state 1, the ground state, which
couples via P field to excited state 2, which in turn has linkage via S field to low-lying state 3.
Our interest here is in situations where the S field (a dressing field) is much stronger than the P
field, which acts as a weak probe field to the fluorescing excited state. Figure 45(a) shows the
assumed linkage pattern.

66Often this effect is explained by introducing a photon-number basis for the fields. But with laser excitation the fields
are readily described as classical fields; the granularity of quantized fields is not evident. Thus it is useful to have a
description that makes no explicit mention of photon number states. Instead, one uses the tool of adiabatic states (also
called dressed states) to replace the original unperturbed basis states (the diabatic states or bare states of Sec 6.6).
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We take the detunings to be those appropriate to the lambda linkage,

∆1 = 0, ∆2 = ∆P , ∆3 = ∆P −∆S , (257)

so that the RWA Hamiltonian matrix, for the lambda linkage, has the following structure (here
the fluorescence loss is neglected)

W =

 0 1
2 Ω̂∗P 0

1
2 Ω̂P

0
∆P

1
2 Ω̂∗S

1
2 Ω̂S ∆P −∆S

 ψ1

ψ′2(t)
ψ′3(t)

. (258)

Here the Rabi frequencies Ω̂ are regarded as complex valued.To treat this we regard states 2
and 3 as a single strongly-coupled two-state system and we introduce a change of basis states
that describe this strongly coupled pair of states. That is, we introduce eigenstates of the RWA
Hamiltonian of the two strongly coupled states (examples of dressed states or, when the RWA
Hamiltonian has some slow time dependence, adiabatic states),

W(2) =
1
2

[
2∆P Ω̂∗S
Ω̂S 2∆P − 2∆S

]
ψ′2(t)
ψ′3(t)

. (259)

The two eigenvalues are

ε± = ∆P +
1
2
∆S ±

1
2

√
(∆S)2 + |Ω̂S |2. (260)

The diagonalization of this 2× 2 submatrix of the full Hamiltonian is accomplished by a unitary
transformation U that produces the result

U†W(2)U =
[
ε− 0
0 ε+

]
. (261)

Using this transformation matrix we introduce, in place of the original amplitudes C2 and C3 of
the strongly coupled states, the pair of dressed-state amplitudes A+ and A−,[

C2(t)
C3(t)

]
= U

[
A+(t)
A−(t)

]
. (262)

Using these, and assuming that the RWA Hamiltonian varies only slowly 67, we write the equation
of motion as

d

dt

 C1(t)
A+(t)
A−(t)

 = − i
2

 0 Ω̂∗+ Ω̂−
Ω̂+ 2(∆P + ∆S + δ) 0
Ω̂∗− 0 2(∆P + ∆S − δ)

 C1(t)
A+(t)
A−(t)

 (263)

where δ is the generalized (nonresonant) Rabi frequency of the strongly-coupled transition,

δ ≡
√

(∆S)2 + |Ω̂S |2, (264)

67Appendix K.2 discusses the nonadiabatic couplings that occur between amplitudes Ak when there is variation of the
RWA Hamiltonian.
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and there are two new Rabi frequencies, Ω̂±. These are proportional to the original probe-field
Rabi frequency and to relevant elements of the matrix that transforms from bare to dressed states,

Ω̂± = Ω̂PU2,±. (265)

The ground state, where population initially resides, is now coupled to two states – the two
dressed states that have replaced the original bare states. Each of these dressed states is a linear
superposition of the original bare states. In particular, each contains some component of state 2,
which has the coupling to the ground state, state 1. Thus each one of the dressed states couples
(by an amount that depends on S-field detuning) to the initially populated state, although each
one receives population at a different rate (depending on the P -field detuning.)

Figure 45(b) illustrates the couplings in the new, adiabatic, basis. The Hamiltonian in this
basis has couplings between state 1 and each of the adiabatic states,

W′ =

 0 1
2 Ω̂∗+ 1

2 Ω̂−
1
2 Ω̂+

1
2 Ω̂∗−

ε− 0
0 ε+

 ψ1

Φ−
Φ+

. (266)

In general, there will occur resonance transitions whenever a diagonal element of the Hamiltonian
is equal to the element associated with the initially populated state. In the present situation, with
population starting in state 1, that is the first element on the diagonal. For the matrix of eqn.
(258) this resonance condition reads 0 = ∆P , meaning either single-photon resonance between
states 1 and 2, or else 0 = ∆P −∆S , corresponding to two-photon resonance between states 1
and 3. For the matrix of eqn. (266) the two possible resonance conditions are ε± = 0, meaning

∆P = ∓1
2
δ − 1

2
∆S . (267)

In the absence of the S field the two values coincide, requiring ∆P = 0. However, when the
S field is present there are two distinct possibilities for the resonance condition. Thus what was
a single resonance in the absence of the 2-3 coupling will now appear as two resonances, the
Autler-Townes doublet, separated by δ, the Autler-Townes (AT) splitting of eqn. (264) [2, §10.4].

The simplest situation is when the strong (dressing) laser is resonant with the original Bohr
frequency of the excited-state transition, so that ∆S = 0. That is,

~ωS = E3 − E2. (268)

The two probe-field detunings for resonance are 2∆P = ±|Ω̂S |. These occur at probe-field
frequencies such that

~ωP = E2 − E1 ± 1

2
~|Ω̂S |. (269)

That is, when ∆S = 0 the two resonances are separated by the strong-field Rabi frequency.
The amplitudes of the two components of the doublet depend on the effective Rabi frequency

that couples the resonance to the ground state. For example, when the coupling is into the minus
component, then the relevant Rabi frequency is Ω̂−.

Although I have not included fluorescence loss from either of the excited states, such effects
can be included if one uses a density matrix rather than a statevector as the fundamental entity of
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interest (cf. Appendix H.1). It will still be so that there are two resonances in the coupling out of
the ground state and into excited states. The fluorescence will be strongest when the resonance
condition holds. Thus a measurement of fluorescence, as a function of probe-field detuning
∆P , will reveal an Autler-Townes doublet, separated by the strong-field Rabi frequency |Ω̂S |.
Such measurements offer a means of determining Rabi frequencies. When so doing, the S-field
resonance condition ∆S = 0 is obtained by adjusting the S-field frequency to minimize the AT
splitting δ for fixed value of Ω̂S .

10.5 Raman processes

The traditional Raman process is a three-state sequence of transitions in which radiative excita-
tion (perhaps induced by a pump laser) is followed by spontaneous emission to a final state differ-
ing from the initial state [101] [2, §17.5]. Typically Raman spectroscopy deals with molecules;
the transitions are then between vibrational-rotational states, characterized in part by vibrational
quantum number v and rotational angular momentum J,M . From any given excited electronic
state there are many fluorescing transitions, corresponding to various vibrational and rotational
quantum numbers of the final state.

When the final state of the sequence is more energetic than the initial state the resulting emis-
sion line (to the red of the pump wavelength) is known as a Stokes spectral line. The difference
between the pump frequency and the Stokes frequency, the Raman frequency, defines the excita-
tion energy of the final state relative to the initial state. When, instead, the final state has lower
energy than the initial state, as can occur when the initial quantum state is already excited, then
the emission is an anti-Stokes line, at a bluer wavelength than the pump field. The wavelengths of
the various Stokes and anti-Stokes lines (i.e. the Raman frequencies) characterize the particular
molecular species, and so they have provided a valuable diagnostic tool for spectroscopists.

10.5.1 Population transfer

One of the goals of laser excitation has been to transfer population from an initial state to a
chosen final state. Raman processes provide a mechanism for transferring population via two-
photon transitions, into final states that cannot be reached by electric dipole radiation at optical
frequencies. These include states that are degenerate with the initial state. The simplest use of
Raman scattering to produce population transfer, shown in Fig. 46(a), employs a pump field of
preselected frequency to produce a first step of excitation, but relies on spontaneous emission to
produce the final transition. From the excited state there occur many possible emission routes,
each with its own Stokes field. The relative probability of a specific one (the branching ratio)
depends on wavefunctions of the two states. For molecular transitions between vibrational states
these are Franck-Condon factors, and hence the population transfer process is termed Franck-
Condon pumping (FCP) [102]. Because the process relies on spontaneous emission, it does not
allow creation of a coherent superposition. And because there are numerous possible final states,
it is not possible to achieve appreciable transfer into any one state.

Rather than rely on nature to produce the Stokes field, one can impose a laser field to se-
lect one of the de-excitation choices, via stimulated emission, a process often termed stimulated
Raman scattering (SRS) [103]. By using a second laser field the two-step Raman process, of
excitation and decay, can be made more rapid and more selective. The second field is typically
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Fig. 46. Raman processes that produce population transfer. (a) Franck-Condon pumping (FCP) converts
pump radiation into Stokes radiation via spontaneous emission. (b) Stimulated emission pumping (SEP)
selects a particular Stokes transition to stimulate. The pump field need not be resonant, but the pump
and dump fields must together satisfy a two-photon resonance condition. (c) Coherent anti-Stokes Raman
scattering (CARS) uses a three-photon transition, pump-Stokes-pump, to create a coherent dipole moment
(between states 4 and 1) that then produces an anti-Stokes field.

termed the Stokes field, independent of its wavelength. Figure 46(b) illustrates this population
transfer scheme, often termed stimulated emission pumping (SEP) [104]. The use of two simul-
taneous laser fields, as in SEP, allows selective transfer to a chosen final state, diluted only by any
competing spontaneous emission. When used in this way the pump field need not be resonant,
but the pump and dump fields must together satisfy a two-photon resonance condition.

Another class of Raman processes, used more for spectroscopic purposes or microscopy than
for population transfer, is the coherent anti-Stokes Raman scattering (or spectroscopy) (CARS)
sketched in Fig. 46(c) [105]. This is an example of nonlinear optics (four-wave mixing) in which
a three-photon process, involving pump-Stokes-pump transitions, creates a dipole moment that
acts as a source of anti-Stokes radiation; cf. Sec 11.6. As with SEP, the pump and Stokes fields
need not be resonant; an overall frequency matching constraint picks out a particular anti-Stokes
frequency; cf. Sec. 11.7.

The lambda linkage pattern associated with the Raman process is basically a three-state exci-
tation chain. Conceptually the simplest scheme for transferring population along a chain is to use
resonant excitation with equal Rabi frequencies that share the same time dependence. As shown
in Sec. 10.2 population then flows from the initial state, 1, to a succession of states along the
chain. For the three-state system this can produce Rabi oscillations that will periodically place
all population into state 3. Figure 47 illustrates the population flow for such a situation 68.

Such schemes are possible for pulsed excitation, but they require that all Rabi frequencies
must rise and fall together, with carefully controlled relative values (typically best results occur
when all Rabi frequencies are equal). The technique also suffers from the temporary placement
of population in the excited state, from which it may be lost via spontaneous emission to other

68Note that although excitation with simultaneous and equal Rabi frequencies can produce complete population trans-
fer, it cannot produce a superposition that does not inclued state 2.
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Pn

Ω t/π

Fig. 47. Population flow for three states, resonant excitation with common Rabi frequency ΩP = ΩS = Ω.
Population flows from state 1 through state 2 into state 3. To obtain complete population transfer the pulse
duration must be adjusted to complete only half of a full 3-state Rabi cycle.

states. (This loss can be reduced by using lasers which, while satisfying two-photon resonance
conditions, are not not in single-photon resonance.)

One might expect that an effective and robust way to transfer population between state 1 and
state 3 would be by placing population first into intermediate state 2 (by means of a π pulse or by
RAP) and then transferring this to state 3. This intuitive pulse sequence exposes the atom first to
the P field and then to the S field. Figure 48 illustrates such a sequence. In the first step, shown
in frame (a) the P field induces complete transfer into excited state 2. In the second step, shown
in frame (b), the S field transfers this excited-state population to the desired target state 3.

The pulse sequence of Fig. 48, with P preceding S, fits the intuitive understanding of how
excitation proceeds when it is described by incoherent rate equations. When such equations
apply, only a portion of the population can be transferred at each step (one half at most), because
the populations equilibrate under the influence of the excitation.

Sequential pulse transfer via coherent excitation has a major potential drawback: the pulses
must place all population into an intermediate state from which spontaneous emission can occur.
Thus undesirable population losses occur. It turns out that coherent excitation provides an alter-
native procedure, one in which (almost) no population resides in state 2, yet (almost) complete
population transfer can occur. To understand the possibility we return to an examination of the
appropriate TDSE, as following from the Raman Hamiltonian in the RWA.

10.5.2 The Raman Hamiltonian

The coherent dynamics of Raman processes – the coherent flow of population amongst three
states – is the same for any three-state chain, whether in lambda or ladder configuration. For
definiteness let us consider the lambda linkage pattern, as is appropriate for a stimulated Raman
process. Figure 49 shows the energies of the states and the two fields: the pump field P , with
frequency ωP , produces excitation into state 2 from the initially populated state 1. The Stokes
field S, with frequency ωS , produces de-excitation from this intermediate state to the final state
3. The figure shows explicitly the spontaneous emission loss from state 2; the other two states
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Fig. 48. Population transfer via stimulated Raman transition, intuitive ordering of pulses. (a) The pump
pulse places population into the excited state. (b) The Stokes (or dump) pulse moves population into final
state. During residence in the excited state some population is lost by spontaneous emission.

are assumed to be stable.
The RWA Hamiltonian for the stimulated Raman processes is basically that of eqn. (237),

but with phases suited to the lambda linkage and the allowance for loss from the excited state

W(t) =

 0 1
2 ΩP exp(−iϕP ) 0

1
2 ΩP exp(+iϕP ) ∆P − iΓ 1

2 ΩS exp(+iϕS)
0 1

2 ΩS exp(−iϕS) ∆P −∆S

 . (270)

Here Γ is the rate at which probability is lost from state 2 and the two detunings are as defined
earlier,

~∆P = E2 − E1 − ~ωP , ~∆S = E2 − E3 − ~ωS . (271)

10.5.3 Stimulated Raman adiabatic passage (STIRAP)

A procedure that does not require either the presence of transient population in state 2, nor the
need for careful control of Rabi angles, proceeds via a counterintuitive pulse sequence in which
the S pulse precedes the P pulse [106]. The procedure is now known as stimulated Raman
adiabatic passage (STIRAP) [107, 3]. Figure 50 presents several plots that help elucidate the
mechanism responsible for the STIRAP technique.

10.6 Explaining STIRAP

The STIRAP dynamics can be understood as a three stage process (first explained to me by K.
Bergmann), with time intervals indicated in Fig. 50 as I, II, and III.

I. During the first stage the strong S field acts to produce a dynamic Stark shift such that the
weak P field has no effect, see Fig. 45.
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Fig. 49. The stimulated Raman linkage. The P field (pump) links initially populated state 1 with the excited
state 2, from which spontaneous emission loss can occur. The S field (Stokes) links the excited state with
the metastable state 3. The single-field detunings ∆P and ∆S are shown.

II. As the P field becomes stronger, and the S field weaker, the evolution is by means of
adiabatic passage. The following paragraphs discuss this regime.

III. In the final stage the the strong P field acts to produce a dynamic Stark shift such that the
weak S field has no effect, see Fig. 51.

10.6.1 The dark state

During the intermediate stage of the STIRAP dynamics the time evolution is best described
using the three adiabatic states of the RWA Raman Hamiltonian. When the two-photon detuning
vanishes (∆P = ∆S) and the Rabi frequencies are real these eigenstates can be chosen as

Φ±(t) =
1√
2

 sinΘ(t)
±e−iα

cos Θ(t)e−iβ

 , ε± = ∆P ±
√

∆2
P + Ω2

P + Ω2
S , (272)

Φ0(t) =

 cos Θ(t)
0

− sinΘ(t)e−iβ

 , ε0 = 0, No component of state 2. (273)

Here Θ(t) is the mixing angle, defined through the equation

tanΘ(t) = ΩP (t)/ΩS(t), (274)

and the phases are those of the fields,

α ≡ ϕP , β ≡ ϕP − ϕS . (275)
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Fig. 50. The STIRAP process. Top frame: the S and P pulse sequence, with S preceding but overlapping
with P . Middle frame: the adiabatic eigenvalues vs. time. Bottom frame: population histories. Along the
bottom appear labels I, II and III of the three regimes discussed in the following section. [after Fig. 3 of
Bergmann et al. Rev. Mod. Phys. 70 1003 (1998)]

It is generally possible to set αS = 0, because absolute phases are uncontrollable. Only if
both pulses derive from the same laser field (i.e. states 1 and 3 are degenerate) through optical
elements is the phase difference ϕP − ϕS controllable.

Notably the null-eigenvalue adiabatic state has no component of the excited state ψ2. There-
fore it cannot fluoresce; it is a dark state [108]. It has the construction (in the rotating coordinate
basis)

Φ0(t) =
ΩS(t)ψ1 − ΩP (t)e−iβψ3(t)√

|ΩP |2 + |ΩS |2
= cos Θ(t)ψ1 − sinΘ(t)e−iβψ3(t). (276)

For the STIRAP pulse sequence, of Stokes preceding pump, this adiabatic state has the following
properties

We see that if we can ensure that the time evolution is adiabatic, then the statevector Ψ(t)
follows the adiabatic state Φ0(t) and population transfers 1 → 3. The final state acquires a phase,
e−iβ , that depends on the difference between P and S field phases. Unless the two fields derive
from a common laser field (so ωP = ωS), this is a value fixed by our arbitrary choice of initial
phases, and can be taken as zero; any other choice merely implies a redefinition of Hilbert-space
coordinates. Figure 52 illustrates the Hilbert-space motion of this time dependence.



Three states 349

Fig. 51. Final stage of STIRAP. (a) Strong P field, weak S field, after population has been transferred
adiabatically to state 3. (b) Dressed-state picture: the P field acts to split the resonance transition for the
weak S field, thereby preventing population transfer from state 3 to the excited state 2.

Initially only S field Finally only P field
ΩP (t) = 0 ΩS(t) = 0
Φ0(t) = ψ1 Φ0(t) = −e−iβψ3

initial state target state

10.6.2 The adiabatic conditions

Section 6.6 discussed an example of the conditions that must hold for time evolution to be adi-
abatic in a two-state system. Similar conditions apply for multistate systems. To determine the
conditions needed for the adiabatic evolution of the STIRAP process we proceed as in Sec. 6.6
and express the statevector as a superposition of adiabatic states,

Ψ(t) = ΣkAk(t)Φk(t). (277)

With the aid of the TDSE we obtain an equation of motion for the amplitudes Ak(t),

d

dt
A(t) = −iWA(t)A(t), (278)

where WA( has as diagonal elements the adiabatic eigenvalues,

WA
kk(t) = εk(t), (279)

and has as off-diagonal elements the nonadiabatic couplings,

WA
km(t) = 〈Φk(t)|Φ̇m(t)〉. (280)
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Fig. 52. Three-state system. Left: Initial statevector. Center: Initial adiabatic states. Right: Motion of
adiabatic states and statevector.

To assure adiabatic following we require that these off-diagonal elements be much smaller than
the separation of diagonal elements. (Note that this criterion cannot be fulfilled when the eigen-
values are degenerate.)

The important nonadiabatic coupling term for STIRAP is

〈Φ±(t)|Φ̇0(t)〉 = Θ̇/
√

2. (281)

This must be compared with the eigenvalue separation

|ε± − ε0| =
√

Ω2
P + Ω2

S ≡ Ω̃. (282)

From these expressions we deduce the local requirement∣∣∣Ω̇P ΩS − ΩP Ω̇S

∣∣∣ � Ω̃2. (283)

A global requirement, derived by requiring that the overall nonadiabatic coupling remain small,
is that the time integral of Ω̃ should be large – typically more than 10π.

10.7 Demonstrating STIRAP

Several types of experiments demonstrate the STIRAP mechanism [109]. These rely on ob-
serving some indicator of population transfer while varying such parameters as the time delay
between S and P pulse, or the detuning of one of the fields.

10.7.1 Vary pulse delay

A particularly clear demonstration makes use of controlled temporal separation of the P and S
pulses while holding fixed the frequencies such that the two-photon resonance condition holds.
Figure 53 presents results obtained with a molecular beam; the needed temporal delay was ob-
tained by altering the physical position of the S and P laser beams through which the molecular
beam passed at a right angle. In this experiment a subsidiary laser field servers to probe the final
population transfer. When the S field precedes the P field, as occurs toward the left-hand side of
the figure, it has no effect on the dynamics. Population transfer occurs via excitation followed by
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Fig. 53. Population transfer via stimulated Raman process, as a function of spatial separation between S
and P laser beams (and hence delay between S and P pulses, as indicated with small inserts along the top).
Positive values of separation correspond to S preceding P . [after Fig. 9 of Bergmann et al. Rev. Mod.
Phys. 70 1003 (1998)]

spontaneous emission (an example of FCP). When the P field precedes the S, as at the right-hand
side, then any population transfer produced by the P field is reversed by the S field. The maxi-
mum transfer occurs, not when the pulses coincide, but when the S field precedes, and overlaps,
the P field. This type of plot is a clear indicator of STIRAP .

10.7.2 Vary P detuning: The dark resonance

By monitoring the fluorescence from the excited state 2 we obtain a direct measure of population
placed there by the P field. In the absence of the S field this fluorescence signal, as a function
of P -field detuning, exhibits a Lorentz profile whose width originates with the lifetime of the
excited state. When the S field is present and two-photon detuning occurs the population transfer
takes place through the dark adiabatic state: no population enters the excited state. The result is a
“dark” resonance, as seen in Fig. 54, The spectral width of this narrow feature is the two-photon
linewidth.
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∆P (MHz)

Fig. 54. The STIRAP dark resonance: fluorescence signal from state 2 vs. detuning of P field. The P field
takes population into state 2, from which it produces a fluorescence signal. When the P and S fields satisfy
the two-photon resonance condition population transfers directly to state 3 without passing through state 2:
there is then no fluorescence signal. Frames along the bottom show the changing detuning of the P laser.
[after Fig. 8 of Bergmann et al. Rev. Mod. Phys. 70 1003 (1998)]

10.7.3 Vary P detuning: The bright resonance

The STIRAP process transfers population only when the P and S frequencies satisfy the two-
photon resonance condition. One can monitor the success of this transfer by inducing a transition
from state 3 (the final state of the STIRAP process) into a fourth state, using a D field, from
which fluorescence produces a signal. This signal will be present even in the absence of the S
field, because the P field produces excitation whose spontaneous emission populates state 3, and
hence leads to a fluorescence signal. However, the population transfer to state 3 is much larger
when a stimulated Raman transition assists that transfer, as occurs when there is a two-photon
resonance.

Figure 55 illustrates this effect. This demonstration monitored the fluorescence from state 4
of an excitation chain that begins with initially populated state 1, and relies on the sequence of
P , S and D fields to produce this fluorescence. In the absence of any resonance with the S field,
the P field excites population into state 2, which spontaneously decays to state 3, from which
the D field carries the population into state 4, whose fluorescence produces the signal. The de-
pendence of this signal on pump detuning traces out the natural width of the 1-2 transition. Only
a portion of the decays place population into state 3, from which the subsequent fluorescence
signal derives.

When the S field is present there will occur, when the P and S fields together satisfy the
two-photon resonance condition (within the narrow limits of the two-photon linewidth), a more
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∆P (MHz)

Fig. 55. The STIRAP bright resonance: fluorescence signal from state 4 vs. detuning of P field. A probe
field D moves population into state 4 from state 3. Population can arrive into state 3 either when the P
and S fields satisfy the two-photon resonance condition, or when the P field places population resonantly
into state 2, from which it decays to state 3. Frames along the bottom show the changing detuning of the P
laser. [after Fig. 2 of Bergmann et al. Rev. Mod. Phys. 70 1003 (1998)]

complete transfer of population into state 3. This produces a narrow bright line in the fluores-
cence signal as a function of P -field frequency.

10.8 STIRAP extensions

The basic three-state STIRAP has been extended in many ways, both theoretically and experi-
mentally, to systems that involve more than three states[3, 107]. In all of these generalizations
there occurs a pulse sequence that induces adiabatic transfer. The following sections describe a
few of these.

10.8.1 STIRAP with sublevles

The idealization of adiabatic passage in a three-state system readily generalizes in several ways
to treat the degeneracy, or near degeneracy, that occurs with magnetic sublevels [110]. Figure
56 shows an example of the most general linkage pattern that occurs with a three-level system
in which the linkages begin in a state J = 0, proceed via P field into sublevels of J = 1, and
then by S field to sublevels of J = 2. Such linkage patterns have been studied in excitation of
metastable neon [111]. When a static magnetic field is present the natural coordinate system is
one in which the quantization axies lies along the direction of that field. By suitably choosing
the laser propagation axis, and polarization, it is possible to have each of the linkages of Fig.
56 present. The magnetic field produces a Zeeman shift of the sublevels, so that only particular
linkages are resonant. Thus with fixed laser polarization it is possible, by altering only the
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Fig. 56. Linkage patterns available with suitable polarization choices in the J = 1 ↔ J = 0 ↔ J = 1
of metastable neon. When there is no magnetic field the Zeeman sublevels are degenerate; the choice of
polarization then selects the transitions or superpositions of transitions that will be active. When a magnetic
field is present the Zeeman sublevels are not degenerate, and the two-photon resonance condition picks out
only a single lambda linkage from the array off possibilities shown.

frequencies of the light, to place population into any selected sublevel of J = 2 via STIRAP-like
adiabatic passage [111].

10.8.2 Degenerate STIRAP

The presence of magnetic sublevels makes possible a number of interesting applications of
STIRAP to degenerate Raman transitions. A simple extension is the linkage pattern available
with a J = 1 to J = 0 excitation transition with arbitrary polarization, cf. Fig. 57(a). This has a
tripod linkage pattern, discussed in Sec. 10.9.

The transition J = 2 ↔ 1 has, for elliptically polarized light and quantization axis along
the propagation direction, cf. Fig, 57(b), two sets of linkages: a three-state lambda (involving
M = ±1 of J = 2) and a five-state letter-M pattern (involving M = 0,±2 of J = 2). When
spontaneous emission can be neglected these two sets are independent.

The lambda and letter-M linkages generalize to a linkage pattern in which a single S field
alternates with a single P field to produce a chain involving degenerate ground states and degen-
erate excited states, as shown in Fig. 58. Preliminary optical pumping with circularly polarized
light can place all the population into the state at one end of the chain, say the M = −J state.
With this as the single initial state, the usual S-P pulse sequence will transfer all population to
the other end of the chain. There will never occur population in the excited state, although at in-
termediate times the population will be distributed amongst the ground sublevels. The underlying
theory, for chains of arbitrary length, has been discussed in several papers [112].

Atomic beams of metastable neon atoms have provided many opportunities to demonstrate
STIRAP process. Early work [111] demonstrated the use of STIRAP, with appropriately cho-
sen polarizations, to produce complete population transfer into a single selected final magnetic
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(a) (b)

Fig. 57. (a) Linkage pattern for J = 1 to J = 0 with general polarization – the propagation directions of
the three fields cannot all be parallel. The links form a tripod. (b) Linkage pattern for transition J = 2 to
J = 1 available with elliptically polarized light, with quantization axis along propagation direction. There
are two independent systems: a three-state lambda (light blue lines) and a five-state letter-M (heavy red
lines).

Fig. 58. A chain of P and S linkages in a degenerate system of Zeeman sublevels for integer J , starting
from M = −J . A STIRAP-like S − P pulse sequence will transfer all population from M = −J to
M = +J .

sublevel. More recently it has been shown [113] that any degenerate three-level system can be
reduced to a set of independent three-state chains, within each of which STIRAP can be imple-
mented.

10.9 The tripod linkage

The inclusion of one additional linkage from the excited state, using a third field, produces a
tripod linkage pattern. Exact adiabatic eigenstates are known for the tripod system, and its prop-
erties have been discussed in several papers [114, 115]. Such a pattern occurs with the J = 1 to
J = 0 excitation transition with arbitrary polarization. Figure 59 shows the labeling of states and
fields used in the following; state 1 is the excited state while states 2-4 are low-lying metastable
states.

To make the needed RWA we introduce a rotating and phased basis, taking E1 = 0 as the
reference energy,

ψ′1(t) = e−iϕPψ1, (284)
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Fig. 59. Linkage pattern for tripod system, showing labeling convention for states and fields. The states 2-4
need not be degenerate, but they are here assumed to be resonant with the linking field.

ψ′2(t) = e+iωP tψ2, (285)
ψ′3(t) = e+iωStei(ϕP−ϕS)ψ3, (286)
ψ′4(t) = e+iωQtei(ϕP−ϕQ)ψ4, (287)

where ϕk is the phase of field envelope Ek(t). This construction makes any superposition of
states 2, 3, 4 dependent only on phase differences ϕP − ϕS and ϕP − ϕQ

69. We here assume
all fields are resonant, so that E2 + ~ωP = E3 + ωS = E4 + ωQ, and the Hamiltonian is the
bordered matrix

W(t) =
1
2


0 ΩP (t) ΩS(t) ΩQ(t)

ΩP (t) 0 0 0
ΩS(t) 0 0 0
ΩQ(t) 0 0 0

 . (288)

This Hamiltonian has four eigenstates. Two of them are dark states (lacking a component in state
1). These can be taken as [114]

ΦD
1 (t) =


0

cos Θ(t)
− sinΘ(t)

0

 , ΦD
2 (t) =


0

sinφ(t) sin Θ(t)
sinφ(t) cos Θ(t)

cosφ(t)

 , (289)

where

tanΘ(t) =
ΩP (t)
ΩS(t)

, tanφ(t) =
ΩQ(t)√

ΩP (t)2 + ΩS(t)2
. (290)

69Unless the several fields derive, via coherent optical manipulations, from a single laser field, these phases are un-
controllable and can be taken to be zero, a choice associated with the arbitrary choice of the moment of zero crossing of
each electric field.
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Each of these has a null eigenvalue. Because these states are degenerate one must consider the
general dark state

Φ(t) = D1(t)ΦD
1 (t) +D2(t)ΦD

2 (t). (291)

When such a state describes the initial condition, and the motion is adiabatic, then only these two
states contribute to Ψ(t), but they are resonantly coupled. Let us assume the initial population
resides in state 2, and that this initially coincides with state Φ1(t). We further suppose the
identification after the pulse sequence of Φ1(t) = ψ2(t) and Φ2(t) = ψ3(t). Then the result of
adiabatic passage is the superposition

Ψ(t) = cos Θ∞ψ2(t) + sin Θ∞ψ3(t), (292)

where the asymptotic mixing angle is

Θ∞ =
∫ +∞

−∞
dt sinφ(t)

d

dt
Θ(t) = −

∫ +∞

−∞
dtΘ(t)

d

dt
sinφ(t). (293)

Note that, from the definition of ψ3(t), the superposition depends on the phase difference ϕP −
ϕS between the S and P fields. When ωP = ωS ≡ ω the superposition reads, in the nonrotating
basis,

Ψ(t) = e−iωt
[
cos Θ∞ψ2 + sinΘ∞ei(ϕP−ϕS)ψ3

]
. (294)

Thus the superposition is stationary.
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11 Multilevel excitation

A variety of extensions and generalizations of two- and three-state excitation hold interest, either
theoretically or for applications. As the number of quantum states increases, so too do the variety
of linkage patterns. In many of these cases it is possible to introduce a generalization of the RWA
such that the Hamiltonian has detunings as diagonal elements and slowly varying Rabi frequen-
cies as the off-diagonal elements [116] [2, §14.2]. The slow variation allows procedures based on
either Rabi oscillations (e.g. generalizations of π pulses) or adiabatic evolution (generalizations
of RAP or STIRAP). The following sections provides an overview of several multi-state coherent
excitation models, treated with a generalized RWA [2, Chap. 14].

11.1 Chains

The simplest extensions of two- and three-state RWA equations are those for a single chain of
interactions, in which each state links to no more than two other states (nearest neighbors) and
no loops occur [2, Chap. 15]. In the RWA the relative ordering of the bare energies is irrelevant;
the ladder and the “letter-N“ linkage of Fig. 60 are equivalent 70.

The general rotating-wave coordinate system for the ladder system is

ψ′1(t) = ψ1, (295)
ψ′2(t) = exp(−i ωP t)ψ2, (296)
ψ′3(t) = exp(−i ωP t− i ωSt)ψ3, (297)
ψ′4(t) = exp(−i ωP t− i ωSt− i ωQt)ψ4. (298)

The letter-N linkage pattern uses similar rotating coordinates, but with opposite sign for ωS . For
a general chain, the rotating coordinates take the form

ψ′n(t) = exp(−i ω1t− · · · − i ωn−1t)ψn. (299)

70What matters, in addition to the values of the RWA Hamiltonian elements, is the graph structure; cf. Appendix B.8.

Fig. 60. Equivalent linkages for four-state chains with three interaction P , S and Q: (a) a ladder (b) and
“letter-N” linkage.



Multilevel excitation 359

Fig. 61. Five-state chain. (a) Arranged in letter-M pattern, showing links from fields P , P ′, S and S′.
(b) The letter-W linkage. Here population initially resides in one of the intermediate states, and proceeds
initially toward two states, as indicated by short arrows; subsequently interference occurs. In both cases the
vertical positions of the energy levels in the diagram is irrelevant for the RWA linkage.

The condition required for the general N -state RWA is that the sum and frequency differences
ωn ± ωm all be either zero or large compared with the inverse of a characteristic time scale for
statevector evolution (i.e. the Rabi frequencies). When these conditions hold, one can employ a
generalized RWA and obtain the equations

d

dt
Cn(t) = −i∆nCn(t)− i

2
Ωn(t)Cn−1 −

i
2
Ωn+1(t)Cn+1. (300)

That is, the RWA Hamiltonian matrix for a simple chain (involving nearest-neighbor couplings)
is tri-diagonal.

Interesting differences occur between chains having an even number of states, e.g. theN = 4
linkages shown in Fig. 60, and those with an odd number of states, e.g. the N = 5 linkage of
the letter-M pattern of Fig. 61(a). In these odd-N systems it is possible to implement a variant
of the STIRAP procedure to produce complete population transfer between terminal states of the
chain [112].

Although the RWA Hamiltonian has the same tridiagonal structure for any four-state chain,
the dynamics will differ significantly if the population starts in one of the intermediate states of
the chain (states 2 or 3) rather than a terminal state (1 or 4). As an example, the letter-W linkage
of Fig. 61(b) places initial population into one of the intermediate states of the chain, from which
it departs along two distinct paths; subsequent interference occurs when population returns.

When the RWA Hamiltonian is constant there exist known analytic solutions for a number of
Rabi-frequency sequences, even with detuning [117]. The connection with conventional special
functions and classical polynomials [118] occurs through the three-term recurrence relationship
which follows from the tri-diagonal form of the RWA Hamiltonian when one seeks the eigen-
states and eigenvalues [2, §15.3]. Table 1 lists some of these soluble cases.

. .
Plots of the population histories resemble fluid flow along the chain[2, § 15.5]. However,

the time varying population distribution along a chain does not always appear as a localized
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Tab. 1. Some multistate chains for which solutions are expressible in terms of well-known polynomials

∆n Ωn Polynomial

Uniform n∆0 Ω0

Linear (2n+ 1)∆0 n Ω0 Chebyshev

Harm. Osc. 0
√
n Ω0 Hermite

Psueudospin ∆0 + n∆1

√
n(N − n) Ω0 Trig power

Makarov 0 Ω0 /
√
n+ 1 Charlier

Decreasing 0 Ω0 /
√

4− (1/n2) Legendre

wavepacket. The precise behavior depends upon the sequences of Rabi frequencies. For some
choices the wavepacket may undergo such severe alteration as to be unrecognizable after a short
time. Other sequences of Rabi frequencies produce exactly periodic behavior, in which the initial
state repeatedly receives all the population, albeit with a phase change; cf. Sec. 11.3.

When the detunings are all resonant, population flows from the initial state 1 along the chain
to the end of the chain, whereupon it returns (but only with specific choices for Rabi frequencies
will this be complete and hence periodic). Figure 62 presents examples of such resonant behavior,
for excitation in which all Rabi frequencies are equal.

As mentioned above, when population starts in an intermediate state of the chain it can flow
initially in two directions. Figure 63 illustrates an example, for the letter-W system of Fig. 61(b).
Note that, as in the right-hand frame of Fig. 62, the population in state 3 varies sinusoidally. In
general the N -state solutions (with constant RWA Hamiltonian) are not periodic; Sec. 11.3
discusses an exception.

11.1.1 Harmonic oscillator

The harmonic oscillator, driven by dipole coupling of arbitrary time dependence, is one of the
soluble quantum systems widely studied [119][2, § 15.1]. It has an infinite number of evenly
spaced nondegenerate energy levels, and so a single laser field will have an RWA Hamiltonian
with detunings

∆n = n∆1. (301)

The linkage pattern is tri-diagonal (i.e. nearest-neighbor couplings), with Rabi frequencies that
increase monotonically,

Ωn(t) =
√
n Ω1(t). (302)
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/π

/π

Fig. 62. Resonant population flow, starting from state 1, with equal and constant Rabi frequencies, for
chains with length N = 4 (left) and N = 5 (right). Dashed lines, connecting vertical bars, show time
variation of peak populations; these increase nearly linearly with time to the end of the chain, whereupon
they reverse. Note that population does not return completely to the initial state 1; the population changes
are not periodic (except for state n = 3 of N = 5).

When the field is steady, population placed into state 1 will pass successively toward states of
higher excitation. Eventually the detuning, if present, will become so large that the next-step Rabi
frequency will not produce further excitation; states that are further along the chain will receive
small or negligible excitation. The turning point for the excitation occurs when the cumulative
detuning ∆n exceeds the Rabi frequency Ωn [2, §15.10]. The population return to the initial
state is not complete; the behavior is not periodic.

When the excitation is resonant in the first step, it will be resonant for all subsequent steps,
and population will pass toward ever higher excitation. This progress must eventually end for any
real system. Typically this occurs because the model system has anharmonicity, so that the energy
levels become closer together with increasing excitation. Then the cumulative detuning will
eventually overcome the Rabi frequency, and excitation will progress no further. Alternatively,
the excitation will lead to dissociation and consequent probability loss from the discrete states.

11.1.2 Two-state behavior in an N -state chain

Some N -state chain systems, describable by a constant tri-diagonal RWA Hamiltonian, exhibit
dynamics of a simple two-state system, characterized by Rabi oscillations between states 1 and
N , with negligible excitation present in other states [120].

One such case occurs when the intermediate cumulative detunings are all much larger than
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Ω t/π

Fig. 63. Population flow in the 5-state W system. Population starts in state 2, and flows in two directions,
as marked by the red and green dashed lines. Only state 3 has periodic population history.

the various Rabi frequencies or the final-step cumulative detuning δ [2, §18.7]:

∆n = {0,∆2,∆3, . . . ,∆N−1, δ}, Ωn = {Ω1,Ω2, . . . ,ΩN−1}. (303)

The system then behaves, for initial population in either state 1 or N , as a two state system, with
effective detuning and Rabi frequency given as the constructions

∆̃ = δ +
|ΩN−1|2

4∆N−1
− |Ω1|2

4∆1
, Ω̃ =

1
2N−2

Ω1Ω2 · · ·ΩN−1

∆2∆3 · · ·∆N−1
. (304)

The two-state system undergoes an (N − 1)-photon excitation, subject to dynamic Stark shifts.
A second example occurs when each step of the chain is resonant, except possibly the last,

and the two chain-terminating Rabi frequencies are much smaller than all others [2, §18.7]. The
detunings and Rabi frequencies fit the pattern

∆n = {0, 0, 0, . . . , 0, δ}, Ωn = {S1, L1, L2, . . . , LN−2, SN−1}. (305)

When the number of states is an even integer and the large elements are much larger than the
small elements, |Ln| � |Sk|, the dynamics is that of a two state system that has the original
N -state detuning δ and has an effective Rabi frequency which is the ratio of products of odd
numbered Rabi frequencies to even-numbered frequencies,

∆̃ = δ, Ω̃ =
S1L3L5 · · ·LN−3SN−1

L2L4 · · ·LN−2
. (306)
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11.2 Time averaged populations

Observations which take place during many Rabi cycles, yet still within a time interval that
allows little loss of probability or coherence, sample time-averaged populations. Such a situation
also occurs when we have an ensemble of atoms, each of which undergoes many Rabi cycles, but
with an appreciable variation in the Rabi angle. We calculate the appropriate probabilities from
the averaging integral

P̄n(T ) =
1
T

∫ T

0

dt|Cn(t)|2 (307)

as the limit, over many Rabi cycles,

P̄n = LimT→∞P̄n(T ). (308)

When the illumination is steady the desired values can be obtained from the eigenvalues and
eigenvectors of the RWA Hamiltonian that governs the time evolution [2, §15.9]. When plotted as
a function of detuning, such averages reveal the presence of multiphoton resonances [2, §15.11].

A simple case is a fully resonant chain (a tridiagonal RWA Hamiltonian with null diagonal
elements) in which all the Rabi frequencies are constant and equal. When the initial state is m
the average probability for state n is [2, §15.9]

P̄n =
1

N + 1

[
1 +

1
2
δn,m +

1
2
δn,N+1−m

]
. (309)

The probability is uniformly distributed amongst all states, as befits chaotic behavior, apart from
an enhancement (by a factor 3/2) of the initial state m and its “mirror image” N +1−m. When
the system is initially at one end of the excitation chain, then it is the upper end of the chain that
has this enhancement.

11.3 The pseudospin model

An interesting multistate excitation chain occurs when there are N states, coupled only between
adjacent states so that the RWA Hamiltonian is tridiagonal, and with elements [121][2, §18.6]

Wnn = n∆1 + ∆0, (310)

Wn+1,n = 1

2
Ω0

√
n(N − n). (311)

Here Ω0 is allowed to be complex valued. The sequences of Rabi frequencies are slightly larger
at the center of the chain than at the ends, for example

N = 2 : Ω0{1},
N = 3 : Ω0{

√
2,
√

2},
N = 4 : Ω0{

√
3,
√

4,
√

3},
N = 5 : Ω0{

√
4,
√

6,
√

6
√

4}.
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The structure of these matrix elements is identical to what occurs when expressing the interaction
of a magnetic moment (proportional to angular momentum S) with a steady magnetic field B.
That is, the interaction is expressible in the form of a scalar product,

W = Ω̃xSx + Ω̃ySy + Ω̃zSz ≡ Ω̃·S. (312)

The Cartesian components Sk are three N ×N matrix representations of the group SU(N), i.e.
spin matrices in N dimensions, cf. Appendix C.2. The part of the magnetic vector is here taken
by the vector Ω̃, defined by the Cartesian components

Ω̃x = Re (Ω0) ≡ ΩR, Ω̃y = Im (Ω0) ≡ ΩI , Ω̃z ≡ ∆1, (313)

in an abstract three-dimensional space. This form of interaction produces a rotation of the stat-
evector, an N -dimensional analog of the rotation of the Bloch vector. The magnitude of the
angular velocity vector,

|Ω̃| =
√

∆2
1 + |Ω0|2, (314)

defines a rotation rate: it is the rms value of the detuning ∆1 and the Rabi frequency Ω0. That
is, the system is equivalent to a spin angular momentum, S, such that the number of states
is N = (2S + 1). We identify the n th state (with n = 1, 2, . . . , N ) as being a particular
magnetic substate, labelled by the eigenvalue M (with M = −S, . . . ,+S) of the matrix Sz . The
correspondence is

N = 2S + 1, S = 1

2
(N − 1), (315)

n = M + I + 1, M = n− 1

2
(N + 1). (316)

The RWA Hamiltonian can be diagonalized by rotating the vector Ω̃ onto the vertical axis,
using the two Euler angles α and β

tan(α) = Im (Ω0)/ Re (Ω0), tan(β) = |Ω0|/∆1. (317)

In this coordinate system the Hamiltonian appears as a constant multiple of the angular momen-
tum operator Sz′

W′ = |Ω̃|Jz ≡ Z0Sz′ . (318)

It follows that the eigenvalues of W have the form

ZM = M |Ω̃| ≡MZ0, (319)

where M takes integer (or half-integer) values ranging from -S to +S in unit steps. Thus all the
eigenvalues of W are multiples of the basic frequency unit Z0 ≡ |Ω̃|, and so the eigenstates are
completely periodic.

The eigenstates of W are angular momentum states in the rotated coordinate system. Referred
back to the original basis they are

|Ω̂;S,M〉 = ΣM ′ |S,M ′〉D(S)
M ′M (α, β, 0). (320)
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Ω t/π

Fig. 64. Resonant population flow, starting from state 1, for 5-state pseudospin model. Population histories
are periodic.

The time evolution is evaluated by expressing the state in rotated coordinates. The result is

Cn(t) = ΣM”n′D(S)
MM”(α, β, Z0t) D(S)

M ′M”(α, β, 0)∗Cn′(0), (321)

where

M ≡ n− 1

2
(N + 1), M ′ ≡ n′ − 1

2
(N + 1). (322)

This equation presents an exact analytic expression for the time dependence of the probability
amplitude Cn(t) for fixed parameters Ω0 (Rabi frequencies) and ∆1 (detunings). It involves a
rotation operator D(S)(α, β, Z0t) descriptive of a coordinate system turning steadily at the rate
Z0 =

√
∆2

1 + |Ω0|2. When detuning is absent, the vector Ω̃ lies in the x − y plane. When
the Rabi frequency Ω0 is real, the vector lies in the x − z plane. In particular, when Ω0 is real
and there is no detuning, the vector lies along the x axis, and time evolution amounts to rotation
about this axis at the Rabi frequency. In all cases the behavior is periodic – as can be recognized
from the fact that the eigenvalues are all multiples of a common frequency.

Figure 64 illustrates an example of the perfect periodicity observed with the pseudospin
model, for N = 5 and no detuning.
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J =

1

2

Fig. 65. Parallel angular momentum chains, linear polarization. (a) Increasing J , (b) uniform J , (c) de-
creasing J . (after Fig. 20.12-1 of [2])

11.4 Parallel chains

Using the angular-momentum selection rules for a single pair of degenerate sublevels it is straight-
forward to evaluate selection rules for a chain of excitations between degenerate levels. Figures
65 and 66 illustrate examples, for particular simple choices of the polarization at each step [2,
§20.12]. These display the linkages as they would occur in a ladder, from least to greatest exci-
tation, but the conclusions apply to any resonant sequence, regardless of the relative energies.

As will be discussed, the linkages appear as independent chains, and the overall excitation
probability is the sum of probabilities for the separate chains (i.e. one must sum probabilities,
not probability amplitudes). Thus if J0 denotes the angular momentum of the initial level, and
the sublevels sublevels have equal initial probability, then the population in level J at time t is
the sum

PJ(t) =
1

2J0 + 1
ΣM |CJM (t)|2, (323)

where CJM (t) is the solution for an RWA Hamiltonian appropriate to a particular set of M
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J =

1

2

Fig. 66. Parallel angular momentum chains, circular polarization. (a) Increasing J , (b) uniform J , alternat-
ing left- and right-circular polarization, (c) decreasing J . (after Figs. 20.12-2 and 20.12-3 of [2])

values. The average over magnetic sublevels, each with a distinct orientation and hence a distinct
Rabi frequency, acts to diminish the amplitude of population oscillations.

It is important to recognize that this sum of individual probabilities cannot, in general, be
reproduced as the square of any single probability amplitude for an averaged interaction – there
is no “average atom” that will exhibit the averaged dynamics.

Figures 65 presents examples of linear polarization at each excitation step. Frame (a) shows
a three-step sequence in which each step involves a larger value of J , starting from J = 0. The
single initial state has a complete linkage path to a state of highest excitation. Frame (b) shows
two examples in which angular momentum remains constant along the chain, either J = 1 (left
hand) or J = 1/2 (right hand). For integer J there occurs no transitions M = 0 ↔M = 0, and
so one set of sublevels are unlinked. With half-integer J there are complete linkages between
lowest and highest excitation states. Frame (c) shows an example in which angular momentum
decreases with excitation. At each step there are two fewer sublevels linked to lower excitation.
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Fig. 67. Equivalent four-state tripod linkages: three states (1, 3, 4) each are linked to a single common state,
2 by the three interactions P , S and Q

Thus with the three excitation stages shown there are 6 ground-state sublevels (of J = 3) that
have no link to the most excited sublevel (J = 0).

Figure 66 illustrates the same sets of J sequences, but with circular polarizations. Frame (a)
shows that, as with linear polarization, there exists a linkage between the ground state (J = 0)
and a fully excited state (J = 3). In this illustration each excitation step has the same circular
polarization; a comparable connection occurs with alternating right- and left-circular polariza-
tion. Frame (b) illustrates two sequences that provide complete linkages between initial states
and states of highest excitation, when all levels have the same J . In these cases it is necessary to
employ alternating right- and left-circular polarizations in order to have a complete path between
ground sublevels and those at the end of the chain. Frame (c) shows circular polarizations link-
ages in a sequence in which J decreases at each step. As with linear polarization, at each step
two sublevels are unlinked to higher excitation.

11.5 Branched chains

For four or more states the RWA Hamiltonian may describe not only simple chains but branched
linkages, in which more than two states connect with a particular state 71 [2, §21.4]. Figure 67
illustrates equivalent examples of a four-state tripod linkage, in which three quantum states are
linked by independent radiative transitions to a single excited state, but not amongst themselves72.

Section 10.9 discussed the tripod system in some detail. This system has two degenerate dark
states; during adiabatic passage these can become superposed.

The properties of branched chains have consequences that seem quite surprising when first
seen. The tripod system exhibits these properties quite directly. Consider a three-state ladder
linkage, as in Fig. 42, with loss (say photoionization) from the uppermost state, 3, at rate Γ. Let
the two Rabi frequencies be constant and equal, as in Fig. 43. Then population flows along the

71The corresponding graphs are trees
72As with other RWA linkages, the vertical placement of the several energies is irrelevant.
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1 2 3
1 4

Fig. 68. (a) Population histories for 3 state system, unit Rabi frequencies, with loss Γ = 0.5 from uppermost
state 3. (b) Population histories when there is an additional linkage, unit Rabi frequency, from state 2 to
state 4. Population loss is now incomplete; the laser fields create a dark state that remains unaffected by the
light. This behavior only occurs when there is a two-photon resonance between states 1 and 4; otherwise
population will eventually all be lost.

ladder from initial state 1 to final state 3 with loss during each cycle. If the loss is comparable
to the Rabi frequencies, then only a few cycles will be completed before all of the population is
lost. Figure 68(a) shows an example of the population histories for such a situation. The addition
of a second ground state, state 4 linked to state 2, makes the linkage pattern that of the tripod
system. Now only a portion of the population is lost; the remainder is in a dark state; it cycles
between states 1 and 4. Figure 68(b) illustrates this history.

More generally, one may deal with systems in which a central chain is interrupted by one
or more branches, each of which comprises one or more links. Interestingly, the effect of such
a branch on the main chain depends dramatically on whether the branch has an even or an odd
number of elements: an odd-element branch will act to sever a resonant chain [122].

11.6 Loops

Although the RWA imposes constraints on the frequencies of any looped linkage, allowable loops
can occur in a number of simple situations [123]. The following figures illustrate an example of
a loop system obtained by treating linearly polarized light in an helicity basis.

Figure 69 shows the linkages for a pair of resonant transitions involving linear polarized light
and the excitation sequence J = 0 ↔ 1 ↔ 0. The coordinates for quantization appear in frame
(c). Frame (a) shows the linkages when both fields have the same polarization direction, and this
is taken as the quantization axis, z. There occurs a direct connection between the ground state g
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g

e

g

e

Fig. 69. Examples of three-level linkage patterns for J = 0 ↔ 1 ↔ 0 sequence. (a) Parallel linear
polarization, z, z. (b) Crossed linear polarization, z, y. No exitation can occur to state e (c) The geometry:
the propagation axis is y.

g

e

g

e

Fig. 70. Examples of three-level linkage patterns for J = 0 ↔ 1 ↔ 0 sequence. (a) Parallel linear
polarization, x, x, in helicity basis (b) Crossed linear polarization, x, y, in helicity basis. (c) The geometry:
the propagation axis is the quantization axis z.

and the most excited state e, a simple three-state ladder.
Frame (b) shows the linkage pattern when the first-step polarization is along the z axis, and

the second-step polarization is x, i.e. the two fields are cross polarized. As can be seen, there
is no connection between state g and the most excited state e; population undergoes two-state
Rabi oscillations, with never any population in the uppermost level, but no population can reach
excited state et.

Figure 70 presents these same systems using a different choice of quantization axis relative to
the polarization, one in which each interaction is shown in an helicity basis. Now the links form
a closed loop; they differ only in the relative phases of the paths. The possibility of excitation
cannot depend upon our choice of coordinates; the result is easiest to recognize with the choice
of Fig. 69.

Frame 70(a) shows the phases that occur when the polarizations are parallel, say both being
along the x axis. This is equivalent to Fig. 69(a); excitation proceeds from state g to state e via
two constructively interfering paths that permits excitation to reach state e.

Frame 70(b) shows the phases that occur when the polarizations are along different axes, x
and y. This system is equivalent to Fig. 69(b); there occurs destructive interference in the second
step that prevents excitation from reaching the uppermost state e.

The association of destructive interference with crossed polarization is specific to the partic-
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Fig. 71. Examples of three-level linkage patterns for J = 1 ↔ 1 ↔ 0 sequence. (a) Parallel linear
polarization, z, z. No exitation can occur to state e because a selection rule prevents the first step transition
M = 0→M = 0. (b) Crossed linear polarization, z, y. (c) The geometry: the propagation axis is y.

∆1

∆2

∆3

ω3

ω2

ω1

Fig. 72. A three state loop, involving frequencies ω1, ω2 and ω3, showing the three detunings ∆k.

ular sequence of angular momentum states. Figure 71 depicts the linkage pattern, as expressed
in the coordinates of Fig. 69, for the sequence J = 1 ↔ 1 ↔ 0. In this situation the destructive
interference of a loop portrayal of the interaction will occur with parallel polarizations.

11.7 Loops and the RWA; Nonlinear optics

The introduction of the RWA accompanies the use of rotating coordinates in Hilbert space and the
neglect of various exponentials, such as exp(±i2ωt). When linkage loops occur it is generally
not possible to eliminate entirely the exponential time variations, except when the frequencies
satisfy specific resonance conditions. To illustrate these requirements, consider a three-state loop,
as suggested by Fig. 72. Such a linkage pattern will not occur when the interactions are all via
electric dipole transitions and the system has a center of symmetry, because then each transition
must occur between states of opposite parity. However, in the absence of a center of symmetry
such a linkage loop becomes possible.
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Let us write the statevector as

Ψ(t) = exp(−iE1t/~)
[
C1(t)ψ1 + C2(t)e−iω1tψ2 + C3(t)e−iω1t−iω2tψ3

]
, (324)

and take the Rabi frequencies asociated with carriers ωk to be Ωk, for k = 1, 2, 3, in keeping with
the Hilbert-space rotations appropriate to the three-state ladder. Define the following detunings:

~∆1 = E2 − E1 − ~ω1, (325)
~∆2 = E3 − E1 − ~ω1 − ~ω2, (326)
∆3 = ω1 + ω2 − ω3. (327)

With the neglect of terms exp(±i2ωnt) compared with unity the Schrödinger equation translates
into the following equations:

d

dt
C1 = − i

2
Ω∗1C2 − e−i∆3tΩ∗3C3, (328)

d

dt
C2 = −i∆1C2 −

i
2

Ω1C1 −
i
2

Ω∗2C3, (329)

d

dt
C3 = −i∆2C3 −

i
2

Ω2C2 −
i
2

ei∆3tΩ3C1. (330)

Unless the frequencies obey the resonance condition ω3 = ω1 + ω2 there will occur exponential
variations at the detuning ∆3, and the Hamiltonian, in the rotating basis, will not appear slowly
varying. Under such situations it is not possible to assume slow variation, as is required for
adiabatic passage.

In this system the coherence C1C
∗
3 is associated with a dipole moment at frequency ω1 +ω2.

As indicated in Appendix A.5, this dipole moment serves as a source for growth of radiation at
this frequency, thereby converting a photon of energy ~ω1 and another of energy ~ω2 into a single
photon of energy ~ω3 = ~ω1 + ~ω2. By maximizing the relevant coherence one maximizes the
frequency conversion.

A straightforward extension of this discussion to a chain of four states, as in Fig. 46(c) allows
treatment of CARS and other four-wave mixing examples of nonlinear optics. For CARS the
coherence C1C

∗
4 is responsible for producing a field of frequency ω4 = 2ωP − ωS . For a three-

state ladder linkage, with E1 < E2 < E3 the coherence C1C
∗
4 produces a field of frequency

ω4 = ω1 + ω2 + ω3. In either case the frequency conversion can be optimized by maximizing
the relevant coherence [124].

11.8 Bright and dark states

As we have seen, a simple rotation of the physical coordinates used for labeling directions can
produce different linkage patterns in the Hamiltonian matrix. When we deal with two degenerate
levels in an angular momentum basis and the polarization is linear, the choice of quantization (z)
axis presents a simple picture of two-state linkages, rather than the more elaborate ones of, say,
Fig 57, that occur when the polarization is elliptical or is linear but not along the quantization
axis. Similarly, right- or left-circular polarization appears, when expressed in a coordinate frame
parallel to the propagation direction, as linkages between pairs of states; cf. Figs. 65 and 66.
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Fig. 73. (a) Angular momentum linkage pattern for general elliptic polarization at arbitrary angle to quan-
tization axis, J ↔ J − 1. (b) Equivalent linkage after Morris-Shore transformation. There are J − 1
independent pairs of coupled states and two dark states.

That is, for particular polarizations it is possible to choose a quantization axis such that the
tripod linkage appears as a two-state linkage.

Such simplification is not possible for general elliptical polarization, as represented by an
arbitrary point on the Poincaré sphere (see Sec. 8.1.2) and parametrized by two angles, θ de-
scribing the relative magnitudes of the two spherical components and φ describing the phase
between them; cf. Fewell (1993) [67]. Only specific points on the Poincaré sphere permit the
linkage simplification. Although such simplification does not occur through choice of quantiza-
tion axis, one may ask if it is possible to transform the Hilbert space to produce such two-state
simplifications, as shown in Fig. 73, for arbitrary polarization.

We have seen that, in the lambda linkage pattern with two-photon resonance, it was possible
to introduce a combination of states 1 and 3 such that one of them (the dark state) had no linkage
with the excited state 2, while the other (the bright state) had all of the oscillator strength of the
transition into state 2. One may ask if it is possible to find other linkage patterns, in systems with
more than 3 states, for which a similar simplification to two state dynamics is possible.

The answer, first drawn to my attention by Jim Morris, is that indeed there are many situations
in which it is possible to introduce a Hilbert-space basis in which complicated linkages appear
as independent two-state linkages, together with unlinked spectator states. The transformation
is now known as the Morris-Shore transformation [125]. It can be applied whenever the relevant
Hamiltonian matrix has the following properties:

I. The complete set of states can be separated into two sets, say NA of set A (ground, includ-
ing the initial state), and NB of set B (excited). There are no couplings within A set or B
set; only couplings between A and B 73. These may be of any form, not necessarily link-

73The graph corresponding to this linkage pattern is said to be bipartite.
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d2d1b

Fig. 74. (a) The four-state tripod linkage. (b) Equivalent linkage after transformation into a single bright
state b and two dark states d1 and d2 using the MS transformation. (Vertical locations of the energy levels
are irrelevant.)

ing only a single state with at most 3 other states, as occurs with electric-dipole radiation
between angular momentum states.

II. The states within each set are degenerate. In the RWA this means that the states of each
set share a single common detuning; overall there are only two detunings, ∆A and ∆B .
Either or both of these may be zero.

When these conditions hold, it is possible to introduce a new set of basis states, superposi-
tions within the A set and within the B set, such that the original Hamiltonian appears in block
diagonal form: it consists of a set of two-state submatrices, plus additional unlinked portions that
describe spectator states. Appendix M discusses the transformation.

When there are equal numbers of A and B states, NA = NB , then the resulting transfor-
mation produces NA pairs of two-state interactions, each with a unique Rabi frequency but all
sharing the same detunings. When there are more states in setA (the unexcited states), then there
are NB bright states and NA −NB dark states.

Figure 74 illustrates this transformation for the four-state tripod linkage induced by three in-
dependent fields. After the transformation all the dynamics is concentrated in a two-state system,
between the excited state e and a bright combination b of states 1, 2 and 3. There are two degen-
erate dark states d1 and d2 that are not directly affected by the field, although their composition
does depend on the three fields.
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12 Preparing superpositions

The first interests in coherent excitation with laser pulses focused on producing complete pop-
ulation transfer – typically inversion of a two-state system, starting from the ground state. In
recent years attention has shifted towards more general quantum-state manipulation, such as the
preparation of a specified coherent superpositions of two or more quantum states [126]. Theorists
have long been interested in coherent superpositions [127], particularly of quantum states whose
extent is macroscopic – the so-called “Schrödinger cat” states [128]. As with the procedures for
producing population transfer by means of coherent excitation, the techniques for more general
quantum-state manipulation are of two classes: the impulsive change, in which a resonant pulse
induces a controlled partial Rabi oscillation, and adiabatic changes [129]. I will concentrate on
the latter technique, and will discuss only superpositions of atomic states, as contrasted with field
states.

In considering superpositions it is essential to distinguish between superpositions of degener-
ate states (those that share a common unperturbed energy E1 = E2 = . . . ,) from superpositions
of nondegenerate states. The distinction becomes clear when we write the statevector, in the
absence of any laser interaction, as

Ψ(t) = Σn exp(−iEnt/~) cn ψn. (331)

This is the most general form for the statevector of the undisturbed atom: a fixed superposi-
tion of bare states ψn, each multiplied by a periodic phase factor exp(−iEnt/~). Although the
probabilities determined from this superposition are constant,

Pn(t) = |cn|2, (332)

other properties are not. In particular, the coherences (cf. Appendix H.2), undergo oscillations at
Bohr frequencies. For example, the two-state coherence is

ρ12(t) = Re
[
c1c

∗
2 exp[i(E2 − E1)t/~]

]
. (333)

Between nondegenerate pairs of states there generally exists some nonzero radiative transi-
tion probability and hence some nonzero probability of population loss via spontaneous emission.
However, this need not be that of an electric-dipole interaction; the spontaneous emission rate
may be that of a “forbidden” transition, e.g. electric quadrupole or octopole, or magnetic dipole.
Thus it may well be that the excited state is sufficiently long lived that laser-induced excitation
(via electric-quadrupole or magnetic-dipole interaction) can be regarded as coherent excitation.
Under such situations one may take interest in creating a two-state superposition

Ψ(t) = exp[−iE1t/~] [c1ψ1 + c2ψ
′
2(t)] , ψ′2(t) ≡ exp[−i(E2 − E1)t/~]ψ2, (334)

in which, apart from an overall phase, the structure appears constant in a reference frame that
rotates at the Bohr frequency for the transition. However, during one Bohr period the actual
superposition will, for example, cycle between ψ1 + ψ2 and ψ1 − ψ2.

The energies occurring in this equation are eigenvalues of the Hamiltonian in the absence of
laser radiation. Therefore they include Zeeman shifts produced (deliberately or randomly) by
magnetic fields, and Stark shifts produced by electric fields. Even though these may be small,
they will in due time alter the phase of the superposition.
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12.1 Nondegenerate states: wavepackets

The construction of nondegenerate superpositions has been particularly useful in studies of vibra-
tional excitation of molecules. There one uses a single laser pulse to excite a single vibrational
state into a set of closely spaced vibrational states of an excited electronic state. The relevant
RWA Hamiltonian has a bordered structure,

W = 1

2


0 0 0 · · · Ω1

0 2∆2 0 · · · Ω2

...
...

...
...

...
Ω1 Ω2 · · · ΩN 2∆N

 . (335)

where the magnitude of the detunings ∆n increase steadily with increasing n. After pulsed
excitation with constant detunings 74 the wavefunction for vibrational coordinate x then has the
form

Ψ(t, x) = Σn exp(−iEnt/~)cn ψn(x) (336)

and the probability of observing the value x is

P (x) =
∣∣∣Σn exp(−iEnt/~)cn

∣∣∣2. (337)

This distribution offers the opportunity to construct wavepackets – localized spatial distributions
that move with time [130]. In a typical application one creates an initial wavepacket constructed
from electronically excited vibrations, allows this to evolve undisturbed, and then at an appropri-
ate time, induces a second set of transitions, this time back to low-lying electronic states. Such
procedures allow, in principle, the coherent control of unimolecular chemical reactions, such as
dissociation.

12.2 Degenerate discrete states

When the superposed quantum states are degenerate, then the time variation of the statevector,
in the absence of laser radiation, is a single overall oscillatory phase. Expressed in terms of a
wavefunction, the construction reads

Ψ(t, x) = exp(−iE1t/~) Σn cnψ
′
n(x). (338)

Not only the probabilities but also the coherences are static; one has a stationary superposition.
Such a stationary situation cannot occur in the simple two-state system excited via interaction

by laser pulses, although such superpositions can be produced by a pulsed DC electric field (i.e.
one with null carrier frequency). The simplest linkage that allows creation of a degenerate two-
state superposition using laser fields is that of the lambda linkage, as exhibited with the stimulated
Raman RWA Hamiltonian. With this system we can create superpositions of degenerate Zeeman
sublevels of an atom characterized by angular momentum quantum numbers J and M .

74Excitation with swept detunings can produce complete population transfer from the initial state into a single final
state.
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There are several possibilities for constructing a superposition of Zeeman sublevels via two-
stage lambda-like linkages and STIRAP-like pulses [131]. To illustrate these, consider in a
system having J = 1 for the ground level (with states 1 and 3 having, respectively, M = ∓1)
and J = 0 for the excited state (state 2, with M = 0). We excite the system using a single
carrier frequency but various choices of elliptical polarizations. Suppose we wish to construct a
superposition of states 1 and 3, starting from state 1. We require two polarizations, σ+ linking
states 1 and 2 (the P field), and σ1 linking states 2 and 3 (the S field).

One possibility is to have large single-photon detuning ∆P but resonant two-photon detuning,
so that state 2 can be adiabatically eliminated. The result is a simple two-state system, with
transitions between states 1 and 3 driven by the two-photon Raman Rabi frequency 75

Ω̂R(t) =
Ω̂P (t)Ω̂S(t)∗

2∆P
. (339)

We can apply the two pulses simultaneously, with individual Rabi angles adjusted such that the
two-photon Raman Rabi angle

AR =
∫ +∞

−∞
dtΩR(t) (340)

produces the desired superposition upon completion of the pulse.
Another possibility is to employ a STIRAP-type pulse sequence, with the S pulse preceding

the P pulse. However, unlike STIRAP, here we proceed with the adiabatic evolution only until
the mixing angle has reached the value needed for the prededermined superposition. From that
moment on, we force the two fields to maintain a constant ratio, so as to maintain this mixing
angle, as they diminish. In this way we produce a fractional STIRAP [132]. It is also possible to
use SCRAP to produce superpositions [133].

The full STIRAP procedure can be used to produce specified superpositions of degenerate
Zeeman sublevels. Consider a linkage between sublevels of J = 1, through a single excited
state having J = 0 via P field, and continuing to via S field to metastable sublevels of J = 1,
as shown in Fig. 56. By choosing polarizations of the two fields appropriately, the STIRAP
procedure can produce a variety of sublevel superpositions.

12.3 Transferring superpositions

Once a two-state superposition has been created, various pulse sequences can alter its compo-
sition; the vector model of Sec. 7 offers a simple prescription for selecting an angular velocity
vector, and pulse duration, that will produce any desired rotation of the Bloch vector, i.e. will
convert any initial superposition state into a prescribed final superposition.

Often it proves useful to consider the set of states within which superpositions are to be
prepared or transferred (the target states or working states) as a subspace of a larger Hilbert
space, obtained by including a set of ancillary states which, though not populated initially or
finally, participate in the statevector transformation 76.

75The two-photon interaction generally has a phase factor exp(−iϕP + iϕS) multiplying the Rabi frequency
76The ancillary states must be essential states – their linkages to the working states must be part of the full Hamiltonian

– though initially and finally they hold no probability.
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Fig. 75. Adjustment of P and S pulses can transfer a superposition from amplitudes a to amplitudes b
through ancillary excited state e.

The simplest example is that of the lambda system: we can use a fractional-STIRAP tech-
nique to create a specified superposition of the two ground states with the aid of an ancillary
excited state. More generally, we partition the full Hilbert space into two sets of states, with
links only between them, not within them; cf. Sec. 11.8. Although we are interested only in
manipulating states of the target set, we do so by means of unitary transformations that involve
the ancillary states.

Such procedures allow us, for example, to transfer a superposition from one pair of states to
a second pair of states, with the aid of a single ancillary state [134], as depicted in the five-state
fan linkage of Fig. 75. This linkage pattern permits manipulation by means of a degenerate
STIRAP-like adiabatic passage involving two simultaneous S-field components and two delayed
P -field components. With suitable adjustment of the two pairs of amplitudes, transfer takes place
between amplitudes a± and amplitudes b±.
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13 Measuring superpositions

Numerous papers have examined issues connected with measuring coherent superpositions – an
aspect of the more encompassing concerns of quantum measurement theory [135] or quantum
tomography [136]. Many of these articles suggested techniques based on adiabatic evolution
[137]. The next sections describe some of these.

To completely characterize a superposition ofN states we require the magnitude and phase of
N probability amplitudes. Out of these parameters the overall phase of the statevector is usually
not of interest. It is relatively straightforward to obtain values for the relative amplitudes of the
several states, either by observing the relative strength of a fluorescence signal or by measuring
the relative photoionization signal, as shown in Fig 76. Such signals can come directly from the
state of interest, as indicated in Fig 76 (a), or they can be observed following a probe interaction
(a transfer field) as in Fig 76 (b). They can also be evaluated after a sequence of events that
include spontaneous emission, as in Fig 76 (c).

By suitably choosing the frequency and polarization of the probe field or the transfer field, it
is possible to obtain signals directly proportional to the population in a specified constituent of a
superposition. However, such measurements give no information about the phase. To obtain that
information it is necessary to map the phase onto a population.

13.1 Two-state superpositions

A two-state system provides an instructive example of possible techniques for obtaining the
required information concerning the superposition amplitudes. We parametrize the initial stat-
evector with two angles θ, φ

Ψ(0) = cos(θ/2) ψ1 + sin(θ/2)eiφ ψ2. (341)

Fig. 76. Various methods for observing populations. (a) Direct observation of fluorescence or photoioniza-
tion (b) Produce controlled exctitation by a probe field, followed by observation of ionization or fluores-
cence (c) Allow population transfer by spontaneous emission prior to probe step.
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Our objective is to devise a set of measurements from which to deduce these two parameters.

13.1.1 Direct excitation to signal

A straightforward procedure, suggested by Vitanov [137], is available when the two (working)
states are degenerate and each has an excitation linkage to a single nondegenrate excited state,
forming a lambda linkage pattern discussed earlier. The decay of the nondegenerate excited state
– the decay rate and the angular distribution of radiation – does not depend on how it was ex-
cited, and hence any measurement of fluorescence intensity provides a measure of the population
transferred and, in turn, the original population in the linked state. The links, labeled P and S,
are uniquely fixed, either by polarization or, if the states are not degenerate, by frequency; we as-
sume that these have the same time dependence, as will happen if they are elliptical polarization
components.

We excite the system using either a single pulse or two simultaneous pulses, as described by
the RWA Hamiltonian

W = 1

2

 0 0 ΩP e−iϕP

0 0 ΩSe+iϕS

ΩP e+iϕP ΩSe−iϕS 2∆

 1
2
e

(342)

and parametrized by the two constant angles

tanΘ = ΩP (t)/ΩS(t), β = ϕP − ϕS . (343)

We measure the fluorescence signal S(Θ, β) produce from such excitation, for several choices of
the parameters Θ and β. One possible sequence is shown in Fig. 77. From the resulting signals
we obtain the desired amplitude and phase of the superposition:

tan(θ/2) =

√
S(0, 0)√
S(π/2, 0)

, (344)

cosφ =
2S(π/4, 0)− S(0, 0)− S(π/2, 0)

2
√
S(0, 0)S(π/2, 0)

, (345)

sinφ =
2S(π/4, π/2)− S(0, 0)− S(π/2, 0)

2
√
S(0, 0)S(π/2, 0)

. (346)

The procedure can also be applied to measurements of more general superpositions that in-
clude an incoherent component and which therefore require a density matrix for description, and
to treat an arbitrary number of degenerate sublevels [137]. Again the method uses direct transi-
tions into a single fluorescing excited state, with a set of different linkages patterns, to analyze a
Zeeman coherence.

In more complicated situations than the simple case considered here, when excitation occurs
to a degenerate excited state, the resulting fluorescence will have an angular distribution that
depends upon the specific excited-state superposition, and hence upon the initial superposition.
Under such conditions other procedures must be used.
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θ = 0 θ = −π
θ = π/2

β = 0

θ = π/2

β = π/2

Fig. 77. Set of pulsed interactions used to obtain fluorescence signal S(Θ, β) for determination of super-
position parameters.

13.1.2 Indirect excitation to signal

Rather than map the superposition directly into a signal-producing excited state we can instead
use STIRAP to map it into a fixed lower-lying state whose population can subsequently be
probed, either by fluorescence, by photoionization, or by laser-induced fluorescence. Figure
78 indicates the linkages involved: two simultaneous P fields, distinguished by polarization
(magnitude and phase), and a single S field.

The analysis of a pair of states involves a sequence of STIRAP-like transitions that produce
complete population transfers from initial states to a single analysis state. The concept relies
on constructing a sequence of population transfers in which the P pulse has two components,
thereby connecting two working states with the excited state. In turn a single S linkage connects
this state to a single final-analysis state. The overall linkage pattern is that of the tripod system

13.2 Analyzing three -state superpositions

As the number of states increases, so too does the complexity of the measurement scheme needed
to specify completely the characteristics of an unknown quantum state. With three states it is still
possible to use polarization characteristics to provide the needed distinct probes. The simplest
arrangement of linkages for this purpose is the tripod [114, 115]. Figure 79 illustrates a tripod-
linkage example with which to probe a degenerate three-state superposition through transitions
to an excited state e followed by fluorescence.

As with the two-state direct-excitation probe, the fluorescence from the nondegenerate ex-
cited state does not depend on how it was prepared. It therefore serves as a signal probe propor-
tional to the population transferred.
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Fig. 78. Linkage pattern for mapping a superposition of states b− and b+ into population of a single state
a by STIRAP with a two-component pump field P±. Subsequent excitation and fluorescence from state a
produces the signal.

We consider the unknown superposition

Ψ = c−ψ−1 + c0ψ0 + c+ψ+1, (347)

labeled by integers appropriate to magnetic quantum numberM of J = 1.The RWA Hamiltonian
for the set of linkages shown in Fig. 79 is a bordered matrix

W(t) = 1

2


0 0 0 Ω̂+(t)∗

0 0 0 Ω̂0(t∗)
0 0 0 Ω̂−(t)∗

Ω̂+(t) Ω̂0(t) Ω̂−(t) 2∆


−1
0

+1
e

. (348)

The three Rabi frequencies appearing here are complex numbers, but we shall require that they
all have common time dependence; we introduce amplitudes Ak and phases βk, the control
parameters, by writing

Ω̂k(t) = Ak exp(−iβk)f(t/T ). (349)

The procedure is to measure the fluorescence signal from state e for various choices of the control
parameters, and from these to deduce the unknown superposition parameters.

The first step toward the theoretical description comes from recognizing that all of the tran-
sition strength of the three separate linkages can be combined into a transition into the excited
state from a single “bright-state” superposition,

Φb = 1

2

√
(1− η)(1 + ε) eiβ+ψ−1 + 1

√
2

√
1 + η eiβ0ψ0 (350)

+ 1

2

√
(1− η)(1− ε) eiβ−ψ+. (351)

The defining parameters here are the phases β0+, β0−, β−+ and the amplitudes

ε =
A2

+ −A2
−

A2
+ +A2

−
, η =

A2
0 −A2

+ −A2
−

A2
0 +A2

+ +A2
−
. (352)
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−1 0 +1

s i g n a l
Ω+ Ω0 Ω

−

Fig. 79. Mapping population in three degenerate Zeeman sublevels, M = −1, 0,+1, onto excitation
followed by fluorescence signal.

This bright state and the excited state are linked, with detuning ∆, by the effective Rabi frequency

Ω(t) =
√
A2

0 +A2
+ +A2

−f(t/T ).
The population in this bright state, expressed in terms of density matrices, is

Pb(ε, η, β0+, β0−) = R−1−1(ε, η)ρ−1−1 +R00(ε, η)ρ00 +R11(ε, η)ρ11

+ R−10(ε, η) |ρ−10| cos(ϕ−10 + β0+)
+ R01(ε, η) |ρ01| cos(ϕ10 + β0−)
+ R−11(ε, η) |ρ−11| cos(ϕ−11 + β−+).

Here the Rij(ε, η) are known functions.
The three probe fields act on this population to produce transitions into the excited state; the

resulting population is proportional to the initial bright-state population and to a transition rate,

Pe(t) = pb→e(t, ti)Pb. (353)

The fluorescence signal S is proportional to this population (and to the probability ηb that
this excited state will produce a fluorescence signal.) Thus the signal can be related to the initial
bright-state population as

S = ηbPb × Pb→e, (354)

where Pb→e is an appropriate time-integrated transition rate. For a short pulse the signal is

S = ηbPe(tf ) = ηbPb × pb→e(t, ti). (355)

where η is the probability that the population will produce a signal. For a long pulse, producing
optical pumping, the signal is

S = ηb Γe

∫ ∞

0

dt Pe(t) = ηbPb × Γe

∫ ∞

0

dt pb→e(t, ti). (356)
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We conduct a series of measurements, each with a different setting of the excitation param-
eters. There results a set of linear equations relating the observed signal to combinations of the
original density matrix elements,

S(ε, η, β0+, β0−) = ηPb→e [R−1−1ρ−1−1 +R00ρ00 +R11ρ11

+ R−10 |ρ−10| cos(ϕ−10 + β0+)
+ R01 |ρ01| cos(ϕ10 + β0−)
+ R−11 |ρ−11| cos(ϕ−11 + β−+)] .

Here the quantities Rij(ε, η) are known; the unknowns to be determined are ρij , φij and ηb. In
principle, one can evaluate the unknown parameters from a set of nine independent measurements
of S; cf. Vitanov et al. in [137].

13.3 Alternative schemes

A number of schemes for mapping degenerate superpositions onto fluorescence signals have been
discussed for use with atomic beams [138]. Conceptually the simplest procedure for measuring a
superposition that has been constructed with the aid of crafted laser pulses starting from a single
state, is to attempt to reverse the process using a second set of adjustable laser pulses. When
these precisely mimic the preparation-laser set in reversed time ordering, then the system will
return to the initial state. By noting the conditions of the reversing-laser pulses that maximize
the population in the single state, one can deduce the nature of the superposition.

When the superposition is produced in an atomic beam by a STIRAP transition into a set
of magnetic sublevels, then in principle it is possible to reverse the procedure by passing the
beam through a second pair of S and P beams but with the P pulse preceding the S pulse.
If the polarizations of the second set of fields are identical to those of the first set, then all of
the population will be returned to the single original state. When any other polarizations occur
in the second set, then the population transfer will be incomplete. Thus a measurement of the
population that returns to the original state, for various choices of polarizations in the second
pair, will reveal the polarizations of the first pair of beams, and hence will reveal the parameters
of the superposition; cf. Unanyan et al. [137].

Rather than employ a fixed set of measurements, as described here, one can instead proceed
by a sequence of measurements that depend, at each step, upon the information gained from
previous measurements [139]. Such a procedure allows progressive improvement in estimates.
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14 Summary

Coherent excitation of a few-state quantum system, as induced by pulses of laser radiation, can
produce a variety of predetermined changes. These range from distortion of the internal structure
of an atom to the creation of stationary coherent superpositions.

This review has discussed some ways of inducing and picturing these changes. Although
wavefunction displays serve well for depicting single orbitals, coherent changes in multi-electron
atoms or molecules are exhibited most simply by presenting changes in Hilbert-space coordinates
– either in a system of fixed coordinates or in a basis of steadily rotating coordinates. This review
presents numerous examples. For any two-state system the Bloch sphere, and the Bloch vector,
provide a useful depiction of the laser-induced changes. The evolution of an N -state system
can be exhibited as multiple points on a single Bloch sphere or as a multidimensional coherence
vector.

The relevant equation of motion governing coherent excitation is the time-dependent Schröd-
inger equation (TDSE), typically used in the rotating wave approximation (RWA). This review
describes the use of rotating coordinates in Hilbert space to simplify both the numerical solution
and the interpretation of the TDSE.

Two broad categories of coherent excitation have proven useful, and were here discussed:
an interaction that, following sudden (impulsive) initiation, remains constant; and an interaction
that changes slowly (adiabatically). Each of these idealizations allows simplified interpretations,
based on eigenstates of the Hamiltonian as alternative coordinates in Hilbert space.

The goal of complete population transfer between quantum states, made possible with several
pulsed excitation procedures, is a special case of the more general objective of creating predeter-
mined coherent superpositions of quantum states. It corresponds to placement of the statevector
along a predetermined direction in Hilbert space. For impulsive excitation this corresponds to a
fraction of a Rabi cycle;

To verify the resulting superposition, or to analyze an unknown superposition, it is necessary
to devise procedures that measure not only populations but relative phases of the constituent
quantum states. Various schemes offer techniques for mapping the phases onto populations and
thence onto various signals. Some of them have been discussed here. It is important to be mindful
of the situations in which phase cannot be controlled.

The models and mathematics presented in this review, though originally developed to treat
simple goals of optimizing excitation, continue to have relevance as interests shift toward very
detailed manipulation of quantum states – often termed quantum-state engineering. Ongoing de-
velopment of experimental techniques, combined with recognition of new applications of quan-
tum theory, continue to make this theory relevant to contemporary research.
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16 Appendices

The following appendices provide a number of definitions and mathematical properties used
in formulating descriptions of coherent excitation. They also present additional examples and
clarifications of some aspects of the theory.

A Radiation parameters

Throughout this review the effect of radiation has been presented as an interaction between an
atomic moment (specifically the electric dipole moment) and a nearly periodic electromagnetic
field (specifically an electric field). Several useful possibilities exist for characterizing quanti-
tatively the electric field and, in turn, the strength of the interaction between radiation and an
atom. These rely on characteristics of the radiation, including intensity (typically expressed in
W / cm2), and of the atom, including a dipole transition moment or an equivalent parameter. The
following paragraphs present basic equations descriptive of the radiation field, with particular
emphasis on the fields appropriate to coherent excitation and quantum-state manipulation.

A.1 Radiation propagation

When the atoms form macroscopic aggregates, through which the laser radiation must pass, the
laser-induced alteration of atomic states produces new fields that subtract from or add to the
original field [2, Chap. 12]. As a result, pulses propagating through mtter are altered. The
pulse amplitude will, at first, decreass (through absorption), but more dramatic effects can occur
that drastically alter the shape of the pulse as it travels through greater thicknesses of matter.
Furthermore, new frequencies may be generated.

Prior to the advent of laser radiation there was little interest in short pulses, and the equations
describing radiation dealt with the flow of energy through matter that could absorb or divert the
radiation [63, 142]. The matter was characterized by a static complex-valued index of refraction,
whose imaginary part produced absorption while the real (dispersive) part altered the propagation
velocity [143]. But as it became possible to create pulses whose duration was comparable to, or
shorter than, the response time of the material (i.e. the Rabi frequency for two-state excitation),
it was necessary to treat in more detail the coupling between matter and radiation [144].

The starting point for a description of the field changes is the set of Maxwell field equations
[43, 145][2, §9.1]. The basic dynamical Maxwell equations for the fields E and B in matter are,
using SI units

∇×E +
∂

∂t
B = 0, (357)

∇×(B− µ0M)− 1
c2
∂

∂t
(E + ε0P) = µ0j′. (358)

The universal constants ε0 (the permittivity of free space) and µ0 = 1/c2ε0 occur as a conse-
quence of using SI units To these we add the Maxwell equations of constraint

∇ ·B = 0, ∇·(ε0E + P) = ρ′. (359)
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The field j′ expresses any currents of free charge; the field ρ′ is the density of free charge. Both of
these fields are absent in the treatment of radiation propagating through neutral matter. The fields
P and M express, respectively, the polarization and magnetization density (Amperian currents).

The two dynamical equations combine to produce the single inhomogeneous wave equation

∇×∇×E +
1
c2
∂2

∂t2
E = −µ0

∂2

∂t2
P− µ0

∂

∂t
∇×M− µ0

∂

∂t
j′. (360)

Given a solution to the wave equation for E, we can determine the companion magnetic field
B by integrating eqn. (357). In the absence of free-charge currents (j′ = 0), as is the case for
neutral matter assumed in the following , the time and spatial variations of the polarization field
P and magnetization field M act as the sole sources for the electric and magnetic fields E and B.

Several approximations are commonly made when using the wave equation for quantum
optics. The first of these treats the electric and magnetic fields near the atom as transverse plane
waves. Any vector field F can be expressed as the sum of a lamellar (longitudinal) part FL whose
curl vanishes and a solenoidal (transverse) part FT whose divergence vanishes 77

∇× FL = 0, ∇ · FT = 0. (361)

By applying this decomposition to the electric field E and polarization field P we obtain, n the
absence of free currents and magnetization, the wave equation[

∇2 − 1
c2
∂2

∂t2

]
ET = µ0

∂2

∂t2
PT . (362)

It is the solenoidal part of the electric field, ET , that constitutes the propagating radiation, and it
is this field that is to be determined here. However, the field acting on the atom, and parametrized
as the Rabi frequency, is the total field. For typographical simplicity I shall omit the label T upon
this field; the field E and its source field P are to be understood as transverse.

It is customary, in quantum optics, to idealize the matter as a homogeneous distribution of
identical atoms, each having electric dipole moment 〈d〉 and magnetic moment 〈m〉. With this
approximation the polarization and magnetization fields are the expectation values,

P = N〈d〉, M = N〈m〉, (363)

where N is the number density of atoms. It is through these macroscopic fields that the effects
of atomic excitation alter the radiation.

For weak steady-state monochromatic radiation (as contrasted with transient pulsed radia-
tion), or for steady nonresonant radiation, the atomic dipole moment expectation value 〈d〉 is
an induced moment directly proportional to the electric field E. (This proportionality is readily
understood from the Lorentz model of Appendix I.) Under these conditions the macroscopic po-
larization field P is linearly proportional to the electric field. When coherent excitation occurs,
this proportionality fails. In particular, it fails for the first few cycles of an incident electric field,

77 For plane waves the solenoidal (divergenceless) fields are transverse to the propagation direction whereas the lamel-
lar fields are directed longitudinally, along the propagation axis. Because we usually deal with plane waves it is customary
to refer to radiation fields as transverse.
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before the atom has been able to equilibrate with the altered environment. Nonetheless it is use-
ful to retain a description of the incoherent effects by writing the polarization field as comprising
two parts, one linear and the remainder nonlinear

P = linP +nl P. (364)

The mathematics of radiation description simplifies by expressing the real fields E and P as
sums of two complex fields, corresponding to positive and negative frequency parts, e.g.

E = E(+) + E(−) = 2ReE(+). (365)

We then write the linear contribution to the positive frequency part of the polarization field as
linP(+) = χE(+) = (εb − ε0)E(+) = NαE(+). (366)

In general both χ (the electric susceptibility) and εb (the dielectric constant) as well as the single-
atom polarizability α, will be complex-valued time-dependent (or frequency-dependent) tensors
(cf. Sec. 10.3.2).

As may be surmised, the separation of P into these parts is, to some extent, arbitrary. The
simplest procedure is to regard the contribution to the nonlinear part as arising in the dynamics
of the near-resonant quantum states, i.e. the essential states. The remaining, linear, portion is
attributed to the virtual levels that are treated by means of an effective Hamiltonian, cf. Sec.
10.3.2.

We use the linear portion of the polarization field, as parametrized by εb, to define a refractive
index (possibly complex)

ηb = c
√
µbεb. (367)

The resulting inhomogeneous wave equation for the E field reads, in the absence of magnetiza-
tion and free currents,[

∇2 − (ηb)2

c2
∂2

∂t2

]
E(+) =

∂2

∂t2
µb

nlP(+). (368)

This equation applies quite generally. For application to excitation by laser pulses several further
approximations prove useful.

A.2 Radiation intensity

In the absence of the polarization field nlP(+), e.g. in vacuum (so ηb = 1) , the wave equation
for E(+), eqn. (368), is homogeneous. It then has such solutions as the plane wave exp(ik · r−
iωt), where the propagation vector k has Cartesian components kx, ky, kz and is constrained in
magnitude by the frequency, |k| = ηbω/c. A simple example is the form assumed throughout
this review for the linearly polarized radiation, at fixed position r,

E(t) = ê E(t) cos(ω − ϕ), (369)

where ê is a unit vector descriptive of the electric field direction (transverse to the propagation
direction) and E(T ) is a real-valued pulse envelope. The phase ϕ appearing here is expressible,
for given Cartesian coordinates x, y, z, as

ϕ = kxx+ kyy + kzz, k2
x + k2

y + k2
z = (ηbω/c)2. (370)
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This plane wave is accompanied by a magnetic field; in SI units it is

B(t) =
1
c
k̂×E(t), (371)

where k̂ is a unit vector in the direction of propagation and × indicates the vector, or cross,
product. The momentum flow of this wave, expressed by the Poynting vector S(t), is proportional
to the cycle-averaged vector product of the E and B fields,

S(t) = c2ε0{{E(t)×B(t)}}av. (372)

The intensity of this beam (power per unit area) I(t) , defined as the magnitude of the Poynting
vector, is proportional to the cycle-averaged square of the electric field; in SI units the relationship
is

I(t) = cε0{{|E(t)|2}}av = 1

2
cε0{{|E(t)|2}}av. (373)

The numerical connection between the field amplitude E(t) of eqn. (369) and the intensity I(t)
is

|E(t)[V / cm]| = 27.4
√
I(t)[W/cm2]. (374)

A.3 Spatial modes

Traveling waves can be coherently superposed to create standing waves, associated with a rect-
angular reflecting enclosure. Traveling-wave solutions also include cylindrical waves and the
focused Gaussian beams that characterize the output of many laser devices [11].

To categorize the various solutions to the homogeneous wave equation it is often helpful to
consider monochromatic fields, for which the positive-frequency field E(+) has the time depen-
dence exp(−iωt). Upon extracting this factor as

E(+)(r, t) = Uλ(r) exp(−iωt), (375)

(with λ an identifier to be further defined) the homogeneous field equation becomes the Helmholtz
equation

∇2Uλ(r) = k2Uλ(r), k ≡ ηbω/c. (376)

That is, the E field is an eigenfunction of the differential operator ∇2, with eigenvalue k2. The
field Uλ(r) is a spatial mode. The label λ distinguishes amongst the functions sharing a common
eigenvalue.

There are many possible ways of obtaining solutions to the Helmholtz equation, and the sets
of mode fields [2, §9.6]. The equation is separable in a number of coordinate systems, and each of
these provides boundary surfaces over which the field has constant value. Cartesian coordinates,
with plane parallel surfaces, offer a simple example, as do spherical coordinates, where spheres
and angular planes provide the surfaces. Each separable coordinate system leads to analytic
functions with which to describe the mode fields, and to boundary surfaces on which the field
can be fixed, say with null value. Such fields can be labeled, in part, by the number of nodes in
each coordinate.
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Another way to characterize the solutions, and to specify λ, is to supplement the differential
operator ∇2 with additional operators whose eigenvalues provide the desired labels. One such
operator is the spin operator S: electromagnetic fields are vector fields in three dimensions, and
so they are examples of spin-one fields; cf. Appendix C.2. For them the operator S2 has the value
S(S + 1) = 2.

Propagating plane-wave laser fields, with spatial variation exp(ik · r), have well defined lin-
ear momentum, meaning they are eigenstates of ~∇ with eigenvalue k. Fields radiated by an
atom in free space carry angular momentum; their angular variation is characterized by vector
spherical harmonics Y`JM (r̂) [2, §19.5].

Modes bearing different labels can be constructed to be orthogonal, and can be normalized
such that∫

dr Uλ(r)∗ ·Uλ′(r) = δλ,λ′ . (377)

They typically provide a complete set of vector fields with which to describe any radiation field.
The following table provides some examples of useful ways of characterising the fields.

λ Eigenstates of Uλ(r)

Linearly polarized plane waves (j = X,Y, Z)
kj S2, ∇2, ∇ 1√

(2π)3
e(j, k̂) exp(ik · r)

Helicity plane waves (q = +1, 0,−1)
kq S2, ∇2, ∇, S · ∇ 1√

(2π)3
e(q, k̂) exp(ik · r)

Vector harmonic spherical waves (` ≥ 0, J ≥ 1)

k`JM S2, ∇2, L2, J2, Jz

√
2k2

π j`(kr)Y`JM (r̂)

A.4 Photons

By expressing the electric field in terms of mode fields,

E(+)(r, t) = Σλaλ(t)Uλ(r), (378)

one finds that the homogeneous wave equation leads to a dynamical equation for the amplitude
aλ(t) that is recognizable as the equation of motion for an harmonic oscillator,

d2

dt2
aλ(t) = −ω2aλ(t). (379)

To treat the electromagnetic field as a dynamical entity, governed by quantum theory, we need
only treat these amplitudes as quantum variables. Quantization takes place by requiring that they
become noncommuting operators,

[âλ(t) , â†λ(t)] = δλ,λ′ . (380)
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and to introduce, as basis states upon which they act, eigenstates of the number operator

n̂λ(t) = â†λ(t) âλ(t). (381)

The operator a†λ(t) acts to increase by one the eigenvalue of the number operator for the field in
mode λ: It increments the field in this mode. One defines a photon of type λ as an increment
of the electromagnetic field. Thus the operator a†λ(t) creates a photon (of type λ). The operator
aλ(t) removes one field increment, i.e. annihilates one photon. Because there are many useful
ways of choosing the mode fields, there are a corresponding multitude of photon types: traveling
waves or standing waves, plane waves or spherical waves, etc. Each type of solution to the
Helmholtz equation produces a corresponding type of photon. Often we deal with a single mode,
and omit the classifying label λ.

The traditional basis states for treating quantized radiation are the single-mode photon-number
states φn, defined by the requirements that

â†â φn = n φn and 〈φn|φn′〉 = δn,n′ . (382)

The totality of such states, for a single mode, form a Fock space. The photon creation and
annihilation operators have the following effects upon these number states

â†φn =
√
n+ 1 φn+1, âφn =

√
n φn−1. (383)

Using photon operators we write the electric field, for a single mode, as

E = 1

2
[êE1â+ ê∗E∗1 â†]. (384)

In the traditional case of modes defined within a box of volume V (e.g., a cube of side L, or
V = L3 ) the single-photon electric field E1 is

E1 =
√

2~ω/ε0Veiϕ. (385)

Although photon number states φn have long provided a convenient basis for calculations,
they are by no means the only useful field states. A particularly useful set of basis states, the
Glauber coherent states [146], are defined, for complex-valued parameter α, as

|α〉 = Σ∞n=0φn
αn

√
n!

exp
(
− 1

2
|α|2

)
. (386)

The absolute value of α is the mean photon number, n̄, while its phase is that of the field. Such
a basis provides the most classical description of a single-mode field, although they are not
orthogonal; their overlap is

〈α|β〉 = exp[α∗β − 1

2
|α|2 − 1

2
|β|2]. (387)

To describe a single-mode thermal field at temperature T one requires a density matrix,

ρ = Σ∞n=0|φn〉pn(T )〈φn|, pn(T ) = [1 + exp(−~ω/kBT )] exp(−n~ω/kBT ), (388)

where kB is the Boltzmann constant. The mean photon number for this distribution is

n̄ = [exp(~ω/kBT )− 1]−1. (389)

At high temperatures this approaches the value n̄ ≈ ~ω/kBT and the distribution has the proba-
bility function

pn(T ) = (1/n̄) exp(−n/n̄). (390)
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A.5 Pulse propagation

Following conventions of quantum optics we next assume that the refractive index varies slowly,
so that there are no reflections from surfaces, and we neglect transverse variation (i.e. we treat
the field, at least locally, as a plane wave). We therefore need only deal with forward propatting
waves, each of which varies only with the propagation distance z. We therefore write the field as
a plane wave, propagating along the z direction, writing 78

E(+) = 1

2
ê E(z, t) exp(ikz − iωt). (391)

We similarly treat the polarization field as having a single carrier frequency 79,

nlP(+) = 1

2
ê P(z, t) exp(ikz − iωt). (392)

Then the inhomogeneous wave equation reads[
∂2

∂z2
− (ηb)2

c2
∂2

∂t2

]
E(z, t) =

∂2

∂t2
µbP(z, t). (393)

As a final step in the series of traditional idealizations we assume that the envelopes vary
only slightly during one cycle of the field,

| ∂
∂z
F| � |kF|, ∂

∂t
F| � |ωF|, (394)

where F is either E or P . With this approximation we obtain the traditional slowly-varying
envelope approximation (SVEA),[

∂

∂z
+
ηb

c

∂

∂t

]
E(z, t) =

2πω
cε0ηb

iP(z, t). (395)

The presence of the imaginary unit i on the right-hand side of this equation means that the electric
field envelope E is affected by the polarization envelope that is out of phase with E , when referred
to the phase of the carrier exp [i(kz − ωt)].

The equation simplifies when we take, as the time variable for the envelope functions E and
P , a time fixed in a coordinate system that moves with the pulse envelope,

τ = t− z

c
ηb. (396)

In this coordinate system the pulse envelope obeys the simple equation

∂

∂z
E(z, τ) =

ω

2ηb

√
ε0 iP(z, τ). (397)

This is the equation that is customarily used (usually with ηb = 1) to describe coherent pulse
propagation, in the plane-wave SVEA[2, §12.4]. It represents half of a set of radiation-matter
equations. The other half describes the time variation of the polarization, given the electric field,

78More generally one should allow multiple carrier frequencies.
79We thereby neglect all forms of nonlinear optics in which new frequencies occur, e.g. four-wave mixing.



394 Coherent manipulation

that is, the time-dependent Schrödinger equation. To make this connection for a two-state atom
we introduce the coherence field [2, §12.6]

Q(t) = 1

2
[r2(t) + ir1(t)] , (398)

constructed from two components of the Bloch vector (cf. Sec. 7.1). The equation for theE field
then reads

∂

∂z
E(z, τ) = N (z)

ω

cε0
d12 · ê∗Q(z, τ). (399)

We see that it is the coherence (the off-diagonal element of the density matrix), rather than the
population inversion, that produces change in a pulse envelope. Depending on the phase of the
coherence the result will either be growth of the electric field (i.e. gain), as energy transfers from
atomic excitation into the field, or diminution of electric field (i.e. absorption and loss), as energy
passes from the field to the atoms.

A consistent treatment of pulse propagation requires simultaneous consideration of both the
Maxwell equations for the fields and either the Schrödinger equation or density-matrix equa-
tions for the atoms, as in the coupled Maxwell-Bloch equations [1, 10, 11, 147]. Treatments of
multilevel atoms requires straightforward extension of the two-state atomic equations [148].

When several fields occur, as happens with Raman processes (involving P and S fields), each
obeys eqn. (397) with an appropriate source field P . The P field (i.e. the coherence) may either
alter a pre-existing pulse envelope E or it may serve as the source of a new field, at a frequency
set by the frequency of the coherence. The TDSE couples these several coherences, under the
influence of the fields, and causes, for example, the growth of the coherence responsible for
creating the S field, while adjusting the P -field coherence to produce a diminution of the P
field.

As these remarks show, it is the single-atom dipole moment 〈d〉 that is responsible, through
contribution to the macroscopic polarization field P, for the absorption coefficient and the re-
fractive index of traditional optics [40, 11]. The behavior of time-varying dipole moments, or
coherences, also underly the variety of nonlinear optics processes [149] in which several fields
combine to produce a coherence which, in turn, serves as the source of a new field, as in CARS
[105].

A.6 Spectroscopic parameters

From traditional spectroscopic studies come several parameters with which to describe the res-
onant interaction between light and an atom – one that exists, ideally, in free space and which
therefore has degenerate energy levels. The statistical weight $n of level n is the angular mo-
mentum degeneracy $n = (2Jn + 1).

The simplest connection between spectral propertis and atomic structure is through the di-
mensionless transition strength S(1, 2), the square of the absolute value of the electric dipole
transition moment d12 ≡ 〈1|d|2〉 expressed in atomic units [2, §2.9], i.e. the electron charge e
times the Bohr radius a0,

S(1, 2) = S(2, 1) = |d12|2/ (ea0)
2
, (400)

a0 ≡ (~2/me2) ' 0.529× 10−10 m, |ea0| ' 2.542 debye . (401)
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For transitions between states of angular momentum this is proportional to the reduced matrix
element of the dipole moment,

S(J, J ′) =
|(J ||d||J ′)|2

(ea0)2
. (402)

The Einstein A coefficient is expressible using the transition strength as

A21 =
1
τAU

4
3

(
2πa0

λ

)3
S(1, 2)
$2

, (403)

where τAU = a0/αc ≈ 2.42 × 10−17 sec is the atomic unit of time and λ0 = 2πc/ω0 is the
wavelength corresponding to the Bohr frequency ω0. The dimensionless absorption oscillator
strength (see Appendix. I), for a transition of wavelength λ0 between degenerate levels having
statistical weights $n, is

f12 =
4π
3α

a0

λ

S(1, 2)
$1

. (404)

B Mathematics

The following paragraphs review some elementary properties of some of the formal mathematical
structures that find use in modeling coherent excitation.

B.1 Vectors and vector spaces

The concept of abstract vector spaces underlies much of mathematical physics [59]. A vector
is an ordered set of numbers, say {a, b, c, . . .}. The number of elements (the number of com-
ponents) is the dimension of the vector. With the requirement that the individual components
obey rules of addition, subtraction, multiplication and division by scalars, the set of all vectors
of a given dimension N form an abstract vector space of dimension N . With the addition of
measures of length the space is a metric space; the further addition of measures of angle makes
the space an inner product space.

A simple example occurs when when we specify the three Cartesian coordinates of a mass
point or the three angles needed to specify the orientation of a stationary rigid body; these three
real numbers are coordinates in a vector space. With the addition of three coordinates descriptive
of the rates of change in these coordinates, i.e. velocities, we have a system space. A vector
space defined by position and momentum coordinates is a phase space. In quantum mechanics
phase spaces occur with field variables, e.g. phase and amplitude. More generally we might deal
with an assembly of parts, each of which requires definition by position and orientation together
with their rates of change. A point in this higher dimensional space, a system point, provides a
complete description of the system when the parts are macroscopic objects (i.e. not noticeably
affected by the Heisenberg position-momentum uncertainty relationship that affects microscopic
objects).
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B.2 Hilbert space

When the elements of the vectors comprising a vector space are complex numbers and finite
in number, amongst which both lengths and angles are defined (i.e. a vector space with inner
products), the abstract space is a Hilbert space 80.

As with other vector spaces, a vector in a Hilbert space, often denoted using the Dirac ket
notation | · · ·〉, is defined by its coordinates. We can regard these as elements of a column vector,
say

|A〉 =


A1

A2

...
AN

 , (405)

in which the (complex-valued) number An is the component along the nth coordinate. The
scalar (or inner) product of two Hilbert-space vectors, denoted 〈A|B〉, is defined as the number
(possibly complex)

〈A|B〉 = ΣnA
∗
nBn, (406)

where the symbol 〈A| denotes the row vector obtained by transposing columns ofA into rows and
taking complex conjugates of each element. When the scalar product vanishes, the two vectors
are orthogonal, a generalization of perpendicular lines of Euclidean geometry. The length of a
vector is the square root of the sum of the separate components squared,

|A| =
√
〈A|A〉 =

√
Σn|An|2, (407)

a generalization of the Pythagorean theorem for evaluating the hypotenuse of a right triangle.
Vectors whose length is unity are unit vectors.

To identify an arbitrary vector in an N -dimensional Hilbert space it is sufficient to specify
components along N independent vectors. These need not be orthogonal, but they must provide
a complete set, meaning that they suffice to express any vector. Mathematicians refer to such a
set as a set of basis vectors. In the use of Hilbert space for treating statevectors it is customary to
use only sets of orthogonal unit vectors – an orthonormal set – as basis vectors.

The connection between Hilbert space and experimental physics takes place through the iden-
tification of the basis vectors with quantum states, i.e. with physical states of motion whose
properties are amenable to experimental discovery, cf. eqn. 29. Such quantum states are eigen-
states of some “unperturbed” Hamiltonian, whose eigenvalues provide the discrete observable
energies En. In this context the terms “quantum state” and “basis state” or “basis vector” are
used interchangeably.

To label the several coordinate axes in this abstract space we use the same integer labels as
for the catalog of quantum states. Several notations are useful for Hilbert-space unit vectors,

80Hilbert spaces may have denumerably many dimensions. Then they must possess the additional property that any
Cauchy sequence is an element of the space.
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such as ψn and |n〉. They can also be written as column vectors,

ψ1 = |ψ1〉 = |1〉 =


1
0
0
...

 , ψ2 = |ψ2〉 = |2〉 =


0
1
0
...

 , · · · . (408)

These unit vectors (or the quantum states they represent) have been given various names, such as
“bare states” and “diabatic states”. Because they are associated with the physically observable
quantum states they might well be called “physical states”.

When degeneracy is present (see Sec. 8) there is some flexibility in the choice of the unit
vectors (or basis states), but always they must include all relevant observable quantum states of
the system: they must be independent and complete. Because the associated quantum states are
(presumably) distinct, the set of unit vectors can be taken as orthogonal as well as having unit
length (i.e. they are orthonormal), as expressed by the equation

〈ψn|ψm〉 ≡ 〈n|m|〉 = δn,m, (409)

where δn,m is the Kronecker delta: it is 1 if n = m and 0 otherwise. These N orthogonal unit
vectors represent the observable physical quantum states in the absence of laser fields.

B.3 Matrices

Matrices, used extensively here, have been important in applied mathematics and a wide variety
of applications [150]. A matrix is a rectangular (or square) array of numbers (possibly complex)
labeled by two integer subscript indices; e.g. the numbers Mnm with integer n,m, form the
matrix M, with n labelling the column and m labeling the row. If there are N rows and M
columns the dimension is N ×M . A matrix is square when it has the same number of rows and
columns. A column vector is a special case of a rectangular matrix, consisting of just a single
column. The transpose of a column vector is a row vector.

From a given matrix one obtains a number of related matrices. The notation MT denotes the
transpose of matrix M, obtained by interchanging rows and columns. The complex congugate of
matrix M, denoted M∗, is obtained by replacing i with −i in each each element. The Hermitian
adjoint, denoted M†, is the transpose of the complex conjugate (or the complex conjugate of the
transpose).

Amongst the types of matrices finding application for quantum-state manipulation are sym-
metric, for which MT = M or Mnm = Mmn; Hermitian, for which M† = M or Mnm = M∗

mn;
diagonal, in which the only nonzero elements are on the diagonal, Mnn; bordered, for which
only one column and one row have nonzero elements; and banded, in which the nonzero ele-
ments run parallel to the diagonal elements (tridiagonal is a special case, in which the bands
Mn,n±1 are nonzero and the diagonal elements are arbitrary.).

The unit matrix, denoted 1, has only nonzero elements along the diagonal; these are all 1.
The trace of a matrix, Tr M, is the sum of the diagonal elements:

Tr M = ΣnMnn. (410)
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The determinant of a (square) matrix of dimension N , denoted variously as Det (M) or |M|, is
defined as a series of N ! terms, each of which contains N factors. The formula reads

Det (M) = |M| = Σjkm...(−1)φM1jM2kM3m . . . , (411)

where the sum goes over all subscripts j, k,m, . . . such that none of these indices repeat and φ
is 0 or 1 depending on the permutation of the subscript sequence. For example, for N = 2 the
determinant is

|M| = M11M22 −M12M21. (412)

The determinant of higher order reduces to the evaluation of lower-order determinants, general-
izing the algorithm shown here for N = 3:

|M| = M11

∣∣∣∣ M22 M23

M32 M33

∣∣∣∣−M12

∣∣∣∣ M21 M33

M31 M32

∣∣∣∣ +M13

∣∣∣∣ M21 M22

M31 M32

∣∣∣∣ . (413)

The determinant is antisymmetric with respect to the interchange of any two columns or any two
rows. The eigenvalues of the N ×N matrix M are the roots λ of the determinantal equation

Det (M− λ1) = 0. (414)

The eigenvalues of any Hermitian matrix are real numbers.
Multiplication of two matrices obeys the following construction:

if AB = C then Cnm = ΣkAnkBkm. (415)

For example, the product of a 2 × 2 matrix with a two-element column matrix is another two-
element column matrix,[

a b
c d

] [
A
B

]
=

[
aA+ bB
cA+ dB

]
. (416)

Matrix multiplication is, in general, noncommutative, i.e. AB 6= BA. The commutator of
two matrices is denoted by a square bracket, [A,B] ≡ AB− BA. The multiplication of a column
vector V with a square matrix M, is a column vector V′ = MV having elements

V ′n = ΣmMnmVm. (417)

The inverse of matrix M is denoted M−1; if it exists it is defined by the equation

M−1M = MM−1 = 1. (418)

A matrix is orthogonal if the inverse is equal to the transpose, i.e

MT M = MMT = 1. (419)

Any orthogonal matrix has the property Det (M) = ±1 . A matrix is unitary if the inverse is
equal to the Hermitian adjoint i.e

M†M = MM† = 1. (420)
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Any unitary matrix has the property |Det (M)| = 1 Elements of orthogonal and unitary matrices
are related by the equations

Orthogonal: ΣjMijMkj = δi,k, (421)
Unitary: ΣjMijM

∗
kj = δi,k. (422)

Functions of matrices receive definition based on power series, replacing a scalar variable by
a matrix. An important example is the exponential function of a matrix. This is a matrix, defined
by the same power series used to define the traditional exponential,

exp(M) = Σ∞n=0

(M)n

n!
. (423)

Other scalar functions, defined by convergent power series (e.g. Taylor, Maclaurin, Laurent, etc.)
similarly generalize to define functions of matrices.

B.4 Operators

The term operator refers to the symbol used for presenting a mapping of elements from one set
to another, {x} → {x′} according to some rule; it symbolizes an operation or transformation,
in which the operator acts on set elements. Often the set undergoing the change is the set of
values for a function, say f(x); the operator may then be the derivative or the integral or may
stand for some other alteration of function values, e.g. a shift f(x) → f(x+ a). Matrices, when
multiplying (acting on) a column vector, are other examples of operators.

In quantum theory the Hamiltonian operator incorporates partial derivatives when acting on
a wavefunction, and behaves as a matrix when acting on a statevector. Angular momentum
operators, when acting on functions, such as spherical harmonics, involve partial derivatives;
they are then examples of orbital angular momentum. When acting on components of a vector
they are represened by matrices, and are examples of intrinsic spin.

B.5 Unitary transformations

Changes to an N -dimensional statevector Ψ can be regarded as the result of some N ×N matrix
U to produce a revised statevector Ψ,

Ψ′ = UΨ. (424)

Because the statevector should maintain unit length, meaning

|Ψ′|2 ≡ 〈Ψ′|Ψ′〉 = 〈Ψ|U†U|Ψ〉 = 〈Ψ|Ψ〉 = 1, (425)

any allowable changes (e.g. time evolution) must have the property that the Hermitian conjugate
U† is equal to the inverse,

U† = U−1, (426)

i.e. the matrix U is unitary. When the determinant of U is ±1 the matrix is orthogonal; if the
determinant is +1 it can be regarded as a rotation.
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A unitary matrix can be expressed in exponential form as

U = exp(iM), (427)

where the matrix M is Hermitian, M† = M. The exponential appearing here receives definition
from eqn. (423) as a power series, allowing interpretation as processes of various orders.

The product of two unitary transformations must be unitary. This means that it is possible to
find an M such that

exp(i m1) exp(i m2) = exp(iM). (428)

That is, a sequence of changes, such as those caused by laser pulses, produces an overall allowed
change. Conversely, any single change can be expressed as a sequence of smaller changes.
However, the matrix M is generally not simply the sum m1 + m2. It is possible to evaluate M
from m1 and m2 using the Campbell-Baker-Hausdorff formula [151],

exp(X) exp(Y) = exp(Z), (429)

where the matrix Z is expressed as a sequence of commutators,

Z = X + Y +
1
2
[X,Y]

+
1
12

[X, [X,Y]]− 1
12

[Y, [X,Y]]− 1
24

[Y, [X, [X,Y]]] + · · · . (430)

Although this formula has proven useful for expressing the overall effect of two pulses, the
inverse problem, of designing pulse sequences, usually requires numerical simulation [83]. An
exception occurs when the operators are expressible as spin matrices of Appendix C.2, for which
commutator relationships permit direct evaluation of eqn. (430).

B.6 Groups

Analysis of the symmetry of the Hamiltonian matrix is often treated using the theory of groups
[152]. For this purpose a group G is a set of elements a, b, c, . . ., and a binary operation ?, which
together satisfy the following four conditions:

I. The operation a ? b between any two elements produces an element of G (the elements are
complete):

a ? b = c for all a, b and some c. (431)

II. The operation is associative:

a ? (b ? c) = (a ? b) ? c for all a, b, c. (432)

III. The group contains an identity element e such that

a ? e = e ? a = a for all a. (433)
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IV. Each element a of G has an inverse a−1 such that

a ? a−1 = a−1 ? a = e for all a and some a−1. (434)

The number of elements comprising the group (the order of the group) may be finite or
infinite (and, if infinite in number, may be nondenumerably infinite – i.e., they may form a
continuum). A subset of G which itself forms a group is termed a subgroup. If the operation ? is
commutative,

a ? b = b ? a, (435)

the group is Abelian.
Two groups whose elements and operation can be put into one-to-one correspondence are

said to be isomorphic. Every finite group (and some infinite groups) are isomorphic to a set of
nonsingular square matrices with the operation of matrix multiplication. Such a matrix set is
termed a representation of the group.

The rotation and reflection operations which transform solid geometric figures into them-
selves form elements of point groups. Representations of these finite groups are used in classi-
fying (and labelling) electronic states of molecules and of atoms in the presence of static fields
(e.g., an atom embedded in a glass or crystal). These groups are discussed in texts on quantum
chemistry (e.g., [153]).

The N ! possible permutations of N different symbols provide a realization of the symmetric
group S(N). A theorem of Cayley states that Every group of order N is isomorphic with a
subgroup of S(N). Representations of this finite group are used in classifying the interchange
symmetry of multielectron wavefunctions and in labelling electronic states of molecules and
multielectron atoms.

The most common examples of groups with nondenumerable sets of elements are those
whose elements are square matrices, taken with the group operation of matrix multiplication.
(These are examples of dynamical groups, in distinction to symmetry groups). The set of all
nonsingular N ×N square matrices form a representation of the general linear group, GL(N).
Amongst the subgroups of this group are the set of N ×N unitary matrices; these represent the
unitary group U(N). The unitary matrices with determinant +1 represent the special unitary
group SU(N). The set of N ×N orthogonal matrices serve as representations of the orthogonal
groupO(N). The subset of orthogonal matrices with determinant +1 form the special orthogonal
group SO(N).

B.7 Lie groups

Continuous groups (topological groups) are those whose elements can be labelled by a set of
continuously variable parameters. Lie groups [154] are special examples in which each group
element can be identified using a finite number of continuously varying parameters, say α1, α2,
. . . αN . The dimension of the group is number of needed parameters,N . LetM(α1, α2, . . . αN )
be a group element. Then the requirement for continuity means that, for small increments of the
parameters, we can write

M(0, . . . δαj . . . 0) = M(0, . . . 0 . . . 0) + iδαjXjM(0, . . . 0 . . . 0). (436)
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where M(0, . . . 0 . . . 0) is the unit element of the group. In the limit of infinitisimal increments
this leads to the differential equation

∂

∂αj
M(0, . . . 0 . . . 0) = iXjM(0, . . . 0 . . . 0). (437)

A Lie group may be regarded as the set of solutions to these differential equations. The operator
Xj associated with parameter αj is the (infinitesimal) generator of displacements. For a one-
dimensional group it has the structure

M(α) = exp(iαX)M(0). (438)

For example, the RWA Hamiltonian is the generator of time displacements of the solutions to
the TDSE, i.e. the time evolution matrix U(t). The generators of rotations parametrized by the
three Euler angles are the three angular momentum operators; their matrix representations are
spin matrices: spin S is associated with matrices of dimension N = 2S + 1.

B.8 Graphs

Within the generalized RWA the Hamiltonian matrix has slowly varying (or constant) elements.
These form a pattern that can be classified using the mathematics of graph theory [155]. A graph,
in this sense, is a set of points (or nodes or vertices) and a set of lines (or edges) that join (or
connect) pairs of points. Only the association of lines and points matters, not the position of these
on a page. The pattern of linkages between vertices provided by the lines constitutes the graph.
For application to analysis of a RWA Hamiltonian matrix the points correspond to quantum states
and the edges correspond to interaction linkages between states.

The number of vertices is the order of the graph. Two vertices are adjacent (or neighbors) if
they are joined by an edge. The degree of a vertex is the number of edges joined to the vertex.

A path is a set of connected vertices. A path that returns to a vertex is a cycle (a loop in the
terminology of coherent excitation). A graph is said to be complete if all the vertices are pairwise
adjacent, i.e. if the linkage pattern is a single closed loop. A tree is a set of connected vertices in
which there is no cycle.

An r-partite graph is one in which there are r classes of vertices such that vertices in the same
class are not adjacent. A bipartite graph is one in which vertices can be separated into two sets,
with linkages only between the sets, not within a set.

C The Hamiltonian

In presenting the Hamiltonian operator as a matrix the elements depend very much on the coor-
dinate system used, i.e. upon the choice of quantum states to use as Hilbert-space coordinates.
Given such a set one can write the Hamiltonian as

H(t) = Σm,n|ψn〉Hnm(t)〈ψm| ≡ Σm,n|n〉Hnm(t)〈m|, (439)

where the matrix elements are evaluated as projections back onto the basis vectors,

Hnm(t) = 〈ψn|H(t)|ψm〉. (440)
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One has, for example, the matrix representation

H(t) =

 H11(t) H12(t) · · ·
H21(t) H22(t) · · ·

...
...

. . .

 . (441)

C.1 Basis matrices

It often proves useful to present the elements of the instantaneous Hamiltonian as arising from
elementary matrices (or transition operators). One such set is

π̂nm ≡ |ψn〉〈ψm| ≡ |n〉〈m|. (442)

These transition matrices link only pairs of quantum states.They have the property

π̂nkπ̂km = π̂nm. (443)

When acting on a statevector that is expressed as a superposition of basis states, Ψ = Σmcm|m〉
the operator π̂nm replaces the state m with the state n: it can be said to annihilate state m and
create state n. The matrices P̂n ≡ π̂nn are projection operators, with the property P̂nP̂n = P̂n,
i.e. they are idempotent.

Using these matrices as a basis we obtain the presentation (decomposition) of the Hamilto-
nian as

H(t) = ΣnEnπ̂nn + Σm6=nVnm(t)π̂nm. (444)

The elementary matrices π̂ form a complete set, meaning that any matrix can be expressed as
a sum of these. They are but one possible complete set of matrices that can serve to express
the RWA Hamiltonian matrix. Appendix C.2 presents one alternative, Appendix H.4 discusses
another.

A similar expansion can be used for the RWA Hamiltonian, but with the use of rotating basis
states,

π̂nm(t) ≡ |ψ′n(t)〉〈ψ′m(t)|. (445)

Note that the diagonal matrix π̂nn(t) is independent of t When the linkage pattern is a chain,
with connections only between adjacent states of the chain, the resulting expression is

W(t) = Σn∆nπ̂nn + 1

2
Σn 6=mΩn(t)π̂n,n+1(t) + 1

2
Σn 6=mΩn(t)∗π̂n,n−1(t). (446)

C.2 Spin Matrices

Various other sets of matrices, characterized by symmetries, prove useful for expressing the
Hamiltonian. The theory of angular momentum, regarded as offering generators of Lie groups,
offers a simple approach. Whenever three operators satisfy the cyclic commutation relations[

Ĵ1, Ĵ2

]
= iĴ3,

[
Ĵ2, Ĵ3

]
= iĴ1,

[
Ĵ3, Ĵ1

]
= iĴ2, (447)
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then these serve as components of a three dimensional angular momentum vector 81 . It is cus-
tomary to regard these operators as components of a Cartesian vector and to use the axis labels
x, y, z in place of the labels 1,2,3. However, the properties of angular momentum do not require
that the operators refer to variables in ordinary (Euclidean) space. The operator

Ĵ2 ≡ (Ĵ1)2 + (Ĵ2)2 + (Ĵ2)2 = (Ĵx)2 + (Ĵy)2 + (Ĵz)2 (448)

commutes with each of the three angular momentum operators Jk, and so it is possible to obtain
eigenstates of Ĵ2 and any single Ĵk. Conventionally this is chosen to be Ĵ3 = Ĵz . The operator
Ĵ2 has as eigenvalues the numbers j(j + 1) where 2j is a non-negative integer. For given j the
eigenvalues m of Ĵz differ by unity, ranging from −j to +j. Denoting the angular momentum
states by |j,m〉, the operators have the following effect

Ĵ2|j,m〉 = j(j + 1)|j,m〉, Ĵz|j,m〉 = m|j,m〉. (449)

The eigenstates of Ĵz are orthonormal,

〈j,m|j,m′〉 = δm,m′ . (450)

From the remaining two angular momentum operators we can construct the combinations

Ĵ±1 = ∓ 1√
2
(Ĵx ± iĴy). (451)

The operator Ĵ+1 is a raising operator, acting to increase the eigenvalue m by unity, while Ĵ−1

is a lowering operator, acting to decrease m by one. Specifically they have the effect
√

2Ĵ±1 |j,m〉 = ∓
√
j(j + 1)−m(m± 1) |j,m± 1〉. (452)

Thus by starting with the “stretched” state |j, j〉 we can construct any desired state by successing
actions of a lowering operator:

|j,m〉 =

√
(j +m)!

(2j)!(j −m)!
(Ĵx − iĴy)j−m |j, j〉. (453)

These operators properties can be represented using square matrices for each Ĵk. These
are the (three) spin matrices Ĵk = Sk. Any one of the matrices, conventionally chosen to be
S3 ≡ Sz , can be brought to diagonal form by unitary transformation; these elements are the
2S + 1 eigenvalues of Jz = Sz . A matrix representing spin S has dimension N = 2S + 1.
Conversely, matrices of dimension N are associated with spin S = (N −1)/2. The eigenvectors
of the spin matrices, |S,M〉, are column vectors, of dimension 2S + 1. These have the property

S2|S,M〉 = S(S + 1)|S,M〉, Sz|S,M〉 = M |S,M〉, (454)

for M = −S,−S + 1, . . . ,+S.

81In atomic physics the total angular momentum Ĵ is the sum of a part L̂ that acts to generate displacements of function
values (i.e. orbital angular momentum represented by partial derivatives) and a part S that alters the components of
vectors (i.e. intrinsic spin). The essential properties of any angular momentum operator are those of the commutation
relations presented here.
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For dimension N = 2 the spin matrices are those for S = 1/2:

Sx = 1

2

[
0 1
1 0

]
, Sy = 1

2

[
0 −i
i 0

]
, Sz = 1

2

[
1 0
0 −1

]
. (455)

These are half the Pauli spin matrices, Sk = 1
2σk. These three matrices, together with the two-

dimensional unit matrix 1, provide a complete set of four two-dimensional basis matrices: any
square two-dimensional matrix can be expressed as a linear combination of these four matrices.
This implies that the dynamics of any two-state system can be cast into the form of a spin-half
particle. The eigenstates of Sz , associated with eigenvalues ±1/2, are just the basis vectors
representing the two quantum states,

ψ1 =
[

1
0

]
, ψ2 =

[
0
1

]
. (456)

For dimension N = 3 the spin matrices are those for S = 1. In a basis in which Sz is
diagonal the three matrices are

Sx =
1√
2

 0 1 0
1 0 1
0 1 0

 , Sy =
1√
2

 0 −i 0
i 0 −i
0 i 0

 , Sz =

 1 0 0
0 0 0
0 0 −1

 .(457)

The eigenstates of Sz , associated with eigenvalues−1, 0,+1, are just the three-state basis vectors

ψ1 =

 1
0
0

 , ψ2 =

 0
1
0

 , ψ3 =

 0
0
1

 . (458)

These states need not have any association with any atomic angular momentum; it is only neces-
sary that there be three of them.

For dimension N = 3 the spin matrices by themselves are not sufficient to express the
nine elements of any arbitrary matrix; we require another six independent matrices. A simple
procedure is to take products of pairs of the three basic matrices, say Tij = SiSj . However,
other possibilities, characterized by symmetries, also prove useful, such as the combinations
SiSj ± SjSi. Appendix H.4 discusses examples.

C.3 Angular momentum coupling

In systems having several degrees of freedom, perhaps involving several particles, there occur
independent sets of operators whose commutation properties mark them as examples of angular
momentum. A common example is the intrinsic spin and orbital angular momentum of an atomic
electron, or the vector nature and spatial dependence of a vector field. Such situations, involving
two sets of angular momentum operators J(A) and J(B), permit complete description by product
states

|J1M1, J2M2〉AB ≡ |J1M1〉A|J2M2〉B , (459)

where

J(a)2|JM〉a = J(J + 1)|JM〉a, Jz(a)|JM〉a = M |JM〉a, a = A,B. (460)
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It often proves useful to introduce, in place of these uncoupled basis states, superpositions that
are eigenstates of the total angular momentum [2, §19.1]

J = J(A) + J(B), meaning Ji = Ji(A) + Ji(B), i = x, y, z. (461)

Such coupled basis states are constructed with the aid of Clebsch-Gordan (CG) coefficients [91],

|J1J2JM〉AB = ΣM1M2 |J1M1〉A|J2M2〉B(J1M1, J2M2|JM), (462)

or three-j symbols,

|J1J2JM〉AB = ΣM1M2 |J1M1〉A|J2M2〉B(−1)J1−J2+M
√

2J + 1
(
J1 J2 J
M1 M2 −M

)
.(463)

The inverse relationship expresses an uncoupled state as a superposition of coupled states,

|J1M1〉A|J2M2〉B = ΣJM |J1J2JM〉AB(−1)J1−J2+M
√

2J + 1
(
J1 J2 J
M1 M2 −M

)
. (464)

The coupling coefficients incorporate the following constraints:

|J1 − J2| ≤ J ≤ J1 + J2, M = M1 +M2. (465)

This coupling procedure has use for any pair of eigenstates of angular momentum operators,
e.g. for combinations of spherical unit vectors with spherical harmonics to form spherical vector
fields, for combinations of spin matrices to construct symmetry adapted basis matrices, and for
multiple two-state systems.

C.4 Alternative basis vectors

The physical states (as here defined) provide a convenient basis in which to present the Hamil-
tonian matrix. Apart from arbitrary constant phases they are define by the requirement that they
are eigenstates of the unperturbed (free atom) Hamiltonian,

Hatψn = Enψn, (466)

having unit length. In the absence of interaction, the statevector can always be written as

Ψ(t) = c1 exp[−iE1t/~]ψ1 + c2 exp[−iE2t/~]ψ2 + · · · . (467)

where cn is a constant complex number, fixed by the initial conditions; the probabilities remain
constant as Pn = |cn|2. The time varying phase factors produce the result

d

dt
Ψ(t) = − i

~
[E1c1 exp(−iE1t/~)ψ1 + E2c2 exp(−iE2t/~)ψ2 + · · ·] , (468)

as is needed for the time dependent Schrödinger equation.
However, one could choose any other coordinate system, even one that is time dependent,

and write the matrix representation of the operator H as

H(t) = Σm,n|ψ′n(t)〉H ′
n,m(t)〈ψ′m(t)|, (469)
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where ψ′n(t) is a unit vector, perhaps time dependent when expressed in the original basis, but
part of a complete set of orthonormal unit vectors at each fixed time,

〈ψ′n(t)|ψ′m(t)〉 = δn,m. (470)

The matrix elements of the operator H(t), expressed in the primed basis, read

H ′
n,m(t) = 〈ψ′n(t)|H(t)|ψ′m(t)〉. (471)

That is, we have many ways of writing the Hamiltonian matrix; they differ by the choice of
Hilbert-space basis vectors in which the matrix is expressed – they differ by the choice of coor-
dinate unit vectors.

In the primed reference frame the unit vectors appear to be fixed (by definition) and are, as
with any unit vectors, expressible as column vectors with unity in one place. For example, in the
primed coordinate system we can write

ψ′1 =


1
0
0
...

 , ψ′2 =


0
1
0
...

 , · · · . (472)

However, one must recognize that the unit vectors in the primed system are not the same as
those of the fixed unprimed system, though their column-vector representation is identical. The
connection between two choices of basis is obtained by using the expansion of eqn. (439) in eqn.
(471):

H ′
i,j(t) = Σn,m〈ψ′i(t)|ψn〉Hn,m〈ψm|ψ′j(t)〉. (473)

This aspect of column-vector displays is not confined to Hilbert space. When we describe
positions of a particle in ordinary three-dimensional Euclidean space we use unit vectors that,
with any choice of coordinates (Cartesian, cylindrical, spherical, spheroidal, etc.) appear the
same in any coordinate system, namely 1

0
0

 ,
 0

1
0

 ,
 0

0
1

 . (474)

We can write this coordinate transformation as the result of a unitary transformation

H ′
i,j(t) = Σn,mU

†
i,n(t)Hn,mUm,j(t), (475)

where the transformation matrix

Um,j(t) = 〈ψm|ψ′j(t)〉 (476)

is the Hilbert-space rotation that produces the unprimed coordinate system from the primed one.
This connection can be written as

H′(t) = U†(t)H(t)U(t), (477)

but in doing so it must be understood that this matrix equation implies a change of basis vectors:
the matrix H′(t) does not use the same coordinate system (associated with the physical states) as
does H(t).
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D Systems with parts

Any actual implementation of a discrete quantum state has more than a single degree of freedom,
meaning its dynamics involves more than a single coordinate. Each degree of freedom leads to a
set of quantum states, identified by quantum numbers or simply by a running index. For example,
within the nonrelativistic model of the hydrogen atom the electron has orbital energy as specified
by the principle quantum number n, orbital angular momentum ` and orbital orientation, as
specified by the magnetic quantum number m. The overall description of the atom requires
specification of each of these quantum numbers. Another example occurs when there are two or
more particles within the system, each of which has its set of quantum numbers, as occurs with
ions in a magneto-optical trap.

Each degree of freedom has an associated Hilbert space whose basis vectors describe the
possible states of that degree of freedom. To describe M degrees of freedom we require M
independent Hilbert spaces. Any quantum state must specifiy attributes from each of these. A
possible quantum state of the system might therefore have the form of a product, written variously
as

Ψ = ψA
nψ

B
mψ

C
k · · · ≡ |n〉A|m〉B |k〉C · · · ,≡ |n,m, k, · · ·〉ABC... (478)

where the labels A,B,C, . . . identify the various degrees of freedom (or the various particles).
More generally the state will be some superposition of such products, say

Ψ = Σn,m,k,···Cnmk···S|n,m, k, · · ·〉ABC... (479)

Here S denotes any neccessary symmetrizing operator, such as would be needed if the degrees
of freedom are those associated with indistinguishable partices (e.g. electrons within an atom).
For example, with two identical particles the needed symmetry is

S|n,m〉AB =
1√
2
[|n,m〉AB ± |m,n〉AB ], (480)

where the plus sign occurs with Bosons and the minus sign with Fermions. The system quantum
state is separable if we can write the statevector as a simple product, as in eqn. (478).

D.1 Correlation and entanglement

Under appropriate conditions the degrees of freedom can become correlated. That is, if by
learning that the A degree of freedom is definitely in state n, then it may follow that the B
portion of the system must be in state m 82. When one of the following conditions holds such
correlation is known as entanglement [156]

I. One degree of freedom represents internal structure while another represents center of
mass motion (e.g. of a trapped particle).

II. The degrees of freedom are associated with distinct particles (or photons) which, though
initially together, are observed physically separated.

82We do not regard subsystems to be correlated if it is known a priori that they must be, respectively in states n and
m; they must be in a state for which different possible measurement outcomes are possible.
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D.2 Two parts

The simplest illustration is that of a quantum system that has two parts, two degrees of freedom,
say A and B. Examples include those of the following table: . .

A B A+B

electron orbit L,ML electron spin S,MS total ang. mom. J,M

electron J,M nuclear spin I,MI hyperfine F,MF

atom internal CM motion trapped atom

atom quantized field dressed states

atom environment

Each subsystem has a set of basis states, say ψA
n for set A and ψB

n for set B. The statevector
can always be written as a sum of products, in the form

Ψ(t) = Σnm Cnm(t) ψA
n ψ

B
m. (481)

That is, we use a direct-product Hilbert space H(A) ⊗ H(B) to describe the full system. An
example occurs when we treat the electromagnetic field as quantized. Then for a single-mode
field the full Hilbert space can be taken as the product of a space having atomic unit vectors ψm

and a Fock space having photon-number states φn as a basis; we write

Ψ(t) = Σnm Cnm(t) ψm φn. (482)

For a system having two parts a separable state has the form

Ψ(t) = ΦA(t) ΦB(t), (483)

where the individual factors are expressible as vectors within the respective subspaces.

ΦA(t) = Σn C
A
n (t) ψA

n , ΦB(t) = Σm CB
m(t) ψB

m. (484)

For any such state both A and B have definite properties; separate measurements give no addi-
tional information.

The quantum state is not separable if such a factoring is not possible,

Ψ(t) 6= ΦA(t) ΦB(t). (485)

Under such conditions a measurement of eitherA orB provides new information: we can deduce
properties of B from measurements of A and so the subsystem parts are correlated. If the above
conditions hold they are entangled.
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The eigenstates of a Hamiltonian that links two subsystems can be classified by their cor-
relation properties. Let the full Hamiltonian for a two-part system be the sum of the following
parts,

H(t) = HA part A, eigenstates ψA
n

+HB part B, eigenstates ψB
m

+VA(t) + VB(t) + HAB interaction
. (486)

For further simplification, suppose that each part – each subsystem – has just two quantum states.

ψA
± and ψB

± (e.g. spin one half or two-state atoms). (487)

When the interaction has the form VA·VB ,

HAB = −V A
− V

B
+ + V A

0 V
B
0 − V A

+ V
B
− where Vjψk = vj,kψj+k, (488)

then the eigenstates of HAB are a triplet (threefold degenerate)

ΦT
+1 = ψA

+ψ
B
+ , (489)

ΦT
0 = [ψA

+ψ
B
− + ψA

−ψ
B
+ ]/

√
2 correlated, (490)

ΦT
−1 = ψA

−ψ
B
− , (491)

and a singlet

ΦS
0 = [ψA

+ψ
B
− − ψA

−ψ
B
+ ]/

√
2 correlated. (492)

The correlated states are entangled if either of the above conditions hold.

D.3 Multiple parts

When the system has many parts, either from several degrees of freedom or from multiple par-
ticle composition, there can occur two classes of interactions. Within each part there may occur
interactions of the sort described within this article: there is a Hamiltonian that connects the var-
ious states associated with this part, and which can induce changes in the constituent quantum
states. But there may also occur interactions between the parts – between particles or between
degrees of freedom. The Hamiltonian for the full system has a block structure, in which ma-
trices replace the elements that elsewhere appear as the numbers Wnm. When the interactions
are between nearest-neighbors, then the block structure is a generalization of the tri-diagonal
matrices which occur in the chain linkage. When all the parts interact with a common part, as
occurs when trapped particles interact with a common common collective mode (a “bus”), then
the block structure is a generalization of the bordered matrix. In all these cases the linkage pat-
terns between parts generalize the linkage patterns between states, and similar techniques can be
used to express the effect of a Hamiltonian, e.g. the use of spin matrices.
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E Analytically soluble two-state models

Although numerical solutions to the TDSE provide useful simulations for arbitrary excitation
conditions, and permit the construction of plots that provide important insight into the system
behavior, it is also useful to have available analytic solutions. These are available for a variety of
pulses [157] [2, Chap. 5]. They offer, in particular, analytic expressions for the pulse aftermath
Pn(∞),

P2(∞) = population transfer, (493)
P1(∞) = coherent population return. (494)

The following paragraphs discuss several useful examples.

E.1 Resonant excitation

For resonant excitation, ∆(t) = 0, with pulse Ω(t) = Ω0f(t) the two-state RWA equation reads

d

dt

[
C1(t)
C2(t)

]
= − if(t)

2

[
0 eiϕΩ0

e−iϕΩ0 0

] [
C1(t)
C2(t)

]
. (495)

For any pulse shape f(t) we can introduce a time scale

τ(t) =
∫ t

−∞
dt′f(t′). (496)

Then the equation of motion becomes that of a constant Hamiltonian

d

dτ

[
C1(t)
C2(t)

]
= − i

2

[
0 eiϕΩ0

e−iϕΩ0 0

] [
C1(t)
C2(t)

]
. (497)

The general solution, expressible in terms of trigonometric functions and initial amplitudes, de-
pends only on the pulse area A(t) ≡ Ω0τ(t).[

C1(t)
C2(t)

]
=

[
cos(Ω0τ/2) −ieiϕ sin(Ω0τ/2)

+ie−iϕ sin(Ω0τ/2) cos(Ω0τ/2)

] [
C1(−∞)
C2(−∞)

]
. (498)

By adjusting the duration of the pulse, and the peak Rabi frequency Ω0, one can produce any
desired excitation, from none at all to complete population transfer; one can transform any initial
superposition into a specified final superposition.

E.2 Constant with detuning

The general construction of solutions for constant RWA Hamiltonian can be accomplished in
several ways. One can use LaPlace transforms [158][2, §14.6] to replace the coupled ordinary
differential equations by a set of simultaneous algebraic equations. From the solution to these
equations, and the consequent inverse transform, one obtains the general solution, for arbitrary
initial conditions.

Alternatively, one can convert from the bare-state basis into the dressed-state basis, where the
time evolution involves only the factors exp(±iΩ̃t). The desired solution is obtained by returning
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to the original basis. The results are best expressed in terms of a time-evolution operator U(t)
such that

C(t) = U(t)C(0). (499)

The time evolution matrix can be written

U(t) =
1√

∆2 + |Ω|2

[
Ω̃ cos(Ω̃t/2) + i∆ sin(Ω̃t/2) −ieiϕ|Ω| sin(Ω̃t/2)

+ie−iϕ|Ω| sin(Ω̃t/2) Ω̃ cos(Ω̃t/2)− i∆ sin(Ω̃t/2)

]
, (500)

where Ω̃ ≡
√

∆2 + |Ω|2. This reduces, for resonant excitation, to the time evolution matrix
implied by eqn. (498). In the limit of large detuning, |∆| � |Ω|, there is little population
change; if the population resides initially in state 1 then the population of state 2 is

P2(t) = |Ω/∆|2 sin2(Ω̃t/2). (501)

Appreciable excitation occurs only if the detuning is less than the Rabi frequency. Conversely, an
increase of Rabi frequency allows excitation over a greater range of detunings. Equation (198)
quantifies these properties.

E.3 Chirped detuning

The model of chirped RAP finds application in many physical systems. An idealization, the
Landau-Zener (or Landau-Zener-Stückelberg) model [79], provides an analytic solution. In this
model the Rabi frequency is a constant, Ω0, and the detuning varies linearly with time, at rate
r = β2,

∆(t) = ∆0 + β2t. (502)

The solutions to the TDSE for this RWA Hamiltonian is expressible in terms of parabolic cylinder
functions. One follows the time evolution from t→ −∞, when the population is entirely in state
1, to a conclusion as t→ +∞. The populations then are

P1(∞) = exp(−πy), P2(∞) = 1− exp(−πy), (503)

where

y = (Ω0/β)2. (504)

When y is very large, meaning (Ω0)2 � |∆̇|, the time evolution is adiabatic, and population
transfers entirely from state 1 to state 2. For smaller values of y the transfer is incomplete, and
the final state is a coherent superposition of states 1 and 2. In the limit of weak interaction or
rapid chirp, (Ω0)2 � |∆̇|, the time evolution is diabatic and the system remains in the initial
state 1. This simple model has been extended to allow variation of the Rabi frequency, as is
needed for modeling chirped RAP [159].
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E.4 Pulsed with detuning

A set of N coupled first-order equations are equivalent to a single N th-order equation. For the
two-state system

d

dt

[
C1(t)
C2(t)

]
= − i

2

[
0 Ω(t)

Ω(t) 2∆(t)

] [
C1(t)
C2(t)

]
(505)

the resulting equation is

d2

dt2
Cn(t) + i∆

d

dt
Cn(t) + [(Ω/2)2 − i(Ω̇/2)]Cn(t) = 0. (506)

The usual initial conditions are that population resides in state 1

C1(0) = 1, Ċ1(0) = 0, (507)
C2(0) = 0, Ċ2(0) = −i(Ω/2). (508)

This second-order ODE has much in common with those studied by mathematicians during the
19th century. Their solutions define what are commonly called the special functions of mathe-
matical physics. A perusal of textbooks will provide numerous applicable examples involving
such special functions as trigonometric (from constant), Bessel (from exp), hypergeometric (from
sech), and parabolic cylinder (from chirp). Numerous examples have been discussed [157][2,
Chap. 5]. Amongst the pulses that have been studied for application to coherent excitation are
those in table 2.

. .
The final probability amplitudes can be expressed in terms of Cayley-Klein parameters α, β

as [
C1(+∞)
C2(+∞)

]
=

[
α β
−β∗ α∗

] [
C1(−∞)
C2(−∞)

]
. (509)

These can be evaluated analytically for some pulses, including the following (from Kyoseva and
Vitanov, [157]).

Rosen-Zener [160] : α =
Γ( 1

2 + iδ)2

Γ( 1
2 + a+ iδ)Γ( 1

2 − a+ iδ)
, (510)

Allen-Eberly [10, 161] : α =
cos(π

√
a2 − b2)

cosh(πb)
, (511)

Demkov-Kunike [162] : α =
Γ( 1

2 + iδ + ib)Γ( 1
2 + iδ − ib)

Γ( 1
2 +

√
a2 + b2 + iδ)Γ( 1

2 −
√
a2 + b2 + iδ)

. (512)

Here

a = Ω0T/2, b = BT/2, δ = ∆0T/2. (513)

Such formulas allow one to design pulses that will produce an arbitrary time-evolution matrix,
thereby producing an arbitrary predetermined transformation of one statevector into another.



414 Coherent manipulation

Tab. 2. Examples of soluble pulsed interactions

Pulse shape Ω(t) ∆(t)

Constant Ω0 ∆0

Piecewise constant Ω1,Ω2, . . . ,ΩN−1 t0, t1, . . . tN

Exponential (t > 0) Ω0 e−γpt ∆0

Landau-Zener (chirp) [79] Ω0 r t

Rosen-Zener [160] Ω0 sech(t/T ) ∆0

Allen-Eberly [161] Ω0sech(t/T ) B tanh(t/T )

Demkov-Kunike [162] Ω0sech(t/T ) ∆0 +B tanh(t/T )

Bambini-Berman [163] Ω0
2πγpt

√
x(1−x)

1+λx ∆0

E.5 Coherent population return (CPR)

Unless the carrier frequency ω is very close to resonance with the Bohr frequency ω0 (in which
case the final population depends only on the temporal pulse area), the pulse-produced excitation,
P2(∞), depends very significantly upon the temporal shape of the pulse – whether it has abrupt
or gradual change. In particular, when the nonresonant pulse is sufficiently smooth (e.g. an atom
moving sufficiently slowly through a laser beam) there will occur complete coherent population
return (CPR): after a transient excursion to the excited state all population will return to the
ground state. Under such conditions fluorescence will only occur for small detunings. A typical
measure of “small” in this context is the inverse of the Fourier bandwidth of the pulse, typically
∆0 = C/T , where T is the pulse duration and C is a parameter, of order unity, that depends
on the temporal shape of the pulse. Thus as a pulse becomes longer lasting the frequency-time
uncertainty narrows the range of detunings for which permanent excitation can occur.

E.6 Bichromatic field

Numerous authors have considered a variety of situations in which two frequencies contribute
to the interaction between two states; the field is bichromatic [164]. Here we consider a simple
version in which the bichromatic field is pulsed. Let the field have two frequency components,
ωa and ωb, so that the interaction has the form

V (t) = −d12[Ea(t) cos(ωa) + Eb(t) cos(ωb)]. (514)
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When the field amplitudes are constant this interaction is exactly periodic. It can be treated using
Floquet theory, cf. Appendix L.

Here we consider pulsed excitation. We introduce a reference frame rotating at the mean
frequency

ω̄ = 1

2
(ωa + ωb) (515)

so that

Ψ(t) = C1(t)ψ1 + e−iω̄tC2(t)ψ2. (516)

Then the Hamiltonian, in this basis, has diagonal elements

~W11 = E1, (517)
~W22 = E1 + ~ω0 − ~ω̄, (518)

where the Bohr frequency is ω0 = (E2 − E1)/~. The off-diagonal element is

~W12(t) = Ωa(t) cos(ωat)e−iω̄t + Ωb(t) cos(ωbt)e−iω̄t. (519)

We denenote the carrier frequency difference as δ ≡ ωa − ωb and introduce a rotating wave
approximation by neglecting terms that vary with frequency (3ωn − ωm)/2. The result is

~W12 = 1

2
Ωa(t)eiδt/2 + 1

2
Ωb(t)e−iδt/2. (520)

Suppose that the two Rabi frequencies are each equal to Ω(t), meaning that the two components
of the bichromatic field are equal. Then, with the choice E1 = 0, the RWA Hamiltonian is

W(t) =
[

0 Ω(t) cos(δt/2)
Ω(t) cos(δt/2) ∆

]
, (521)

where ∆ is the difference between the Bohr frequency and the mean carrier frequency,

∆ = ω0 − ω̄. (522)

Resonance, ∆ = 0, occurs when the mean frequency ω̄ equals the Bohr frequency. That is, the
two carrier frequencies are symmetrically distributed around the Bohr frequency. Under these
circumstances the probability amplitude C2(t), for a system that starts in state 1, is

C2(t) = sin(A(t)), A(t) =
∫ t

−∞
dt′ Ω(t′) cos(δ t′/2). (523)

This generally is nonzero; indeed, |C2(t)| can equal unity. It is noteworthy that these large
values occur even though neither carrier frequency is equal to the Bohr frequency: first-order
perturbation theory would predict null permanent population transfer 83.

83I am indebted to Andon Rangelov for pointing out this interesting example of excitation despite “missing frequen-
cies”.
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F Examples of statistical averages

The following paragraphs discuss several examples of the statistical averages mentioned in Sec.
9.1. These have particular relevance for particle beams excited by passage through laser beams.

F.1 Motion across a laser beam

The pulsed excitation of an atom within a particle beam, as it moves across the profile of a laser
beam, originates with the spatial variation of the laser beam; in the atom rest frame the laser field
appears as a pulse..

Let the y coordinate of a Cartesian system be taken as the axis of a collimated laser beam,
whose electric fieldF(x, z) therefore has variation only in the x, z plane. Typically this variation
has Gaussian form, say

F(x, z) = E0 exp[−(x/wx)2] exp[−(z/wz)2], (524)

but other forms occur. Consider an atom moving with constant velocity v⊥ parallel to the x axis
(and hence perpendicular to the laser-beam axis), at constant height z above the midplane of the
laser beam. The x position of the center of mass for this atom is x = v⊥t, with x = 0 taken to
coincide with the center of the laser beam, and t = 0 taken at the moment of maximum field.
The electric field at the moving center of mass for this atom is

E(t, z) = E0 exp[−(z/wz)2] exp[−(tv⊥/wx)2], (525)

That is, the atom experiences a Gausian-pulse field, centered at time t = 0 and of duration
Tv ≡ wx/v⊥, and of peak value E0 exp[−(z/wz)2]. The interaction strength for such a field is
parametrized by a Rabi frequency that depends upon v⊥ and z,

Ω(t; v, z) = Ω0 exp[−(z/w + z)2] exp[−(tv⊥/wx)2], (526)

and thus the RWA Hamiltonian and the probability amplitudes also carry this same dependence;
the TDSE reads

d

dt
C(t; v⊥, z) = −iW(t; v⊥, z)C(t; v⊥, z). (527)

The various solutions for different velocities differ because faster atoms experience shorter pulse
durations, though the peak Rabi frequencies are the same. Thus different velocities lead to dif-
ferent numbers of Rabi cycles. Similarly, atoms moving at different heights z across the beam
experience different peak values of the field, and hence different numbers of Rabi cycles.

In practice one deals with a beam of atoms, distributed in z and with differing x velocities.
For comparison with experimental results one must therefore average the probabilities over these
distributions. (The averaging is of probabilities, not probability amplitudes, because each atom
trajectory is independent.) The result has the form

P̄n(t) =
∫
dz pZ(z)

∫
dv⊥ pV (v⊥)|Cn(t; z, v⊥)|2, (528)

where pZ(z) is the probability of a trajectory offset by z, and pV (v⊥) is the probability distri-
bution of velocities perpendicular to the laser axis. This prescription can only be evaluated for
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a discrete set of solutions to the TDSE, obtained with discrete values for the parameters z, v⊥.
Thus the practical evaluation of probabilities uses the algorithm

P̄n(t) = ΣjpZ(zj) pV (vj) |Cn(t; zj , vj)|2. (529)

If the spread of velocities is sufficiently small one can treat all trajectories as though they had
the mean velocity v̄⊥. Similarly, if the distribution in z is much smaller than the width wz of the
laser beam then one can consider only the trajectory having z = 0. Under this approximation the
required probabilities are obtained from a single solution to the TDSE,

P̄n(t) = |Cn(t; 0, v̄⊥)|2, (530)

involving the Rabi frequency

Ω(t) = Ω0 exp[−(tv̄⊥/wx)2]. (531)

The use of a single average velocity requires that the spread in times δt = wx/δv⊥ resulting
from the spread in velocities δv⊥ should be much less than a mean Rabi period, 1/Ω0.

F.2 Motion along a laser beam: Doppler effect

An atom moving nonrelativistically with velocity v|| along the axis of a laser beam experiences
the carrier frequency Doppler shifted to the value [1 + v||/c]ω. This appears in the RWA Hamil-
tonian W(t; v||) as an altered detuning,

∆ = ω0 − [1 + v||/c]ω. (532)

Exact resonance requires that, for given carrier frequency ω, the velocity v|| should have the
value

v|| =
c

ω
[ω0 − ω]. (533)

A distribution of velocities around this value will produce probability amplitudes that are not
resonant, and population oscillations that differ in frequency and magnitude [2, § 22.2]. The
observable probabilities obtain from the algorithm

P̄n(t) = ΣjpV (vj)|Cn(t; vj)|2. (534)

F.3 Orientations

Any atom that has nonzero angular momentum J has 2J + 1 possible discrete orientations with
respect to any arbitrary direction (see Sec. 8), for example, the direction of the electric field of
linearly polarized light. Each distinct orientation of the atom corresponds to a distinct projec-
tion of the dipole moment upon the electric field, i.e. a distinct value of d ·E. Unless special
preparation techniques are used, each of these orientations will be present in the initial ensemble
of quantum states, and predictions of atomic behavior must include an average over all possible
orientations, i.e. an average over a set of different Rabi frequencies [2, §22.4]. Section 11.4
discusses some examples of these averages; see eqn. (323).
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F.4 Collisions

An atom in a vapor is affected by random encounters with other particles of the vapor, charged
and neutral. Each encounter with a single projectile produces a time-varying interaction V (t)
characterised by the distance of closest approach (impact parameter) b as well as the orientation
of the plane of projectile motion. When the projectile is charged, and remains beyond the ex-
tent of the atom wavefunction, its effect can be regarded as an electric field directed along the
changing interparticle distance. The effect of such a field, for a single encounter, can be modeled
using the TDSE. An average over all possible trajectories (i.e. velocities and distance of closest
approach) is needed to describe the vapor environment.

G Hyperfine linkages

A quantum state that has electronic angular momentum J has 2J + 1 magnetic sublevels, distin-
guished by quantum number MJ . In the absence of an external field these are degenerate. When
the atom nucleus has also angular momentum, customarily denoted I , this adds an additional de-
gree of freedom, with 2I+1 nuclear orientations, distinguished by a projection quantum number
MF . The interaction energy of the nuclear electric and magnetic moments with the electric and
magnetic fields of the electrons produces hyperfine structure in the spectra [89].

The magnetic moments associated with the angular momenta I and J produce a spin-spin
interaction observable as a hyperfine splitting of the energy levels. When I > 1 the nucleus
has an electric quadrupole moment, and this can interact with the local electric-field gradient to
produce additional hyperfine splitting. The Hamiltonian responsible for the hyperfine interaction,
[2, §21.1]

HHF = HNM1 + HNE2, (535)

has therefore two contributions, often written as

HNM1 = hAT(1)(1) · T(1)(J), magnetic dipole , (536)

HNE2 = hB T(2)(1) · T(2)(J), electric quadrupole . (537)

Here A and B are parameters derived from the structure of the specific atom and T(k)(J) is
an irreducible tensor of order k constructed from angular momentum J. As examples, the 0
component of the first and second rank tensors are

T
(1)
0 (J) = Jz, T

(2)
0 (J) =

1√
6

[
2(Jz)2 − (Jx)2 − (Jy)2

]
. (538)

To express a quantum state involving the separate nuclear and atomic degrees of freedom
we can use product states |I,MI〉|J,MJ〉. The hyperfine interactions have linkages between
such different different states; they are not diagonal. However, each of these is a scalar, and so
the total angular momentum of the system, combining electronic and nuclear angular momenta,
customarily denoted F , is not altered by hyperfine interactions. The quantized orientations of
this vector are labeled by quantum number MF . The overall quantum state, in the presence of
hyperfine interaction, carries the labels J, I, F,MF .
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MJ =

MI =

MF =

Fig. 80. Linkage pattern for J = 1 → 0 (left columns) and J = 1 → 1 (right columns) with linear
polarization. (a) Without nuclear spin (b) with nuclear spin I = 1 but negligible hyperfine interaction (c)
with nuclear spin I = 1 and hyperfine interaction. (after Figs. 1 and 2 of Shore et al. [165])

Electric dipole transitions between hyperfine sublevels obey similar selection rules as do
transitions in the absence of nuclear spin (cf. Sec. 8.1): F can change by at most one unit, and
MF obeys the same selection rules as does MJ . That is, F may change by 0 or ±1 (but 0 ↔ 0
transitions do not occur) as may MF .

Figure 80 illustrates some linkage patterns that occur for linear polarization when hyperfine
interactions are present [165]. In the left column are examples for excitation J = 1 → 0, while
the right column shows examples for excitation J = 1 → 1. In the top row (a) there is no
nuclear spin; sublevels bear labels Mj . The middle row (b) shows the effect of including the
additional degeneracy of nuclear spin I = 1, but without including the hyperfine interaction.
Here each sublevel of given MJ is associated with three possible orientations of the nuclear
spin. This does not change during an electric-dipole radiative interaction. The bottom row shows
the quantum labels needed in the presence of hyperfine interaction. The hyperfine interaction
shifts the energies and mixes the quantum states. Strong lines show linkages allowed in the
limit of zero hyperfine interaction. Weak lines show transitions that are allowed by first-order
perturbation theory.

In the uncoupled basis the matrix elements of the dipole moment are an application of the
Wigner-Ekert theorem, eqn. (200)

〈IMI , JMJ |dq|I ′M ′
I , JM

′
J〉

= δ(I, I ′) δ(MI ,M
′
I) (−1)J−M

(
J 1 J ′

−MJ q MJ′

)
(J ||d||J ′), (539)

where δ(n,m) is the Kronecker delta and (J ||d||J ′) is the reduced matrix element of the dipole
transition moment, cf. Appendix A.6. The radiative interaction involves electrons, not nuclear
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spins, and so the quantum numbers I,Mi do not change. With this choice of basis one can treat
separately each MI value, so that the matrices do not involve all (2I + 1)(2J + 1) sublevels
simultaneously. Alternatively, in the coupled basis the required expression is [91] [2, §21.1]

〈IJFM |dq|I ′J ′F ′M ′〉 = δ(I, I ′) (−1)F−M

(
F 1 F ′

−M q M ′

)
×(−1)I+J+F+1

√
(2F + 1)(2F ′ + 1)

{
J 1 J ′

F ′ I F

}
(J ||d||J ′), (540)

where {: : :} is a six-j symbol. The atomic Hamiltonian must, in either case, include the hyperfine
interaction, HHF . The choice of coupling scheme does not affect the final results, although the
computations differ: if one chooses the coupled scheme, then HHF is already diagonal, whereas
the diagonalization of HHF in the uncoupled scheme produces the coupled states as eigenstates.

H Alternative descriptions of coherent dynamics

Rather than deal with statevectors, several alternatives offer tools for describing coherent excita-
tion. The following subsections mention some of these.

H.1 The density matrix

When incoherent processes such as spontaneous emission occur, the Schrödinger equation no
longer provides a description of the dynamics. To treat such situations it is necessary to introduce
a statistical average of bilinear combinations of probability amplitudes, a density matrix [166] [2,
Chap. 6].

In the simplest situations the system can be described by a single statevector (it is then in a
pure state), and the density matrix has for elements the values

ρnm(t) = 〈n|Ψ(t)〉 〈Ψ(t)|m〉. (541)

We can regard these as matrix elements of the operator

ρ(t) = |Ψ(t)〉 〈Ψ(t)|, pure state. (542)

More generally the system is in a mixed state, describable by probabilities pk,

ρ(t) = Σk|Ψk(t)〉 pk 〈Ψk(t)|, mixed state. (543)

When the statevector expansion involves rotating coordinates, with preset time-dependent
phases of the form

Ψ(t) = ΣnCn(t) exp[−iζn(t)]ψn ≡ ΣnCn(t)ψ′n(t), (544)

then elements of the density matrix, expressed in terms of the rotating-coordinate probability
amplitudes Cn(t), are

ρnm(t) = {Cn(t)Cm(t)∗}av exp[−iζn(t) + iζm(t)]. (545)

It often proves useful to regard the density matrix itself in the rotating coordinates of eqn. (97),
writing

ρ̃nm(t) = {Cn(t)Cm(t)∗}av . (546)
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H.2 Interpretation

The elements of the density matrix have the following interpretation. The diagonal elements of
the density matrix (for either pure or mixed states) are populations:

Pn(t) = ρnn(t) = ρ̃nn(t). (547)

These are independent of the (rotating) phases of the Hilbert-space coordinates. The off-diagonal
elements are coherences. They are needed, for example, in the calculation of the expectation
value of the dipole moment,

〈d(t)〉 ≡ {〈Ψ(t)|d|Ψ(t)〉}av (548)
= Σnm ρnm(t) dmn. (549)

When expressed in rotating coordinates this reads

〈d(t)〉 = Σnm ρ̃nm(t) dmn exp[−iζn(t) + iζm(t)] (550)
= Σnm {Cn(t)Cm(t)∗}av dmn exp[−iζn(t) + iζm(t)], (551)

and there are time-varying phases 84.
Because probabilities must sum to unity 85 , any density matrix has unit trace:

Tr [ρ] ≡ Σnρnn = 1. (552)

The density matrix for a pure state has the property

ρ× ρ = ρ. (553)

Thus any pure state has the property than the trace of any power of the density matrix is unity,

Tr [ρn] = 1, pure state. (554)

A mixed state has the property, for n > 1,

Tr [ρn] ≤ 1, mixed state. (555)

For example, for n = 2 this inequality,

Tr [ρ2] ≤ Tr [ρ], (556)

provides the constraint

Σijρijρji ≤ Σkρkk. (557)

For a two -dimensional density matrix the most general form in which no off-diagonal ele-
ments appear is

ρ =
1

a+ b

[
a 0
0 b

]
. (558)

84The differences between these phases appear as frequencies that determine which field envelope will be associated
with a particular coherence; cf. Appendix A.5.

85Here we assume a lossless system.
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This has unit trace, as required. However, the square of this matrix has trace

Tr [ρ2] =
a2 + b2

(a+ b)2
. (559)

This can only be a pure state, describable by a single statevector, if one of the diagonal elements
vanishes. That is, a pure state whose density matrix has more than one diagonal element must
also have off-diagonal elements.

H.3 The equations of motion

The time evolution of the density matrix is governed by the RWA Hamiltonian W(t) plus terms
that describe incoherent processes, i.e. relaxation processes. The simplest examples occur when
spontaneous emission is included. The relevant equations then read

d

dt
ρ̃mn(t) = −iΣk [Wmk(t)ρ̃kn(t)− ρ̃mk(t)Wkn(t)]

−ρ̃mn(t)Σk
1

2
(Amk +Ank) + δmnΣkρ̃kk(t)Akm. (560)

The spontaneous emission rates Amk are unidirectional: Amk = 0 unless Em > Ek. For two
states these equations read

d

dt
ρ̃11 = −iW12ρ̃21 + iW21ρ̃12 +A21ρ̃22, (561)

d

dt
ρ̃22 = −iW21ρ̃12 + iW12ρ̃21 −A21ρ̃22, (562)

d

dt
ρ̃12 = +i[W22 −W11]ρ̃12 − iW12[ρ̃22 − ρ̃11]− 1

2
A21ρ̃12, . (563)

d

dt
ρ̃21 = −i[W22 −W11]ρ̃21 + iW21[ρ̃22 − ρ̃11]− 1

2
A21ρ̃21. (564)

The first two equations have the form of eqn. (18),

d

dt
P1 = A21P2 −

i
2
Ω[ρ̃21 − ρ̃12], (565)

d

dt
P2 = −A21P2 +

i
2
Ω[ρ̃21 − ρ̃12], (566)

but with the appearance of additional quantities, the coherences ρ̃12 and ρ̃21 = ρ̃∗12. These obey
the equations

d

dt
ρ̃12 = i∆ρ̃12 −

i
2
Ω[P2 − P1]− 1

2
A21ρ̃12, (567)

d

dt
ρ̃21 = −i∆ρ̃21 −

i
2
Ω[P2 − P1]− 1

2
A21ρ̃21. (568)

There occur no Milne-Einstein B coefficient here, only the Einstein A coefficient, because ab-
sorption and stimulated emission originate with the coherent interaction, as parametrized by the
Rabi frequency Ω.
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More generally one can include other processes that are suitably random, i.e. without mem-
ory. The general form of the equation is then

d

dt
ρ̃mn(t) = −iΣj [Wmj(t)ρ̃jn(t)− ρ̃mj(t)Wjn(t)]

+ΣjkRmnjk(t)ρ̃(t)jk. (569)

Here W(t) describes the effects of coherent interactions, such as laser pulses, andR(t) describes
random (Markov) processes, such as spontaneous emission, collisions and other random inter-
ruptions. We can neglect R(t) for time intervals shorter than relaxation times. The equation is
then equivalent to the Schrödinger equation. Note that although the variables of this equation are
matricies, the elements of the density matrix can be ordered into one-dimensional arrays, and so
the equations can be written, akin to the Schrödinger equation, as a set of coupled ODEs,

d

dt
ρ̃(t) = −iL(t)ρ̃(t). (570)

The array L(t) combines the RWA Hamiltonian and relaxation terms.

H.4 The coherence vector

The presentation of coherent excitation dynamics as motion of a vector in an abstract space
offers opportunities for gaining insight into the response of the system to various pulses or pulse
sequences. Such pictures need not be limited to the two-state vector model of motion of a point
on the Bloch sphere. One higher dimensional model that offers a simple pictorial description of
excitation dynamics is the pseudospin model of Sec. 11.3. Other authors have generalized the
notion of the Bloch vector, descriptive of two-state behavior, to obtain in N -dimensions a vector
(termed by Hioe and Eberly the coherence vector) that obeys a generalization of the torqued
motion of the Bloch vector [167].

The starting point for this generalization is the set of elementary operators π̂nm ≡ |n〉〈m|
used to present the Hamiltonian in the form

H(t) = ΣnEnπ̂nn + Σn 6=mVnm(t)π̂nm, (571)

and to express elements of the density matrix,

ρnm(t) = Tr [π̂nmρ(t)]. (572)

We combine these to form new operators, for n,m ≤ N and L < N ,

ûnm ≡ [π̂nm + π̂mn], (573)

v̂nm ≡ −i[π̂nm − π̂mn], (574)

ŵn ≡=

√
2

L(L+ 1)
[π̂11 + π̂22 + · · ·+ π̂LL − Lπ̂L+1,L+1]. (575)
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In the special case of two dimensions these are the three Pauli matrices, i.e. twice the spin-half
matrices of Appendix C.2. They provide links between every pair of states. We then form an
ordered array from these N2 − 1 operators,

ŝ = [û12, · · · , v̂12, · · · , ŵ1, · · · , ŵN−1]T . (576)

These operators have the commutation property

[ŝn, ŝm] = 2iΣkεnmkŝk, (577)

where εnmk is the completly antisymmetric structure constant of the SU(N) group. Using these
operators we have the constructions

ρ(t) =
1
N

1 + 1

2
ΣN2−1

n=1 Sn(t)ŝn, where Sn(t) = Tr [ρ(t)ŝn], (578)

H(t) =
~
2
ΣN2−1

n=1 Γn(t)ŝn, where Γn(t) = Tr [H(t)ŝn]. (579)

The equation of motion for the functions Sn(t) is

d

dt
Sn(t) = Σmk εnmk Γm(t) Sk(t). (580)

This is a generalization of the torque equation satisfied by the Bloch vector (to which it reduces
when N = 2). The quantities Sn(t) are elements of a coherence vector S(t) in N2 − 1 dimen-
sions, for which we can write the equation of motion as a torque equation,

d

dt
S(t) = Γ(t)×S(t). (581)

The set of N2 − 1 elements of the coherence vector are not all independent. As pointed out
by Hioe and Eberly, the motion of this vector is constrained by a set of conserved quantities

c(N,m) ≡ Tr[ρ(t)m], n ≤ N, (582)

where N is the dimensionality of the Hamiltonian. The first of these, c(N, 1) simply states that
probability is conserved.

An alternative form for the coherence vector was proposed by Oreg and Goshen [167]. It
is based on using state labels that run, not from 1 to N , but from −S to +S for N = 2S + 1,
as in the pseudospin model [121]. Using three-j symbols we construct, for k = 0, . . . , 2S and
q = −k, . . .+ k, the N2 matrices

ŝ(k)
q = Σmm′(−1)S−m

√
2k + 1

(
S k S
m q m′

)
|m〉〈m′|. (583)

These are infinitisimal generators of the unitary group U(N); those for k 6= 0 are infinitisimal
generators of SU(N) With this basis the coherence vector takes the form of irreducible tensors
(k labels the order, q labels the the component)

S(k)
q (t) = (−1)qTr [ρ(t)ŝ(k)

−q ], (584)
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and the RWA Hamiltonian has the construction

W(t) = ΣkqΓ(k)
q (t)ŝ(k)

q , Γ(k)
q (t) = (−1)qTr [W(t)ŝ(k)

−q ]. (585)

The equation of motion for the coherence vector, in the RWA, has the form

d

dt
S(k)

q (t) = Σk′q′k′′q′′f
k′k′′k
q′q′′q Γ(k′)

q′ (t)S(k′′)
q′′ (t), (586)

where the structure constants fk′k′′k
q′q′′q are expressible in terms of three-j and six-j symbols. When

the Hamiltonian is restricted by suitable symmetry properties, the equation of motion breaks into
independent blocks.

I The Lorentz atom

Prior to the development of quantum theory H. A. Lorentz developed a model of atomic structure
that provided a quantitative description of the response of to weak monochromatic light [16]. In
this model atoms comprised an infinite number of “Lorentz electrons”, each of charge e and
massme, held by a restoring force to an equilibrium position but responding to the Lorentz force
exerted by the radiation 86. We can recover this model as a limiting case of a quantum description
of two-state excitation.

The relevant equations follow from the equation of motion for the density matrix of a two-
state atom driven by a monochromatic field and subject to spontaneous emission. Specifically
we require the equations for the real and imaginary components of the coherence, because these
provide the expectation value of the dipole moment. Expressed in terms of Bloch variables these
equations read

d

dt
r1(t) = −ω12r2(t)−

A

2
r1(t),

d

dt
r2(t) = +ω12r1(t)− 2V (t)r3(t)−

A

2
r2(t), (587)

where the interaction is

V (t) = −d12E cos(ωt) = 1

2
~Ω cos(ωt). (588)

To derive an equation descriptive of harmonic motion we take the second derivative of r1, ob-
taining the acceleration

d2

dt2
r1(t) = −ω12

d

dt
r2(t)−

A

2
d

dt
r1(t). (589)

86There are obvious difficulties in considering an infinite number of real particles, each of finite mass, within an
atom that also has finite mass. Thus the “Lorentz electron” is not the same entity as the electron that we treat as a
particle bound to an atomic nucleus. Nevertheless, the Lorentz model provides a remarkably good description of the
spectroscopic properties of atoms, and their effect upon the radiation propagation as parametrized by the complex index
of refraction.
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Taken with the first-order equations this produces the result

d2

dt2
r1(t) = −[ω12 − (A/2)2]r1(t) + 2ω12V (t)r3(t) +Aω12r2(t)

= −[ω2
12 + (A/2)2]r1(t)−A

d

dt
r1(t) + 2ω12V (t)r3(t). (590)

This is the equation of motion for a driven and damped harmonic oscillator: it has a harmonic
restoring force expressed by the frequency ω12 (altered slightly by spontaneous emission), a
frictional force proportional to velocity and to A, and a driving force expressed by the final
term. To make the connection with a Lorentz oscillator we define the oscillator coordinate to be
x = x12r1 where the dipole transition moment is d12 = ex12. Then the equation reads

d2

dt2
x(t) = −ω2

cx(t)−A
d

dt
x(t) + f12

F (t)
me

r3(t), (591)

where the classical oscillator frequency is

ωc =
√
ω2

12 + (A/2)2, (592)

the electron mass is me and the force F (t) acting on the electron, of charge e, is

F (t) = eE(t) cos(ωt). (593)

The dimensionless factor f12 is the oscillator strength,

f12 = 2me|x12|2/~. (594)

This can be written, using atomic units of length a0 = ~2/me2 and energy EAU = e2/a0, as

f12 =
2
3

~ω12

EAU
S(1, 2), (595)

where S(1, 2) = 3|x12/a0|2 is the spectroscopic transition strength.
In the absence of the interaction V the oscillator has a natural frequency ωc differing (slightly)

from the Bohr transition frequency ω12 by the square of the damping rate A/2. This damping
originates with the loss of coherence due to spontaneous emission; it acts like a frictional force
upon the oscillator, eventually bringing it to rest at the equilibrium position.

The forcing term here differs from the classical force assumed by Lorentz: it depends upon
the population inversion r3. When the excitation is weak, the population remains in the ground
state, and so r3 = −1. This is the regime of the Lorentz oscillator.

J Center of mass motion

The center of mass motion of a nonrelativistic free particle, of mass m and velocity v, has wave-
like properties characterized by the de Broglie wavelength λd = 2π~/mv. The possibility of
producing particle beams whose de Broglie wavelength is of macroscopic size makes possible
the duplication of effects equivalent to those of classical optics but using matter waves , i.e. atom
optics [168].
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The absorption of a traveling-wave photon of frequency ω brings with it not only the addition
of excitation energy ~ω but also an increment in linear momentum ~k = ~ω/c in the direction
of beam propagation. Resonant radiation therefore exerts a force on an atom [169]. This force,
induced by a single photon, deflects an atom of mass M by the angle

θ = arctan[~ω/Mvc]. (596)

Subsequent de-excitation by stimulated emission will remove this momentum increment, thereby
leaving the atom velocity as it was prior to excitation. However, spontaneous emission produces
a radiation field which is distributed in angle, and hence the associated momentum change is
disributed over a range of angles. When spontaneous emission events are important, as is the case
with excitation over a sufficiently long time, then the combination of laser excitation followed
by spontaneous emission produces radiation pressure [41]. The combination of absorption and
spontaneous emission can serve as a cooling mechanism [42].

When two laser beams are present, propagating in opposite directions, then atoms can absorb
radiation from one beam and return it to the other. A sequence of such events, appearing as Rabi
oscillations of the internal excitation energy, will be accompanied by a coherent alteration of the
center of mass motion of each atom. Multiple absorption and emission events induced by counter
propagating laser beams can induce a momentum change of ∆p = n~k. To describe fully the
effect of radiation upon moving atoms it is therefore necessary to suplement the internal degrees
of freedom (two or three excitation states, for example) with a continuum of linear momentum
states for the center of mass coordinate r. We write the wavefuntion for this coordinate as the
superposition

Ψ(r, t) =
∫
dpΣnCn,p(t)ψn(t)φp(r), (597)

where for center-of-mass motion we use the free-particle wavefunctions

φp(r) = exp(ip · r)/
√

(2π)3. (598)

The relevant Hamiltonian, for center of mass motion affected by coherent excitation, has been
presented in several works [170][2, §15.12].

A simple example will illustrate the basic principles. Because momentum changes occur in
discrete increments it is useful to consider photons as the increments, and to deal with photon
states. To treat the interaction of an atom with quantized radiation we require a Hamiltonian
comprising three parts,

H = Hfld + Hat + Hint, (599)

describing, respectively, the field, the atom and the interaction.
Consider a two-state atom of mass M traveling in the x, z plane axis and passing through

monochromatic counterpropagating plane-wave laser beams, directed along the x axis. These
have mode fields exp(±ikx). Quantization leads to two sets of photon states, φ(±)

n± , for these two
fields. The field Hamiltonian for this system is the energy of the two fields,

Hfld = ~ω[â†+â+ + â†−â−]. (600)
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Let us assume that the atom is only slightly deflected from its initial direction, and so only
the changing motion in the x direction need be evaluated; the original momentum maintains a
constant value, say ~K. Changes of xmomentum can only occur in discrete increments, of value
~k added to an initial value ~k0, and so the center-of-mass momentum state, for x motion, can
be chosen to be defined (apart from normalization) through the property

p̂xΦν = ~(k0 + νk)Φν . (601)

To describe the combined state of the internal atomic structure, the center of mass motion, and
the state of the two fields we express the statevector as

Ψ(t) = Σa,ν,n+,n− exp[−i(n+ + n−)ωt] Ca,ν,n+,n−(t)ψ′a(t) Φν φ
(+)
n+
φ(−)

n− , (602)

where the internal-excitation states are taken as

ψ′1(t) = ψ1 exp(iωt/2), ψ′2(t) = ψ2 exp(−iωt/2). (603)

The Hamiltonian for the atom can, with suitable basis and in the RWA, be taken as

Hat =
1

2M

[
p̂x − ~k(â†+â+ − â†−â−)

]2

+ E1π̂11 + E2π̂22. (604)

This accompanies an interaction

Hint =
~Ω0√

8
π̂21 [â+ + â−] +

~Ω0√
8
π̂12

[
â†+ + â†−

]
. (605)

That is, each excitation of the atom requires loss of a photon; a change of photon number alters
the momentum of the atom. From this Hamiltonian, and the statevector expansion of eqn. (602),
we obtain a set of coupled equations for the probability amplitudes. Their solution describes the
progressive increase of transverse momentum p̂x with Rabi cycling of the field-induced excita-
tion and de-excitation [170].

Interesting effects occur when a three-state atom undergoes stimulated Raman transitions
effected by collinear but counterpropagating pump and Stokes beams. Complete population
transfer will then alter the center of mass motion, in the direction of the laser beams, by one
increment from each beam. Typically the atoms move perpendicular to the laser beams, and
so the result will be observable as an alteration of the atomic beam direction. This action, of
complete beam deflection, is an atomic mirror, albeit for atoms at grazing incidence [171].

When the excitation produces a superposition of internal energy states, then it also will pro-
duce a superposition of center-of-mass linear momentum states. This action is an atomic beam
splitter [172]. For small deflection angles, when longitudinal momentum is much larger than
photon recoil, the problem can be modeled as a one dimensional Schrödinger eqn for the trans-
verse motion of the atoms.

K Adiabatic states

The idealization of a constant pulse amplitude readily extends to pulse amplitudes that vary
slowly with time. In place of the constant eigenstates of the RWA Hamiltonian discussed in
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section 6.4 one employs slowly varying adiabatic states. By definition these are instantaneous
eigenvectors of the RWA Hamiltonian. For the two-state system they obey the equation

W(t)Φ±(t) = ε±(t)Φ±(t). (606)

The eigenvalues of the two-state RWA Hamiltonian matrix are

ε±(t) = 1

2
[∆(t)± Ω̃(t)], Ω̃(t) ≡

√
∆(t)2 + |Ω(t)|2. (607)

Using the abbreviations

s(t) ≡ sinΘ(t), c(t) ≡ cos Θ(t), (608)

we write these adiabatic states as an orthogonal rotation of the original bare diabatic states (which
are already in a rotating reference frame),

Φ+(t) = s(t)ψ1 + c(t)ψ2(t), (609)
Φ−(t) = c(t)ψ1 − s(t)ψ2(t). (610)

It is easy to verify with the aid of trigonometric identities that this construction provides eigen-
vectors of a matrix that has the form

W(t) = Ω̃(t)
[

0 s(t)c(t)
s(t)c(t) c(t)2 − s(t)2

]
, (611)

and that the eigenvalues are

ε−(t) = −s(t)2 Ω̃(t), ε+(t) = +c(t)2 Ω̃(t). (612)

To identify the mixing angle Θ(t) we use trigonometric identities to rewrite eqn(611) as

W(t) = Ω̃(t)
[

0 1
2 sin 2Θ(t)

1
2 sin 2Θ(t) cos 2Θ(t)

]
. (613)

Thereby we identify the mixing angle as obtained from the equation

cot 2Θ(t) = ∆(t)/Ω(t). (614)

The construction of the adiabatic states, expressed with the framework of diabatic states, is com-
pletely determined by the mixing angle. In turn, this is controllable by prescribing the pulsed
changes of Rabi frequency and detuning. Thus the adiabatic states can be considered known.
What remains to be done is to associate the unknown statevector Ψ(t) with the adiabatic states,
and to understand the conditions under which that connection can remain constant while the
adiabatic states change.
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K.1 Terminology

The terminology of “adiabatic” and “diabatic” dates from early work on the theory of reactive
scattering [173]: diabatic states refer to colliding atoms that move toward each other along po-
tential energy surfaces that do not allow excitation, whereas the adiabatic states incorporate the
full interaction energy. The dependence of the interatomic potential energy on separation dis-
tance translates to a time dependence for moving particles, and hence the adiabatic states are
time dependent.

An alternative terminology originated for the treatment of atoms interacting with quantized
radio-frequency fields [74] and subsequently used for various calculations with CW laser radia-
tion. The atom-field interaction is then constant. The eigenstates of the resulting full Hamiltonian
(involving states of free atoms and free photons) were termed “dressed states”, contrasting with
the “bare states” of the non-interacting atoms and fields In that case the Hamiltonian was inde-
pendent of time, and the relationship between dressed and bare states was constant.

The verbal similarity between the words adiabatic and diabatic is a potential source of un-
fortunate confusion, and therefore many speakers and authors prefer the terms bare state for the
diabatic basis states ψn(t) that are eigenstates of an unperturbed Hamiltonian, and use the term
dressed state to describe an eigenstate of the full Hamiltonian; when the Hamiltonian changes
with time these are the adiabatic states.

K.2 Adiabatic evolution

Considerable literature deals with adiabatic evolution [174]. Some articles are specific for two-
state systems [175] while others treat the three-state lambda system [176]. Adiabatic evolution
of the statevector occurs when it is expressible as a fixed, time-independent, superposition of
adiabatic states. For a two-state system we can write the statevector in the adiabatic basis as

Ψ(t) = A+(t)Φ+(t) +A−(t)Φ−(t) ≡ ΣkAk(t)Φk(t). (615)

Evolution will be adiabatic if the coefficientsAk are time independent. The following paragraphs
discuss the conditions needed for that result.

The time derivative of the construction (615) is

d

dt
Ψ(t) = ΣkȦk(t)Φk(t) + ΣkAk(t)Φ̇k(t). (616)

From the TDSE we obtain the requirement that this derivative should be

d

dt
Ψ(t)− iW(t)ΣkAk(t)Φk(t) = −iΣkεk(t)Ak(t)Φk(t). (617)

The time derivatives of the adiabatic states are
d

dt
Φ±(t) = ±Θ̇(t)Φ∓(t), (618)

so these undergo interchange at a rate dependent on the time derivative of the mixing angle.
From eqn. (616) we obtain the following equation, basically the RWA Schrödinger equation in
an adiabatic basis,

d

dt
A(t) = −iWA(t)A(t), (619)
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where A(t) = [A−(t), A+(t)]T is a column vector of the adiabatic coefficients and the RWA
Hamiltonian, in the adiabatic basis, is

WA(t) =
[

ε−(t) iΘ̇(t)
−iΘ̇(t) ε+(t)

]
. (620)

K.3 Adiabatic conditions

The statevector will remain in a fixed superposition of adiabatic states, i.e. the coefficients Ak(t)
will remain constant, if the off-diagonal terms of WA(t) are smaller than the difference of the
diagonal terms,

Θ̇(t) � ε+(t)− ε−(t) = Ω̃(t). (621)

Such time evolution is adiabatic.
The nonadiabatic coupling term is the derivative of the mixing angle. We write this as

d

dt
Θ(t) =

d

dt

1
2

arctan[Ω(t)/∆(t)]. (622)

We use elementary calculus and the chain rule to write

d

dt
Θ(t) =

1
2
× 1

1 + [Ω(t)/∆(t)]2
× d

dt
[Ω(t)/∆(t)]. (623)

After a bit of algebra this gives the result

d

dt
Θ(t) =

Ω̇∆− Ω∆̇
2Ω̃2

. (624)

Thus the adiabatic condition can be written as

|Ω̇∆− Ω∆̇| � 2|Ω̃|3. (625)

When this condition is fulfilled, by suitable construction of the pulses, then the evolution will be
adiabatic, and a detuning sweep will induce a transition between bare diabatic states.

K.4 Adiabatic constraints

We can approximate an upper bound to the change in mixing angle during the pulse of duration
τ by writing

Θ̇ < 2π/τ. (626)

This in turn must be much less than the eigenvalue separation, meaning

2π � |Ω0|τ, (627)

where Ω0 is the value of the Rabi frequency when ∆ = 0. That is, the time integrated Rabi
frequency (the pulse area) must be much larger than 2π.
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Near ∆ = 0 the adiabatic condition, eqn. (621), becomes

∆̇ � (2Ω0)2. (628)

That is, the rate of change in detuning must be small compared with (2Ω0)2. This condition
emerges from the exact analytic results of the Landau-Zener model of diabatic curve crossing (or
adiabatic avoided crossings): to be adiabatic, and hence produce a transition, the evolution must
be such that the LZ parameter χ = (2Ω0)/|∆̇| should be very much larger than 1.

However, the detuning cannot change too slowly. During the course of the pulse, as ∆ passes
through zero, there must be a change greater than the separation of eigenvalues, or

∆̇τ > |Ω0|. (629)

We therefore find that, in addition to requiring a large Rabi angle, adiabatic passage requires that
the detuning change fit within the bounds

(2Ω0)2 � |∆̇| > Ω0/τ. (630)

L Near-periodic excitation

For all but the very shortest pulses, the laser field that produces excitation endures for many
optical cycles. It is reasonable, therefore, to regard this, to first approximation, as producing
a Hamiltonian that is periodic in time[2, § 4.2]. Let the period be τ = 2π/ω. That is, the
Hamiltonian has the property H(t) = H(t + τ). Such a periodic function of time is expressible
as a Fourier series 87

H(t) = H(0) + H(1) exp(iωt) + H(−1) exp(−iωt) + · · · (631)

where the matrices H(m) are constant. For the periodic variation cos(ωt) discussed in this article
only two terms contribute, m = ±1, but more general situations may occur.

Generally the Hamiltonian of interest is not exactly periodic; the matrices H(m) vary with
time, though they do so more slowly than the basic frequency ω. Equation (631) then becomes

H(t) = Σ∞m=−∞H(m)(t) exp(imωt). (632)

and is then not an exact Fourier series. However, because we have a series decomposition of
H(t) it is natural to look for a similar series for the statevector Ψ(t). Specifically, let us propose
the expansion

Ψ(t) = ΣaΣ∞m=−∞ Ca,m(t)ψa exp(imωt), (633)

where the Ca,m(t) are expansion coefficients to be determined. The label a specifies the atomic
basis state; the sum on m specifies the harmonic.

87 I have here chosen a single fundamental frequency ω as the basis for the periodicity. In some situations the period-
icity results from combinations of multiple commensurable periods. It is possible to introduce multiple periodicities and
multiple frequencies ω1, ω2, . . . but the notation becomes quite cumbersome.
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This construction of the statevector is tantamount to enlarging the Hilbert space by introduc-
ing basis vectors 88

φm(t) ≡ exp(imωt) (634)

and writing the statevector as

Ψ(t) = ΣaΣ∞m=−∞ Ca,m(t)ψaφm(t). (635)

The enlarged Floquet space has an infinite number of dimensions (because it treats an infinite
set of harmonics, each requiring a dimension) but, like the original Hilbert space descriptive of
the atom, usually only a few of them are needed. When the Hamiltonian is strictly periodic, so
that H(m)(t) is constant, the coefficients Ca,m(t) are also constant, and eqn. (636) is a Fourier
series. More generally the terms H(m)(t) vary slowly with time, as do therefore the amplitudes
Ca,m(t).

From the statevector construction of eqn. (633) it follows that the probability amplitude for
state a is a series,

Ca(t) ≡ 〈ψa|Ψ(t)〉 = Σmφm(t) Ca,m(t) = Σm exp(imωt) Ca,m(t). (636)

The probability of observing the atom in state ψa at time t is therefore the square of an infinite
sum of harmonically-modulated time-varying amplitudes:

Pa(t) = |Ca(t)|2 = |Σm exp(imωt) Ca,m(t)|2. (637)

Thus interference can occur between different harmonics.
To obtain equations for the amplitudes Ca,m(t) we substitute the expansion (633) into the

Schrödinger equation (78) and equate to zero the coefficients of each factor ψa exp(imωt). This
procedure produces an infinite set of coupled equations,

d

dt
Ca,m(t) = −imωCa,m(t)− (i/~)ΣbΣnH

(n)
ab (t) Cb,m−n(t). (638)

These equations are an exact transcription of the original Schrödinger equation, valid for any
number of atomic states and an arbitrary number of harmonics in the interaction. There is, as
yet, no RWA approximation, only the assumption that any time variation of H(n)

ab (t) be slow
compared with the period 2π/ω .

As with the traditional approach to the TDSE in eqns. (106) - (108), we can express the set
of coupled ordinary differential equations in matrix form, as

d

dt
Ca,m(t) = −iΣb,nK

(n)
ab (t)Cb,m−n(t). (639)

The infinite matrix of these coefficients, K(n)
ab (t), is sometimes termed the Floquet Hamiltonian.

It differs from the usual Hamiltonian in having the terms mω on the diagonal. When the original
Hamiltonian is strictly periodic the Floquet Hamiltonian is constant; more generally it varies
slowly with time.

Although the equations are denumerably infinite in number, they are amenable to solution
by generalization of any of the techniques that are usable for the two-state case (e.g., Laplace
transforms). The following paragraphs comment on some properties of the equations and their
solutions.

88The functions φm(t) form an infinite dimensional Hilbert space corresponding to a second degree of freedom.
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L.1 Two states

A simple illustration of the preceding formalism occurs for a two-state atom, acted on by a
linearly polarized sinusoidal interaction of frequency ω [2, §4.2]. There are two basis states in
the atomic Hilbert space, ψ1 and ψ2, and so the statevector construction of eqn. (633) reads

Ψ(t) = ψ1 Σ∞m=−∞ exp(imωt)C1,m(t)
+ ψ2 Σ∞m=−∞ exp(imωt)C2,m(t). (640)

To clarify this construction let us use the notation Am(t) for harmonic components of state 1,
and Bm(t) for components of state 2,

C1,m(t) = Am(t), C2,m(t) = Bm(t). (641)

The only contributions to the Hamiltonian are

H
(0)
11 = E1 = 0, H

(0)
22 = E2 = ~ω0, (642)

H
(1)
21 = H

(−1)
21 = 1

2
~Ω. (643)

The equations of motion derived from eqn. (638) are the infinite sets

d

dt
Am(t) = −i [mω]Am(t)− i

Ω
2

[Bm−1(t) +Bm+1(t)] , (644)

d

dt
Bm+1(t) = −i [(m+ 1)ω − ω0]Bm+1(t)− i

Ω
2

[Am(t) +Am+2(t)] .

The matrix of coefficients appearing here form the elements of the Floquet Hamiltonian. It
has as diagonal elements the frequencies mω and the detunings mω − ω0 and as off-diagonal
elements half the Rabi frequency Ω.

These equations separate into two independent sets of coupled equations. One set applies to
the sequence . . . A−2, B−1, A0, B1, A2, . . ., while the other set applies to the sequence . . . B−2,
A−1, B0, A1, B2, . . .. For each set the Floquet Hamiltonian has the matrix representation



. . .
...

...
...

...
...

. . . (m+ 2)ω 1
2 Ω 0 0 0 . . .

. . . 1
2 Ω (m+ 1)ω + ω0

1
2 Ω 0 0 . . .

. . . 0 1
2 Ω mω 1

2 Ω 0 . . .
. . . 0 0 1

2 Ω (m− 1)ω + ω0
1
2 Ω . . .

. . . 0 0 0 1
2 Ω (m− 2)ω . . .

...
...

...
...

...
. . .


.
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In particular, a small portion of the set of coupled equations, for even-integer An, has the coeffi-
cient matrix 

2ω 1
2 Ω

1
2 Ω 2ω + ∆

0 0
1
2 Ω 0

0 0
0 0

0 1
2 Ω

0 0
0 1

2 Ω
1
2 Ω ∆

0 0
1
2 Ω 0

0 0
0 0

0 1
2 Ω

0 0
−2ω 1

2 Ω
1
2 Ω −2ω + ∆



A+2
B+1

A0

B−1

A−2

B−3

.

Each 2× 2 block is an example of the RWA equations, differing only by the addition of 2mω to
both diagonal elements – a redefinition of the energy zero point (and an overall phase). In turn,
the couplings between the different blocks represent counter-rotating terms in the rotating wave
picture 89. When the interaction 1

2 Ω is much smaller than 2ω the individual blocks will be nearly
independent, and the RWA will apply. The Floquet Hamiltonian can then be approximated by
any one of the blocks, for example

d

dt

[
Am

Bm−1

]
= −i

[
mω 1

2 Ω
1
2 Ω mω + ∆

] [
Am

Bm−1

]
. (645)

These are just the usual RWA equations. Corrections to the RWA obtain by including succes-
sively more harmonics, as expressed by enlarging the Floquet Hamiltonian matrix.

This approach, through a truncated Floquet Hamiltonian, can be used when the Hamiltonian
elements (i.e. the Rabi frequency and detuning) are slowly varying. At the expense of solving
a larger number of coupled equations, one can obtain solutions to the TDSE without restriction
upon either the strength of the interaction nor the magnitude of the detuning 90.

L.2 The Jaynes-Cummings model (JCM)

The Floquet treatment of a periodic field, using Fourier exponentials to form a Hilbert space, has
much in common with a treatment involving photons, approached with the aid of a Fock space.
When the field is quantized the two-state single-mode Hamiltonian operator can be written

H = ~ωâ†â+ E1π̂11 + E2π̂22

+
i
2
d12π̂12(t)[E1â(t) + E∗1 â†(t)] +

i
2
d21π̂21(t)[E1â(t) + E∗1 â†(t)], (646)

where

â(t) = â e−iωt, â†(t) = â† eiωt, π̂12(t) = π̂12 eiωt, π̂21(t) = π̂21 e−iωt. (647)

In the rotating wave approximation this becomes the Jaynes-Cummings Hamiltonian [39][2,
§10.7],

H = ~ωâ†â+ E1π̂11 + E2π̂22 +
i~
2

Ω∗1π̂12â
† +

i~
2

Ω1π̂21â, (648)

89These couplings are absent when the excitation is by circularly polarized light; the matrix then consists of indepen-
dent blocks.

90However, the assumption of only two essential states fails as the field becomes more intense.



436 Coherent manipulation

where the single-photon Rabi frequency is derived from the single-photon electric field, Ω1 =
d12E1/~. Here each atom transition from higher to lower energy accompanies photon emission,
while an energy-increasing transition accompanies the absorption of a photon. This Hamiltonian
has two constants of motion, the total atomic probability and the excitation number,

〈π̂11〉+ 〈π̂22〉 = 1, 〈â†â〉+ 〈π̂22〉 = constant. (649)

The statevector expansion, in atomic states ψ′a(t) and single-mode photon states φn, reads

Ψ(t) = Σ∞n=0Ca,n(t)ψ′a(t)φn. (650)

Akin to the Floquet Hamiltonian with RWA, the use of photon-number basis states produces a set
of uncoupled 2×2 blocks, each associated with a different photon number n. The Rabi frequency
associated with n photons is Ωn =

√
nΩ1. Each of these independent two-state systems has an

exact analytic solution for probability amplitudes; the JCM allows an exact solution of a system
that combines a quantum description of an atom with a fully quantum-mechanical description of
the field, albeit in the approximation of single-mode RWA.

To use these solutions it is necessary to average over the initial distribution of photon num-
bers, using probabilities pn. For example, when the atom is initially unexcited we require the
excitation probability

P̄2(t) = 1

2
Σ∞n=0 pn [1− cos(

√
n+ 1Ω1t)]. (651)

The need for averaging required by the JCM introduces a superposition of solutions having dif-
ferent Rabi frequencies. The result is an effective damping of the apparent oscillations.

The JCM is similar to, but not identical with, the Floquet description of monochromatic
excitation. The difference between the two approaches is in the succession of Rabi frequencies.
For small photon number this becomes significant. In particular, when the mean photon number
is very small, as can occur for an atom in a small cavity, and the photon distribution is that of
a coherent state, the damped oscillations exhibit a revival, evidence of the discreteness of the
photon numbers.

To emphasize the similarity of the two approaches we express the photon number as a devia-
tion from the (large) mean number n̄ and write 91

Ψ(t) = Σ∞m=−∞Ca,n̄,m(t)ψa(t)φn̄+m. (652)

The counterpart of the Floquet state having harmonic m = 0 is the photon state having mean
photon number n̄; other harmonics are deviations from this mean. The Rabi frequency becomes
Ωm =

√
n̄+ |m| Ω1. In the limit of large photon number there is little difference between suc-

cessive blocks of the JCM Hamiltonian, other than the diagonal elements, and both approaches
deal with the same equations.

91The infinite summation limits merely indicate large positive and negative values of m. In practice, relatively few
values of m are needed.
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L.3 Floquet’s theorem

Sets of coupled ordinary differential equations with exaclty periodic coefficients, of which the
two-state Schrödinger equation offers a special example, have properties described by what is
sometimes termed Floquet theory[94], commemorating Floquet’s theorem, which asserts that
quasiperiodic solutions exist. More specifically, consider a set of N ordinary differential equa-
tions involving a vector of unknowns Y(t), that satisfy the differential equation

d

dt
Y(t) = −iM(t)Y(t). (653)

When the N ×N matrix M(t) is periodic, with period τ ≡ 2π/ω, then Floquet’s theorem asserts
that a vector of solutions Y(t) can be found with the form

Y(t) = exp(−iZt)y(t), (654)

where the vector y(t) is periodic, with period τ . This latter periodicity means that y(t) is ex-
pressible as a Fourier series:

y(t) = Σ∞m=−∞v(m) exp(imωt). (655)

Here v(m) and y(t), like the original unknown Y(t), are N -component vectors. Note that
although y(t) is periodic, the construct Y(t) is instead quasiperiodic: the absolute square of
Y(t) is periodic.

The exponent Z is termed variously the Floquet exponent or the quasienergy. There are as
many of these, and as many possible solutions of the form (654), as there are dimensions of
the original Hamiltonian, i.e. the number of basis states N . Let us denote by Zν one of the N
Floquet exponents, associated with a solution

Y(ν; t) = exp(−iZνt)y(ν; t), (656)

where

y(ν; t) = Σ∞m=−∞v(ν,m) exp(imωt). (657)

The most general solution to eqn. (653) is a linear superposition of these vectors,

Y(t) = ΣνcνY(ν; t), (658)

with the constants cν chosen such that Y(t) satisfies the required initial conditions, say at t = 0:
they are solutions to the set of equations

ΣνcνY(ν; 0) = Y(0). (659)

L.4 Two-state Floquet solutions.

From Floquet’s theorem we conclude that, for a periodic Hamiltonian, we can write the state
vector Ψ(t) in the form

Ψ(t) = ΣN
ν=1 exp(−iZνt)ΣN

n=1Σ
∞
m=−∞cn(ν,m) exp(imωt)ψn. (660)
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For two-state excitation this expression becomes

Ψ(t) = c1(t)ψ1 + c2(t)ψ2, (661)

with

c1(t) = exp(−iZ1t)Σ∞even n=−∞an exp(inωt),
+exp(−iZ2t)Σ∞odd m=−∞am exp(imωt), (662)

c2(t) = exp(−iZ1t)Σ∞odd m=−∞bm exp(imωt)
+ exp(−iZ2t)Σ∞even n=−∞bn exp(inωt). (663)

When the Hamiltonian is exactly periodic the real-valued exponents Z1 and Z2 and the complex-
valued amplitudes am and bm are independent of time. These constructions generalizes the
RWA expression for Ψ(t). That RWA expression, when written in terms of dressed states Φ±(t),
reads

Ψ(t) = c+Φ+(t) + c−Φ−(t). (664)

Each dressed state has a simple exponential time dependence, through a factor exp(−iZ±t). In
the RWA the formulas read

c1(t) = exp(−iZ+t)a0 + exp(−iZ−t)a1, (665)
c2(t) = exp(−iZ+t)b1 + exp(−iZ−t)b0. (666)

In the RWA each basis state ψn is accompanied by two frequency components, at the eigenvalues
Z+ and Z− of the 2× 2 RWA Hamiltonian matrix. In the more general expression of Eqn. (660)
these two eigenvalues become two Floquet exponents Z1 and Z2; the values Z± are approxima-
tions to these. Furthermore, each of the characteristic frequencies Z1 and Z2 of the more general
expression has an infinite set of associated frequencies Zn +mω differing by integer multiples
of the frequency ω: the set of Floquet exponents form a pair of infinite sequences.

Equation (660) presents the general form of a solution to the problem of a two-state atom
subject to a periodic off-diagonal interaction. There remains the problem of determining the
Floquet exponents Z1 and Z2 and the various constant coefficients am and bm, for a given set of
parameters that define the Hamiltonian. For the two-state atom these are the Bohr frequency, the
field carrier frequency and the Rabi frequency.

L.5 The two-state Floquet exponents; Quasienergies.

To determine the Floquet exponents we return to expansion (633), but this time we place the time
dependence of the expansion coefficients entirely into exponentiated phases ζa,m(t) by writing,
in place of expansion (633), the sum

Ψ(t) = ΣaΣmψa exp(imωt)ca,m exp [−iζa,m(t)] . (667)

The ground-state amplitudes am = c1m and excited-state amplitudes bm = c2,m are now re-
quired to be constants. This can be accomplished by taking the phases ζn(t) to be

~ζ1,m(t) = ~ζ2,m±1(t) =
{

(E1 + ~Z)t for m even
(E1 + ~Z)t for m odd. (668)
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This approach gives, in place of the differential equations (644) - (645), the set of algebraic
equations

0 = [mω − Z] am + 1

2
Ω [bm−1 + bm+1] , (669)

0 = [ω0 + (m+ 1)ω − Z] bm+1 + 1

2
Ω [am + am+2] . (670)

These homogeneous equations have solutions only for selected values of Z, namely those which
produce a null value for the determinant of the coefficients of the unknowns am and bm. We may
regard these equations as an eigenvalue equation for the Floquet Hamiltonian, i.e., the infinite
matrix implied by Eqns. (668). Thus the Floquet exponents Zν are the eigenvalues of the
Floquet Hamiltonian.

These equations make no assumption about the excitation frequency ω. It need not be close
to resonance and it need not be much larger than the Rabi frequency. The equations as written
are, of course, restricted to a two-state atom and to a single-frequency field, but even so they have
no simple closed-form analytic solutions.

L.6 Adiabatic Floquet theory

Just as the slowly varying RWA Hamiltonian has slowly varying adiabatic states that can be used
to describe the statevector, so too does a slowly varying Floquet Hamiltonian lead to slowly
varying generalizations of the basic Floquet states. These, and the Floquet exponents, become
slowly varying functions of time. Several papers describe the use of such states [95].

During adiabatic evolution the statevector remains aligned with a fixed superpositiion of
these, perhaps with a single one. Just as we identify two-state behavior from plots of the two
simple adiabatic energies, so too can we use plots of the more general Floquet eigenvalues for
this purpose. Instead of dealing with two curves, one for each of the two adiabatic energies,
we have an infinite replication of pairs of curves, each set being offset by frequency ω. To
understand the dynamics we consider a system point as it follows one of these curves through
possible crossings with other curves.

M Dark states: the Morris-Shore transformation

Under specific conditions it is possible to replace an interaction pattern comprising multiple
linkages with a set of independent two-state interactions. The necessary conditions are

I. Two sets of states,

Set A (ground), with NA elements.

Set B (excited), with NB elements.

II. There are no couplings within A set or B set, only couplings between A and B. 92

III. The sets share common diagonal elements. In the RWA these are detunings ∆A and ∆B .

92The graph corresponding to this linkage pattern is therefore bipartite.
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The RWA Hamiltonian therefore has the structure

W =
[

∆A1A V
V† ∆B1B

]
A
B

(671)

where 1A and 1B are unit matrices, of dimensionNA andNB respectively, and V is a rectangular
matrix, of dimension NA ×NB .

Given this Hamiltonian, we introduce a Hilbert-space transformation

C̃j(t) = ΣjUjnCn(t), (672)

such that the resulting equation of motion,

d

dt
C̃(t) = −iW̃(t)C̃(t), (673)

involves a Hamiltonian that has the structure of uncoupled 2 × 2 blocks together with a unit
matrix 1S of dimension NS = |NA −NB | ,

W̃ =


w(1) 0 0 · · · 0

0 w(2) 0 · · · 0

0 0 w(3) . . . 0
...

...
...

. . . 0
0 0 0 0 ∆ 1S

 , (674)

where the individual 2×blocks have the form

w(j) =
[

∆A
1
2 Ω̄(j)

1
2 Ω̄(j) ∆B

]
(675)

and ∆ is the detuning associated with the larger set of states. The result of this Morris-Shore
(MS) transformation is a set of independent 2-state systems plus NS uncoupled spectator states.
The number of coupled pairs of states is N<, the lesser of the two dimensions NA and NB . Of
each pair, one state (a bright state) comprises a superposition of states from set A. The other set
comprises a superposition of states from set B (excited states). Figure 81 shows the results of
the MS transformation.

The transformation to block-diagonal form W̃ = UWU† is by means of a transformation
matrix

U = G
[

A 0
0 B

]
G−1 where

A = acts on A states (ground)
B = acts on B states (excited)
G = permutation matrix

(676)

The transformation matrices A and B are defined such that they diagonalize the square matrices
VV† and V†V, respectively

AVV†A† = diagonal, B†V†VB = diagonal.

The elements of these matrices are the squares of the rabi frequencies Ω(j). The signs of eigen-
values are obtained only by evaluating UWU†.
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Fig. 81. Results of the MS transformation. Left: More lower states, NB < NA; Have NA − NB dark
states. Right: More upper states, NB < NA; Have NB −NA spectator states

d1

b

dN−1

Fig. 82. Equivalent linkages, for a general fan-type linkage pattern. There is one bright state, N − 1 dark
states and one excited state.

The simplest example of a MS transformation occurs with the three-state system. There is
one uncoupled state after the MS transformation; it may either be a dark state (if it is in the
set that includes the initial state, so that the linkage has the lambda pattern) or a spectator state
(as happens when the initial state is the center of the chain, so the linkage forms a vee pattern).
A generalization of this occurs when the A set comprises several states, all linked to a single
excited state, in a “fan” pattern. The four-state tripod is an example of this. Figure 82 illustrates
an N -state generalization: there is a single bright state and N − 1 dark states.

The MS transformation allows simplification of resonant excitation of any degenerate two-
level angular momentum system, by elliptically polarized light for a laser beam oriented at an
arbitrary angle to the quantization axis. Such a system has a linkage pattern similar to that shown
in Fig. 73(a). The MS transformation simplifies this linkage into 2J< + 1 Independent two-state
links, as would occur if the excitation had been linearly polarized along the quantization axis;
see Fig. 73(b).
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Fig. 83. Examples of chains amenable to Morris-Shore transformation

Numerous other situations allow application of a MS transformation. Figure 83 shows some
examples of chain-linkage patterns that are amenable to a MS transformation.

One of the generalizations of the MS transformation makes possible, under certain condi-
tions, a reduction in which the final result includes not only independent single- and two-state
blocks of the transformed Hamiltonian, but also three-state blocks: both two-state and three-state
excitation chains arise from the set of transformedA states. The conditions for such restructuring
have been discussed by Rangelov et al. (2006) [125].

The restructuring of the Hamiltonian discussed here has wider application, whenever one
encounters a set of ordinary differential equations in the form

d

dx
C(x) = MC(x) (677)

for variablesCn(x). When the matrix M has the appropriate structure, the Morris-Shore transfor-
mation can then reduce the number of variables for which solutions are required, by introducing
“dark” combinations that remain fixed. When x denotes time, the dark superpositions represent
constants of the motion. Such is the case in treatments of dark-state polaritons [177].
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W. Nörtershäuser, B. A. Bushaw, P. Müller and K. Wendt, “Line Shapes in Triple-Resonance Ionization

Spectroscopy” Appl. Opt. 39, 5590-5600 (2000)
[16] The Lorentz electron

H. A. Lorentz, The Theory of Electrons, (Dover, N.Y., 1952)
F. L. Friedman and L. Sartori, The Classical Atom, (Addison-Wesley, Reading, Mass., 1965)
K. F. Schaffner, “The Lorentz electron theory of relativity” Am. J. Phys. 37, 498-513 (1969)
J. Z. Buchwald and A. Warwick, Histories of the Electron: The Birth of Microphysics, (MIT Press,

Cambridge, MA, 2001)
[17] 0scillator strength

D. R. Bates and A. Damgaard, “The calculation of the absolute strengths of spectral lines” Phil. Trans.
Roy. Soc. Lond. A 242, 101-122 (1949)

M. N. Lewis, Oscillator Strength of Ionizing Transitions. Data Salculated in the Hydrogen-Lke Ap-
proximation., (U.S. National Bureau of Standards, Washington, D.C., 1953)

L. C. Green, P. P. Rush and D. D. Chandler, “Oscillator strengths and matrix elements for the electric
dipole moment for hydrogen” Ap. J. Suppl. 3, 37-50 (1957)

U. Fano and J. W. Cooper, “Spectral distribution of atomic oscillator strengths” Rev. Mod. Phys. 40,
441 (1968)

H. C. Goldwire, Jr. , “Oscillator strengths for electric dipole transitions of hydrogen” Astrophys. J.
Suppl. 17, 445-465 (1968)

W. L. Wiese and A. W. Weiss, “Regularities in atomic oscillator strengths” Phys. Rev. 175, 50 (1968)
D. Layzer and R. H. Garstang, “Theoretical atomic transition probabilities” Ann. Rev. Astron. Astro-

phys. 6, 449-94 (1968)



References 447

D. H. Menzel, “Oscillator strengths, f, for high-level transitions in hydrogen” Astrophys. J. Suppl. 18,
221-246 (1969)

C. M. Penney, “Light scattering in terms of oscillator strengths and refractive indices” J. Opt. Soc. Am.
59, 34-42 (1969)

A. F. Starace, “Length and velocity fomulas in approximate oxcillator-strength calculations” Phys.
Rev. A 3, 1242-45 (1971)

M. W. Smith and W. L. Wiese, “Graphical presentations of systematic trends of atomic oscillator
strengths along isoelectronic sequences and new oscillator strengths derived by interpolation” Ap.
J. Supp. 23, 103-192 (1971)

A. L. Stewart, “ Atomic structure and oscillator strengths,” in Atomic Processes and Applications, ed.
(North-Holland, N.Y., 1976)

A. Merts and R. E. H. Clark, “Quantum defect methods applied to oscillator strengths” JQSRT 38,
287-293 (1987)

[18] Laser isotope separation
C. B. Moore, “Application of lasers to isotope separation” Accounts Chem. Res. 6, 1 (1973)
N. V. Karlov and A. M. Prokhorov, “Laser isotope separation” Sov. Phys. Usp. 19, 285-300 (1976)
V. S. Letokhov, “Principles of laser isotope separation,” in Frontiers in Laser Spectroscopy, ed. R.

Baliean, S. Haroche and S. Liberman (North-Holland, Amsterdam, 1977)
N. V. Karlov, B. B. Krynetskii, V. A. Mishin and A. M. Prokhorov, “Laser isotope separation of rare

earth elements” Appl. Opt. 17, 856-862 (1978)
N. V. Karlov, B. B. Krynetskii, V. A. Mishin and A. M. Prokhorov, “Selective atomic photoionization

and its use in isotope separation and spectroscopy” Sov. Phys. Usp. 22, 220-234 (1979)
C. P. Robinson and R. J. Jensen, “Laser methods of isotope separation,” in Uranium Enrichment, ed.

S. Villari (Springer, Berlin, 1979)
V. S. Letokhov, “Laser isotope separation” Nature 277, 605 - 610 (1979)
J. L. Emmett, W. F. Krupke and J. I. Davis, “Laser R & D at the Lawrence Livermore National

Laboratory for fusion and isotope separation applications” IEEE J. Quant. Elec. QE-20, 591-602
(1984)

J. A. Paisner, “Atomic vapor laser isotope separation” App. Phys. B 46, 253-260 (1988)
P. T. Greenland, “Laser isotope separation” Contemp. Phys. 31, 405 - 424 (1990)
O. Atabek, M. Chrysos and R. Lefebvre, “Isotope separation using intense laser fields” Phys. Rev. A

49, R8-R11 (1994)
A. Lindinger, A. Merli, M. Plewicki, F. Vetter, S. M. Weber, L. Wöste, “Optimal control of isotope
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J. L. Picqué and J. Pinard, “Direct observation of the Autler-Townes effect in the optical range” J.
Phys. B 9, L77-L81 (1976)

H. R. Gray and C. R. Stroud, “Autler-Townes effect in double optical resonance” Opt. Comm. 25,
359-62 (1978)

G. S. Agarwal and P. A. Naragana, “Effect of probe field strength and the fluctuations of the exciting
laser on the asymmetry of Autler & Townes doublet” Opt. Comm. 30, 364-368 (1979)

M. S. Zubairy, “Quantum state measurement via Autler-Townes spectroscopy” Physics Letters A 222,
91-96 (1996)

H. S. Freedhoff and Z. Ficek, “Resonance fluorescence and Autler-Townes spectra of a two-level atom
driven by two fieldsof equal frequencies” Phys. Rev. 55, 1234 - 1238 (1997)

A. M. Herkommer, W. P. Schleich and M. S. Zubairy, “Autler-Townes microscopy on a single atom”
J. Mod. Opt. 44, 2507 - 2513 (1997)

M. Wollenhaupt, A. Assion, O. Bazhan, C. Horn, D. Liese, C. Sarpe-Tudoran, M. Winter and T.
Baumert, “Control of interferences in an Autler-Townes doublet: Symmetry of control parameters”
Phys. Rev. A 68, 015401 (2003)

R. Garcia-Fernandez, A. Ekers, J. Klavins, L. P. Yatsenko, N. N. Bezuglov, B. W. Shore and K.
Bergmann, “Autler-Townes effect in a sodium molecular-ladder scheme” Phys. Rev. 71, 023401
(2005)



References 467

[101] Raman spectroscopy
G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Poly-

atomic Molecules, (Van Nostrand, N.Y., 1950)
A. Anderson, The Raman Effect I. Principles, (Dekker, N.Y., 1971)
A. Anderson, The Raman Effect II. Applications, (Dekker, N.Y., 1971)
J. A. Konigstein, Introduction to the Theory of the Raman Effect, (Reidel, 1972)
D. A. Long, Raman Spectroscopy, (McGraw-Hill, N.Y., 1977)
A. Weber, ed. Raman Spectroscopy of Gases and Liquids, (Springer, N.Y., 1979)
D. Lee and A. C. Albrecht, “A unified view of Raman, resonance Raman and fluorescence spectroscopy

(and their analogues in two-photon absorption)” Adv. Infrared Raman Spect. 12, 179-213 (1985)
H. Kono, Y. Nomurea and Y. Fujimura, “A theoretical study of origins of resonance Raman and res-

onance fluorescence using a split-up of the emission correlation function” Adv. Chem. Phys. 80,
403-462 (1991)

L. D. Ziegler, “On the difference between resonance Raman scattering and resonance fluorescence in
molecules - an experimental view” Accounts Chem. Res. 27, 1-8 (1994)

[102] Franck-Condon pumping
H. A. Weaver and M. J. Mumma, “Infrared molecular emissions from comets ” Ap. J. 276, 782-797

(1984)
W. Meier, H. Zacharias and K. H. Welge, “Vibrational excitation of a H2 molecular beam by Franck-

Condon pumping” Chem. Phys. Lett. 163, 88-92 (1989)
[103] Stimulated Raman processes

R. W. Hellwarth, “Theory of stimulated Raman scattering” Phys. Rev. 130, 1850 (1963)
V. A. Zubov, M. M. Sushchinskii and I. K. Shuvalov, “Stimulated Raman scattering of light” Sov.

Phys. Usp. 7, 419-433 (1964)
Y. R. Shen and N. Bloembergen, “Theory of stimulated Brilloun and Raman scattering” Phys. Rev.

137, A1787-1805 (1965)
N. Bloembergen, “The stimulated Raman effect” Am. J. Phys 35, 989-1023 (1967)
C.-S. Wang, “Theory of stimulated Raman scattering” Phys. Rev. 182, 482-494 (1969)
R. L. Carman, F. Shimizu, C. S. Wang and N. Bloembergen, “Theory of Stokes pulse shapes in transient

stimulated Raman scattering” Phys. Rev. A 2, 60-72 (1970)
P. Lallemand, “The Stimulated Raman effect,” in The Raman Effect, ed. A. Anderson, v. 1, c. 5 and

287-342 (Dekker, 1971)
J. A. Konigstein, Introduction to the Theory of the Raman Effect, (Reidel, 1972)
A. Weber, ed. Raman Spectroscopy of Gases and Liquids, (Springer, N.Y., 1979)
M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: Unified treatment of spontaneous

initiation and spatial propagation” Phys. Rev. A 24, 1980-93 (1981)
[104] Stimulated emission pumping (SEP)

C. Kittrell, E. Abramson, J. L. Kinsey, S. A. McDonald, D. E. Reisner, R. W. Field and D. H. Katayama,
“Selective vibrational excitation by stimulated emission pumping” J. Chem. Phys. 75, 2056 -59
(1981)

H.-L. Dai and R. W. Field, ed. Molecular dynamics and spectroscopy by stimulated emission pumping,
(World Scientific, Singapore, 1994)

M. Silva, R. Jongma, R. W. Field and A. M. Wodtke, “The dynamics of “stretched molecules”: Exper-
imental studies of highly vibraioally excited molecules with stimulated emission pumping” Ann.
Rev. Phys. Chem. 52, 811-52 (2001)



468 Coherent manipulation

[105] Coherent anti-Stokes Raman scattering (or spectroscopy) (CARS)
P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in

the electric field strength” Phys. Rev. 137, A801 - A818 (1965)
M. A. Yuratich and D. C. Hanna, “Coherent anti-Stokes Raman spectroscopy (CARS) selection rules,

depolarization ratios and rotational structure” Mol. Phys. 33, 671-682 (1977)
W. M. Tolles, J. W. Nibler, J. R. McDonald and A. B. Harvey, “A review of the theory and application

of coherent anti-Stokes Raman spectroscopy (CARS)” App. Spect. 31, 253-271 (1977)
M. D. Duncan, J. Reintjes and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope”

Opt. Lett. 7, 350 (1982)
M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrn, H. Pilloff, A. Rebane, A. V. Sokolov and M.

S. Zubairy, “FAST CARS: Engineering a laser spectroscopic technique for rapid identification of
bacterial spores” Proc Natl Acad Sci U S A. 2002 August 20; 99(17): 1099411001. 99, 17 (2002)

S. Postma, A. C. v. Rhijn, J. P. Korterik, P. Gross, J. L. Herek and H. L. Offerhaus, “Application of
spectral phase shaping to high resolution CARS spectroscopy” Opt. Express 16, 7985-7996 (2008)

[106] Counterintuitive pulse sequence see also [140]
B. W. Shore, “Examples of counter-intuitive physics (atomic and molecular excitation)” Contemp.

Phys. 36, 15-28 (1995)
A. A. Rangelov, J. Piilo and N. V. Vitanov, “Counterintuitive transitions between crossing energy

levels” Phys. Rev. 72, 053404 (2005)
[107] Stimulated Raman adiabatic passage (STIRAP) see also [3]

J. R. Kuklinski, U. Gaubatz, F. T. Hioe and K. Bergmann, “Adiabatic population transfer in a three-level
system driven by delayed laser pulses” Phys. Rev. A 40, 6741-44 (1989)

G. Z. He, A. Kuhn, S. Schiemann and K. Bergmann, “Population transfer by stimulated Raman scat-
tering with delayed pulses and by the SEP method: A comparative study” J. Opt. Soc. Am. B 7,
1960-9 (1990)

U. Gaubatz, P. Rudecki, S. Schiemann and K. Bergmann, “Population transfer between molecular
vibrational levels. A new concept and experimental results” J. Chem. Phys. 92, 5363-76 (1990)

B. W. Shore, K. Bergmann, J. Oreg and S. Rosenwaks, “Multilevel adiabatic population transfer” Phys.
Rev A 44, 7442-9 (1991)

G. Coulston and K. Bergmann, “Population transfer by stimulated Raman scattering with delayed
pulses: Analytical results for multilevel systems” J. Chem. Phys. 96, 3467-75 (1992)

A. Kuhn, S. Schiemann, G. Z. He, G. Coulston, W. S. Warren and K. Bergmann, “Population transfer
by stimulated Raman scattering with delayed pulses using spectrally broad light” J. Chem. Phys.
96, 4215-23 (1992)

M. P. Fewell, B. W. Shore and K. Bergmann, “Coherent population transfer among three states: Full
algebraic solution and the relevance of diabatic processes in transfer by delayed laser pulses.” Aus-
tralian J. Phys. 50, 281-304 (1997)

K. Bergmann, H. Theuer and B. W. Shore, “Coherent population transfer among quantum states of
atoms and molecules” Rev. Mod. Phys. 70, 1003-1023 (1998)

[108] Dark states and population trapping
H. R. Gray, R. M. Whitley and C. R. Stroud, Jr., “Coherent trapping of atomic populations” Opt. Lett.

3, 218, (1978)
P. M. Radmore and P. L. Knight, “Population trapping and dispersion in a three-level system” J. Phys.

B 15, 561-73 (1982)
S. Swain, “Conditions for population trapping in a three-level system” J. Phys. B 15, 3405-3411 (1982)



References 469

B. J. Dalton and P. L. Knight, “The effects of laser field fluctuations on coherent population trapping”
J. Phys. B 15, 3997-4015 (1982)

F. T. Hioe and C. E. Carroll, “Coherent population trapping in N-level quantum systems” Phys. Rev.
A 37, 3000-5 (1988)

M. R. Doery, M. T. Widmer, M. J. Bellanca, W. F. Buell, T. H. Bergeman, H. Metcalf and E. J. D.
Vredenbregt, “Population accumulation in dark states and subrecoil laser cooling” Phys. Rev. A 52,
2295-2301 (1995)

E. Arimondo, “Coherent population trapping in laser spectroscopy” Prog. Optics 35, 259-356 (1996)
V. Milner and Y. Prior, “Multilevel dark states: Coherent population trapping with elliptically polarized

incoherent light” Phys. Rev. Lett. 80, 940-943 (1998)
R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark states” App. Phys. B 68, 1-25

(1999)
S. Kulin, Y. Castin, M. Ol’shanii, E. Peik, B. Saubamea, M. Leduc and C. Cohen-Tannoudji, “Exotic

quantum dark states” Euro. Phys. J. D 7, 279-84 (1999)
M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency”

Phys. Rev. Lett. 84, 5094-5097 (2000)
Z. Kis, W. Vogel, L. Davidovich and N. Zagury, “Dark SU(2) states of the motion of a trapped ion”

Phys. Rev. A 63, 1-7 (2001)
[109] STIRAP demonstrated

J. R. Kuklinski, U. Gaubatz, F. T. Hioe and K. Bergmann, “Adiabatic population transfer in a three-level
system driven by delayed laser pulses” Phys. Rev. A 40, 6741-44 (1989)

U. Gaubatz, P. Rudecki, S. Schiemann and K. Bergmann, “Population transfer between molecular
vibrational levels. A new concept and experimental results” J. Chem. Phys. 92, 5363-76 (1990)

G. Z. He, A. Kuhn, S. Schiemann and K. Bergmann, “Population transfer by stimulated Raman scat-
tering with delayed pulses and by the SEP method: A comparative study” J. Opt. Soc. Am. B 7,
1960-9 (1990)

H.-G. Rubahn and K. Bergmann, “Effect of laser-induced vibrational bond stretching in atom-diatom
collisions” Ann. Rev. Phys. Chem. 41, 735-73 (1990)

G. Coulston and K. Bergmann, “Population transfer by stimulated Raman scattering with delayed
pulses: Analytical results for multilevel systems” J. Chem. Phys. 96, 3467-75 (1992)

A. Kuhn, S. Schiemann, G. Z. He, G. Coulston, W. S. Warren and K. Bergmann, “Population transfer
by stimulated Raman scattering with delayed pulses using spectrally broad light” J. Chem. Phys.
96, 4215-23 (1992)

S. Schiemann, A. Kuhn, S. Steuerwald and K. Bergmann, “Efficient coherent population transfer in
the NO molecule using pulsed lasers” Phys. Rev. Lett. 71, 3637 (1993)

[110] STIRAP with sublevels
Z. Kis and S. Stenholm, “Nonadiabatic dynamics in the dark subspace of a multilevel stimulated

Raman adiabatic passage process ” Phys. Rev. A 64, 063406 (2001)
Z. Kis, A. Karpati, B. W. Shore and N. V. Vitanov, “Stimulated Raman adiabatic passage among

degenerate-level manifolds” Phys. Rev. A 70, 053405 (2004)
I. Thanopulos, P. Král and M. Shapiro, “Complete control of population transfer between clusters of

degenerate states” Phys. Rev. Lett. 92, 113003 (2004)
Z. Kis, N. V. Vitanov, A. Karpati, C. Barthel and K. Bergmann, “Creation of arbitrary coherent super-

position states by stimulated Raman adiabatic passage” Phys. Rev. A 72, 033403 (2005)
A. D. Boozer, “Stimulated Raman adiabatic passage in a multilevel atom” Phys. Rev. A 77, 023411

(2008)



470 Coherent manipulation

[111] STIRAP in Neon, for transfer
J. Martin, B. W. Shore and K. Bergmann, “Coherent population transfer in multilevel systems with

magnetic sublevels. II. Algebraic analysis” Phys. Rev. A 52, 583-593 (1995)
J. Martin, B. W. Shore and K. Bergmann, “Coherent population transfer in multilevel systems with

magnetic sublevels. III. Experimental results” Phys. Rev. A 54, 1556-1569 (1996)
B. W. Shore, J. Martin, M. P. Fewell and K. Bergmann, “Coherent population transfer in multilevel

systems with magnetic sublevels. I. Numerical studies” Phys. Rev. A 52, 566-582 (1995)
[112] STIRAP along a chain

B. W. Shore, K. Bergmann, J. Oreg and S. Rosenwaks, “Multilevel adiabatic population transfer” Phys.
Rev. A 44, 7442-7447 (1991)

P. Marte, P. Zoller and J. L. Hall, “Coherent atomic mirrors and beam splitters by adiabatic passage in
multilevel systems” Phys. Rev. A 44, R4118-21 (1991)

N. V. Vitanov, B. W. Shore and K. Bergmann, “Adiabatic population transfer in multistate systems via
dressed intermediate states” Euro. Phys. J. D 4, 15-29 (1998)

N. V. Vitanov and S. Stenholm, “Adiabatic population transfer via multiple intermediate states” Phys.
Rev. A 60, 3820-32 (1999)

[113] STIRAP mechanism in multilevel linkages
Z. Kis, A. Karpati, B. W. Shore and N. V. Vitanov, “Stimulated Raman adiabatic passage among

degenerate-level manifolds” Phys. Rev. A 70, 053405 (2004)
[114] Tripod system for superpositions

R. Unanyan, M. Fleischhauer, B. W. Shore and K. Bergmann, “Robust creation and phase-sensitive
probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate
dark states” Opt. Comm 155, 144-154 (1998)

[115] Tripod system
R. G. Unanyan, K. Bergmann and B. W. Shore, “Laser-driven population transfer in four-level atoms:

Consequences of non-Abelian geometrical adiabatic phase factors” Phys. Rev. A 59, 2910-2919
(1999)

R. G. Unanyan, N. V. Vitanov, B. W. Shore and K. Bergmann, “Coherent properties of a tripod system
coupled via a continuum” Phys. Rev. A 61, U402-U410. (2000)

Z. Kis and S. Stenholm, “Nonadiabatic dynamics in the dark subspace of a multilevel stimulated
Raman adiabatic passage process” Phys. Rev. A 64, 063406 (2001)

Z. Kis and F. Renzoni, “Qubit rotation by stimulated Raman adiabatic passage” Phys. Rev. A 65,
032318 (2002)

E. Paspalakis and Z. Kis, “Pulse propagation in a coherently prepared multilevel medium” Phys. Rev.
A 66, 025802 (2002)

A. Karpati, Z. Kis and P. Adam, “Engineering mixed states in a degenerate four-state system” Phys.
Rev. Lett. 93, 193003 (2004)

R. G. Unanyan and M. Fleischhauer, “Geometric phase gate without dynamical phases” Phys. Rev. A
69, 050302 (2004)

[116] General RWA
J. Wong, J. C. Garrison and T. H. Einwohner, “Multiple-time scale perturbation theory applied to laser

excitation of atoms and molecules” Phys. Rev. A 13, 674-87 (1976)
T. H. Einwohner, J. Wong and J. C. Garrison, “Analytical solutions for laser excitation of multilevel

systems in the rotating-wave approximation” Phys. Rev. A 14, 1452-1456 (1976)



References 471

[117] Analytic solutions for N-state chain see also [120, 121]
T. H. Einwohner, J. Wong and J. C. Garrison, “Analytical solutions for laser excitation of multilevel

systems in the rotating-wave approximation” Phys. Rev. A 14, 1452-1456 (1976)
A. A. Makarov, “Coherent excitation of equidistant multilevel systems in a resonant monochromatic

field” Sov. Phys. JETP 45, 918-924 (1977)
J. H. Eberly, B. W. Shore, Z. Bialynicka-Birula and I. Bialynicki-Birula, “Coherent dynamics of N-

level atoms and molecules I. Numerical experiments” Phys. Rev. A 16, 2038-47 (1977)
Z. Bialynicka-Birula, I. Bialynicki-Birula, J. H. Eberly and B. W. Shore, “Coherent dynamics of N-

Level atoms and molecules. II. Analytic solutions” Phys. Rev. A 16, 2048-2054 (1977)
B. W. Shore and M. A. Johnson, “Coherence vs. incoherence in stepwise laser excitation” J. Chem.

Phys. 68, 5631 (1978)
R. J. Cook and B. W. Shore, “Coherent dynamics of N-level atoms and molecules III. An analytically

soluble periodic case” Phys. Rev. A 20, 539-44 (1979)
T. H. Einwohner, J. Wong and J. C. Garrison, “Effects of alternative transition sequences on coherent

photoexcitation” Phys. Rev. A 20, 940-947 (1979)
F. T. Hioe and J. H. Eberly, “Multiple-laser excitation of multilevel atoms” Phys. Rev. A 29, 1164-7

(1984)
M. Kozierowski, “On an exactly solvable N-level system coupled to N-1 field modes” J. Phys. B 19,

L535-L539 (1986)
V. S. Letokhov and A. A. Makarov, “Excitation of multilevel molecular systems by laser ir field” Appl.

Phys. B 16, 47-57 (2005)
[118] Special functions and classical polynomials

I. N. Sneddon, Special Functions of Mathematical Physics and Chemistry, (Oliver and Boyd, London,
1956)

M. Abramowitz and I. A. Stegun, ed. Handbook of mathematical functions, (U. S. Government Printing
Office, Washington, D.C., 1964)

W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and Theorems for the Special Functions of
Mathematical Physics, (Springer, N.Y., 1966)

Y. L. Luke, The Special Functions and Their Approximations, (Academic, N.Y., 1969)
N. N. Lebedev, Special Functions and Their Application, (Dover, 1972)
A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, ed. Higher Transcendental Functions,

(Dover, Mineola, N.Y., 2006)
[119] The Harmonic oscillator

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, (McGraw-Hill, N.Y., 1965)
Chap. 8

P. Carruthers and M. M. Nieto, “Coherent states and the forced harmonic oscillator” Am. J. Phys. 7,
537 (1965)

M. Moshinsky and O. Novaro, “Harmonic oscillator in atomic and molecular physics” J. Chem. Phys.
48, 4162-4180 (1968)

H. R. Lewis, Jr. and W. B. Riesenfeld, “An exact quantum theory of the time-dependent harmonic
oscillator and of a charged particle in a time-dependent electromagnetic field” J. Math. Phys. 10,
1458-1473 (1969)

M. Moshinsky, The Harmonic Oscillator in Modern Physics; from Atoms to Quarks, (Gordon and
Breach, New York, 1969)

S. Carusotto, “Relaxation of a driven harmonic oscillator” Phys. Rev. A 11, 1407-1413 (1975)



472 Coherent manipulation

C. E. Wulfman and B. G. Wybourne, “The Lie group of Newton’s and Lagrange’s equations for the
harmonic oscillator” J. Phys. A 9, 507-18 (1976)

E. G. Harris, “Quantum theory of the damped harmonic oscillator” Phys. Rev. A 42, 3685-94 (1990)
M. Moshinsky and Y. F. Smirnov, Harmonic Oscillator in Modern Physics, (Harwood Academic,

Amsterdam, 1996)
S. C. Bloch, Introduction to Classical and Quantum Harmonic Oscillators, (Wiley-Interscience, New

York, 1997)
C. K. Law, J. H. Eberly and B. Kneer, “Preparation of an arbitrary density matrix of a harmonic

oscillator” J. Mod. Opt. 44, 2149-58 (1997)
[120] Two-state dynamics in an N -state chain

B. W. Shore and R. J. Cook, “Coherent dynamics of N-level atoms and molecules IV. Two- and three-
level behavior” Phys. Rev. A 20, 1958 (1979)

B. W. Shore, “Two-level behavior of coherent excitation of multilevel systems” Phys. Rev. A 34, 1413
(1981)

[121] The pseudospin model
R. J. Cook and B. W. Shore, “Coherent dynamics of N-level atoms and molecules III. An analytically

soluble periodic case” Phys. Rev. A 20, 539-44 (1979)
J. Oreg and S. Goshen, “Spherical modes in N-Level systems” Phys. Rev. A 29, 3205-3207 (1984)
F. T. Hioe, “N-level quantum systems with SU(2) dynamic symmetry” J. Opt. Soc. B 4, 1327 (1987)
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