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Spintronics refers commonly to phenomena in which the spin of electrons in a solid state
environment plays the determining role. In a more narrow sense spintronics is an emerging
research field of electronics: spintronics devices are based on a spin control of electronics,
or on an electrical and optical control of spin or magnetism. While metal spintronics has
already found its niche in the computer industry—giant magnetoresistance systems are used
as hard disk read heads—semiconductor spintronics is yet to demonstrate its full potential.
This review presents selected themes of semiconductor spintronics, introducing important
concepts in spin transport, spin injection, Silsbee-Johnson spin-charge coupling, and spin-
dependent tunneling, as well as spin relaxation and spin dynamics. The most fundamental
spin-dependent interaction in nonmagnetic semiconductors is spin-orbit coupling. Depend-
ing on the crystal symmetries of the material, as well as on the structural properties of semi-
conductor based heterostructures, the spin-orbit coupling takes on different functional forms,
giving a nice playground of effective spin-orbit Hamiltonians. The effective Hamiltonians
for the most relevant classes of materials and heterostructures are derived here from realistic
electronic band structure descriptions. Most semiconductor device systems are still theoretical
concepts, waiting for experimental demonstrations. A review of selected proposed, and a few
demonstrated devices is presented, with detailed description of two important classes: mag-
netic resonant tunnel structures and bipolar magnetic diodes and transistors. In view of the
importance of ferromagnetic semiconductor materials, a brief discussion of diluted magnetic
semiconductors is included. In most cases the presentation is of tutorial style, introducing
the essential theoretical formalism at an accessible level, with case-study-like illustrations of
actual experimental results, as well as with brief reviews of relevant recent achievements in
the field.
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I. Introduction

A. Semiconductor spintronics

In a narrow sense spintronics refers to spin electronics, the phenomena of spin-polarized transport
in metals and semiconductors. The goal of this applied spintronics is to find effective ways of
controlling electronic properties, such as the current or accumulated charge, by spin or magnetic
field, as well as of controlling spin or magnetic properties by electric currents or gate voltages.
The ultimate goal is to make practical device schemes that would enhance functionalities of
the current charge-based electronics. An example is a spin field-effect transistor, which would
change its logic state from ON to OFF by flipping the orientation of a magnetic field.

In a broad sense spintronics is a study of spin phenomena in solids, in particular metals and
semiconductors and semiconductor heterostructures. Such studies characterize electrical, opti-
cal, and magnetic properties of solids due to the presence of equilibrium and nonequilibrium
spin populations, as well as spin dynamics. These fundamental aspects of spintronics give us
important insights about the nature of spin interactions—spin-orbit, hyperfine, or spin exchange
couplings—in solids. We also learn about the microscopic processes leading to spin relaxation
and spin dephasing, microscopic mechanisms of magnetic long-range order in semiconductor
systems, topological aspects of mesoscopic spin-polarized current flow in low-dimensional semi-
conductor systems, or about the important role of the electronic band structure in spin-polarized
tunneling, to name a few.

Processes relevant for spintronics are summarized in Fig. I.1. All three processes are equally

Fig. I.1. Successful spintronics applications need to satisfy three basic requirements: efficient spin injection
or spin generation (top), whereby spin is injected from (here) a ferromagnetic into a nonmagnetic conductor,
reasonably long spin (magnetization, M ) diffusion, at least tens of nanometers, and possibility of efficient
spin manipulation (middle), and, finally, spin detection, here illustrated by the Silsbee-Johnson spin-charge
coupling. Spin detection, if performed by spin-to-resistance conversion, is at the heart of spintronics de-
vices.



570 Semiconductor Spintronics

important, though the hierarchy starts naturally with spin injection, as a way to introduce nonequi-
librium spin into a conductor. If you take a piece of iron and aluminum, connect the two in series
and make electrical current flow through them, you have likely achieved electrical spin injection,
see Fig. I.1 top. If electrons flow from the iron, where most electrons are spin polarized (there
are more spin up, say, than spin down electrons), to the aluminum, the spin is accumulated in
aluminum, the result of spin injection. If the current is reversed and electrons flow from the alu-
minum into the iron, the spin is taken from the aluminum and we speak of spin extraction.3 We
understand these processes reasonably well, at least for the most studied cases of highly degen-
erate charge-neutral electronic systems. In non-degenerate semiconductors, for example, spin
injection may be absent due to space charges and electron population statistics. What we call
the standard theory of spin injection, as well as of spin transport and spin-dependent tunneling is
presented in detail in this text.

Once the spin is injected, we need to manipulate it or control it. This is usually achieved by
applying an external magnetic field to rotate the spin, although the presence of spin-orbit cou-
pling allows one to control spin electronically. Indeed, the spin-orbit coupling in semiconductor
heterostructures can be tailored by voltage gates on the top of the heterostructures, allowing to
control the spin by voltage. We still need to find practical ways to do that; understanding the
spin-orbit interactions is crucial. This article present detailed derivations of the effective Hamil-
tonians describing the spin-orbit interactions in the most studied classes of semiconductors and
their heterostructures—the so-called Dresselhaus and Bychkov-Rashba Hamiltonians.

The injected spin has to survive sufficiently long, and travel sufficiently far, to transfer in-
formation between the injected point and the point of detection. The transfer is inhibited by
irreversible processes of spin relaxation and spin dephasing. These processes arise due to the
combined actions of the spin-orbit interaction and momentum relaxation. The former provides
spin flips or spin rotations, the latter gives irreversible time evolution. The interaction of spin
with a solid-state environment is a complex process whose description relies on effective per-
turbative approximations. Such a formalism is introduced here, along with the most relevant
spin relaxation mechanisms in semiconductors and in important classes of tailored semiconduc-
tor superstructures–lateral quantum dots which are potentially important for spin-based quantum
information processing.

Finally, the spin has to be detected. Even if you pass current from the aluminum to the iron,
you have to prove that spin-polarized electrons indeed accumulate in the aluminum. This is a
highly nontrivial task. In Fig. I.1 the detection scheme is based on the Silsbee-Johnson spin-
charge coupling. This coupling is the inverse of the spin injection. In a spin injection electrical
current drives spin-polarized electrons from a ferromagnetic metal to a nonmagnetic conductor.
In a spin-charge coupling an electrical contact between a ferromagnet and a nonmagnetic con-
ductor containing a nonequilibrium spin population results in electrical current (or electromotive
force in an open circuit). The presence of the electron spin can then be detected electrically.
Other frequently encountered ways of detecting spin include a spin-valve effect, in which the in-
jected spin-polarized electrons enter a detecting ferromagnetic electrode with an efficiency given
by the relative orientation of the injecting and detecting electrodes, or optical detection in which
spin-polarized electrons recombine with unpolarized holes and emit circularly polarized light

3Similar statements should be always taken with caution; in real materials much depends on the specific electronic
band structure as well as on the properties of the interface. Extraction may be masked by spin accumulation due to
reflection from the ferromagnet, for example.
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which can be analyzed.
This tutorial style review presents the mainstream knowledge of semiconductor spintronics.

However, we had to omit many important developments as the field is growing at enormous rates
for one review to cover it all. Below we give two experimental discoveries, both defining the
current state-of-the-art, whose underlying physics is not discussed in the article, but which are
inspirational in demonstrating how much new fundamental spin physics has been learned from
investigating spin-polarized transport in semiconductors.

Fascinating fundamental discoveries have been made relating to what is now called the spin
Hall effect (or, rather, effects). This effect was proposed decades ago by D’yakonov and Perel’
(1971a), who suggested that passing en electrical current through a conductor will result in a spin
accumulation at the edges of the conductor transverse to the current flow, due to spin-dependent
scattering off impurities (Mott scattering). Because of the spin-orbit coupling induced either
by the impurities or by the host lattice, electrons with a drift velocity along the sample scatter
preferably left if, say, their spin is up, and right, if their spin is down. The difference in the
scattering probabilities for the two spin orientations is typically small, say, 10 ppm, but even this
small difference leads to spin currents transverse to the electron drift motion. In a finite sample,
the spin currents at the edges need to be balanced by opposing diffusive currents, which can be
set up if there is spin accumulation at the edges, forming a gradient of the spin density.

The experimental discovery of this effect was reported by Kato et al. (2004) and Wunderlich
et al. (2005). We present the experiment of Kato et al. (2004) in Fig. I.2. The sample is a GaAs
slab lightly doped with silicon donors. Electrical current flows along the sample, subject to the
electric field E = 10 mV µm−1, directed from bottom up. The spatially resolved magnetization
of the sample is detected by the magneto-optical scanning Kerr spectroscopy, with a micron
resolution. The measurements were performed at 30 K. As is seen from Fig. I.2, electron motion
in one direction leads to transverse spin accumulation, as predicted by D’yakonov and Perel’.
While the observed spin polarization is rather small, below 0.01%, this beautiful experiment
presents a fundamental discovery about the nature of the coupling of spin and charge motion in
electronic systems. A popular account of the spin Hall effect can be found in (Sih et al., 2005).

The above experiment demonstrates what is now called the extrinsic spin Hall effect, which
is due to the spin-orbit scattering by impurities as well as due to the nonequilibrium electronic
population set up to give the electric current. Study of another class of spin Hall effects, called
intrinsic4, was initiated by Murakami et al. (2003). The intrinsic spin Hall effect relies on the
spin-orbit description of the underlying band structure and results from a spin-dependent defor-
mation of the electron wave functions due to the electric field which gives the electric current.
While the extrinsic spin Hall effect disappears in the absence of impurities (the clean system
limit), the intrinsic spin Hall effect is still present. Despite being essentially a single-electron
phenomenon, the spin Hall effect has attracted wide theoretical attention. We refer the reader to
recent review articles for more details (Schliemann, 2006; Engel et al., 2007).

The other example we present is again about generating spin flows, albeit by different mech-
anisms, depicted in Fig. I.3. In certain classes of semiconductors the crystal symmetry allows
coupling of axial and polar vectors (such systems, the prominent example is GaAs, are also called
gyrotropic5). Such two vectors are spin and current, or spin and momentum, for axial and polar,

4The terms extrinsic and intrinsic SHE were introduced by Sinova et al. (2004).
5A real life example is a bicycle ride or the action of a corkscrew, in which torque results in a linear momentum.
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Fig. I.2. (A) Two-dimensional image, obtained by magneto-optic Kerr spectroscopy, of the spin polarization
at the edges of a GaAs sample. Red is for positive spin (out or the page), blue for negative (Sih et al., 2005).
(B) Spatially resolved reflectance, showing the edges of the sample. The yellow metal contacts are also
visible. From Y. K. Kato et al., Science 306, 1910 (2004). Reprinted with permission from AAAS.

respectively. If the two can be coupled in a linear way, several fascinating phenomena result,
known as the spingalvanic effects (Ganichev et al., 2001; Ganichev and Prettl, 2003; Ganichev
et al., 2002). When a THz photon is absorbed by a gyrotropic system, the absorption probability
depends on both the spin and the momentum (Ganichev et al., 2006). In Fig. I.3 a, the spin
up electron has a higher probability of being excited by the photon to end up with a positive
momentum, than with a negative one; the necessary momentum conservation is facilitated by
phonons. As a result the excited spin up electrons prefer to move to the right. On the contrary,
excited spin down electrons prefer moving to the left, as required by time reversal symmetry (re-
versing both spin and momentum leads to the same result). The net result is a pure spin current,
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Fig. I.3. Where spin current comes from in zero-bias spin separation. (a) Spin-dependent absorption of THz
radiation. Electrons with spin up are more likely to be excited (here) into the positive momentum states,
spin down electrons are more likely to go into negative momentum states. (b) Spin-dependent electron
thermalization. Excited electrons emit phonons, to equilibrate with the colder lattice. Spin up electrons of
a positive momentum lose energy (and momentum) faster than those of a negative momentum; opposite is
true for spin down electrons. Both (a) and (b) result in pure spin currents. Reprinted by permission from
Macmillan Publishers Ltd: Nature. S. D. Ganichev et al., Nature Physics 2, 609 (2006), copyright 2007.

with no net charge current flowing. This effect can be observed indirectly6 by applying a small
magnetic field to give a tiny imbalance between spin up and spin down electrons, transforming
the spin into a charge current. The experimental observation of this charge current is shown in
Fig. I.4, demonstrating what is called zero-bias spin separation (Ganichev et al., 2006) stressing
that no applied voltage is necessary to drive pure spin currents, separating spin up and spin down
electrons. Similar effects arise from the spin-dependent energy relaxation phenomena, illustrated
in Fig. I.3 b. Simply heating up the electron gas (keeping the lattice temperature lower so that
energy relaxation occurs) in a uniform gyrotropic system with no magnetic fields applied and
with no electric currents flowing results in a pure spin current.

6Unlike electric current which is directly observable, we do not have means to detect spin current, only spin polariza-
tion which is manifested by magnetization, for example.
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Fig. I.4. Measured charge current due to THz radiation excitation of a GaAs sample, in the presence of a
spin-polarizing magnetic field along y; the scheme and the definition of directions are in (b). The charge
current versus temperature is shown in (a) and (b), while the resistance versus temperatures is plotted in (c);
the inset there shows the carrier density, ns, and mobility, µ. The magnetic field, By , in (a) has the opposite
sign from that in (b), resulting in current reversal. Reprinted by permission from Macmillan Publishers Ltd:
Nature. S. D. Ganichev et al., Nature Physics 2, 609 (2006), copyright 2007.

There have been several other novel fundamental physical phenomena discovered in the
course of investigations of spin transport, not covered in detail in this text. Apart from the above
mentioned spin Hall effects and spingalvanic phenomena, the list would include spin transfer
torque (Brataas et al., 2006), spin coherent transport and dynamics in low-dimensional meso-
scopic semiconductor systems (Zaitsev et al., 2005; Bardarson et al., 2007; Nikolic et al., 2005,
2006; Smirnov et al., 2007), spin-dependent quantum interference effects in Aharonov-Bohm
rings (Frustaglia et al., 2001; Frustaglia and Richter, 2004; Hentschel et al., 2004; Frustaglia
et al., 2004; Nikolic et al., 2005; Souma and Nikolic, 2005, 2004; Mal’shukov et al., 2002), ob-
served experimentally in (König et al., 2006), Zitterbewegung of conduction electrons (Schlie-
mann et al., 2005, 2006), spin ratchets (Scheid et al., 2006; Pfund et al., 2006), or the spin
Coulomb drag effect (D’Amico and Vignale, 2000, 2003; Weber et al., 2005; Tse and Das Sarma,
2007; Badalyan et al., 2007).

The present text, which is part tutorial and part review, relies heavily on the comprehensive
review (Žutić et al., 2004), which should serve as the complementary reference; many important
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works omitted here are described in that reference. For nice popular accounts of spintronics we
refer the reader to (Das Sarma, 2001; Awschalom and Kikkawa, 1999; Awschalom et al., 2002);
spintronics perspectives can be found in various theme articles (Fabian and Das Sarma, 1999b;
Das Sarma et al., 2000c,b,a, 2003a, 2001; Žutić et al., 2007; Awschalom and Flatté, 2007; Wolf
et al., 2001; Rashba, 2006; Ohno, 2002; Johnson, 2005; Žutić et al., 2006a; Flatté, 2007).

As part of the Introduction, we recall below the elementary physics of the electron spin,
as well as introduce two not widely known gedanken (thought) experiments, by the founders of
quantum mechanics, about the impossibility of measuring directly the spin of a free electron, and
on the impossibility of performing a Stern-Gerlach experiment with electron beams. Although
such arguments may not be appreciated by many as being perhaps too vague to be valid in
general, they are intellectually appealing for pointing out fundamental underlying physics and
should be a standard knowledge in spin physics.

B. The spin magnetic moment of a free electron

The spin of a free electron gives rise to a magnetic moment, opposite to the spin direction, of
magnitude:

µ =
g0
2
µB , (I.1)

where g0 is the so-called electron g-factor and µB = e~/2m is the Bohr magneton; m is the
electron mass. The g-factor is

g0 = 2(1 +
α

2π
+ ... ) ≈ 2.0023. (I.2)

The value of 2 comes from the Dirac equation, while the rest is the so-called anomalous contri-
bution, proportional to the fine structure constant, α = e2/~c4πε0, arising from quantum elec-
trodynamic corrections. In solids, conduction electrons can have the g-factor very different from
the free electron case. In simple metals the deviations are not very dramatic (usually less than
a percent), but in semiconductors the values can be an order of magnitude larger (g ≈ −50 in
InSb7) or smaller (g ≈ −0.44 in GaAs); g-factor can even approach zero in specially engineered
semiconductor heterostructures. The g-factors of conduction electrons are strongly affected by
the spin-orbit interaction due to the lattice ions.

Since we often learn about the electron spin via the spin magnetic moment, it is instructive
to bring forward two thought experiments, due to Bohr, Pauli, and Mott, as presented in (Mott,
1929; Mott and Massey, 1965), on the impossibility of detecting spin magnetic moments of free
electrons (as opposed to electrons confined, say, to atomic shells). While the arguments are
inspirational, they should be taken with a grain of salt. Indeed, the magnetic moment of a free
electron has been measured, to great precision [see, for example, (Van Dyck et al., 1986)], while
the generality of the thought experiments has been questioned (Batelaan et al., 1997; Garraway
and Stenholm, 1999). Nevertheless, it appears impractical to perform a Stern-Gerlach experiment
with electron beams. It was even remarked that, “Such attempts have the same challenges as
“thought” experiments for constructing perpetual-motion machines.” (Kessler, 1985).

7The negative value of the g-factor means that the magnetic moment of the electron is parallel (as opposed to antipar-
allel for free electrons) to the spin direction.
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Fig. I.5. An electron moving with velocity v at a distance r from the magnetometer.

It remains to be seen if Stern-Gerlach experiments are also prohibited with conduction elec-
trons in solids. It has been proposed that a transient Stern-Gerlach-like spin separation could
be observed in a drift-diffusive electronic motion in a realistic metal or semiconductor (Fabian
and Das Sarma, 2002), or that spin separation can be engineered in a ballistic, two-dimensional
electron gas (Wrobel et al., 2001, 2004).

We now present the two arguments, the first on the impossibility of measuring the spin mag-
netic moment of a free electron, the second on the impossibility to perform a Stern-Gerlach
experiment with electrons. The common theme in both is that, if the motion of electrons can be
described by trajectories, the effects of the electron spin are masked by the cyclotron motion due
to the Lorentz force.

B.1 Can the spin magnetic moment of a free electron be detected?

Let an electron move with velocity v relative to a magnetometer placed at a distance r from the
electron, as in Fig. I.5. The magnetometer detects the magnetic field due to both the electron spin
magnetic moment and due to the electron’s orbital motion. The spin magnetic dipolar moment
gives rise, at the place of the magnetometer, to the field of magnitude,

Bspin ≈
µ0

4π
µB

r3
, (I.3)

while the orbital contribution gives, 8

Borb ≈
µ0

4π
ev

r2
. (I.5)

We have denoted by µ0 the permeability of free space. Since µB = e~/2m, the orbital contribu-
tion can be rewritten as

Borb ≈
µ0

4π
µB

2p/~
r2

, (I.6)

8This estimate can be obtained from the Biot-Savart law for the magnetometer at r = 0,

B(0) =
µ0

4π

Z
d3r′J(r′)×

„
−

r′

r′3

«
, (I.4)

by substituting J(r′) = −evδ(r′ − r) for the current density at point r′ due to the electron at r, and assuming that
the velocity is perpendicular to the radius vector connecting the magnetometer and the electron. Here δ(r) is the Dirac
delta-function.
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Fig. I.6. Scheme of a Stern-Gerlach apparatus for spatially separating spin up and spin down electrons. The
magnetic field and its gradient are in the z-direction. The electron beam has necessarily a final width ∆x
transverse to the beam’s velocity v.

where p = mv is the electron’s momentum.
If we can measure precisely both the momentum p and the distance r, we can separate the

two contributions to the magnetic field and determine the value of the Bohr magneton, which
is the measure of the spin magnetic moment. If the uncertainty in the measurement of r is ∆r,
the Heisenberg principle restricts the uncertainty of the momentum to at least ∆p ≈ ~/∆r. In
order to obtain µB from the resolved Bspin, we need to know r with the precision ∆r � r. This
restriction leads to the main uncertainty in Borb as,

∆Borb ≈
µ0

4π
µB

2∆p/~
r2

&
µ0

4π
µB

2
r2∆r

. (I.7)

Since r needs to be known precisely,

∆Borb & Bspin, (I.8)

that is, the uncertainty in measuring the orbital contribution to the magnetic field of a moving
electron is larger than the spin contribution itself. We cannot resolve Bspin and detect the spin
magnetic moment µB , for a free electron. We invite the reader to present arguments how the
above reasoning changes if electrons are confined.

B.2 Can Stern-Gerlach experiments be used to polarize electron beams?

The argument now is only a bit more subtle than the previous reasoning about the impossibility
to detect the spin magnetic moment of a free electron. In essence the uncertainty relation leads
to an unexpected strong contribution of the Lorentz force which masks the spin splitting of the
electron beam.

Take a beam of spin unpolarized electrons arriving at an opening in a magnet in which there is
a gradient of the magnetic field. Let the direction of motion be y, the direction of the quantizing
magnetic field z, while x be the transverse direction to both. The scheme of the apparatus is in
Fig. I.6.
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We have a magnetic fieldBz in the z-direction, with the spatial derivative ∂Bz/∂z. Since the
free electron has its magnetic moment opposite to its spin, the spin up, s = 1/2, electrons would
prefer to go in the direction of increasing Bz , while the spin down, s = −1/2, electrons prefer
to go in the opposite direction, leading to spin separation. The spin-dependent force Fz acting
on the electrons in the z-direction due to the magnetic field gradient is,

Fspin,z = −µBg0s

(
∂Bz

∂z

)
. (I.9)

If this were the whole story, the free electrons arriving at the magnet would split into two beams,
depending on their spin, as is observed with beams of neutral atoms with unpaired electron spins.

It is the electron charge that prohibits observation of spin splitting of an electron beam. The
electrons moving with velocity v in magnetic field B feel the orbital Lorentz force,

Forb = −ev ×B. (I.10)

If the magnetic field were in the z-direction only, the orbital force would affect the motion trans-
verse to the spin-splitting direction, not masking the spin separation. However, the presence of
the magnetic field gradient necessitates the presence of another component of the magnetic field,
perpendicular to the z-direction. Indeed, any magnetic field is sourceless: ∇ · B = 0. If we
suppose that By = 0 (taking a symmetric magnet, for example), we then need that,

∂Bx

∂x
= −∂Bz

∂z
. (I.11)

At a small distance x away from the center of the electron beam, the x-component of the magnetic
field is then roughly

Bx(x) ≈ −∂Bz

∂z
x (I.12)

The electron beam has necessarily a finite transverse width, ∆x; otherwise the uncertainty in
the transverse velocity would be infinite. The electrons at the edges of the beam feel the Lorenz
force due to Bx(∆x), which pushes those electrons along the z-direction:

Forb,z = evyBx(∆x) ≈ −evy
δBz

∂z
∆x. (I.13)

The electrons at one side of the beam, say at x = |∆x|, will be pushed down, while those at
the other side, at x = −|∆x|, will be pushed up. For the Stern-Gerlach effect to be observed,
these orbital motions must be weaker than the spin-splitting motion; the following inequality
must hold:

Fspin,z � Forb,z. (I.14)

This condition leads us immediately to the requirement that,

mvy∆x� ~. (I.15)
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The uncertainty principle only says that the width of our beam and the uncertainty in the trans-
verse directions are connected by

m∆vx∆x ≈ ~, (I.16)

which leads to the following requirement for the Stern-Gerlach experiment:

∆vx � vy. (I.17)

In other words, the beam would not be a beam at all, since it would spread to the transverse direc-
tion faster than it is moving forward ; the confining slit for such a beam in the transverse direction
would be much smaller than is the de Broglie wavelength: ∆x � ~/py . This demonstrates the
impossibility of observing spin-splitting with conventional Stern-Gerlach apparatus.

C. Overview

Essential spintronic concepts are described in four main chapters. Chapter II deals with electri-
cal spin injection. This chapter is most elementary. Concepts such as spin injection efficiency,
spin-charge coupling, the Hanle effect, or spin-resolved Andreev reflection, are explained. The
treatment is based on the drift-diffusion model which is accessible to readers with undergraduate
knowledge of physics. The chapter contains also examples of spin injection into GaAs, the mate-
rial of choice for study electrical spin injection as well as other spin-related properties. However,
very recently spin injection has been achieved also in silicon, the traditional information-age
material. These experiments are also covered as a nice example, apart from their great im-
portance to the emerging spintronics technology, of the spin-valve and Hanle effects. Chap-
ter II also introduces a large class of phenomena occuring in ferromagnet/insulator/ferromagnet
structures, known under the name of tunneling magnetoresistance (TMR). We also decribe spin-
orbit induced tunneling anisotropies in ferromagnet/semiconductor systems, known as tunneling
anisotropic magnetoresistance (TAMR).

Chapter III works out details of spin-orbit coupling in semiconductors. We describe the ef-
fects of the coupling on the energy states in semiconductors with and without a center of inversion
symmetry, and derive essentially from scratch, explaining and using what are called the k · p and
envelope function theories the most important effective Hamiltonians describing spin dynamics
in bulk semiconductors (Dresselhaus Hamiltonian) as well as in semiconductor heterostructures
(Bychkov-Rashba Hamiltonian).

Chapter IV is devoted to spin relaxation and spin dynamics. We give a simple model for
spin dynamics in the presence of environment, and present most relevant spin relaxation mecha-
nisms in semiconductors. As case studies we have chosen to describe recent experiments on the
influence of the electron-electron interactions on the spin relaxation in semiconductor quantum
wells, as well as earlier spin resonant and more recent spin injection experiments measuring elec-
tron spin lifetime in silicon. This chapter also contain a discussion of the important experiments
as well as theoretical concepts of spin dynamics and spin coherence in lateral semiconductor
quantum dots, from the perspective of using the electron spin in these systems for quantum in-
formation processing.

Finally, Chapter V introduces basic concepts of proposed and demonstrated spintronic de-
vices, focusing on a large class of magnetic resonant tunneling structures (magnetic resonant
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diodes and digital magnetoresistance circuits) as well as on the class of devices known as bipolar
spintronic devices (again diodes and transistors). Since materials issues are critical in building
new spintronics systems, we have also included, in a tutorial way, a brief discussion of relevant
diluted magnetic semiconductors (DMS) outlining the most widely used mean-field theoretical
method of calculating the Curie temperatures in bulk and heterostructure systems based on DMS.
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II. Spin injection and spin-dependent tunneling

This section deals with electrical spin injection from a ferromagnetic electrode into a nonmag-
netic conductor, which can be a metal or a semiconductor. Since the essentials of spin injection
are by now well understood, we offer below what we believe to be a description suitable for a
senior undergraduate level. For this tutorial part to be self-contained, we introduce the neces-
sary background material related to drift, diffusion, chemical potentials, and charge transport.
Spin transport adds to this picture spin-resolved parameters, spin current and spin accumulation,
spin relaxation, as well as spin dynamics. Readers familiar with the basic concepts can directly
proceed to Sec. D. for the description of what we call the standard model of spin injection.

A. Particle drift and diffusion

Consider electrons undergoing random walk in one dimension. The electrons move with the
velocity v a distance l, before they switch to a new direction. The time of flight is τ = l/v. We
apply electric field E which, if not strong enough to significantly change the velocity v, leads to
a biased random walk. The requirement on the field is,

|∆v| = |eEτ/m| � v, (II.1)

where ∆v is the velocity gain during a single step.
The above model is a good (one dimensional) first approximation to what happens in real

metals and semiconductors in which free electrons perform random walk due to scattering off
impurities, phonons, or boundaries. The step size l is the mean free path and τ is the momentum
relaxation time, as indicated in Fig. II.1.

The average velocity, vav, of electrons is markedly different from v. In a simple model the
time evolution for the average velocity is,

v̇av = −eE
m
− vav

τ
, (II.2)

Fig. II.1. Illustration of the drift-diffusive transport of electrons in a disordered solid, in the presence of
an electric field. Scattering by impurities or phonons causes electrons to change their direction of motion,
while the electric field forces them in one direction. In this simplified picture the mean free path, l, is
roughly the average distance between the impurities.
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Fig. II.2. Biased random walk is represented by probabilities p+ of moving right and p− of moving left, a
step size of l over time step of τ .

where m is the electron mass and the last term describes frictional effects of the scattering. In a
steady state regime the average velocity is called the drift velocity, vd, which can be determined
from the above equation by putting v̇av = 0:

vd = −eτ
m
E. (II.3)

A reasonable value for vd is 1 cm/s. In a typical metal, v ≈ 106 m/s, so the condition vd � v
is well satisfied. Noting that ∆v has the same magnitude as vd, the requirement for the biased
random walk, Eq. (II.1), is fulfilled.

Let us continue with our random walk model. We are interested in the time evolution of
the spatial profile of the density of random walkers. Let the density at time t and position x be
n(x, t). We consider N0 electrons and assume that they cannot be created or destroyed.9 This
gives the normalization condition

N0 =
∫ ∞
−∞

n(x, t)dx, (II.4)

to be valid at all times. At time t the density of electrons at position x is given by the densities
at x− l and x+ l at the previous time step t− τ ; see Fig. II.2. If the probability for electrons to
move to the right is p+ and to the left p−, satisfying the condition, p+ + p− = 1, the following
balance equation follows:

n(x, t) = n(x− l, t− τ)p+ + n(x+ l, t− τ)p−. (II.5)

If the random walk is unbiased (E = 0), then p+ = p− = 1/2. In general the two probabilities
differ. We denote ∆p = p+ − p−. We will see that ∆p� 1 for conduction electrons.

Expand the densities on the right hand side of Eq. (II.5) in a Taylor series around (x, t) for
infinitesimal l and τ , keeping terms up to O(l2) and O(τ):

n(x, t) = n(x, t)− l∆p
∂n(x, t)
∂x

+
1
2
l2
∂2n(x, t)
∂x2

− τ
∂n(x, t)
∂t

. (II.6)

It follows that,

τ
∂n

∂t
=

1
2
l2
∂2n

∂x2
− l∆p

∂n

∂x
. (II.7)

9In semiconductors electrons can recombine with holes and this condition need not be valid.
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We now introduce

D =
1
2
l2

τ
=

1
2
v2τ, (II.8)

and call it diffusivity (or the diffusion coefficient). This parameter describes the rate of electron
diffusion. The units of D are m2·s−1; in semiconductor physics we usually use cm2 · s−1. For a
metal at room temperature, τ ∼ 10−14 s, giving D ∼ 10−2 m2·s−1. We will see that the second
term on the right hand side of Eq. (II.7) describes drift, and that,

vd =
l

τ
∆p = v∆p� v, (II.9)

from which the condition ∆p� 1 follows. Using the new notation we finally obtain

∂n

∂t
= D

∂2n

∂x2
− vd

∂n

∂x
, (II.10)

which is the drift-diffusion partial differential equation describing the time evolution of the elec-
tron density profile n.

We will now justify the name drift-diffusion. Physically drift should mean that the whole
electron density moves with a constant velocity vd. Let us calculate the velocity of the average
position of electrons:

x(t) =
1
N0

∫ ∞
−∞

xn(x, t)dx. (II.11)

The time derivative is

ẋ =
1
N0

d

dt

∫ ∞
−∞

xn(x, t)dx =
1
N0

∫ ∞
−∞

x
∂n(x, t)
∂t

dx (II.12)

=
1
N0

∫ ∞
−∞

xD
∂2n

∂x2
dx− 1

N0
vd

∫ ∞
−∞

x
∂n

∂x
dx (II.13)

= vd. (II.14)

We have used integration per parts and the physical requirement that the density vanishes at
infinity. In particular,∫ ∞

−∞
x
∂2n

∂x2
dx = x

∂n

∂x
|∞−∞ −

∫ ∞
−∞

∂n

∂x
dx = 0, (II.15)∫ ∞

−∞
x
∂n

∂x
dx = xn|∞−∞ −

∫ ∞
−∞

ndx = −N0. (II.16)

We have shown that the velocity with which the average position of the electron density moves
is vd. It remains to demonstrate diffusion, that is, that the variance of the density evolves linearly
with time. We leave as an exercise to show that

σ2 = x2 − x2 = 2Dt, (II.17)
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Fig. II.3. The initial delta-like distribution widens at a rate proportional to
√

t, due to diffusion, while its
center moves linearly, as t, due to drift.

assuming a density profile with zero variance at t = 0. The standard deviation of the average
electron position is then

σ(t) =
√

2Dt. (II.18)

This result conforms to what one usually learns about random walks, namely, that the variance
after N steps is

σ2 = l2N. (II.19)

Considering thatN = t/τ andD = l2/2τ we obtain Eq. (II.18). In d = 2 and d = 3 dimensions
the variance is

√
4Dt and

√
6Dt, respectively.

The time evolution of the electron density thus constitute a drift due to the presence of the
electric field and scattering induced friction, as well as diffusion which is due to scattering. A
typical evolution of the electron density looks like the one depicted in Fig. II.3.

It is instructive to see how the diffusion arises from the scaling considerations of the diffusion
equation. Take vd = 0. We first notice that the typical length scale of diffusion goes as ∼

√
t.

This leads to the guess that,

n(x, t) =
N0√
t
f(

x√
t
), (II.20)

where f(ξ) is a function of one variable, ξ = x/
√
t, subject to the normalization condition∫ ∞

−∞
f(ξ)dξ = 1. (II.21)

Substituting this guess to the diffusion equation, which is a partial differential equation, we obtain
an ordinary differential equation for f :

f ′′ +
1
2
ξf + f = 0. (II.22)

The solution, with the boundary condition of f(0) = 1, is

f(ξ) =
1√
4πD

e−ξ2/4D. (II.23)
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Fig. II.4. Spread of the probability distribution in time due to particle diffusion.

This solves our original problem:

n(x, t) =
N0√
4πDt

e−x2/4Dt, (II.24)

satisfying the initial condition n(x, 0) = N0δ(x). The form of n(x, t) is that of the normal
(gaussian) probability distribution with the variance σ2 = 2Dt, once again demonstrating the
diffusion character of the solution; see Eq. (II.18) and Fig. II.4 for illustration.

The electric field enters through the drift velocity vd which we saw to originate the bias ∆p.
We have found that the drift velocity is proportional to the electric field:

vd = −eτ
m
E. (II.25)

We call the magnitude of the proportionality coefficient the electron mobility µ:

µ =
eτ

m
. (II.26)

The units of mobility are m2/Vs (again, in semiconductor physics we customarily use cm2/Vs).
For a metal µ ∼ 10−3 m2/Vs. Typical electric fields inside a metallic conductor areE = vd/µ ∼
10 V/m.

The drift-diffusion equation now reads10

∂n

∂t
+

∂

∂x

[
−µnE −D

∂n

∂x

]
= 0. (II.27)

We introduce the electron (particle) current, given by the expression in the brackets:

J = −µnE −D
∂n

∂x.
(II.28)

The first term describes drift, the second diffusion current. The electrical (charge) current is

j = −eJ = σE + eD
∂n

∂x
, (II.29)

10The spin injection model to be discussed later assumes charge neutrality. This means that dE/dx = 0, from
Gauss’law.
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where,

σ = eµn, (II.30)

is the conductivity. Typical values for metals at room temperature are [1µΩcm]−1. For semi-
conductors the magnitudes are orders of magnitude less, due to the lower electronic density. The
inverse conductivity is resistivity,

ρ = 1/σ. (II.31)

There is a nice relation between the diffusivity and mobility. The dimensions of the two
quantities suggest that the ratio eD/µ has the dimension of energy. Indeed,

eD

µ
=
ev2τ/2
eτ/m

=
1
2
mv2, (II.32)

getting the electrons’ kinetic energy. For degenerate electrons the energy is roughly the Fermi
energy, εF , while for nondegenerate electrons we get the thermal energy, kBT . The above
relation, also called Einstein’s, will be given a more precise form later.

It remains to justify our choice for the current J . We find,

∂n

∂t
+
∂J

∂x
= 0, (II.33)

which is the continuity equation expressing the conservation of particles. The particle density
can increase in a certain volume only if there is more current flowing in than out; in other words,
when ∇ · J < 0. Above equation says the same in one dimension.

B. Spin drift and diffusion

Consider now electrons which can be labeled as spin up and spin down. The total number of
electrons is assumed to be preserved. If the electron densities are n↑ and n↓ for the spin up and
spin down states, the total particle density is,

n = n↑ + n↓, (II.34)

while the spin density is,

s = n↑ − n↓. (II.35)

We have already found the drift-diffusion equation for n. Can we find one for s as well?
We have spin up and spin down electrons performing random walk, as before. However, we

will now allow for spins to be flipped and assign the probability of w that a spin is flipped in the
time of τ , so that the spin flip rate is w/τ . We have the diagram of Fig. II.5.

We will assume that w � 1. This is well justified for conduction electrons, as we will see in
the chapter of spin relaxation, Sec. IV. The actual spin flip probability during the relaxation time
τ is typically 10−3 to 10−6, so that electrons need to experience thousands scatterings before
spin flips.
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Fig. II.5. Random walk scheme with indicated spin-flip probabilities w.

Let us write the balance equation for the spin up density, and make the Taylor expansion
around (x, t):

n↑(x, t) = n↑(x− l, t− τ)(1− w)p+ + n↑(x+ l, t− τ)(1− w)p− + (II.36)
+ n↓(x− l, t− τ)wp+ + n↓(x+ l, t− τ)wp− (II.37)

≈ n↑(1− w)− l
∂n↑
∂x

∆p+
1
2
l2
∂2n↑
∂x2

− τ
∂n↑
∂t

+ n↓w. (II.38)

This leads to the following drift-diffusion equations for n↑ and, similarly, for n↓:

∂n↑
∂t

= D
∂2n↑
∂x2

− vd
∂n↑
∂x

− w(n↑ − n↓), (II.39)

∂n↓
∂t

= D
∂2n↓
∂x2

− vd
∂n↓
∂x

− w(n↓ − n↑). (II.40)

Adding the two equations we obtain the drift diffusion equation for the density n, Eq. (II.27);
subtracting them we get the drift-diffusion equation for s:

∂s

∂t
= D

∂2s

∂x2
− vd

∂s

∂x
− s

τs
. (II.41)

Here,

1
τs

=
2w
τ
, (II.42)

describes the spin relaxation; τs is the spin relaxation time. Why is spin relaxation twice as large
as spin flip? Because each spin flip contributes to relaxation of both spin up and spin down, so
that spin relaxation is twice as fast.

Let us write the spin drift-diffusion equation in terms of mobility:

∂s

∂t
= D

∂2s

∂x2
+ µE

∂s

∂x
− s

τs
. (II.43)

We can, as before, write it in the form of a continuity equation,

∂s

∂t
+

∂

∂x

(
−µEs−D

∂s

∂x

)
= − s

τs
. (II.44)
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The expression in the brackets is identified as the spin (particle) current,

Js = −µsE −D
∂s

∂x
. (II.45)

This allows us to write the spin continuity equation as,

∂s

∂t
+
∂Js

∂x
= − s

τs
. (II.46)

The right hand side represents the spin relaxation with the rate s/τs. The spin in a given volume
can decrease either by spin current flowing away from the volume, or by spin relaxation. If there
would be an equilibrium spin, s0 in the sample, we would need to replace the right-hand side by
−(s− s0)/τs. At this point we introduce the spin (charge) current,

js = −eJs = σsE + eD
∂s

∂x
, (II.47)

where the spin conductivity is introduced as

σs = eµs. (II.48)

We also define the density spin polarization

Pn =
n↑ − n↓

n
=
s

n
, (II.49)

as well as the current spin polarization,

Pj =
j↑ − j↓
j

=
js
j
, (II.50)

which will be useful in our model of spin injection.
Let us now solve the spin drift-diffusion equation in three cases of interest, neglecting spin

drift. For a worked out problem in which spin drift plays important role, see Sec. E.2.
Spin diffusion for E=0. Consider a spin density which, at t = 0, is all concentrated at

x = 0:

s(x, 0) = S0δ(x), (II.51)

where S0 is the total spin at t = 0. The solution of the spin diffusion equation,

∂s

∂t
= D

∂2s

∂x2
− s

τs
, (II.52)

with the given initial condition is,

s(x, t) =
S0√
4πDt

e−x2/4Dte−t/τs . (II.53)
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The first exponential term describes spin diffusion, the second spin relaxation—the total spin
decays as

S =
∫ ∞
−∞

s(x, t)dx = S0e
−t/τs . (II.54)

How far does the spin diffuse till it relaxes? The answer is given by the standard deviation of the
spin distribution at time t = τs:

σ =
√

2Dτs =
√

2Ls, (II.55)

where we introduced the spin diffusion length11

Ls =
√
Dτs. (II.56)

In semiconductors, Ls ∼ µm, while in metals, in which the diffusivity is larger (since the electron
velocity at the Fermi level is larger), Ls ∼ 0.1 mm. In d dimensions the standard deviation is
σ =

√
2dLs.

Steady state diffusion at E=0. We now look at the steady state into which spin diffusion
settles given certain sources of spin. We need to solve

D
∂2s

∂x2
=

s

τs
, (II.57)

which can be written in the more familiar term

∂2s

∂x2
=

s

L2
s

. (II.58)

Suppose there is a source spin at x = 0, given by s(0) = s0 and s(∞) = 0. The spin density in
the interval (0,∞) is,

s(x) = s0e
−x/Ls . (II.59)

The spin spreads to a distance Ls from its source at x = 0, as illustrated in Fig. II.6.
Steady state spin pumping. Suppose that instead of a spin source we have a given spin

current at x = 0: Js(0) = −D∂s/∂x|x=0 = Js0. The solution to the spin diffusion equation
with this boundary condition is,

s(x) = Js0
Ls

D
e−x/Ls . (II.60)

The spin at x = 0 is,

s(0) = Js0
Ls

D
. (II.61)

11Often one speaks of the spin relaxation length. We find it useful to reserve the term of spin diffusion length for the
case of purely diffusive motion, while the term spin relaxation length for more general cases, such as drift or magnetic
field influenced decay of the spin density. See, for example, Sec. E.2.
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Fig. II.6. Spin decays exponentially in space with the characteristic length Ls, the spin diffusion length.

Fig. II.7. If spin flows from the ferromagnetic, x < 0 region into a nonmagnetic region at x > 0, the
accumulated spin at the interface is proportional to the product of the spin current and the spin diffusion
length. The spin decays exponentially in the nonmagnetic region.

This spin density is called spin accumulation,12 as it results from spin injection (say, from a fer-
romagnetic metal at x < 0). In this case spin injection is spin pumping: the spin accumulation
is proportional to the spin injection intensity (pumping), while it is also proportional to the spin
diffusion length. The more one pumps and the less the spin relaxes, the more spin accumula-
tion can be achieved. The above model, illustrated in Fig. II.7 is a simplest description of spin
injection.

Several generalizations of this approach can be made by considering additional effects of
spin-orbit coupling (Tse et al., 2005; Pershin, 2004), transient effects arising from the Boltzmann
equation (Villegas-Lelovsky, 2006a,b) and Monte Carlo simulations (Saikin et al., 2003).

C. Quasichemical potentials µ and µs.

Consider a Fermi gas in equilibrium. Let the density of the gas is n0, given by the chemical
potential η. If the minimum of the band energy is taken to be ε = 0, the electron density is

12More conventially the term spin accumulation is often reserved for the nonequilibrium spin quasichemical potential,
see Sec. C.
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related to the chemical potential by the following expressions:

n0 = 2
1
V

∑
k

f0(εk − η) (II.62)

= 2
1
V

V

(2π)3

∫
d3kf0(εk − η) (II.63)

=
∫ ∞

0

dεf0(ε− η)
2

(2π)3

∫
d3kδ(η − εk) (II.64)

=
∫ ∞

0

dεg(ε)f0(ε− η). (II.65)

Here f0 is the Fermi-Dirac distribution

f0(ε− η) =
[
e(ε−η)/kBT + 1

]−1

, (II.66)

and g(ε) is the density of states per unit volume,

g(ε) =
2

(2π)3

∫
d3kδ(ε− εk). (II.67)

The factor of two in the above formulas comes from the spin degeneracy.
For a degenerate Fermi gas, η ≈ εF , and the Fermi-Dirac distribution resembles the step

function,

f0(ε− η) ≈ θ(η − ε), (II.68)

−∂f
∂ε

=
∂f

∂η
≈ δ(ε− η). (II.69)

For a nondegenerate Fermi gas, ε � η + kBT , the Fermi-Dirac distribution has the functional
form of the Maxwell-Boltzmann statistics,

f0(ε− η) ≈ e−(ε−η)/kBT . (II.70)

In general we can write in the functional form that

n0 = n0(η). (II.71)

Figure II.8 illustrates the difference between degenerate and nondegenerate statistics. Metals and
heavily doped semiconductors obey degenerate statistics, while low doped semiconductors are
well described by nondegenerate statistics.

We are going to generalize the above description to weakly nonequilibrium situations. Sup-
pose there is a static electric field E = −∇φ in our conductor and still no current flows. We
are still at equilibrium. This is not possible to achieve in metals (as is known from elementary
electrodynamics), but the field can exist in inhomogeneously doped semiconductors. In fact, the
diodes work as current rectifiers, or semiconductor solar cells as current generators because an
equilibrium electric field is established between a p-doped (filled with acceptors) and n-doped
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Fig. II.8. Degenerate semiconductors are like metals: the chemical potential η lies close to the Fermi energy
εF . Nondegenerate semiconductors obey the Boltzmann statistics, for which (εmin − µ)/kBT � 1,
implying that the occupation numbers of the single-particle levels in the conduction band are much less
unity. Here εmin is the minimum of the conduction band.

Fig. II.9. Application of an electric field, under the conditions of thermal equilibrium, changes locally the
energy levels, but the chemical potential η is still uniform. No current flows.

(filled with donors) semiconductor regions. How does the electron density change in the pres-
ence of such a field? The chemical potential η must be uniform, since we are still in equilibrium.
The only thing that changes is electron’s energy, which is reflected in the Fermi-Dirac distribu-
tion. The state counting is otherwise unaffected: the electrons occupy the band states ε with the
density of states g(ε), but at each state the total electron energy is ε− eφ. This gives

n(r) =
∫ ∞

0

dεg(ε)f0(ε− eφ− η). (II.72)

In other words,

n(r) = n0(η + eφ). (II.73)

The higher is the potential, the higher is the electron density, as illustrated in Fig. II.9.
Let us see an important consequence of this functional form. The electric current,

j = σE + eD∇n (II.74)

= −σ∇φ+ eD
∂n0

∂η
e∇φ (II.75)

= ∇φ
(
−σ + e2D

∂n0

∂η

)
, (II.76)
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must vanish in equilibrium. This gives

σ = e2D
∂n0

∂η
, (II.77)

which is the general form of Einstein’s relation. This relation is an example of a much broader
class of so-called fluctuation-dissipation relations, which describe the linear relationships be-
tween fluctuation and dissipation strengths. In our case the fluctuation strength is given by diffu-
sivityD, which measures the fluctuations of the velocity (recall thatD is a measure of v2), while
the dissipation is represented by σ, which measures energy dissipation due to Joule heating. For
degenerate electrons in the absence of electric field

∂n0

∂η
=

∫ ∞
0

dε g(ε)
∂f0
∂η

(II.78)

= g(η) ≈ k3
F

εF
≈ n0

εF
. (II.79)

Here we introduced the Fermi wave vector, kF , by εF = ~2k2
F /2m. We thus recover the simple

estimate for the ratio of eD/µ found earlier. The reader should repeat the above calculation for
a nondegenerate electron gas.

Relax now the equilibrium condition and allow the current to flow. The chemical potential is
no longer uniform. In fact, there is no guarantee that the quantity such as the chemical potential
makes sense. In most cases, however, we can assume that, in general, nonequilibrium electron
distribution f will depend on the electron state only through its energy, as momentum relaxation
proceeds on a faster scale. This temporal coarse graining allows us to write for the electron
distribution function in the momentum space,

fk ≈ f(εk) = f0(εk − eφ− η − eµ), (II.80)

where µ = µ(x) is a spatially dependent addition to the chemical potential, often called quasi-
chemical potential; do not confuse it with mobility. We thus attempt to describe the current flow
in the system by writing,

η → η + eµ(x). (II.81)

We then have,

n(x) = n0(η + eµ+ eφ). (II.82)

The current becomes,

j = −σ∇φ+ eD∇n (II.83)

= ∇φ
(
−σ + e2D

∂n0

∂η

)
+ e2D

∂n0

∂η
∇µ. (II.84)
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Fig. II.10. In a nonmagnetic conductor (left), there is equal number of spin up and spin down electrons in
equilibrium. In a ferromagnetic conductor, the densities are different due to the exchange splitting causing
the minima of the two spin bands to be displaced. The spin of the larger electronic density is called majority
spin; the spin of the smaller density is called minority spin. However, usually the density of states at the
Fermi level is higher for the minority than for the majority electrons.

We can now invoke Einstein’s relation, Eq. (II.77), and finally write13

j = σ∇µ. (II.85)

The current is driven by the gradient of the quasichemical potential which describes both drift
and diffusion terms. We will see that this reformulation of the problem greatly simplifies the
problem of electric spin injection.

Generalization of the drift-diffusion formalism, to ferromagnetic conductors. To pro-
ceed further we need to briefly discuss the essential electronic characteristics of ferromagnetic
metals or semiconductors. Figure II.10 compares nonmagnetic and ferromagnetic conductors
(assumed to be degenerate). The most dramatic situation occurs when the majority band is filled.
The metallic behavior is due to the minority band only. Such metals are called half-metallic
ferromagnets. See Fig. II.11.

The difference between the densities of states, g↑ and g↓, at the Fermi level, as well as the
Fermi velocities for the majority and minority spins, is essential. This difference transcends to the
differences in the relaxation times, mean free paths, mobilities, diffusivities, or conductivities.
If we also allow for different quasichemical potentials µ↑ and µ↓, describing the possibility that
there is a nonequilibrium spin in the system, we can write

j↑ = σ↑∇µ↑, (II.86)
j↓ = σ↓∇µ↓. (II.87)

13We have established Einstein’s relation only for the equilibrium case. There is no guarantee the relation holds in
general. In our framework of the linear regime (current proportional to E and ∇n), all deviations from the relation
would be at least linear (explicitly) in ∇µ and go beyond our linear regime description. Note that the linear character
of our drift-diffusion equation does not mean that the current is linearly proportional to voltage. Significant deviations
from linear I-V characteristics can occur if the electron density depends on the field, even within the linear response
framework.
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Fig. II.11. A half-metallic ferromagnet has zero density of states at the Fermi level, for one of the spin
states. The spin polarization of the density of states at the Fermi level, Pg , is 100%.

Let us make the following definitions:

g = g↑ + g↓ , gs = g↑ − g↓ (II.88)
σ = σ↑ + σ↓ , σs = σ↑ − σ↓ (II.89)

µ =
1
2

(µ↑ + µ↓) , µs =
1
2

(µ↑ − µ↓) (II.90)

D =
1
2

(D↑ +D↓) , Ds =
1
2

(D↑ −D↓) . (II.91)

The charge and spin currents can now be written as,

j = j↑ + j↓ = σ∇µ+ σs∇µs (II.92)
js = j↑ − j↓ = σs∇µ+ σ∇µs. (II.93)

In a ferromagnet, in which σs 6= 0, a nonequilibrium spin gradient causes charge current, while
spin current flows due to an applied bias. The reason is simple: since there are more, say, spin
up than spin down electrons, a bias causes different spin up and spin down currents, and thus
both charge and spin current. In normal conductors, at least at small spin polarizations at which
σs ≈ 0, this is not possible.

From now on we will deal with degenerate conductors. Not that we do not know how to
calculate spin injection with nondegenerate electrons in semiconductors, but we do not have a
“universal” analytical model for such cases due to complication from charging effects and the
need to solve, in addition, Poisson’s equation. The model for degenerate electrons, on the other
hand, has useful analytical solutions in an important case of negligible charging.

For degenerate conductors the deviations from the chemical potential can be considered
small, since it is only the electrons at the Fermi level which contribute to the currents. Then
we can expand,

n↑ = n↑0 (η + eµ↑ + eφ) ≈ n↑0 +
∂n↑0
∂η

(eµ↑ + eφ) , (II.94)

n↓ = n↓0 (η + eµ↓ + eφ) ≈ n↓0 +
∂n↓0
∂η

(eµ↓ + eφ) . (II.95)
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Recognizing that ∂n↑0/∂η = g↑, and similarly for spin down, for degenerate electrons, we have,

n↑ = n↑0 + g↑eµ↑ + g↑eφ, (II.96)
n↓ = n↓0 + g↓eµ↑ + g↑eφ. (II.97)

The electron density is,

n = n↑ + n↓ = n0 + eg(µ+ φ) + egsµs. (II.98)

We now impose local charge neutrality, namely, the condition of n = n0. This condition is well
satisfied in metals and very heavily doped semiconductors, in which the charge is screened on
the atomic scales. This condition eliminates the electric potential from the problem, by relating
it with the quasichemical potentials:

g(µ+ φ) + gsµs = 0. (II.99)

In a normal conductor, in which gs = 0, we obtain µ = −φ, which is the obvious condition for
local charge neutrality, that is, n(η + eµ+ eφ) = n0(η).

Let is look at the spin density. We have,

s = s0 + egs(µ+ φ) + egµs (II.100)

= s0 + 4eµs
g↑g↓
g

, (II.101)

where we have used the local charge neutrality condition to eliminate µ+φ. The above expression
gives for the nonequilibrium spin density,

δs = s− s0 = 4eµs
g↑g↓
g

. (II.102)

The nonequilibrium spin density is proportional to the quasichemical potential µs. We call either
the nonequilibrium spin, δs, or the spin quasichemical potential, µs, spin accumulation. In a
normal conductor, δs = s = eµsg, which is the number of electron states in the interval of eµs

at the Fermi level.
In the following, the cental quantity of interest will be the current spin polarization, Pj =

js/j. Recall that the density spin polarization Pn = s/n, while we introduce, in addition, the
conductivity spin polarization,

Pσ = σs/σ. (II.103)

From the expression for charge current, Eq. (II.92), we extract ∇µ:

∇µ =
1
σ

(j − σs∇µs) . (II.104)

We substitute this gradient to obtain the spin current:

js = σs∇µ+ σ∇µs (II.105)

= Pσj + 4∇µs
σ↑σ↓
σ

. (II.106)
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For the current spin polarization this gives,

Pj = Pσ +
1
j
4∇µs

σ↑σ↓
σ

. (II.107)

This equation shows that in order to have a significant current spin polarization, we need to
establish a large gradient of the spin quasichemical potential.

We still need to figure out the equation for µs. Recall that in a steady state in a normal
conductor we have derived the continuity equation for spin, see Eq. (II.46),

∇js = e
s

τs
. (II.108)

This equation describes a nonequilibrium spin s. In a ferromagnetic conductor we need to modify
this equation to

∇js = e
δs

τs
, (II.109)

which describes the decay of the nonequilibrium spin δs→ 0, or the spin s→ s0. We then have,

∇js = e
δs

τs
= 4e2µs

g↑g↓
g

1
τs

(II.110)

= ∇
(
Pσj +∇µs

4σ↑σ↓
σ

)
(II.111)

= 4
σ↑σ↓
σ

∇2µs. (II.112)

We have used Eq. (II.102) and the fact that in a steady state the electric current is continuous,
∇j = 0. The above gives the desired diffusion equation for µs:

∇2µs =
µs

L2
s

, (II.113)

where the generalized spin diffusion length, Ls, is

Ls =
√
Dτs, (II.114)

and the generalized diffusivity

D =
g

g↑/D↓ + g↓/D↑
. (II.115)

In a normal conductor, D = D. In our formalism, Ls is a phenomenological parameter.

D. Standard model of spin injection: F/N junctions

What we call the standard model of spin injection has its roots in the original proposal of
Aronov (1976). The thermodynamics of spin injection has been developed by Johnson and Sils-
bee, who also formulated a Boltzmann-like transport model for spin transport across ferromag-
net/nonmagnet (F/N) interfaces (Johnson and Silsbee, 1987, 1988). The theory of spin injection
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Fig. II.12. Scheme of our spin-injection geometry. The ferromagnetic conductor (F) forms a junction
with the nonmagnetic conductor (N). The contact region (C) is assumed to be infinitely narrow, forming
the discontinuity at x = 0. It is assumed that the physical widths of the conductors are greater than the
corresponding spin diffusion lengths.

has been further developed in (van Son et al., 1987; Valet and Fert, 1993; Fert and Jaffres, 2001;
Hershfield and Zhao, 1997; Schmidt et al., 2000; Fabian et al., 2002b; Žutić et al., 2002; Rashba,
2000, 2002; Vignale and D’Amico, 2003; Fert et al., 2007; Žutić et al., 2006b). In the follow-
ing we adopt the treatment of Rashba (2000, 2002), using the notation from Žutić et al. (2004)
where the mapping between the formulations of the spin injection problem by Johnson-Silsbee
and Rashba is given.

Our goal is to find the current spin polarization, Pj(0), which determines the spin accumu-
lation, µsN (0), in the normal conductor. We will assume that the lengths of the ferromagnet
and the nonmagnetic regions are greater than the corresponding spin diffusion lengths. The spin
injection scheme is illustrated in Fig. II.12. We assume that at the far ends of the junction, the
nonequilibrium spin vanishes. We now look at the three regions separately.

D.1 Ferromagnet

Adapting Eq. (II.107), the current spin polarization at x = 0 in the ferromagnet is,

PjF (0) = PσF +
1
j
4
σF↑σF↓

σF
∇µsF (0). (II.116)

To obtain µsF (0), we need to look at the diffusion equation, Eq. (II.113), in the ferromagnet,

∇2µsF =
1
L2

sF

µsF . (II.117)

The solution, with the boundary condition, µsF (−∞) = 0, is,

µsF (x) = µsF (0)ex/LsF , (II.118)

so that,

∇µsF =
µsF

LsF
. (II.119)
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We then obtain for the spin polarization of the current,

PjF (0) = PσF +
1
j

µsF (0)
RF

, (II.120)

where we have introduced an effective resistance of the ferromagnet,

RF =
σF

4σF↑σF↓
LsF . (II.121)

This is not the electrical resistance of the region, only an effective resistance that appear in the
spin-polarized transport and is roughly equal to the actual resistance of the region of size LsF .14

We finally obtain,

PjF (0) = PσF +
1
j

µsF (0)
RF

. (II.122)

D.2 Nonmagnetic conductor

Since in the nonmagnetic conductor Pσ = 0, and σN↑ = σN↓ = σN/2, we have,

PjN (0) =
1
j
σN∇µsN (0). (II.123)

Similarly as in the ferromagnetic case, we need to solve the diffusion equation,

∇2µsN =
1

L2
sN

µsN , (II.124)

now with the boundary condition of µsN (∞) = 0. The solution is

µsN = µsN (0)e−x/LsN ; (II.125)

the gradient,

∇µsN = − 1
LsN

µsN . (II.126)

The current spin polarization in the nonmagnetic conductor then becomes,

PjN (0) = −1
j

µsN (0)
RN

, (II.127)

where

RN =
LsN

σN
, (II.128)

is the effective resistance of the nonmagnetic region. Once we would know PjN (0), we would
also know the spin accumulation,

µsN (0) = −jPjN (0)RN . (II.129)

Spin accumulation is proportional to the spin current, jsN (0) = jPjN (0), which pumps the spin
into the system, as well as to the effective resistance, RN = LsN/σN —the greater is the spin
diffusion length, the greater is the spin accumulation.

14If σF↑ = σF↓ = σ/2, as in nonmagnetic conductors, the effective resistance becomes RF = LsF /σ, which is
the resistance of a unit cross sectional area; to get the ohmic resistance we would need to divide RF by the actual area.
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D.3 Contact

The advantage of the quasichemical potential model over continuous drift-diffusion equations
for charge and spin current, is in describing the spin-polarized transport across the contact region
at x = 0. Since we have a single point, we cannot define gradients to introduce currents. Instead,
we resort to the discontinuity of the chemical potential across the contact and write,

j↑ = Σ↑ [µ↑N (0)− µ↑F (0)] = Σ↑∆µ↑(0), (II.130)
j↓ = Σ↓ [µ↓N (0)− µ↓F (0)] = Σ↓∆µ↓(0). (II.131)

Here we introduced spin-dependent contact conductances, not conductivities as in the bulk F and
N regions, Σ↑ and Σ↓. In terms of charge and spin currents, this gives,

j = Σ∆µ(0) + Σs∆µs(0), (II.132)
js = Σs∆µ(0) + Σ∆µs(0). (II.133)

The conductance Σ = Σ↑ + Σ↓, while the spin conductance Σs = Σ↑ −Σ↓. Eliminating ∆µ(0)
from the equation for j and substituting to js, we obtain,

js = PΣj +
∆µs(0)
Rc

, (II.134)

where the conductance spin polarization is,

PΣ =
Σ↑ − Σ↓

Σ
, (II.135)

and the effective resistance of the contact is,

Rc =
Σ

4Σ↑Σ↓
. (II.136)

Finally, for the current spin polarization, js/j, at the contact, we obtain,

Pjc = PΣ +
1
j

∆µs(0)
Rc

. (II.137)

D.4 Spin injection and spin extraction

We have three equations for Pj(0), Eqs. (II.122), (II.127), and (II.137), and five unknown quan-
tities: PjF (0), PjN (0), Pjc(0), µsF (0), and µsN (0). We need further physical assumptions to
eliminate two unknown parameters. This assumption, which is an approximation, is the spin
current continuity at the contact:

Pj = PjF (0) = PjN (0) = Pjc. (II.138)

The above equalities are justified if spin-flip scattering (Galinon et al., 2005; Bass and Prat Jr.,
2007) can be neglected in the contact. For contacts with paramagnetic impurities, we would
need to take into account contact spin relaxation which would lead to spin current discontinuity.
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This assumption of the low rate of spin flip scattering at the interface should also be carefully
reconsidered when analyzing room temperature spin injection experiments (Garzon et al., 2005;
Godfrey and Johnson, 2006).

Using the spin current continuity equations, we can solve our algebraic system and readily
obtain for the spin injection efficiency,

Pj =
RFPσF +RcPΣ

RF +Rc +RN
= 〈Pσ〉R. (II.139)

The spin injection efficiency is the conductivity spin polarization Pσ averaged over the three
regions, weighted by the effective resistances. In our linear regime the spin injection efficiency
does not depend on the current. Equation (II.139) is the central result of the standard model of
electrical spin injection.

What is the spin accumulation? We have earlier found that,

µsN (0) = −jPjRN . (II.140)

If j < 0, so that electrons flow from F to N, the spin accumulation is positive, µsN (0) > 0; we
speak of spin injection. If j > 0, the electrons flow from N to F, and µsN (0) < 0; we speak of
spin extraction. If we look at the density spin polarization, Pn = s/n, we get for the density spin
polarization in the nonmagnetic region,

Pn(0) = eµsN (0)
gN

n
= −jeRN

gN

n
Pj . (II.141)

The density spin polarization is roughly equal to the fraction of electrons in the energy interval of
jeRN (the voltage drop at the distance of LsN ) times Pj . Since the injected spin polarization is
proportional to the charge current, the electrical spin injection is an example of spin pumping.15

D.5 The equivalent circuit of F/N spin injection

The standard model of spin injection can be summarized by the equivalent electrical circuit
shown in Fig. II.13. Spin up and spin down electrons form parallel channels for electric current.
Each region of the junction is characterized by its own effective resistance, determined by the
spin diffusion lengths in the bulk regions, or by the spin-dependent conductances in the contact
(Jonker et al., 2003).

It is a simple exercise, left to the reader, to show that the equivalent circuit in Fig. II.13 leads
to Eq. (II.139) for the current spin polarization, Pj = (I↑ − I↓)/I .

D.6 Quasichemical potentials, nonequilibrium resistance, and spin bottleneck

The spin quasichemical potential exhibits a drop at the contact region. This drop follows from
Eq. (II.137):

∆µs(0) = µsN (0)− µsF (0) = jRc(Pj − PΣ). (II.142)
15Spin pumping in optical orientation refers to spin orientation by absorption of circularly polarized light of an n-doped

semiconductor. Since the excited spin polarization is shared by the existing Fermi sea of electrons, the more intense the
light the more spin polarization. In contrast, in p-doped samples absorption of circularly polarized light results in electron
spin polarization that is independent of the light intensity. See (Žutić et al., 2004).
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Fig. II.13. The equivalent circuit of the standard model of spin injection in F/N junctions. The ferromagnet,
contact, and normal conductor regions are identified. The electric current splits into the spin up and spin
down components, each passing through the corresponding spin-resolved resistors.

Fig. II.14. The left figure illustrates the profile of the spin current in the F/N junction, for j < 0, that is,
the spin injection regime. The spin current is assumed continuous at the contact, x = 0. The right figure
illustrates the nonequilibrium spin quasichemical potentials, under the same conditions. The potentials
exhibit discontinuity proportional to the electric current, contact resistance, and spin current polarization.
The nonequilibrium spin properties decay on the length scales of the corresponding spin diffusion lengths.

Since Pj is a materials parameter, the drop of the spin quasichemical potential across the contact
changes sign with flipping the direction of the charge current. The spatial profile of the spin
current density, js, as well as that of ∆µs, is illustrated in Fig. II.14.

Thus far we looked at spin properties. Is there anything useful to be learned from the charge
quasichemical potential µ which we swapped earlier for the local charge neutrality? We have
already found, see Eq. (II.104), that

∇µ =
1
σ

(j − σs∇µs) =
j

σ
− Pσ∇µs. (II.143)

For the ferromagnet,

∇µF =
j

σF
− PσF∇µsF , (II.144)

while for the normal conductor,

∇µN =
j

σN
. (II.145)
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Integrating the above equations for µF and µN , we obtain

µF (−∞)− µF (0) = −jR̃F − PσF [µsF (−∞)− µsF (0)] , (II.146)
µN (∞)− µN (0) = jR̃N , (II.147)

Here we introduced,

R̃F =
∫ 0

−∞
dx

1
σF

≡ LF

σF
, (II.148)

which is the actual resistance (of a unit cross-sectional area) of the ferromagnetic region of size
LF � LsF , taken to be infinity in the arguments of the quasichemical potentials; recall that RF

is an effective resistance of a region of length LsF . Similarly, R̃N is the actual resistance of the
nonmagnetic conductor.

Now, µsF (−∞) = 0, as we assume no spin accumulation at the left end of the ferromagnet.
By subtracting Eq. (II.146) from Eq. (II.147), we get,

[µN (∞)− µF (−∞)]− [µN (0)− µF (0)] = jR̃N + jR̃F − PσFµsF (0). (II.149)

Normally we would expect Ohm’s law for our junction in the form,

µN (∞)− µF (−∞) =
(
R̃N + R̃F +

1
Σ

)
j, (II.150)

that is, the total drop of the quasichemical potential (or voltage for a charge neutral conductor) is
given by the serial resistance of the three regions times the charge current. Instead, we see that
in the presence of spin accumulation the junction resistance acquires a correction δR, modifying
Ohm’s law as,

µN (∞)− µF (−∞) =
(
R̃N + R̃F +

1
Σ

+ δR

)
j. (II.151)

Substituting this nonequilibrium Ohm’s law into Eq. (II.149) we obtain,(
1
Σ

+ δR

)
j = −PσFµsF (0) + µN (0)− µF (0). (II.152)

At the contact,

∆µ(0) = µN (0)− µF (0) =
j

Σ
− PΣ∆µs(0), (II.153)

so that there is an additional resistance due to the spin accumulation ∆µs(0). Since ∆µs(0) is
proportional to j, see Eq. (II.142), the quasichemical potential drop at the contact is

∆µ(0) =
j

Σ
− jPΣ(Pj − PΣ)Rc. (II.154)

Substituting the above into Eq. (II.152) gives the nonequilibrium resistance due to spin accumu-
lation,

δR = −PΣ(Pj − PΣ)Rc − PσFRF (Pj − PσF ). (II.155)
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Substituting for the spin injection efficiency Pj from Eq. (II.139) we finally obtain,

δR =
RN (P 2

ΣRc + P 2
σFRF ) +RFRc(PσF − PΣ)2

RF +Rc +RN
. (II.156)

What is important, this resistance correction is always positive: δR > 0. One can also obtain
this nonequilibrium spin resistance from the equivalent circuit model, of Fig. II.13, by calculating
δR = R − LsF /σF − LsN/σN , with R being the circuit resistance. We leave this exercise to
the reader.

Why does the additional resistance appear? Spin accumulation leads to nonequilibrium spins
in the ferromagnet as well as in the contact. The nonequilibrium spin causes spin diffusion,
driving the spin away from the contact. Since in the ferromagnet, as well as in the spin-polarized
contact, any spin current gives charge current (due to the nonvanishing Pσ), this spin flow causes
electron flow which is oriented opposite to the electron flow due to the external battery. This
opposition to the charge current, which does not depend on the direction of the current flow, and
manifests itself as the additional resistance δR, is called the spin bottleneck effect (Johnson,
1991).

We will now consider two important limits of the spin injection model: transparent and tunnel
contacts.

D.7 Transparent contact

By a transparent contact we mean that the following condition is satisfied:

Rc � RN , RF . (II.157)

In this limit the following equations characterize the F/N junction:

Pj =
RF

RN +RF
PσF , (II.158)

δR =
RNRF

RN +RF
P 2

σF , (II.159)

PnN (0) = −ejRN
gN

nN
Pj . (II.160)

Recall that Pn = s/n is the spin polarization of the electron density. The spin injection depends
on the spin properties of the ferromagnet. If the F and N regions are equally conducting, RN ≈
RF , then the spin injection efficiency is high:

Pj ≈ PσF . (II.161)

This is the usual case of a spin injection from a ferromagnetic metal to a normal metal, or from
a ferromagnetic (magnetic) semiconductor to a normal semiconductor.16

16When we say that RN and RF should be similar, we need to decipher this statement from the definition of the
effective resistance:

LsF

σF
≈

LsN

σN
. (II.162)

Typically σN is about an order of magnitude greater than σF , but LsF is at least an order of magnitude smaller than
LsN ; RF is then somewhat smaller than RN , although RF /RN is still a significant fraction of one.
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Fig. II.15. The equivalent circuit for a transparent contact, Rc � RN , RF . If, in addition, RN � RF ,
the voltage drop occurs mainly in the nonmagnetic region, and I↑ = I↓, so that no spin-polarized current
flows.

What happens if we are to inject spin from a ferromagnetic metal to a nonmagnetic semi-
conductor? Since the semiconductor has a much smaller carrier density than the ferromagnetic
metal, we then have RN � RF , in which case

Pj ≈ RF

RN
PσF � PσF , (II.163)

δR ≈ RFP
2
σF ≈ RF , (II.164)

PnN (0) ≈ −ejRF
gN

nN
PσF ≈ −

eVF

εFN
PσF , (II.165)

where VF is the voltage drop in F along LsF and εFN is the Fermi energy of the nonmag-
netic conductor. The spin injection efficiency is greatly reduced! The inhibited spin injection
efficiency in such a (highly idealized) ferromagnet/semiconductor junction is termed the con-
ductivity mismatch problem (Schmidt et al., 2000), since it comes from the largely different
conductivities of the ferromagnetic metal and the semiconductor.

The basic physics is nicely illustrated by the equivalent circuit, shown in Fig. II.15. If RN �
RF↑, RF↓, the voltage drop along this parallel-resistor circuit is V ≈ 2RNI↑ ≈ 2RNI↓, so
that I↑ ≈ I↓. The currents in the spin up and spin down channels are determined solely by
the effective resistance of the semiconductor since this is where all the voltage drops. As a
result, Pj � PσF , meaning that spin injection is inefficient. Similarly inhibited is the spin
bottleneck effect: δR ≈ RF � RN . What about the injected spin polarization, PnN (0), given
now by Eq. (II.165)? Since the Fermi energy of the semiconductor is much smaller than that of a
metal, the spin polarization is not strongly reduced, compared to an all-metallic F/N transparent
junction. Still, the magnitude is tiny: PnN (0) � 1.17

17Unlike in metals, injected spin polarization in semiconductors is in general significant, with Pn reaching possibly
tens of percent (not in transparent junctions, though). In principle, our theory does not directly apply to such cases since
we have assumed only small perturbations from the spin-unpolarized equilibrium, as well as strictly non-spin polarized
materials parameters in the N region. In particular, PσN is in general a nonnequilibrium quantity, which is finite since
there is a different conductivity for spin up and down electrons in N if the corresponding Fermi levels differ significantly.
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Fig. II.16. The equivalent circuit for a tunnel contact, Rc � RN , RF . The voltage drops mainly at the
contact, so I↑ 6= I↓, and spin-polarized current flows.

D.8 Tunnel contact

If the contact resistance is the largest resistance in the junction, Rc � RF , RN , we call the
contact a tunnel contact. The following equations define the spin injection in tunnel contacts:

Pj = PΣ, (II.166)

δR =
RNRcP

2
Σ +RFRc(PσF − PΣ)2

Rc
, (II.167)

PnN (0) = −ej gN

nN
RNPΣ. (II.168)

All the interesting quantities related to spin depend on PΣ. The contact acts as a spin filter.
The addition of the high resistive contact enables to inject spin from a ferromagnetic metal

into a semiconductor, resolving the conductivity mismatch problem discussed in the previous
section. Indeed, if RN � RF , we have

Pj = PΣ, (II.169)
δR ≈ RNP

2
Σ, (II.170)

PnN (0) ≈ −je gN

nN
RNPΣ = −eVN

εFN
PΣ. (II.171)

Here VN is the voltage drop in the N region along the length of LsN . The spin injection is still
determined by the contact conductance polarization,18 while the nonequilibrium resistance, δR,
is roughly equal to the effective resistance of the semiconductor, RN � RF . In the conductivity
mismatch problem, the nonequilibrium resistance was much smaller, δR ≈ RF . Finally, the
injected spin polarization is now also much greater than for a transparent contact, since LsN �
LsF , so that VN � VF (see Eq. (II.165)).

The spin filtering is nicely seen in the equivalent circuit of Fig. II.16. The voltage drop across
the circuit is V = I↑/Σ↑ = I↓/Σ↓, so that Pj = PΣ.

18In a tunnel junction between a ferromagnetic and nonmagnetic conductor, the electron transmission through the
tunnel barrier depends, in general, on the electron spin. This gives rise to PΣ 6= 0 and spin filtering.
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Fig. II.17. The Johnson-Silsbee non-local spin injection and detection scheme. Spin is injected through one
F/N junction. The spin detection is done by a different F/N junction, by the Silsbee-Johnson spin-charge
coupling. Spin diffusion from the injector is indicated by the different shades of grey.

Finally, let us look at the ferromagnetic region, in which the spin accumulation is

µsF (0) = RF j(Pj − PσF ). (II.172)

If PσF � Pj ≈ PΣ, then the accumulation is negative, µsF (0) < 0, for electrons flowing from
the ferromagnet to the nonmagnetic conductor, j < 0. On the other hand, the accumulation is
positive in the nonmagnetic conductor: µsN (0) = −RN jPΣ > 0. If the contact spin-filtering
dominates, in the electrical spin injection setup there is a spin extraction from the ferromagnet
and a spin injection into the nonmagnetic conductor.

It is a nice exercise for the reader to consider, instead of an infinite nonmagnetic conductor,
a finite N region of width w. What is the effective resistance, RN , in this case?

D.9 Silsbee-Johnson spin-charge coupling

In electrical spin injection we drive spin-polarized electrons from a ferromagnet into a nonmag-
netic conductor. As a result, nonequilibrium spin accumulates in the nonmagnetic conductor.
The opposite is also true: If a spin accumulation is generated in a nonmagnetic conductor that
is in a proximity of a ferromagnet, a current flows in a closed circuit, or an electromotive force
(emf) appears in an open circuit. This inverse effect is called the Silsbee-Johnson spin-charge
coupling. This coupling was first proposed by Silsbee (1980) and experimentally demonstrated
by Johnson and Silsbee (1985) in the first electrical spin injection experiment.

In this section we will calculate the emf resulting from the spin-charge coupling, using the
standard model of spin injection. Our physical system is shown in Fig. II.17. Spin is injected
by the left ferromagnetic electrode, and detected by the right one, making it a non-local mea-
surement. The injected spin diffuses in all directions (here left and right), unlike for the charge
current. The nonequilibrium spin at the right ferromagnetic electrode is picked-up by the Silsbee-
Johnson spin-charge coupling, producing a measurable emf in the right circuit. 19

Consider an F/N junction with a special boundary condition: a nonequilibrium spin is main-
tained, by whatever means,20 at the far right boundary of the nonmagnetic conductor:

µsN (∞) 6= 0. (II.173)

At the far left boundary of the ferromagnetic region, the spin is assumed to be in equilibrium:

µsF (−∞) = 0. (II.174)
19A similar approach was used recently to detect a spin Hall effect in metals (Valenzuela and Tinkham, 2006).
20The source could be electrical spin injection or optical spin orientation, for example
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One of our goals is to find the spatial profile of the spin accumulation inside the junction. Our
main goal is then to calculate the induced electromotive force, defined by

emf = µN (∞)− µF (−∞), (II.175)

under the condition of no electrical current flow (open circuit):

j = 0. (II.176)

The emf represents the drop of the quasichemical potential, µ, across the junction. If such a drop
is present, the system acts as a battery: by closing the circuit, charge current flows. In electrical
and spin equilibrium, the quasichemical potential drop must vanish.

We have found earlier, see Eq. (II.99), that the local charge neutrality requires that in degen-
erate conductors,

φ(x) = −µ(x)− Pgµs(x). (II.177)

In the ferromagnet,

φF (x) = −µF (x)− PgFµsF (x), (II.178)

while in the nonmagnetic conductor,

φN (x) = −µN (x), (II.179)

since PgN = 0. Since µsF (−∞) = 0, the drop of the chemical potential is equal the (minus)
drop of the electrostatic potential:

emf = µN (∞)− µF (−∞) = φF (−∞)− φN (∞). (II.180)

The emf can be detected as a voltage drop.21

From the drift-diffusion model, Eq. (II.144), we have,

∇µF =
j

σF
− PσF∇µsF = −PσF∇µsF , (II.181)

since j = 0. Integrating this equation in the F region, from −∞ to 0, and recalling that
µsF (−∞) = 0, the following holds,

µF (−∞)− µF (0) = −PσF [µsF (−∞)− µsF (0)] = PσFµsF (0). (II.182)

Similarly for the N region,

µN (∞)− µN (0) = 0. (II.183)

21If there is a charge (also called space charge) in a conductor at equilibrium, there is an additional electrostatic voltage
drop–an equilibrium one–due to this built-in charge. In such cases the emf vanishes, it is not given by the (minus) voltage
drop, since there is a voltage drop even in equilibrium; no charge current would flow if we closed the circuit. A most
prominent example of this is the p-n junction. Only if the voltage drop is accompanied by a drop in the quasichemical
potential, can we speak of a nonequilibrium situation giving rise to emf.
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There is a drop of the quasichemical potential in the F region, due to the spin-polarization of the
conductivity, while the quasichemical potential is constant over the N region. Then

emf = µN (∞)− µF (−∞) = ∆µ(0)− PσFµsF (0). (II.184)

Recall that the drop of the quasichemical potential across the contact region is,

∆µ(0) = µN (0)− µF (0). (II.185)

We need to determine both the quasichemical potential drop, ∆µ(0), at the contact, as well as
the spin accumulation in the ferromagnet, µsF (0), in order to calculate the emf.

Let us first calculate the drop of the electrostatic potential across the contact. The charge
neutrality gives,

∆φ(0) = φN (0)− φF (0) = −∆µ(0) + PgFµsF (0). (II.186)

Recall the drift diffusion model at the contact:

j = Σ∆µ(0) + Σs∆µs(0), (II.187)
js = Σs∆µ(0) + Σ∆µs(0). (II.188)

Eliminate ∆µs(0) from the second equation, substitute for the first, and use that j = 0 to obtain
the quasichemical potential drop at the contact,

∆µ(0) = −RcPΣjs(0), (II.189)

where Rc is the effective contact resistance given by Eq. (II.136).
We then have,

∆φ(0) = RcPΣjs(0) + PgFµsF (0). (II.190)

We have now connected the voltage drop across the contact to the spin current, js, and the spin
accumulation in the ferromagnet, µsF , at the contact.

With the boundary condition, Eq. (II.173), the following equation describes the spatial profile
of µs:

µsN (x) = µsN (∞) + [µsN (0)− µsN (∞)] e−x/LsN . (II.191)

The value of µsN (0) is yet to be determined. The above equation gives,

∇µsN (0) = − 1
LsN

[µsN (0)− µsN (∞)] . (II.192)

Using the condition of j = 0, we then obtain the following set of equations for the spin currents
at x = 0:

jsN (0) = − 1
RN

[µsN (0)− µsN (∞)] , (II.193)

jsF (0) =
1
RF

µsF (0), (II.194)

jsc =
1
Rc

∆µs(0). (II.195)
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Fig. II.18. Sketch of the profile for the quasichemical potential µ (left) and the spin accumulation µs (right).

Assuming again that the spin is conserved across the interface at x = 0, that is,

js = jsF (0) = jsc = jsN (0), (II.196)

we obtain for ∆φ(0) by substituting for js = jsF (0) from Eq. (II.194) into Eq. (II.190) :

∆φ(0) =
(
RcPΣ +RFPgF

RF

)
µsF (0). (II.197)

The quasichemical potential, µsN (0), can be obtained by eliminating js and µsN (0) from the
Eqs. (II.193), (II.194), and (II.195):

µsF (0) =
RF

RF +Rc +RN
µsN (∞) < µsN (∞). (II.198)

This allows to write the spin current at the contact as,

js(0) =
1

RF +Rc +RN
µsN (∞). (II.199)

Substituting for the spin current in Eq. (II.189), we obtain for the quasichemical potential drop,

∆µ(0) = − RcPΣ

RF +Rc +RN
µsN (∞). (II.200)

The drop of the quasichemical potential across the contact is due to the spin filtering effect of
the contact. If the contact conductance were spin-independent, the chemical potential would be
continuous at x = 0. Furthermore, substituting for the spin quasichemical potential from Eq.
(II.198) into the equation for the electrical voltage drop, Eq. (II.197), yields,

∆φ(0) =
RcPΣ +RFPgF

RF +Rc +RN
µsN (∞). (II.201)

The electrostatic potential drop across the contact is due to the spin polarization of the ferromag-
net as well as due to the spin filtering effects of the contact. The profiles for the quasichemical
and spin quasichemical potentials across the junction are shown in Fig. II.18. We leave as an
exercise for the reader to calculate the profile of the spin current across the junction in the regime
of the spin-charge coupling.
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Fig. II.19. Toy model of the Silsbee-Johnson spin-charge coupling. The ferromagnetic region (F) has
exchange split bands. The nonmagnetic conductor (N) has nonequilibrium spin of accumulation µsN . The
applied voltage V gives an offset of the quasichemical potentials in F and N.

We are now ready to write the formula for the emf. Substituting Eq. (II.198) for µsF (0) and
Eq. (II.200) for ∆µ(0) into Eq. (II.184), the spin-induced emf becomes,

emf = −RFPσF +RcPΣ

RF +Rc +RN
µsN (∞) = −Pj µsN (∞). (II.202)

Recall that Pj is the spin injection efficiency, given by Eq. (II.139). If there is a positive spin
accumulation at x = ∞ so that µsN (∞) > 0, and if the junction spin polarization is also positive,
Pj > 0, the emf is negative: the quasichemical potential in the F region is greater than that in
the N region. To preserve charge neutrality, opposite holds for the electrostatic potential: there
is a higher electrostatic potential in N than in F. If an external circuit is added into our system,
maintaining the spin accumulation at x = ∞, the current would flow from N to F (electrons
from F to N) through the external circuit, and from F to N (electrons from N to F) through our
system,22 completing the circuit. Reversing either Pj or µsN (∞) (not both), changes the sign of
the emf, in a spin-valve fashion. In an open circuit electrons create opposite surface charges at
the far ends of the F and N regions: the equilibrium is reached by electrons flowing from N to F
until an equilibrium electric field (and the associated voltage drop ∆φ) is established to prevent
further flow of electrons.

The spin-charge coupling, given by Eq. (II.202), says that there is an emf developed if an
equilibrium spin, here Pj , is in electrical contact with a nonequilibrium spin, here µsN (∞). This
effect allows detection of nonequilibrium spin, by putting a ferromagnetic electrode over the
region of spin accumulation. By measuring the emf across this junction, we obtain information
about the spin in the nonmagnetic conductor.

The spin-charge coupling can also be understood from the following toy model of the elec-
tronic structure of F and N regions, as illustrated in Fig. II.19. There is a nominal voltage V
applied across the junction, while a nonequilibrium spin in the nonmagnetic region is described

22This is the signature effect of a battery: electrons in the battery are driven, by what one could term spin affinity,
against the electrical force.
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by the spin quasichemical potential µsN . The tunneling current across the junction is propor-
tional to the transmission probability, the product of the densities of states, and the voltage drop.
The spin up and spin down currents thus are

I↑ ∼ t↑gNgF↑(V + µsN ), (II.203)
I↓ ∼ t↓gNgF↓(V − µsN ), (II.204)

where tσ is the tunneling probability for electrons with spin σ. Let us denote as t = (t↑ + t↓)/2
and ts = (t↑ − t↓)/2. The total current then is

I = I↑ + I↓ ∼ gN (tgF + tsgsF )V + gN (tgsF + tsgF )µsN . (II.205)

The current flows even in the absence of external bias, V = 0:

I ∼ (tgsF + tsgF )µsN . (II.206)

This spin-charge coupling current is proportional to the equilibrium materials parameters of the
ferromagnet and the contact, and due to the spin accumulation in the nonmagnetic conductor. In
an open circuit we put I = 0, and the resulting voltage V is the emf:

emf = − PgF + Pt

1 + PtPgF
µsN . (II.207)

Here Pt is the spin polarization of the transmission rates, and Pg is the spin polarization of the
density of states. If a conducting region with an equilibrium magnetization (characterized by
Pg) is in proximity with a conducting region of a nonequilibrium polarization (µsN ), an emf is
generated. The same holds if the contact between the conductors is a spin-filter.

E. Spin dynamics

E.1 Drift-diffusion model for spin dynamics

Let us come back to our random walk model of spin-polarized electrons, introduced in Sec. B.
We can generalize the model by considering the possibility of the rotation of the electron spins,
due to the presence of an external magnetic field B. A spin s undergoes a precession according
to the equation,

ds
dt

= s× ω0. (II.208)

Here ω0 = γB, with γ denoting the gyromagnetic ratio, is the directed Larmor frequency. If at
time t the spin is s, at time t+ τ , where τ � 1/ω0, the spin will be,

s(t+ τ) = s(t) + s(t)× ω0τ. (II.209)

The spin changes by an amount proportional to the product of the Larmor frequency and the
time τ of precession. The absolute value of the product gives the change of the phase of a spin
precessing transverse to the magnetic field.

Suppose that the electrons undergo random walk, with the step size l over a time step τ , as
depicted in Fig. II.20. The spin at point x at time t + τ will be given by the sum of the spins at



Spin injection and spin-dependent tunneling 613

Fig. II.20. Spin precession and random walk. Electrons have probabilities p+ and p− to jump either right
or left. If an applied magnetic field (blue vertical arrow) is present, the electrons’ spins precess. At x the
spin is a weighted average of the spin at x− l and x + l points, at the time of jump.

x+ l and x− l, at time t, each rotated about ω0 over the time step τ (the electron spin precesses
while the electrons wait for their turn to jump) and decreased by the fraction of τ/τs due to spin
relaxation:23

s(x, t+ τ) = p+

[
s(x− l, t) + s(x− l, t)× ω0τ − s(x− l, t)

τ

τs

]
+ p−

[
s(x+ l, t) + s(x+ l, t)× ω0τ − s(x+ l, t)

τ

τs

]
. (II.210)

As before, we denote by p+ and p− the probability for the electrons to jump right and left,
respectively. We can expand the left-hand side in Taylor series around t, and the right-hand side
in Taylor series around x, in full analogy with the discussion in Sec. B., and obtain:

∂s
∂t

= s× ω0 +D∇2s + µE∇s− s
τs
. (II.211)

The above is the drift-diffusion equation for spin dynamics. The first term on the right-hand side
describes spin precession, while the rest describe spin diffusion, spin drift, and spin relaxation,
respectively. In principle, the last term describing spin relaxation should read (s− s0)/τs, since
spin relaxation yields equilibrium spin, s0. For small magnetic fields in degenerate conductors
the tiny equilibrium spin can be neglected from the treatment of dynamical effects.

Can we write a continuity equation for spin including spin dynamics? If we suppose charge
neutrality, so that the electric field is constant, we can rewrite Eq. (II.211) in the form,

∂s
∂t
−∇ [µEs−D∇s] = s× ω0 −

s
τs
. (II.212)

The expression inside the brackets is the generalized spin current,24

Js = −µEs−D∇s. (II.213)
23We will see in the chapter on spin relaxation that there is a need to introduce one spin relaxation time for the spin

parallel to B, called longitudinal time T1, and a different spin relaxation time for the spin perpendicular to B, called
transverse time T2. In most conducting solids at small magnetic fields (say, smaller than a tesla), the two times are
roughly equal; we call them here commonly τs.

24In principle the spin current forms a tensor, as there are three directions for the current for three orientations of
the spin. Here we have a one-dimensional model, so the only directions for the current come from the spin. There
is a different current for each spin direction. This one-dimensional model is general enough to describe most existing
spin-injection experiments with spin dynamics.
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Fig. II.21. Spin injection geometry for the Hanle effect. Electron spins in the ferromagnet (F) are oriented
along y. An applied magnetic field in the z direction causes spin precession of the injected electrons in the
nonmagnetic (N) region.

The corresponding spin charge current then is,

js = −eJs = eµEs + eD∇s. (II.214)

Finally, the continuity equation reads,

∂s
∂t

+∇Js = s× ω0 −
s
τs
. (II.215)

Spin dynamics is taken into account by the first term on the right-hand side.

E.2 Hanle effect

The Hanle effect refers to the dependence of the spin accumulation on magnetic field applied
perpendicular to the injected spin. At weak magnetic fields the spin accumulation decreases with
the field, while at large fields one observes coherent decaying oscillations due to spin precession.
The decay of the spin accumulation at large magnetic fields is due to the drift-diffusive character
of the electron transport. The spin probe, at some distance from the point of spin injection,
detects the average spin. This spin comes from electrons that diffused from the point of spin
injection. As different electrons have different transit times, their spin precession angles will
differ. If this difference becomes comparable to the Larmor period, the average spin at the probe
will be zero. This explain why at large transverse magnetic fields the detected spin vanishes.

The model most widely employed in the experimental literature to describe the Hanle effect
uses spin diffusion, spin precession, and spin relaxation processes to describe the spin density at
a distance x from the point of spin injection. Suppose we inject spin sy along the x direction,
and apply magnetic field along the z direction, as depicted in Fig. II.21. The magnetic field
applies a torque on the spin, whose x component, sx, we wish to detect. Let the injected spin
density be sy0, the electron diffusion D and drift velocity vd, and the Larmor frequency ω0. The
time it takes for the average electron to move to x is t = x/vd. Because of the processes of
spin relaxation and spin precession, the spin component along the x direction of the diffusing
electrons is given, up to the overall scale,

sx(x, t) ∼ 1√
4πDt

e−(x−vdt)2/4Dte−t/T2 sin(ω0t). (II.216)
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Above we use T2 (we should use T ∗2 if inhomogeneous broadening is present) to denote spin
dephasing time, since we consider spin dynamics of transvere spin. The sine function describes
the spin dynamics corresponding to the boundary and initial condition of vanishing sx at x = 0
and t = 0. Since all the electrons present at the detection point, x, need to be counted, we have
to integrate over all the transport times t, for the fixed x, to obtain the measured spin:

sx(x) ∼
∫ ∞

0

dt sx(x, t) =
∫ ∞

0

dt
1√

4πDt
e−(x−vdt)2/4Dte−t/T2 sin(ω0t). (II.217)

Depending on the size of our spin probe, we can integrate sx(x) along the probe dimension to
get the result suitable for the experimental setup. Equation (II.217) is most commonly used to
extract T2 and ω0 (to get the g-factor) from the experimental results. The input parameters, D
and vd can be obtained from charge transport measurements.

Let us consider the Hanle effect more carefully, in the context of electrical spin injection
(Johnson and Silsbee, 1988). We will study the spin injection geometry shown in Fig. II.21.
Spin, initially along y, is injected from the ferromagnetic conductor into the nonmagnetic one.
The contact is at x = 0. In the N region, the injected spin precesses about the direction of
the external magnetic field B, which points in the z direction. Our goal is to find the spin
accumulation (and spin polarization) at a distance x > 0 away from the point of injection.

We will solve the spin dynamics drift-diffusion equation, (II.211), with the following bound-
ary conditions:

s(∞) = 0, (II.218)

valid for our N region which is greater than the spin diffusion length;

jsx(0) = jsz(0) = 0; jsy(0) = js0, (II.219)

expressing spin current conservation at the contact at x = 0. Only the spin current for electron
spins oriented along y (see Fig. II.21) is present. For our treatment below, we take js0 to be a
parameter. In order to determine it from materials constants, we would need to apply the standard
spin injection model, properly generalized to take into account spin dynamics. Since the value
of this parameter does not influence the functional form of the spin profile, which is what is
interesting in experiments on the Hanle effect, we do not go into the detailed considerations.
Forced to give an order of magnitude, the spin current at x = 0 would be something like,

js0 ≈ PnF j, (II.220)

where j is the charge current and PnF is the density spin polarization in the ferromagnet. That
the above equation is only a rough approximation, we learned from the standard spin injection
model in Sec. D.4. Another parameter, which also should be determined self-consistently from
the generalized standard model, is the electric field, E, taken to be constant here due to the
assumed charge neutrality. This is also useful since the electric drift field can be controlled in
experiments to qualitatively change the picture of the Hanle effect.

We will be interested in the steady-state effects, meaning that the time derivatives are to be
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taken zero. Our starting equations are,

ṡx = syω0 +Ds′′x − vds
′
x − sx/τs = 0, (II.221)

ṡy = −sxω0 +Ds′′y − vds
′
y − sy/τs = 0, (II.222)

ṡz = Ds′′z − vds
′
z − sz/τs = 0, (II.223)

subject to the boundary conditions,

sx(∞) = sy(∞) = sz(∞) = 0, (II.224)

describing the vanishing of spin at the far end of the nonmagnetic conductor, and,

− vds
′
x(0) +Ds′x(0) = 0, (II.225)

−vds
′
y(0) +Ds′y(0) = js0/e, (II.226)

−vds
′
z(0) +Ds′z(0) = 0, (II.227)

reflecting the spin current conservation at the contact region. Above we have introduced the drift
speed, vd = −µE.

Since the spin component sz is not coupled to the other two, the solution for its profile is
simple:

sz(x) = 0. (II.228)

This reflects the fact that there is no external torque acting on the injected sy(0) to precess away
from the xy plane. As for the x and y components, let us write the drift-diffusion equations for
them in a more transparent form:

s′′x −2κ
s′x
Ls

− sx

L2
s

+
sy

L2
s

(ω0τs) = 0, (II.229)

s′′y −2κ
s′y
Ls

− sy

L2
s

− sx

L2
s

(ω0τs) = 0, (II.230)

where we used that D = L2
sτs and we have denoted by

κ =
Ld

2Ls
, (II.231)

a dimensionless parameter measuring the strength of the drift over diffusion; the spin drift length
above is defined by,

Ld = vdτs, (II.232)

which is the length over which electrons drift before they lose their spin memory. Similarly, we
write for the boundary conditions,

− 2κ 1
Ls
sx(0) + s′x(0) = 0, (II.233)

−2κ 1
Ls
sy(0) + s′y(0) = js0

eD . (II.234)
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Searching for the solutions of Eqs. (II.229) and (II.230) in the form of,

sx(x) = Axe
−αx/ls , (II.235)

sy(x) = Aye
−αx/ls , (II.236)

gives the following condition on α,∣∣∣∣ α2 + 2ακ− 1 ω0τs
−ω0τs α2 + 2ακ− 1

∣∣∣∣ = 0. (II.237)

Solving for the determinant equation we obtain four distinct complex solutions for α. Selecting
the two of them with a real positive part, and solving quite a few algebraic equations to find out
the coefficients Ax and Ay to satisfy the boundary conditions at x = 0, we finally obtain the
spin profiles (note that in the spin injection regime the spin charge current, js, is negative, so that
electrons go from F to N):

sx(x) =
−js0Ls

eD
e−α1x/Ls

[
2κ+ α1

(2κ+ α1)2 + α2
2

sin
(
α2

Ls
x

)
+

α2

(2κ+ α1)2 + α2
2

cos
(
α2

Ls
x

)]
, (II.238)

sy(x) =
−js0Ls

eD
e−α1x/Ls

[
2κ+ α1

(2κ+ α1)2 + α2
2

cos
(
α2

Ls
x

)
− α2

(2κ+ α1)2 + α2
2

sin
(
α2

Ls
x

)]
. (II.239)

Here,

α1 =
1√
2

√
1 + κ2 +

√
(1 + κ2)2 + (ω0τs)2 − κ, (II.240)

α2 =
1√
2

√
−1− κ2 +

√
(1 + κ2)2 + (ω0τs)2, (II.241)

Parameter α1 describes the effective spin relaxation, while α2 describes the effective spin pre-
cession. Indeed, the effective spin relaxation length is,

Ls,eff =
Ls

α1
, (II.242)

while the effective period length of the Larmor spin precession is,

L0 =
2πLs

α2
. (II.243)

In order for Hanle oscillations to be visible, one should ideally have Ls,eff & L0. To summarize,
three parameters determine the functional form (up to the overall scale) of the spin profiles in
the Hanle effect: κ, ω0τs, and Ls. Alternatively, one can consider fitting experiments with the
effective parameters α1/Ls, α2/Ls, and κ.
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We also give the expression for the profile of the magnitude of the spin, s = (s2x + s2y)1/2:

s(x) =
js0Ls

eD

exp(−α1x/Ls)√
(2κ+ α1)2 + α2

2

. (II.244)

In practice, the spin detector covers a finite length over x. In order to convert the above
calculated spin profiles into the measured quantities, one needs to integrate the profile over the
detector’s length. By changing the magnetic or the drift fields one then observes the changes in
the integrated profile, extracting from those useful parameters such as the spin relaxation length
Ls or the spin relaxation time τs.

Another word of caution about applying the above obtained spin profiles to spin-valve ex-
periments. Equations (II.238) and (II.239) were obtained for the case of vanishing of spin at
x → ∞. In a spin-valve experiment one needs to apply a different boundary condition, that of
continuous spin current at the point x = L in which the second ferromagnetic electrode, into
which electrons are injected, is placed. This boundary condition requires using all four different
solutions of the determinant equation, (II.237). If L . Ls, the role of Ls will be played by L, to
some extent. It is straightforward to use the simple method above in specific device settings, to
obtain reliable quantitative fits and extract useful parameters.

In order to give physical meaning to the obtained formulas describing the Hanle effect, we
discuss two important cases: diffusion dominated and drift dominated Hanle effect.

Diffusion dominated Hanle effect. The diffusion regime is characterized by

κ� 1, (II.245)

meaning that the spin drift length, Ld, is much smaller than the spin diffusion length, Ls. This is
the typical regime in which the Hanle effect is observed in metals or in heavily doped semicon-
ductors, in which the electric field is rather small due to the large number of free carriers. We
have,

α1 =
1√
2

√
1 +

√
1 + (ω0τs)2, (II.246)

α2 =
1√
2

√
−1 +

√
1 + (ω0τs)2. (II.247)

At small magnetic fields, when ω0τs � 1, parameter α1 → 1, while α2 → 0. In the high
magnetic-field limit they both go as α1,2 ∼

√
ω0τs/2.

The effective spin relaxation length becomes,

Ls,eff =
√

2
Ls√

1 +
√

1 + (ω0τs)2
. (II.248)

At large magnetic fields, the effective spin relaxation length decreases due to rapid spin preces-
sion. The effective period length of the spin precession is,

L0 =
√

2
2πLs√

−1 +
√

1 + (ω0τs)2
. (II.249)
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At large magnetic fields the period decreases as

L0 →
√

2
2πLs√
ω0τs

= 2
√

2π
√
D

ω0
, (II.250)

which can be interpreted as the Larmor length—roughly the distance over which spin diffuses in
the Larmor period 2π/ω0. In the diffusive limit, the spin magnitude decreases with distance x,
as well as with the magnetic field, according to

s(x) =
js0Ls

eD

exp(−α1x/Ls)
[1 + (ω0τs)2]1/4

. (II.251)

Finally, we give the effective period of the Larmor frequency, for a given point in space,
x = x0. In experiments one usually varies magnetic field for a fixed position of the spin probe.
As the field varies, due to the spin precession, peaks and dips are obtained in the probed spin as
a function of magnetic field. These periodic structures diminish at large fields (or large Larmor
frequencies), due to the increased effective spin relaxation and a decrease in the overall spin
magnitude. In the diffusive regime, the periodicity of 2πn occurs for frequencies (up to an
offset),

ω0n ≈
8π2n2D

x2
0

. (II.252)

The fact that the period frequencies increase quadratically with increasing n comes from the
diffusive character of motion: the characteristic time increases quadratically with the covered
distance. The above relation says that n is roughly the number of Larmor diffusion lengths,
(D2π/ω0)1/2, in x0.

The diffusion-dominated Hanle effect is illustrated in Fig. II.22. For the parameters used, the
effective spin relaxation length is about Ls, while the effective period length is L0 ≈ 4Ls. Since
Ls . L0, the oscillations decay very fast and only one cycle, already quite reduced, is seen.
As a function of magnetic field, the spin decays at large magnetic fields due to the diffusion, as
described in the introduction to this section. Diffusion causes different transit times for electrons,
so if the spread in the transit times due to diffusion becomes comparable to the Larmor period,
average spin at a given point x is greatly reduced. The sy spin density decays initially, as a
function of magnetic field, decreasing its magnitude to about one half of the initial one, at the
larmor frequency such that ω0 ≈ 1/τs. This decay shape can be used to obtain an estimate on
the spin relaxation time τs.

Drift dominated Hanle effect. The drift dominated regime is defined by

κ� 1, (II.253)

meaning that the spin drift length is much greater than the spin diffusion length. This regime
occurs in Hanle effect experiments on very clean samples, such as the silicon samples discussed
in Sec. F.2. In this regime we can expand about 1/κ, and obtain,

α1 =
1
2κ
, (II.254)

α2 =
ω0τs
2κ

. (II.255)
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Fig. II.22. Diffusion-dominated Hanle effect. The left graph shows the spin profiles, while the right graph
shows the magnetic field dependence of the spins, at a fixed point, a distance x = 1Ls away from the
spin injection point. The distance is in the units of the spin diffusion length. The parameters are κ = 0.2,
meaning that Ld = 0.4Ls and, for the left graph, ω0τs = 5, meaning that there is about one Larmor
precession (note that the period is 2π/ω0 in the time interval of spin relaxation time) in the time of τs.
Hanle oscillations decay rapidly on both graphs, at large distances and at large magnetic fields, due to the
effective drift and magnetic field induced spin relaxation.

The effective spin relaxation length is then

Ls,eff = Ld = vdτs, (II.256)

equal to the spin drift length. This has simple interpretation. Spin is dragged by the electric field
in the sample, increasing effectively the spin relaxation length beyond the spin diffusion length,
as noticed already by Aronov (1976).

The effective spin precession period in the drift regime is,

L0 =
2πLd

ω0τs
=

2πvd

ω0
. (II.257)

Again, the interpretation is straightforward. The period length of the spin precession is the
distance over which electrons drift over time of the Larmor period, 2π/ω0.

As we did in the diffusive regime, we also present the Larmor frequencies at which we can
expect the signal to exhibit peaks or dips, 2πn = α2nx0/Ls, given by (up to an offset),

ω0n ≈ 2πn
vd

x0
. (II.258)

The peaks (or dips) occur in magnetic fields at these frequencies. Since the drift produces char-
acteristic times linearly proportional to the distance, the increase of ω0n with increasing n is also
linear, simply given by the number of full Larmor periods over the transit time, x0/vd.
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Fig. II.23. Drift-dominated Hanle effect. The left graph shows the spin profiles, while the right graph shows
the magnetic field dependence of the spins, at a fixed point, a distance x = 5Ls away from the spin injection
point. The distance is in the units of the spin diffusion length. The parameters are κ = 2.5, meaning that
Ld = 5Ls and, for the left graph, ω0τs = 5, meaning that there is about one Larmor precession, in the
time of τs. Note that the period is 2π/ω0 in the time interval of spin relaxation time. Hanle oscillations are
seen in both graphs, decaying at large distances and at large magnetic fields, due to the effective, drift and
magnetic field induced spin relaxation.

The drift-dominated Hanle effect is illustrated in Fig. II.23. Hanle oscillations are nicely
observed, decaying in space with the effective drift-induced spin relaxation length of Ls,eff =
5Ls. The periodic decaying oscillations have the period of 2π, as seen immediately from the sy

component, for example. At x = 0 it is mostly sy , due to the spin injection, which is excited,
while sx is phase shifted. The dependence on the magnetic field also shows oscillations, with the
period roughly 2π. The spin dependence on B for negative B (pointing along −z) is a mirror
image of the positive field curve, reflecting the opposite direction of the spin precession. We
will see that similar Hanle plots have been observed in the experiments on the spin injection into
silicon, described in Sec. F.2.

F. Spin injection into semiconductors

Electrical spin injection into semiconductors, such as GaAs, has been demonstrated to be highly
efficient Fiederling et al. (1999); Ohno et al. (1999); Jonker et al. (2000); Mattana et al. (2003).
Those early investigations are covered in detail by Žutić et al. (2004). Here we show two recent
examples. The first is the spin injection across an Fe/GaAs interface, imaged by scanning probe
Kerr rotation microscopy, the second is the very recent milestone—injection and detection of
spin into silicon.
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Fig. II.24. Scheme of electrical spin injection device allowing spin imaging. Electrons are injected from
the left electrode into n-doped GaAs, with the electron and spin flow indicated. A transverse magnetic field
By is applied to rotate the spins. The scanning probe laser detects the vertical component of the spin by the
magneto-optical Kerr effect. Reused with permission from S. A. Crooker et al., Journal of Applied Physics,
101, 081716 (2007). Copyright 2007, American Journal of Physics. The magnetization direction of the
injecting electrode is opposite to that in the published version, to reflect the experiment discussed in the
text. Courtesy of S. A. Crooker.

F.1 Visualizing spin injection

We will illustrate electrical spin injection across ferromagnet/semiconductor interfaces on the ex-
ample of a lateral Fe/GaAs system, analogous to the lateral spin-valve structures intially studied
by Johnson and Silsbee (1985). The particular choice of materials is motivated by the high quality
of the lattice matched Fe/GaAs and extensive previous studies showing an efficient spin injec-
tion (Hanbicki et al., 2002, 2003; Wunnicke et al., 2002) in these junctions. A close connection
between the first-principles calculations and atomic resolution interface imaging revealed that the
increase in the spin injection efficiency is due to the abruptness as well as due to the chemical and
structural coherence of the annealed interface (Erwin et al., 2002; Zega et al., 2006). Beautiful
images of electrically injected spin have been obtained by (Crooker et al., 2005, 2007) and by
(Kotissek et al., 2007), following earlier imaging of optically injected spin (Crooker and Smith,
2005); see also (Stephens et al., 2004).

The scheme of the device used by Crooker et al. (2005) is shown in Fig. II.24. The stan-
dard spin-valve setting comprises two ferromagnetic electrodes, made of Fe, epitaxially grown
on top of heavily n-doped GaAs layers, which are then grown on the GaAs substrate. The con-
tacts between the electrodes and heavily-doped layers form Schottky barriers, overcoming the
conductivity mismatch problem, see Secs. D.7 and D.8, allowing efficient spin injection into the
substrate semiconductor. The length of the GaAs channel for electric current is 300 µm. The
GaAs substrate is doped with 2 × 1016 cm−3 silicon donors. This doping lies at the metal-to-
insulator transition region for GaAs, in which longest spin relaxation times, up to 200 ns, have
been found (Žutić et al., 2004; Dzhioev et al., 2002; Kikkawa and Awschalom, 1998; Oestreich
et al., 2005; Schreiber et al., 2007). As the injected electrons diffuse through GaAs, their spins
precess due to the external magnetic field, applied perpendicular to the injected spin direction.
The spin component (magnetization) out of the plane of the substrate is measured by the Kerr ro-
tation spectroscopy (see Sec. IV.E.1 for the description of how Kerr and Faraday magneto-optic
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Fig. II.25. (A) Photomicrograph of the electrical spin injection device used to image spin in lightly n-
doped GaAs. The reference coordinate system is indicated. (B) Images of the Kerr rotation angle, θK .
Positive angle means positive spin along the z direction. The source-drain voltage is Vb = 0.4 V, the
transverse magnetic field By = 3.6 gauss. The spin injected at the source contact (left) is antiparallel to the
magnetization M ; similarly for the spin accumulated at the drain contact (right). From S. A. Crooker et al.,
Science 309, 2191 (2005). Reprinted with permission from AAAS.

spectroscopies work), with the spatial resolution of a few microns. The experiment has been
performed at 4 K, and the estimated injected spin polarization is 5-10 %. The extracted spin
lifetime τs, from the Hanle effect measurements (see Sec. E.2) is about 150 ns, in line what has
been seen by other methods (Žutić et al., 2004) in this doping regime.

The micrograph of the structure is shown in Fig. II.25 A. Spin-polarized electrons are injected
from the left ferromagnetic electrode whose magnetization is directed to the left (along−x). This
means that the magnetization of the majority electrons points along−x (which is the easy axis for
the magnetization of the structure, [011] crystallographic direction), while the minority electron
magnetization points along x. As the g-factor in Fe is positive,25 g ≈ 2.09 (Frait, 1977), the
majority electron spin points along x, and the minority electron spin points along −x. In the
GaAs, the z-component of the electron spin (or magnetization, see footnote 25) is probed by the
Kerr angle. The positive Kerr angle θK translates into a positive electron spin.

Figure II.25 B is the image taken by the Kerr probe. Electrons injected into the GaAs sub-
strate from Fe source electrode have their spins oriented antiparallel to the magnetization of the
electrode. This is seen from the fact that the Kerr angle is positive close to the source electrode.

25For a positive g-factor the spin and magnetization have opposite directions. For a negative g-factor semiconductor,
such as GaAs, the two vectors point in the same direction.
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Recall that a magnetic dipole m feels torque N = m × B in a magnetic field B. Therefore a
spin (magnetization in GaAs) pointing along x will feel a torque along z, due to the magnetic
field By . This torque rotates the electron spin towards positive z. If the spin were injected along
−x, the rotation would be towards −z. We can then conclude that the injected spin points along
the spin of the majority electrons in Fe, that is, it is the majority electron spin which is injected
from Fe into GaAs. Simple considerations would predict that minority spin would be injected:
indeed, one expects that while the majority electrons have larger density, their density of states at
the Fermi level is smaller than that for the minority electrons. Since in tunneling it is the density
of states that matter, one would expect that minority electron spin would be injected in excess
of that of the majority one. The fact that the experiment sees the majority spin injection shows
that band-structure effects and specific tunnel structures play important qualitative role in spin
injection.

This conclusion is even more emphasized by looking at the spin accumulation close to the
drain electrode in Fig. II.25 B. While during most of the bulk transport spin polarization along
z is close to zero, due to the spin diffusion length of about 50 µm, there is appreciable spin
polarization at the drain Fe electrode. Since the Kerr angle is again positive, one concludes that
the spin orientation is along x, similar to the injected spin by the source. In contrast, the standard
model of spin injection results in spin extraction if electrons are driven from a nonmagnetic
conductor into a ferromagnet, see Sec. D.4. It is then evident that the spin polarization at the drain
interface is due to the reflection of the electrons from the ferromagnetic electrode. The subtle
effects of the ferromagnetic Schottky barriers and the related spin extraction in the forward biased
contacts, such as the one at the drain contact in Fig. II.25 or the MnAs/GaAs Schottky barrier
studied in (Stephens et al., 2004), have been further investigated experimentally (Lou et al.,
2006), and theoretically (Dery and Sham, 2007; Adagideli et al., 2006; Osipov and Bratkovsky,
2005; Bauer et al., 2005; Bratkovsky and Osipov, 2004; Osipov et al., 2005; Bauer et al., 2004).
The prediction of spin extraction (Žutić et al., 2002) shows already on the example of simple
magnetic p-n junction important implications of the nonlinear regime (Žutić et al., 2002; Fabian
et al., 2002b); at low biases there is no spin injection across a magnetic p-n junctions. For
example, as observed experimentally, the spin polarization generated in the semiconductor can
strongly depend on the applied bias, in contrast to the description based on the equivalent resistor
scheme which leads to bias-independent spin polarization.

F.2 Spin injection into silicon

Spin injection into silicon is a great challenge. There are several reasons for that. First, unlike
GaAs, silicon is an indirect band gap semiconductor, so optical orientation or luminescence are
ineffective for spin polarization or spin detection (Žutić et al., 2004). One needs to consider
alternative approaches, such as proposed by Žutić et al. (2006b). Second, it appears that silicon,
due to materials reasons, does not easily form suitable spin-preserving contacts with common
ferromagnetic metals, so that relatively complicated material processing is required (Min et al.,
2006; Žutić, 2006). Third, it is difficult to find an appropriate ferromagnetic semiconductor
which would ensure high-quality interfaces with silicon and could be used as an efficient spin
injecting electrode.26 Again, such a material, GaMnAs, exists for GaAs.

26There is an initial support that Mn-doped chalcopyrite semiconductors could be possible candidates as they are
lattice matched with silicon (Cho et al., 2002; Ishida et al., 2003; Erwin and Žutić, 2004). Similarly, while GaMnAs/Si
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Fig. II.26. Scheme of the device demonstrating electrical spin injection into silicon. (a) Electronic band
diagram of the hot-electron spin valve. The emitter voltage, Ve, is fixed, while the first, Ic1, and second,
Ic2, collector currents are measured, as a function of the orientation of the magnetizations of the two
ferromagnetic layers, as well as of the first collector voltage Vc1. (b) A micrograph of the actual device.
Symbol FZ stands for float-zone, while TJ is brief for a tunnel junction. Reprinted by permission from
Macmillan Publishers Ltd: Nature. I. Appelbaum et al., Nature 447, 295 (2007), copyright 2007.

Nevertheless, injecting spin into silicon and making a useful device application, such as a spin
MOSFET, has remained a holy grail of semiconductor spintronics. These goals have been elusive
for almost a decade, until the recent work of Appelbaum et al. (2007) reported a breakthrough in
achieving robust electrical spin injection into pure silicon [see a popular account of this discovery
in (Žutić and Fabian, 2007)]. Robust spin injection into silicon has also been achieved recently
by Jonker et al. (2007), from an iron emitter over an Al2O3 barrier.

The electrical spin injection scheme of (Appelbaum et al., 2007) is reproduced in Fig. II.26.
Spin unpolarized electrons are injected from the aluminum (Al) emitter, through the aluminum
oxide (Al2O3) barriers into, what could be termed base, the ferromagnetic layer CoFe. Passing
electric current, electrons of the minority spin (those producing magnetization opposite to the
magnetization of the material27) lose their energy much more rapidly than the electrons of the

junctions with 4% lattice mismatch have already been fabricated (Zhao et al., 2002), it remains to be seen if they could
enable spin injection into silicon.

27For a positive g-factor, the electron magnetic moment is opposite to the electron spin. The minority electrons then
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majority spin (those whose magnetization is in the direction of the material’s magnetization).
The ferromagnetic layer acts as an efficient spin filter, letting only electrons with the majority
electron spin passing through. These spin-polarized electrons enter the silicon. The silicon
in the experiment is of high purity (also called float-zone silion; float-zone is a bulk crystal-
growth technique), undoped, 10 micron thick. The electrons traversing the silicon, which can be
considered as the first collector, enter the second ferromagnetic filter, here NiFe, which works
the same way on the spins as the first one. The electrons which pass ballistically through the
second (NiFe/Cu) metal base, enter the second collector, here an n-doped silicon.

The variables in the experiment are the magnetization orientations of the two ferromagnetic
filters, as well as the voltage drop Vc1 across the silicon. The observed quantity is the second
collector current, Ic2. Since the device is based on hot (not thermalized) electrons,28 the current
Ic2 is not sensitive to the variations of Vc1: the current is limited by the supply of the electrons
through the oxide barrier; the electrons in the silicon are simply swept to the second collector.
The magnetization orientations allow to detect the spin-valve effect,29 while changes of Vc1, in
combination with an external magnetic field, allow to probe the Hanle effect. Both the spin-valve
and the Hanle effect were demonstrated in the experiment, which was done at 85 K.

The spin-valve effect is observed by variations of the collector current, Ic2, between parallel
and antiparallel magnetizations of the spin filter ferromagnets. The relative change of Ic2 in the
experiment, for the parallel and antiparallel orientations, was about 2%. Subsequent variations of
the experiment reported much higher, 35% (Huang et al., 2007d) and even 115% (Huang et al.,
2007b) changes in the collector current. While in the original experiment, shown in Fig. II.26,
the ballistic spin filtering in the ferromagnetic layers introduced spin-polarized electrons into
the silicon, the newer variants of the experiment employ interface polarization in the emitter
electrode. In addition to higher spin-valve signals, this modification also yields higher output
currents, as the ballistic transport is through nonmagnetic Al and Cu, rather than through the
shorter mean free path ferromagnetic CoFe layers. The spin-valve signal is a signature of the
presence of spin-polarized electrons, as injected from the emitter, at the second collector. The
electrons travel 10 microns through silicon without significantly losing their spin orientation.
In Huang et al. (2007b), for example, the electron spin polarization is inferred to be remarkably
high, at least 38%, after traversing 10 microns. Most recently, Huang et al. (2007a) demonstrated
coherent spin-polarized transport across an entire silicon wafer, a remarkable 350 micron-long
journey, translating to spin relaxation times as large as 200 ns (at 85 K), see Sec. IV.E.2.

More subtle, but also more conclusive, proof of electrical spin injection constitutes the ob-
servation of the Hanle effect, see Sec. E.2. In the Hanle effect an injected spin precesses in an
applied transverse magnetic field. Due to diffusion, different electrons arrive at the collector in
different times, so that the average spin at the collector in general diminishes with increasing
magnetic field. If the Larmor period becomes comparable to the spread of the transit times, the
average spin at the collector vanishes. The contribution of spin relaxation to the decay of the
spin-precession signal is much weaker than the diffusive contribution, in these experiments. At
smaller magnetic fields one can see oscillating spinvalve signals, as a function of the field, due

have their spin in the direction of the magnetization of the material.
28In the device the hot electrons after tunneling lose energy due to phonons and equilibrate to the conduction band

minimum in less than 100 nm.
29The spin-valve effect refers to the reduction of the electrical current by making the orientations of the ferromagnetic

electrodes antiparallel. The “valve” opens for the parallel orientation.
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Fig. II.27. Demonstration of the Hanle effect in silicon. The emitter voltage is Ve = −1.8 V. The sec-
ond collector current, Ic2, is plotted as the function of a perpendicular (to the orientation of the injected
spin) magnetic field. While (a) is at zero Vc1, figures (b) and (c) correspond to Vc1 = 0.5 V and 1.0 V,
respectively. The extracted effective drift fields for the three cases are 400 V/cm, 900 V/cm, and 1400 V/cm
(Huang et al., 2007c). The red and blue lines are for forward (left to right) and subsequent reverse (right to
left) sweeps of the magnetic field, respectively. Reprinted by permission from Macmillan Publishers Ltd:
Nature. I. Appelbaum et al., Nature 447, 295 (2007), copyright 2007.

to spin precession. This is shown in Fig. II.27. Different graphs correspond to different drift
velocities, which are controlled by the bias Vc1. The larger is Vc1, the larger is the drift velocity;
the higher is the drift field, the smaller is the transit time. A larger magnetic field is then needed
for the spins to make a full precession, see Eq. (II.258). This is the reason why the peaks corre-
sponding to the full cycles (multiples of 2π) shift to higher magnitudes as the drift field increases.
Up to two full cycles are observed in II.27c. Half cycles (odd multiples of π) correspond to a
spin flip, giving a reduced collector current, resulting in the observed dips. In a demonstration of
spin transport across a 350 µm thick silicon wafer (Huang et al., 2007a), oscillations up to four
cycles were observed.

In Fig. II.27 shows that the Hanle oscillations depend on the direction of the magnetic field
sweep. The reason is that the transverse field has a small in-plane (defined by the planes of
the ferromagnetic electrodes in which their magnetizations lie) component of this external field
capable of switching the magnetizations of the two ferromagnetic layers parallel or antiparallel.
Starting with the red curve on the negative side, the two magnetizations are parallel. As one
crosses through zero, they becom antiparallel, phase-shifting the oscillations (they are not mirror-
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Fig. II.28. Specular and Andreev reflection at normal metal (N)/superconductor (S) interface. In contrast to
the classical or specular reflection in (a), there is a change in the charge of the reflected particle undergoing
Andreev reflection (b). The incident electron is reflected as a hole which retraces the initial trajectory (retro-
reflection) and the two electrons are transferred to the superconducting region. One can also note that from
the energy conservation in Andreev reflection an incident electron, slightly above the Fermi level will be
accompanied by another electron of opposite spin slightly below the Fermi level. The transfer of the second
electron below the Fermi level into a superconductor is equivalent to a reflected hole moving away from the
N/S interface, as shown in (b).

reflected). Similarly for the blue curve which starts at the positive end. In the ideal case the red
and the blue curves would be mirror images, which is roughly what is observed.

This first observation of electrical spin injection into silicon is an important milestone for
integrating silicon with spintronics. Two important challenges remain: electrically injecting spin
into doped (n- or p-type) silicon, and making useful device spintronic structures based on silicon.
The two challenges are related, as electronic devices employ doped silicon, in which current is
carried by thermal electrons or holes. Electronic as well as spin properties of undoped and doped
silicon are also very different. Spin relaxation, for example, is expected to increase rapidly
with doping, but also with temperature, see Sec. IV.E.2. Furthermore, doped samples screen
electric fields, generating different conditions at contacts with other materials. As for useful
devices, it remains to be seen whether the nice spin-valve properties of the hot-electron device of
Appelbaum et al. (2007) survive in more conventional device settings. The important question,
“Can we make a useful silicon spin MOSFET?”, remains open.

G. Andreev reflection at superconductor/semiconductor interfaces

As we have seen from the previous discussion, a carrier spin polarization is an important quantity
that determines spin injection efficiency and magnetoresistive effects such as the giant magne-
toresistance (GMR) and the tunneling magnetoresistance (TMR), see Sec. H. Here we focus on
a particular method for measuring spin polarization which relies on the scattering process at an
interface with a superconductor, known as the Andreev reflection (Andreev, 1964; Deutscher,
2005). Before we discuss the relevant situation of the spin-polarized transport in junctions which
combine ferromagnets and superconductors, it is helpful to briefly review a simpler case of the
charge transport across a normal conductor (N) and superconductor (S) interface.

G.1 Conventional Andreev reflection

There are two ways in which electrons reflect off an N/S interface. Figure II.28 (a) shows clas-
sical (specular) reflection at an interface which is similar to a ball bouncing of a wall. In this
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case an electron (depicted as a solid circle) approaching the interface is reflected with the same
charge (“e”) and the same spin (“up arrow”). No electrical current is transferred to the super-
conductor. Figure II.28 (b) shows the Andreev reflection which is inherent to superconducting
interfaces. In this case an electron approaching the interface is reflected backwards and con-
verted into a hole (the absence of an electron is depicted as an empty circle) with opposite charge
(“-e”) and opposite spin (“down arrow”). In addition, when the Andreev reflection occurs two
electron charges (“2e”) are transferred across the interface into the superconductor. This pair of
electrons with oppositely oriented spins, known also as the Cooper pair, carries dissipationless
electrical current in the superconductor. Similar considerations apply also for incident holes so
an incident electron (hole) of spin λ is reflected as a hole (electron) belonging to the opposite
spin subband λ, back to the nonsuperconducting region, while a Cooper pair is transferred to
the superconductor. This is a phase-coherent scattering process in which the reflected particle
carries the information about both the phase of the incident particle and the macroscopic phase
of the superconductor (Lambert and Raimondi, 1998; Pannetier and Courtois, 2000). Andreev
reflection is thus responsible for a proximity effect where the phase correlations are introduced to
a nonsuperconducting material (Demler et al., 1997; Halterman and Valls, 2001; Buzdin, 2005;
Tokuyasu et al., 1988; Bergeret et al., 2005; Izyumov et al., 2002; Braude and Nazarov, 2007;
Zareyan et al., 2002).

In a superconducting region there is typically a finite energy gap for quasiparticle excita-
tions, implying vanishing quasiparticle density of states at small enough energies. In a uniform
superconductor such a gap in the excitation spectrum can be related to the absolute value of the
so-called pair potential ∆ (de Gennes, 1989), which couples electron and hole contributions to
the superconducting wave function, as we have seen on the example of Andreev reflection. For
simplicity, we will mostly focus on Andreev reflection with ∆ being a spin singlet with orbital
s-wave symmetry, referred also as conventional pairing. However, superconducting pairing can
also include other orbital symmetries (such as d-wave with nodes in the superconducting gap),
spin triplet pairing, and even coexistence with ferromagnetism (Linder et al., 2007). Instead
of electron and hole quasiparticles in the normal metals, there are electron-like and hole-like
quasiparticles in the superconductor showing predominantly electron or hole character. It is then
instructive to note a similarity between the two-component charge transport in a N/S junctions
(for electron-like and hole-like quasiparticles) and spin-polarized transport in F/N junctions (for
spin ↑, ↓), which both lead to current conversion, accompanied with the additional boundary
resistance (Blonder et al., 1982; van Son et al., 1987). In a N/S junction the Andreev reflection
is responsible for the conversion between the normal current and the supercurrent, character-
ized by the superconducting coherence length, while in the F/N case a conversion between the
spin-polarized and unpolarized current is characterized by the spin diffusion length.

A convenient description for transport in superconducting junctions is provided by the Bogo-
liubov-de Gennes equations (de Gennes, 1989; de Jong and Beenakker, 1995; Žutić and Valls,
2000),[

Hλ ∆
∆∗ −H∗

λ

] [
uλ

vλ

]
= E

[
uλ

vλ

]
. (II.259)

Here Hλ is the single particle Hamiltonian for spin λ =↑, ↓; λ denotes a spin opposite to λ, E is
the excitation energy, and uλ and vλ are the electron-like quasiparticle and hole-like quasiparticle
amplitudes, respectively. With the appropriate matching of the wave functions at the boundaries
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Fig. II.29. Scattering processes at an N/S interface. A sketch of the excitation energy as a function of
the wave vector is given in the N and S regions (in the latter the spectrum is modified by the opening of
a superconducting gap). Incident electrons (In) undergo Andreev reflection (AR) with amplitude a, and
specular (classical) reflection (SR) with amplitude b, electron-like transmission with amplitude c and hole-
like transmission with amplitude d. In each scattering process, arrows depict the corresponding direction of
the group velocity.

(interfaces) between different regions, Eq. (II.259) can describe a spatial variation of both su-
perconducting properties (pair potential) as well as magnetic properties (exchange coupling or
spin splitting). Furthermore, it is also straightforward to include the spin flip and spin-dependent
interfacial scattering in Eq. (II.259) (Žutić and Das Sarma, 1999).

We can now consider a simple case of a one-dimensional charge transport across N/S junc-
tions in which we take N and S semi-infinite regions (x < 0 and x > 0, respectively) separated
by a planar interface at x = 0. For small applied bias V we can approximate that the magnitude
of wave vectors are equal to the Fermi wave vectors kN , kS , in the N and S regions, respectively.
The appropriate scattering processes, for an incident plane wave quasiparticle in the N region, are
depicted in Fig. II.29. For a step-like pair potential, which vanishes identically in the N-region,
the two-component wave function can be expressed in the N- and S-region as

ψN =
[

1
0

]
eikN x + a

[
0
1

]
eikN x + b

[
1
0

]
e−ikN x,

ψS = c

[
u0

v0

]
eikSx + d

[
v0
u0

]
e−ikSx, (II.260)

where u0 and v0 are the coherence factors given by u2
0 = 1 − v2

0 = (1/2)[1 +
√
E2 −∆2

0/E];
∆0 is the superconducting gap (in this case it coincides with the absolute value of the pair poten-
tial). Similar results were obtained in an early work by Griffin and Demers (1971) who solved
the Bogoliubov-de Gennes equations with barrier (a square or a δ-function) of a varying strength
at an N/S interface. They obtained a result which interpolates between the clean and the tun-
neling limit. Blonder et al. (1982) have used a analogous approach, now known as the Blonder-
Tinkham-Klapwijk (BTK) method where the two limits correspond to Z → 0 and Z → ∞,
respectively, and Z is the strength of the δ-function barrier. Coefficients a, b, c, and d are ob-
tained by matching the wave functions ψN and ψS at the interface, while the discontinuity of
their spatial derivatives is proportional to the strength of the interfacial delta-function potential.
A more detailed procedure of an analogous wave function matching is discussed in Sec. H.3.
The transparency of the Griffin-Demers-BTK approach makes it also suitable to study ballistic
spin-polarized transport and spin injection even in the absence of a superconducting region (Hu
and Matsuyama, 2001; Matsuyama et al., 2002; Hu et al., 2001; Heersche et al., 2001; Žutić,
2002; Božović and Radović, 2002).
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Fig. II.30. Schematic illustration of Andreev reflection at the ferromagnet/superconductor (F/S) interface
showing the density of states g↑,↓ in the normal region and in the superconductor with the energy gap |∆|.
In the F-region, where the exchange energy leads to a spin splitting 2h, only a fraction of incident electrons
with spin up will be able to find a partner of opposite spin and contribute to the charge transfer by entering
the superconductor and forming a Cooper pair.

From the preceding discussion it is possible to infer several properties of Andreev reflec-
tion, in particular its influence on the charge transport across N/S junctions. The probability for
Andreev reflection at low biases (|eV | . ∆0) is related to the square of the normal state trans-
mission and could be ignored for low transparency junctions with conventional superconductors
(having s-wave symmetry pair potential), since the specular reflection will be dominant with the
corresponding probability |b|2 → 1, recall Eq. (II.260)]. Conductance measurements in such
N/S junctions would give a vanishingly small value at low biases and low temperatures since
there is no mechanism for charge transfer into a superconducting region. In contrast, for high
transparency junctions (Z → 0) single-particle tunneling vanishes (|c|2, |d|2 → 0) at low biases
and temperatures—the Andreev reflection dominates.

G.2 Spin-polarized Andreev reflection

If we consider a superconducting junction with a spin-polarized region, we need to generalize our
description of scattering processes which now have spin-dependent scattering amplitudes and the
Fermi wave vectors [recall Eq. (II.260)]. For spin-polarized carriers, with different populations
of the spin subbands, as shown in Fig. II.30, only a fraction of the incident electrons from the
majority subband will have a minority subband partner in order to be Andreev reflected. This can
be quantified at zero bias and for transparent contacts (Z = 0), in terms of the total number of
scattering channels (for each k‖),Nλ = k2

FλA/4π, at the Fermi level. Here A is the point contact
area and kFλ is the spin-resolved Fermi wave vector. A spherical Fermi surface in F and S region,
with no (spin-averaged) Fermi velocity mismatch, is assumed. When S is in the normal state the
zero temperature conductance corresponds to the so-called Sharvin conductance (Sharvin, 1965),
arising in the ballistic transport between two bulk regions connected by a contact (an orifice or a
narrow and short constriction) with the radius much smaller than the mean free path, a� l:

GFN =
e2

h
(N↑ +N↓). (II.261)



632 Semiconductor Spintronics

In a 3D geometry this expression is equivalent to the inverse of the Sharvin resistance, R−1
Sharvin,

given by

RSharvin =
4ρl

3πa2
=
[
e2

h

k2
FA

2π

]−1

, (II.262)

where h/e2 ≈ 25.81 kΩ is the quantum of resistance per spin, ρ is the resistivity, A the contact
area, and kF is the Fermi wave vector.

In the superconducting state all of the N↓ and only (N↓/N↑)N↑ scattering channels con-
tribute to Andreev reflection across the F/S interface and transfer charge 2e, yielding (de Jong
and Beenakker, 1995),

GFS =
e2

h

(
2N↓ +

2N↓
N↑

N↑

)
= 4

e2

h
N↓. (II.263)

The suppression of the normalized zero bias conductance at V = 0 and Z = 0, (de Jong and
Beenakker, 1995)

GFS/GFN = 2(1− PC) (II.264)

with the increase in the spin polarization,

PC → (N↑ −N↓)/(N↑ +N↓), (II.265)

was used as a sensitive transport probe to detect the spin polarization in a point contact (Soulen
Jr. et al., 1998). A potential advantage of this technique is the detection of spin polarization in
a much wider range of materials than those which can be grown for detection in ferromagnetic
tunnel junctions employing the spin-valve effect (Žutić et al., 2004). From Eq. (II.264) one
could expect that the reduction of the normalized conductance can be used to infer the spin
polarization for a range of ferromagnetic materials. In particular, the conductance should be
vanishingly small for half-metallic ferromagnets with PC → 1, see Sec. C. While CrO2 indeed
showed nearly vanishing low-bias conductance (consistent with PC > 0.9), NiMnSb, one of the
originally predicted half-metals (de Groot et al., 1983), revealed only a partial spin polarization
(PC ≈ 0.5) (Soulen Jr. et al., 1998), suggesting that the theoretical concept of a half-metal needs
to be carefully verified. A similar study, using a thin film nanocontact geometry (Upadhyay et al.,
1998), emphasized the importance of fitting the conductance data over a wide range of applied
bias, not only at V = 0, in order to extract the spin polarization of the F region more precisely.

A large number of experimental results using the spin-polarized Andreev reflection has since
been reported (Nadgorny et al., 2001; Parker et al., 2002; Bourgeois et al., 2001; Miyoshi et al.,
2005, 2006; Clifford and Coey, 2006; D’yachenko et al., 2006; Raychaudhuri et al., 2003;
Maekawa (Ed.), 2006) focusing mostly on conventional superconductors to determine spin po-
larization in metallic ferromagnets including also MnAs (Panguluri et al., 2003), important for
semiconductor spintronics as it can be grown in high quality junctions with GaAs. These stud-
ies provide valuable information about materials that could be used as efficient spin injectors
or promising magnetic regions in magnetic tunnel junctions. At the time when there were only
limited number of studies of novel (III,Mn)V ferromagnetic semiconductors, it was suggested
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Fig. II.31. (a) A scheme of the voltage and current probes for transport measurements in Ga/(Ga,Mn)As-
based junction grown by molecular beam epitaxy. (b) Measured normalized conductance spectrum of a
Ga/(Ga,Mn)As junction shows a strongly suppressed Andreev reflection arising from the high spin polar-
ization and junction transparency from Braden et al., Phys. Rev. Lett. 91, 0566602 (2003). Reprinted by
permission of the American Physical Society, copyright (2003).

that their spin polarization and interfacial properties can be studied in superconducting junc-
tions (Žutić and Das Sarma, 1999). Similar measurements were performed on (Ga,Mn)As using
the point contact technique (Panguluri et al., 2005) and by growing (Ga,Mn)As heterostructures
with Ga chosen as the superconducting region (Braden et al., 2003). The results of Braden et al.
(2003) are shown in Fig. II.31 suggesting very highly polarized material (P > 0.8), consistent
with the small conductance observed at low bias. Andreev reflection was also used to measure
the spin polarization in narrow-band gap (In,Mn)Sb (Panguluri et al., 2004) and EuS (Ren et al.,
2007), from a class of ferromagnetic semiconductors known to be effective spin filters (Esaki
et al., 1967; Moodera et al., 2007).

While the Griffin-Demers-BTK-approach, generalized to include the effects of spin-polarized
transport, is valuable in estimating the measured spin polarization of ferromagnetic conductors,
for quantitative analysis there are many additional factors not contained in the simple expression
of Eq. (II.264). In the case of ferromagnetic semiconductors such as (Ga,Mn)As and (In,Mn)As,
the carriers are spin-polarized holes and the appropriate spin-orbit coupling would need to be in-
cluded. When the Fermi surface is not spherical, one has to specify what type of spin polarization
is experimentally measured (Xia et al., 2002; Mazin, 1999) and the care is needed even to calcu-
late the charge transport in superconducting junctions (Žutić and Mazin, 2005). The roughness
or the size of F/S interface may lead to a diffusive contribution to the transport (Jedema et al.,
1999; Fal’ko et al., 1999; Mazin et al., 2001). As a caution for possible difficulties in analyzing
experimental data, we mention some subtleties which arise even for a simple model of spher-
ical Fermi surfaces used to describe both F and S regions. Unlike for charge transport in N/S
junctions (Blonder and Tinkham, 1983) in the Griffin-Demers-BTK approach, the Fermi veloc-
ity mismatch between the F and the S region does not simply increase the value of the effective
Z. Specifically, at Z = V = 0 and normal incidence it is possible to have perfect transparency
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even when all the Fermi velocities differ, satisfying (vF↑vF↓)1/2 = vS , where vS is the Fermi
velocity in a superconductor (Žutić and Das Sarma, 1999; Žutić and Valls, 1999, 2000). In other
words, unlike in Eq. (II.264), the spin polarization (nonvanishing exchange energy) can increase
the subband conductance, for fixed Fermi velocity mismatch. Conversely, at a fixed exchange
energy an increase in Fermi velocity mismatch could increase the subgap conductance. Similar
results were also obtained when F and S regions were separated by a quantum dot (Zhu et al.,
2001; Feng and Xiong, 2003; Zeng et al., 2003) and even in a 1D tight-binding model with no
spin polarization (Affleck et al., 2000). In a typical interpretation of a measured conductance,
complications can then arise in trying to disentangle the influence of the parameters Z, PC , ∆0,
and the Fermi velocity mismatch, from the nature of the point contacts (Kikuchi et al., 2001)
and from the role of inelastic scattering (Auth et al., 2003). It was shown that several different
combinations of Z, PC , and ∆0, could provide conductance fits of similar accuracy (Panguluri
et al., 2005; Bugoslavsky et al., 2005).

Conventional superconductors typically offer only a narrow temperature window for study-
ing spin polarization, while Andreev reflection is limited to junctions with small Z-values. Both
of these limitations are relaxed in junctions with high temperature superconductors (HTSC’s),
but the lack of our understanding of these materials makes such structures more a test ground for
fundamental physics rather then a quantitative tool to determine spin polarization (Chen et al.,
2001; Vas’ko et al., 1998; Chen et al., 2005; Luo et al., 2005; Visani et al., 2007). There are
also several important differences with the studies using conventional low temperature supercon-
ductors in N/S junctions. The superconducting pairing symmetry no longer yields an isotropic
energy gap. The sign change of the pair potential can result in G(V = 0) > 0 for T → 0 even
for a strong tunneling barrier and give rise to zero bias conductance peak (Hu, 1994; Tanaka and
Kashiwaya, 1995; Wei et al., 1998; Hu, 1998; Kashiwaya and Tanaka, 2000; Sengupta et al.,
2001). Similar situation also pertains to F/S junctions with HTSC’s. Even at large interfacial
barrier (large Z) interference effects between the quasi-electron and quasi-hole scattering trajec-
tories which feel, respectively, pair potentials of different sign lead to the formation of Andreev
bound states which gives rise to a large conductance near zero bias (Žutić and Valls, 1999; Zhu
et al., 1999; Žutić and Valls, 2000; Kashiwaya et al., 1999; Hu and Yan, 1999; Vodopyanov,
2005; Dong et al., 2001). The suppression of a zero bias conductance peak, measured by a
scanning tunneling microscope was recently used to detect injected spin into a high-temperature
superconductors (Ngai et al., 2004). In multiple F/S junctions Andreev bound states can also
be formed with conventional superconductors and the transport properties are strongly modified
with the change of the polarization of F-regions or carriers injected in S-regions (Fominov, 2003;
Cayssol and Montambaux, 2004, 2005; Yamashita et al., 2005; Petković et al., 2006; Žikić and
Dobrosavljević-Grujić, 2007; Zhao and Sauls, 2007).

H. Spin-dependent tunneling in heterojunctions

H.1 Tunneling magnetoresistance (TMR)

In 1975 Jullière reported the first results concerning an experiment performed on an Fe/Ge/Co
junction, i.e., a junction made of a semiconducting slab, sandwiched between two ferromagnetic
leads (Jullierè, 1975). The experiment showed a dependence of the resistance on whether the
mean magnetization of the two ferromagnetic films were oriented in a parallel or antiparallel
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Fig. II.32. Schematics of parallel (a,c) and antiparallel (b,d) configurations for a tunnel junction composed
of two ferromagnetic electrodes FM1 and FM2 separated by an isolating (I) barrier. The density of states
corresponding to a spin-σ particle in the left and right ferromagnetic electrodes are denoted by gσ

l and
gσ

r , respectively. Assuming the energy and spin are conserved during tunneling, the total current can be
decomposed into spin-up (red arrows) and spin-down (blue arrows) contributions whose magnitudes are
indicated by the thickness of their corresponding arrows in (c) and (d). By comparing (c) and (d) one can
see that the total current in the parallel configuration is larger, leading to the smaller tunneling resistance.

configuration. Although in both cases the electrons tunnel through the same Ge semiconducting
barrier, leading to a high resistance, the measured resistance was higher in the case of the antipar-
allel alignment. This phenomenon, in which the resistance of a magnetic tunnel junction (MTJ)
depends on the relative orientation of the magnetization in the ferromagnetic leads, was termed
the tunneling magnetoresistance (TMR) effect. The size of the tunneling magnetoresistance is
characterized by the quantity30

TMR =
RAP −RP

RP
=
GP −GAP

GAP
, (II.266)

where RP (GP ) and RAP (GAP ) correspond to the resistance (conductance) measured in par-
allel [see Figs. II.32(a)] and antiparallel [see Figs. II.32(b)] configurations, respectively. The
TMR observed by Jullière in Fe/Ge/Co junctions was about 14% (Jullierè, 1975) but it was only
observable at liquid He temperatures (and never reproduced). The first reproducible TMR was

30Alternatively, another definition of the TMR, i.e., TMR = (RAP−RP )/RAP is also widely used in the literature.
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demonstrated by Maekawa and Gäfvert (1982) who observed a strong correlation between the
tunnel conductance and the magnetization process in Ni/NiO/ferromagnet junctions with Ni, Fe,
or Co as the counter electrode. The measured values of the TMR were, however, still very
small at room temperature. It was not until 1995 that, triggered by the success of the giant
magnetoresistance (GMR) and with the advent of superior fabrication techniques, ferromag-
net/insulator/ferromagnet structures were revisited and a large room-temperature TMR (∼ 18%)
was observed (Miyazaki and Tezuka, 1995; Moodera et al., 1995).31 The discovery of the room-
temperature TMR opened the possibility of using MTJs for fundamental studies of surface mag-
netism and room-temperature spin polarization in diverse ferromagnetic electrodes and produced
a resurgence in interest in the study of MTJs.

Furthermore, the TMR effect can be employed as widely as the GMR effect [e.g., highly
sensitive magnetic-field sensors, magnetic read heads, spin-valve transistors, etc (Žutić et al.,
2004; Hirota et al., 2002; Parkin, 2002; Dietzel, 2003)] but with the advantage of providing
higher magnetoresistive signal amplitudes. The most important, presently discussed application
of the TMR effect is, however, in the realization of magnetic random-access memories (MRAM)
(Hirota et al., 2002; Parkin, 2002; Slaughter et al., 2003). The basic idea is to combine the non-
volatility32 of magnetic data storage with the short access times of present day random-access
memories (DRAM). Thus, the recharging of the capacitors required for the periodic refreshing
of the information in a DRAM is not needed in a MRAM device. Magnetic random-access mem-
ories are already commercially available (for more information visit www.freescale.com/mram).
Main key features of these new devices are their high performance (with symmetrical read and
write timing), small size and scalability for future technologies, nonvolatility (with virtually un-
limited read-write endurance), low leakage, and low voltage capability. Specific details on the
performance of the available MRAMs compared to other kind of memories can be found at
www.freescale.com/mram.

The investigation of transport properties in all-semiconductor structures with magnetic semi-
conductor electrodes [e.g. (Ga,Mn)As/AlAs/(Ga,Mn)As and GaMnAs/GaAs/GaMnAs MTJs]
has recently attracted much attention (see Sec. V.B.). In particular, TMR ratios larger than
250% has been observed in (Ga,Mn)As/AlAs/(Ga,Mn)As MTJs (Mattana et al., 2003; Chiba
et al., 2004; Elsen et al., 2006). The use of such structures would simplify integration with the
nowadays semiconductor-based electronics. Other systems of renewed interest for the study of
the TMR are the ferromagnet/semiconductor/ferromagnet tunneling junctions (MacLaren et al.,
1999; Gustavsson et al., 2001; Guth et al., 2001; Kreuzer et al., 2002; Zenger et al., 2004; Moser
et al., 2006; Popescu et al., 2004, 2005). In general, the presence of semiconductors in the MTJs
introduces spin-orbit related effects, which can result in novel phenomena such as the tunneling
anisotropic magnetoresistance (TAMR) effect. This effect refers to the dependence of the mag-
netoresistance on the absolute orientation of the magnetization with respect to crystallographic
directions (Gould et al., 2004a; Rüster et al., 2005; Saito et al., 2005; Brey et al., 2004). Unlike

31Although both the TMR and GMR effects are based on the difference of magnetoresistance for parallel and antipar-
allel configurations of the ferromagnetic electrodes, they are different phenomena with different properties. The TMR
effect occurs in MTJs composed of an insulating or semiconductor barrier sandwiched between two magnetic electrodes,
while the GMR effect refers to trilayer structures consisting of two magnetic layers separated by a non-magnetic metallic
spacer. Due to the distinct nature of the spacer (an insulator for TMR and a metal for GMR), the factors that influence
the TMR and GMR effects are quite different.

32Non-volatile devices are those in which the information stored as a magnetic bit (i.e., a magnetic domain) is con-
served over an extended period of time (typically ≥ 10 years).
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the TMR, the TAMR is observed even in MTJs in which only one of the electrodes is magnetic
(Gould et al., 2004a; Moser et al., 2007). The TAMR effect is discussed in Sec. H.4.

H.2 Jullière’s model

The main physical picture of the TMR effect can be understood on the basis of spin-polarized
tunneling (Jullierè, 1975). Assume that the electrons tunnel without spin flip. In such a situation,
the spin is conserved during tunneling and an initial spin-up (spin-down) electron in one electrode
can only tunnel to an unoccupied spin-up (spin-down) final state in the other electrode. This
simple observation gives a direct qualitative explanation of the origin of the TMR in a system
consisting of two half metals (with only one spin direction at the Fermi level) separated by
a thin insulating barrier (see Fig. II.33). In such a system, in the parallel (P) configuration,
transmission from one electrode to the other occurs due to tunneling and the resistance is finite.
On the contrary, in the antiparallel (AP) configuration, due to the lack of available states for
the incident spins in the counter electrode, transmission is not allowed and the resistance of the
junction becomes infinite (see Fig. II.33). This gives, for the half-metallic electrodes, an infinite
TMR.

The TMR arises from the imbalance between the number of spin-up and spin-down electrons
contributing to the tunneling current. In the more general case of a ferromagnet/insulator/ferro-
magnet junction the resistance is finite in both the parallel and antiparallel configurations. The
application of a small bias Vbias defines the energy window for the electrons contributing to the
tunneling current [see Figs. II.32 (c) and (d)]. Since the spin is conserved during the tunnel-
ing, the total current can be decomposed into spin-up (red arrows) and spin-down (blue arrows)
contributions whose magnitudes are indicated by the thickness of their corresponding arrows
in Figs. II.32(c) and (d). From the comparison between these two figures one can see that the
total current in the parallel configuration is larger and, therefore leads to the smaller tunneling
resistance.

Jullière’s model can be deduced from the tunnel Hamiltonian approach (Maekawa et al.,
2002) (see also Sec. V.A.4), which consists in expressing the system Hamiltonian as

H = Hl + Hr + Ht, (II.267)

where Hl and Hr are, respectively, the Hamiltonians of the left and right electrodes and Ht

describes the tunneling process. Within this approach, the tunneling rate Γσ
l→r(V ) at which

electrons with spin σ are transferred from the left to the right electrodes can be estimated from
Fermi’s golden rule as

Γσ
l→r(V ) =

4π2

h

∑
k,κ

|tσ(k,κ)|2 f(εkσ)[1− f(εκσ)]δ(εkσ − εκσ + eV ), (II.268)

where εkσ and εκσ are the one-electron energies measured from the Fermi level in the left and
right electrodes, respectively. The corresponding Fermi-Dirac distribution functions are f(ε) =
1/[exp(ε/kBT )+1], with ε = εkσ or ε = εκσ . The tunneling probability for a particle with spin
σ is determined by the module square of the tunneling matrix elements,

|tσ(k,κ)|2 = |〈Ψσ
r (κ)|Ht|Ψσ

l (k)〉|2, (II.269)
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Fig. II.33. Schematics of the TMR effect for a MTJ composed of two half-metallic (HM) electrodes sep-
arated by an insulating (I) barrier. (a) Parallel configuration with GP > 0. (b) Antiparallel configuration
with GAP = 0. The density of states corresponding to a spin-σ particle in the left and right HM electrodes
are denoted by gσ

l and gσ
r , respectively. The transmission from one electrode to the other is only possible

in the parallel configuration, resulting in an infinite TMR ratio [see Eq. (II.266)].

where Ψσ
l (k) and Ψσ

r (κ) are the wave functions describing electron states in the left and right
electrodes, respectively. The Dirac delta function in Eq. (II.268) reflects the energy conservation,
while f(εkσ) and [1 − f(εκσ)] determine the occupancy and unoccupancy of states in the left
and right electrodes, respectively. By introducing the densities of states gσ

i (ε) (i = l, r) for the
spin-σ particles in the left (l) and right (r) electrodes, one can transform the sums over k and κ
in Eq. (II.268) into energy integrals. One then obtains

Γσ
l→r(V ) =

4π2

h
T

∫ ∞
−∞

gσ
l (ε− eV )gσ

r (ε)f(ε− eV )[1− f(ε)]dε, (II.270)

where we have assumed the tunneling matrix elements are spin and wave vector independent
and T = |tσ(k,κ)|2. Usually, the tunneling probability is assumed to be a constant such that
T ∝ exp(−2ξd), where ξ =

√
2m0Φ/~ characterizes the decay of the wave function in the

barrier and Φ is the barrier height (measured from the Fermi level). Similarly, the tunneling rate
Γσ

r→l(V ) at which electrons with spin σ are transferred from the right to the left electrode is
given by

Γσ
r→l(V ) =

4π2

h
T

∫ ∞
−∞

gσ
l (ε− eV )gσ

r (ε)f(ε)[1− f(ε− eV )]dε. (II.271)

The difference between the forward and backward tunneling rates gives the steady-state current
through the junction,

Iσ(V ) = e[Γσ
l→r(V )− Γσ

r→l(V )], (II.272)

which, considering Eqs. (II.270) and (II.271), reduces to (Maekawa et al., 2002)

Iσ(V ) =
4eπ2

h
T

∫ ∞
−∞

gσ
l (ε− eV )gσ

r (ε)[f(ε− eV )− f(ε)]dε. (II.273)
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The total current I = I↑ + I↓ is the sum of the spin-up and spin-down currents.
In the low bias regime, where the applied voltage V is much smaller than the band width

and the density of states is approximately constant one may obtain an approximate expression
for Iσ(V ) by expanding Eq. (II.273) in powers of V . The result, to first order in the bias voltage,
reads

Iσ(V ) = GσV ; Gσ ≈ −
4π2e2

h
T

∫ ∞
−∞

gσ
l (ε)gσ

r (ε)
∂f(ε)
∂ε

dε. (II.274)

For low temperatures f(ε) ≈ Θ(εF − ε) ([here Θ(x) represents the Heaviside step function], and
Eq. (II.274) reduces to

Gσ ≈
4π2e2

h
Tgσ

l g
σ
r , (II.275)

with the densities of states gσ
i = gσ

i (εF ) evaluated at the Fermi energy εF . Note that Eq. (II.275)
reflects the fact that at low temperatures and small voltages, the transport properties of the system
are determined by those states at the Fermi level. For the case of parallel alignment we have,

GP = G↑P +G↓P ∝
(
g↑l g
↑
r + g↓l g

↓
r

)
, (II.276)

while for the antiparallel configuration,

GAP = G↑AP +G↓AP ∝
(
g↑l g
↓
r + g↓l g

↑
r

)
, (II.277)

where g↑i and g↓i are the density of states at the Fermi level for the majority and minority spin
bands in the ith electrode, respectively. From Eqs. (II.266), (II.276), and (II.277) one finds for
the TMR ratio,

TMR =
RAP −RP

RP
=
GP −GAP

GAP
≈ 2PglPgr

1− PglPgr
. (II.278)

Here we have introduced the spin polarization of the density of states at the Fermi level,

Pgi =
g↑i − g↓i

g↑i + g↓i
; i = l, r (II.279)

of the ith electrode.33 By using Eq. (II.278) one can obtain information about the spin polariza-
tion of the electrodes by measuring the tunneling magnetoresistance in the parallel and antipar-
allel configurations. For example, if one (or both) of the electrodes is not spin polarized (i.e.,
when PglPgr = 0), then the TMR vanishes. On the other hand the TMR becomes infinite when
both electrodes are fully spin-polarized, i.e., when Pgl = Pgr = 1 (as in the case of half metallic
electrodes, considered at the beginning of this section). Such a half-metallic behavior is rare, but
some materials like the oxides CrO2 and Fe3O4 (Shang et al., 1998) and La0.7Sr0.3MnO3 (De
Teresa et al., 1999b,a) appear to nearly exhibit this amazing property.

33The spin polarization of the density of states at the Fermi level, Eq. II.279, refers to the parallel configuration.
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Usually the TMR ratio is positive (in such a case the effect is called normal). However, the
inverse effect with a negative TMR ratio has also been observed (De Teresa et al., 1999b,a). The
inverse TMR effect occurs when the magnetic electrodes on both sides of the barrier have spin
polarizations with opposite sign, i.e., when PglPgr < 0 [see Eq. (II.278)].

The above model and the expression for the TMR ratio given in Eq. (II.278) are called
Jullière’s model and Jullière’s formula, respectively. In spite of its relative simplicity, Jullière’s
model can explain in many cases the experimental trends and has continued to be used for inter-
preting the spin polarization in various MTJs.

In an approach complementary to Jullière’s, Slonczewski (1989) considered a ferromag-
net/insulator/ferromagnet junction as a single quantum mechanical system in a free-electron pic-
ture. The details of Slonczewski’s model is discussed in the following section.

H.3 Slonczewski’s model

In Jullière’s model the tunneling matrix elements are assumed to be constant, being the same
for spin-up and spin-down electrons, i.e., the wave function in the barrier region is assumed to
be spin- and k-independent. A different approach, free of these restricting assumptions, was
proposed by Slonczewski (1989), who considered the exact wave function in the barrier within
the free-electron model. Slonczewski’s model considers coherent tunneling and assumes the
conservation of the in-plane wave vector during tunneling. This model is, therefore, particularly
relevant for tunneling through epitaxially grown MTJs.

In the original work of (Slonczewski, 1989) a symmetric ferromagnet/insulator/ ferromag-
net junction with a square barrier and constant effective masses along the heterostructure was
considered. We discuss here a generalization of Slonczewski’s model to the case of asymmetric
junctions with a position dependent effective mass (Bratkovsky, 1997).

We note that the expression for the current given by Eq. (II.273) was derived from Fermi’s
golden rule in Eq. (II.268), which neglects the details of the wave function within the barrier re-
gion. A more convenient expression for the tunnel current including these details can be obtained
by noting that the current density of spin-σ particles from the left to the right electrode can be
written as

Iσ
l→r(V ) =

∑
k

jσ
kf(εkσ + eV ), (II.280)

where the z-component of the current density carried by an incident from the left particle with
spin σ and wave vector k is given by

jσ
k = − e

Ω
Tσ(εkσ,k‖)vσ

z . (II.281)

Here Ω and vσ
z are the volume and z-component of the velocity, respectively. The tunneling

probability, Tσ(εkσ,k‖), has to be calculated including the details of the wave function in the
barrier region. Taking into account that vσ

z = ~−1∂εkσ/∂kz and approximating the sum over k
by an integral one obtains from Eqs. (II.280) and (II.281) the relation

Iσ
l→r(V ) = − e

(2π)2h

∫
dεd2k‖Tσ(ε,k‖)f(ε+ eV ). (II.282)
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Similarly, one obtains that the current flowing from the right to the left electrode is given by
Jσ

r→r = Jσ
l→r(0). The net tunnel current Jσ(V ) = Jσ

l→r(V ) − Jσ
r→l for the σ channel is,

therefore,

Iσ(V ) =
e

(2π)2h

∫
dεd2k‖Tσ(ε,k‖)[f(ε)− f(ε+ eV )]. (II.283)

The total current flowing along the heterojunction is the sum of the spin-up and spin-down con-
tributions, i.e., I(V ) = I↑(V ) + I↓(V ). In the limit of low temperatures and small biases,
one can simplify Eq. (II.283) by following the same approximate procedure used in obtaining
Eq. (II.275). The result is the linear response relation, Iσ = GσV , in which the conductance per
unit area is given by

Gσ ≈
e2

(2π)2h

∫
d2k‖Tσ(εF ,k‖). (II.284)

It is often convenient to use∫
d2k‖
(2π)2

... =
∫
ρ‖(E‖)dE‖..., (II.285)

where E‖ = ~2k2
‖/(2m) and ρ‖(E‖) = ρ‖ = m/(2π~2) and m are the 2D density of states and

electron effective mass of the source electrode, respectively. With the help of Eq. (II.285), and
assuming Tσ(εF ,k‖) = Tσ(εF , k‖), we can rewrite Eq. (II.284) as

Gσ ≈
e2

h
ρ‖

∫ Emax
‖

0

Tσ(εF , E‖)dE‖, (II.286)

where the integration limit Emax
‖ is determined as the maximum value of E‖ allowed for propa-

gating modes.
Slonczewski’s model assumes a free-electron approximation for the spin polarized conduc-

tion electrons together with a Stoner approach for the ferromagnetic electrodes. The single-
particle Hamiltonian in the ith region of the heterojunction may be written as

H = −~2∇2

2m∗i
+ Vi −

∆i

2
ni · σ; i = l, c, r (II.287)

where m∗i and Vi are the effective mass and potential energy, respectively, in the left (i = l),
central (i = c), and right (i = r) regions. The exchange energy ∆i vanishes in the central, non-
magnetic barrier, i.e., ∆c = 0. The unit vectors nl and nr define the magnetization direction
in the left and right ferromagnetic electrodes, respectively, and σ is a vector whose components
are the Pauli matrices. We assume that the magnetization in the left electrode is oriented along
the x axis [nl = (1, 0, 0)], while the magnetization in the right electrode points in the direction
nr = (cosφ, sinφ, 0), where φ = ∠(nl,nr).

Assuming that the in-plane wave vector k‖ is conserved during tunneling, the motion along
the growth direction (z) can be decoupled from the other spatial degrees of freedom. The z
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component of the scattering state describing a spin-σ particle in the left (z ≤ 0) ferromagnetic
electrode with eigenenergy E is given by

Ψ(l)
σ (z) =

eikσz

√
kσ

χ(l)
σ + rσ,σe

−ikσzχ(l)
σ + rσ,−σe

−ik−σzχ
(l)
−σ, (II.288)

where

χ(l)
σ =

1√
2

(
1
σ

)
, (II.289)

represents the spinor corresponding to the spin parallel (σ = 1) or antiparallel (σ = −1) to the
magnetization direction nl = (1, 0, 0) in the left, ferromagnetic electrode, and

kσ =

√
k2

σ0 −
2m∗lE‖

~2
; kσ0 =

√
2m∗l
~2

(
E − Vl + σ

∆l

2

)
, (II.290)

is the corresponding z component of the wave vector for a spin-σ particle in the left electrode with
E‖ = ~2k2

‖/(2m
∗
l ). The first term of the sum in the right-hand side of Eq. (II.288) corresponds

to a spin-σ incident plane wave having unit incident particle flux in the left electrode, while the
second and third terms describe reflected plane waves with spins σ and −σ, respectively.

In the central, non-magnetic region (0 < z < d) we have evanescent plane waves given by

Ψ(c)
σ (z) =

∑
j=±1

(
Aσ,je

−qz +Bσ,je
qz
)
χ

(l)
j . (II.291)

Here d denotes the barrier width and

q =

√
q20 +

2m∗lE‖
~2

; q0 =

√
2m∗c
~2

(Vc − E). (II.292)

Note that since the barrier is non-magnetic, we have taken, without loss of generality, the spin
quantization axis in the central region to be the same as the spin quantization axis of the incoming
(from the left electrode) wave, i.e., χ(c)

σ = χ
(l)
σ . In the right (z ≥ d), ferromagnetic electrode the

scattering states are composed of two transmitted plane waves with spins parallel and antiparallel
to nr, i.e.,

Ψ(r)
σ (z) = tσ,σe

iκσ(z−d)χ(r)
σ + tσ,−σe

iκ−σ(z−d)χ
(r)
−σ, (II.293)

where

χ(r)
σ =

1√
2

(
1

σeiφ

)
, (II.294)

represents the spinor corresponding to the spin parallel (σ = 1) or antiparallel (σ = −1) to the
magnetization direction nr = (cosφ, sinφ, 0) in the right, ferromagnetic electrode, and

κσ =

√
κ2

σ0 −
2m∗lE‖

~2
; κσ0 =

√
2m∗r
~2

(
E − Vr + σ

∆r

2

)
, (II.295)
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is the corresponding z component of the wave vector for a spin-σ particle in the right electrode.
The eight coefficients rσ,±σ , Aσ,±1, Bσ,±1, and tσ,±σ present in Eqs. (II.288) - (II.293)

have to be determined as the solutions of the system of eight linear equations resulting from the
continuity of the probability current across the interfaces, i.e.,

Ψ(i)
σ (zij) = Ψ(j)

σ (zij);
1
m∗i

∂Ψ(i)
σ

∂z

∣∣∣∣∣
zij

=
1
m∗j

∂Ψ(j)
σ

∂z

∣∣∣∣∣
zij

; i, j = l, c, r; σ = ±1. (II.296)

Here zij represents the position of the interface between the ith and jth regions. The transmis-
sivity of an incoming spin-σ particle can be computed from the relations

Tσ(E,E‖) =
(
m∗l
m∗r

)
Re[κσ|tσ,σ|2+κ−σ|tσ,−σ|2] = 1−Re[kσ|rσ,σ|2+k−σ|rσ,−σ|2]. (II.297)

Here the real-part functions Re[...] express the fact that only the propagating modes contribute
to the tunneling. The coefficients tσ,σ and tσ,−σ can be found by directly solving the system
of equations resulting from Eq. (II.296) or by using the transfer matrix method described in
Sec. V.A.3. Simplified analytical expressions for these coefficients are found in the limit qd� 1.
In such a case one finds the following approximate relation for the tunneling coefficients,

tσ,σ′ ≈
−2im∗cm

∗
rq
√
kσ

(m∗rq − im∗cκσ)(m∗l q − im∗ckσ)
(
1 + σσ′e−iφ

)
e−qd, (II.298)

which is valid to first order in exp(−qd). Substituting Eq. (II.298) into (II.297) one obtains the
transmission probability,

Tσ(E,E‖) ≈ 8m∗lm
∗
rm
∗2
c kσ(κσ + κ−σ)(m∗2r q

2 +m∗2c κσκ−σ)
(m∗2l q

2 +m∗2c k
2
σ)(m∗2r q

2 +m∗2c κ
2
σ)(m∗2r q

2 +m∗2c κ
2
−σ)

×
[
1 +

(κσ − κ−σ)(m∗2r q
2 −m∗2c κσκ−σ)

(κσ + κ−σ)(m∗2r q
2 +m∗2c κσκ−σ)

cosφ
]
e−2qd. (II.299)

The conductance for the spin-σ channel can now be calculated by using Eqs. (II.286) and (II.299).
Since Tσ(εF , E‖) is a complicated function of E‖, the exact integration in Eq. (II.286) has to
be performed numerically. One can, however, obtain an approximate analytical expression for
the conductance in the case of a high potential barrier. In such a case k‖ � q0 and one can
approximate Eq. (II.292) as follows

q ≈ q0

[
1 +

1
2

(
k‖

q0

)2
]

= q0 +
m∗lE‖

q0~2
. (II.300)

Introducing the new integration variable ζ = 2m∗lE‖d/(q0~2), which is dimensionless, and
taking into account Eq. (II.300) one can see that because of the presence of the exponential
factor exp(−ζ) in the transmissivity [see Eq. (II.299)], the main contribution to the integral in
Eq. (II.286) comes from the vicinity of ζ ≈ 0. Within this approximation Eq. (II.286) transforms
into

Gσ ≈
e2

h

(
q0~2

2m∗l d

)
ρ‖Tσ(εF , 0) =

e2q0
8π2~d

Tσ(εF , 0). (II.301)
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The total conductance, G = G↑ +G↓, is obtained from Eqs. (II.299) and (II.301). The result is

G(φ) ≈ G0

(
1 + P eff

gl P eff
gr cosφ

)
, (II.302)

where

G0 =
2e2q

F
e−2q

F
d

πhd

∏
i=l,r

[
m∗im

∗
c(ki↑ + ki↓)(m∗2i q

2
F

+m∗2c ki↑ki↓)
(m∗2i q

2
F

+m∗2c k
2
i↑)(m

∗2
i q

2
F

+m∗2c k
2
i↓)

]
, (II.303)

and

P eff
gi =

(ki↑ − ki↓)
(ki↑ + ki↓)

(m∗2i q
2
F
−m∗2c ki↑ki↓)

(m∗2i q
2
F

+m∗2c ki↑ki↓)
; (i = l, r), (II.304)

is the effective spin polarization of the ith electrode. In Eqs. (II.303) and (II.304) we have
introduced the notations q

F
= q0(εF ), klσ = kσ0(εF ), and krσ = κσ0(εF ) (σ =↑, ↓).

In order to include the relative orientation of the magnetization directions in the ferromag-
netic electrodes, we can generalize the TMR ratio defined in Eq. (II.266) as

TMR(φ) =
R(φ)−R(0)

R(0)
=
G(0)−G(φ)

G(φ)
. (II.305)

Note that G(0) = GP and G(π) = GAP and, consequently, the standard definition of the TMR
[see Eq. (II.266)] is recovered when φ = π.

From Eqs. (II.302) - (II.305) one obtains for the angular dependent TMR,

TMR(φ) ≈
P eff

gl P eff
gr (1− cosφ)

1 + P eff
gl P eff

gr cosφ
, (II.306)

which in the particular case φ = π reduces to

TMR(π) ≈
2P eff

gl P eff
gr

1− P eff
gl P eff

gr

. (II.307)

This relation is similar to Jullière’s formula [see Eq. (II.278)] but now the spin polarizations
Pgl and Pgr of Jullière’s model are replaced by the effective spin polarizations P eff

gl and P eff
gr ,

respectively. Furthermore, considering that the density of state gσ
i ∝ kiσ and using Eqs. (II.279)

and (II.304) one finds the effective spin polarizations P eff
gi and the spin polarizations Pgi are

related as follows:

P eff
gi = Pgi

(m∗2i q
2
F
−m∗2c ki↑ki↓)

(m∗2i q
2
F

+m∗2c ki↑ki↓)
; (i = l, r). (II.308)

Thus, in Slonczewski’s model the spin polarizations Pgi of Jullière’s model appear to be modified
by a factor which depends on the electron penetration to the barrier, the effective masses in the
different regions, and on the product ki↑ki↓. One can see from Eq. (II.308) that |P eff

gi | ≤ |Pgi|.
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Fig. II.34. (a) Dependence of the TMR on the relative direction of the magnetizations of the Fe electrodes
of an Fe/Al2O3/Fe MTJ for typical values of the barrier height Vc. (b) TMR dependence on the barrier
height Vc for φ = π. Solid lines correspond to the theoretical results obtained from Eq. (II.307). Symbols
represent experimental data taken from Tezuka and Miyazaki (1998a). The values of kl↑ = kr↑ have been
fixed to 0.7 Å−1, 0.9 Å−1, 1.1 Å−1, and 1.3 Å−1 (see labels on the curves), while kl↓ = kr↓ have been
evaluated by using the experimental value of 0.44 for the spin polarization in Fe (Tedrow and Meservey,
1973).

On the other hand, for a tunnel junction such that m∗2i q
2
F
< m∗2c ki↑ki↓ we have PgiP

eff
gi < 0,

i.e., in such a system the electron spins reverse at the ith ferromagnet/insulator interface.
As an example, we consider an Fe/Al2O3/Fe heterojunction. Typical parameters for such a

magnetojunction arem∗l = m∗r ≈ m0,m∗c ≈ 0.4m0 (Bratkovsky, 1997), kl↑ = kr↑ = 1.09 Å
−1

,
and kl↓ = kr↓ = 0.42 Å

−1
. The dependence of the TMR on the relative orientation of the

magnetizations of the Fe layers is shown in Fig. II.34(a) for typical values of the barrier height
(measured from the Fermi level) and the thickness d = 20 Å. The TMR dependence on the
barrier height Vc for φ = π is shown in Fig. II.34(b). The values of kl↑ = kr↑ have been
fixed, while kl↓ = kr↓ have been evaluated by using experimental results of spin polarization
(Tedrow and Meservey, 1973). The overall agreement between the theoretical calculations and
experimental results (Tezuka and Miyazaki, 1998a) is satisfactory.

Due to its relative simplicity, Slonczewski’s approach has been extensively applied to dif-
ferent kind of magnetic junctions (Bratkovsky, 1997; Li et al., 1998; Zhang and Levy, 1998;
Qi et al., 1998; Li et al., 2004; Jin et al., 2006). However Slonczewski’s model is not easily
generalizable beyond the simple parabolic bands model. In order to overcome such a limitation,
Mathon (1997) has proposed a tight-binding extension of Slonczewski’s model to a realistic band
structure. The details of such a model, which combine Landauer’s linear-response and Kubo for-
malisms together with the Green’s functions technique are given in (Mathon, 1997; Moodera
et al., 1999; Moodera and Mathon, 1999).

An important effect from the viewpoint of applications is the bias dependence of the TMR. A
significant decrease of the TMR with increasing bias voltage has been experimentally observed
(Jullierè, 1975; Moodera et al., 1995; Tezuka and Miyazaki, 1998b,a; Lu et al., 1998; Sun et al.,
1998; Zhang and White, 1998; Miyazaki, 2002). This bias voltage dependence of the TMR orig-
inates, in part, from the changes in the barrier shape induced by the electric field. Increasing the
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voltage increases the overall conductance, leading to a decreasing of the TMR. Such a behav-
ior can be qualitative explained by extending the Slonczewski model beyond the linear response
approach (Liu and Guo, 2000; Xiang et al., 2002). However, a more realistic approximation
requires the inclusion of the details of the band structure (Heiliger et al., 2005) and other factors
such as excitation of magnons (Zhang et al., 1997), energy dependence of spin polarization, and
impurity and phonon scattering (Bratkovsky, 1997), which may also play a role in the decrease
of the TMR with the bias. Many-body effects (Hong et al., 2002) as well as the influence of
the roughness and disorder (Xu et al., 2006a) on the TMR have also been theoretically studied.
Another interesting effect observed in MTJs is the inversion of the TMR (De Teresa et al., 1999a;
Sharma et al., 1999; Moser et al., 2006; Heiliger et al., 2005, 2006; Tiusan et al., 2004), i.e., the
change in sign of the TMR ratio when varying the bias voltage. The origin of the bias induced
inversion of the TMR has been associated with resonant tunneling via localized states (Tsym-
bal et al., 2003) or with bias induced changes in the sign of the spin polarization of one of the
two electrodes (De Teresa et al., 1999a; Sharma et al., 1999) (see also the discussion at the end
of Sec. (H.2)). However, more investigations are still needed for a better understanding of the
mechanisms causing the bias induced inversion of the TMR.

It has been observed that the TMR decreases when increasing temperature (Moodera et al.,
1999; Moodera and Mathon, 1999; Miyazaki, 2002). The decay of TMR with temperature has
been attributed to the spin-flip scattering of tunneling electrons from magnetic impurities in the
barrier and to a reduction of the magnetic moment in the ferromagnet due to the excitation of
magnons (collective spin excitations). The presence of magnetic impurities in the tunneling
barrier results in a temperature-dependent conductance34 which was used, including both spin-
dependent and spin-flip scattering, for fitting the decay of the TMR with temperature (Inoue
and Makeawa, 1999; Jansen and Moodera, 2000; Miyazaki, 2002). On the other hand, hot elec-
trons localized at ferromagnet/insulator interfaces were predicted to create magnons near the
interfaces.35 The creation (annihilation) of a magnon in the collision with an electron flips the
electron spin. Since the magnons are created near the ferromagnet/barrier interface, the electron
whose spin has been reversed undergoes tunneling to the other electrode. The effect of such spin-
flip scattering on the TMR is analogous to the effects of spin-flip scattering from impurities in the
barrier and leads, eventually, to decreasing of the TMR with increasing temperature (Moodera
et al., 1995). Regarding the specific temperature dependence of the TMR, it has been shown
(Zhang et al., 1997) that in the limit of a small bias, the conductance G(T ) at a temperature T
deviates from its zero-temperature value G(0) according to G(T )−G(0) ∝ T lnT . This result
was obtained by using the Hamiltonian of the exchange between itinerant s and nearly localized
d electrons. A different temperature dependence related to the decrease of the surface magneti-
zation (Pierce et al., 1982; Pierce and Celotta, 1984), M(T )/M(0) ∝ T−3/2, was suggested by
Moodera et al. (1998). Such a temperature dependence attributed to magnons was also obtained
for the TMR (MacDonald et al., 1998). Furthermore, an extra contribution to the decrease of the
TMR with temperature is expected to originate from the spin-independent part of G(T ) (Shang
et al., 1998).

The upper limit of the TMR ratio measured at room temperature in MTJs using aluminium
oxide as the barrier layer is about 70% (Wang et al., 2004). To overcome this limit novel MTJs

34This phenomenon is usually referred to as the zero-bias anomalies (Anderson, 1966; Appelbaum, 1966; Duke, 1969).
35Magnons were observed (Tsui et al., 1971) in Ni/NiO/Pb tunnel junctions.
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Fig. II.35. History of improvement of room temperature TMR ratio in MTJs with a MgO barrier. (a) Faure-
Vincent et al. (2003). (b) Yuasa et al. (2004a). (c) Yuasa et al. (2004b). (d) Parkin et al. (2004). (e)
Djayaprawira et al. (2005). (f) Ikeda et al. (2005). (g) Yuasa et al. (2006). For comparison, a dashed line
indicating the largest TMR ratio (70%) measured in MTJs with an Al2O3 barrier (Wang et al., 2004) has
been included.

utilizing magnesium oxide as the tunnel barrier has been considered. Aluminium oxide is an
amorphous material with a disordered arrangement of atoms. Consequently, the electrons are
scattered during tunneling. In contrast, since magnesium oxide forms a crystalline barrier with
a well ordered atomic structure, the electrons can tunnel straight through the barrier without
being scattered. Theoretical studies have predicted that crystalline tunnel barriers may give
rise to large TMR values (Mavropoulos et al., 2000). Recently, ab initio calculations consider-
ing coherent tunneling through perfectly ordered, Fe(001)/MgO(001)/Fe(001) single-crystalline
MTJs predicted extremely large TMR ratios of about 1000% (Butler et al., 2001; Mathon and
Umerski, 2001). Motivated by the great impact that such a giant TMR could have on various
information storage technologies,36 intense research activities on MTJs with single-crystalline
barriers have been carried out in the past several years. The history of the improvement of
the TMR in MTJs with a MgO barrier at room temperature is displayed in Fig. II.35. The
largest, up-to- date, value (410%) of room temperature TMR has been measured in fully epi-
taxial Co(001)/MgO(001)/Co(001) MTJs with metastable bcc Co(001) electrodes (Yuasa et al.,
2006).

As an alternative to the difficult fabrication of ultrathin (< 1 nm) oxide barriers (Rippard
et al., 2002), ferromagnet/semiconductor/ferromagnet tunnel junctions have also been consid-
ered. Some of these structures have been grown epitaxially, and the amplitude of the TMR ratio
has be investigated for different crystallographic orientations of a ferrromagnet/semiconductor
interface. Electronic structure calculations have been reported (MacLaren et al., 1999) for Fe/
ZnSe/Fe tunnel junctions. These calculations predicted a large TMR (up to∼ 1000%), increasing
with increasing of the barrier thickness. However, the TMR measured in Fe/ZnSe/Fe0.85Co0.15

36For example, magnetic random access memories (MRAMs) with read performance an order of magnitude greater
than current prototypes.
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was limited to T < 50 K, reaching 15% at 10 K for junctions of higher resistance and lower
defect density (Gustavsson et al., 2001). A TMR ratio of about 5% at room temperature was
measured in MTJs with a ZnS barrier (Guth et al., 2001). Experimental investigations of the
TMR in Fe/GaAs/Fe tunnel junctions have recently been reported (Kreuzer et al., 2002; Zenger
et al., 2004; Moser et al., 2006). A TMR up to 1.7% was observed in such MTJs (Zenger et al.,
2004; Moser et al., 2006). A fully relativistic generalization of the Landauer-Büttiker formalism
implemented and applied to the study of the TMR and spin-dependent transport in Fe/GaAs/Fe
tunnel junctions (Popescu et al., 2004, 2005) demonstrate a strong influence of the spin-orbit
coupling inside the barrier on the TMR.

Much expectation has also been brought out by the possibility of using all-semiconductor
MTJs with magnetic semiconductor electrodes (for a more detailed discussion see Secs. V.C.
and V.D.). Compared to the conventional all-metal MTJs, the use of all-semiconductor MTJs
would simplify integration with existing, conventional semiconductor-based electronics and al-
low for more flexibility in the design and fabrication of quantum structures. Large TMR ratios
have been measured at low temperatures in epitaxially grown (Ga,Mn)As/AlAs/(Ga,Mn)As tun-
nel junctions, varying from about 70% (Tanaka and Higo, 2001) up to 290% (Mattana et al.,
2003; Chiba et al., 2004; Elsen et al., 2006). Recent theoretical investigations of the TMR in
GaMnAs/GaAs/GaMnAs MTJs (Saffarzadeh and Shokri, 2006; Sankowski et al., 2007) appear
to explain the main features of the experimental results. The TMR in double and multi-barrier
tunnel junctions with magnetic semiconductor electrodes is discussed in details in Sec. V.C.

H.4 Tunneling anisotropic magnetoresistance (TAMR)

As discussed in the previous section, the TMR relies on the different spin polarizations at the
Fermi energy in the ferromagnetic electrodes and strongly depends on the relative but not on the
absolute magnetization directions in the ferromagnets. Therefore it cames as a surprise that the
tunneling magnetoresistance may also strongly depend on the absolute orientation of the mag-
netization in the ferromagnets with respect to crystallographic directions (Gould et al., 2004a;
Rüster et al., 2005; Saito et al., 2005; Brey et al., 2004). The phenomenon was termed tunneling
anisotropic magnetoresistance (TAMR) (Gould et al., 2004a; Brey et al., 2004). The tunneling
magnetoresistance in GaMnAs/GaAlAs/GaMnAs tunnel junctions was theoretically investigated
by (Brey et al., 2004). These authors predicted that, as a result of the strong spin-orbit interac-
tion, the tunneling magnetoresistance depends on the angle between the current flow direction
and the orientation of the electrode magnetization. Thus, a difference between the tunneling
magnetoresistances in the in-plane (i.e., magnetization in the plane of the magnetic layers) and
out of plane configurations of up to 6% was predicted for large values of the electrode spin polar-
ization (Brey et al., 2004). Even more intriguing is the observation of the TAMR effect in tunnel
junctions such as (Ga,Mn)As/Al2O3/Au (Gould et al., 2004a) and Fe/GaAs/Au (Moser et al.,
2007) sandwiches, where only one of the layers is magnetic, and for which the TMR effect is
absent. In these experiments, differences in the tunneling magnetoresistance are observed when
the in-plane magnetization is rotated in the ferromagnetic layer. In what follows we concentrate
on the TAMR in junctions with in-plane magnetization. In this case, in analogy to the TMR, one
can define the TAMR ratio as

TAMR[ref] =
R(φ)−R[ref]

R[ref]
, (II.309)
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Tab. II.1. Experimental values of the TAMR ratio for different systems.

System TAMR (%) Temperature (K) Reference
(Ga,Mn)As/AlOx/Au 2.7 4.2 (Gould et al., 2004a)

0 30
(Ga,Mn)As/AlOx/(Ga,Mn)As 150 000 1.7 (Rüster et al., 2005)

300 4.2
(Ga,Mn)As/ZnSe/(Ga,Mn)As 10 2 (Saito et al., 2005)

8.5 20
(Ga,Mn)As 60 2 (Giddings et al., 2005)

lateral nanoconstriction 0 15
Fe/GaAs/Au 0.4 4.2 (Moser et al., 2007)

0.3 100 (Lobenhofer et al., 2007)

where [ref] indicates the crystallographic direction taken as a reference (say, an easy, or hard axis)
and R(φ) denotes the tunneling magnetoresistance measured when the magnetization direction
in the ferromagnet forms and angle φ with respect to the reference direction [ref]. In particular,
when the magnetization directions are parallel to [ref], we have R(φ = 0) = R[ref].

The first experimental measurement of the TAMR effect was reported by Gould et al. (2004a)
who observed a spin-valve effect in (Ga,Mn)As/AlOx/Au heterojunctions with a TAMR ratio of
about 2.7%. Experimental investigations of the TAMR in (Ga,Mn)As/GaAs/(Ga,Mn)As (Rüster
et al., 2005) and (Ga,Mn)As/ZnSe/(Ga,Mn)As (Saito et al., 2005) tunnel junctions in which
both electrodes are ferromagnetic have recently been reported. In the case of (Ga,Mn)As/ZnSe/
(Ga,Mn)As the TAMR ratio was found to decrease with increasing temperature, from about 10%
at 2 K to 8.5% at 20 K (Saito et al., 2005). This temperature dependence of the TAMR is more
dramatic in the case of (Ga,Mn)As/GaAs/(Ga,Mn)As, for which a TAMR ratio of order of a few
hundred percent at 4 K was amplified to 150 000% at 1.7 K (Rüster et al., 2005). This huge
amplification of the TAMR was suggested to originate from the opening of an Efros-Shklovskii
gap (Efros and Shklovskii, 1975) at the Fermi energy when crossing the metal-insulator transition
(Rüster et al., 2005). A further investigation supporting such a suggestion has recently been
reported (Pappert et al., 2006). In addition to the above mentioned investigations involving
vertical tunneling devices based on (Ga,Mn)As the TAMR has also been studied in (Ga,Mn)As
lateral nanoconstrictions (Giddings et al., 2005).

Beyond the area of currently low Curie temperature ferromagnetic semiconductors, the TAMR
has been investigated in systems such as Fe/vaccum/Au (Chantis et al., 2007) and Fe/GaAs/Au
(Moser et al., 2007; Matos-Abiague and Fabian, 2007) tunnel junctions, ferromagnetic metal
break junctions (Bolotin et al., 2006), and CoPt systems (Shick et al., 2006). A summary of the
size of the TAMR ratios experimentally measured in different systems is given in Tab. II.1.

An interesting issue emerging from the TAMR effect measured in (Ga,Mn)As based, verti-
cal tunneling devices is that from symmetry considerations one would expect the existence of
fourfold in-plane magnetic easy axes in the (Ga,Mn)As electrode. Experimentally, however, an
uniaxial anisotropy is usually observed (Gould et al., 2004a; Rüster et al., 2005; Saito et al.,
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Fig. II.36. (a) Profile of a Fe/GaAs/Au MTJ grown in the [001] crystallographic direction. The magnetiza-
tion direction in the Fe layer is determined by the vector n. (b) Schematics of the potential profile along
the growth direction of the heterojunction. A Stoner model with two channels (majority and minority) is
assumed for the Fe layer.

2005). This phenomenon was related to the anisotropy of the density of states with respect to the
magnetization direction, which results from the strong SOI in the ferromagnetic semiconductor
valence band (Gould et al., 2004a; Rüster et al., 2005; Pappert et al., 2006). However, the na-
ture and details of the underlying mechanism producing the uniaxial anisotropy observed in the
TAMR remains a puzzle. In fact, it has become clear that the responsible mechanisms for the uni-
axial anisotropy of the TAMR could be different in different systems. In (Ga,Mn)As/Al2O3/Au
(Gould et al., 2004a) and (Ga,Mn)As/GaAs/(Ga,Mn)As (Rüster et al., 2005; Pappert et al., 2006)
heterojunctions as well as in (Ga,Mn)As nanoconstrictions (Giddings et al., 2005) the uniaxial
anisotropy of the TAMR has been theoretically modelled by phenomenologically introducing an
in-plane uniaxial strain in the range 0.1%− 0.2%. On the other hand, Bolotin et al. (2006) have
proposed that the TAMR effect in ferromagnetic metal break junctions originates from meso-
scopic quantum interferences which depend on the orientation of the magnetization and result in
mesoscopic fluctuations of the conductance and the spin-dependent local density of states. Al-
ternatively, it has been proposed (Matos-Abiague and Fabian, 2007) that the uniaxial anisotropy
of the TAMR in epitaxial ferromagnet/semiconductor/normal metal tunnel junctions originates
from the interference of Dresselhaus and Bychkov-Rashba spin-orbit interactions.

The TAMR in epitaxial Fe/GaAs/Au MTJs grown in the [001] crystallographic direction (see
Fig. II.36) has recently been investigated (Moser et al., 2007; Matos-Abiague and Fabian, 2007).
The experimentally observed tunneling magnetoresistance exhibits a two-fold symmetry with
respect to the magnetization direction in the ferromagnet. It was also shown that the symmetry
axis of the TAMR can be changed by varying the bias voltage (Moser et al., 2007).37 In order
to explain the experimental findings, a model was proposed (Moser et al., 2007; Matos-Abiague
and Fabian, 2007), in which the two-fold symmetry of the TAMR observed in epitaxial ferromeg-
net/semiconductor/normal metal junctions originates from the interface-induced C2v symmetry

37Note that this bias dependence of the TAMR suggests that strain is not the relevant mechanisms causing the TAMR
effect in Fe/GaAs/Au.
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of the SOI arising from the interference of Dresselhaus and Bychkov-Rashba spin-orbit cou-
plings (see Sec. F.2). This symmetry, which is imprinted in the tunneling probability becomes
apparent in the contact with a magnetic moment. Some details about such a model are discussed
below.

Consider a ferromagnet/semiconductor/normal-metal tunnel heterojunction grown in the [001]
direction. The semiconductor is assumed to lack bulk inversion symmetry (zinc-blende semicon-
ductors are typical examples). The bulk inversion asymmetry of the semiconductor together with
the structure inversion asymmetry of the heterojunction give rise to the Dresselhaus (see Sec. F.)
and Bychkov-Rashba (see Sec. III.E.2) SOIs, respectively. The interference of these two spin-
orbit couplings leads to a net, anisotropic SOI with a C2v symmetry which is transferred to the
tunneling magnetoresistance when the electrons pass through the semiconductor barrier. The
model Hamiltonian describing the tunneling across the heterojunction reads

H = H0 + H
BR

+ H
D
. (II.310)

Here

H0 = −~2∇2

2m∗i
+ Vi −

∆i

2
ni · σ; i = l, c, r (II.311)

where m∗i and Vi are the effective mass and potential energy, respectively, in the ferromagnet
(i = l), semiconductor (i = c), and normal-metal (i = r) regions. The exchange energy ∆i

vanishes in the central (semiconductor) and right (normal-metal) regions, i.e, ∆c = ∆r = 0.38

The unit vector nl = (cos θ, sin θ, 0) defines the magnetization direction with respect to the
[100] direction (see Fig. II.36), and σ is a vector whose components are the Pauli matrices.
Note that Eq. (II.311) is the analog of Eq. (II.287) but for the case of a single magnetic layer.
In the experiment the reference axis is taken as the [110] direction (referred to the GaAs crys-
tallographic directions), which is the hard axis of magnetization in the Fe layer. Therefore, it
is convenient to express the magnetization direction relative to the [110] crystallographic axis
through the introduction of the new angle φ = θ − π/4 (see Fig. II.36). Thus, one can write
nl = (cos(φ + π/4), sin(φ + π/4), 0), where φ gives the magnetization direction with respect
to the [110] direction.

It is worth noting that the form of Bychkov-Rashba-like and Dresselhaus-like SOIs in metal/
semicondutor interfaces are not known.39 However, since the metal/semiconductor interfaces of
the investigated MTJ have the same C2v symmetry as a zinc-blende/zinc-blende interface (see
Sec. G.), one can assume that both interfaces can be phenomenologically described by the same
kind of SOI Hamiltonian. In what follows we adopt such an assumption and consider that the
in-plane wave vector k‖ is conserved throughout the heterostructure.

38We consider here the case of a weak external magnetic field. Therefore, orbital effects as well as the Zeeman splitting
in the semiconductor and normal metal are neglected.

39We use here the terminology Bychkov-Rashba-like and Dresselhaus-like SOIs to emphasize that, in addition to the
conventional Bychkov-Rashba and Dresselhaus spin-orbit terms, there is a contribution to the SOI resulting from the
interface inversion asymmetry (IIA). Such a contribution has the C2v symmetry of the metal/semiconductor interface
(see Sec. III.G.), which is the same symmetry resulting from the interference of the conventional Bychkov-Rashba and
Dresselhaus SOIs. Therefore, one can write the resulting SOI as an interaction having the same form of interfering
Bychkov-Rashba and Dresselhaus terms but with new, renormalized spin-orbit parameters, which now account for the
IIA too. In what follows we keep the usual terminology referring to Bychkov-Rashba and Dresselhaus SOIs but these
interactions should be interpreted as explained above.
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The Dresselhaus SOI including the bulk and interface contributions is given by Eqs. (III.148)
- (III.150). The Dresselhaus parameter γ(z) has a finite value γ in the semiconductor region,
where the bulk inversion asymmetry is present, and vanishes elsewhere, i.e., γ(l) = γ(r) = 0 and
γ(c) = γ.

The Bychkov-Rashba SOI due to the interface inversion asymmetry is incorporated in the
model through a term of the form of Eq. (III.97). For the system here studied, the Bychkov-
Rashba SOI contribution inside the semiconductor can be neglected and one is left only with the
interface contributions

H
BR

=
1
~
∑
i=l,r

αi(σxpy − σypx)δ(z − zi), (II.312)

where, αl (αr) denotes the SOI strength at the left (right) interface zl = 0 (zr = d). These
parameters are not known for metal/semiconductor interfaces and have to be extracted from
experimental results or from ab initio calculations. For the case of an Fe/GaAs/Au, it was shown
that the size of the TAMR is dominated by the parameter αl (Matos-Abiague and Fabian, 2007).
Then, since the values of the TAMR are not very sensitive to the changes of αr one can set this
parameter, without loss of generality, to zero. This leaves αl as a single fitting parameter when
comparing to experiment.

The z component of the scattering states in the left (ferromagnetic) region [eigenstates of the
Hamiltonian (II.310)] with eigenenergy E can be written as

Ψ(l)
σ =

eikσzχσ√
kσ

+ rσ,σe
−ikσzχσ + rσ,−σe

−ik−σzχ−σ, (II.313)

where

χ(l)
σ =

1√
2

(
1

σei(φ+ π
4 )

)
, (II.314)

represents a spinor corresponding to a spin parallel (σ = 1) or antiparallel (σ = −1) to the
magnetization direction nl = (cos(φ + π/4), sin(φ + π/4), 0) in the ferromagnet and kσ is the
corresponding z component of the wave vector in the left region. In the central (semiconductor)
region one has (Perel’ et al., 2003; Wang et al., 2005),

Ψ(c)
σ =

∑
i=±

(Aσ,ie
qiz +Bσ,ie

−qiz)χ(c)
i , (II.315)

where q± = (1∓ 2mcγk‖/~2)−1/2q0 (with q0 being the z component of the wave vector in the
barrier in the absence of SOI) and

χ
(c)
± =

1√
2

(
1

σeiϕ

)
, (II.316)

are spinors corresponding to spins parallel (+) and antiparallel (−) to the direction k‖× z [k‖ =
k‖(cosϕ, sinϕ, 0)], which is the spin quantization direction in the barrier. In the right (normal
metal) region (z ≥ 0) the scattering states read,

Ψ(r)
σ = tσ,σe

iκσ(z−d)χσ + tσ,−σe
iκ−σ(z−d)χ−σ, (II.317)
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Fig. II.37. Angular dependence of the magnetoresistance R normalized to the value R[110] for bias voltages
Vbias = −90 mV (a) and Vbias = 90 mV (b). Solid lines corresponds to the theoretical results, while
symbols represent the experimental data taken from (Moser et al., 2007). The experiment was performed
at 4.2 K, in a saturation magnetic field |B| = 0.5 T. The presence of a twofold symmetry with uniaxial
anisotropy is apparent. Furthermore, the symmetry axis of the magnetoresistance is flipped when changing
the bias from −90 mV to 90 mV.

where κσ is the corresponding z component of the wave vector in the right region. The expan-
sion coefficients in Eqs. (II.313) - (II.317) can be found by applying the matching conditions
given in Eq. (III.152) and (III.153) at each interface. Once the wave function is determined, the
particle transmissivity can be calculated according to Eq. (II.297). Making use of Eqs. (II.283)
and (II.284) one can compute the total current I(V ) = I↑(V ) + I↓(V ) and the corresponding
conductance (within linear response), respectively.

The TAMR refers to the changes of the tunneling magnetoresistance (R) when varying the
magnetization direction n of the magnetic layer with respect to a fixed axis. Here we assume the
magnetoresistance R[110], measured when n points in the [110] crystallographic direction (i.e.,
when φ = 0) as a reference. The TAMR is then given by [see Eq. (II.309)]

TAMR[110](φ) =
R(φ)−R(0)

R(0)
=
I(0)− I(φ)

I(φ)
=
G(0)−G(φ)

G(φ)
, (II.318)

where φ is the angle between the magnetization direction nl = (cos(φ+ π/4), sin(φ+ π/4), 0)
and the [110] crystallographic axis. We also find it useful to define the tunneling anisotropic spin
polarization (TASP) as

TASP[110](φ) =
P (0)− P (φ)

P (φ)
. (II.319)

The TASP measures the changes in the tunneling spin polarization (Maekawa et al., 2002; Žutić
et al., 2004; Perel’ et al., 2003) P = (I↑ − I↓)/I [which is a measurable quantity (Žutić et al.,
2004) accounting for the polarization efficiency of the transmission] when rotating the in-plane
magnetization in the ferromagnet.

A polar plot of the tunneling magnetoresistance as a function of the angle φ between the mag-
netization direction in the Fe electrode and the reference direction [110] is displayed in Fig. II.37.
The resistance has been normalized to the value R[110], which is the resistance measured when
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Fig. II.38. (a) Angular dependence of the TAMR in a Fe/GaAs/Au tunnel heterojunction for different
values of the bias voltage Vbias. Solid lines corresponds to the theoretical results while symbols represent
the experimental data (conveniently mirrored) as deduced from (Moser et al., 2007). The values of the
phenomenological parameter αl have been determined by fitting the theory to the experimental values of
the ratio R[1̄10]/R[110] for each value of Vbias. The extracted bias dependence of αl is shown in (b).

the magnetization in the Fe layer points in the [110] direction. Symbols and solid lines represent
the experimental data and theoretical calculations, respectively. The tunneling magnetoresistance
exhibits a C2v symmetry40 evidencing the existence of uniaxial anisotropy. The anisotropy de-
pends on the applied bias voltage. When the bias voltage is reversed from −90 mV to 90 mV,
the symmetry axes of the angular dependence of the magnetoresistance are rotated by 90◦.

A comparison between the theoretical results obtained within the model above discussed
and the experimental data for the TAMR ratio in an Fe/GaAs/Au MTJ (Moser et al., 2007) is
displayed in Fig. II.38(a) for different values of the bias voltage. For the calculations we took the
valuemc = 0.067 m0 (see Tab. III.6) for the electron effective mass in the central (GaAs) region.
The barrier width and height (measured from the Fermi energy) are, respectively, d = 80 Å and
Vc = 0.75 eV, corresponding to the experimental samples (Moser et al., 2007). The Dresselhaus
parameter in the GaAs region was taken as γ = 24 eV Å

3
(see Tab. III.6). For the Fe layer

a Stoner model with the majority and minority spin channels having Fermi momenta kF↑ =
1.05 × 108 cm−1 and kF↓ = 0.44 × 108 cm−1 (Wang et al., 2003), respectively, was assumed.
The Fermi momentum in Au was taken as κF = 1.2× 108 cm−1 (Ashcroft and Mermin, 1976).
We consider the case of relatively weak magnetic fields (specifically, B = 0.5 T). At high
magnetic fields, say, several tesla, the model here discussed is no longer valid as it does not

40Note that the twofold symmetry of the magnetoresistance resembles that of the pattern of the effective magnetic field
arising from the interference of Bychkov-Rashba and Dresselhaus SOIs (see Fig. III.10 in Sec. F.2).
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include cyclotron effects relevant when the cyclotron radius becomes comparable to the barrier
width.

The agreement between theory and experiment is very satisfactory. The values of the phe-
nomenological parameter αl are determined by fitting the theory to the experimental value of the
ratio R[1̄10]/R[110]. This is enough for the theoretical model to reproduce the complete angular
dependence of the TAMR, demonstrating the robustness of the model. The bias dependence of
αl can be extracted by performing the same fitting procedure for the available experimental data
corresponding to different bias voltages. The results are shown in Fig. II.38(b), from which one
estimates the value αl ≈ 23 meV Å

2
at zero bias. This value is comparable to the correspond-

ing value of the interface Bychkov-Rashba parameter αint = βInAs − βGaAs ≈ 27 meV Å
2

obtained from Tab. III.6 for an InAs/GaAs interface. Selecting InAs/GaAs for comparison with
Fe/GaAs we only wish to show that the fitted values have reasonable magnitude, not differing
too much from known values in semiconductor interfaces. Interestingly αl changes sign at a
bias slightly below 50 mV. This bias induced change of the interface Bychkov-Rashba parameter
results in an inversion of the TAMR [see Fig. II.38(a)]. Similar behavior is reported by ab initio
calculations on Fe surfaces, where only Bychkov-Rashba SOI is present (Chantis et al., 2007).

The robustness of the theoretical model can be understood from the following simplified
picture of the TAMR effect. The SOI term H

SO
= H

D
+ H

BR
can be written [see Eqs. (III.149)

and (II.312)] as a Zeeman-like term H
SO
∼ −B̂eff · σ with the effective magnetic field

B̂eff (k‖) = (−αlδ(z)ky + γkx∂
2
z , αlδ(z)kx − γky∂

2
z , 0), (II.320)

where, for the sake of qualitative argument, we neglect the interface Dresselhaus contributions.
Performing the average of B̂eff over the unperturbed (in the absence of SOI) states of the system
one obtains the following general form of the spin-orbit magnetic field

w(k‖) = (α̃lky − γ̃kx,−α̃lkx + γ̃ky, 0), (II.321)

where α̃l = αlfα(k‖) and γ̃ = γfγ(k‖), with fα(k‖) and fγ(k‖) being real functions of k‖ =
|k‖|. The spin-orbit field w(k‖) becomes anisotropic in the k‖-space with a C2v symmetry
[see Fig. III.9(c)] when both αl and γ have finite values.41 It characterizes the amount of k‖-
dependent precession of the electron spin during the tunneling. A vector plot of the field w(k‖)
is sketched in Fig. II.39. A polar plot (solid line) of |w(k‖)|/k‖ is also included for comparison.
The uniaxial anisotropy of the TAMR can be explained as the result of the different amount of
precession the incident spins experience under the influence of w(k‖), depending on their initial
orientation, which is determined by the magnetization direction (see Fig. II.39).

For a given k‖ there are only two preferential directions in the system, defined by n and
w(k‖). Therefore, the anisotropy of a scalar quantity such as the total transmissivity T (E,k‖) =
T↑(E,k‖) + T↓(E,k‖) can be obtained as a perturbative expansion in powers of n · w(k‖),
since the SOI is much smaller than the other relevant energy scales in the system. The total
transmissivity is then given, up to second order in the anisotropy, by

T (E,k‖) ≈ T (0)(E, k‖) + T (1)(E, k‖)[n ·w(k‖)] + T (2)(E, k‖)[n ·w(k‖)]2. (II.322)

41Note that w(k‖) in Eq. (II.321) has the same form as the effective magnetic field Beff (k) in Eq. (III.156). There-
fore all the discussion in Sec. F.2 concerning Beff (k) also applies here.
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Fig. II.39. Schematics of the anisotropy of the spin-orbit magnetic field w(k‖) [see Eq. (II.321)]. Thin
arrows represent a vector plot of the field w(k‖). The solid line is a polar plot of |w(k‖)|/k‖. The thick
arrows indicate two different orientations of the magnetization. The spin-orbit field is oriented in the [-110]
([110]) direction at the points of high (low) spin-orbit field, where the field amplitude reaches a maximum
(minimum). When the magnetization points along the [110] direction the incident spins precess during
tunneling around the direction [-110] of the high field but no precession around the low field direction
([110]) occurs. In contrast, when the magnetization is oriented along [-110], the incident spins precess
around the low but not around the high field direction. This difference in the amount of spin precession
results in different tunneling transmissivities depending on the magnetization direction and, consequently,
in the uniaxial anisotropy of the TAMR.

Substituting Eq. (II.322) into the linear-response expression for the conductance [see Eq. (II.284)]
one obtains,

G =
e2

(2π)2h

(
〈T (0)(EF , k‖)〉+ 〈T (2)(EF , k‖)[n ·w(k‖)]2〉

)
, (II.323)

where 〈...〉 represents average over k‖. Note that the first order term vanishes after averaging
over k‖, since w(k‖) = −w(−k‖).

Considering that nl = (cos(φ+ π/4), sin(φ+ π/4), 0) and taking into account Eq. (II.321)
one obtains from Eq. (II.323),

G = G(0) + ∆Gso, (II.324)

where,

G(0) =
e2

(2π)2h
〈T (0)(EF , k‖)〉 (II.325)

is the (unperturbed) conductance in absence of SOI and,

∆Gso =
e2

(2π)2h

(
1
2
〈[α̃2

l + γ̃2]T (2)(EF , k‖)k2
‖〉+ 〈α̃lγ̃T

(2)(EF , k‖)k2
‖〉 cos(2φ)

)
, (II.326)
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gives the SOI correction to the conductance. In obtaining Eq. (II.326) we have made use of the
following symmetry relations

〈T (2)(EF , k‖)α̃2
l k

2
x〉 = 〈T (2)(EF , k‖)α̃2

l k
2
y〉 =

1
2
〈T (2)(EF , k‖)α̃2

l k
2
‖〉, (II.327)

〈T (2)(EF , k‖)γ̃2k2
x〉 = 〈T (2)(EF , k‖)γ̃2k2

y〉 =
1
2
〈T (2)(EF , k‖)γ̃2k2

‖〉, (II.328)

and

〈T (2)(EF , k‖)α̃lγ̃kxky〉 = 〈T (2)(EF , k‖)α̃2
l kxky〉 = 〈T (2)(EF , k‖)γ̃2kxky〉 = 0, (II.329)

which result from the fact that T (2)(EF , k‖), α̃l, and γ̃ depend only on k‖ =
√
k2

x + k2
y and are,

therefore, even functions of kx and ky and symmetric under the interchange of kx and ky .
Using Eq. (II.324) one can rewrite the TAMR ratio [see Eq. (II.318) as

TAMR[110] =
G(0) + ∆Gso(0)
G(0) + ∆Gso(φ)

− 1. (II.330)

For the system here investigated ∆Gso(φ)/G(0) � 1 and one can expand Eq. (II.330) in powers
of ∆Gso(φ)/G(0) and obtain

TAMR[110] ≈
∆Gso(0)−∆Gso(φ)

G(0)
. (II.331)

Considering Eqs. (II.326) and (II.331) and taking into account that α̃l ∝ αl and γ̃ ∝ γ, one
arrives to the relation (Moser et al., 2007)

TAMR[110] ∝ αlγ[cos(2φ)− 1]. (II.332)

The angular dependence in Eq. (II.332) is consistent with that found experimentally, as well as
that obtained from the full theoretical calculations [see Fig. II.38(a)]. One can clearly see from
Eq. (II.332) that bias-induced changes of the sign of the Bychkov-Rashba parameter αl lead to an
inversion of the TAMR. When αlγ = 0, the two-fold TAMR is suppressed. To put in words, the
Bychkov-Rashba (or Dresselhaus) term alone cannot explain the observed C2v symmetry. The
suppression of the TAMR is approximately realized in Fig. II.38(a) for the case of a bias voltage
of 50 mV.

In Fig. II.40, we show the angular dependence of the TASP [see Eq. (II.319)] for different
values of the bias voltage. The anisotropy of the tunneling spin polarization indicates that the
amount of transmitted and reflected spin at the interfaces depends on the magnetization direction
in the Fe layer, resulting in an anisotropic spin local density of states at the Fermi surface and
showing spin-valve-like characteristics.

Finally, we want to stress that although at low temperatures (say 4 K) the TAMR ratio mea-
sured in Fe/GaAs/Au appears to be quite small (about 0.4%) in comparison with the correspond-
ing values reported for (Ga,Mn)As based tunnel junctions (from 10% to a few hundred percent),
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Fig. II.40. Angular dependence of the TASP for different values of the bias voltage.

at temperatures as high as 100 K the TAMR effect in Fe/GaAs/Au is only reduced to nearly
0.3% (Lobenhofer et al., 2007) while it completely vanishes in the case of (Ga,Mn)As based
tunnel junctions. This robustness of the TAMR to the increasing of temperature suggests that
the observation of the TAMR effect in Fe/GaAs/Au heterojunctions may still be possible at room
temperature. From the theoretical point of view, a sizable room temperature TAMR effect has
also been predicted for CoPt structures (Shick et al., 2006). However, to the best of our knowl-
edge, no experiment considering such structures has been reported.



Spin-orbit coupling in semiconductors 659

III. Spin-orbit coupling in semiconductors

It is well known from special relativity that the motion of an electron in an electric field results
in a kinematic effect in which part of the electric field is seen as a magnetic field in the electron’s
rest frame (Jackson, 1998). The interaction of the electron spin with the electric field (via the
associated magnetic field in the electron’s rest frame) is called the spin-orbit interaction (SOI),
which has the general form,42

Hso =
~

4m2
0c

2
p · (σ ×∇V ), (III.1)

where m0 is the free electron mass, c is the velocity of light, σ = (σx, σy, σz) is a vector which
components are the Pauli matrices, and V is the electric potential. In Eq. (III.1), p represents
the canonical momentum. In presence of an external magnetic field B = ∇ ×A, p should be
replaced by the kinetic momentum P = p + eA. In the case of atoms, for example, the spin-
orbit interaction refers to the interaction of the electron spin with the average Coulomb field of
the nuclei and other electrons. Similarly, the SOI in solids is determined by the interaction of the
electron spin with the average electric field corresponding to the periodic crystal potential. Other
internal or external electric fields can produce additional SOI terms.

A. Semiconductors with space inversion symmetry

Elemental semiconductors such as silicon have spatial inversion symmetry. For such semicon-
ductors states of a given momentum k are doubly degenerate:

εk↑ = εk↓. (III.2)

Indeed, time reversal symmetry requires that

εk↑ = ε−k↓, (III.3)

since k → −k and σ =↑ changes to σ =↓ upon time reversal. Making space inversion means
taking k → −k, leaving the spins unchanged. Equation (III.2) follows.

How do the Bloch states look like in the presence of spin-orbit coupling? We will show that
the degenerate Bloch states, corresponding to the lattice wave vector k, can be written as (Elliott,
1954),

Ψk,n↑(r) = [akn(r)| ↑〉+ bkn(r)| ↓〉] eik·r, (III.4)
Ψk,n↓(r) =

[
a∗−kn(r)| ↓〉 − b∗−kn(r)| ↓〉

]
eik·r. (III.5)

Usually we can select the two states such that |akn| ≈ 1 while |bkn| � 1, due to the weak spin
orbit coupling; this justifies calling the two above states “spin up” and “spin down”. We need

42A derivation of the SOI starting with the relativistic Dirac equation can be found in standard text books of quan-
tum mechanics (Sakurai, 1963; Davydov, 1976). Alternatively, a semiclassical derivation of the SOI and the Thomas
precession is given by (Jackson, 1998).
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only to prove that these states have the same energy. Denote by K̂ the operator of time reversal
[see, for example, (Schiff, 1968), p. 233],

K̂ = −iσyĈ, (III.6)

where Ĉ is the operator of complex conjugation. Since the Hamiltonian in the presence of spin-
orbit coupling is time invariant, the state,

K̂Ψk,n↑ = [a∗kn(r)| ↓〉 − b∗kn(r)| ↑〉] e−ik·r, (III.7)

has the same energy as the state Ψk,n↑. The space inversion, here k → −k, then leads us to Eq.
(III.5). This completes the proof.

B. Semiconductors without space inversion symmetry

We have seen in the previous section that the combined action of spatial and time inversion sym-
metries in centrosymmetric semiconductors leads to the double spin degeneracy of the electronic
states [see Eq. (III.2)]. There are two ways of breaking this degeneracy. The obvious one is to
break the time reversal symmetry by the application of an external magnetic field. The other,
somehow more subtle, is to break the spatial inversion symmetry.43 In the following sections we
present within some details, how the lack of inversion symmetry in semiconductors can result, in-
deed, in a spin-orbit interaction that breaks the spin degeneracy. A mechanism of SOI originates
from the structure inversion asymmetry (SIA) of the confining potential (Ohkawa and Uemura,
1974; Bychkov and Rashba, 1984a,b) and is, usually, referred to as the Bychkov-Rashba SOI
(Bychkov and Rashba, 1984a,b). The other mechanism of interest here is the so-called Dressel-
haus SOI (Dresselhaus, 1955), which is due to the bulk inversion asymmetry of the constituent
material itself.

C. Spin-orbit interaction in semiconductor heterostructures: A qualitative picture

In order to have a simple, intuitive picture of the origin of the spin-orbit interaction in semi-
conductor heterostructures we focus here, without loss of generality, on the case of a biased,
symmetric semiconductor quantum well grown in the z direction (see Fig. III.1). In such semi-
conductor heterostructures in addition to the SOI resulting from the microscopic, lattice-periodic
crystal potential there is a SOI corresponding to other electric fields that may be present in the
system (e.g., external and/or built in electric fields). The SOI resulting from external and/or
built in electric fields is usually referred to as the Bychkov-Rashba SOI (Bychkov and Rashba,
1984a,b) and will be discussed in more details in Sec. E. In what follows, we assume that the SOI
due to the crystal potential has already been incorporated into the band structure of the system
and concentrate on the analysis of the effects of the external and/or built in electric fields on the
spins of the conduction electrons. In particular, we address the question of which electric field is
responsible for the Bychkov-Rashba SOI in the conduction band.

Consider the lowest conduction subband of the quantum well. One could naively think that
the average electric field, 〈Ec(z)〉c = 〈Ψc|Ec(z)|Ψc〉 (here Ψc is the z component of the wave

43The spatial inversion symmetry can be broken by applying an external electric field. Non-centrosymmetric systems
such as bulk zinc-blende semiconductors lack inversion symmetry even in the absence of any external field.
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Fig. III.1. Schematics of the potential profiles of the conduction and valence bands (b) and their corre-
sponding electric fields Ec and Ev [(a) and (c), respectively] for a biased quantum well. The electron wave
function bound in the QW is sketched in (b). The negative contribution of Ec(z) at the left interface [see (a)]
is weighted with a large probability amplitude of the wave function at this interface [see (b)] and, exactly
(ignoring the position dependence of the effective mass) cancels the remaining positive contribution after
averaging. The average of Ev(z) with the conduction electron wave function, however, does not vanish
[see (b) and (c)].

function of the first conduction subband of the quantum well), of the biased conduction band
profile of the quantum well (see Fig. III.1) results in a SOI for the conduction electrons. This is,
however, not the case. In fact, one can demonstrate that when a position independent effective
mass is considered, the average electric field vanishes, 〈Ec(z)〉c = 0 (Zawadzki and Pfeffer,
2001). Indeed, the average value of the time derivative of the momentum ṗz in the bound state
|Ψc〉 of the Hamiltonian Hc (Hc describes the quantum well grown in the z direction) is given
by Ehrenfest’s relation

〈ṗz〉c = 〈Ψc|ṗz|Ψc〉 =
1
i~
〈Ψc|[pz,Hc]|Ψc〉. (III.8)

SinceHc is Hermitian and |Ψc〉 is a bound state (i.e., with a square integrable wave function) one
obtains, after expanding the commutator [pz,Hc] = pzHc−Hcpz in Eq. (III.8), that the average
〈ṗz〉c = 0. On the other hand, the Hamiltonian describing the quantum well can be written as

Hc =
p2

z

2m∗
+ eVc(z), (III.9)
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where, for simplicity, we have assumed a constant electron effective mass m∗. It follows from
Eqs. (III.8) and (III.9) that

〈ṗz〉c =
1
i~
〈[pz,Hc]〉c =

e

i~
〈[pz, Vc(z)]〉c = −

〈
e
∂Vc(z)
∂z

〉
c

= 〈eEc(z)〉c. (III.10)

Since, as obtained above, 〈ṗz〉c = 0, one obtains from Eq. (III.10) a vanishing average electric
field 〈Ec(z)〉c = 0. The vanishing of 〈Ec(z)〉c is qualitatively explained in Fig. III.1. The
negative contribution of Ec(z) at the left interface is weighted with a large probability amplitude
of the wave function at this interface and exactly cancels the remaining positive contributions
after averaging.

The fact that 〈Ec(z)〉c = 0, generated intense discussions about the nature of the electric field
causing the Bychkov-Rashba SOI (Ohkawa and Uemura, 1974; Ando et al., 1982; Bychkov and
Rashba, 1984a,b; Lassnig, 1985; Malcher et al., 1986; Lommer et al., 1988; Sobkowicz, 1990;
de Andrada e Silva et al., 1994, 1997; Pfeffer and Zawadzki, 1995; Zawadzki and Pfeffer, 2001;
Winkler, 2003, 2004a). In particular, it was argued that since 〈Ec(z)〉c = 0 the Bychkov-Rashba
spin splitting in the conduction band should be considerably small (Ando et al., 1982). It was
observed later that when an electron penetrates regions of different effective mass, the average
electric field may be non-zero (Malcher et al., 1986; Lommer et al., 1988). In such a case one
has to rewrite Eq. (III.9) as

Hc = −~2

2
∂

∂z

(
1

m∗(z)
∂

∂z

)
+ eVc(z), (III.11)

which, in turn, leads to the following expression,

〈ṗz〉c =
1
i~
〈[pz,Hc]〉c = 〈eEc(z)〉c + 〈Fm〉c = 0. (III.12)

Here, in addition to the average electric force 〈eEc(z)〉c there is an average force contribution
due to the mass gradient (Malcher et al., 1986; Zawadzki and Pfeffer, 2001),

〈Fm〉c =
〈

~2

2
∂

∂z

[(
∂

∂z

1
m∗(z)

)
∂

∂z

]〉
= −~2

2

∫ ∞
−∞

∣∣∣∣∂Ψc

∂z

∣∣∣∣2( ∂

∂z

1
m∗(z)

)
dz. (III.13)

In the case of a quantum well with interfaces located at zlc = −d/2 and zcr = d/2 and piecewise
continuous effective mass

m∗(z) = m∗(l)Θ(−z − d/2) +m∗(c)Θ(d/2− |z|) +m∗(r)Θ(z − d/2), (III.14)

where Θ(x) represent the Heaviside step function, the wave function Ψc obeys the following
boundary conditions

Ψc|z−ij
= Ψc|z+

ij
;

1
m∗(i)

∂Ψc

∂z

∣∣∣∣
z−ij

=
1

m∗(j)
∂Ψc

∂z

∣∣∣∣
z+

ij

; i, j = l, r, c; (III.15)

which result from the continuity of the probability current across the interfaces. In the equations
above m∗(l), m∗(c), and m∗(r) represent the effective mass in the left barrier, well (central), and
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right barrier regions, respectively. From Eqs. (III.13) - (III.15) one obtains

〈Fm〉c =
~2

2

(m∗(c) −m∗(r))

(∣∣∣∣ 1
m∗

∂Ψc

∂z

∣∣∣∣2
)∣∣∣∣∣

z=− d
2

− (m∗(c) −m∗(l))

(∣∣∣∣ 1
m∗

∂Ψc

∂z

∣∣∣∣2
)∣∣∣∣∣

z= d
2

 , (III.16)

where, in virtue of Eq. (III.15), the values at z = zij (i, j = l, c, r) can be evaluated either
using m∗(i) and the limit z = z−ij , or m∗(j) and the limit z = z+

ij . Since 〈Fm〉c is, in general,
different from zero, the average electric field 〈Ec(z)〉c = −〈Fm〉c/e does not vanish when
the effective mass discontinuities are considered. The values of 〈Fm〉c lead, however, to small
effects and underestimate the Bychkov-Rashba SOI in systems such as GaAs/AlGaAs (Malcher
et al., 1986). Thus, although in this case the average electric field 〈Ec(z)〉c = −〈Fm〉c/e does
not vanish exactly, it contributes only in a small fraction to the Bychkov-Rashba SOI in the
conduction band.

The controversial issue concerning the origin of the Bychkov-Rashba SOI was resolved
by Lassnig (1985), who showed that the Bychkov-Rashba SOI in the conduction band results
from the electric field in the valence band. This important observation can be qualitatively
understood by extending our previous analysis and including the effects of the biased valence
band potential profile on the conduction electrons. The situation is qualitatively sketched in
Figs. III.1(b) and (c), from where it results clear that the average valence band electric field
〈Ev(z)〉c = 〈Ψc|Ev(z)|Ψc〉 seen by the conduction electrons does not vanish [we note that Vv(z)
is not a part of the Hamiltonian in Eq. (III.9) and therefore the Ehrenfest’s relation Eq. (III.10)
does not apply to the case of 〈Ev(z)〉c]. Thus, it is the average field 〈Ev(z)〉c 6= 0 that causes
the spin-orbit splitting of the conduction electron states. The coupling between conduction and
valence band states is then a key ingredient that has to be considered when investigating the SOI
in semiconductor heterostructures.

The above analysis can be extended to the case of a symmetric quantum well (see Figs. III.2).
Unlike in the asymmetric structure in Fig. III.1, for the symmetric case both 〈Ec(z)〉c and
〈Ev(z)〉c vanish and the Bychkov-Rashba SOI is suppressed [see Figs. III.2]. For this reason,
it is often concluded that the structure inversion asymmetry imposed by external and/or build
in potentials constitutes a precondition for the presence of the Bychkov-Rashba SOI. We note
however that even in perfectly symmetric quantum wells one may still observe spin-orbit related
effects due to intersubband coupling (see Sec. E.2) (Bernardes et al., 2006).

D. Band structure of semiconductors

D.1 The k.p approximation

The k.p approximation is a powerful technique for evaluating band structures of bulk semicon-
ductors as well as of semiconductor heterostructures (Long, 1968; Singh, 1993; Bastard, 1998;
Rössler, 2004; Yu and Cardona, 2001). In the k.p method one can compute the semiconductor
band structure in the vicinity of a given point k0 in the reciprocal space, for which the band
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Fig. III.2. Schematics of the potential profiles of the conduction and valence bands and their corresponding
electric fields Ec and Ev for a symmetric QW. Both average fields 〈Ec(z)〉c and 〈Ev(z)〉c vanish.

structure is already known. Thus, knowing the band structure at some point k0 and using per-
turbation theory one can describe the bands away from that point. In order to take advantage
of the symmetry properties when evaluating matrix elements, the k0 is usually taken at a high
symmetry point.

The Schrödinger equation for the Bloch functions Ψνk(r) in the microscopic lattice-periodic
crystal potential V0(r) is given by

H0Ψνk(r) = Eν(k)Ψνk(r); H0 =
p2

2m0
+ V0(r), (III.17)

where m0 represents the free-electron mass and ν denotes the band index. The Bloch functions
can be written as Ψνk(r) = eik.ruνk(r). One then obtains from Eq. (III.17) the following
equation,[

p2

2m0
+ V0(r) +

~2k2

2m0
+

~
m0

k · p
]
|νk〉 = Eν(k)|νk〉, (III.18)

which contains only the lattice-periodic parts uνk(r) = 〈r|νk〉 of the Bloch functions. The
set {|νk0〉} of lattice-periodic parts of the Bloch functions for a fixed value of k0 constitutes
a complete and orthonormal basis. The idea of the k.p method consists in expanding the gen-
eral solutions, away from the known band edge solutions at k = k0, in this basis set {|νk0〉}.
In many semiconductors important for spintronics, such as GaAs, the valence band maximum
and conduction band minimum occur at the Γ point (k = 0) and, consequently, it is the band
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structure in the vicinity of this high symmetry point what determines many of the properties of
semiconductor materials (Singh, 1993; Bastard, 1998; Rössler, 2004; Yu and Cardona, 2001).
Therefore, to take advantage of the symmetry properties of the band edge Bloch functions at the
Γ point, the band structure of semiconductors is usually expanded around k = 0 (note, however,
that the application of the method to any other expansion point k0 6= 0 is straightforward). The
corresponding basis set, including the spin degree of freedom, is then composed by the state
vectors

|ν0σ〉 = |ν0〉 ⊗ |σ〉, (III.19)

which are the solutions of Eq. (III.18) for k = 0. Here |σ〉 (σ =↑, ↓) represents the spin eigen-
states. In what follows we use the simplified notation,

|ν0σ〉 = |νσ〉. (III.20)

The general solutions of Eq. (III.18), away from the Γ point, can be written as

|νkσ〉 =
∑
ν′

∑
σ′=↑,↓

cνν′σ′(k)|ν′σ′〉. (III.21)

Substituting Eq. (III.21) into Eq. (III.18) and multiplying the resulting expression from the left
by 〈ν′′σ| one obtains, the following eigenvalue problem

∑
ν′

{[
Eν′(0) +

~2k2

2m0

]
δν′′ν′ +

~
m0

k · pν′′ν′

}
cνν′σ(k) = Eνσ(k)cνν′′σ(k), (III.22)

for determining the expansion coefficients cνν′σ′(k) and the eigenvalues Eνσ(k). The momen-
tum matrix elements in Eq. (III.22) are defined as

pν′′ν′ = 〈ν′′|p|ν′〉. (III.23)

Approximate solutions of Eq. (III.22) can be found in the vicinity of k = 0 by treating the k.p
terms within perturbation theory (Singh, 1993; Bastard, 1998). This procedure is satisfactory
only for small values of k = |k| and certainly fails when the change in Eνσ(k) becomes of the
order of the gap between the bands at the Γ point.44 A better approach is to solve Eq. (III.22)
by exact diagonalization in a reduced Hilbert space (i.e., considering a finite number of basis
functions). This is the foundation of the Kane model, (Kane, 1957, 1980) to be discussed in
Sec. D.2.

Regarding the band edge Bloch states |νσ〉, it is worth making some remarks. These states
are the starting point for both the k.p and envelope function approximations (see Sec. D.2) and
are assumed to be known. The precise form of the band edge Bloch states is, in principle, needed
for evaluating the momentum matrix elements in Eq. (III.23). In practice, however, the detailed
form of these states is not known.45 Fortunately, it turns out, from symmetry considerations,

44In such a case high order perturbation theory is required, which is quite cumbersome.
45The form of the band edge Bloch states can be determined from ab initio and/or tight binding calculations in which

the microscopic details of the system are considered. This is, however, out of the scope of the present discussion.
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that only a few matrix elements do not vanish. These non-vanishing matrix elements are then
considered as phenomenological parameters to be found from experimental measurements.

Consider that the crystal states form as the lattice is hypothetically constructed by bringing
the isolated atoms together. One can separate the electrons of an isolated atom into two groups:
valence electrons and core electrons. The core electrons are those in the completely filled inner
atomic shells and are mostly localized around the nuclei. The valence electrons are those in
the outermost partially filled atomic shells.46 The main properties of the semiconductors are
determined by the valence electrons rather than by the mostly localized core electrons. For
this reason we neglect the inner shell electrons in our further analysis. In diamond and zinc-
blende lattices (these are the typical structures of semiconductors) each atom in the lattice is
surrounded by its four valence electrons arranged in hybridized tetrahedral orbitals with each
orbital lobe containing an electron pair shared with the neighboring atom. For most solids, it is
a reasonable approximation to assume that the orbitals of each atom in the crystal overlap with
those of its nearest neighbors only. Since in diamond and zinc-blende lattices there are two atoms
per unit cell, the atomic orbitals of the two atoms overlap to form new orbitals. The orbitals on
adjacent atoms can combine in two different ways to produce either a bonding or an antibonding
composite orbital. In the case of diamond lattices, where the two adjacent atoms are identical,
the bonding orbitals correspond to symmetric (with respect to the interchange of the two atoms)
orbitals. The composite symmetric wave function provides a high probability of the electrons
occupying the region between the atoms, promoting the formation of a covalent bond. On the
other hand antibonding orbitals correspond to antisymmetric orbitals with a node of the wave
function at the point midway between the atoms. This tends to exclude the electrons from the
region between the atoms and prevents the formation of a covalent bond of low enough energy.
Therefore the energy of the antibonding orbitals is higher than the energy of the corresponding
bonding orbitals. In the case of zinc-blende lattices, because of the lack of inversion symmetry
about the midpoint between the two different atoms in the unit cell, the bonding and antibonding
orbitals refer to the combinations of orbital wave functions having the same and opposite signs,
respectively. As a result of the orbital overlap in a solid, the bonding and antibonding orbitals
are broadened into bands. Those occupied by the electrons form valence bands while the empty
ones form conduction bands. (see Fig. III.3). Usually, the bonding orbitals of semiconductors
are filled with electrons and become the valence bands while the antibonding orbitals give rise to
the conduction bands.

In the absence of spin-orbit interaction, the bands originating from the overlap of the s (p)
atomic orbitals describing the outermost atomic shells are characterized by s-like (p-like) band
states. In what follows we consider an approximation in which only the antibonding s-like state
|S〉 in the lowest conduction band47 and the topmost bonding p-like valence band states |X〉,
|Y 〉, and |Z〉 are taken into account, while the interaction with other bands is neglected. The |S〉,
|X〉, |Y 〉, and |Z〉 states transform as s, px, py, and pz, respectively. They can be written in terms
of the eigenstates φl,ml

= |lml〉 of the orbital angular momentum (Singh, 1993; Bastard, 1998;

46In the atoms composing semiconductors the outermost partially filled atomic orbitals are s and p type. For example,
the electron configuration of a Si atom is 1s22s22p63s23p2. In crystalline Si the 1s, 2s, and 2p orbitals are completely
occupied while the outer 3s and 3p are only partially filled.

47Such an approximation holds for zinc-blende semiconductors such as GaAs but may not be valid for some diamond
semiconductors such as Si, in which the lowest conduction band corresponds to an antibonding p-like state.
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Fig. III.3. Schematics of the evolution of the atomic s and p orbitals into valence and conduction bands in
a semiconductor. The Fermi energy is represented by EF . Note that this schematics is not general. In Si,
for example, the lowest conduction band corresponds to an antibonding p-like state.

Rössler, 2004; Yu and Cardona, 2001):

|S〉 = φ0,0; |X〉 =
1√
2
(φ1,−1 − φ1,1); |Y 〉 =

i√
2
(φ1,−1 + φ1,1); |Z〉 = φ1,0. (III.24)

Conversely, one may also write

φ0,0 = |S〉; φ1,1 = − 1√
2
(|X〉+ i|Y 〉); φ1,−1 =

1√
2
(|X〉 − i|Y 〉); φ1,0 = |Z〉. (III.25)

Relations of the type in Eqs. (III.24) and (III.25) are widespread in the literature [see, for instance,
(Singh, 1993)]. Strictly speaking, these equalities are not valid, in general.48 One must interpret
the equality symbols in Eqs. (III.24) and (III.25) as a notation expressing the fact that the states in
the left- and right-hand sides transform in the same way under symmetry operations. Having this
in mind, the notation in Eqs. (III.24) and (III.25) is appropriate, as far as we are not interested in
the explicit evaluation of the band edge Bloch functions but rather in their symmetry properties.

The momentum matrix elements involving the band edge Bloch states can be estimated by
using Eq. (III.24) and the well-known properties of the states φl,ml

= |lml〉 (Davydov, 1976;
Sakurai, 1994). From Eq. (III.17) one has

[H0, r] = H0r− rH0 =
i~
m0

p. (III.26)

Taking into account that H0|νσ〉 = Eν(0)|νσ〉 (ν = S,X, Y, Z; σ =↑, ↓), one obtains from
Eq. (III.26),

~
m0

〈νσ|p|ν′σ′〉 = i [Eν′(0)− Eν(0)] 〈ν|r|ν′〉δσσ′ . (III.27)

48The exact wave functions corresponding to the |S〉, |X〉, |Y 〉, and |Z〉 states are complicated functions not only on
the angular but also on the radial degrees of freedom.
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Considering the parity of the band edge estates and the degeneracy of the p-like band edge states
[Ep(0) = E

X
(0) = E

Y
(0) = E

Z
(0)] at the Γ point, it follows from Eq. (III.26) that the only

non-vanishing momentum matrix elements involving the band edge Bloch states are

P0 =
~
m0

〈Sσ|px|Xσ〉 =
~
m0

〈Sσ|py|Y σ〉 =
~
m0

〈Sσ|pz|Zσ〉. (III.28)

As mentioned above, within the present model, the precise form of the band edge Bloch states
is not known and, consequently, the values of P0 can not be obtained from Eq. (III.28). Instead,
P0 is assumed as a phenomenological parameter to be extracted from experiment. Another phe-
nomenological parameter that appears in the theoretical approximation is the energy,

E0 = Es(0)− Ep(0), (III.29)

corresponding to the fundamental gap between the conduction and valence bands at the Γ point.
In the analysis above we have omitted the effects of the spin-orbit interaction defined in

Eq. (III.1). The spin-orbit interaction mixes the spin states |σ〉. Therefore, the spin is not a
good quantum number when the SOI is included in Eq. (III.18). Although one may still use
the basis set {|νσ〉} (ν = S,X, Y, Z; σ =↑, ↓), it is more convenient to use what we call here
an intelligent basis in which the spin-orbit matrix elements are already diagonal. This will be
discussed in details in the following section.

D.2 The envelope function approximation (EFA)

The envelope function approximation (EFA) can be seen as a sort of generalization of the k.p
to the case in which slowly varying, on the length scale of the lattice constant, electric and
magnetic fields are present (Burt, 1992; Foreman, 1993; Bastard, 1981, 1998; Winkler, 2003; Yu
and Cardona, 2001). The requirement of slowly varying fields [others than the lattice-periodic
potential V0(r)] may appear as a strong limitation for the validity of the EFA when modelling
semiconductor heterostructures. In fact, the theoretical models of semiconductor heterostructures
usually consider effective step-like potentials (for both electron and holes) resulting from the
position-dependent band edges (see Fig. III.1). In spite of this controversial issue, it has been
shown that the EFA can describe electron and hole states in quantum wells in excellent agreement
with the experiment (Bastard, 1981, 1998). This suggests that the assumption of slowly varying
potentials (even though they are usually modelled as step-like potentials) may still be a good
ansatz. Furthermore, advanced derivations of the EFA show that even in cases where the potential
is not slowly varying the application of the EFA can still be justified (Burt, 1992; Foreman, 1993).

Consider now the general Schrödinger equation[
P2

2m0
+ V0(r) + V (r) +

g0µB

2
σ ·B +

~
4m2

0c
2
P · (σ ×∇V0)

]
Ψnk(r) = EnkΨnk(r),

(III.30)

describing the electrons in the crystal, in the presence of the potential V (r) (this potential refers
to any, other than the crystal, potential V0(r), e.g., the potential resulting from the position-
dependent band edges in a heterostructure or the potential of external electric fields) and an
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external magnetic field B. The first term in the left-hand side of Eq. (III.30) corresponds to
the electron kinetic energy, with P = p + eA(r) being the operator of the kinetic momentum
(here e, p, and A(r) are the electron charge, canonical momentum operator, and vector potential,
respectively). The fourth term describes the Zeeman interaction with the external magnetic field
B. The gyromagnetic factor of the free electron is g0 = 2. The fifth term corresponds to the
spin-orbit interaction [see Eq. (III.1)].

We recall that in the presence of SOI the spin quantum number σ is, by itself, not a good
quantum number. Therefore, we have used in Eq. (III.30) only a common index n for the orbital
motion and the spin degree of freedom.

Following the k.p method, one can, in principle, use the basis set {|νσ〉} [see Eq. (III.19)].
However, as mentioned in Sec. D.1, it is more convenient to use an intelligent basis in which
the matrix elements of the SOI become diagonal. Thus, in place of using directly the basis set
{|νσ〉} we will use the intelligent basis set {|m〉} composed by the state vectors

um = |m〉 =
∑

ν=S,X,Y,Z

∑
σ=↑,↓

hmνσ|νσ〉. (III.31)

Since the intelligent states |m〉 must reflect the symmetry of the bands, one can divide the
intelligent basis set {|m〉} into the subsets {|m〉s} and {|m〉p} composed by s-like and p-like
intelligent states, respectively. Thus, for the s-like intelligent states the expansion in Eq. (III.31)
reduces to,

|m〉s =
∑

σ=↑,↓

hmsσ|Sσ〉, (III.32)

while for the p-like intelligent states one obtains

|m〉p =
∑

ν=X,Y,Z

∑
σ=↑,↓

hmνσ|νσ〉. (III.33)

The expansion coefficients obey the following relations∑
σ=↑,↓

h∗m′sσhmsσ = δmm′ ;
∑

ν=X,Y,Z

∑
σ=↑,↓

h∗m′νσhmνσ = δmm′ , (III.34)

which can be obtained from Eqs. (III.32) and (III.33), respectively, by considering the orthogo-
nality of the basis sets {|νσ〉} and {|m〉}. In Eq. (III.34) δmm′ represents the Kronecker symbol.

The appropriate expansion coefficients hmνσ can be found by requiring that the SOI be di-
agonal in the intelligent basis. The details of such a procedure will be explained latter on in this
section.

Expanded in the intelligent basis, the eigenstates |nk〉 [Ψnk(r) = 〈r|nk〉] of Eq. (III.30) can
be written as

|nk〉 =
∑
m

fnm(k, r)|m〉. (III.35)

The position dependence of the expansion coefficients fnm accounts for the spatial dependence
of the external and/or build in electric fields. These coefficients modulate the fast oscillations of
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the lattice-periodic functions 〈r|m〉. Since this modulation varies slowly on the length scale of
the lattice constant, the expansion coefficients fnm are called envelope functions (Bastard, 1981,
1998).

After some algebra one obtains that the operators in the Hamiltonian in Eq. (III.30) acts on
the summands in Eq. (III.35) as follows,

P2fnm|m〉 = (P2fnm)|m〉+2(pfnm) ·(p|m〉)+fnm(p2|m〉)+2efnmA ·(p|m〉), (III.36)

P · (σ ×∇V0)fnm|m〉 = (Pfnm) · (σ ×∇V0)|m〉+ fnmp · (σ ×∇V0)|m〉, (III.37)

and

(σ ·B)fnm|m〉 = fnmB · (σ|m〉). (III.38)

By substituting Eq. (III.35) in Eq. (III.30) and multiplying from the left by 〈m′0| one obtains
the following eigenvalue problem for the envelope functions∑

m

{[
P2

2m0
+ V (r)

]
δm′m +

P
m0

· pm′m +4m′m

+ E
(0)
m′m +

g0µB

2
(Sm′m ·B)

}
fnm = Enkfnm′ , (III.39)

where

pm′m =
〈
m′
∣∣∣∣p +

~
4m0c2

(σ ×∇V0)
∣∣∣∣m〉 , (III.40)

4m′m =
~

4m2
0c

2
〈m′|p · (σ ×∇V0)|〉, (III.41)

Sm′m = 〈m′|σ|m〉, (III.42)

and

E
(0)
m′m = 〈m′ |H0|m〉 , (III.43)

withH0 given by Eq. (III.17). In obtaining Eq. (III.39) we have used the relations in Eqs. (III.36)
- (III.38). We have also taken advantage of the slow variations of the envelope functions, V (r),
A(r), and B on the lattice constant scale and have taken them out of the corresponding integra-
tions over the unit cell.

The contribution of the term 〈m′|~(4m0c
2)−1(σ×∇V0)|m〉 in Eq. (III.40) is much smaller

than the momentum matrix elements. Therefore, we can neglect this term and use the approxi-
mation (Kane, 1980; Lassnig, 1985; Singh, 1993; Bastard, 1998; Winkler, 2003),

pm′m ≈ 〈m′|p|m〉. (III.44)
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The matrix element E(0)
m′m can be calculated by substituting the Eqs. (III.32) and (III.33) into

Eq. (III.43) and taking into account that the states |νσ〉 are eigenstates of H0 with eigenenergies
Eν(0). The results are,

E
(0)
m′m =

∑
σ=↑,↓

h∗m′sσhmsσEs(0) = Es(0)δm′m, (III.45)

and

E
(0)
m′m =

∑
ν=X,Y,Z

∑
σ=↑,↓

h∗m′νσhmνσEν(0) = EP(0)δm′m, (III.46)

for matrix elements involving s-like and p-like intelligent states, respectively. The matrix ele-
ments mixing s-like and p-like intelligent states vanish. In obtaining Eqs. (III.45) and (III.46)
we took into consideration Eq. (III.34) and the degeneracy of the |Sσ〉 states [with eigenenergies
Es(0)] and the |Xσ〉, |Y σ〉, and |Zσ〉 states [with eigenenergies Ep(0) = E

X
(0) = E

Y
(0) =

E
Z
(0)] at the Γ point and in the absence of the SOI. Considering Eqs. (III.45) and (III.46), the

eigenvalue problem in Eq. (III.39) can be rewritten as,∑
m

{[
E(0)

m +
P2

2m0
+ V (r)

]
δm′m +

P
m0

· pm′m +4m′m

+
g0µB

2
(Sm′m ·B)

}
fnm = Enkfnm′ , (III.47)

where E(0)
m = Es(0) for s-like intelligent states and E(0)

m = EP(0) for p-like intelligent states.
A better approximation than the direct application of perturbation theory to solve Eq. (III.47)

was formulated by E. O . Kane (1957,1980). Kane observed that in many situations the inclusion
of only a few adjacent bands is enough for capturing the main physical features. He then proposed
to work in a reduced Hilbert space in which Eq. (III.47) can be solved exactly. Thus, in the Kane
model one takes full account of the P.pm′m

49 and spin-orbit interactions only for the most
relevant bands, whereas the contributions of the remote bands are treated perturbatively. In the
original version50 of the Kane model, which applies to any diamond or zinc blende type materials,
one works in a reduced Hilbert space with an 8-dimensional intelligent basis set. The eight state
vectors |m〉 of the intelligent basis are in turn linear combinations of the eight band edge Bloch
states |νσ〉 [see Eq. (III.31)].

The spin-orbit interaction is large only near a lattice atom, where ∇V0 is appreciable and the
crystal potential V0 is at least roughly spherically symmetric. One can then rewrite Eq. (III.1) in
a similar way as for the isolated atoms,(Davydov, 1976; Yu and Cardona, 2001; Long, 1968)

Hso =
~

4m2
0c

2

1
r

dV0

dr
L · S, (III.48)

where L = r×p and S represent the orbital angular momentum and the spin angular momentum
operators, respectively. Averaging out the radial degree of freedom, one can rewrite Eq. (III.48)

49Note that the P.pm′m interaction in Eq. (III.47) is a generalization of the k.p interaction to the case of a finite
magnetic field. The canonical wave vector k is then substituted by the kinetic wave vector P/~ = k + eA/~.

50The original Kane model includes only 8 bands. A further generalization including 14 bands is usually referred to
as the extended Kane model (see Sec. F.).
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as

Hso = λL · S, (III.49)

where λ is a phenomenological parameter. The total angular momentum is J = L + S, and
consequently J2 = L2 +S2 +2L ·S. Thus, in terms of the total angular momentum, Eq. (III.49)
can be rewritten as

Hso =
λ

2
(J2 − L2 − S2). (III.50)

It follows from Eq. (III.50) that the intelligent basis is nothing but a basis whose components
are the eigenfunctions of J2 (note that if a function is an eigenfunction of J2, then it is also an
eigenfunction of L2, S2, Jz , Lz , and Sz). Thus, in the intelligent basis Hso becomes diagonal
and its expectation value can easily be evaluated as

〈Hso〉 =
λ~2

2
[j(j + 1)− l(l + 1)− s(s+ 1)], (III.51)

where j, l, and s are the quantum numbers corresponding to the operators J2, L2, and S2,
respectively.

The eigenfunctions of (J2, Jz) can be found by applying the rule for the addition of angular
momenta (Davydov, 1976; Sakurai, 1994). Since in the present case J = L + S, one can write
the eigenstates of (J2, Jz) as

|l s j mj〉 =
s∑

ms=−s

(l s mj −ms ms|j mj)|l mj −ms〉 ⊗ |ms〉, (III.52)

where |l mj −ms〉 are the eigenstates of (L2, Lz) with quantum numbers (l,ml = mj −ms),
(l s mj − ms|j mj) are the Clebsch-Gordon coefficients, and mj and ms are the quantum
numbers corresponding to Jz and Sz , respectively. For spin- 1

2 particles s = 1/2 and Eq. (III.52)
reduces to

|l 1
2
j mj〉 =

∑
ms=± 1

2

(l
1
2
mj −ms ms|j mj)|l mj −ms〉 ⊗ |ms〉. (III.53)

The Clebsch-Gordon coefficients for j = l ± 1/2 (j > 0) and ms = ±1/2 can be calculated
from the following relations (Davydov, 1976; Sakurai, 1994)

(l
1
2
mj ∓

1
2
± 1

2
|l ± 1

2
mj) =

√
l +mj + 1/2

2l + 1
, (III.54)

±(l
1
2
mj ±

1
2
∓ 1

2
|l ± 1

2
mj) =

√
l −mj + 1/2

2l + 1
. (III.55)

Within the eight-bands Kane model l = 0, 1. The s-like states (l = 0) and the p-like states
(l = 1) correspond to different bands. Therefore, it is enough to specify the band and the
quantum numbers j and mj for completely determining the basis vectors of the Kane model.
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For this reason the notation |l s j mj〉 is commonly shortened to |j mj〉. From now on we will
assume such an abbreviated notation.

The eight intelligent basis vectors of the Kane model are found from Eqs. (III.53)-(III.55).
The s-like states (l = 0) consist of the Γ6c doublet51

|1
2

1
2
〉 = φ0,0 ⊗ | ↑〉, (III.56)

|1
2
−1

2
〉 = φ0,0 ⊗ | ↓〉. (III.57)

This doublet, corresponding to the lowest conduction bands, has 〈Hso〉 = 0 [see Eq. (III.51)].
The p-like states (l = 1) consist of the Γ8v quadruplet

|3
2

3
2
〉 = φ1,1 ⊗ | ↑〉, (III.58)

|3
2

1
2
〉 =

√
2
3
φ1,0 ⊗ | ↑〉+

√
1
3
φ1,1 ⊗ | ↓〉, (III.59)

|3
2
−1

2
〉 =

√
1
3
φ1,−1 ⊗ | ↑〉+

√
2
3
φ1,0 ⊗ | ↓〉, (III.60)

|3
2
−3

2
〉 = φ1,−1 ⊗ | ↓〉, (III.61)

and the Γ7v doublet

|1
2

1
2
〉 = −

√
1
3
φ1,0 ⊗ | ↑〉+

√
2
3
φ1,1 ⊗ | ↓〉, (III.62)

|1
2
−1

2
〉 = −

√
2
3
φ1,−1 ⊗ | ↑〉+

√
1
3
φ1,0 ⊗ | ↓〉. (III.63)

In the absence of SOI the Γ8v quadruplet describing the light and heavy holes and the Γ7v

doublet are energy degenerate at the Γ point. However, when the effects of SOI are included,
one finds from Eq. (III.51) the values 〈Hso〉Γ8v

= ~2λ/2 and 〈Hso〉Γ7v
= −~2λ for the Γ8v

quadruplet and Γ7v doublet, respectively. This leads to the spin-orbit splitting,

∆0 = 〈Hso〉Γ8v − 〈Hso〉Γ7v =
3~2λ

2
, (III.64)

which is a phenomenological parameter of the Kane model.
In Eqs. (III.56)-(III.63) we have used the shorthand notations |ms = 1

2 〉 = | ↑〉, |ms =
− 1

2 〉 = | ↓〉, and φl,ml
= |l ml〉. Using the relations in Eq. (III.25) one can express the intelligent

basis defined in Eqs. (III.56)-(III.63) in terms of the band edge Bloch basis. The corresponding
energies at the Γ point and zero magnetic field can easily be computed from Eqs. (III.47) and
(III.51). Taking the zero of the energy scale at the bottom of the Γ6c conduction band [i.e.,
making Es(0) = 0], the energy of the degenerate Γ8v valence bands is given by Es(0) = −E0

51The notation Γ6, Γ8, etc, originates from group theory classification according to the irreducible representations of
the symmetry group of the crystal, which determines the way the wave functions with wave vector k at the center of the
Brillouin zone (Γ point) transform (Yu and Cardona, 2001). In addition, the subindexes c and v indicate conduction and
valence bands, respectively.
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Tab. III.1. Basis functions of the Kane model and their corresponding energies at the Γ point and zero mag-
netic field. The zero of the energy scale is taken at the bottom of the Γ6c conduction band. The phenomeno-
logical parameters E0 and40 correspond to the fundamental gap and spin-orbit splitting, respectively (see
Fig. III.4).

Band |m〉 Basis functions Energy
Γ6c | 12

1
2 〉 |S ↑〉 0

| 12 − 1
2 〉 |S ↓〉 0

Γ8v | 32
3
2 〉 − 1√

2
|(X + iY ) ↑〉 −E0

| 32
1
2 〉

√
2
3 |Z ↑〉 −

1√
6
|(X + iY ) ↓〉 −E0

| 32 − 1
2 〉

√
2
3 |Z ↓〉+ 1√

6
|(X − iY ) ↑〉 −E0

| 32 − 3
2 〉

1√
2
|(X − iY ) ↓〉 −E0

Γ7v | 12
1
2 〉 − 1√

3
|Z ↑〉 − 1√

3
|(X + iY ) ↓〉 −(E0 +40)

| 12 − 1
2 〉

1√
3
|Z ↓〉 − 1√

3
|(X − iY ) ↑〉 −(E0 +40)

Fig. III.4. Schematics of a III-V semiconductor band structure obtained within the Kane model. Symbols
indicate conduction (c), heavy-hole (hh), light-hole (lh), and spin split-off (so) bands.

[see Eq. (III.29)]. The energy of the spin split-off Γ7v bands is Ep(0) − 40. The results are
summarized in Tab. III.1. Furthermore, a schematics of a III-V semiconductor band structure
obtained within the Kane model is displayed in Fig. III.4.

Using the basis set given in Tab. III.1, one can rewrite Eq. (III.47) as follows

Hf = Ef , (III.65)

where f = (fn1, fn2, ..., fn8)T and

H =
(

Hc Hcv

Hvc Hv

)
. (III.66)
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Taking the zero of the energy scale at the bottom of the conduction band, the matrix blocks
describing the conduction (Γ6c) and valence (Γ8c and Γ7v) bands can be written as

Hc =

(
P2

2m0
+ V (r) + g0µ

B

2 Bz
g0µ

B

2 B−
g0µ

B

2 B+
P2

2m0
+ V (r)− g0µ

B

2 Bz

)
(III.67)

and

Hv = [V (r)− E0]16×6 (III.68)

+ g0µB



1
2Bz

1
2
√

3
B− 0 0 1√

6
B− 0

1
2
√

3
B+

1
6Bz

1
3B− 0 −

√
2

3 Bz
1
6B−

0 1
3B+ − 1

6Bz
1

2
√

3
B− −

√
2

6 B+ −
√

2
3 Bz

0 0 1
2
√

3
B+ − 1

2Bz 0 − 1√
6
B+

1√
6
B+ −

√
2

3 Bz −
√

2
6 B− 0 − 40

g0µ
B
− 1

6Bz − 1
6B−

0 1√
6
B+ −

√
2

3 Bz − 1√
6
B− − 1

6B+ − 40
g0µ

B
+ 1

6Bz


respectively. Here, and in what follows, 1

m×m
represents the (m×m) unit matrix. On the other

hand, the matrices

Hcv =

 − 1√
2

P0
~ P+

√
2
3

P0
~ Pz

1√
6

P0
~ P− 0 − 1√

3

P0
~ Pz − 1√

3

P0
~ P−

0 − 1√
6

P0
~ P+

√
2
3

P0
~ Pz

1√
2

P0
~ P− − 1√

3

P0
~ P+

1√
3

P0
~ Pz


(III.69)

and

Hvc =



− 1√
2

P0
~ P− 0√

2
3

P0
~ Pz − 1√

6

P0
~ P−

1√
6

P0
~ P+

√
2
3

P0
~ Pz

0 1√
2

P0
~ P+

− 1√
3

P0
~ Pz − 1√

3

P0
~ P−

− 1√
3

P0
~ P+

1√
3

P0
~ Pz


(III.70)

correspond to interactions between the conduction and valence bands.52 Note that, in principle,
the term P2/(2m0) should appear also in the main diagonal of Hv . However, because of the
large value of m0 with respect to the electron effective mass in semiconductors (see Sec. E.1),
P2/(2m0) is usually much smaller than E0 and can be neglected in Eq. (III.68). In obtaining
Eqs. (III.65)-(III.70) we have used the relations in Eq. (III.28). We have also introduced the
shorthand notation

B± = Bx ± iBy ; P± = Px ± iPy. (III.71)

52Note that, taking the magnetic field as an argument, the relation Hcv(B) = −H†
vc(−B) holds.
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By solving the system of eight coupled differential equations in Eq. (III.65) one can obtain the
sets of envelope functions (fn1, fn2), (fn3, fn4, fn5, fn6), and (fn7, fn8) describing the eigen-
states of the Γ6c, Γ8v , and Γ7v , respectively.

We now focus on the case of conduction electrons (the generalization to the case of holes
is straightforward). In order to obtain the envelope functions fn1 and fn2 corresponding to the
Γ6c conduction band one has to eliminate all the other components of f from Eq. (III.65). Thus,
the original problem is transformed into a reduced system of only two differential equations for
fn1 and fn2. A general and systematic procedure for performing such a transformation is the
so-called folding down method (Cohen and Heine, 1970). The main idea of this method is to
introduce the matrix

U =
(

12×2 −(Hc − E)−1Hcv

−(Hv − E)−1Hvc 16×6

)
. (III.72)

Inserting 18×8 = UU−1 in Eq. (III.65), one obtains

(H− E)UU−1f = 0. (III.73)

The equation above can be rewritten as follows

(H̃− E)f̃ = 0, (III.74)

where

f̃ = U−1f , (III.75)

H̃ = E + (H− E)U =
(

H̃c 0
0 H̃v

)
, (III.76)

H̃c = Hc − Hcv(Hv − E)−1Hvc, (III.77)

and

H̃v = Hv − Hvc(Hc − E)−1Hcv. (III.78)

We are particularly interested in that eigenvector of Eq. (III.74) which has the form f̃ =
(f̃1, f̃2, 0, 0, 0, 0, 0, 0)T . For this eigenvector one has from Eqs. (III.72) and (III.75) that f̃1 = fn1

and f̃2 = fn2. One then obtains from Eq. (III.74) the following effective system of two coupled
differential equations

H̃cfc = Efc, (III.79)

which contains only the envelope functions fc = (fn1, fn2)T of the Γ6c conduction band.
Computing the matrix H̃c requires the inversion of (Hv−E) [see Eq. (III.77)]. Such a matrix

inversion is trivial for the case of zero magnetic field, since in this case (Hv − E) becomes
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diagonal [see Eq. (III.68)]. However, from the analytical point of view, the exact inversion of
(Hv − E) can in general lead to cumbersome expressions in H̃c. A procedure for finding a
simplified, approximate expression for (Hv −E)−1 consists in making the decomposition (Hv −
E) = A−D, where A is a nonsingular, diagonal matrix. Thus, Hv −E = A(16×6 −A−1D) and,
consequently,

(Hv−E)−1 = (16×6−A−1D)−1A−1 = [16×6+A−1D+(A−1D)2+(A−1D)3+...]A−1. (III.80)

The advantage of using Eq. (III.80) is that by appropriately choosing A, the series expansion
may rapidly converge and few terms in the series suffice for a good estimation. Then, one can
approximately compute (Hv − E)−1 by performing just a few matrix multiplications (since A
is diagonal, it is trivial to compute A−1). A good choice for the case of Eq. (III.68) could be
A = diag[V (r)−E0−E, V (r)−E0−E, V (r)−E0−E, V (r)−E0−E, V (r)−E0−E−
40, V (r) − E0 − E −40]. Indeed, in such a case the non-vanishing elements of D are of the
order of the Zeeman energy g0µB

B/2. In many practical situations g0µB
B/2 � V (r)−E0−E

and the series in Eq. (III.80) rapidly converges.

E. Bychkov-Rashba spin-orbit interaction

E.1 Spin-orbit interaction in systems with structure inversion asymmetry

We have seen in Sec. D.2 that the SOI due to the lattice-periodic crystal potential can be di-
agonalized by using the intelligent basis set given in Tab. III.1. We show now that in systems
with structure inversion asymmetry (SIA) there are other contributions to the SOI. Without loss
of generality, we consider the case of SIA induced SOI in the conduction band for the case of
an asymmetric, semiconductor quantum well (QW) in the presence of an external electric field
oriented in the grown direction of the well. The grown direction z is taken as the [001] crystal-
lographic direction. The spatial dependence of the band edges is schematically represented in
Fig. III.5. Because the materials in the left (l), central (c), and right (r) regions are different, the
parameters E0 and 40 become piecewise constant, i.e.,

E0(z) = E
(l)
0 Θ(−z − d/2) + E

(c)
0 Θ(d/2− |z|) + E

(r)
0 Θ(z − d/2), (III.81)

40(z) = 4(l)
0 Θ(−z − d/2) +4(c)

0 Θ(d/2− |z|) +4(r)
0 Θ(z − d/2), (III.82)

where Θ(x) and d denote the Heaviside step function and the well width, respectively. Similarly,
taking the zero of the energy scale at the bottom of the QW in the conduction band [i.e., E(c)

c =
0], one obtains

V (r) = V (z) = Vext(z) + Ec(z), (III.83)

where Vext(z) is the potential corresponding to the external electric field,53 and

Ec(z) = E(l)
c Θ(−z − d/2) + E(r)

c Θ(z − d/2), (III.84)

is the position-dependent band edge profile forming the QW in the conduction band (see Fig. III.5).
53Although we consider here an external electric field, the action of any other z-dependent, internal build-in electric

potential Vint (e.g., the depletion field) can be included in the same manner, i.e., by simple substitution of Vext by
Vext + Vint.
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Fig. III.5. Kane model picture of the bulk-like band structure of an asymmetric quantum well in presence
of an external electric field of potential V (z).

The in-plane motion (i.e., in the directions parallel to the interfaces) is free, hence one can
decouple the envelope function as

f = e
ik‖ ·r‖g, (III.85)

where k‖ = (kx, ky, 0) and r‖ = (x, y, 0) are the in-plane wave vector and in-plane position of
the particle, respectively. Substituting this expression into Eq. (III.65) one obtains an eigenvalue
problem for g with a Hamiltonian similar to Eq. (III.66) but with matrix blocks,

Hc =

[
~2k2

‖

2m0
+

p2
z

2m0
+ Vext(z) + Ec(z)

]
12×2 , (III.86)

Hv = diag[Ev(z), Ev(z), Ev(z), Ev(z), E′v(z), E′v(z)], (III.87)

where

Ev(z) = Vext(z) + Ec(z)− E0(z), (III.88)
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and

E′v(z) = Ev(z)−40(z), (III.89)

represent the position-dependent band edge profile of the Γ8v and Γ7v valence bands, respectively
(see Fig. III.5).

The matrices Hcv and Hcv have the same form as in Eqs. (III.69) and (III.70), respectively,
but now with Pz = pz and P± = ~k± = ~(kx ± iky).

Since Hv−E is diagonal, it is trivial to find its inverse. One then obtains for the folded-down
Hamiltonian [see Eq. (III.77)],

H̃c =

[
− ~2

2m0

d2

dz2
+

~2k2
‖

2m0
+ Ec(z) + Vext(z)

]
12×2 −

(
M N
N∗ M

)
, (III.90)

where

M =
P 2

0

3~2

(
2

Ev(z)− E
+

1
Ev(z)−40(z)− E

)
~2k2

‖

−
P 2

0

3
d

dz

[(
2

Ev(z)− E
+

1
Ev(z)−40(z)− E

)
d

dz

]
, (III.91)

and

N =
iP 2

0
k−

3
d

dz

(
1

Ev(z)− E
− 1
Ev(z)−40(z)− E

)
. (III.92)

In order to rewrite Eq. (III.90) in terms of the Pauli matrices we make the expansion,(
M N
N∗ M

)
= λ012×2 + λ · σ. (III.93)

Taking the trace from both sides of Eq. (III.93) one obtains λ0 = M . Furthermore, solving for
the components of the vector λ = (λx, λy, λz) one finds

λ0 = M ; λx = (N +N∗)/2 ; λy = i(N −N∗)/2 ; λz = 0. (III.94)

By combining Eqs. (III.90)-(III.94) one can write

H̃c = −~2

2
d

dz

[
1

m∗(z,E)
d

dz

]
+

~2k2
‖

2m∗(z,E)
+ Ec(z) + Vext(z) + H

BR
, (III.95)

where (Lassnig, 1985; de Andrada e Silva et al., 1997),

1
m∗(z,E)

=
1
m0

−
2P 2

0

3~2

(
2

Ev(z)− E
+

1
Ev(z)−40(z)− E

)
(III.96)

is the inverse effective mass for the conduction band electrons, and

H
BR

= α(z)(kxσy − kyσx), (III.97)
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represents the Bychkov-Rashba SOI. The Bychkov-Rashba parameter α(z) is given by

α(z) =
dβ(z)
dz

; β(z) =
P 2

0

3

(
1

Ev(z)− E
− 1
Ev(z)−40(z)− E

)
. (III.98)

The expression for the SOI contains only the position-dependent band edge profiles Ev(z) and
Ev(z)−40(z). Consequently, the SOI in the conduction band is modulated by the electric field
in the valence band rather than by that in the conduction band, as already discussed in Sec. C.

An approximate expression for the effective mass in the ith region (i = l, r, c) can be ob-
tained by noting thatE(i)

0 andE(i)
0 +4(i)

0 are the largest energy scales in that region. Taking into
account Eq. (III.88), the two terms within the brackets in Eq. (III.96) can be expanded in powers
of [E(i)

c + Vext(z) − E]/E(i)
0 and [E(i)

c + Vext(z) − E]/(E(i)
0 +4(i)

0 ), respectively. One then
obtains, up to the first order, the following relation,

1
m∗(i)

≈ 1
m0

+
2P 2

0

3~2

[(
2

E
(i)
0

+
1

E
(i)
0 +4(i)

0

)

+

(
2

[E(i)
0 ]2

+
1

[E(i)
0 +4(i)

0 ]2

)
[E(i)

c + Vext(z)− E]

]
. (III.99)

The energy dependence of the effective mass leads to the nonparabolicity of the dispersion re-
lation. For analytical treatments one usually assumes the parabolic approximation, in which the
second order term is neglected, i.e., (Lassnig, 1985; Bastard, 1998; de Andrada e Silva et al.,
1994; Winkler, 2003)

1
m∗(i)

≈ 1
m0

−
2P 2

0

3~2

(
2

E
(i)
0

+
1

E
(i)
0 +4(i)

0

)
. (III.100)

Following the same procedure, one obtains from Eq. (III.98) the approximate expression,

β(i)(z) =
P 2

0

3

[(
1

E
(i)
0 +4(i)

0

− 1

E
(i)
0

)

+

(
1

[E(i)
0 +4(i)

0 ]2
− 1

[E(i)
0 ]2

)
[E(i)

c + Vext(z)− E]

]
, (III.101)

which leads to the position dependence of β(z),

β(z) = β(l)(z)Θ(−z − d/2) + β(c)(z)Θ(d/2− |z|) + β(r)(z)Θ(z − d/2). (III.102)

Considering Eqs. (III.98) and (III.102) one gets

α(z) = α0(z) + αint(z). (III.103)

The contribution

α0(z) = α(l)(z)Θ(−z − d/2) + α(c)(z)Θ(d/2− |z|) + α(r)(z)Θ(z − d/2), (III.104)
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with (de Andrada e Silva et al., 1997; Ivchenko and Pikus, 1997; Winkler, 2003, 2004a)

α(i)(z) =
dβ(i)(z)
dz

=
P 2

0

3

(
1

[E(i)
0 +4(i)

0 ]2
− 1

[E(i)
0 ]2

)
dVext(z)
dz

; i = (l, c, r) (III.105)

is related to the external field, while

αint(z) = [β(c)(z)− β(l)(z)]δ(z + d/2)− [β(c)(z)− β(r)(z)]δ(z − d/2), (III.106)

with δ(x) being the Dirac delta function, contains the interface contributions only (de Andrada e
Silva et al., 1997).

The effective mass mismatch at the interfaces together with the interface Bychkov-Rashba
SOI reflect on the boundary conditions. Integrating H̃cg = Eg [with H̃c given by Eq. (III.95)]
across the interface at z = zij (i.e., between the ith and jth regions) one deduces the following
boundary conditions (Sobkowicz, 1990; Bastard et al., 1991; de Andrada e Silva et al., 1997;
Pfeffer, 1997; Zawadzki and Pfeffer, 2004; Voskoboynikov et al., 1998, 1999)

g(i)(zij) = g(j)(zij), (III.107)

~2

2m∗(i)
dg(i)

dz

∣∣∣∣
z=zij

− ~2

2m∗(j)
dg(j)

dz

∣∣∣∣
z=zij

+ [β(j)(zij)− β(i)(zij)](kxσy − kyσx)g(i)(zij) = 0.

(III.108)

The boundary condition in Eq. (III.108) depends on both the potential Vext(zij) at the interfaces
and the energy E. This dependence can be eliminated in a first approximation by neglecting the
term proportional to [E(i)

c + Vext(z)− E] in Eq. (III.101), i.e., by taking

β(i) ≈
P 2

0

3

(
1

E
(i)
0 +4(i)

0

− 1

E
(i)
0

)
. (III.109)

In what follows, we assume such an approximation.
When the in-plane motion is of particular interest (as in the study of two-dimensional gases,

for example) one can average out the z-dependent terms of the Hamiltonian H̃c. Taking the
average 〈...〉 = 〈g0|...|g0〉 with the state g0(z) corresponding to a given subband (without spin)
of the QW one obtains for the Hamiltonian describing the in-plane motion,

H̃‖ = 〈H̃c〉 = ε0(k) + α
BR

(kxσy − kyσx) ; α
BR

= 〈α0〉+ 〈αint〉, (III.110)

where ε0(k) is the subband eigenenergy of the QW in the presence of the external field. We
note that Eq. (III.110) is already an approximation. Generally speaking, when the structure itself
lacks inversion symmetry, the SOI is coupled to the motion in the z-direction via the boundary
condition in Eq. (III.108). In such a case it is not possible to exactly transfer the SOI to the
Hamiltonian describing the in-plane motion. Equation (III.110) is, however, a good approxima-
tion for structures in which β(j)(zij) − β(i)(zij) is sufficiently small or in deep QWs, where
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Tab. III.2. Range of values of the Bychkov-Rashba parameter αBR deduced from experiment.

Spin splitting
System at the Fermi α

BR
Reference

(meV) ( meV Å)
AlSb/InAs/AlSb 3.2 - 4.5 60 (Heida et al., 1998)
AlSb/InAs/AlSb 0 0 (Brosig et al., 1999)
AlSb/InAs/AlSb 0 0 (Sasa et al., 1999)

AlGaAs/GaAs/AlGaAs - 6.9± 0.4 (Jusserand et al., 1995)
2DEG GaAs/AlGaAs - 5± 1 (Miller et al., 2003)
AlGaSb/InAs/AlSb 5.6 - 13 120 - 280 (Sasa et al., 1999)

InAlAs/InGaAs/InAlAs 1.5 40 (Das et al., 1989)
InAlAs/InGaAs/InAlAs 4.9 - 5.9 63 - 93 (Nitta et al., 1997)
InAlAs/InGaAs/InAlAs - 50 - 100 (Hu et al., 1999)
InGaAs/InAs/InGaAs 5.1 - 6.8 60 - 110 (Nitta et al., 1998)
InGaAs/InAs/InGaAs 9 - 15 200 - 400 (Grundler, 2000)
InGaAs/InP/InGaAs - 63 - 153 (Engels et al., 1997)

GaSb/InAs/GaSb 3.7 90 (Luo et al., 1988)
Si/SiGe QW - 0.03 - 0.12 (Malissa et al., 2004)
SiO2/InAs/ 5.5 - 23 100 - 300 (Matsuyama et al., 2000)

the probability of finding the electron at the interfaces is small and the spin-dependent boundary
condition becomes irrelevant.

For a system with inversion symmetry, the parameters Ec(z), E0(z),40(z), and Vext(z) are
even functions of z and the corresponding eigenfunctions g(z) have well defined parity. One
can see from Eqs. (III.104)-(III.106) that due to symmetry reasons the average parameters 〈α0〉
and 〈αint〉 vanish in systems with inversion symmetry. Consider, for example, the simple case
in which Vext = 0. In such a case α(i)(z) = 0 and we need to consider only the interface
contribution αint. If the QW is symmetric, the probabilities of finding the particle at the two
interfaces z = ±d/2 are, by symmetry, the same. In addition one has β(l)(−d/2) = β(r)(d/2).
One then concludes from Eq. (III.106) that αint and, consequently, the Bychkov-Rashba SOI
vanishes for the symmetric structure. On the contrary, when the inversion symmetry is broken
by the asymmetric structure of the QW itself (even in absence of the external field) and/or by
the presence of an external field for which Vext(z) 6= Vext(−z) (this is the case of a constant
electric field, for example), the SOI acquires a finite value. Thus, by tuning the spatial depen-
dence and the strength of an external electric field (for example, by applying gate voltages), the
spin of the carriers can be manipulated via the Bychkov-Rashba SOI. This interesting fact is at
the heart of many investigations and proposals for spintronic devices (see Sec. V.) and has been
experimentally observed. Values of the Bychkov-Rashba parameter α

BR
inferred from experi-

mental measurements are displayed in Tab. III.2. In the experimental situations, the parameter
α

BR
depends on both the external electric field corresponding to the applied gate voltage Vg

and the built in field determined by the electron density ns. Thus, by changing Vg and ns, the
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Fig. III.6. (a) Schematics of the k‖ -dependence of the energy of the spin-splitted subbands ε+ and ε−. (b)
Spin orientation at the Fermi surface for the σ = 1 (inner) and σ = −1 (outer) subbands. Reprinted with
permission from S. D. Ganichev, V. V. Bel’kov, L. E. Golub, E. L. Ivchenko, P. Schneider, S. Giglberger,
J. Eroms, J. De Boeck, G. Borghs, W. Wegscheider, D. Weiss, and W. Prettl, Phys. Rev. Lett. 92, 256601
(2004). Copyright (2004) by the American Physical Society.

Bychkov-Rashba SOI can be tuned within certain range of values.
The Bychkov-Rashba SOI in Eq. (III.110) can be interpreted as the Zeeman-like interaction,

H
BR

= µ
B
σ ·Beff (k) (III.111)

of the electron spin with the effective, the k-dependent magnetic field (Ganichev et al., 2004;
Giglberger et al., 2007),

Beff (k) =
1
µ

B

α
BR

(−ky, kx, 0), (III.112)

which defines the spin quantization axis. Therefore, one can conclude that in presence of the
Bychkov-Rashba SOI the spin orientation of an eigenstate is determined by the direction of
Beff , i.e., σ(− sinϕ, cosϕ, 0) for parallel (σ = 1) and antiparallel (σ = −1) spins.54 Here
we have used the in-plane polar coordinates kx = k‖ cosϕ, ky = k‖ sinϕ. Due to the SOI, the
spin degenerate subband of the QW splits into two subbands. The Zeeman-like energy splitting
is given by ∆ε0 = 2µ

B
|Beff | = 2α

BR
|k‖ |. The energies of the spin-splitted subbands are

therefore given by (Winkler, 2003, 2004b)

εσ(k) = ε0(k) + σα
BR
k‖ ; σ = ±1. (III.113)

Schematics of the energy εσ(k) as a function of kx and ky is shown in Fig. (III.6) for the case
of ε0(k) ∼ k2

‖
. In particular one can see that the energy splitting is isotropic.55

Estimations of the values of the Bychkov-Rashba parameter α
BR

are given in Sec. F., where
a more sophisticated variation of the Kane model is presented.

54In particular, since Beff · k‖ = 0, the spin is perpendicular to k‖ [see Fig. III.6(b)].
55Anisotropies may appear, however, when including higher order momentum terms in the SOI. To treat this problem

one has to go beyond the Kane model.
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E.2 Spin-orbit related effects in symmetric structures

We have seen in Sec. E. that for structures with inversion symmetry the average value α
BR

of
the Bychkov-Rashba parameter vanishes. However, even for inversion symmetric structures one
may still observe spin-orbit related effects, as a consequence of intersubband coupling (Bernardes
et al., 2006). Unlike the average α

BR
, the matrix elements of α(z) [see Eq. (III.103)] between

different subbands are, in general, different from zero (even in inversion symmetric structures),
having effects on the subband energies and the effective mass.

Consider a symmetric quantum well in the absence of external fields. In such a case, only
the interface term αint(z) contributes to the Bychkov-Rashba SOI and Eqs. (III.97) and (III.106)
reduce to,

H
BR

= αint(z)(kxσy − kyσx), (III.114)

and

αint(z) = ∆β[δ(z + d/2)− δ(z − d/2)], (III.115)

respectively. Here ∆β = β(c) − β(l) = β(c) − β(r), in virtue of the symmetry of the QW.
Assume now that there are two subbands ε0(k) and ε1(k) in the QW (in absence of SOI) with

|g0σ〉 and |g1σ〉 the spin-degenerate eigenvectors of the ground and excited states, respectively.
With the help of Eq. (III.95), we can compute the matrix elements of Hc between the subbands
of the QW. The result is

〈giσ|Hc|gjσ
′〉 = εi(k)δijδσσ′−iσ(1−δij)(1−δσσ′)〈αint〉ij(kx−iσky) ; i, j = 0, 1. (III.116)

Here δij is the Kronecker delta function, 〈αint〉ij = 〈gi|αint(z)|gj〉, |σ〉 = | ↑〉, | ↓〉, and
σ = ±1 (σz|σ〉 = σ|σ〉). It is convenient to use the basis ordering {|g0 ↑〉, |g1 ↓〉, |g1 ↑〉, |g0 ↓〉},
for which the projected Hamiltonian Hcp becomes block diagonal [see Eq. (III.116)],

Hcp =


ε0(k) −i〈αint〉01k− 0 0

i〈αint〉10k+ ε1(k) 0 0
0 0 ε1(k) −i〈αint〉10k−
0 0 i〈αint〉01k+ ε0(k)

 . (III.117)

From the upper-left block one obtains the eigenvalues (Bernardes et al., 2006),

ε±(k) =
1
2

(
[ε0(k) + ε1(k)]±

√
[ε0(k)− ε1(k)]2 + |〈αint〉01 |2k2

‖

)
, (III.118)

whose corresponding eigenvectors are (Bernardes et al., 2006)

|ψu〉+ = sin(ξ/2)|g0 ↑〉+ eiϑ cos(ξ/2)|g1 ↓〉, (III.119)

|ψu〉− = cos(ξ/2)|g0 ↑〉 − eiϑ sin(ξ/2)|g1 ↓〉. (III.120)

Here we have used the notation, cos(ξ) = [ε0(k)− ε1(k)]/
√

[ε0(k)− ε1(k)]2 + |〈αint〉01 |2k2
‖
,

and, eiϑ = ik+/k‖ . For the lower-right block the energies are the same as in Eq. (III.118) but
with eigenvectors (Bernardes et al., 2006)

|ψl〉+ = cos(ξ/2)|g1 ↑〉+ eiϑ sin(ξ/2)|g0 ↓〉, (III.121)

|ψl〉− = sin(ξ/2)|g1 ↑〉 − eiϑ cos(ξ/2)|g0 ↓〉. (III.122)
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In the limit case [ε0(k)− ε1(k)] � |〈αint〉01 |k‖ one can rewrite Eq. (III.118) in the approximate
form

ε±(k) ≈ 1
2
(
[ε0(k) + ε1(k)]± |〈αint〉01 |k‖

)
, (III.123)

which resembles the energy spectrum in Eq. (III.113). On the other hand, when |〈αint〉01 |k‖ �
[ε0(k)− ε1(k)], one obtains

ε±(k) ≈ ε0,1(k)±
|〈αint〉01 |2k2

‖

4[ε0(k)− ε1(k)]
. (III.124)

Denoting by εiz the z component of the energy of the ith subband, we can rewrite Eq. (III.124)
as

ε±(k) ≈ ε(0,1)z ±
~2k2
‖

2m∗‖±
, (III.125)

where

1
m∗‖±

=
1
m∗

(
1± εso

ε0z − ε1z

)
; εso =

m∗|〈αint〉01 |2

2~2
. (III.126)

Thus, the action of the intersubband SOI produces an effective mass anisotropy in which the
in-plane effective masses of the ground and first excited subbands are reduced and increased,
respectively, with respect to their value in the z direction. The matrix elements 〈αint〉01 are, in
general, different from zero, even if the well is perfectly symmetric. For the symmetric well the
ground g0(z) and excited g1(z) wave functions are even and odd, respectively. Therefore, one
obtains from Eq. (III.115) the relation

〈αint〉01 = ∆β[g0(−d/2)g1(−d/2)− g0(d/2)g1(d/2)] = −2∆β g0(d/2) g1(d/2) 6= 0.
(III.127)

For the case of an infinite QW, Bernardes et al. (2006) have found

〈αint〉01 = β(c) 4~2

d

(π
d

)2

, (III.128)

where d is the well width, and β(c) is given by Eq. (III.109). For a well width d = 12nm, the
parameter 〈αint〉01 acquires the values of 14 meVÅ, 840 meVÅ, and 5600 meVÅfor the case
of GaAs, InAs, and InSb QWs, respectively (Bernardes et al., 2006).56 Using these values one
can see from Eq. (III.126) that the mass renormalization due to the inter-subband SOI is quite
small for the case of GaAs. However, for InSb quantum wells, in which, typically, only the lower
branch ε−(k) is occupied, the in-plane effective mass is reduced by 20% compared to the bulk
value m∗ (Bernardes et al., 2006). This reduction should produce sizable effects on physical
quantities such as the cyclotron frequency and the mobility of the carriers.

56We note that the values of 〈αint〉01 should not be directly compared to the Bychkov-Rashba parameter αBR since
they represent different quantities and influence the energy spectrum in different ways.
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Fig. III.7. Schematics of the band structure corresponding to the extended Kane model.

F. Dresselhaus spin-orbit interaction

F.1 Spin-orbit interaction in systems with bulk inversion asymmetry

We have seen in Sec. E. that within the Kane model the Bychkov-Rashba SOI for the conduction
electrons [see Eq. (III.97)] is linear in the momentum.57 When the interaction with other bands
is taken into account, new terms, non-linear in the momentum, appear in the SOI. A model that
can capture this picture is the so-called extended Kane model (Rössler, 1984; Mayer and Rössler,
1991; Hermann and Weisbuch, 1977; Pfeffer and Zawadzki, 1990; Zawadzki and Pfeffer, 2004)
in which in addition to the Γ6c, Γ8v , and Γ7 bands included in the standard Kane model, the 6
p-like higher energy conduction bands are considered. The antibonding p-like conduction bands
consist of a quadruplet Γ8c and a doublet Γ7c (see Fig. III.7). In order to account for these
bands, the 8 dimensional intelligent basis of the standard Kane model has to be extended to a
14 dimensional basis following the same procedure discussed in Sec. D.2. The new basis of the
extended Kane model is presented in Tab. III.3. Note that the basis functions of the valence and
p-like conduction bands are similar. However, the conduction bands contain the new antibonding
p-like orbitals |X ′〉, |Y ′〉, and |Z ′〉.

For simplicity, we consider the case of zero magnetic field. Within the Kane model, the
only non-vanishing momentum matrix elements are those given in Eq. (III.28), equal to P0 . In
the extended Kane model new matrix elements appear. It turns out that, because of symmetry

57Within the Kane model the Bychkov-Rashba SOI for the carriers in the valence band is already non-linear in the
momentum. For more details see (Winkler, 2000, 2003).
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Tab. III.3. Basis functions of the extended Kane model.

Band |m〉 Basis functions Energy
Γ6c | 12

1
2 〉 |S ↑〉 0

| 12 − 1
2 〉 |S ↓〉 0

Γ8v | 32
3
2 〉 − 1√

2
|(X + iY ) ↑〉 −E0

| 32
1
2 〉

√
2
3 |Z ↑〉 −

1√
6
|(X + iY ) ↓〉 −E0

| 32 − 1
2 〉

√
2
3 |Z ↓〉+ 1√

6
|(X − iY ) ↑〉 −E0

| 32 − 3
2 〉

1√
2
|(X − iY ) ↓〉 −E0

Γ7v | 12
1
2 〉 − 1√

3
|Z ↑〉 − 1√

3
|(X + iY ) ↓〉 −(E0 +40)

| 12 − 1
2 〉

1√
3
|Z ↓〉 − 1√

3
|(X − iY ) ↑〉 −(E0 +40)

Γ8c | 32
3
2 〉
′ − 1√

2
|(X ′ + iY ′) ↑〉 E′0 − E0 +40

| 32
1
2 〉
′

√
2
3 |Z
′ ↑〉 − 1√

6
|(X ′ + iY ′) ↓〉 E′0 − E0 +40

| 32 − 1
2 〉
′

√
2
3 |Z
′ ↓〉+ 1√

6
|(X ′ − iY ′) ↑〉 E′0 − E0 +40

| 32 − 3
2 〉
′ 1√

2
|(X ′ − iY ′) ↓〉 E′0 − E0 +40

Γ7c | 12
1
2 〉
′ − 1√

3
|Z ′ ↑〉 − 1√

3
|(X ′ + iY ′) ↓〉 E′0 − E0

| 12 − 1
2 〉
′ 1√

3
|Z ′ ↓〉 − 1√

3
|(X ′ − iY ′) ↑〉 E′0 − E0

reasons, only a few of them are different from zero. Thus, in addition to P0 , we have now the
new parameters,

P1 =
i~
m0

〈X ′|px|S〉 =
i~
m0

〈Y ′|py|S〉 =
i~
m0

〈Z ′|pz|S〉, (III.129)

Q =
~
m0

〈X|py|Z ′〉 = − ~
m0

〈X ′|py|Z〉, (III.130)

and58

4− = − 3~
4m2

0c
2
〈X|[(∇V0)× p]y|Z ′〉 =

3~
4m2

0c
2
〈Z|[(∇V0)× p]y|X ′〉, (III.131)

characterizing the only non-vanishing momentum matrix elements involving the antibonding, p-
like conduction bands. In particular, P1 6= 0 and 4− 6= 0 in crystals whose structure does not
have a center of inversion symmetry (e.g., zinc-blende structures) but they vanish in centrosym-
metric structures such as diamond.

58Eq. (III.130) also applies to the case of all the other equivalent combinations, say, Q = ~
m0

〈Y |px|Z′〉 =

− ~
m0

〈Y ′|px|Z〉, etc. A similar situation occurs for the equivalent combinations of Eq. (III.131), say, 4− =

− 3~
4m2

0c2
〈Y |[(∇V0)× p]z |X′〉 = 3~

4m2
0c2

〈X|[(∇V0)× p]z |Y ′〉, etc.
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Tab. III.4. Band structure parameters of the extended Kane model, obtained from a 40-band tight-binding
model by Jancu et al. (2005). The parameter C describes the influence of remote bands on the effective
mass of conduction electrons (Cardona et al., 1988; Hermann and Weisbuch, 1977; Pfeffer and Zawadzki,
1996). Available experimental values for E0, E′

0, and 40 have been included for comparison.

AlAs AlP AlSb GaAs GaP GaSb InAs InP InSb

E0 (eV) 3.130 3.63 2.38 1.519 2.895 0.81 0.418 1.423 0.235

(expt) (3.099)[1] (3.63)[1] (2.386)[1] (1.519)[1] (2.886)[1] (0.812)[1] (0.417)[1] (1.4236)[1] (0.235)[1]

E′
0 (eV) 4.55 4.78 3.53 4.54 4.38 3.11 4.48 4.78 3.18

(expt) - - - (4.6)[2] - (3.19)[2] - (4.8)[2] (3.15)[2]

40 (eV) 0.3 0.06 0.67 0.341 0.08 0.76 0.38 0.107 0.81

(expt) (0.28)[1] (0.07)[1] (0.676)[1] (0.341)[1] (0.08)[1] (0.76)[1] (0.39)[1] (0.108)[1] (0.81)[1]

4′
0 (eV) 0.15 0.04 0.24 0.2 0.09 0.33 0.31 0.19 0.46

4− (eV) -0.19 -0.03 -0.41 -0.17 0.04 -0.4 -0.05 0.11 -0.26

P0 (eVÅ) 8.88 9.51 8.57 9.88 9.53 9.69 9.01 8.45 9.63

P1 (eVÅ) 0.34 0.19 0.51 0.41 0.36 1.34 0.66 0.34 1.2

Q (eVÅ) 8.07 8.10 7.8 8.68 8.49 8.25 7.72 7.88 7.83

C -1.07 -1.36 -0.72 -1.76 -1.77 -1.7 -0.85 -1.33 -1.19

[1] From (Vurgaftman et al., 2001) [2] From (Madelung, 1996)

In addition to E0 and40, in the extended Kane model there is an energy gap E′0 between the
top valence band and the Γ7c bands at the Γ point and a spin-orbit energy splitting 4′0 between
the Γ7c and Γ8c bands (see Fig. III.7).

Note that, unlike in the works of Winkler (2003); Pfeffer and Zawadzki (1990); Zawadzki
and Pfeffer (2004), here we have adopted the definitions by Cardona et al. (1988) and Jancu
et al. (2005), in which the parameters P0 , P1 , Q,40,4′0, and4− are real quantities. The values
of the band structure parameters obtained by Jancu et al. (2005) from a 40-band tight-binding
model are listed in Tab. III.4 for several typical semiconductors. The effects of 4− on the band
effective mass and Bychkov-Rashba SOI are usually negligible (Cardona et al., 1986b, 1988).
However, the effects of 4− lead to a significant contribution to the Dresselhaus SOI and have to
be considered for a quantitative description (Pfeffer and Zawadzki, 1999; Zawadzki and Pfeffer,
2004; Jancu et al., 2005).

In a heterostructure the momentum matrix elements P0 , P1 , and Q are position dependent,
since they are material specific. Nevertheless, it is a usual practice to consider them as being
constant along the heterostructure.59 In what follows we adopt such an approximation (note that,
although not mentioned, we have already made this assumption in Sec. E.). For the case of a
QW one takes in both well and barrier regions, the values of P0 , P1 , and Q corresponding to the
material in the well.

Using the 14 dimensional intelligent basis and following the procedure discussed in Secs. D.2
and E. one obtains the Hamiltonian for the envelope functions. For the case of a quantum well

59The good agreement between theory and experiment seems to justify such an approximation.
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grown in the z direction, the result is

H =

 Hc Hcv Hcc′

Hvc Hv Hvc′

Hc′c Hc′v Hc′

 , (III.132)

where Hc, Hcv , Hvc, and Hv are the same block matrices of the standard Kane model [see Sec.
E. and Eqs. (III.67) - (III.70)]. The other block matrices are (Winkler, 2003; Rössler, 1984)

Hcc′ =

 − i√
2
P1k+ i

√
2
3

P1
~ pz

i√
6
P1k− 0 − i√

3

P1
~ pz

− i√
3
P1k−

0 − i√
6
P1k+ i

√
2
3

P1
~ pz

i√
2
P1k− − i√

3
P1k+ + i√

3

P1
~ pz

 ,

(III.133)

Hvc′ =



i
34
− i√

3
Qk+

i√
3

Q
~ pz

0 − i√
6
Qk+ −i

√
2
3

Q
~ pz

− i√
3
Qk−

i
34
− 0 i√

3

Q
~ pz 0 i√

2
Qk+

− i√
3

Q
~ pz 0 i

34
− − i√

3
Qk+ − i√

2
Qk− 0

0 − i√
3

Q
~ pz

i√
3
Qk−

i
34
− −i

√
2
3

Q
~ pz

i√
6
Qk−

i√
6
Qk− 0 i√

2
Qk+ i

√
2
3

Q
~ pz

− 2i
3 4
− 0

i
√

2
3

Q
~ pz

− i√
2
Qk− 0 − i√

6
Qk+ 0 − 2i

3 4
−


,

(III.134)

and

Hc′ = diag[Ec′(z)+4′0, Ec′(z)+4′0, Ec′(z)+4′0, Ec′(z)+4′0, Ec′(z), Ec′(z)], (III.135)

where

Ec′(z) = Vext(z) + Ec(z) + [E′0(z)− E0(z)]. (III.136)

From the Hermiticity of H one deduces that the matrix Hc′c can be obtained from Hcc′ by trans-
position and the substitutions k± → k∓ and P1 → −P1 , while Hc′v results from Hvc′ by the
substitutions k± → k∓ , Q→ −Q and 4− → −4−.

Following the folding-down procedure described in Sec. D.2 we can obtain the Hamiltonian
for the electrons in the lowest conduction subbands as

H̃c = Hc − Hur(Hlr − E)−1Hll, (III.137)

with the upper-right (ur) and lower-left (ll) block matrices, Hur = (Hcv Hcc′) and Hll =
(HT

vc HT
c′c)

T , respectively. The lower right (lr) matrix is given by

Hlr =
(

Hv Hvc′

Hc′v Hc′

)
. (III.138)
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The inversion of the (12× 12) matrix (Hlr −E)−1 can be quite cumbersome from the analytical
point of view. Therefore it is convenient to find an approximate expression for (Hlr − E)−1 by
using the scheme described at the end of Sec. D.2 [see, for example, Eq. (III.80)]. In the present
case we can chose the matrix A as a diagonal matrix whose matrix elements are those in the
diagonal of (Hlr − E). Since these elements contain the largest energy scales in the system, the
series expansion will converge fast. We keep only up to the second order in the expansion,60 i.e.,
(Hlr − E)−1 ≈ A−1 + A−1DA−1 + (A−1D)2A−1, where

A =
(

Hv − E 0
0 Hc′ − E

)
; D = −

(
0 Hvc′

Hc′v 0

)
. (III.139)

Using Eqs. (III.137) - (III.139) one finds, after some algebra,61 the following expression,

H̃c = −~2

2
d

dz

[
1

m∗(z,E)
d

dz

]
+

~2k2
‖

2m∗(z,E)
+Ec(z)+Vext(z)+H

BR
+H

D
+H′

D
. (III.140)

In addition to the corresponding value obtained within the standard Kane model [see Eq. (III.96)],
the effective mass contains now the correction (Pfeffer and Zawadzki, 1999; Zawadzki and Pfef-
fer, 2004),

δ

(
1
m∗

)
= −2P1

2

3~2

(
1

Ẽc′(z)
+

2
F̃c′(z)

)
− 8P1P04−

9~2

(
1

Ẽc′(z)F̃v(z)
− 2
Ẽv(z)F̃c′(z)

)
,

(III.141)

Where we have introduced the notations

Ẽc′(z) = Ec′(z)− E, Ẽv(z) = Ev(z)− E, (III.142)

and

F̃c′(z) = Ẽc′(z) +4′0(z), F̃v(z) = Ẽv(z)−40(z). (III.143)

The Bychkov-Rashba SOI has the same form as for the case of the standard Kane model [see
Eq. (III.97)] but some corrections to α(z) appears due to the inclusion of the interaction with the
Γ7c and Γ8c bands. The new expression for α(z) includes a correction δβ(z) to β(z), which is
given by

δβ =
P 2

1

3

(
1

F̃c′(z)
− 1
Ẽc′(z)

)
− 2P0P14−

9

(
1

Ẽv(z)F̃c′(z)
+

2
Ẽc′(z)F̃v(z)

)
. (III.144)

The term HD in Eq. (III.140) corresponds to the linear in kx and ky Dresselhaus SOI (Dressel-
haus, 1955) and can be written as (Pfeffer and Zawadzki, 1999; Zawadzki and Pfeffer, 2004)

H
D

= (kxσx − kyσy)
d

dz

(
γ(z)

d

dz

)
, (III.145)

60In Sec. E. we considered only up to first order in the series expansion. Here we need to take the second order for
incorporating the effects of the matrix elements 4−.

61Fortunately, the tedious involved algebra can be efficiently performed by using softwares for analytical calculations
such as Mathematica or Maple.
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with the Dresselhaus spin-orbit parameter given by

γ(z) = −4P0P1Q

3

(
1

Ẽv(z)Ẽc′(z)
− 1
F̃v(z)F̃c′(z)

)
+

44−Q
9

[
P 2

1

Ẽc′(z)F̃c′(z)

(
1

Ẽv(z)
+

2
F̃v(z)

)
−

P 2
0

Ẽv(z)F̃v(z)

(
2

Ẽc′(z)
+

1
F̃c′(z)

)]
. (III.146)

Higher order in kx and ky terms related to the bulk inversion asymmetry (BIA) of the system are
included in

H′
D

= i(k2
y − k2

x)σz

[
1
2
dγ(z)
dz

+ γ(z)
d

dz

]
+ γ(z)(kyσx − kxσy)kxky. (III.147)

For the case of a two-dimensional gas confined in the z direction, the z degree of freedom is
usually averaged out in a similar way as we did for obtaining Eq. (III.110). As a result one obtains
a linearized (i.e., linear in the wave vectors) Dresselhaus SOI from Eq. (III.145), a quadratic in
wave vectors contribution from the first term in Eq. (III.147) and the so-called cubic Dresselhaus
SOI from the second term in Eq. (III.147). In what follows we consider the case in which the
in-plane wave vector is small. We can then neglect the contribution of H′

D
and concentrate in the

analysis of H
D

.
It is worth remarking that P1 6= 0 and 4− 6= 0 only in non-centrosymmetric crystals. For

this reason bulk inversion asymmetry is required for the presence of the Dresselhaus SOI. The
Dresselhaus SOI can be interpreted as the SOI induced by the electric field of the dipole resulting
from the BIA (e.g., the local Ga-As dipole, in the case of bulk GaAs).

One can obtain simplified (energy-independent) expressions of Eqs. (III.141), (III.144), and
(III.146) by following the same expansion technique discussed in Sec. E. The results for the
ith region of the heterostructure are summarized in Tab. III.5. The expressions in Tab. III.5
are equivalent to the ones reported by Pfeffer and Zawadzki (1999) and Zawadzki and Pfeffer
(2004).62

In the expression for the effective mass in Tab. III.5 we have included the effects of the
parameter C, which characterizes the influence of the remote bands on the effective mass in the
conduction band. We do not enter here in the details concerning this parameter but we have
included it for a better accuracy when computing the effective mass. The origin of C and the far
band contribution to the effective mass has been extensively discussed by Cardona et al. (1988);
Hermann and Weisbuch (1977); Pfeffer and Zawadzki (1996). We have computed the values of
m∗, β, α, and γ from Tabs. III.4 and III.5. The results are shown in Tab. III.6. For the calculation
of α we considered a triangular quantum well formed by a heterointerface and a uniform electric
field E = 105 V/cm (de Andrada e Silva et al., 1997; Miller et al., 2003), which is proportional
to the carrier concentration ns. For the case of GaAs, such a field corresponds to a concentration
ns ∼ 1011 cm−1 (de Andrada e Silva et al., 1997). Theoretical results for γ reported by Jancu
et al. (2005) are also included in Tab. III.6. Values of the Dresselhaus parameter γ deduced from
experimental measurements are listed in Tab. III.7.

62Note, however, that these authors use different definitions for the band structure parameters than the ones assumed
here.
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Tab. III.5. Approximate expressions for the parameters 1/m∗(i), β(i), α(i)(z), and γ(i), corresponding
to the ith region of the structure. Here we have used the notation Ẽ

(i)
0 = E

′(i)
0 − E

(i)
0 . The far band

contribution to the effective mass has been included by introducing the parameter C.

Parameter Series expansion

1
m∗(i)
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Ẽ
(i)
0

+ 2

Ẽ
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(i)
0 +4′(i)

0 )

− 2

Ẽ
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9Ẽ
(i)
0 (Ẽ
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Tab. III.6. Values of the parameters m∗, β, α, γ, and γD obtained from Tab. III.5 for different semiconductor
materials. The calculations were performed by using the band structure parameters listed in Tab. III.4.
Experimental values of m∗ (Vurgaftman et al., 2001) and theoretical results for γ, obtained by Jancu et al.
(2005) within a 40-band tight-binding (TB) model have been included for comparison.

Parameter AlAs AlP AlSb GaAs GaP GaSb InAs InP InSb
m∗ (m0) 0.159 0.163 0.131 0.067 0.136 0.041 0.023 0.080 0.0132

m∗ (m0) (expt) 0.15 0.22 0.14 0.067 0.13 0.039 0.026 0.0795 0.0135
β (eV Å

2
) 0.81 0.14 2.62 4.01 0.26 19.92 30.91 1.13 103.25

α (meV Å) 0.43 0.07 1.56 4.72 0.19 35.52 112.49 1.57 534.21
γ (eV Å

3
) 11.55 2.11 41.50 24.45 -2.42 178.51 48.63 -10.34 473.61

γ (eV Å
3
) (TB) 10.6 1.9 39.3 23.6 -1.4 168 42.3 -8.6 389

γ
D

(meV Å) 7.91 1.45 28.44 16.75 -1.66 122.35 33.33 -7.09 324.60

Tab. III.7. Values of the Dresselhaus parameter γ deduced from experimental measurements.

System γ (eV Å
3
) (exp) Reference

GaAs 24.5 (Marushchak et al., 1983)
GaAs 17.4 - 26 (Pikus et al., 1988)
GaAs 26.1± 0.9 (Dresselhaus et al., 1992)
GaAs 16.5± 3 (Jusserand et al., 1995)
GaAs 11 (Richards et al., 1996)
GaAs 9 (Krich and Halperin, 2007)
GaAs 28± 4 (Miller et al., 2003)
GaSb ±185 (Pikus et al., 1988)

InGaAs 24 (Knap et al., 1996)
InP ±(7.3− 9.5) (Gorelenko et al., 1986)

InSb 225 (Cardona et al., 1986a)

Two key parameters in the description of zinc-blende compounds are the energy of the fun-
damental gap E0 and the effective mass m∗.

In order to get a qualitative insight on the general trends in the changes of the SOI param-
eters when going from one material to another, we investigate how the Bychkov-Rashba α and
Dresselhaus parameters γ are correlated to the energy gap E0 and effective mass m∗ of the dif-
ferent compounds related in Tab. III.6. The dependence of α and γ on the energy gap E0 and
effective mass m∗ are shown in Figs. III.8(a) and (b), respectively. A clear trend of increasing
the Bychkov-Rashba parameter when decreasing E0 and/or m∗ is observed. The Dresselhaus
parameter, on the other hand, exhibits an oscillating behavior. In particular, it has been exper-
imentally observed that both the energy gap E0 (Lautenschlager et al., 1987) and the effective
mass m∗ (Hazama et al., 1986; Hopkins et al., 1987) in systems such as GaAs decrease when
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Fig. III.8. SOI parameters α and γ as functions of the energy gap E0 (a) and the effective mass m∗ (b).
The data have been taken from Tab. III.6.

the temperature increases. Consequently, we can expect from our qualitative analysis an increase
of the Bychkov-Rashba parameter with the temperature. A more detailed discussion on the tem-
perature dependence of α will be addressed later on in this section.

We remark that the values of γ are indirectly extracted from the experiments, i.e., by con-
fronting the experimental measurements with their corresponding theoretical estimation. Thus,
the use of different theoretical approximations used for extracting the Dresselhaus parameter
together with the different experimental techniques used by different authors can lead to rather
different values of γ, as shown in Tab. III.7 [see also (Krich and Halperin, 2007)]. On the other
hand different theoretical models predict distinct values of γ, varying from 8.5 eVÅ

3
(Chan-

tis et al., 2006) to 30 eVÅ
3

(Rössler, 1984) [for a detailed discussion see (Krich and Halperin,
2007)]. Consequently, although there is a qualitative consensus between all the different ap-
proximations, the question about the correct value of γ is still a controversial issue (Krich and
Halperin, 2007). In the case of heterostructures, there is an additional, interface contribution to
the Dresselhaus SOI [see Eq. (III.149)] that is absent in bulk systems and is likely to play a role.
However, in the theoretical approximations used for extracting γ from experimental results as
well as in many theoretical estimations of γ in heterostructures, the interface contribution is usu-
ally neglected. Ignoring such a contribution is not always well justified and can be an additional
source of uncertainties when determining the correct value of the Dresselhaus parameter γ. In
fact, when the interface contribution becomes relevant, the energy splitting resulting from the
Dresselhaus SOI in a given heterostructure can deviate from its value in the corresponding bulk
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system.63

Since the Dresselhaus parameter γ(z) is piecewise constant, i.e.,

γ(z) = γ(l)Θ(−z − d/2) + γ(c)Θ(d/2− |z|) + γ(r)Θ(z − d/2), (III.148)

the Dresselhaus SOI can be rewritten as,

H
D

= (kxσx − kyσy)
(
γ(z)

d2

dz2
+ γint(z)

d

dz

)
, (III.149)

with an interface contribution determined by

γint(z) = γ(c)[δ(z+d+/2)−δ(z−d−/2)]−γ(l)δ(z+d−/2)+γ(r)δ(z−d+/2). (III.150)

Note that, unlike the interface Bychkov-Rashba SOI, the interface contribution to the Dresselhaus
SOI does not vanish in systems with inversion symmetry. In fact, for a symmetric QW one has

〈γint〉 = 2g0(d/2)

γ(l) ∂g
(l)
0

∂z

∣∣∣∣∣
z=− d

2

− γ(c) ∂g
(c)
0

∂z

∣∣∣∣∣
z=− d

2

 , (III.151)

which is, in general, different from zero. In obtaining Eq. (III.151) we have taken into account
that for a symmetric QW, γ(l) = γ(r) and the ground state g0(z) is an even function of z.

By requiring the probability flux conservation across the interfaces one can derive the gen-
eralization of the boundary conditions in Eqs. (III.107) and (III.108) to the case of the extended
Kane model. The new boundary conditions are, (Pfeffer, 1997; Zawadzki and Pfeffer, 2004;
Wang et al., 2005)

g(i)(zij) = g(j)(zij), (III.152)

~2

2m∗(i)

[
1 +

2m∗(i)γ(i)

~
(kxσx − kyσy)

]
dg(i)

dz

∣∣∣∣
z=zij

− ~2

2m∗(j)

[
1 +

2m∗(j)γ(j)

~
(kxσx − kyσy)

]
dg(j)

dz

∣∣∣∣
z=zij

(III.153)

= [β(i)(zij)− β(j)(zij)](kxσy − kyσx)g(i)(zij).

Here we have kept the same notation as for the standard Kane model but it is understood that all
the parameters in the expression above contain already the corresponding corrections as listed in
Tab. III.5.

63That the strength of the Dresselhaus SOI is different in heterostructures and bulk systems has already been noticed
by Krich and Halperin (2007).
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Fig. III.9. Schematics of the spin orientation. (a) Only Bychkov-Rashba SOI is present. (b) Only Dressel-
haus SOI is present. (c) Bychkov-Rashba and Dresselhaus SOIs are simultaneously present. Reprinted with
permission from S. D. Ganichev, V. V. Bel’kov, L. E. Golub, E. L. Ivchenko, P. Schneider, S. Giglberger,
J. Eroms, J. De Boeck, G. Borghs, W. Wegscheider, D. Weiss, and W. Prettl, Phys. Rev. Lett. 92, 256601
(2004). Copyright (2004) by the American Physical Society.

F.2 Interference between Bychkov-Rashba and Dresselhaus spin-orbit interactions

We consider now a QW in the presence of both the Bychkov-Rashba and Dresselhaus SOIs.
After averaging out the z degree of freedom, the SOI Hamiltonian reduces to

Hso = α
BR

(kxσy − kyσx) + γ
D

(kxσx − kyσy), (III.154)

where γ
D

= 〈∂z[γ(z)∂z]〉 is the linearized Dresselhaus coupling parameter. For the case of an
infinite quantum well with well width d one has γ

D
= γ(c)〈∂2

z 〉 and, therefore,

γ
D

= γ(c)
(π
d

)2

. (III.155)

The values of the linearized Dresselhaus parameter γ
D

are listed in Tab. III.6 for the case of an
infinite QW with d = 12nm.

The Zeeman-like effective magnetic field corresponding to the interaction in Eq. (III.154) is
given by (Ganichev et al., 2004; Giglberger et al., 2007)

Beff (k) =
1
µ

B

(γ
D
kx − α

BR
ky, αBR

kx − γ
D
ky). (III.156)

This field determines the spin orientation when both SIA and BIA are present. The spin orien-
tation at the Fermi surface is depicted in Fig. III.9 for the cases in which there is only Bychkov-
Rashba (a) or Dresselhaus (b) SOIs. The situation corresponding to the presence of both Bychkov-
Rashba and Dresselhaus SOIs is shown in Fig. III.9.

The SOI energy splitting is given by ∆ε0 = 2µ
B
|Beff |, i.e.,

∆ε0 = 2k‖
√
α2

BR
+ γ2

D
+ 2α

BR
γ

D
sin(2ϕ), (III.157)

where we have taken into account that kx = k‖ cosϕ and ky = k‖ sinϕ.
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Fig. III.10. k‖ -dependence of the energy splitting ∆ε0 in presence of both Bychkov-Rashba and Dressel-
haus SOIs. The anisotropy of ∆ε0 manifests itself in a two-fold symmetry which symmetry axis depends
on the sign of the product αBRγD .

A polar graph of the energy splitting is shown in Fig. (III.10), where the anisotropic nature of
∆ε0 is apparent. This anisotropy originates from the interference of BIA and SIA. In fact, a sym-
metric QW with a diamond structure grown in the direction [001] has the point groupD4h. When
BIA is present the symmetry is reduced to D2d, whereas SIA reduces the point group to C4v .
Consequently, when both BIA and SIA are present, the symmetry is that of the point group C2v .
Even to leading order in k‖ (as we have assumed here) the C2v symmetry is already manifest, as
shown in Fig. (III.10). Interestingly, the symmetry axis of the anisotropy can be flipped when the
product α

BR
γ

D
inverts its sign. In practice, the parameter γ

D
constitutes a property of the con-

stituents of the heterostructure and can not be externally tuned. The Bychkov-Rashba parameter
can, however, be tuned by an external gate voltage or by changing the electron density. Thus,
it is possible to invert the sign of α

BR
by varying the voltage, resulting in the voltage-induced

flipping of the symmetry axis of the anisotropy of the SOI. Such an effect has been experimen-
tally observed in a GaAs 2DEG (Miller et al., 2003) and in Fe/GaAs/Au heterojunctions (Moser
et al., 2007).

An interesting issue concerning systems in which the Bychkov-Rashba and Dresselhaus SOI
are of the same order consists in the experimental separation of the relative contributions of each
individual term to the spin-orbit coupling. To obtain the Bychkov-Rashba parameter, for exam-
ple, the Dresselhaus contribution is usually neglected (Luo et al., 1988; Nitta et al., 1997; Engels
et al., 1997; Heida et al., 1998; Hu et al., 1999; Grundler, 2000). However, it has been noted that
the interference between the Dresselhaus and Bychkov-Rashba terms can lead to the vanishing
of microscopic effects even in the case when both terms are individually large (Averkiev et al.,
2002; Tarasenko and Averkiev, 2002). When both terms cancel each other, interesting effects
such as a vanishing spin splitting in certain k-space directions (Ganichev and Prettl, 2003), the
disappearance of antilocalization (Knap et al., 1996), the lack of Shubnikov-de Haas oscillations
(Tarasenko and Averkiev, 2002), and the absence of spin relaxation in certain crystallographic
direction (Averkiev et al., 2002; Averkiev and Golub, 1999) occur. Furthermore, a nonballistic
spin-field effect transistor operating in the regime α

BR
= γ

D
has been proposed (Schliemann

et al., 2003). It is therefore desirable to develop experimental methods for the direct measure of
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the relative contributions of the Bychkov-Rashba and Dresselhaus SOI. Novel techniques based
in the spin-galvanic effect (Ganichev et al., 2002; Ganichev and Prettl, 2006) and the circular
photogalvanic effect (Ganichev et al., 2001; Ganichev and Prettl, 2006) allow for the experi-
mental separation of Bychkov-Rashba and Dresselhaus spin splittings in semiconductor QWs
(Ganichev et al., 2002, 2004; Giglberger et al., 2007). The measured ratios are in the range
α

BR
/γ

D
= −4.5 − 7.6 for GaAs/AlGaAs Qws (Ganichev et al., 2004; Giglberger et al.,

2007) and α
BR
/γ

D
= 1.8 − 2.3 and α

BR
/γ

D
= 1.6 for InAs/AlGaSb and InAs/InAlAs QWs,

respectively (Giglberger et al., 2007).

G. Spin-orbit interaction in systems with interface inversion asymmetry

It is worth noting that in addition to the SIA and BIA induced SOI, there is a contribution to
the spin-orbit coupling resulting from the interface inversion asymmetry (IIA), which is deter-
mined by the presence of different atoms at each side of the interface (Rössler and Kainz, 2002;
Ivchenko et al., 1996; Aleiner and Ivchenko, 1992). The evaluation of such a contribution re-
quires the knowledge of the microscopic details at the interfaces.64 For example, at an Fe/GaAs
interface, one can have a situation in which GaAs is Ga-terminated and the Ga atoms lies at the
interface with Fe atoms as nearest neighbors on one side and As atoms on the other side leading
to a configuration of the type Fe-Ga-As [see Fig. III.11 (a)]. On the other hand, in the case of an
As termination the configuration will be of type Fe-As-Ga [see Fig. III.11 (b)]. Obviously, these
two situations are not equivalent and will, eventually, lead to different interface SOI.65 Another
aspect that has to be taken into account when considering the effects of IIA is the symmetry at
the interface because it could be different to the symmetries present in other regions of the het-
erostructure. Consider, for example, a GaAs/AlAs interface along the [001] direction in absence
of external electric fields (see Fig. III.12(a)). Away from the interface, the system has the sym-
metry of the point group D2d as a consequence of the BIA of the constituent materials. At the
interface, however, the system has a C2v symmetry as sketched in Fig. III.12(b). For the case of
an ideal symmetric QW grown in the [001] direction we have two such interfaces. We must then
distinguish between common-atom and no-common atom interfaces (Magri and Zunger, 2000;
Majewski and Vogl, 2003). In the presence of the BIA (say, for zinc-blende compounds), if the
interfaces share a common atom [e.g., as in the case of the As layer in a GaAs/AlAs interface] the
point group of the QW is D2d.66 If, on the contrary, the heterointerfaces do not share a common
atom (e.g., as in an InAs/GaSb interface), then the microscopic atomic structure of a symmetric
QW has the point group C2v .

For interfaces between zinc-blende compounds both the interference of interface Bychkov-
Rashba and Dresselhaus SOIs and the IIA lead to a C2v symmetry. However, these two con-
tributions are, in general, different and may even lead to different symmetries of the SOI. This
fact may manifest in interfaces between centrosymmetric materials. For such interfaces the in-
terface Dresselhaus SOI vanishes and the interference contribution reduces to only the interface

64Note that the approach here discussed does not account for any microscopic detail at the interfaces.
65Note, however, that in both configurations the interface has the symmetry of the point group C2v .
66This is consistent with our earlier results that did not consider microscopic details at the interfaces. Indeed, in our

previous results we have Dresselhaus and Rashba terms at the interfaces, which can, in principle, lead to a C2v symmetry.
However, since the QW is symmetric, the average of the Rashba terms vanishes and we end up with the D2d symmetry
induced by the BIA.
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Fig. III.11. Atomic structure of an Fe/GaAs interface for Ga terminated (a) and As terminated (b) structures.
Schematics of the nearest neighbors of an As atom in an Fe/GaAs interface. (c) For a Ga terminated
structure. (d) For an As terminated structure. In both cases the symmetry of the interface is that of the point
group C2v , containing the twofold rotation axis C2 parallel to the growth direction [001] and two mirror
planes (110) and (11̄0). Courtesy of M. Gmitra.

Bychkov-Rashba SOI which leads to a C4v symmetry. On the other hand, the IIA of the elec-
tronic structure at the interface may still exhibit a C2v symmetry, resulting in a two-fold sym-
metric SOI. Thus, even in the absence of BIA, the symmetry of the SOI may be reduced to C2v

as a consequence of the IIA of centrosymmetric-centrosymmetric interfaces. To the best of our
knowledge, no investigation exploring such a possibility has been reported.

A possible manifestation of the IIA is the experimentally observed in-plane anisotropy in the
optical absorption of [001]-grown Gas/AlAs QWs (van Kesteren et al., 1990), which exhibits
a C2v symmetry. This anisotropy has been found to be particularly large in systems without
common atoms in the well and barrier materials (Krebs et al., 1997, 1998; Krebs and Voisin,
2000). Other experiments have explicitly shown the possibility of tuning the optical anisotropy
by means of an external electric field oriented along the growth direction (Kwok et al., 1992).

In order to explain the experimental findings of van Kesteren et al. (1990), Aleiner and
Ivchenko (1992) and Ivchenko et al. (1996) introduced an additional, phenomenological interface
term in the valence band block Hv of the Kane Hamiltonian. This additional term, compatible
with the C2v symmetry of a GaAs/AlAs heterointerface, includes the mixing between the |X〉
and |Y 〉 orbital states, which is possible due to the C2v symmetry of a (001) interface.
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Fig. III.12. (a) Schematics of a GaAs/AlAs interface. (b) The nearest neighbors of an As interface atom.
The point symmetry C2v of a single heterojunction contains the twofold rotation axis C2 parallel to the
growth direction [001] and two mirror planes (110) and (11̄0) (Ivchenko et al., 1996).

H. Spin-orbit interaction: Temperature effects

An important but thus far ignored issue, relevant for any spintronic device application based on
the Bychkov-Rashba and/or Dresselhaus SOIs, is the temperature dependence of the spin-orbit
parameters determining the strength of the SOI. The k · p theory can describe quite well a wide
range of low-temperature experimental results. When increasing temperature, however, discrep-
ancies between the measured effective masses and Landé g-factor in GaAs and the corresponding
predictions of the temperature-independent k·p theory have been observed (Hopkins et al., 1987;
Hazama et al., 1986; Oestreich and Rühle, 1995; Hübner et al., 2006).

The temperature dependence of the band-gap energies has been experimentally investigated
by Viña et al. (1984) and Lautenschlager et al. (1987) who proposed the generic, semi-pheno-
menological functional relation

F (T ) = F
B
− α

B

(
1 +

2
eΘ/T − 1

)
(III.158)

for describing the temperature dependence of any of the band-gap energies E0, E′0, ∆0, and ∆′0
(see Fig. III.7). Note that in Eq. (III.158) the temperature dependence is included via an average
Bose-Einstein statistical term for phonons with an average frequency Θ (Viña et al., 1984; Laut-
enschlager et al., 1987). The quantities F

B
, a

B
, and Θ are then considered as phenomenological

parameters to be obtained by fitting the experimental results with the functional form given in
Eq. (III.158). The resulting fitting parameters are shown in Tab. III.8 for the case of GaAs.

The temperature dependence can be introduced in the effective mass m∗, the Bychkov-
Rashba and Dresselhaus SOI parameters, and the electron Landé g-factor by substituting the
temperature -dependent band-gap energies into the expressions obtained within the k ·p method
(see Tab. III.5). The renormalized g-factor (g∗) obtained within the extended Kane model is
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Tab. III.8. Values of the parameters involved in Eq. (III.158). For the cases of E0, E0 + 40, E′
0, and

E′
0 +4′

0 the parameters FB , aB , and Θ are obtained by fitting the experimental data corresponding to the
temperature dependence of the band-gap energies, while for the case of 2P 2

0 /~2 and 2P 2
1 /~2 fittings of the

measured temperature dependence of the g-factor are used. Taken from Hübner et al. (2006).

F
B

(eV) a
B

(meV) Θ (K)
E0 1.571 57 240

E0 +40 1.907 58 240
E′0 4.563 59 323

E′0 +4′0 4.659 59 323
2P 2

0
/~2 30.58 1040 240

2P 2
1
/~2 8.84 1040 240

given by (Hermann and Weisbuch, 1977)

g∗

g0
= 1−

2P 2
0

3~2

(
2
E0

− 1
E0 +40

)
−

2P 2
1

3~2

(
1
Ẽ0

− 1
Ẽ0 +40

)
+ C1, (III.159)

where g0 = 2.0023 is the free electron Landé g-factor and the constant C1 accounts for the
remote bands contribution. For the case of GaAs C1 = −0.02 (Hübner et al., 2006).

In addition to the temperature dependence of the energy band-gaps one has to consider also
the changes in the strength of the different momentum matrix elements. The matrix elements P0

and P1 are both proportional to a−1 (here a is the lattice constant). Thus, a small temperature
dependence is introduced in P0 and P1 due to the linear expansion of a(T ) with temperature as
a result of the anharmonic lattice potential.67 However, it has been shown that such a week de-
pendence of P0 and P1 on the temperature is not enough for explaining the experimental results
(Oestreich and Rühle, 1995; Hübner et al., 2006). By using spin-quantum beat spectroscopy at
low excitation densities, Oestreich and Rühle (1995) and Hübner et al. (2006) have performed
high precision measurements of the temperature dependence of the electron g-factor in GaAs.
They noticed that under the standard assumption that Pi ∼ 1/a(T ) (i = 0, 1), the k · p calcu-
lations of the electron g-factor in GaAs disagree with the experimental results (see Fig. III.13).
A similar situation occurs for the case of the temperature dependence of the effective mass (see
Fig. III.15). In order to solve these discrepancies between theory and experiment, Hübner et al.
(2006) considered that not only the band-gap energies but also the momentum matrix elements
P0 and P1 exhibit the functional temperature dependence given in Eq. (III.158). By fixing Θ
to the value 240 K,68 one is left with the linear prefactor in Eq. III.159 as the only fitting pa-
rameter. Then, by fitting the experimental results with the help of Eq. (III.159), the temperature
dependence of the momentum matrix elements P0 and P1 can be completely determined. The
fitting parameters defining the temperature dependence of P 2

0
and P 2

1
are given in Tab. III.8. In

Fig. III.14 we show a comparison between the standard approximation Pi ∼ 1/a(T ) (i = 0, 1)

67For the case of GaAs one obtains a(T ) ≈ 5.653251 Å+3.88 ·10−5 ÅK−1
(T −300 K) (Vurgaftman et al., 2001).

68This is the value of Θ obtained from the fitting of the fundamental gap E0 (see Tab. III.8).
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Fig. III.13. High precision measurements of the temperature dependence of the electron Landé g-factor
in Bulk GaAs (filled circles). The red solid line is a fit of the experimental data by Eq. (III.159) with
temperature dependent matrix elements P0 and P1 according to Eq. (III.158) [see also red solid lines in
Figs. III.14(a) and (b)] and the fitting parameters listed in Tab. III.8. The green dashed line is the calculated
g∗ with Pi(T ) (i = 0, 1) depending only on anharmonic lattice expansion [see green dashed lines in
Figs. III.14(a) and (b)]. In both cases the energy band-gaps were assumed to depend on the temperature
according to Eq. (III.158). Reprinted with permission from Hübner et al. (2006).

and the results obtained when a temperature dependence of the form given in Eq. (III.158) is as-
sumed. Unlike for the standard approximation, in the approximation proposed by Hübner et al.
(2006) both P 2

0
and P 2

1
strongly decrease with increasing temperature. It has been proposed that

such a strong temperature dependence originates from phonon induced fluctuations of the inter-
atomic spacing and adiabatic following of the electrons (Hübner et al., 2006). In such a model
Pi(T ) ∼ 1/a∗(T ) (i = 0, 1), where a∗(T ) = a(T ) +

√
〈u2(T )〉 now accounts for the phonon

induced fluctuations of the interatomic spacing characterized by the mean squared displacement
〈u2(T )〉 of the lattice atoms.

Making use of the parameters displayed in Tab. III.8, which were obtained from the fitting of
the g∗-data, one can compute the temperature dependence of the effective mass by using the ex-
pression of m∗ given in Tab. III.5.69 The resulting temperature dependence of the effective mass
is shown in Fig. III.15, where the good agreement between theory and experiment is apparent.

Following the same procedure as for the effective mass, we can use the expansion of the
Bychkov-Rashba parameter α given in Tab. III.5 and the parameters in Tab. III.8 for calculating
the temperature dependence of α.70. The obtained temperature dependence of the Bychkov-
Rashba parameter for the case of a GaAs 2D gas and an uniform electric field E = 105 V/cm is
displayed in Fig. III.16. As already anticipated, the Bychkov-Rashba parameter increases with
the temperature. This behavior originates from the decreasing of the band-gap energies when
increasing the temperature.

69Note, however, that in the expansion of m∗ given in Tab. III.5 we have to neglect the term proportional to4−, since
the temperature dependence of 4− will introduce new unknown parameters. It turns out that the contribution of such a
term to the effective mass is quite small. Therefore, it is still a good approximation to consider only the first three terms
in the expansion of m∗.

70Like in the case of the effective mass, we neglect the terms proportional to 4− in the expansion of α.
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Fig. III.14. Temperature dependence of the P 2
0 (T ) (a) and P 2

1 (T ) (b). The red solid lines represent the
results according to Eq. (III.158). The green dashed lines correspond to Pi(T ) (i = 0, 1) depending only
on anharmonic lattice expansion.
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Fig. III.15. Temperature dependence of the effective conduction electron mass in Bulk GaAs. The experi-
mental data points are taken from Hopkins et al. (1987) (hollow blue circles) and Hazama et al. (1986) (full
black circles). The red solid line follows the effective mass expression (neglecting the term proportional to
4−) given in Tab. III.5 with temperature dependent matrix elements P0 and P1 according to Eq. (III.158)
[see also red solid lines in Figs. III.14(a) and (b)] and the fitting parameters listed in Tab. III.8. The green
dashed line is the calculated m∗ with Pi(T ) (i = 0, 1) depending only on anharmonic lattice expansion [see
green dashed lines in Figs. III.14(a) and (b)]. In both cases the energy band-gaps were assumed to depend
on the temperature according to Eq. (III.158). Reprinted with permission from Hübner et al. (2006).

Finally, we want to stress that although we have limited our analysis here to the case of
conduction electrons, the methodology here explained is also applicable to the case of holes. An
overview of the SOI for the case of holes is reviewed by Winkler, 2003. The magnetic field effects
and the modifications of the electron g-factor are reviewed by Winkler (2003) and Zawadzki and
Pfeffer (2004). Discussions on the SOI in presence of strain can be found in (Bir and Pikus,
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Fig. III.16. Temperature dependence of the Bychkov-Rashba parameter α in a triangular GaAs quantum
well with a corresponding electric field E = 105 V/cm. The red solid line follows the expression for α
(neglecting the term proportional to 4−) given in Tab. III.5 with temperature dependent matrix elements
P0 and P1 according to Eq. (III.158) [see also red solid lines in Figs. III.14(a) and (b)] and the fitting
parameters listed in Tab. III.8. The green dashed line is the calculated α with Pi(T ) (i = 0, 1) depending
only on anharmonic lattice expansion [see green dashed lines in Figs. III.14(a) and (b)]. In both cases the
energy band-gaps were assumed to depend on the temperature according to Eq. (III.158).

1974; Winkler, 2003). Complementarily to the method used here, the method of invariants is
discussed by (Bir and Pikus, 1974; Trebin et al., 1979; Winkler, 2003). This method is based on
the fact that the Hamiltonian of the system must be invariant under all symmetry operations of
the problem. From this, rather general, symmetry arguments, the theory of invariants can decide
which terms may appear in the Hamiltonian and which terms must vanish. Thus, the method of
invariants allows to obtain the general form71 the different SOI contributions should have from
symmetry considerations, without the necessity of explicitly performing all the k ·p calculations.

71The price one pays for the elegance of this method is that it does not provide any estimation of the values of the
different SOI parameters.
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IV. Spin relaxation, spin dephasing, and spin dynamics

A. Bloch equations

The spin relaxation and dephasing times are usually defined with the help of Bloch equations.
Suppose we have a spin s, which is the total spin of an ensemble of electrons. We apply a
static magnetic field B0 in the z-direction, and a general oscillating field B1(t). Let s0z be the
equilibrium value of the spin in the static field B0z . Then the time evolution of the three spin
components in the total field B = B0ẑ + B1, is given by

∂sx

∂t
= γ (s×B)x −

sx

T2
, (IV.1)

∂sy

∂t
= γ (s×B)y −

sy

T2
, (IV.2)

∂sz

∂t
= γ (s×B)z −

sz − s0z

T1
, (IV.3)

also known as Bloch equations. The parameter γ = gµB/~ is the gyromagnetic ratio, with g the
effective electron g-factor. The time T1 is called the spin relaxation time and the time T2 the spin
dephasing time.72 The inverse of the spin relaxation time, 1/T1, gives the rate with which the
spin along the static field decays to the equilibrium value. The spin system (electrons) need to
exchange the energy during the spin relaxation process, if the static magnetic field is non-zero,
due to the magnetic energy difference in the initial and final equilibrium state. In the absence of
the magnetic field, the time T1 describes the relaxation of a nonequilibrium spin population, or
diagonal spin density matrix elements, towards equilibrium. The time T2 describes the dephasing
of the spin component transverse to the static field (here x and y). In general, it describes the
decay of coherent spin oscillations, or off-diagonal spin density matrix elements.

In experiments it is often that the so-called time T ∗2 is measured, instead of T2. This “star
T2” time contains contributions from inhomogeneous broadening, such as due to g-factor inho-
mogeneities, in addition to the processes leading to T2 (fluctuating effective magnetic fields in
the lattice). Inhomogeneous g-factors cause different spin precession rate for different electrons,
giving rise to dephasing. For electrons confined to impurities or quantum dots, in which the
inhomogeneities are static, this dephasing contribution can be eliminated by what is called the
spin echo, revealing the “homogeneous” dephasing time T2 (Slichter, 1996). For itinerant elec-
trons the inhomogeneous processes are typically washed out by motional narrowing: as electrons
spread over the sample, they experience different g-factors, so that only the average contributes
to the precession rate (essentially satisfying the central limit theorem).

How can we calculate T1 and T2 times? Usually we start with a Hamiltonian description of
the electron system and try to obtain effective equations for the time evolution of the spin. In
most cases of interest (but not in all cases!) we end up with Bloch-like equations so that we
can directly identify T1 and T2. In electronic systems at relatively weak magnetic field usually
T1 = T2 (up to anisotropy factors of order unity, if the system does not have cubic symmetry, or
is not isotropic). Since it is often easier to calculate T1, and measure T2, such a relation is very
useful.

72In the nuclear magnetic resonance literature T1 is often called longitudinal, while T2 the transverse time, in accord
with their definition by the Bloch equations.
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Fig. IV.1. Four important mechanisms of spin relaxation in semiconductors. From top to bottm: (i) The
Elliott-Yafet mechanism, in which the electrons scattering off impurities or phonons has a tiny chance to
flip its spin at each scattering. (ii) The Dyakonov-Perel mechanism in which electron spins precess along a
magnetic field which depends on the momentum. At each scattering the direction and the frequency of the
precession changes randomly. (iii) The Bir-Aronov-Pikus mechanism, in which electrons exchange spins
with holes (circles), which then lose spins very fast due to the Elliott-Yafet mechanism. (iv) If electrons
wave functions (dashed circles) are confined over a certain region with many nuclear spins, the hyperfine
coupling causes spin relaxation and dephasing.

There are four important spin relaxation mechanisms of conduction electrons in semiconduc-
tors, see Fig. IV.1. (i) In the Elliott-Yafet mechanism, the spin relaxes by momentum scattering
off impurities or phonons. Electron states are mixtures of spin up and down spinors, due to spin-
orbit coupling. Since the coupling is weak, we can still label the states “up” and “‘down”, with
respect to some quantization axis. Each momentum scattering gives a probability to flip the spin
from “up ” to down, leading to spin relaxation. The spin relaxes during the scattering, which is
why the faster is the momentum scattering, the faster is the spin relaxation. Typically an elec-
tron has to undergo 105 scattering events before a spin flip occurs. The Elliott-Yafet mechanism
operates in semiconductors with and without a center of inversion symmetry, although it is most
prominent in the centrosymmetric ones (such as silicon).

(ii) The Dyakonov-Petel mechanism operates in semiconductors without a center of symme-
try, such as GaAs (or zinc-blende in general). As we have seen in Sec. B. in such semiconductors
the spin-orbit interaction manifests itself as an effective, momentum dependent magnetic field.
An electron moving with one velocity feels one effective magnetic field along which the elec-
tron’s spin precesses. As the electron scatters by an impurity or a phonon, the electron changes
its velocity and it feels a different (in both magnitude and direction) spin-orbit magnetic field.
The precession axis and frequency changes randomly! We can view this situation as an electron’s
spin in a fluctuating magnetic field, in line with the toy model to be studied in Sec. B.2. The
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spin performs a kind of random walk, with the spin flip occuring if the spin manages to walk
as far as the opposite of its original direction. Unlike in the Elliott-Yafet mechanism, the spin
relaxes in between the scattering events, and the more scattering events there are, the less is the
spin relaxation.

In a p-doped semiconductor, the Bir-Aronov-Pikus mechanism (iii) dominates (Bir et al.,
1975). Usually, exchange interaction between electrons does not lead to spin relaxation as it
preserves the total spin. In a p-doped semiconductor, there will be exchange coupling with holes.
An electron with a spin up will exchange its spin with a hole with spin down. The total spin
is preserved in the process. However, holes in most useful semiconductors (GaAs, say) lose
their spins very fast, since the valence bands are strongly spin mixed due to spin-orbit coupling.
The Elliott-Yafet mechanism then leads to very fast spin relaxation of holes; essentially any
momentum scattering has a significant chance to give a spin flip. Holes then act as a reservoir
for spin: spin-polarized electrons will dump their spin into this reservoir, in which the spins will
get lost very fast.

Finally, when nuclear spins are present (they are in GaAs) the hyperfine interaction is capable
of spin flips. For itinerant electrons this interaction will be motionally narrowed: electrons will
move fast through nuclei with random spins, averaging their actions. However, for electrons
confined on impurity levels or in quantum dots, the electron wave function will spread over a
region containing, say 105 nuclear spins (in GaAs), whose interaction with the electron will lead
to a spin flip and, more significantly, spin dephasing.

We will first introduce a toy model of a spin in a fluctuating magnetic field, discussing the
Markov approximation and give a method of deriving master equations. We will then discuss two
most frequenly met spin relaxation methods: the Elliott-Yafet and the Dyakonov-Perel spin relax-
ation. More about spin relaxation in semiconductors can be found in (Meier and Zakharchenya
(Eds.), 1984; Žutić et al., 2004).

B. Born-Markov approximation and a toy model of spin relaxation

This section gives first a general strategy of how to calculate the relaxation and dephasing rates
of a system’s degrees of freedom, due to an external random perturbation. This strategy is then
applied to a toy model of spin relaxation in which Larmor precession is perturbed by a fluctuating
magnetic field. Foundations and the methodology of the theory of dephasing and relaxation, re-
sulting from the contact of the studied system with an environment, can be found in monographs
(Breuer and Petruccione, 2002; Slichter, 1996; Blum, 1996).

B.1 General strategy

Suppose our Hamiltonian can be written as

H(t) = H0 + V (t), (IV.4)

where H0 is the system Hamiltonian and V (t) denotes a random fluctuating potential energy
(both H0 and V are operators) coming from the interaction of the system with an environment.
The equation of motion for the density matrix ρ is,

dρ

dt
=

1
i~

[H, ρ] . (IV.5)
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The density matrix fully specifies the state of our system. We will find it convenient to look for
ρ in the interaction picture. Both ρI and VI(t) are defined by the usual expressions:

ρI(t) = eiH0t/~ρ e−iH0t/~, (IV.6)
VI(t) = eiH0t/~V (t)e−iH0t/~. (IV.7)

The advantage of the interaction picture is that the time evolution of ρI is determined explicitly
by VI(t) only:

dρI

dt
=

1
i~

[VI(t), ρI ] . (IV.8)

The above equation has the following (exact) iterative solution:

ρI(t) = ρI(0)+
1
i~

∫ t

0

dt′ [VI(t′), ρI(0)]+
(

1
i~

)2 ∫ t

0

∫ t′

0

dt′dt′′ [VI(t′), [VI(t′′), ρI(t′′)]] .

(IV.9)

Let us differentiate it and obtain an integro-differential evolution equation,

dρI(t)
dt

=
1
i~

[VI(t), ρI(0)] +
(

1
i~

)2 ∫ t

0

dt′ [VI(t), [VI(t′), ρI(t′)]] . (IV.10)

We will now find the evolution equation for the density operator averaged over the fluctuating
fields. Assume for simplicity that the fields fluctuate around zero,73 so that the ensemble average
of V vanishes:

V (t) = VI(t) = 0. (IV.11)

Upon ensemble averaging the evolution equation, Eq. (IV.10) becomes,

dρI(t)
dt

=
(

1
i~

)2 ∫ t

0

dt′[VI(t), [VI(t′), ρI(t′)]]. (IV.12)

The term in Eq. (IV.10) linear in VI vanishes upon averaging (note that the initial condition ρI(0)
does not depend on V , so it is not affected by averaging).

Equation (IV.12) is an exact equation for the time evolution of the density operator averaged
over random field realizations. Unfortunately, this equation is not possible to solve except for
perhaps a few special cases. The reason is that while the left-hand side contains the time deriva-
tive of the average operator density, the right-hand side contains the averaged product of the
density and the random field energies. If we consider the random field as a small perturbation,
which is usually the case with spins in spintronics, this average of the product can be factorized
into the product of two averages:

dρI(t)
dt

=
(

1
i~

)2 ∫ t

0

dt′
[
VI(t), [VI(t′), ρI(t′)]

]
. (IV.13)

73If this is not the case and the averaged field is not zero, we can rearrange the Hamiltonian such that H = [H0 +

V (t)] + [V (t) − V (t)], and treat the first part as a regular term and the second as the random fluctuating energy with
zero mean.
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Fig. IV.2. Toy model of spin relaxation and dephasing. (a) A spin in the presence of a static magnetic
field along the z direction, B0, giving rise to the Larmor precession frequency ω0. In addition, a randomly
fluctuating magnetic field B(t), giving rise to the Larmor frequency ω(t), is applied. (b) If the static field
is small, then all the spin components are equal, so that T1 = T2. (c) If the static field is large, transverse
fluctuating fields are inefficient in flipping the spin (see the text).

The factoring, which is sometimes called the Born approximation, can be done since the density
matrix ρ(t) is only weakly perturbed from its unperturbed value which does not depend on V .
The above equation can be further simplified using the Markov approximation, which replaces
ρ(t′) by ρ(t) on the right-hand side. What is the physics behind this replacement? Typically
the random fluctuating field has a small correlation time τc, meaning that the values of the field
separated in time by τc or more are not correlated. In the right-hand side of Eq. (IV.13) then
only the terms for which t′ is within τc from t contribute. We expect that the density operator
varies only slowly over the time interval τc, so we can assume that ρ(t′) ≈ ρ(t) for the relevant
times t′. The Markov approximation is often called course-graining procedure, since our time
resolution in calculating the density operator is τc. We give up on asking what is the behavior at
finer time scales, which would result from the short memory of the fluctuating field. The final
equation then reads,

dρI(t)
dt

=
(

1
i~

)2 ∫ t�τc

0

dt′
[
VI(t), [VI(t′), ρI(t)]

]
. (IV.14)

This is a Master equation for the density matrix, describing irreversible dynamics of a system
which is in contact with environment.

B.2 Electron spin in a fluctuating magnetic field

We now apply the analysis of the previous section to the simplest possible case, that of an electron
spin in the presence of a static magnetic field as well as a randomly fluctuating magnetic field.
Despite its simplicity, this toy model is representative for the spin relaxation and dephasing
physics; for example, the Dyakonov-Perel mechanism of spin relaxation in semiconductors is of
that kind. The model is illustrated in Fig. IV.2.
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The Hamiltonian of the spin in the magnetic field is,

H =
1
2

~ω0σz +
1
2

~ω(t) · σ . (IV.15)

Here ω0 is the time independent Larmor frequency–the frequency of the spin precession about the
static magnetic field oriented along axis z, while ω(t) is the time dependent, randomly fluctuating
Larmor frequency vector: the magnitude is the frequency, while the direction is the precession
axis, given by the direction of the fluctuating magnetic field. We can split the Hamiltonian as
before, in Eq. (IV.4), with

H0 =
1
2

~ω0σz,

V (t) =
1
2

~ω(t) · σ. (IV.16)

In the interaction picture the perturbation V will be

VI(t) =
1
2

~ω(t) · σI(t), (IV.17)

where the interaction picture of the Pauli matrices is

σI(t) = eiH0t/~σe−iH0t/~. (IV.18)

We will take a simple model for the correlation of the fluctuating field:

ωα(t)ωβ(t′) = δαβω2
αe
−|t−t′|/τc . (IV.19)

The different cartesian coordinates α of the field are not correlated, while the fields of the same
coordinates are correlated within the time scale of the correlation times τc. Our starting point to
derive the effective evolution equation for the spin in the presence of the fluctuating field is then
Eq. (IV.14) (we omit the overline in the symbol for the density matrix):

ρ̇I = −1
4

∑
α

ω2
α

∫ t

0

dt′e−(t−t′)/τc [σIα(t), [σIα(t′), ρI(t)]] . (IV.20)

It is useful to work directly with the matrix elements rather than with operators. We choose
for our basis set the eigenspinors of σz . We reserve the indexes i and j for the two spin states,
called 1 for the lower energy and 2 for the upper energy) and denote as,

ωij = (εi − εj)/~, (IV.21)

the frequency corresponding to the difference of the energies of states i and j. We also introduce
the integral spectral functions74

Jij =
∫ ∞

0

dt′e−t′/τce−iωijt′ =
τc − iωijτ

2
c

1 + ω2
ijτ

2
c

. (IV.22)

74The upper limit on the integral is in fact t � τc, which can be treated as infinity, since the integrand essentially
vanishes at t′ � τc.
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Since the two spin states of the Hamiltonian H0 are separated by the Larmor energy, ε2 − ε1 =
~ω0, the diagonal matrix elements of J are:

J11 = J22 = τc, (IV.23)

while the off-diagonal are

J12 = J∗21 = τc
1 + iω0τc
1 + ω2

0τ
2
c

. (IV.24)

The spectral function Jij is proportional to the intensity of the fluctuating field at frequency ωij ,
as follows from the definition of Eq. IV.22; for our ansatz, Eq. IV.19, J vanishes at large ω,
while it stays constant at ω = 0.

After some pages of algebra, which we leave as an exercise to the reader, we arrive at,

ρ̇ij = iωijρij −
1
4
ω2

z (Jii + Jjj) (1− σz,iiσz,jj) ρij −
1
4

(
ω2

x + ω2
y

)
(J−i,i + Jj,−j) ρij

+
1
4

(
ω2

xσx,i,−iσx,−j,j + ω2
yσy,i,−iσy,−j,j

)
(Ji,−i + J−j,j) ρ−i,−j . (IV.25)

The above density matrix is already in the Schrödinger picture. We have also used the notation
that i is the complementary state (opposite spin) to i. For example, if i = 1, then i = 2.

Using that Jii = τc, we can obtain for the time derivative of the diagonal density matrix
elements,

ρ̇11 = −1
4

(
ω2

x + ω2
y

)
(J21 + J12) (ρ11 − ρ22) , (IV.26)

ρ̇22 = −1
4

(
ω2

x + ω2
y

)
(J21 + J12) (ρ22 − ρ11) , (IV.27)

while the off-diagonal terms are given by

ρ̇12 = iω12ρ12 − ω2
zτcρ12 −

1
2

(
ω2

x + ω2
y

)
J21ρ12 +

1
2

(
ω2

x − ω2
y

)
J12ρ21, (IV.28)

ρ̇21 = iω21ρ21 − ω2
zτcρ21 −

1
2

(
ω2

x + ω2
y

)
J12ρ21 +

1
2

(
ω2

x − ω2
y

)
J21ρ12. (IV.29)

Since the expectation value of the average spin is,

s =
~
2
Tr (ρσ) , (IV.30)

we get for the time evolution of the spin components

ṡx = −ω0

[
1− ω2

yτcTc

]
sy −

(
ω2

zτc + ω2
yTc

)
sx, (IV.31)

ṡy = ω0

[
1− ω2

xτcTc

]
sx −

(
ω2

zτc + ω2
xTc

)
sy (IV.32)

ṡz = −
(
ω2

x + ω2
y

)
Tcsz, (IV.33)
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where we introduce the effective correlation time Tc as,

Tc =
τc

1 + ω2
0τ

2
c

, (IV.34)

and use that J12 + J21 = 2Tc, and J12 − J21 = 2iTcω0τc. The above equations for the spin dy-
namics show that the effects of the fluctuating field are twofold: first, the field lowers somewhat
the frequency of the spin precession, and, second, the field induces spin relaxation. The change
of the frequency does not qualitatively change the picture of the spin precession, and, in fact,
is usually ignored (in most cases this is justified), while the second effect brings a qualitative
change, allowing the spin to come into equilibrium.

Comparing Eqs. (IV.31), (IV.32), and (IV.33) with the Bloch equations, (IV.1), (IV.2), and
(IV.3), we see the following problem: even though our static magnetic field points along the z
direction, the equations we have derived imply that also the spin sz component vanishes at large
times, not settling at a finite equilibrium value. The reason is the absence of the heat bath in
our consideration. We have effectively treated the system at infinite temperature in which the
equilibrium spin is indeed zero. In reality, the fluctuating field will be in equilibrium with the
thermal bath, having different spectral functions at different temperatures. Say, if the fluctuating
field comes from phonons, there would be no spectral weight, J , at zero temperature for the
transitions from a lower state 1 to the upper state 2, since no phonons are available at T = 0. The
emission of phonons would still be allowed, for the transitions from 2 to 1. We can remedy our
infinite temperature description by including the effect of the spin bath by changing Eq. (IV.33)
to

ṡz = −
(
ω2

x + ω2
y

)
Tc(sz − s0z), (IV.35)

where s0z is the temperature dependent equilibrium spin in the direction of the static field. Equa-
tion (IV.33) can then be considered as describing the time evolution of the nonequilibrium spin,
sz − s0z .

We are now ready to extract the spin relaxation and the spin dephasing rates from Eqs.
(IV.31), (IV.32), and (IV.35). The rates are

1
T1

= (ω2
x + ω2

y)
τc

ω2
0τ

2
c + 1

(IV.36)

1
T2x

= ω2
zτc + ω2

y

τc
ω2

0τ
2
c + 1

, (IV.37)

1
T2y

= ω2
zτc + ω2

x

τc
ω2

0τ
2
c + 1

. (IV.38)

There are several important conclusions that can be drawn here. (i) The spin relaxation and
spin dephasing rates increase with increasing of the correlation time. This counterintuitive effect
(the more “random” is the fluctuating field, the less capable it is in dephasing spin) is known
as motional or dynamical narrowing, to be considered in the following section. (ii) The spin
dephasing of a given spin is due to the fluctuating fields perpendicular to the spin direction.75

This is because only the perpendicular fields are capable of spin flipping. (iii) All the directions

75For an isotropic three-dimensional solid ω2
x = ω2

y = ω2
z , which is why the Bloch equations contain only one
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of the fluctuating field are treated on equal footing at B0 ≈ 0, see Fig. IV.2. However, the
effect of the fluctuating field along the direction of the static field is not influenced by the static
field itself, but the two transverse components of the fluctuating field are effectively diminished.
The reason is, as will be discussed more below, that at large static fields the spin-flip abilities
of the transverse fields are inhibited. This is best seen from the perspective of the coordinate
frame rotated along z with the Larmor frequency ω0. While the fluctuating field along z is not
affected, the y component, say, rotates with ω0. This rotation diminishes the effective correlation
time which is given by the integral over the correlation function (up to the overall fluctuating
intensity): ∫ t�τc

0

dt′ωz(0)ωz(t′) = ω2
zτc (IV.39)∫ t�τc

0

dt′ωy(0)ωy(t′) cosω0t
′ = ω2

y

τc
ω2

0τ
2
c + 1

(IV.40)

The factor of cosine, due to the rotation of the transverse field, reduces the effect of the field on
spin flips.

We can also explain the influence of the static field on spin relaxation and spin dephasing,
using the notion of motional narrowing (see the next section if this concept is unfamiliar). As the
static magnetic field increases, the transverse spin dephasing is diminished, while the longitudinal
spin relaxation vanishes altogether. The higher is the ω0, the less effective are the transverse
components (x and y) of the fluctuating field in randomizing the spin. The efficiency of the
longitudinal component is not affected. What is the cause? Suppose that initially we have a
transverse spin, as in Fig. IV.2 c. Let us consider separately the two contributions to its dephasing.
First, the transverse spin is dephased by the fluctuating magnetic field along the z direction. This
field causes random changes in the precession angles, leading to dephasing, equally with or
without the static field. Second, the transverse spin is dephased by the transverse component
of the fluctuating field, which is perpendicular to the spin; if the spin is along x, the relevant
fluctuating field is along y. The total magnetic field, the static plus the fluctuating one, fills the
cone of angle ω/ω0 � 1, so that the spin precesses very close to the transverse plane. In other
words, the transverse fluctuating field is very weak to rotate the spin over a full cycle. At most,
the spin rotates out of the plane at an angle of magnitude ω/ω0. Flipping the random transverse
field after time τc changes the sign of the accumulated phase to−ω/ω0. We thus end up with the
picture of a random walk, with the step size of ω/ω0, and the step time interval τc.76 After time
t, the standard deviation of the accumulated angle is,

ϕ =
ω

ω0

√
t

τc
. (IV.41)

We call time t the spin relaxation time, t = τs, if the standard deviation reaches one: ϕ = 1.

dephasing time T2, equal for both transverse spin directions. In general the fluctuating field can be anisotropic in which
case we need to distinguish spin dephasing in x and y directions; we do it here by introducing T2x and T2y . In the
most general case there is a tensor of the spin dephasing rates, though we can always diagonalize it to its three principal
directions.

76The step size does not depend on τc since ω/ω0 is the maximum magnitude we can get.
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From the above equation we obtain,

1
τs

=
1
τc

ω2

ω2
0

, (IV.42)

consistent with the large ω0 limit of Eqs. (IV.36), (IV.37), and (IV.38).
Consider now an isotropic case (or a cubic solid) in which ω2 = ω2

x = ω2
y = ω2

z , that is, the
fluctuating intensities in all directions are equal. We can write for the spin dephasing rate,

1
T2

=
1
T ′2

+
1

2T1
. (IV.43)

Here,

1
T ′2

= ω2τc, (IV.44)

is the contribution to the dephasing due to a random precession frequency modulation (motional
narrowing, see the following section). This contribution is also termed secular broadening. The
other contribution to the dephasing rate, 1/2T2, comes from the spin relaxation. This term is
also called lifetime broadening. If the correlation time of the fluctuating field is small, such that
ω0τc � 1, the dephasing and the relaxation times are equal:

T1 = T2, ω0τc � 1. (IV.45)

This result is not valid in general, although it appears to hold at high temperatures at which all
the spectral components of the fluctuating fields (phonons, for example) are excited. At low
temperatures usually the secular component is absent and the equality T2 = 2T1 holds.

In the opposite limit of large Larmor frequency, ω0τc � 1, the spin relaxation rate vanishes,

T1 ≈
ω2

ω2
0

1
τc
→∞, (IV.46)

while the spin dephasing time is given by the secular broadening only:

1
T2

≈ ω2
zτc. (IV.47)

If secular broadening is absent, the leading term in the dephasing time will be, as in the relaxation,

1
T2

≈ ω2

ω2
0

1
τc
. (IV.48)

In this limit the spin dephasing rate is proportional to the correlation rate, not to the correlation
time.
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Fig. IV.3. Electron spin precesses along an axis randomly flipping its direction. After time t (horizontal
axis) the accumulated phase (vertical axis) will be proportional to

√
t, which is the signature of a random

walk.

B.3 Motional narrowing

The physics behind the spin dephasing due to the randomly fluctuating magnetic field is motional
narrowing.77 Consider a spin precessing about the z axis with Larmor frequency Ω. Let the
frequency change randomly between Ω and −Ω with the correlation time τc; see Fig. IV.3. That
is, after time τc, the spin has equal probability to continue precessing in the same direction or
start turning backwards. The phase accumulated over τc is δϕ = Ωτc. Looking at the spin
precession as a random walk with step δϕ, after N steps the spread of the phase will be given by
the standard deviation, see Sec. II.A.,

ϕ = δϕ
√
N. (IV.49)

We will call the spin dephasing time τs the time at which the standard deviation becomes ϕ ≈ 1.
Since N = t/τc, we get,

1 = δϕ2 τs
τc
, (IV.50)

so the spin relaxation rate becomes,

1
τs

= Ω2τc. (IV.51)

The above equation is similar to the equation for the spin relaxation in our toy model of the
previous section, but also in the Dyakonov-Perel mechanism, to be given later by Eq. (IV.96).
We see that the correlation time τc corresponds to the time τ∗. The Dyakonov-Perel mechanism
can indeed be viewed as a random precession of electron spin due to fluctuations of precession
frequencies and orientations. The greater is the correlation time, the greater is the spin relaxation
rate.

77The term “motional narrowing” has its roots in nuclear spin resonance studies in liquids in which the absorption line
is narrowed—the linewidth being proportional to the spin relaxation rate–if the spin experiences random kicks due to the
motion of the spin carriers.
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C. Elliott-Yafet mechanism

The Elliott-Yafet mechanism of spin relaxation (Elliott, 1954; Yafet, 1963) is essentially a Fermi-
golden rule mechanism of spin flipping due to the presence of impurities or phonons. There is,
however, a subtlety, which was first recognized by Elliott (Elliott, 1954). There are two possible
scenarios. First, electrons are described by Bloch states which are eigenstates of the Pauli σz

matrix. That is, the states look like,

ψkσ(r) = uk(r)eik·rχσ, (IV.52)

where uk(r) is the modulation function, periodic with the lattice potential, and χσ are the Pauli
spinors,

χ↑ =
(

1
0

)
, χ↓ =

(
0
1

)
. (IV.53)

If the impurity potential is not spin dependent, the scattering does not lead to a spin flip and,
eventually, to spin relaxation. However, impurities induce spin-orbit coupling potential, of the
form,

Vso =
~

4m2c2
∇Vimp × p̂ · σ, (IV.54)

where Vimp is the spin-independent impurity potential and p̂ is the momentum operator. Spin-
flip scattering due to the spin-orbit potential causes spin relaxation of conduction electrons. This
spin relaxation is most pronounced for heavy impurities—the spin-orbit strength increases as Z2

with the atomic number Z of the impurity.
The second, more important case, is the spin relaxation due to the spin-orbit coupling induced

by host ions. In the presence of spin orbit coupling, the Bloch states cannot be chosen as the Pauli
spinors. If the conductor has a center of inversion symmetry, the Bloch states have the form of
Eqs. (III.4) and (III.5). Since these two states are degenerate, we can make linear combinations
of them such that the new eigenstates have the spin magnetic moment parallel or antiparallel to a
given direction (say, z). Such states can then be called “spin up” and “spin down”, even though
they are an admixture of the Pauli spin up and spin down spinors. Any momentum relaxation
process, such as impurity or phonon scattering, then couples the “spin up” with “spin down”
states of a different momentum, giving spin relaxation. This spin relaxation depends on the Z
of the host atoms, typically again as Z2. Naturally, semiconductors such as silicon, with low Z,
have weaker spin relaxation than, say germanium whose spin-orbit coupling is larger.78

We will not present here the formalism to derive the Elliott-Yafet spin relaxation time. In-
stead, we give the formula for the spin relaxation by scattering off phonons, which is the ultimate
limiting factor on spin relaxation at finite temperatures. For highly degenerate conductors, the
spin relaxation rate is (Fabian and Das Sarma, 1999a),

1/T1 = 8πT
∫ ∞

0

dΩα2
sF (Ω)∂N(Ω)/∂T,

78Spin-orbit coupling of the host lattice itself, without momentum scattering, cannot lead to spin relaxation. Since the
spin-orbit interaction of the host lattice is a periodic interaction, the Bloch theorem applies, allowing coupling between
the states of the same momentum, but different energy (unless the bands cross)—vertical coupling in the band structure.
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where

N(Ω) = [exp (~Ω/kBT )− 1]−1, (IV.55)

is the distribution function for the phonons of frequency Ω, and

α2
sF (Ω) =

gS

2MΩ

∑
ν

〈〈gν
kn↑,k′n′↓δ(ωqν − Ω)〉kn〉k′n′ ,

is the spin-flip Eliashberg function, measuring the efficiency of phonons of frequency Ω to flip
the spin of electrons at the Fermi level. We have also denoted by M the ion mass, gS the density
of electronic states per spin, ωqν the frequency of a phonon of momentum q and polarization
(displacement) label ν, and gν

kn↑,k′n′↓ is the matrix element of the electron-phonon interaction
potential, corresponding to the phonon polarization ν, in the Bloch states of “spin up” with
momentum k and band index n, and states of “spin down”, with momentum k′ = k + q, and
band index n′. The double averaging is over the states at the Fermi level. The above formulas can
be used, in combination with a realistic band structure as well as phonon displacement pattern
and the electron-phonon coupling, to obtain realistic estimates of the spin relaxation time as a
function of temperature.

A nice rule of thumb for the order of magnitude of the spin relaxation rate is the Elliott
relation,

1
T1

≈ 10× (∆g)2

τp
, (IV.56)

in which ∆g = g − g0 is the deviation of the g-factor for a conduction electron from the free
electron value, and τp is the momentum relaxation time. The factor of ten was suggested based
on empirical observations of Beuneu and Monod (1978). The Elliott relation can be applied to
metals and degenerate semiconductors.

D. Dyakonov-Perel mechanism

We present below the full derivation of a spin relaxation mechanism proposed by D’yakonov and
Perel’ (1971b). This mechanism, which is essentially scattering induced motional narrowing of
the spin precession due to the spin-orbit field of the host lattice, is effective in semiconductors
without a center of inversion symmetry. The most prominent example is GaAs. We first derive
the kinetic equation for the electron transport and spin dynamics, then solve the obtained equation
in the motional narrowing limit.

D.1 Kinetic equation for spin dynamics

The electron transport and dynamics in conductors can be, neglecting quantum orbital effects,
described quasiclassically by considering electrons as wave packets of momentum k, at space
point r and time t; see, for example, (Ashcroft and Mermin, 1976). The orbital dynamics is
given by Newton-like equations: In the presence of electric and magnetic fields E and B, the
time evolution of the position and momentum of the wave packet is given by :

ṙ = vk =
∂εk
~k

, (IV.57)

~k̇ = Fk = −eE− evk ×B. (IV.58)
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Here εk is the energy of the electrons of momentum k, while the momentum dependent force Fk

comprises the electric and Lorentz forces.
We now add the spin degrees of freedom, quantum mechanically. In the presence of a spin-

dependent Hamiltonian, call it H1k, the spins are precessing in directions and frequencies spec-
ified for each momentum. To allow for the spin precession, as well as to describe a general
spin state (pure or mixture) we introduce, for each electron wave packet, a 2 × 2 density matrix
ρ = ρk(r, t). The density matrix ρ fully describes our, in principle nonequilibrium electronic
system within the quasiclassical limit for the orbital degrees of freedom.79 For example, the
occupation number of the momentum state k at r is

nk(r, t) = Tr ρk(r, t), (IV.59)

where trace Tr is over the spin space.80 We can also calculate the total number of electrons N
and the spin s, in the conductor of volume V :81

N =
1
V

∫
d3r

∑
k

Tr ρk(r, t) (IV.60)

s(t) =
1
V

∫
d3r

∑
k

Tr [ρk(r, t)ŝ] , (IV.61)

where the spin operator is ŝ = σ/2. Equation (IV.60) is the normalization condition on our
density matrix. The spin, or the associated magnetic moment M = γs, can depend on time.

In contrast to the quasiclassical description of electron momenta and positions, we treat the
spin evolution quantum mechanically. Due to the action of the spin-dependent term H1, which
we write as

H1k =
~
2
Ωk · σ, (IV.62)

the spin-dependent part of the density matrix at time t− dt evolves to,

ρ(t) = e−iH1dt/~ρ(t− dt)eiH1dt/~, (IV.63)

at time t; dt is infinitesimally small. The kinetic equation for our density matrix can be obtained
in a heuristic way, similarly to common derivations of the Boltzmann equation (Ashcroft and
Mermin, 1976). Considering that ρ(t) ≡ ρ[k(t), r(t), t], we can expand the above equation in
the Taylor series in dt, to obtain,

ρ [k(t), r(t), t] = e−iH1dt/~ρ [k(t− dt), r(t− dt), t− dt] eiH1dt/~ +
(
∂ρ

∂t

)
coll

(IV.64)

≈ ρ(k, r, t)− ∂ρ

∂~k
· Fk dt−

∂ρ

∂r
· vk dt−

∂ρ

∂t
dt− i

~
[H1k, ρ] dt+

(
∂ρ

∂t

)
coll

. (IV.65)

79One should view the single-electron density matrix ρk(r, t) as a simplified notation for the more general density
matrix, ρkk′ (r, r

′, t) = δkk′δ(r − r′)ρk(r, t). In the quasiclassical approximation we allow only for probabilities
(diagonal elements), no coherences (off-diagonal elements) in the momentum and position spaces, while keeping both
probabilities and coherences for the spin.

80The occupation can be up to two electrons in a single momentum state k.
81The division by V appears since we treat the occupation number nk as a dimensionless number, not as the occupation

density. The number of electrons in a momentum state k in the space interval [r, r + dr] is nk(r)d3r/V .
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The term (∂ρ/∂t)coll, called collision integral, describes the net increase of the density matrix
due to the collisions, typically with impurities, phonons, or other electrons. This term is added
by hand. We have also used the quasiclassical equations of motion, Eqs. (IV.57) and (IV.58),
to substitute for the time derivatives of the momenta and positions, neglecting possible spin
dependence of the velocity. The spin Boltzmann kinetic equation follows as:

∂ρk
∂t

− 1
i~

[H1k, ρk] +
∂ρk
∂~k

· Fk +
∂ρk
∂r

· vk =
(
∂ρk
∂t

)
coll

. (IV.66)

The first term on the left hand side describes the change of the density matrix with time, at a
fixed point in the momentum and position space. The second term, which is the von Neumann
formula for the time evolution of the spin density matrix, describes spin precession; the third and
fourth terms describe the time evolution of the momentum and position of the electronic wave
packets. Taken as a whole, the left hand side is the total time derivative of the density matrix as
attached to a moving point (state) in the momentum, position, and spin spaces.

In the absence of spin precession, if H1 = 0, the spin Boltzmann equation, (IV.66), reduces
to the Boltzmann equation for the spin diagonal components of the density matrix, fkσ(rt) =
ρkσσ(r, t):

∂fkσ

∂t
+
∂fkσ

∂~k
· Fk +

∂fkσ

∂r
· vk =

(
∂fkσ

∂t

)
coll

. (IV.67)

While the left hand side does not mix the spin components, the collision integral can include
spin-flip processes (as is the case with the Elliott-Yafet mechanism), coupling the Boltzmann
equations for spin up and spin down distribution functions fσ .

It remains to decipher the collision integral. We will consider only elastic (that is, energy
preserving) and spin-preserving scattering by impurities. An electron with momentum k scatters
into another momentum state, k′, keeping its spin unchanged. This is allowed as long as the
other state, of the same spin, is empty, due to Pauli’s principle. Let us denote the spin-preserving
scattering rate, the collision probability per unit time, from k to k′ by Wkk′ . Then the net
increase of the density matrix element ρkσσ′ is,(

∂ρkσσ′

∂t

)
coll

=
∑
k′

[Wk′kρk′σσ′ (1− ρkσσ′)−Wkk′ρkσσ′ (1− ρk′σσ′)] . (IV.68)

The first term on the right hand side counts the number of collisions from all occupied states k′

to an empty k state, increasing the density matrix, while the second term counts the collisions
from the occupied k to all other states, on the energy shell, diminishing the density matrix.
For an impurity potential the principle of detailed balance gives (Ashcroft and Mermin, 1976)
Wkk′ = Wkk′ , which allows to write82(

∂ρkσσ′

∂t

)
coll

=
∑
k′

Wk′k (ρk′σσ′ − ρkσσ′) . (IV.70)

82It is tempting to write the collision integral in terms of density matrices (not their elements) as,X
kk′

Wkk′ [ρk′ (1− ρk)− ρk (1− ρk′ )] , (IV.69)

and proceed to the final answer, Eq. (IV.70). This would be incorrect since ρk and ρk′ do not, in general, commute.
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We can now summarize that the kinetic description of quasiclassical orbital dynamics as well
as quantum spin dynamics, in the presence of spin-preserving scattering, is given by the equation

∂ρk
∂t

− 1
i~

[H1k, ρk] +
∂fkσ

∂~k
· Fk +

∂fkσ

∂r
· vk = −

∑
k′

Wkk′ (ρk − ρk′) . (IV.71)

We will solve this equation for a homogeneous case in the absence of external fields in the next
section.

The spin Boltzmann equation, (IV.71), readily gives the spin continuity equation. Expressing
the spin-dependent part of the Hamiltonian in the form of Eq. (IV.62), and calculating the time
derivative of the spin of the momentum state k at point r,

sk =
~
2
Tr [ρk(r, t)σ] , (IV.72)

it is a simple exercise in commutator algebra to get

∂sk
∂t

− (Ω k × sk) +
∂sk
∂~k

· Fk +
∂sk
∂r

· vk = −
∑
k′

Wkk′ (sk − sk′) . (IV.73)

The second term on the left describes the spin precession, originating from the commutator in
Eq. (IV.71). The third term describes spin drift due to external fields, while the fourth term
describes spin diffusion due to the presence of inhomogeneous spin distribution. The above
equation is a generalization of the spin drift-diffusion transport equations discussed in Sec. II.B.

D.2 Solution for spin relaxation

Since we consider elastic scattering only, the momentum scattering rate,Wkk′ connects momenta
of the same magnitude (we also assume isotropic solid). We can then work on a single energy
surface, εk = ~2k2/2m, and the momentum variables are the azimuthal (ϑ) and polar (ϕ) angles.
This allows us to effectively use the decomposition of the density matrix, ρk, of electrons with
momentum k, as,

ρk = ρ+ ρ1k, ρ1k = 0. (IV.74)

The bar denotes averaging over the directions of k; ρ represents the isotropic part of the density
matrix. This part results due to momentum relaxation which rounds up anisotropies—those are
in turn represented by ρ1k. It is ρ which describes the spin relaxation process.

In the following we consider homogeneous case, ∂ρk/∂r = 0, and no external fields present,
Fk = 0. For such a situation the averaging over k of Eq. (IV.71) gives,

∂ρ

∂t
− 1
i~

[H1k, ρ1k] = 0, (IV.75)

where we used thatH1k = 0, sinceH1k is an odd function of k; the right-hand side of Eq. (IV.71)
vanishes identically upon averaging. Substitute now Eq. (IV.74) into Eq. (IV.75) to obtain the
following equation for ρ1k:

∂ρ1k

∂t
+

1
i~

[H1k, ρ1k]− 1
i~

[H1k, ρ]−
1
i~

[H1k, ρ1k] = −
∑
k′

Wkk′ (ρ1k − ρ1k′) . (IV.76)
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Fig. IV.4. The anisotropic part ρ1 of the density matrix relaxes after the momentum relaxation time τp

towards the quasistatic value ρ1 = ρ1[ρ]. At longer times, ρ1 evolves with time according to the time
evolution of the uniform part ρ, which, in turn, decays exponentially towards equilibrium within the spin
relaxation time: ρ1(t) = ρ1[ρ(t)].

The anisotropic part ρ1k decays towards instantaneous equilibrium defined by ρ very fast—on
the order of the momentum relaxation time τp (the process is the equilibration of momenta,
keeping spin intact). This scheme of solution is depicted in Fig. IV.4. Let us find this quasistatic
value of ρ1k by setting the time derivative in Eq. (IV.76) to zero and solve the resulting algebraic
equation. We will see that ρ1k ∼ H1k, and since H1k is a small perturbation, we can neglect all
terms containing the product H1kρ1k as negligible in the first approximation. We obtain

1
i~

[H1k, ρ] =
∑
kk′

Wkk′ (ρ1k − ρ1k′) . (IV.77)

We look for the solution of Eq. (IV.77) in the form of the ansatz

ρ1k = ρ1k[ρ] =
τ∗

i~
[H1k, ρ] . (IV.78)

Our task will be to determine the unknown parameter τ∗, which has the dimension of time.
To be specific, let us consider the spin Hamiltonian to be polynomial in the magnitude of the
momentum (the angular dependence remains unspecified):

H1k ∼ kl, (IV.79)

with integer l. The linear Bychkov-Rashba and Dresselhaus terms have l = 1, while the cubic
Dresselhaus term has l = 3. We look here, as an example, at a three-dimensional (bulk) case for
which l = 3, and expand the spin Hamiltonian in spherical harmonics:

H1k =
∑
m

Clmk
lY l

m(ϑ, ϕ), (IV.80)

where the angles ϑ and ϕ are the angular coordinates of the momentum k in spherical coordi-
nates, and the expansion parameters Clm are spin matrices of dimension 2× 2.
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Fig. IV.5. Scheme of the scattering geometry, defining the spherical angles of the wave vectors k and k′

The ansatz, Eq. (IV.78), leads to the following equations:

ρ1k =
τ∗

i~
∑
m

klY l
m(ϑ, ϕ) [Clm, ρ] , (IV.81)

ρ1k′ =
τ∗

i~
∑
m

klY l
m(ϑ′, ϕ′) [Clm, ρ] . (IV.82)

Since we consider elastic scattering, the magnitudes of the momenta are the same: k = k′; only
the spherical angles differ. See Fig. IV.5 for the definition of spherical angles. Substituting the
spherical expansions into Eq. (IV.77), we obtain the following formula for τ∗ (which we further
call τ∗l , to emphasize the dependence on the polynomial rank l):

τ∗l
∑
m

[Clm, ρ]
∑
k′

Wkk′
[
Y l

m(ϑ, ϕ)− Y l
m(ϑ′, ϕ′)

]
=
∑
m

[Clm, ρ]Y l
m(ϑ, ϕ). (IV.83)

We now use our earlier assumption that the scattering is isotropic, so that Wkk′ →W (θ), where
θ is the angle between k and k′, see Fig. IV.5. Then∑

k′

Wkk′ ...→
∫
dΩ′

4π
W (θ) ..., (IV.84)

where dΩ′ = sinϑ′dϑ′dϕ′ is the infinitesimal solid angle around k′.
We can expand the function W (θ) in Legendre polynomials Pl,

W (θ) =
∞∑

l=0

WlPl(cos θ), Wl =
2l + 1

2

∫ 1

−1

W (θ)Pl(cos θ), (IV.85)

and use the addition theorem (Jackson, 1998) to factor out the individual angles ϑ and ϑ′ from θ:

Pl(cos θ) =
4π

2l + 1

l∑
m=−l

Y ∗lm(ϑ′, ϕ′)Ylm(ϑ, ϕ). (IV.86)
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Using the orthonormality of spherical harmonics,
∫
dΩY ∗lm(Ω)Yl′m′(Ω) = δll′δmm′ , we readily

obtain the following identity:∫
Ylm(ϑ′, ϕ′)W (θ)

dΩ′

2π
= Ylm(ϑ, ϕ)

∫ π

0

W (θ)Pl(cos θ) sin θdθ. (IV.87)

With this identity we can readily solve Eq. (IV.83), to give

1
τ∗l

=
1
2

∫ 1

−1

d cos θW (θ) [1− Pl(cos θ)] . (IV.88)

If l = 1, we would get τ∗l = τp, recovering the momentum relaxation time.
Knowledge of the parameter τ∗ gives us the quasistatic solution for ρ1k, through Eq. (IV.78).

We can now substitute this solution into Eq. (IV.75), describing the time evolution of the isotropic
component of the density matrix. We obtain

∂ρ

∂t
= −τ

∗
l

~2
[H1k, [H1k, ρ]]. (IV.89)

This is the needed decay equation for the density matrix describing the slow, compared to mo-
mentum, spin relaxation. Let us see if we can transform the above into Bloch equations; compare
also with the Born-Markov approximation, Eq. (IV.14).

For electrons with a given magnitude of the momentum k (or energy εk = ~2k2/2m), it is
relevant to consider only the averaged expectation value of the spin,

s = Tr{ρkŝ} = Tr{ρŝ}, (IV.90)

due to the fact that the momentum relaxation is much faster than spin relaxation. We can then
write,

ρ =
1
2

+ s · σ. (IV.91)

Considering that our spin-dependent part of the Hamiltonian given by Eq. (IV.62), we obtain for
the commutator in Eq. (IV.89),

[H1k, [H1k, ρ]] = −1
2

~2
[
(Ωk · s) Ωk − Ω2

ks
]
. (IV.92)

We thus obtain the decay equations,

ds
dt

= τ∗l
[
(Ωk · s) Ωk − Ω2

ks
]
. (IV.93)

To be specific, let us look at the decay equation for sz:

dsz

dt
= −τ∗

[
szΩ2

k − Ω2
kz − sxΩkxΩkz − syΩkyΩkz

]
. (IV.94)

Recall that the overline denotes angular averages, so

ΩkαΩkβ =
∫

ΩkαΩkβ
dΩ
4π
, (IV.95)
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and α and β denote cartesian coordinates and Ω is the solid angle.
By comparing the decay equations, Eq. (IV.93), with Bloch equations given in Sec. IV.A we

can write for the spin relaxation times,

1
τs,αβ

= γ−1
l τp

(
Ω2

k − Ω2
kα

)
, (IV.96)

1
τs,α 6=β

= −γ−1
l ΩkαΩkβ . (IV.97)

Above we denoted,

γl = τp/τ
∗, (IV.98)

a measure of the relative importance of the momentum relaxation and the effective randomization
of the axis of Ωk. Usually we say that the correlation time in the Dyakonov-Perel mechanism
is given by the momentum relaxation. This is true only as an order of magnitude is concerned,
since in general τl 6= τp = τ1. The correlation time is the time of randomization of the spin-orbit
field. Different scattering events contribute differently to the spin randomization.

The physics comes in the choice of Ωk. Note that 1/τs is in general a tensor. For cubic
systems (such as zinc-blende semiconductors like GaAs) it is a scalar, with the off-diagonal
elements vanishing–as one can show explicitly with the Dresselhaus Ωk. We remind that the
Dresselhaus spin-dependent Hamiltonian for the conduction electrons in zinc-blende systems is,

Ωk = αc~2(2mcEg)−1/2κ, (IV.99)

where vector κ is given by,

κ =
[
kx(k2

y − k2
z), ky(k2

z − k2
x), kz(k2

x − k2
y)
]
. (IV.100)

It is a nice exercise to show that,

κ2
i =

4
105

k6. (IV.101)

With that we obtain for the spin relaxation rate,

1
τs

=
32
105

γ−1
3 τpα

2
c

ε3k
~2Eg

. (IV.102)

Recall that we are dealing with three-dimensional semiconductor such as GaAs for which the
relevant spin-orbit field is cubic in momentum, that is, l = 3. The fact, that the spin relaxation
rate is proportional to the momentum relaxation time (or correlation time, τ3), suggests that the
origin of the Dyakonov-Perel mechanism is indeed motional narrowing. In this specific case, the
spin relaxation strongly increases with increasing of the energy. For degenerate semiconductors,
εk ≈ εF , and the temperature dependence of the spin relaxation time is given by the temperature
dependence of τp. For nondegenerate semiconductors one needs to perform ensemble averaging
of the above result, essentially replacing εk with the thermal energy kBT . Ramifications of the
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Dyakonov-Perel spin relaxation mechanism for specific cases of interests, as well as for the two-
dimensional case, can be found in (Žutić et al., 2004). The mechanism is studied in great detail
in (Meier and Zakharchenya (Eds.), 1984).

Finally, we will show that the spin diffusion length in the Dyakonov-Perel mechanism does
not depend on τp, that is, on the degree of disorder. Indeed, writing schematically 1/τs = Ω2τp,
gives

Ls =
√
Dτs =

√
v2

F τp

Ω2τp
=

vF√
Ω2
. (IV.103)

Since the diffusion parameter D ∼ τp and the spin relaxation time, τs ∼ 1/τp, their product is
independent on the momentum relaxation rate.

E. Spin relaxation in semiconductors

The most studied semiconductor for spin relaxation is GaAs. This case study was given in detail
in our reference review (Žutić et al., 2004). There have been since several important develop-
ments. One is the measurement of spin relaxation in GaAs by analyzing Faraday-rotation noise
spectroscopy (Oestreich et al., 2005); for the theoretical treatment see (Braun and König, 2007).
Another is the influence of electron-electron interactions on spin relaxation. This is discussed
in more detail below. With respect to the recent demonstration of electrical spin injection into
silicon by Appelbaum et al. (2007), we also include a compilation of experimental results of spin
relaxation in silicon, in Sec. E.2.

E.1 Electron-electron interaction effects in spin relaxation in GaAs

Most studies of spin relaxation in semiconductors have focused on impurity (somewhat less
phonon) mediated spin flips. Recently it has been observed that electron-electron interactions
as well play important role in spin relaxation and dephasing in semiconductor quantum wells.
The coulomb interaction influences spin relaxation in two major ways: (i) The electron-electron
scattering leads to additional momentum relaxation and, via the motional narrowing of the
Dyakonov-Perel type, to inhibited spin dephasing (Glazov and Ivchenko, 2002) as measured
recently in n-GaAs/AlGaAs quantum wells (Stich et al., 2007; Leyland et al., 2007). In a mag-
netic field the electron-electron scattering effect on the spin dephasing has been considered by
(Wu and Ning, 2002). (ii) While the electron-electron exchange (Hartree-Fock) interaction pre-
serves spin, in electron systems of high spin polarization the exchange leads to a momentum-
dependent effective magnetic field.83 This field, while containing a random component, points
in one direction—of the spin polarization—and reduces spin dephasing, not unlike the external
magnetic field reduces spin dephasing in the toy model of Sec. B.2. This effect, predicted in
(Weng and Wu, 2003; Weng et al., 2004) and elaborated by (Glazov and Ivchenko, 2004), has
been recently observed (Stich et al., 2007).

The experiment of Stich et al. (2007) measured spin relaxation time of electrons in GaAs/
Al0.3Ga0.7As modulation doped quantum wells, oriented along the [001] direction. The width

83Unlike the effective spin-orbit fields, the exchange field breaks time reversal symmetry, as it results from nonequi-
librium spin polarization, which, by itself, breaks the time symmetry.
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of the well was 20 nm, while the conduction electron density was n = 2.1×1011 cm−2. Shining
circularly polarized light perpendicular on the quantum well creates spin-polarized electrons and
holes, by the process known as optical orientation or optical pumping (Meier and Zakharchenya
(Eds.), 1984; Žutić et al., 2004). Roughly, the photon angular momentum is transferred to elec-
trons and holes, due to the presence of spin-orbit coupling in GaAs.84 In optical spin pumping,
which is optical spin orientation of n-doped samples, the resulting spin polarization depends on
the excitation rate: the more electrons we pump into the conduction band, the higher is the spin
polarization (Žutić et al., 2004). The densities of the photoexcited spin-polarized electron-hole
pairs in the experiment of Stich et al. (2007) ranged from 9 × 109 to 6 × 1011 cm−2; the high-
est density is higher than the equilibrium density. At the highest excitation density the initial
electron spin polarization was about 30%.

How is the spin detected? A nice tool to observe spin decay, or spin precession in real time, is
the so-called Faraday rotation. This technique has proven extremely useful in spintronics, lead-
ing to fundamental observations85 of spin coherent transport (Kikkawa and Awschalom, 1999;
Awschalom and Kikkawa, 1999), spin relaxation and dephasing (Kikkawa and Awschalom, 1998;
Beschoten et al., 2001), and, recently, the so-called spin Hall effect (Kato et al., 2004; Sih et al.,
2006; Sih and Awschalom, 2007). We have already seen nice examples of the related Kerr rota-
tion spectroscopy of electrical spin injection in Sec. II.F.1.

The scheme of a Faraday rotation experiment is shown in Fig. IV.6. The pump pulse, incident
close to normal, is circularly polarized, generating spin-polarized electrons and holes, manifested
as the magnetization of the sample. At a delay time ∆t (which can be as small as a hundred
femtoseconds or a picosecond) a probe light pulse, of much smaller intensity, is applied. The
probe, which is also incident close to the normal direction, is linearly polarized. As the probe
pulse transmits through the sample, the polarization axis of the pulse (the direction of the electric
field of the photons) rotates in the polarization plane, proportional to the magnetization of the
sample. Detecting this Faraday rotation angle at different time delays gives direct information
about the time dependence of the magnetization.

The results of the Faraday rotation experiment of Stich et al. (2007) are shown in Fig. IV.7. At
small time delays the magnetization decays rather fast, presumably due to the fast spin relaxation
of photoexcited holes (Žutić et al., 2004). At longer times the exponential decay can be fitted
to give information about spin relaxation time, here denoted as T ∗2 , although the figure shows a
plain decay of the spin, not decay of coherent oscillations (which were also detected in (Stich
et al., 2007)). The oscillations seen at small times and for small electron polarizations P are due
to the ensemble electron spin oscillations about the average spin-orbit field Ω, as first seen by
Brand et al. (2002). These oscillations are in the opposite limit to the limit of the Dyakonov-Perel
mechanism: whereas in the latter the spin precession during momentum relaxation is slow, the
coherent oscillations require that the spin of an electron in a given momentum state rotates by

84Electrons in the conduction band have spin 1/2, while in the valence (so-called heavy hole) band of the quantum well
they have spin or rather angular momentum, of 3/2. A circularly polarized light to the right carries angular momentum
1, able to excite an electron with spin -3/2 from the valence band to the spin -1/2 state of the conduction band. A
hole (missing electron) of spin +3/2 and an electron of spin -1/2 are created, resulting in the spin-polarization of charge
carriers. The spin is oriented along the direction (in fact, opposite) of the photon momentum.

85Often (magnetoptic) Kerr rotation is used instead of Faraday rotation. The only difference between the two is that
while in Faraday rotation one detects the rotation of the polarization plane of the light transmitted through a magnetized
sample, in Kerr rotation one looks at the reflected light. One just needs to be careful to distinguish spin injection from
the magneto-optic effects which could be intrinsic to the ferromagnetic films used as spin injectors (Tanner et al., 2006).
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Fig. IV.6. Scheme of the pump and probe Faraday rotation experiment. The pump pulse of a circularly-
polarized light generates spin-polarized carriers in the quantum well; the spins are oriented perpendicular
to the plane of the well, along the light propagation direction. The probe pulse of linearly polarized light
is applied after a time delay. The rotation angle of the polarization angle of the transmitted probe light
through the wall is proportional to the magnetic moment (spin) of the quantum well. If, in addition, an
external magnetic field B is applied, the magnetization precesses, giving an oscillating Faraday angle. The
decay of the oscillation gives the spin dephasing time T ∗

2 . Courtesy of Christian Schüller.
.

the spin-orbit field Ωk at least a full circle before being scattered.
The most important result of Fig. IV.7 is the strong dependence of the electron spin relaxation

time on the initial spin polarization P . The higher the P is, the weaker is the spin relaxation.
A microscopic calculation confirms that this behavior is quantitatively consistent with processes
(ii) of the electron-electron exchange coupling induced effective magnetic field inhibiting spin
relaxation, (Stich et al., 2007).

E.2 Spin relaxation in silicon

Silicon is not the best studied semiconductor for spin relaxation. The best case study is GaAs.
But because GaAs has been extensively covered in Žutić et al. (2004), and due to the relatively
unknown experimental data on spin relaxation of conduction electrons in silicon, as well as
the expanding interest in silicon spin relaxation stirred by the recent reports of electrical spin
injection into silicon (Appelbaum et al., 2007), we present its case here.

Spin relaxation in silicon is less efficient than in GaAs. The silicon g-factor is about 0.001
below the free electron value, Eq. (I.2),86 indicating weak spin-orbit coupling (compare to g ≈
−0.44 for GaAs). The Elliott relation, Eq. (IV.56), then suggests that the spin relaxation time

86For example, in (Young et al., 1997) the value of g = 1.9995 (∆g = −2.8 × 10−3) was found for conduction
electrons at 3.5 K and 125 K. For comparison, g = 1.99875 (∆g = −3.6 × 10−3) was found for electrons in the
impurity band of silicon at 1.3 K (Feher, 1959), independent of the type of donor. It had long been believed that the
g-factors of conduction electrons and electrons in the impurity band of shallow donors are the same, since the shallow
impurity levels forming the impurity band are derived from the conduction band states. Finally, the g-factors of electrons
on shallow donor levels and in the impurity band differ very little.
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Fig. IV.7. Left figure (a) shows the decay of the magnetization (detected as the Faraday rotation angle) of
the photoexcited GaAs quantum well at 4.5 K for different initial spin polarizations P . The inhomogeneous
dephasing times T ∗

2 are extracted from the exponential decay at longer times. In the right figure the time
evolution of magnetization for the P = 1.6% polarization and two different temperatures is shown. The
magnetization (spin) precession of the electron ensemble due to spin-orbit fields Ω are visible at times
below 200 ps. The inset is the logarithmic plot of the left figure, showing the exponential decay at long
times. Reprinted figure with permission from D. Stich et al., Physical Review Letters 98 176401 (2007).
Copyright 2007 by the American Physical Society.

in silicon is about 105 greater than the momentum relaxation time. For a picosecond momentum
relaxation one should expect a 100 nanosecond spin relaxation time, which is what is observed,
as described below.

The silicon samples used for conduction electron spin resonance (CESR)87 experiments be-
low, were doped with phosphorus (P) donors. Each donor contributes electronic states within the
silicon band gap; the ground state for the P donor in silicon is 45 meV below the conduction band
edge (Kittel, 1996). For low doping densities, say, 1016 cm−3, and temperatures below about 150
K, a sizable fraction of electrons reside in the donor states (ground or excited). For high doping
levels, the donor levels broaden to form an impurity band. This happens, for P donors in silicon,
at the critical concentration of nc = 3.7× 1018 cm−3 (Kittel, 1996). For doping densities below
nc, electrons are confined on the donor sites; for doping densities above nc the electrons become
itinerant (albeit with heavy effective masses) with electron states described by extended wave
functions in the impurity band. The behavior at doping densities less than nc is termed insulat-
ing, while the behavior at densities greater than nc is termed metallic. The transition at nc is then

87In a spin resonance experiment an external magnetic field casues Zeeman splitting of the electron energy states.
Electromagnetic radiation of the frequency tuned to the energy splitting shows a pronounced absorption peak, as a
function of frequency (in actual experiments usually the magnetic field is varied, keeping the frequency locked). The
peak coincides with the splitting, giving us information about the electron g-factors, while the width of the peak is
proportional to the spin relaxation rate. For conduction electrons the splitting occurs at microwave energies. Spin
resonance experiments with nuclei employ radiofrequency waves.
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referred to as the metal-to-insulator transition (MIT). At temperatures higher than about 150 K,
most electrons are in the conduction band.

Thus far the most comprehensive experimental study of spin relaxation of conduction elec-
trons in silicon has been reported by Lepine (1970), for low doping densities in the ranges of 1014

to almost 1017 cm−3. At low temperatures such densities correspond to the insulating regime.
The results are shown in Fig. IV.8, where we plot the spin relaxation time as converted from the
measured CESR linewidths. To convert a CESR linewidth into the spin relaxation time, one can
use the formula,

α
1
T1

= γ∆B = 18×∆B[gauss] MHz, (IV.104)

where γ = gµB/~ is the electron gyromagnetic ratio and α is a parameter, of order one (typ-
ically varies between one and two), reflecting the conditions of the spin resonance experiment
and the definition of the linewidth.88 For the linewidth of 1 gauss (typical order of magnitude
observed in silicon), the lifetime can then be 50 to 100 ns, depending on α. Since Lepine (1970)
reports observing a single Lorentzian line of the resonance spectrum, we have used α = 1 in
Eq. (IV.104) to convert the absorption linewidth to T1; the reported linewidth is the half width at
half maximum (Lepine, 2007).

As seen from Fig. IV.8, the spin relaxation time decreases with increasing doping density, for
temperatures below 200 K. At higher temperatures T1 appears rather insensitive to doping. The
maximum, T1 ≈ 100 ns, is observed for the most dilute sample, at around 100 K. This maximum
spin relaxation time occurs at roughly the same temperature for all studied doping densities. The
region above 150 K is the region dominated by electrons in the conduction band, as all the donor
levels are thermally excited. This temperature range is dominated by phonon scattering, with
the spin relaxation described by the Elliott-Yafet mechanism, as suggested by Lepine (1970). At
room temperature, the observed spin relaxation time is about 10 ns, large enough for spintronics
applications.

At lower temperatures the spin relaxation physics is different. For the lowest temperatures,
below about 50 K, the observed T1 is the spin relaxation of electrons in the ground state of the
donor levels. The mechanism is the hyperfine interaction with nuclei of the phosphorus dopants,
which have spin of one half. At the temperatures of 50 to 75 K, it is again the hyperfine interaction
which is responsible for T1 of the donor states, but now the interaction is motionally narrowed
(this is why T1 increases with increasing temperature) by exchange coupling with conduction
electrons. According to Lepine (1970), the region around the maximum T1, of temperatures
between 75 and 150 K, corresponds to the spin relaxation of electrons in the first excited donor
state. The mechanism is the spin-orbit interaction of that state, assisted by thermal excitation to
the conduction band and by the decay to the donor ground state. The opposite temperature trends
for the motional narrowing of the hyperfine-interaction at low temperatures (T1 increasing with

88The connection between the linewidth and the spin relaxation rate is quite subtle, as it depends on the actual observed
shape of the microwave absorption power. The shape, in turn, depends on the relative magnitudes of the skin depth, the
spin diffusion length, and the sample thickness. A sample thinner than the skin depth gives a symmetric Lorentzian
absorption line for which a full linewidth gives α = 2. If the sample is thick, it is best to make a fit to the theoretical
asymmetric (Dysonian) shape, as this depends on other parameters, such as the ratio of the skin depth and the spin
relaxation length. If the spin relaxation length dominates, the frequency derivative of the Dysonian shape has the full
linewidth of α ≈ 1. The CESR theory has been worked out by Dyson (1955) and a nice introduction to the variety of
possible line shapes can be found in Feher and Kip (1955).
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Fig. IV.8. Temperature dependence of the spin relaxation time in lightly doped silicon (doping density
indicated), extracted using Eq. (IV.104) by taking α = 1, from the conduction electron spin relaxation
linewidths (half widths at full maximum) reported in (Lepine, 1970). While individual experimental data
are not shown in (Lepine, 1970), the symbols in the graph above are sampled points from the reported
continuous curves.

T ) and the phonon-induced Elliott-Yafet spin relaxation a high temperatures (T1 decreases with
T as the phonons become more populated), results in the peak observed at about 100 K.

Let us look closer at the high temperature region which describes conduction electrons spin
relaxation useful for spintronics applications. Yafet predicted that the Elliott-Yafet spin relax-
ation mechanism in semiconductors such as Si, in which the minimum of the conduction band is
not at k = 0, should change with temperature as (Yafet, 1963)

1
T1(∆g)2

∼ T 5/2. (IV.105)

This temperature dependence is due to phonons and the symmetry of the electron-phonon spin-
flip matrix elements. Figure IV.9 shows CESR extracted spin lifetimes for a P doped silicon,
in which a constant-temperature background is removed (Lancaster et al., 1964). Spin relax-
ation at high temperatures is due to phonons. Yafet’s dependence, Eq. (IV.105), seems to work
reasonably well (Lancaster et al., 1964), although the spin relaxation time appears to decrease
somewhat faster with increasing temperature than the T1 ∼ T−5/2 law. The comparison between
the experiment and Yafet’s relation is even more striking after taking into account the temperature
variation of ∆g and plotting 1/T1∆(g)2, as was done in (Ochiai and Matsuura, 1978).

The CESR measurements of Lancaster et al. (1964) are for dopings an order of magnitude
higher than those of Lepine (1970). Nevertheless, T1 in Fig. IV.8 agrees with T1 in Fig. IV.9; see
the inset of this figure. This suggests that the spin relaxation is not sensitive to the doping density,
up to densities of 1017 cm−3. Another CESR study, of heavily phosphorus doped silicon, shows
the experimental linewidths at high temperatures increasing with increasing doping (Ochiai and
Matsuura, 1978). There appears to be a trend emerging from these works, that the linewidth
(and 1/T1) does not vary much with doping at dopant concentrations below the critical density
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Fig. IV.9. Temperature dependence of the spin relaxation time in phosphorus doped silicon with the doping
density of 5 × 1017. The data are extracted from the CESR linewidths of Lancaster et al. (1964), taking
α = 2/

√
3 in Eq. (IV.104), since the reported linewidth is the distance between the maximum slopes of

the Lorentzian line shape. The inset is the log-log plot of the high-temperature region (the datum at 75 K
is absent), along with a straight line indicating Yafet’s power law, T1 ∼ T−5/2. Data from Fig. IV.8, for
temperatures above 150 K, are also included for reference.

of the metal-to-insulating transition, nc, while the linewidth is increasing with increasing doping
density above nc.

The spin relaxation of conduction electrons in silicon has been investigated by electron spin
resonance also in the region around the metal-to-insulator transition at temperatures below 4.2 K
for As (Zarifis and Castner, 1987) and Sb (Zarifis and Castner, 1998) dopants. At these critical
doping concentrations the spin relaxation appears to be mainly due to the motional narrowing
of the exchange interaction, as well as due to the impurity spin-orbit interaction. CESR studies
were also performed at higher temperatures, up to 300 K, for densities near the MIT (Ochiai and
Matsuura, 1976). As far as theoretical understanding goes, the spin relaxation around the MIT
has received little attention. An earlier study looked at spin relaxation in a strongly disordered
conductor, treating nuclear and spin-orbit induced spin flips, concluding that spin relaxation in
strongly disordered Si:P can be described by the latter mechanism, the inter-valley89 spin-orbit
scattering, which is the Elliott-Yafet mechanism of spin relaxation. One recent study has shown
that the Dyakonov-Perel mechanism, operating in semiconductors without the center of symme-
try (such as GaAs), with hopping conductivity instead of conduction band transport, persists to
the MIT region (Shklovskii, 2006), while a spin relaxation mechanism on the theme of Elliott-
Yafet, with hopping-assisted spin-orbit induced spin flips, has been proposed for electrons in the

89The term valley refers to one of the six ellipsoids forming the Fermi surface of silicon (Kittel, 1996). The scattering
between the valleys is caused by impurities in dirty samples. The spin-flip is allowed by the silicon-atom induced spin-
orbit coupling.
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impurity band, close to the MIT (Tamborenea et al., 2007).
Spin relaxation was also measured for heavily doped silicon (more than 1019 P donors in

cm3), at temperatures below 77 K, finding that the relaxation rate increases in proportion to the
donor density (Quirt and Marko, 1972), indicating the impurity-dominated (not host-dominated)
Elliott-Yafet spin relaxation processes. Similar findings were reported for P and As doped Si
(Pifer, 1975). The effects of Fe and Mn impurities on Si:P spin relaxation have been studied
by CESR (Kennedy and Pifer, 1975), extracting the spin-flip scattering cross section of silicon
conduction electrons on iron impurities. An early CESR study of heavily doped Si:P, below 100
K, (Ue and Maekawa, 1971) found a linear increase of the spin relaxation rate with increasing
temperature. Such an increase could be normally attributed to phonons (although with a different
power, see Eq. (IV.105)), but since it was observed at low temperatures, the authors concluded it
must be due to the presence of localized magnetic moments in their samples.

In addition to spin resonance studies, spin relaxation in bulk silicon has also been extracted
from spin-valve and Hanle effect signals, in an electrical spin-injection scheme (Appelbaum
et al., 2007; Huang et al., 2007c), as discussed in Sec. II.(F.2). The largest value (better, the
lower bound on the spin relaxation time) reported thus far is 202 ns at 85 K, and 65 ns at 150 K,
corresponding to coherent spin transport through 350 µm of a pure (nominally undoped) silicon
sample (Huang et al., 2007c), more than enough for spintronics applications. These long spin
relaxation times are consistent with the above discussed CESR results on lightly doped silicon,
considering that the spin injection studies employ very clean, float zone samples, in which one
expects, based on the trends exhibited in Fig. (IV.8), highest lifetimes. In comparison, bulk
GaAs has the largest spin relaxation times of about 200 ns at low doping densities close to the
MIT (which is about 2 × 1016 cm−3 for GaAs) and low temperatures, around 4 K; the spin
relaxation times decrease to about 1 ns at 100 K (Kikkawa and Awschalom, 1998), which is
two orders of magnitudes smaller than in silicon. Similarly for metals. Say, aluminum at 100
K has the spin relaxation time of about 1 ns (Fabian and Das Sarma, 1999a), and 85 ps at room
temperature (Fabian and Das Sarma, 1999a; Jedema et al., 2002, 2003). Although, as shown by
the CESR experiments, the spin relaxation time decreases with increasing dopant concentration,
silicon appears far superior to GaAs, or any other studied conductor, in terms of the longevity
of the conduction electron spin. A comprehensive discussion of spin lifetimes in metals and
semiconductors can be found in the review (Žutić et al., 2004).

Much more systematic investigations of spin relaxation in silicon have been performed for
silicon quantum wells, such as formed by Si/Ge heterostructures (Jantsch et al., 1998; Sanderfeld
et al., 2000; Wilamowski and Jantsch, 2002; Tyryshkin et al., 2005). The main spin-relaxation
mechanism is found to be the Dyakonov-Perel one, due to the effective Bychkov-Rashba spin-
orbit coupling90 induced by the loss of inversion symmetry at the heterostructure interfaces (Wil-
amowski et al., 2002). Spin dephasing times T2 as large as 3 µs, and spin relaxation times T1

of 2.3 µs have been reported at 4.2 K (Tyryshkin et al., 2005). The fact that T2 > T1 arises
apparently from the anisotropy of the two-dimensional electron system. The Bychkov-Rashba
spin-orbit field, which gives the fluctuating magnetic field in our toy model (see Sec. B.2), gives
vanishing fluctuating fields in the direction perpendicular (call it z) to the quantum well plane,
ω2

z ≈ 0, so that one can expect T2 = 2T1 (see Eqs. (IV.36), (IV.37), and (IV.38)) if no perpendic-

90The extracted Bychkov-Rashba parameter for the studied silicon quantum wells was 0.55 × 10−12 eV cm, two to
four orders of magnitude smaller than found in III-V heterostructures.
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ular fluctuating fields are present, indicating that the anisotropy is not perfect. At present it is not
clear why the spin relaxation in two-dimensional Si/Ge electron gases is an order of magnitude
greater than in the bulk, discussed above.

F. Spin relaxation of an electron confined in a quantum dot

An electron confined in a semiconductor quantum dot (Reimann and Manninen, 2002) is a
promising system for potential applications in quantum information processing (Loss and Di-
Vincenzo, 1998; Nielsen and Chuang, 2000). Especially the spin degree of freedom in quantum
dots (Das Sarma et al., 2001; Cerletti et al., 2005; Hanson et al., 2007; Fabian and Hohenester,
2005) has attracted attention for two reasons. First, the electron spin provides a natural quantum
two level system, suitable for encoding the information bit. Second, the spin is less strongly cou-
pled to the environment compared to electron orbital degrees of freedom, thus providing longer
coherence time. This is crucial for quantum computation – the time needed for an elementary
operation, such as a controlled spin flip, has to be much smaller than a time after which the in-
formation initially encoded in the spin is lost. Disturbances due to environment thus introduce
stringent limits on any practical realization of a quantum bit.

Bearing in mind this importance, we will study in this Section the influence of a dissipative
environment on an electron confined in a semiconductor quantum dot. We first define spin and
orbital relaxation, discuss their main mechanisms in quantum dots, and why they differ by orders
of magnitude. Since we want to assess the possibility for exploitation of a confined quantum dot
electron spin as a qubit, we will focus on the spin relaxation, which sets an ultimate timescale
limit for using the spin in quantum computation. We will learn that at large magnetic fields
(above tesla) the relaxation is caused by coaction of phonons and spin-orbit interactions. In
magnetic fields below tesla, this channel is not effective and the magnetic moments of nuclei of
the material are dominant in disturbing the electron spin.

Then we review the recent experiments in measuring the single electron spin relaxation time
and check our theoretical understanding. First such single particle measurement was done in
2004 and since then quite a few results were obtained manifesting rapid experimental progress.
From the results follows that relevant spin computation setups, being one, or two electrons in
single or double quantum dot, with relaxation times of milliseconds are reproducible with current
technology. Even more importantly, coherence times of microseconds were demonstrated here,
supporting the initial hopes that using spin instead of charge offers the advantage of a strong
isolation of the qubit from the environment. We will also discuss in detail several spin-to-charge
conversion schemes, which solve the problem of readout of such isolated spin entity.

Finally, we present a theoretical description, using the density matrix formalism, which al-
lows us to analytically study the role of dissipation in the interesting phenomena of Rabi os-
cillations and photon assisted tunneling, which play an important role in the manipulation and
probing of a spin qubit. Bursts of resonant fields lead to Rabi oscillations allowing controlled
coherent spin flips, what was also experimentally demonstrated in quantum dot spin qubits. This
is another important achievement showing that lateral quantum dots are serious candidates for
physical qubit realization.
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Fig. IV.10. a, Double lateral quantum dot in GaAs/AlGaAs semiconductor heterostructure. The gates
(lighter color) provide electrostatic potential with minima (white dots), where electrons can be localized.
Electrons can enter the dot from leads (L and R – reservoirs of electrons kept at fixed chemical potential)
through narrow contacts (white arrows entering/leaving the dots). Thus, if a voltage across the dot is applied,
current IDOT flows through. The quantum point contact (QCP) currents IQPC are used as meters of the
charge on the dots. Scanning electron micrograph picture, from Ref. (Hanson et al., 2007), courtesy of R.
Hanson. b, Energy spectrum of a symmetric double dot as a function of the interdot distance. Different
types of lines denotes states with different symmetry. See Ref. (Stano and Fabian, 2005) for details.

F.1 Mechanisms of spin relaxation in quantum dots

A semiconductor quantum dot is an electrostatically created potential minimum, where electrons
can be trapped. A typical experimental setup is in Fig. IV.10a. Electrons confined to a two
dimensional plane of the GaAs/AlGaAs heterostructure are further bound to a small region, typi-
cally tens of nanometers, by electrostatic top gates. Electrons can enter the dots one by one, their
number being monitored by nearby quantum point contact (QPC): the more charge is on the dot,
the smaller is the current through a QPC, due to the Coulomb repulsion between the electrons
on the dot and ones flowing through the QPC. The great advantage of lateral quantum dots is
in their versatility – the shape of the confining potential, the coupling between individual dots
and between the dots and nearby leads can be controlled electrically to large extent by applying
voltages on the gates. This enables quick changes between different dot configurations allowing
wide control over electron states.

To illustrate the control on a particular example, we give in Fig. IV.10b the theoretically
obtained energy spectrum of a double dot such as in Fig. IV.10a, as a function of the interdot
distance. The interdot distance can be changed applying voltage on the middle gate in Fig. IV.10a
– more negative voltage pushes the two minima further apart. At zero interdot distance, in the left
on in Fig. IV.10b, the degeneracies in the spectrum reveal the circular symmetry of the potential
addopted in the theoretical model. On the other hand, for very large interdot distances the two
dots are isolated and the spectrum is that at the zero distance doubly degenerate. For finite
distances the dot is in the true double dot regime. Here an electron placed initially in one of
the dot coherently oscillates between the two dots, with the frequency proportional to the energy
difference of the two lowest levels (tunneling energy Etun). It can be seen in Fig. IV.10b how
the tunneling energy can be controlled by changing the interdot distance.

In the first approximation, if we suppose there is one electron on the dot, the electron Hamil-
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tonianHe consists of the confining potential, defined by the gates, and the kinetic energy, defined
by the crystal. Compared to a free particle, in addition to the leading term quadratic in momenta,
the kinetic energy contains also other terms polynomial in momenta, as discussed in Sec. III.B.
for GaAs. The electron time evolution can be written independently on the details of the Hamil-
tonian as

Ψ(t) =
∞∑

j=1

αje
−iEjt/~Ψj . (IV.106)

Here, at time t = 0 the wavefunction is a certain superposition, given by the coefficients αj , of
eigenstates Ψj of the electron Hamiltonian, HeΨj = EjΨj . The whole time dependence is a
phase linearly growing with time for each eigenstate in the expansion. The probability to find the
electron in a certain eigenstate will be time independent – there will be no transitions between
states.

The electron is, however, immersed in a condensed matter environment with its own dynam-
ics. Phonons, impurity charge fluctuations, or nuclei are few examples of entities interacting with
the electron whose influence is not included in He. Such interactions will change the electron
wavefunction non-trivially. A change is called inelastic, if it involves a transfer of energy. The
corresponding timescale is called relaxation time and denoted T1. On the other hand, processes
preserving the electron energy are called elastic and happen on the timescale of the decoherence
time T2. For a nondegenerate spectrum, the relaxation is a process by which moduli of coeffi-
cients α in Eq. (IV.106) are changed, while the decoherence time quantifies time after which the
phases start to differ considerably from the linear evolution in Eq. (IV.106). Such a definition of
transition times is not unambiguous and more time scales expressing the environment influence
on the electron are used (Žutić et al., 2004). An important example is the dephasing time T ∗2 .
It appears if the decoherence is measured on an ensemble of dots (or if the result is obtained by
averaging over many different measurements on a single dot). In such a case the measured sig-
nal decays if the individual dots feel different local environments (for example different nuclear
magnetic fields), even if each of the dots evolves coherently. In principle, the decay of the signal
due to the dephasing can be removed,91 for example, by the spin echo technique (Petta et al.,
2005).

The relaxation and decoherence also reflect the difference between classical and quantum
information bit. If classical information is encoded in the qubit, it is contained in the states
occupations and is lost after the relaxation time. Quantum information processing is much more
demanding – here the information is encoded also in the phase of the states. Therefore, the
information lifetime is the decoherence time, which can easily be orders of magnitude smaller
than the relaxation time. To assess the possibility to use quantum dot qubits in information
processing, it is thus a crucial task to quantify the two timescales and find conditions maximizing
them.

F.1.1 Spin relaxation

We will now focus on the relaxation and decoherence of spin. We will consider the two
lowest electron eigenstates, denoted by Ψ1 and Ψ2, where the first is the ground state having,

91The possibility (at least in principle) of the removal can be taken as the definition for the dephasing, distinguishing
it from the decoherence.



736 Semiconductor Spintronics

say, spin up, while the second is the same orbital state with the opposite spin. These two states
are energetically split by the Zeeman energy due to an applied magnetic field. The two logical
states of the qubit (0 and 1) can be then encoded into the electron states Ψ1 and Ψ2, realizing a
spin qubit. Starting initially with, say, Ψ2, looking at the system at a later time, we could find it
in state Ψ1. Such transition happens due to interactions with the environment, with a rate given
by the inverse of the relaxation time. Note that if no magnetic field is applied and the two states
Ψ1 and Ψ2 are degenerate, the timescale of transitions between them is the decoherence time.

One can similarly encode the information using different orbital states, using instead of Ψ2

an excited orbital state Ψ3 with the same spin as the ground state. This would correspond to a
charge qubit and the orbital relaxation time would quantify timescales for transitions between
Ψ1 and Ψ3. The advantage of using spin is in much longer relaxation time, with the explanation
given in next paragraphs, where we list the main channels for the spin relaxation. We start with
phonons since, compared to other environment fluctuations, phonons can not be get rid off in the
crystal and define a fundamental upper limit for the relaxation time.

Phonons. Phonons and electron can interact in several ways. A phonon is an oscillating
wave-like deformation of the crystal lattice. On the other hand, compression of a crystal changes
the band structure (bands are shifted). If the amount of the crystal compression depends on the
position, as depicted in Fig. IV.11a, it results in space dependent bands shifts, or, in another
words, electric field. The interaction of a charged particle with this field is called the defor-
mation potential. As follows from the explanation, as the phonon wavevector goes to zero, the
induced electric field vanishes, since the lattice deformation becomes homogeneous. Similarly,
if the crystal atoms are charged, an inhomogeneous displacement induces dipole moments in the
material. This (Fröhlich) interaction is relevant only for optical phonons, for which the neigh-
boring atoms move out of phase, see Fig. IV.11c, whereby their displacement is substantially
larger than for acoustic phonons. A homogeneous deformation can induce electric field too, by
asymmetrically distorting positive and negative charge distributions in a polar material, such as
GaAs, see Fig. IV.11b. This is denoted as piezoelectric effect, and finishes our list of the electron-
phonon interactions (Grodecka et al., unpublished; Mahan, 2000), which can all be viewed as the
electron interacting with an electric field induced by phonons. However, the electric field does
not couple directly to the electron spin – for that a further spin-dependent mechanism is needed.
Such mechanisms can be divided into two main groups (Khaetskii and Nazarov, 2000, 2001;
Khaetskii, 2001) for a more comprehensive discussion of phonon-induced spin dephasing and
relaxation see, for example, (Semenov and Kim, 2007).

First, suppose there is a spin-dependent term in the electron Hamiltonian, such as the spin-
orbit interaction, that does not allow to define a common spin quantization axis. Then the electron
eigenstates are not Pauli spin like. Nevertheless, one can always attach labels to a state, such
as “spin up” or “spin down”, according to the state spin expectation value along the applied
magnetic field direction. If the spin-orbit interaction is small, what is usually the case, such
“spin” will be well defined since the spin expectation values will be close to ±~/2. A “spin
down” state can be then written as a Pauli spin down state plus a small amount of the Pauli spin
up state. This small admixture of Pauli spin opposite state allows the transition to a “spin up”
through spin preserving phonons and gives the name for this admixture mechanism of the spin
relaxation (Khaetskii and Nazarov, 2001). For free electrons, this corresponds to Elliott-Yafet
mechanism, see Sec. C.

Second, say one neglects the influence of the spin mixing terms in the electron Hamiltonian
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Fig. IV.11. Three ways how phonon induces electric field in the crystal. (i) Deformation potential: a
position dependent crystal compression leads to position dependent bands shift. (ii) Piezoelectric interac-
tion: A compression of crystal distorts positive and negative charges asymmetrically leading to non zero
dipole field even if the deformation is homogenous. (iii) Fröhlich coupling to the optical phonon: Out of
phase displacement of the oppositely charged neighbouring atoms produces a dipole field. Electron-phonon
Hamiltonians of the three interactions are given in Sec. G.2.

and considers the electron eigenstates to be Pauli spins. Phonons can, under certain conditions,
induce spin-dependent coupling to the electron (Frenkel, 1991) called direct spin-phonon cou-
pling. This happens if the environment where the electron is localized is anisotropic in such a
way that the phonon induces fluctuations of the parameters of the spin-dependent part in the elec-
tron Hamiltonian. The examples are an anisotropic g-factor (that is, the Zeeman energy depends
on the magnetic field orientation) (Calero et al., 2005), the phonon induced spin-orbit interac-
tion (Alcalde et al., 2004), ripple coupling originating from the different materials forming the
heterostructure (Knipp and Reinecke, 1995; Woods et al., 2002; Alcalde et al., 2005), or phonon
modulation of the hyperfine coupling (Semenov and Kim, 2004).

The role of phonons can in principle be taken over by fluctuating electric fields of any other
origin, for example fluctuations of the electric potential of the gates (Marquardt and Abalmassov,
2005; Borhani et al., 2006) or the background charge fluctuations (Galperin et al., 2006). While
the direct coupling of the electron spin and those fields is absent in the leading order, the phonon
and electric fluctuations have different spectral density. Phonon density drops with smaller
phonon energy as a power law; the gates’ potential fluctuations are mostly described as a white
noise with a constant spectral density. Other baths can play role, such as ohmic fluctuations from
a nearby current and 1/f background charge fluctuations (San-Jose et al., 2006). In analogy with
the phonons, also the fluctuating fields can couple to the electron spin directly: time dependent
currents in the leads induce magnetic field, the spins of the electrons in the leads interact with the
electrons through the exchange interaction (which requires the overlap of the confined and lead
electrons) or dipole interaction (Onoda and Nagaosa, 2006) (no overlap is needed).

Atomic nuclei. The second important spin relaxation source are magnetic moments, if
present in the region of the quantum dot. They couple directly to the electron spin through the
dipole interaction. In magnetic diluted semiconductors, electrons confined at some crystal atoms
have unpaired magnetic moments (Yang and Chang, 2005). However, even in non-magnetic ma-
terials an important spin thermal bath is present if the constituent atoms of the material have



738 Semiconductor Spintronics

nuclear magnetic moments. All III-V semiconductors are such, while both most important IV
group elements, silicon and carbon, have main isotopes with zero nuclear spin. The electron-
hyperfine interaction is (Merkulov et al., 2002) [compare also with Eq. (V.54)]

V hf =
∑

j∈ions

AjSj .σδ(r−Rj), (IV.107)

where j labels ions with a nuclear magnetic moment, Aj is a material constant, Sj is the vector
of operators for the nuclear spin, r is the electron position operator, and Rj is the position of the
ion j. Due to the delta function, the coupling of the electron to a specific nucleus is proportional
to the electron wavefunction at the nucleus position. Plugging in numbers for GaAs, it would
seem that nuclear spins are much more efficient in spin relaxation than second-order processes
including spin-preserving phonons. Fortunately from the perspective of long spin relaxation
time, the energy conservation blocks a direct process where the electron and a nucleus flip their
spins, since the electron and nuclear magneton differ by a factor of ∼ 2000. Another co-acting
interaction, for example, electron-phonon, is thus needed to provide the energy conservation
leading to a similar second order process, as discussed in the previous part dedicated to phonons
(Erlingsson et al., 2001; Abalmassov and Marquardt, 2004).

Important difference compared to phonons is that now the thermal bath elements (the nuclear
spins) have much longer lifetime, leading to long time correlation effects. Three main timescales
(Merkulov et al., 2002) can be identified in the mutual interaction between the electron and an
ensemble of nuclear spins – a typical lateral quantum dot in GaAs contains ∼ 105 of nuclear
spins. (i) The shortest timescale, being ∼ 1 ns, is the precession time of an electron spin in the
magnetic field of the nuclear spins. On this timescale, the nuclear spins can be considered frozen
and described by an effective magnetic field (Erlingsson and Nazarov, 2002; Khaetskii et al.,
2002; Coish and Loss, 2005). (ii) Second, ∼ 1µs, is the time of precession of a nuclear spin in
the magnetic field of the electron, being three orders of magnitude smaller due to electron wave-
function being delocalized over many nuclei. A simultaneous flip of the spin of both the electron
and a nucleus can be used for a dynamical polarization of the nuclear spins (Eble et al., 2006;
Lai et al., 2006). Due to the large number of the nuclear spins, some sort of a cut-off scheme is
inevitable for analytical description of such mutually influencing nuclei-electron dynamics. Tak-
ing into account only pair wise interactions of the electron with a picked nucleus (Deng and Hu,
2006), instead of considering the whole set of nuclear spins, seems a possible way. A systematic
formulation of such approach was recently done by a cluster expansion (Witzel et al., 2005). (iii)
The slowest is a nuclear spin precession in the dipole magnetic field of neighbor nuclei (Hüttel
et al., 2004), being ∼ 100 µs. It effectively leads to spin diffusion, by which the nulear spin bath
thermalizes. The electron in the quantum dot strongly influences this diffusion (Lyanda-Geller
et al., 2002; Deng and Hu, 2005), but for the back action of the diffusion on the electron, no
theoretical work exists, apart from an exact numerical simulation that can encompass only up to
20 nuclear spins (Dobrovitski et al., 2006). In experiments (Ono and Tarucha, 2004) one has ob-
served complicated electron behavior over long-times (seconds), reflecting the mutual influence
between the three discussed processes.

It is natural to expect that having electron with certain spin, the nuclei will be ineffective in
relaxing the electron spin, if they all are polarized in the same direction as the electron. The same
applies to the electron decoherence which is dominated by non-uniform hyperfine couplings
induced by space dependence of the electron wavefunction (Khaetskii et al., 2002). Based on
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Fig. IV.12. Spin relaxation time for a single electron in a single lateral GaAs quantum dot. The two data
sets (red and blue squares with error bars) were obtained in two different experiments, Refs. (Elzerman
et al., 2004), and (Amasha et al., unpublished, cond-mat/0607110), respectively. The solid lines are theo-
retical results obtained by fitting one parameter, effective spin-orbit length lSO , in a model where the spin
relaxation is due to acoustic phonons and admixture mechanism (Stano and Fabian, 2006a,b).

this finding, several schemes were proposed to suppress this decoherence channel by polarization
or narrowing the quantum state92 of the nuclear spins (Stepanenko et al., 2006; Klauser et al.,
2006).

Dominant channels of spin relaxation. Concluding from the previous part, both main
sources of spin relaxation, that is phonons and nuclear spins (the other mentioned spin relaxation
mechanisms turn out to be less important), are blocked in the leading order. This is the reason
for the large discrepancy of spin and orbital relaxation times, which can be many (typically 6)
orders of magnitude.

As for the dominating source in lateral dots in III-V semiconductors, such as GaAs, it seems
that in magnetic fields above∼ 1 tesla, the acoustic phonons combined with the admixture mech-
anism due to the spin-orbit coupling is the dominant channel for the spin relaxation. The spin
relaxation time is of order of 0.1 ms and analytical results fit experiments neatly (Amasha et al.,
unpublished, cond-mat/0607110) – see Fig. IV.12. A peculiarity of this mechanism is an en-
hancement of the spin relaxation nearby a spin hot-spot (anti-crossing) (Bulaev and Loss, 2005),
where the spin-orbit influence on the electron spin is much more profound. This results in strong
anisotropy of the spin relaxation with respect to the orientation of the magnetic field (Golovach
et al., 2004) or electron momentum (Averkiev and Golub, 1999) (the latter is meaningful only for
free electrons). This anisotropy could be used to control the spin relaxation, measure the strength
of the spin-orbit interactions, and would be a definite proof of the spin relaxation origin.

Less clear situation is for sub-tesla magnetic fields, where nuclear spins combined with
phonons are believed to dominate the spin relaxation. The ground for this belief comes from
the decoherence measurements, where spin echo (Petta et al., 2005) and a suppression of the
decoherence by magnetic fields (Johnson et al., 2005) are indications for the electron-nuclei
interactions to play the dominant role.

92Narrowing means in this context to go from a statistical mixture towards a pure state.
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Spin relaxation in two electron QD: From the point of view of the quantum computation
a very important case is the spin relaxation in a two electron quantum dot – a transition be-
tween singlet and triplet states (Golovach et al., unpublished). Surprisingly, such transitions in
experimentally relevant double dot setup still lacks a comprehensive quantitative analysis. In a
parabolic quantum dot the linear spin-orbit terms couple the ground state to different states ac-
cording to selection rules (Climente et al., 2007), which are loosen if the circular symmetry is
lowered (Florescu and Hawrylak, 2006; Florescu et al., 2004). The recent experiment (Meunier
et al., 2007) suggests that the double electron case is not qualitatively different from the single
electron case. Further analytical work is needed to clarify the role of cubic Dresselhaus spin-orbit
term, influence of the higher excited states (Climente et al., 2007), appearance of a new spin-orbit
interaction originating in the Coulomb electric field (Badescu and Reinecke, unpublished) or the
possible non-spin-orbit origin of the spin relaxation (Hu and Das Sarma, 2006).

F.1.2 Orbital relaxation

To complete the discussion, we now shortly comment on transitions between spin-like elec-
tron states which are not blocked by the spin conservation. The above discussed spin-dependent
mechanisms can be neglected and the transition is induced by any fluctuation producing electric
field. The main possible sources of such fluctuations are phonons, potential of the circuitry (con-
finement gates, measuring units like a quantum point contact), heterostructure background charge
fluctuations (Fedorov et al., 2003), and interactions with the leads. Apart from phonons, the pre-
vious mechanisms can be suppressed: improving the circuit, putting the dot farther away from
the doped region, lowering the coupling to the leads, respectively, for the three listed sources.
Phonons are always present and can be regarded as principally the dominant source of the orbital
relaxation. The single electron relaxation time due to phonons is mainly given by the energy
difference between the initial and final states. To compare with the spin relaxation, the orbital
relaxation time is of order of 0.1 ns for the same dot as considered to obtain data in Fig. IV.12.
Other details, such as the shape of the potential and the magnetic field, have only minor influence.
Apart from the single dot confining energy, in the double dot there is an additional handle to in-
fluence the relaxation – the distance between the two potential minima (Fedichkin and Fedorov,
2004; Stavrou and Hu, 2005). If the dot is populated by more electrons, the transition rates tend
to decrease comparing to single electron case, since the Coulomb interaction mixes the lowest
states with higher single electron orbitals (Bertoni et al., 2005; Climente et al., 2006).

Concerning the orbital decoherence, it is not dominated by phonons (Vorojtsov et al., 2005;
Liang, 2005), but the true source of the orbital decoherence is not yet clear, the most probable
candidate are circuit potential fluctuations, making the decoherence rate strongly dependent on
sample details.

F.2 Experiments on single electron spin relaxation

After reviewing the sources, we discuss now experimental techniques for measuring the spin re-
laxation time. For that it is necessary to measure the state of the electron spin. This is, however,
a nontrivial task since the electron magnetic moment is very small. To illustrate, the method of
nuclear magnetic resonance (Vandersypen and Chuang, 2005), a state of art of magnetic moment
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detection, resolves only magnetic moments larger than those corresponding to roughly 107 elec-
trons. There are methods capable of single spin detection, for example using scanning tunneling
microscope (Manassen et al., 1989), or a refined version of the nuclear magnetic resonance (Ru-
gar et al., 2004), but we discuss here a different system, where the spin is observed optically, due
to certain selection rules. The reason is that it introduces a useful idea of conversion of the spin
state into other property of the system, allowing to detect the spin indirectly.

F.2.1 Example of an indirect spin observation: nitrogen vacancy defect

The nitrogen vacancy defect is a charged defect in a diamond sample. An information of
the spin of the defect state can be deduced from the detection of the luminescence connected
with a transition between internal states of the defect (Epstein et al., 2005). The ground state,
3A, includes singlet and triplet states split by a small energy difference, while 3E is an excited
state, see Fig. IV.13. Important is that only the ground singlet state is active in the laser induced
3A-3E transitions, while the triplet is a dark state. Then, if a laser is on, the presence/absence of
the luminescence means the system is in singlet/triplet state. The observed luminescence signal
switches spontaneously between being on and off reflecting intrinsic singlet-triplet transitions.
The average time between the switches reveals the spin relaxation time, measured (Jelezko et al.,
2002) between milliseconds at room temperature and seconds at two Kelvins. If an additional
oscillating field is applied, resonant with the ground state singlet to triplet transition, it induces
coherent oscillations between these two states (we will discuss these so called Rabi oscillation
in detail later), which are damped by the decoherence. From the time dependence of the damped
signal, the decoherence time of 1 µs at 2K was obtained (Jelezko et al., 2004; Hanson et al.,
2006). More importantly, we learn that it is possible to detect the spin state not by measuring its
magnetic moment, but indirectly, by transforming the spin state into an optical signal. This is in
a close analogy with spin-to-charge conversions used to detect spin states in quantum dots, what
we discuss next.

F.2.2 Measuring spin relaxation in quantum dots

Detection of the spin state in a quantum dot suffers the same problem of a very tiny magnetic
moment, which was solved using a spin-to-charge conversion (Hanson et al., 2007). Namely, the
spin state is transformed into occupation (that is charge) of the dot, that is being measured after a
specially designed sequence of voltage pulses applied on the gates. In fact, it is used that the spin
is just a part of the label (quantum numbers) for the electron wave function – different states have
all kinds of different properties not connected directly to the magnetic moment (energy, angular
moment, spatial extent of the wave function, etc.). By measuring these properties, one can learn
about the electron spin. We review now three spin-to-charge conversion schemes that have been
realized in quantum dots.

Transient current method: energy resolved readout (ERO). The first method is the en-
ergy resolved readout, proposed and demonstrated in Ref. (Fujisawa et al., 2001). A voltage
is applied across the dot, which is connected to leads such that only the two lowest states are
relevant for the current through the dot. A two step pulse (low and high negative gate voltage
shifting the dot energy levels with respect to the chemical potential of the leads) is applied re-
peatedly, while the current is measured by averaging over many cycles. Changing the overall
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Fig. IV.13. Nitrogen vacancy defect. Atomic structure of the defect and energy levels. Figure from Ref. (Ep-
stein et al., 2005), courtesy of D. D. Awschalom. Reprinted by permission from Macmillan Publishers Ltd:
Nature Physics 1, 94 copyright (2005).

chemical potential of the leads, as depicted in Fig. IV.14, there are three possible configurations
when a current can flow. First, the current flows through the ground state during the low voltage
pulse. Second, for a higher leads potential, the current flows through the ground state during the
high voltage pulse. In between these two there is the transient regime where the current can flow
through the excited state during the low voltage pulse. However, now the current flows only until
the ground state is populated. If this happens, the current is blocked until the next high voltage
pulse, where the dot is emptied and the cycle is repeated. By prolonging the time interval of the
low voltage pulse, a decay of the transient current allows to deduce the relaxation time for the
transition from the excited to the ground state.

The method is based on the fact that in the transient regime the ground and excited states are
discriminated by their energies. In between these energies the chemical potential of the right lead
is placed. Only if the electron is in the excited state, it can leave the dot into the right lead and
contribute to the measured current. Exploitation of the energy difference gives the method its
name. If the excited and ground states have different spins, the method realizes a spin-to-charge
conversion.

The high voltage pulse in the transient regime is further denoted as the empty step, since
the dot, possibly initially occupied, is emptied. Similarly, the low voltage pulse is denoted as
the probe step, since the state of the electron is measured. Figure IV.15a summarizes the energy
positions for the two steps (the fill&wait step will be discussed later). Figure IV.15b introduces
definitions of tunneling rates needed for a quantitative description. The relaxation rate is denoted
asW , while the tunneling rates to/from the leads are denoted by Γ with indexes L andR standing
for the left and right leads, and E and G for the excited and ground states. It is assumed that
the tunneling rates are independent on the chemical potential of the leads and that the left lead
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Fig. IV.14. Two stable and one transient current dot configurations for low and high gate voltages. G and
E denote the ground and excited states (more precise, their energies), while µL and µR are the chemical
potential of the left and right leads. In the stable current 1 and transient current configuration the current
flows during the low voltage pulse, while in stable current 2 configuration during the high voltage pulse.

is much more strongly coupled to the dot than the right dot, and also compared to the relaxation
rate, ΓL � ΓR, W . The leads’ chemical potentials define whether the electron can tunnel
to/from the dot. For example, in the probe step the electron can tunnel to the excited state only
from the left lead, while from the excited state it can tunnel only to the right lead or to the ground
state. The last assumption is that there can be only one electron in the dot, meaning the charging
energy (the energy needed to add a second electron into the dot) is much larger than the chemical
potentials of the leads. In the probe configuration, populations of the ground g and excited e
states are described by the following set of equations (for the comments on the derivation, see
page 754; here we give the motivation for Eqs. (IV.108) by Fig. IV.15b):

ė = ΓLE(1− e− g)− (ΓRE +W )e, (IV.108a)
ġ = (ΓLG + ΓRG)(1− e− g) +We. (IV.108b)

An initial condition of an empty dot, g(0) = e(0) = 0, leads to the following solutions (see
Sec. G.1 for the derivation)

e(t) ≈ ΓLE

Γ
(
1− e−Γt

)
e−Dt, (IV.109a)

g(t) ≈ ΓG

Γ
(
1− e−Γt

)
+

ΓE

Γ
(
1− e−Dt

)
. (IV.109b)

Here tunneling rates without the index for a lead are total tunneling rates for the corresponding
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Fig. IV.15. a, Relative positions of the energy levels and chemical potentials of the leads for the three steps
in the energy resolved readout. b, Tunneling rates between the leads and the dot. The first index denotes
the lead (left or right), while the second denotes the state of the dot (ground or exited). The relaxation rate
from the excited to the ground state is denoted as W . The right barrier is much thicker than the left one.

state,

ΓG = ΓLG + ΓRG, (IV.110a)
ΓE = ΓLE + ΓRE , (IV.110b)

Γ = ΓG + ΓE , (IV.110c)

and D is an effective relaxation rate

D = W +
ΓG

Γ
ΓRE . (IV.111)

The approximate solutions are written in a form allowing straightforward physical interpretation.
Considering an empty dot at time zero, there is an initial filling of the dot due to the electron
tunneling from the leads. This is a fast process and leaves the states of the dot occupied according
to the “filling efficiency” – the average excited state population equals ΓLE/Γ, while the ground
state is populated with a probability of ΓG/Γ. After the initial filling, the population of the
excited state decays in favor of the ground state on a longer time scale, given by the effective
relaxation rate D. This rate reveals two ways how an electron can get from the excited state to
the ground state. It relaxes directly, with a rateW , or it leaves the dot going to the right lead (rate
ΓRE) and another electron tunnels into the ground state, with a probability given by the ground
state filling efficiency. The second process is called direct injection. In experiments the duration
of a particular voltage step is much longer than Γ−1. Then the terms decaying with the rate Γ
(the initial filling) are not resolved and only the trade-off between the excited and the ground
state is observed.

Introduction of the third step: From Eq. (IV.111) it follows that the relaxation rate W can
be extracted only if it is at least comparable with the direct injection rate. To overcome this re-
striction, there was an intermediate step introduced in Ref. (Fujisawa et al., 2002a). It is denoted
as “fill&wait” in Fig. IV.15a, and is such that both dot states are below the chemical potential of
the right lead. The dot, if empty, is filled by an electron from one of the leads. One can solve
for the time evolution of the populations analogously to the probe configuration (see Sec. G.1).
The behavior of the system is the same – there is an initial filling followed by the exchange of
the excited and ground state populations. However, now the electron, once captured in the dot,
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Fig. IV.16. Elastic and inelastic cotunneling as a second order tunneling process. In the elastic cotunneling
the electron initially in the dot tunnels out while another electron tunnels simultaneously into the same state.
In inelastic cotunneling the incoming electron enters into a different state of the dot.

cannot escape. Therefore the effective (that is measured) relaxation rate is not renormalized and
equals the intrinsic relaxation rate W .

To complete the picture, the effective relaxation in early experiments using ERO was domi-
nated by cotunneling (Averin and Nazarov, 1990). This is a quantum mechanical process, thus
not included in our classical description in Eq. (IV.108), illustrated in Fig. IV.16. Here an elec-
tron being in the dot can tunnel out while another electron from a lead tunnels in simultaneously,
to the same (elastic cotunneling) or to a different state of the dot (inelastic cotunneling). This
process is of the second order in the tunneling rates. For our purposes here the case of interest
is when the initial electron is in the excited state, while the replacing electron tunnels into the
ground state, contributing to the relaxation. (The elastic cotunneling contributes to the decoher-
ence.)

In the first experiment using ERO (Fujisawa et al., 2001) a lateral quantum dot contained
∼ 50 electrons and the only successful relaxation time measured was 3 ns, attributed to an orbital
relaxation process. It took some time to obtain results for the spin relaxation, since the relaxation
rates were dominated by direct injection and cotunneling (Fujisawa et al., 2002b,a). In a vertical
dot, measuring the spin relaxation was successful both for singly and doubly occupied dot, but it
turned out to be problematic to use this method in a lateral dot. The reason is that forcing the dot
to be occupied by smaller number of electrons by applying larger negative gate voltage makes
also the tunneling rates smaller, resulting in smaller current. The minimum number of electrons
where the current signal was still measurable has gone from 50 in 2001 (Fujisawa et al., 2001)
to 8 in 2005 (Sasaki et al., 2005). Even though this technical problem was solved later by proper
gate design, in between a different technique proved to be very useful.

Using QPC: The idea is to use a quantum point contact (QPC) to measure the charge instead
of measuring the current (Hanson et al., 2007). QPC placed nearby the dot is able to measure the
charge of the dot with a resolution of ∼ 0.1e. It is thus possible to resolve each single electron
tunneling event. This works the better, the smaller the tunneling rates, since the longer is the dot
charge constant – the shortest time over which the charge can be deduced is 10 µs, setting the
QPC resolution.

In Fig. IV.17 a typical time trace of a QPC current during the three steps of ERO is sketched.
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Fig. IV.17. Time dependence of the gate voltage (left) and QPC current (right) during the three step ERO
sequence. See text for the explanation.

An electron enters the dot, which is being initially empty, during the fill&wait step, what is
observed as a decrease of the QPC current. If in the excited state, the electron tunnels to the right
lead during the probe step and another electron tunnels into the ground state, what is observed
as a temporary enhancement of the QPC current. If the electron had relaxed during fill&wait
step, or entered the dot into the ground state, no enhancement is observed during the probe step.
Finally, the dot is emptied during the empty step, observed as an increase of the QPC current and
the cycle is restarted. The current through the dot can be obtained by counting the number of
tunneling electrons. In addition, tunneling rates can be deduced by averaging the corresponding
time for a particular tunneling to occur.

Using ERO with QPC as the charge detector, the Delft group succeeded in measuring the spin
relaxation of a single electron in a single lateral quantum dot (Elzerman et al., 2004) (the first
successful measurement of this kind). The results of this measurement, together with results ob-
tained more recently by the MIT group using the same method for a larger range of the magnetic
field (Amasha et al., unpublished, cond-mat/0607110), are presented in Fig. IV.12.

A limitation of the ERO method is that for the readout the energy difference has to be large
enough to overcome the blurring of the levels due to a finite temperature and shifts of the levels
due to background charge fluctuations. Since the Zeeman energy is small, a high magnetic field
is required for ERO. (In the recent MIT spin relaxation measurement the minimal magnetic field
was pushed down to 1.7 T.) For smaller magnetic field, a different spin-to-charge conversion
scheme was proposed.

Transient current in small magnetic field: tunneling resolved readout (TRRO). In
ERO the read out of the electron state is possible since the tunneling rate out of the ground
state during the probe step is strictly zero. Now, if we are not able to energetically resolve the
ground and excited states, the readout will be still possible, if both states are above the right dot
chemical potential, but the tunneling rates are different, as depicted in Fig. IV.18. If the dot is
occupied by two electrons, the difference in the rates originates in the fact that the triplet state is
spatially more extended (being antisymmetric) than singlet, leading to a larger overlap with the
lead. Measurement using TRRO for two electron states was done (Hanson et al., 2005), giving
the triplet to singlet relaxation time also at zero energy difference. For single electron states the
spatial extent is the same for both spin states, therefore another mechanism for discriminating
tunneling rates has to be used. Some were proposed (Engel et al., 2004), up to now without a
successful experimental realization.

Due to the fact that the “unwanted” tunneling rate out of the ground state during the probe step
is not exactly zero, the occurrence of the tunneling does not exactly correspond to the electron
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Fig. IV.18. Comparison of probe step in the energy and tunneling resolved readouts. In ERO the tunneling
out of the ground state is strictly zero. In TRRO, a tunneling out of the ground states happens, but with
smaller rate than the tunneling out of the excited state.

state. The probability of the correct assessment of the electron state is called visibility. (A wrong
measurement would be an observed tunneling even if the electron was in the ground state, or no
tunneling if the electron was in the excited state.) The visibility is a function of the tunneling
rates and the duration of the probe step, see Sec. G.2. To get a notion, in the TRRO experiment
the visibility was 80%, while in previously discussed ERO experiments it was of a comparable
value, where the reduction below 100% originated in thermal fluctuations and cotunnelings.
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Fig. IV.19. Two electron double dot system. a, Sketch of the dots potential profile for zero detuning, when
in the ground state each dot is occupied by one electron. b, Potential for a non-zero detuning. In the ground
state both electrons are in the right dot. c, Energy of the states as a function of the detuning ε, at finite
magnetic field. Singlet (triplet) states are denoted by S(T ). The two upper indexes denote the occupation
of the left and right dots. The lower index denotes the projection of the total spin along the magnetic field
direction.

Singlet to singlet spin-to-charge conversion. We finish this section by describing yet an-
other spin-to-charge conversion scheme due to its great potential and proven suitability for study-
ing electron spin dynamics. The setup consists of a double dot occupied by two electrons with
controllable asymmetry ε (detuning of the ground state energy of the left and right single dots
when considering them to be isolated). If the detuning is small, as in Fig. IV.19a, the preferable
occupation is one electron per dot. In this case the exchange energy is small and the ground state
is four times degenerate, comprising one singlet S(1,1) and three triplet states T (1,1)

0 , T (1,1)
+ , and
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T
(1,1)
− (here and further the two numbers in the superscript denote the population of the left and

the right dot, respectively). If a magnetic field is applied, the triplet states are split. On the other
hand, if the asymmetry is large, as in Fig. IV.19b, the dot lower in energy is preferably occupied
and the ground state is a single dot singlet S(0,2). Since both electrons occupy one dot, the ex-
change energy is high and the single dot triplet states are far above the ground state and can be
neglected. The spectrum as a function of the detuning is in Fig. IV.19c. Suppose the detuning
is small and the qubit is encoded into the singlet S(1,1) and triplet T (1,1)

0 states. If the detuning
is adiabatically enlarged, the singlet S(1,1) evolves into S(0,2), where two electron occupy the
right dot, while the triplet T (1,1)

0 stays delocalized over both dots. The afterward measurement
of the occupation of one of the dots then discriminates between the two states and realizes a
spin-to-charge conversion.

At first, a two electron singlet to triplet relaxation time was measured at tesla (Petta et al.,
unpublished) and sub-tesla (Johnson et al., 2005) fields. The results at small magnetic fields,
such as suppression of the relaxation by magnetic field, indicate that the nuclei are the source
of the spin relaxation here (Merkulov et al., 2002). It was also possible to measure the spin
dephasing time by observing the decay of coherent oscillations between the degenerate S(1,1)

and T (1,1)
0 states. In a remarkable experiment (Petta et al., 2005) using the spin echo technique,

a two orders of magnitude difference between the dephasing and decoherence time was found.
To conclude this part, we have discussed several experiments studying spin relaxation in lat-

eral quantum dots. Table IV.1 summarizes main results together with used methods. The problem
of detection of the spin state is solved using the spin-to-charge conversion. Comparision of the
first measurement in 2001 where just an upper limit for the spin relaxation was obtained in a dot
containing 50 electrons, with the demonstrated coherent single spin evolution over 1 microsecond
in 2005, illustrates the great amount of the experimental progress achieved on the road towards a
spin qubit realization.

One remaining outstanding issue is a direct detection of spin relaxation of one electron in
a double dot. In this setup the relaxation should be much more sensitive to the spin hot spot
influence which can reveal the anisotropy of the spin-orbit interaction. Figure IV.20 shows the
theoretically obtained spin relaxation rate as a function of the tunneling energy (y axis) and
orientation of the inplane magnetic field (x axis). Taking a horizontal slice at maximal tunneling,
on the bottom of the figure, which corresponds to the single dot regime, the relaxation rate varies
with the magnetic field orientation. However, the variation is much more pronounced in the
double dot regime (smaller tunnelings) and reaches six orders of magnitude at the hot spot (at the
tunneling energy of ∼0.1 meV). Experimental observation of the anisotropy would be a strong
proof of the spin-orbit origin of the relaxation. The strengths of the spin-orbit interactions can be
also deduced from the position of the relaxation rate minimum (which is 39◦ in the Fig. IV.20).
Most importantly, if the relaxation rate is so strongly anisotropic, placing the dot intentionally
into the configuration with minimal relaxation could substantially prolong the qubit relaxation
time.

F.3 Relaxation and decoherence in the density matrix formalism

In this section we present a theoretical description of a dissipative phonon environment of the
quantum dot. We use the density matrix formalism (Blum, 1996; Slichter, 1996) which is suit-
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Tab. IV.1. Towards a measurement of the relaxation time of the spin of a single confined electron – ex-
perimental results: used method, physical system, reference publication, temperature, and result – we give
only the maximal relaxation/decoherence time measured. Short hand notations: N-V defect means nitrogen
vacancy defect, MRFM means magnetic resonant force microscopy, QPC means quantum point contact,
SD means single dot, DD means double dot, S-T means singlet-triplet, T1 denotes relaxation time, and T2

denotes decoherence time.

method system Ref. T [K] result

scanning tunneling microscope single spin (Manassen et al., 1989) 300 spin detection

fluorescence N-V defect (Gruber et al., 1997) 300 spin detection

(Jelezko et al., 2002) 2 T1 = 1 s

(Jelezko et al., 2004) 300 T2 = 1 µs

MRFM single spin (Rugar et al., 2004) 1.6 T1 = 0.76 s

optical pump&probe 104 dots (Kroutvar et al., 2004) 1 T1 = 20 ms

(self assembled)

energy resolved readout lateral SD, 50 e (Fujisawa et al., 2001) 0.15 T orbital
1 = 3 ns

(ERO) lateral SD, 50 e (Fujisawa et al., 2002b) 0.15 T1 > 2 µs

vertical SD, 2 e (Fujisawa et al., 2002a) 0.1 TS−T
1 > 0.2 ms

lateral SD, 8 e (Sasaki et al., 2005) 0.09 TS−T
1 = 0.2 ms

resonance assisted current lateral DD, 2 e (Koppens et al., 2006) 0.1 T S−T
2 . 1 µs

ERO+QPC lateral SD, 1 e (Hanson et al., 2003) 0.02 T1 > 50 µs

(B≥ 8 T) lateral SD, 1 e (Elzerman et al., 2004) 0.03 T1 = 0.85 ms

(B≥ 1.7 T) lateral SD, 1 e Amasha et al. unpublished 0.12 T1 = 0.15 s

lateral SD, 2e (Meunier et al., 2007) 0.18 TS−T
1 = 1 ms

tunneling resolved readout lateral SD, 2 e (Hanson et al., 2005) 0.02 TS−T
1 = 2.6 ms

(TRRO)

singlet to singlet lateral DD, 2 e (Johnson et al., 2005) 0.16 TS−T
1 . 1 ms

spin-to-charge conversion (Petta et al., 2005) 0.14 T ∗S−T
2 = 10 ns

TS−T
2 = 1 µs

able due to the statistical nature of the relaxation and decoherence. We first derive the Fermi’s
Golden Rule in this formalism. After that we show how the decoherence leads to the decay of
the Rabi oscillations, which occur if a resonant microwave field is present. We finish by showing
that if electrons are allowed to flow into/out of the dot, the decoherence can be deduced also
in a steady state measurement, from the width of the resonantly induced current peak. Simi-
lar considerations, using randomly fluctuating fields to describe dissipative environment, were
already presented on a more elementary level in Sec. B. There we saw that the fluctuation av-
eraging does not provide for the temperature dependence of the average spin. This is remedied
by consdering the more general form of a heat bath described by its own density matrix. This
more advanced derivation, presenting a different viewpoint, will be presented below, although
the physics involved in indeed very similar.
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Fig. IV.20. Single spin relaxation rate in a logarithmic scale (right) in inverse seconds for a single electron
in a double dot. The double dot is in the plane of a [001] grown GaAs quantum well. The axis of the dots
is along [100]. The orientation of the in-plane magnetic field (of 5 tesla) relative to [100] is varied on the
horizontal axis. The tunneling energy is varied on the y axis. After (Stano and Fabian, 2006b).

F.3.1 Electron in a phonon bath

We begin by considering the electron and phonons as two interacting subsystems of a com-
posite system with HamiltonianHT = He+Hp+V , whereHe refers to the isolated electron,Hp

describes phonons if no electron is present and V is an electron-phonon interaction. The Hilbert
space is spanned over basis vectors {|i, α, n〉}, where i labels the electron state, α phonon state,
and n is the occupation number for the phonon state α. We are interested in the time evolution
defined by the Schrödinger equation with the total Hamiltonian HT and an initial state. How-
ever, since we do not have detailed information about the state of the phonons, we use the density
matrix (the superscript S is for the Schrödinger picture),

ρS
T (0) =

∑
i,α,n

Wi,α,n|i, α, n〉〈i, α, n|, (IV.112)

which reflects that we know only statistical probabilities Wi,α,n for certain initial condition to
occur. If each function in the expansion obeys the Schrödinger equation, the time evolution of
the density matrix is described by the Liouville equation

i~ ∂tρ
S
T (t) = [HT (t), ρS

T (t)]. (IV.113)

To get rid of the unobserved phonons we trace out the redundant degrees of freedom of the
system, defining the reduced electron density matrix (denoted by dropping the subscript T )

ρS(t) = trp

(
ρS

T (t)
)

=
∑
α,n

〈α, n|ρS
T (t)|α, n〉. (IV.114)



Spin relaxation, spin dephasing, and spin dynamics 751

In the interaction picture (denoted by dropping the superscript S) electron relaxation and deco-
herence rates appear in the following form (see Sec. G.2 for the derivation)

∂R
t ρii(t) = −

∑
k 6=i

2Γikρii(t) +
∑
k 6=i

2Γkiρkk(t), (IV.115a)

∂R
t ρij(t) = −

∑
k 6=i

Γik +
∑
k 6=j

Γjk

 ρij(t) = −γijρij(t). (IV.115b)

We have added superscript R on the time derivative to denote that the relaxation and decoher-
ence is the source for these terms. The time evolution of the diagonal and off-diagonal terms
is decoupled, and all decay exponentially into their steady state values. The off-diagonal terms
decay to zero with the decoherence rates γij . The diagonal terms equilibrium value is defined
by the temperature through the relaxation rates, such as Γij which gives the transition rate from
state i to j. At temperature low enough such that spontaneous excitations are negligible (Γij = 0
for i < j), for a two level system we get γ21 = Γ21. From that we obtain the decoherence
time T2 = 2T1, which says that the relaxation contributes to the decoherence and which can be
thought of as the upper limit for the decoherence time. Taking into account other environment
fluctuation (for example, nuclei) often leads to T2 � T1. While Eqs. (IV.115) do not look to
contain much more than the Fermi’s Golden Rule, the density matrix formalism allows to treat
dissipation, which is of statistical nature, together with a coherent manipulation of the electron
spin by resonant fields and in running a current through the dot, as we will show next.

F.3.2 Rabi oscillations

Starting with a localized electron subject to dissipation, described by Eqs. (IV.115), we are
interested now in the possibility of spin and charge manipulation by resonant microwave field.
For this purpose, we consider that at time zero a monochromatic microwave field is turned on.
The field couples only to the electron, hence it can be expressed in the basis of the electron states,
defining the field matrix elements Ωij ,

V M (r, t) = V M (r) cosωt =
∑
i,j

|Ψi〉〈Ψi|V M (r)|Ψj〉〈Ψj | cosωt

=
∑
i,j

|Ψi〉~Ωij〈Ψj | cosωt. (IV.116)

We could include this term into the electron Hamiltonian obtaining an analogue of eigenstates
(which would be time dependent) and eigenenergies (Shirley, 1965), and use these states as a ba-
sis for a generalized “Fermi’s Golden Rule” (Jiang et al., 2006). Such approach is needed if the
oscillating field is strong such that it substantially changes the electron wavefunction and energy.
If the field is weak, which is our case, we can treat the time dependent field as a perturbation in
the same sense as we treated the electron-phonon interaction. Including V M into the Liouville
equation (IV.113) results in the leading order in additional contributions to the time derivative
(denoted by superscript M for the microwave) of the reduced electron density matrix. The mi-
crowave influences only the resonant states, denoted by indexes a and b, which are the states
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whose energy difference is close to the frequency of the oscillating field, Eb−Ea = ~ωba ≈ ~ω,
what is also expressible as (the absolute value of) the detuning

∆ = ωba − ω (IV.117)

being much smaller than the frequency of the field itself. Without a loss of generality, we suppose
ωba, ω > 0. The microwave influence is described by (see Sec. G.3 for the derivation)

∂M
t ρaa(t) = −(i/2)Ωabρba(t) exp[i(ωab + ω)t]

+ (i/2)Ωbaρab(t) exp[−i(ωab + ω)t], (IV.118a)
∂M

t ρbb(t) = −(i/2)Ωbaρab(t) exp[−i(ωab + ω)t]
+ (i/2)Ωabρba(t) exp[i(ωab + ω)t], (IV.118b)

∂M
t ρab(t) = −(i/2)Ωab[ρbb(t)− ρaa(t)] exp[i(ωab + ω)t]. (IV.118c)

One can readily solve for the time evolution of the electron if the field is resonant with the
two lowest states, neglecting the presence of the higher lying states. If the two lowest states are
the spin opposite states, we are describing the spin resonance. The total time derivative of the
density matrix, ∂t = ∂R

t + ∂M
t , in the two level basis is

∂tρ11(t) = 2Γ21ρ22(t)− 2Γ12ρ11(t)− (i/2)Ω12ρ21(t) exp(−i∆t)
+ (i/2)Ω21ρ12(t) exp(i∆t), (IV.119a)

∂tρ22(t) = 2Γ12ρ11(t)− 2Γ21ρ22(t)− (i/2)Ω21ρ12(t) exp(i∆t)
+ (i/2)Ω12ρ21(t) exp(−i∆t), (IV.119b)

∂tρ12(t) = −γ12ρ12(t)− (i/2)Ω12[ρ22(t)− ρ11(t)] exp(−i∆t). (IV.119c)

The explicitly time dependent factors can be removed by expressing the off diagonal density
matrix element by

ρ12(t) = ρ12(t)e
−i∆t (IV.120)

If ρ12(t) does not depend on time, the off diagonal density matrix elements in the Schrödinger
picture rotate with the frequency of the field – this is what characterizes the steady state, as we
will see later; by steady state we mean a situation in which the diagonal elements of the density
matrix (that is, states occupations) are time independent. To describe the steady state we therefore
use the ansatz,

ρ12(t) := ρ12e
−i∆t, (IV.121)

giving from Eqs. (IV.119),

ρ12 =
Ω12

2
ρ22(t)− ρ11(t)

∆− iγ12
, (IV.122)

and,

∂tρ11(t) = (∂R
t + ∂M

t )ρ11(t) = Γ21ρ22(t)− Γ12ρ11(t)
+ 2[ρ22(t)− ρ11(t)]J, (IV.123a)

∂tρ22(t) = (∂R
t + ∂M

t )ρ22(t) = Γ12ρ11(t)− Γ21ρ22(t)
+ 2[ρ11(t)− ρ22(t)]J, (IV.123b)
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where we introduced the induced rate,

J =
|Ω21|2

4
γ21

∆2 + γ2
21

. (IV.124)

The zero time derivative of the occupations in the steady state can be viewed as a balance be-
tween two competing processes: relaxation, which drives the system towards the thermodynam-
ical equilibrium (ρ22/ρ11 = Γ12/Γ21), and microwave induced transition, which equilibrates
occupations of the resonant states (ρ22 = ρ11). The effectiveness of the oscillating field in driv-
ing the system out of thermal equilibrium is characterized by the induced rate J . Enlarging the
detuning ∆ (that is going away from the resonance), the induced rate decays; the microwave is
less effective in influencing the system.

The interpretation of J as a rate of occupation transition is, however, valid only in the steady
state. Equations (IV.123) do not describe the microwave influence on the resonant states before
the steady state is reached. This temporal regime can be obtained by solving Eqs. (IV.119). For
that we introduce the following variables

R(t) = Ω21ρ12(t)ei∆t + Ω12ρ21(t)e−i∆t, (IV.125a)
i I(t) = Ω21ρ12(t)ei∆t − Ω12ρ21(t)e−i∆t, (IV.125b)
D(t) = ρ22(t)− ρ11(t). (IV.125c)

If in the steady state and for real field matrix elements, R and I are proportional to the real and
imaginary part of the off diagonal density matrix element ρ12(t), while D is the difference in
the occupations of the resonant states. The time dependence of the new variables follows from
Eqs. (IV.119):

[∂t + 2(Γ12 + Γ21)]D(t) = I(t)− 2(Γ21 − Γ12), (IV.126a)
(∂t + γ12)I(t) = ∆R(t)−D(t)|Ω21|2, (IV.126b)
(∂t + γ12)R(t) = −∆ I(t). (IV.126c)

One can see that a steady state solution [that is, constant D(t)] requires the time independence
of R(t) and I(t), validating the ansatz in Eq. (IV.121). We rewrite Eqs. (IV.126) as a third order
differential equation for D(t):

{[(∂t + γ12)2 + ∆2][∂t + 2(Γ12 + Γ21)] + |Ω12|2(∂t + γ12)}[D(t) +D] = 0, (IV.127)

where we denote by D the steady state occupation difference,

D =
2(Γ21 − Γ12)(γ2

12 + ∆2)
2(γ2

12 + ∆2)(Γ12 + Γ21) + γ12|Ω21|2
. (IV.128)

Equation (IV.127) has three linearly independent solutions

D(t) = −D +
3∑

i=1

Aie
(−γ12+ai)t. (IV.129)
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Here Ai are given by the initial conditions and ai are the roots of the following algebraic equa-
tion:

(a2 + ∆2)(a+ γ) + |Ω21|2a = 0, (IV.130)

where γ = 2(Γ12 + Γ21) − γ12 (for phonons and at small temperatures γ = γ12). The cubic
equation has three real solutions, or one real and two complex conjugated solutions. If the first
case occurs, the occupation difference decays towards the steady state exponentially. The second
case corresponds to Rabi oscillations, where the Rabi frequency is the imaginary part of the
complex solution to Eq. (IV.130). Instead of algebraically complicated general expressions for
ai, we give two examples of interest.93

First, close to the resonance, ∆ � |Ω12|, γ, up to the first order in ∆, we have

a1 = 0, a2,3 = −γ
2
± i
√
|Ω12|2 − γ2/4. (IV.131)

Second, for small damping, γ � |Ω12|,∆, up to the first order in γ, we obtain

a1 = −γ ∆2

∆2 + |Ω12|2
, a2,3 = −γ |Ω12|2

2(∆2 + |Ω12|2)
± i
√
|Ω12|2 + ∆2. (IV.132)

The importance of the Rabi oscillation can be illustrated by a simple example considering an
exactly resonant driving without dissipation, ∆ = 0, γ12 = 0. Starting initially in state Ψ1 [that
is D(0) = −1], the evolution of the system written in the basis of {Ψ1, Ψ2} is

Ψ(t) = Ψ1 cos(|Ω12|t) + Ψ2 sin(|Ω12|t), (IV.133)

meaning, the populations of the two states oscillate harmonically. Letting the system evolve for
time π/2|Ω12|when the final state is Ψ2 realizes a coherent spin flip – one of the basic operations
needed for quantum computation. The demonstration of Rabi spin oscillations in a quantum dot
induced by magnetic field is an important experimental breakthrough (Koppens et al., 2006).

Nonzero damping and detuning make the solution more complicated than Eq. (IV.133), but
qualitatively they cause the following: (i) decoherence causes the oscillations to decay, and re-
duces the Rabi frequency. (ii) The detuning makes the oscillation amplitude smaller and enlarges
the Rabi frequency. (iii) The existence of the third non oscillatory solution expresses the fact that
the amplitude of oscillations depends on initial conditions.

F.3.3 Current

Having studied a driven localized electron with dissipation, we widen our model further,
allowing, in addition, for the electron to tunnel out/into the dot by connecting the dot to the
leads. This is relevant for the experiments since many properties of the system are probed by
current measurements – most profound example is the dot spectroscopy (that is measuring the
energy levels), which can be done by the resonant tunneling technique (van der Wiel et al., 2003).
As a further example, we show here how the spin relaxation and decoherence can be deduced
from a current measurement in a resonantly driven dot (Engel and Loss, 2001), if in the probe
step configuration (discussed in Sec. F.2), as depicted in Fig. IV.21.

93If none of these two applies, then the field matrix element |Ω12| is not dominant, and either γ12 is large and the
damping is too strong to observe Rabi oscillations or ∆ is large and the amplitude of the oscillations is small – both cases
are not of interest here.
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Fig. IV.21. A two level model of a quantum dot with dissipation (described by relaxation rate Γ21). The
applied oscillating field results in induced rate J . The dot is connected to the left and right leads, each
characterized by a single tunneling rate (ΓL and ΓR). The electron can enter the ground state of an empty
dot from any lead, while the excited state can be filled only from the left lead. Once in the dot, the electron
can leave only from the excited state to the right lead.

The presence of the leads appears as an additional contribution to the density matrix time
derivative (l stands for leads),

∂l
tρ22(t) = −ΓRρ22 + ΓL[1− ρ22(t)− ρ11(t)], (IV.134a)
∂l

tρ11(t) = (ΓR + ΓL)[1− ρ22(t)− ρ11(t)]. (IV.134b)

Here the leads are characterized by tunneling rates ΓL and ΓR which describe the possibility of
the electron to tunnel out of/into the dot. For simplicity, we suppose no dependence of the these
tunnel rates, on the electron state. Also, compared to the case of an isolated electron considered
in the previous part of Rabi oscillations, now the dot can be also empty, denoted by ρ00(t). Due
to the normalization of the density matrix ρ00(t) = 1− ρ22(t)− ρ11(t).

Equations such as Eqs. (IV.134), and the rates appearing therein, can be derived in the lowest
order of the interaction of the dot and the Fermi electron sea in the leads. For the derivation of
the rates, see Refs. (Gurvitz and Kalbermann, 1987; Gurvitz and Prager, 1996) and Sec. V.A.4.
We mention here only two important properties when considering a rate between the dot state i
and the lead l: First, the rate is proportional to the tunneling amplitude between i and l, reflecting
the possibility of tuning the rate by changing the barrier between the dot and the lead. Second,
the incoming (outgoing) rate is proportional to the density of the occupied (empty) states in the
lead l at the energy Ei. Thus, at small temperatures the electron can enter the dot state i only
from a lead with the chemical potential higher thanEi and leave the dot into a lead with a smaller
chemical potential – the rules that we have used for the description of the energy resolved readout
in Sec. F.2.

We consider now only the steady state measurement, which is appropriate if the current is
measured over time much longer compared to the time of transient regime of the decaying Rabi
oscillations. We know that the steady state solution for the off-diagonal terms in the density
matrix appears as an effective induced rate J , so the steady state can be described by putting
∂tρ(t) = 0 in Eqs. (IV.123). This, together with the normalization, allows us to find the steady
state occupations for the three concerned states (0,1,2). For example, the steady state occupation
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of the excited state is

ρ22 =
J + Γ12

2J + Γ12 + Γ21
. (IV.135)

The current through the dot can be obtained as the sum of all contributions filling the dot from
the left lead. Plugging in the steady state result for the density matrix leads to

I =
ΓLΓR(J + Γ12)

ΓR[ΓR + 3J + Γ21 + 2Γ12] + ΓL{ΓR + 2[2J + Γ21 + Γ12]}
, (IV.136)

which simplifies in several limiting cases, with straightforward physical explanation:

I = 2eΓLρ22, if ΓL � ΓR � J + Γ12, (IV.137a)
I = eΓRρ22, if ΓR � ΓL � J + Γ12, (IV.137b)

I = 2e
ΓL

ΓL + ΓR
(J + Γ12), if ΓL,ΓR � J + Γ12. (IV.137c)

For small tunneling rates, the current is proportional to the excited state population and the
smaller tunneling rate. For large tunneling rates, the current is proportional to the filling effi-
ciency of the dot from the left lead and the effective rate of excitation from the ground to the
excited state. By the current measurement in the transient regime configuration it is thus possible
to measure the excited state population, and the induced rate, by changing the coupling to the
leads. From these one can deduce the spin decoherence and relaxation rate [as can be expected,
since ρ22 and J depend on the relaxation and decoherence rate – see Ref. (Stano and Fabian,
unpublished) for details], interestingly indeed, since the measurement is done in a steady state.
This is another way, alternative to the decay of Rabi oscillations, how the spin decoherence can
be measured.

G. Appendix

G.1 Time evolution of the state occupations

G.1.1 ERO: Probe pulse

Here we derive Eqs. (IV.109) from Eqs. (IV.108). We introduce the missing charge in the ground
state, x = 1− g, which transforms Eq. (IV.108) into a homogeneous system:

ė = ΓLE(x− e)− (ΓRE +W )e, (IV.138a)
ẋ = −(ΓLG + ΓRG)(x− e)−We. (IV.138b)

The first equation says that an empty excited state is populated from the left lead (first term),
while an occupied excited state decays into the right lead or into the ground state (second term).
Similarly, the second equation describes the fact that the ground state can be populated from both
leads if the dot is empty, and from the excited state if an electron is in the excited state. Using
the total tunneling rates, Eqs. (IV.110), we express e from Eq. (IV.138b),

e(ΓG −W ) = ẋ+ ΓGx, (IV.139)
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and insert it into Eq. (IV.138a) getting

ẍ+ (ΓT +W )ẋ+ [ΓGΓRE +W (Γ− ΓRE)]x = 0. (IV.140)

In further we use that W and ΓRE are much smaller than the total (or left) tunneling rate and
express all quantities in the lowest order in small frequencies. The solution of Eq. (IV.140) is

x(t) = Ae−ω1t +Be−ω2t, (IV.141)

where the frequencies ω1,2 are in the leading order

ω1 ≈ Γ, ω2 ≈
ΓG

Γ
ΓRE +W = D. (IV.142a)

(IV.142b)

The initial condition of an empty dot, e(0) = 0, x(0) = 1 gives through Eqs. (IV.138) and
Eq. (IV.141) the coefficients A and B,

A+B = 1,
Aω1 +Bω2 = ΓG,

}
=>

A = ΓG−ω2
ω1−ω2

≈ ΓG

Γ ,
B = 1−A,

(IV.143)

so that

x(t) ≈ ΓG

Γ
e−Γt +

ΓE

Γ
e−Dt, (IV.144)

from where Eq. (IV.109b) for the ground state population g = 1− x follows.
As seen from Eq. (IV.139), the excited state will have the same functional form as Eq. (IV.141)

with different coefficients, which are again given by the initial condition of an empty dot:

A′ +B′ = 0,
A′ω1 +B′ω2 = −ΓLE ,

}
=>

A′ = ΓLE

ω2−ω1
≈ −ΓLE

Γ ,
B′ = −A′, (IV.145)

From where

e(t) ≈ ΓLE

Γ
(e−Dt − e−Γt), (IV.146)

which is, within the leading order in Γ−1, equivalent to the solution in Eq. (IV.109a).

G.1.2 ERO: Fill&wait pulse

In an analogous way to the probe configuration, the equations for the time evolution of the
population during the fill&wait step are

ė = (ΓLE + ΓRE)(1− e− g)−We, (IV.147a)
ġ = (ΓLG + ΓRG)(1− e− g) +We. (IV.147b)
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This means that if the dot is empty, both states can be filled from both leads, with corresponding
rates. Once the dot is occupied, the only evolution will be the occupied state decaying into the
ground state. The solution, again for the initial condition of an empty dot, is

e(t) ≈ ΓE

Γ
(
1− e−Γt

)
e−Wt, (IV.148a)

g(t) ≈ ΓG

Γ
(
1− e−Γt

)
+

ΓE

Γ
(
1− e−Wt

)
. (IV.148b)

To derive Eqs. (IV.148), we would introduce the total missing charge on the dot c = 1 − g −
e, whereby Eqs. (IV.147) are transformed into a homogeneous system, and continue as in the
previous.

G.1.3 TRRO: Probe pulse

Here we derive the visibility for the TRRO measurement. We suppose the dot is in the probe
step, as depicted in Fig. IV.18, and described by the following equations for the populations:

ė = −(ΓT +W )e, (IV.149a)
ġ = −ΓSg +We. (IV.149b)

The electron from the singlet (triplet) states tunnels out of the dot into the lead with the rate ΓS

(ΓT ). In addition to that the triplet can decay also into the singlet with rate W . Solving these
equation in the same way as before we get

e(t) = e(0)e−(ΓT +W )t, (IV.150a)
g(t) = Ae−(ΓT +W )t +Be−ΓSt. (IV.150b)

We consider the dot initially occupied, e(0) + g(0) = 1, giving two equations for the three un-
known coefficients e(0), A, and B. The third equation follows by specifying where the electron
initially is: The first part of the possible error is the probability that a tunneling has occurred,
although the electron was in the ground state,

α(t) = 1− g(t)− e(t) = [for g(0) = 1] = 1− e−ΓSt. (IV.151)

The second part is the probability that a tunneling has not occurred, with an electron in the excited
state initially,

β(t) = e(t) + g(t) = [for e(0) = 1]

=
1

ΓT +W − ΓS

(
We−ΓSt + (ΓT − ΓS)e−(ΓT +W )t

)
. (IV.152)

The visibility is defined (Hanson et al., 2005) as v(t) = 1−α(t)−β(t), and for given tunneling
rates can be optimized (maximized) as a function of the duration of the probe step t.
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G.2 Liouville equation for an electron in a phonon bath

We derive here Eqs. (IV.115) describing the relaxation and decoherence of a localized electron
due to interactions with phonons. Our derivation closely follows Ref. (Blum, 1996), where
broader discussion and further details can be found. The Hamiltonian HT of a composite
electron-phonon system consists of

He =
∑

i

Ei|Ψi〉〈Ψi|, (IV.153)

Hp =
∑
α

~αωα(nα + 1/2), (IV.154)

V =
∑
α

Dα(bα + b†−α)eik.r. (IV.155)

The basis vectors of the Hilbert space of the total system are tensor products of electron and
phonon states, {|Ψi〉 ⊗ |α, n〉}, denoted as |i, α, n〉 in Eq. (IV.112). Further we use n to denote
the phonon states occupation, other Roman letters to index the electron states, and Greek letters
for phonon states.

The eigenfunctions Ψi of the electron Hamiltonian He are localized – an illustrative example
is a ground state in a two dimensional harmonic potential, 〈r|Ψ1〉 = (1/r0

√
π) exp(−r2/2r20).

For an example of the explicit form of He in GaAs lateral quantum dot, see Ref. (Stano and
Fabian, 2005).

Concerning phonons, the phonon index α comprises the wavevector k, the polarization (one
longitudinal and two transversal), and the branch (acoustic or optical), the last two denoted to-
gether by λ, α ≡ (k, λ), [where further −α ≡ (−k, λ)], b†α, bα are the creation and annihilation
operators for a phonon in state α, and nα = b†αbα is the number operator. The phonon Hamil-
tonian Hp describes non-interacting phonons, meaning our model does not contain processes
equilibrating phonons. We, however, suppose that phonons are always in thermal equilibrium –
we will insert this assumption by hand at the appropriate place. The electron-phonon interaction
is encoded into the coupling constants Dα. For the illustration and reference, we list here the
electron-phonon interactions depicted in Fig. IV.11, thereby giving the explicit form of Dα.

The deformation potential interaction is

V df = σe

∑
k,λ={l,a}

√
~k

2ρV cλ
(bk,λ + b†−k,λ)eik.r. (IV.156)

Only longitudinal acoustic phonons play role, λ = {l, a}, ρ is the material density, cλ is the
phonon velocity, V is the material volume, and σe is the deformation potential constant.

The piezoelectric interaction is

V pz = −ih14

∑
k,λ={{l,t1,t2},a}

√
~

2ρV cλ
Mλ(k)(bk,λ + b†−k,λ)eik.r, (IV.157)

where the h14 is the piezoelectric constant and polarization-dependent geometrical factors are

Mλ(k) =
2
k2

[kxky(~ek,λ)z + kykz(~ek,λ)x + kzkx(~ek,λ)y]. (IV.158)
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One possible choice of the phonon polarizations is

~ek,l,a = (kx, ky, kz)/k, (IV.159a)

~ek,t1,a = (−ky, kx, 0)/
√
k2

x + k2
y, (IV.159b)

~ek,t2,a = (kzkx, kzky,−k2
x − k2

y)/
(
k
√
k2

x + k2
y

)
. (IV.159c)

Finally, the Hamiltonian for the Fröhlich coupling is

H
(Fr)
e−ph =

∑
k,λ={l,o}

√
2π~Ωλ

V

(
1
ε∞

− 1
εs

)
e

k
(bk,λ + b†−k,λ)eik.r, (IV.160)

where εs, and ε∞ is the static and high frequency dielectric function, respectively, and ~Ωλ is
the optical phonon energy. For the derivation of these interactions, see Refs. (Grodecka et al.,
unpublished; Mahan, 2000). In the following we derive the master equation in the Born-Markov
approximation, properly taking into account the environment. This derivation is a generalization
of the master equation with the classical oscillating field, presented in Sec. B.

G.2.1 Liouville equation in the interaction picture

We will work in the interaction picture, which is suitable if the Hamiltonian can be divided
into two parts, where for the first, representing an unperturbed system H0, the solution is known
and the second represents the perturbation, influence of which we study. For us, the unperturbed
part are electron and phonons noninteracting with each other,

H0 = He +Hp, (IV.161)

and the perturbation is the electron-phonon interaction. The interaction picture for a general
operator is defined as

OI = exp(iH0t/~)O exp(−iH0t/~). (IV.162)

If we express the Liouville equation using the interaction picture operators (this is the only place
where we write the superscript I for the density matrix explicitly, we omit it in further and in the
main text)

i~ ∂tρ
I
T (t) = [V I(t), ρI

T (t)], (IV.163)

we see that in the interaction picture it is only the perturbation that is responsible for a non-trivial
evolution of the system. We rewrite the previous equation as an integral one

ρT (t) = ρT (0) +
1
i~

∫ t

0

dτ [V I(τ), ρT (τ)], (IV.164)

which allows us to obtain an equivalent form for Eq. (IV.163)

∂tρT (t) =
1
i~

[V I(t), ρT (0)]− 1
~2

∫ t

0

dτ [V I(t), [V I(τ), ρT (τ)]]. (IV.165)
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Here the hidden phonon dynamics shows up as the dependence of the evolution of the electron
at time t [ρ(t) on the left hand side] on the previous electron state at times τ < t [ρ(τ) on
the right hand side]. It is reasonable to neglect the time memory of the system in our model,
since the model does not encompass the phonon dynamics, crucially influencing such cross time
correlations. We thus adopt Markov approximation, in which the density matrix derivative de-
pends only on the present state of the system, replacing ρT (τ) by ρT (t) on the right hand side of
Eq. (IV.165). Also related to the phonon dynamics being absent in our model is the Born approx-
imation, in which the missing phonon equilibration is inserted by hand – we assume the phonon
system is always in equilibrium, irrespective on the interaction with and state of the electron,
ρT (t) = ρ(t) ⊗ ρp. Here ρp = Z−1 exp(−Hp/kBT ), where kB is the Boltzmann constant, T
temperature, and Z the normalization constant (partition function) assuring trp(ρp) = 1. We
note that such ρp is diagonal in the chosen phonon basis |α, n〉. If we apply these approxima-
tions and trace out the unobserved phonons defining the electron reduced density matrix, see
Eq. (IV.114), we arrive at

∂tρ(t) =
1
i~

trp

(
[V I(t), ρT (0)]

)
− 1

~2

∫ t

0

dτ trp

(
[V I(t), [V I(τ), ρT (t)]]

)
, (IV.166)

the starting equation for the further analysis. In the remaining sections of this Appendix we
discuss some important ramifications of the above formalism.

G.2.2 Statistical average of phonon operators

To proceed, we rewrite the electron-phonon Hamiltonian Eq. (IV.155) in the interaction pic-
ture using the definition (IV.162). For the boson phonon operators, it is straightforward to obtain
the standard result, bIα(t) = bα exp(−iωαt). For the oscillating wave in the interaction picture
we use the following short hand notation:

[exp(ikα.r)]I(t) = Rα(t) =
∑
i,j

|Φi〉〈Φi| exp(ikα.r)|Φj〉〈Φj | exp(iωijt)

=
∑
i,j

|Φi〉Rij
α 〈Φj | exp(iωijt), (IV.167)

where ~ωij = Ei − Ej is the difference of energies of electron states i and j.

We introduce Bα = bα + b†−α for the particular combination appearing in the electron-
phonon interaction and get zero for the statistical average of a single phonon operators due to the
diagonality of ρp:

Bα(t) = trp

(
Bα(t)ρp

)
=
∑
β,n

〈β, n|Bα(t)ρp|β, n〉 =
∑
β,n

〈β, n|Bα(t)|β, n〉ρp
β,n,β,n = 0.

(IV.168)
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The statistical average of a pair of phonon operators is non zero

Bα(t)Bβ(τ) =
∑
γ,n

〈γ, n|Bα(t)Bβ(τ)ρp|γ, n〉

=
∑
γ,n

〈γ, n|[bIα(t) + bI†−α(t)][bIβ(τ) + bI†−β(τ)]|γ, n〉ρp
γ,n,γ,n

= δα,−β

∑
γ,n

〈γ, n|bIα(t)bI†α (τ) + bI†−α(t)bI−α(τ)|γ, n〉ρp
γ,n,γ,n

= δα,−β

∑
γ,n

〈γ, n|(1 + nα) exp[iωα(τ − t)] + n−α exp[iω−α(t− τ)]|γ, n〉ρp
γ,n,γ,n

= δα,−βtrp

(
(nα + 1)ρp

)
exp[iωα(τ − t)] + trp

(
n−αρ

p
)

exp[iω−α(t− τ)]

= δα,−β

{
(nα + 1) exp[iωα(τ − t)] + n−α exp[iω−α(t− τ)]

}
(IV.169)

Here we have introduced the average occupation of the phonon state, nα = trp(nαρ
p) =

1/[exp(Eα/kBT ) − 1]. Note the difference to Sec. B. – there the dissipation was caused by
a fluctuating classical field, with a correlation function that decays in time with a characteristic
time τc, Eq. (IV.19). Contrary to this, the statistical average in Eq. (IV.169) does not decay. It
reflects that in our model phonons are always in equilibrium, there are no fluctuations. We will
see that the two terms in Eq. (IV.169) lead to transitions including the emission (the first term)
and absorption (second) of a phonon. The rates of the two processes depend on the mean phonon
occupation number as n+ 1 and n, respectively, introducing temperature, which was effectively
infinite in Sec. B. due to the classical description of the fluctuating field.

G.2.3 Relaxation and decoherence rates

The first term on the right hand side of Eq. (IV.166) is zero, due to Eq. (IV.168):

trp

(
[V I(t), ρ(0)ρp]

)
=

∑
α

DαRα(t)ρ(0) trp

(
Bα(t)ρp

)
− Dαρ(0)Rα(t) trp

(
ρpBα(t)

)
= 0. (IV.170)

The integrand in Eq. (IV.166) is

trp

(
[V I(t), [V I(τ), ρ(t)ρp]

)
= trp

(
V I(t)V I(τ)ρ(t)ρp − V I(t)ρ(t)ρpV I(τ)

− V I(τ)ρ(t)ρpV I(t) + ρ(t)ρpV I(τ)V I(t)
)

=
∑
α,β

DαDβ

{
Rα(t)Rβ(τ)ρ(t) trp

(
Bα(t)Bβ(τ)ρp

)
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−Rα(t)ρ(t)Rβ(τ) trp

(
Bα(t)ρpBβ(τ)

)
−Rβ(τ)ρ(t)Rα(t) trp

(
Bβ(τ)ρpBα(t)

)
+ ρ(t)Rβ(τ)Rα(t) trp

(
ρpBβ(τ)Bα(t)

)}
=
∑
α

|Dα|2
{
Rα(t)R−α(τ)ρ(t)Bα(t)B−α(τ)−Rα(t)ρ(t)R−α(τ)B−α(τ)Bα(t)

−R−α(τ)ρ(t)Rα(t)Bα(t)B−α(τ) + ρ(t)R−α(τ)Rα(t)B−α(τ)Bα(t)
}
.

(IV.171)

We have used that the Hermitivity of the electron-phonon Hamiltonian requires Dα = D†−α.
Inserting the statistical average of the pair of phonon operators we get for a particular element of
the density matrix the following:

∂tρij(t) = − 1
~2

∑
α,k,l

|Dα|2

×
∫ t

0

dτ
{
Rik

α R
kl
−αρlj(t) exp(iωikt+ iωklτ){n−α exp[iω−α(t− τ)]

+ (nα + 1) exp[−iωα(t− τ)]}
− Rik

α ρkl(t)R
lj
−α exp(iωikt+ iωljτ){nα exp[−iωα(t− τ)]

+ (n−α + 1) exp[iω−α(t− τ)]}
− Rik

−αρkl(t)Rlj
α exp(iωikτ + iωljt){n−α exp[iω−α(t− τ)]

+ (nα + 1) exp[−iωα(t− τ)]}
+ ρik(t)Rkl

−αR
lj
α exp(iωklτ + iωljt){nα exp[−iωα(t− τ)]

+ (n−α + 1) exp[iω−α(t− τ)]}
}
. (IV.172)

We will now make several approximations based on the same reasoning. From the final result
of this computation, listed in Eqs. (IV.115), one can see that the relaxation and decoherence
rates define timescales for the changes of the density matrix, meaning that over much shorter
times the density matrix is essentially constant. Also, we are not interested in such short time
(or equivalently large frequency) effects. To give an example, a typical orbital relaxation in the
quantum dot is∼ 0.1 ns, which is to be compared with the time corresponding to a typical energy
difference ~ωik appearing in Eq. (IV.172), being for two orbital states typically ~/1 meV∼ ps.
For two states split by the Zeeman energy the energy difference is smaller, corresponding in 1
tesla field to 0.1 ns. However, here the relaxation is much slower (> 1µs), resulting in similarly
large difference between ωik and the relaxation rate for the two states.

The first place where we use the difference of the timescales is in the time integration in
Eq. (IV.172) – since t � 1/ω, we can make the limit t → ∞, getting the delta function∫ t

0
dτ exp(iωτ) ≈

∫∞
0

dτ exp(iωτ) = πδ(ω) [we neglected the principal value part of the inte-
gral, which leads to small imaginary terms which only slightly renormalize the electron energy
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(Blum, 1996)]. The equation for the density matrix simplifies to

∂tρij(t) = − π

~2

∑
α,k,l

|Dα|2

×
{
Rik

α R
kl
−αρlj(t) exp(iωikt){n−αδ(ωkl − ω−α) exp(iω−αt)

+ δ(ωkl + ωα)(nα + 1) exp(−iωαt)}
− Rik

α ρkl(t)R
lj
−α exp(iωikt){nαδ(ωlj + ωα) exp(−iωαt)

+ (n−α + 1)δ(ωlj − ω−α) exp(iω−αt)}
− Rik

−αρkl(t)Rlj
α exp(iωljt){n−αδ(ωik − ω−α) exp(iω−αt)

+ (nα + 1)δ(ωik + ωα) exp(−iωαt)}
+ ρik(t)Rkl

−αR
lj
α exp(iωljt){nαδ(ωkl + ωα) exp(−iωαt)

+ (n−α + 1)δ(ωkl − ω−α) exp(iω−αt)}
}
. (IV.173)

We use the delta functions to express all the oscillating time factors by the electron energy dif-
ferences

∂tρij(t) = − π

~2

∑
α,k,l

|Dα|2

×
{
Rik

α R
kl
−αρlj(t) exp(iωilt){n−αδ(ωkl − ω−α)

+ δ(ωkl + ωα)(nα + 1)}
− Rik

α ρkl(t)R
lj
−α exp(iωikt+ iωljt){nαδ(ωlj + ωα)

+ (n−α + 1)δ(ωlj − ω−α)}
− Rik

−αρkl(t)Rlj
α exp(iωikt+ iωljt){n−αδ(ωik − ω−α)

+ (nα + 1)δ(ωik + ωα)}
+ ρik(t)Rkl

−αR
lj
α exp(iωkjt){nαδ(ωkl + ωα)

+ (n−α + 1)δ(ωkl − ω−α)}
}

(IV.174)

Now we make another approximation in the same spirit by keeping only the terms without
oscillating time factors. This is so called on-shell (or secular) approximation and can be under-
stood from the following – let us integrate both sides of Eq. (IV.174) over time T much shorter
compared to the timescale for a change of the density matrix but much larger compared to a
particular 1/ωij . Then on the right hand side only the exponential function is time dependent
and picking just one term from the sum we get

4ρ
4T

∣∣∣∣
α

=
ρij(T )− ρij(0)

T

∣∣∣∣
α

∝ 1
T

∫ T

0

exp(iωilt)}
{
∼ 1/ωilT ∼ 0, if ωil 6= 0,
= 1, if ωil = 0. (IV.175)

Therefore only the terms without explicit time dependent factors contribute to the derivative. In
the first term in Eq. (IV.174) only terms with l = i contribute, so we can replace the exponential
by the Kronecker delta δil. In the second term, unless there is regularity in the spectrum, a case
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we do not consider, there are two possibilities how the frequency in the exponential can be zero:
i = k and l = j, or i = j and l = k. Applying these results gives

∂tρij(t) = − π

~2

∑
α,k,l

|Dα|2

×
{
Rik

α R
kl
−αρlj(t)δil{n−αδ(ωkl − ω−α)

+ δ(ωkl + ωα)(nα + 1)}
− Rik

α ρkl(t)R
lj
−α(δikδlj + δijδkl){nαδ(ωlj + ωα)

+ (n−α + 1)δ(ωlj − ω−α)}
− Rik

−αρkl(t)Rlj
α (δikδlj + δijδkl){n−αδ(ωik − ω−α)

+ (nα + 1)δ(ωik + ωα)}
+ ρik(t)Rkl

−αR
lj
α δkj{nαδ(ωkl + ωα)

+ (n−α + 1)δ(ωkl − ω−α)}
}
. (IV.176)

We consider now the diagonal and non-diagonal terms separately. For the diagonal the result
can be written in the form

∂tρii(t) = −
∑
k 6=i

2Γikρii(t) +
∑
k 6=i

2Γkiρkk(t), (IV.177)

where

2Γij =
2π
~2

∑
α

|Dα|2|Rij
α |2{n−αδ(ωij + ω−α) + (nα + 1)δ(ωij − ωα)} (IV.178)

is the transition rate from state i to state j due to the perturbation of the system by phonons,
computed according to Fermi’s Golden rule: The rate is a sum of individual phonon contribu-
tions, where each one is proportional to the overlap between the two electron states through the
electron-phonon interaction potential. The energy is conserved – if ωij < 0 a phonon is absorbed,
providing the needed energy, while if ωij > 0, a phonon is emitted taking away the energy. Thus
Eq. (IV.177) says that a particular state is (de)populated by (out)in scatterings (to)from all other
states of the system. We note that terms with k = i canceled themselves.

For better understanding, we write the result for a non-diagonal density matrix element as-
suming ωα = ω−α which leads to nα = n−α:

∂tρij(t) = −γijρij(t)−

(
π

~2

∑
α

|Dα|2|Rii
α −Rjj

α |2(2nα + 1)δ(ωα)

)
ρij(t). (IV.179)

The first term describes the fact that the relaxation always contributes to the decoherence with
the rate

γij =
∑
k 6=i

Γik +
∑
k 6=j

Γjk. (IV.180)
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The second term in Eq. (IV.179) is specific only to the decoherence – in our model it is zero
due to the zero density of phonons at zero phonon energy [which is required by the term δ(ωα)].
However, if there would be a way for phonons to exchange energy (for example, with each
other, or with some energy reservoir) and phonon occupations would fluctuate, each phonon that
changes the energy of the states i and j differently (that is Rii

α − Rjj
α 6= 0) causes decoherence.

This is because such energy changes due to phonons appear as random shifts of the phases of the
two states.

Finally we note that from Eqs. (IV.178) and (IV.180) the results for high and low temperature
stated in Sec. B., Eq. (IV.45), follow. Indeed, considering two states, at temperature high enough
with respect to the energy difference of the states, the mean phonon occupation is high and
approximately n ≈ n+ 1. Then the emission and absorption rates are equal Γ12 = Γ21. We get
γ12 = 2Γ21, meaning T1 = T2. On the other hand, if the temperature is much lower than the
states energy difference, there are no phonons available, n ≈ 0 and the absorption process is not
possible, Γ12 = 0. From that we get T2 = 2T1.

G.3 Oscillating field in the rotating wave approximation

Derivation of the oscillating resonant field contribution to the time derivative of the electron
reduced density matrix, Eqs. (IV.118), due to the electron-field interaction, Eq. (IV.116), can
be done in the same way as the way we treated the electron-phonon interaction in the previous
section: We include the interaction V M , which in the interaction picture is

(V M )I =
∑
i,j

~Ωij |Φi〉〈Φj | exp(iωijt) cos(ωt)

=
∑
i,j

~Ωij |Φi〉〈Φj | exp(iωijt)[exp(iωt) + exp(−iωt)]/2, (IV.181)

into the interaction Hamiltonian V in the Liouville equation Eq. (IV.166). If we neglect terms rep-
resenting mixed phonon-microwave contributions, the phonons and microwave contribute sep-
arately and it is more suitable to go back to Eq. (IV.163) to get the part due to the microwave.
Inserting here Eq. (IV.181) and tracing over phonons, what now just changes ρT into ρ without
other consequences, we get

∂M
t ρij(t) =

∑
k

1
2

[−iΩikρkj(t) exp(iωikt) + iΩkjρik(t) exp(iωkjt)]

× [exp(iωt) + exp(−iωt)] . (IV.182)

We now once again use the approximation of keeping only the terms with the lowest frequency,
which is in this case called the rotating wave approximation, but is of the same nature as the
approximation described under Eq. (IV.172). Supposing the frequency of the oscillating field
is close to the energy difference of a particular pair of states a and b, we find that the off res-
onant terms are not influenced by the field, ∂M

t ρij = 0, if i, j /∈ {a, b} and the only non zero
contributions following from Eq. (IV.182) are those listed in Eq. (IV.118).
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V. Spintronics devices and materials

In a narrow sense spintronics refers to spin control of electronics. Say, flip a spin or turn on
magnetic field and the current stops flowing, ideally. Similarly, we would like a device which
would orient spin by passing a current or applying a gate voltage. In this way the spin would be
fully integrated with electronics and we could write, store and manipulate, as well as read the
information based on spin.

The goal is to make useful electronic devices that would enhance functionalities of the exist-
ing semiconductor technology. Thus far this goal has been elusive, although the field has gone
through immense progress keeping us optimistic about its potential. The case at hand is metal
spintronics, which has already revolutionized computer industry with a device based on giant
magnetoresistance. Earlier, hard-disk information stored in the magnetization of the grains of
the disk was read by the so-called anisotropic magnetoresistance effect: in a bulk ferromagnetic
conductor, due to the crystal anisotropy, the resistance of the conductor depends on the orienta-
tion of the magnetization of the ferromagnet. Resistance variations are typically rather small, of
a percent or so. As the magnetization beneath a read head changed, a small change in the current
was sensed.

The discovery of the giant magnetoresistance effect (GMR) by Binasch et al. (1989) and
Baibich et al. (1988) allowed to increase the density of the information stored in hard disks, lead-
ing to more than a hundredfold increase in their capacity. The idea is to increase the sensitivity
of the electrical current due to magnetization changes. The GMR effect occurs in ferromagnetic
layered nanostructures, such as the one shown in Fig. V.1. Two ferromagnetic layers sandwich
over a nonmagnetic conductor. If the magnetizations of the two layers are parallel, the resistance
is small, if they are antiparallel, the resistance is large. The relative change of the resistance is
called giant magnetoresistance.94 At room temperature the changes are typically about 10–50%,
with the upper values obtained in multilayer systems (Grünberg, 2001). Why is the resistance
different for the different relative orientations of magnetization? Take parallel magnetizations.
The spacer layer between the ferromagnets is a few nanometers thick. Electrons injected there
from one layer keep their spin orientation and can relatively easily continue to the second ferro-
magnetic layer. If the magnetizations are antiparallel, the injected electrons will be more likely

94The word giant refers to the magnitude of the effect: it is giant if the magnetoresistance change is more than about
10%. Nowadays the term refers to the specific magnetoresistance due to the difference in the parallel and antiparallel
magnetizations of the layers. Such a structure is also called a spin valve.

Fig. V.1. Scheme of a giant magnetoresistive (GMR) multilayer system. If the magnetizations of the
ferromagnetic layers are parallel (left), the current in the circuit is larger than in the case of antiparallel
magnetizations (right).
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Fig. V.2. Scheme of a tunnel magnetoresistive (TMR) element of the magnetic random access memory
(MRAM). The information is stored as the magnetization direction, left or right, in the free ferromagnetic
layer. The magnetization can be flipped by current induced magnetic field if electric current flows through
both the bit and the digit lines simultaneously. The information about the magnetization (bit) is read by
passing current through the three-layer tunnel junction formed by the two magnetic layers and the insulator
in between.

reflected from the second interface, due to the reduced density of states for that spin in the second
ferromagnet. This interface scattering increases the resistance of the antiparallel orientation.

Another important spin-valve-like effect is the tunneling magnetoresistance, discussed in
Sec. II.H.1. The physics is similar in description to GMR, although the transport is by tunneling
through a nonmagnetic insulating layer, not ballistic transport through a metallic nano-region. A
metallic TMR is being employed as a non-volatile magnetic random access memory (MRAM),
whose operating principle is shown in Fig. V.2. Non-volatility is crucial here: the information
about a memory element is stored in the magnetization configuration of the ferromagnetic layers;
this information need not be refreshed, nor does it disappear after the power is switched off.

Where does the semiconductor spintronics stand in terms of device applications? The most
sought for semiconductor spintronic device is spin transistor. Since there are many spin transis-
tors proposed, and only few convincingly demonstrated, it is too early to say in which direction
the field develops. Various designs have various advantages and disadvantages, but without ex-
perimental demonstrations theoretical proposals are hard to judge. We should also mention that
the word transistor is often liberally used to describe any three terminal device, without a prospect
for current amplification. Such devices can be useful for electrical injection or as spin valves, but
not for logic elements which require voltage controlled ON and OFF states with the ratio of the
electrical currents in these states of at least 1000 to 1.

Selected spin transistor schemes are shown in Fig. V.3. The most straightforward scheme
is a spin metal-oxide-silicon field-effect transistor (spin MOSFET), see (Sugahara and Tanaka,
2004, 2005). This device would act as a spin valve in the setting of a conventional field-effect
transistor. If the magnetizations of the ferromagnetic source and drain (also called emitter and
collector) are parallel, the transport channel is open (ON); if the magnetizations are antiparallel,
the channel is closed (OFF). This structure is yet to be demonstrated, in particular now that spin
injection into silicon has been demonstrated, see Sec. II.F.2.

The so-called Datta-Das spin transistor (Datta and Das, 1990), in Fig. V.3 b, uses spin-orbit
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Fig. V.3. (a) spin metal-oxide-silicon field effect transistor (spin MOSFET), (b) Datta-Das spin FET, (c)
Johnson’s spin-valve transistor, (d) a hot electron spin-valve transistor, and (e) magnetic bipolar junction
transistor.

coupling of the Bychkov-Rashba type for its operational principle. The source and drain are
ferromagnetic. The transport channel is a two-dimensional electron gas. The top gate, which in
conventional field-effect transistors controls the channel conductance, now controls the spin-orbit
coupling strength. Electrons injected with momentum parallel to the transport feel an effective
magnetic spin-orbit field transverse to that direction. The electrons’ spins then precess with a
single precession frequency, assuming a ballistic one dimensional transport. Depending on the
precession speed, the spin either precesses very little (or even multiples of π), in which case
the electron will enter into the drain (ON), or by π (or its odd multiples), in which case the
electron bounces back, increasing the channel’s resistance (OFF). The Datta-Das transistor has
not been demonstrated, although its conceptual simplicity and originality has been source of
much inspiration in the field. Different variants of the Datta-Das scheme have been proposed
(Schliemann et al., 2003; Bandyopadhyay and Cahay, 2004a).

The Johnson spin switch, shown in Fig. V.3 c, originally proposed as an all-metal Ohmic
transistor (but the physics is equally applicable to highly degenerate semiconductors) is based
on a spin-valve geometry in which the nonmagnetic layer offers an additional contact. This
structure offers little amplification, if any, since the base current would be similar in magnitude
to the collector current.95 The transistor works as follows: if the magnetizations of the two
ferromagnetic layers are parallel, the collector current flows as indicated, into the collector. If
the magnetizations are antiparallel, the collector current is opposite.

Hot electron spin transistors form a large class of devices, see (Žutić et al., 2004). These are

95As we will see later, the current amplification is defined as the ratio of the collector to the base current. In semicon-
ductor transistors this ratio is on the order of one hundred.



770 Semiconductor Spintronics

usually hybrid metal/semiconductor structures, offering again little potential for current ampli-
fication due to the large base current. Nevertheless, these devices offer huge magnetocurrents,
as well as practical ways to inject spin into semiconductors such as silicon, see Sec. II.F.2. In
the structure shown in Fig. V.3 d, the emitter is a nonmagnetic metal (Cu), while the collector
is a nonmagnetic semiconductor (GaAs). The base is formed by a ferromagnetic spin-valve:
NiFe/Cu/CoFe, after (van Dijken et al., 2003a). The base forms a Schottky barrier (Kittel, 1996)
with the collector. Electrons that tunnel from the emitter to the base are hot electrons (not ther-
malized to the Fermi level of the base). These electrons lose energy depending on the relative
orientation of the magnetizations in the spin valve. If the magnetizations are parallel, the en-
ergy loss is greater than for an antiparallel orientation. The loss of energy is directly reflected
in the collector current, since only the electrons of energy high enough to overcome the po-
tential Schottky barrier contribute to the collector current. This large spin filtering effect has
been demonstrated to give magnetocurrent (relative ratio of the collector current for parallel and
antiparallel orientation of the spin valve) exceeding 3000% (van Dijken et al., 2003b). An all-
semiconductor version of a hot electron spin transistor has also been proposed (Mizuno et al.,
2007).

Finally, the magnetic bipolar transistor (Fabian et al., 2002a; Flatté et al., 2003; Lebedeva and
Kuivalainen, 2003), depicted in Fig. V.3 e, is based on the conventional junction transistor design,
substituting ferromagnetic semiconductors in the active regions, say the base. This transistor al-
lows for spin-control of current amplification (Fabian et al., 2002a; Fabian and Žutić, 2004a)
due to spin-dependent tunneling across the emitter/base contact (called the depletion layer). Al-
though the diode version of the transistor (a single magnetic p-n junction) has been demonstrated,
the transistor is still a theoretical concept. We will discuss the physics of the magnetic bipolar
transistor in more detail below.

Other spintronic devices include a proposed scheme for reconfigurable logic (Dery et al.,
2007), a room temperature spin-transference device (Dery et al., 2006), electron spin resonance
transistor (Vrijen et al., 2000), a 2d channel spin valve controlled by ferromagnetic gates (Ciuti
et al., 2002), spin capacitor (Žutić et al., 2001a; Datta, 2005), spin Esaki diodes (Kohda et al.,
2001; Johnston-Halperin et al., 2002), spin lasers (Rudolph et al., 2003), unipolar magnetic
diodes (Flatté and Vignale, 2001), spin light-emitting diodes (Fiederling et al., 1999, 2003; Ohno
et al., 1999), field-effect magnetic switch (Ohno et al., 2000; Matsukura et al., 2002a), or spin-
flip or single electron spin-valve transistors (Brataas et al., 2006; Wetzels et al., 2005). In the
following section we describe in detail spintronic devices based on magnetic resonant tunneling.

In order to provide a balanced view, we also note that not all agree on the potential of cer-
tain classes of spintronics devices, see (Bandyopadhyay and Cahay, 2005, 2004b). Since at the
moment most devices are theoretical concepts, it is simply too early to say which schemes will
be practical, as well as which role and which functionalities will be played and taken over by
spintronic devices from the future semiconductor technologies.

Figure V.4 summarizes prospects for spin transistors as emerging electronic devices. The
chart was proposed by the influential International Technology Roadmap for Semiconductors,
produced by technology experts. Spin transistors appear at the tail, behind molecular transistors,
whose at least short-term prospects appear far less certain than those of spin transistors.96 It is
still gratifying to know that the spin transistor got into the chart at all.

96Figure out the risk for a combined molecular spin transistor! Risks should multiply.
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Fig. V.4. International Technology Roadmap for Semiconductors 2004 and 2005 evaluated prospects of
various emerging devices for electronics applications (Semiconductor Industry Association, 2004, 2005).
Spin transistors got into the chart, albeit at the last position, doomed most risky. The 2006 edition brought
no changes to the 2005 one (Semiconductor Industry Association, 2006). More info can be found on the
Roadmap web site, www.itrs.net.

In the following we describe two classes of semiconductor spintronic devices: magnetic
resonant tunneling diodes and magnetic bipolar diodes and transistors. The presentation of these
two classes reflects more the authors’ own interest than an attempt to pick the most perspective
devices. Nevertheless, both classes have been studied theoretically as well as experimentally,
allowing to nicely illustrate the nature and complexities of spintronic devices. We also include
a section on diluted magnetic semiconductors reviewing their properties as well as presenting a
mean field model to explain the occurance of ferromagnetism in certain classes of these materials
(such as GaMnAs).

A. Resonant tunneling diodes

A.1 Introduction

The realization of the anticipated advantages of spintronics needs an electrically controllable
creation, manipulation and detection of spin-polarized currents (Prinz, 1999; Wolf et al., 2001;
Gregg et al., 2002; Žutić et al., 2004; Ivanov et al., 2004). This requires in general that spin-
dependent transport processes can be modulated by external factors as applied gate voltages or
magnetic fields. A promising approach to tackle these tasks is to use stacked ultrathin layers of
the order of a few nanometers of both magnetic and nonmagnetic semiconductors. In such het-
erostructures the material properties are changing on the length scales comparable to the phase
coherence length of the carriers, i.e., on distances on which the carriers preserve the memory of
their initial wave function phase. Hence, quantum interference effects become important for de-
scribing the transport properties in the vertical growth direction of the structure. Typically, some
of the layers constitute energetic barriers for the incident carriers, which can only be overcome
by tunneling. In particular for double or multi-barrier structures very high transmission proba-
bilities up to unity can occur for some resonant energies; an effect which is known as resonant
tunneling. The magnetic layers in the structure cause a strongly spin-dependent transmission,
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since in magnetic semiconductors the spin degeneracy of the valance and conduction bands are
distinctly broken by an exchange or giant Zeeman field. 97 This spin splitting gives rise to an en-
ergy and spin selective resonant tunneling of the carriers through the structure, which effectively
allows for the realization of very efficient spin filters and spin detectors.

In view of possible device applications one can think of several desired properties, which
ideal magnetic layers should possess: the ferromagnetic order should remain even at high tem-
peratures well above room temperature; the exchange splitting of the bands should well exceed
the thermal energy kBT , where kB denotes the Boltzmann constant and T is the temperature; for
flexibility different magnetic materials with either a particle density dependent or a particle den-
sity independent ferromagnetic state should be available; the growing of high quality structures
with clean interfaces should be feasible; for the purpose of integration in existing technologies
close lattice-matching to common semiconductors is favorable; and in terms of mobility and spin
lifetime n-type conductivity usually appears advantageous. Luckily, nowadays magnetic semi-
conductors materials can already meet at least several of these criterions thanks to the tremen-
dously growing research interest and the achieved enormous progress in developing magnetic
materials in the last decade.

The current state of the art in spin-dependent transport in heterostructures shows that spin-
tronic devices based on resonant tunneling can be used to accomplish several different important
aims and functionalities necessary for future spintronic applications. They can be utilized as
(i) tunneling magnetoresistance (TMR)- or spin-valve devices, which exhibit high TMR-effects
even at higher applied biases, (ii) highly efficient spin injectors, which can produce a high de-
gree of spin-polarization, following different routes, e.g., all magnetic heterostructures, magnetic
interband or Zener tunneling resonant tunnel diodes (RTDs), coupled quantum wells, which com-
bine the resonant tunneling with the spin-blockade effect, or nonmagnetic RTDs exploiting the
spin-orbit coupling, (iii) electrically controllable spin switching devices by using a magnetic
quantum well, (iv) as spin-detectors, exploiting the energy- and spin-resolving spectroscopic
nature of resonant tunneling, and (v) as ultimate magnetoelectronic devices, in which the fer-
romagnetic order can be controlled by external voltages. In view of the progress of growing
high-quality structures and the invention and development of novel high Tc magnetic semicon-
ductors such band-engineered heterostructures appear to be a perfect playground for exploiting
the possibilities to utilize the carriers spin degree of freedom in semiconductor electronics. A
better understanding of the interplay of the transport and magnetic properties in low-dimensional
systems will enrich the functionalities of already known device concepts and inspire the invention
of novel magnetoelectronic devices.

In what follows we briefly discuss at first the basic physics of resonant tunneling in nonmag-
netic structures for both fully coherent and sequential tunneling. Transport in such conventional
nonmagnetic systems has been thoroughly investigated in the past. A detailed introduction to
resonant tunneling can be found for instance in the textbooks Ferry and Goodnick (1997); Datta
(1995) and a good collection of articles about the underlying physics and its possible applica-
tions is given in Chang et al. (1991); Mizuta and Tanoue (1995); Capasso (1990) and references
therein. The resonant tunneling diode (RTD) was actually one of the first realized quantum de-
vices (Tsu and Esaki, 1973) and its theoretical investigation considerably initiated the afterwards

97The effective electron g-factor can exceed 100 in magnetic semiconductors, which is giant compared to the free
electron value of g ≈ 2. This causes a giant Zeeman splitting ∆E = gµBB in external magnetic fields B with µB is
the Bohr magneton.
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rapidly growing interest in quantum transport. Quantum devices based on resonant tunneling are
technologically interesting due to their extreme high-speed (the intrinsic tunneling time is typi-
cally of the order of 100 femtoseconds) and low-power performance. The industrial large-scale
production, however, is a challenging task, since room temperature operation needs the growing
of high quality structures with reproducible device characteristics.

After the introductory discussion of conventional RTDs we describe how magnetic layers
can lead to a spin-dependent transmission. For this purpose we apply a mean field description of
the magnetism in thin dilute magnetic semiconductors (DMS) layers. Endowed with this basic
knowledge, we finally review the research on magnetic resonant tunneling structures done so far
and discuss possible spintronic device applications, describing in more detail the concept of a
magnetic monostable bistable logic element (m-MOBILE). Readers familiar with conventional
resonant tunneling can directly skip to Sec. B.

A.2 Theory of resonant tunneling

The striking quantum phenomena of tunneling refers to the possibility that quantum particles can
traverse regions, which are from a classical point of view energetically forbidden. Tunneling is
an intimate consequence of the wave properties of matter and the probabilistic interpretation of
the wave function. Quantum tunneling was already considered from the early days of quantum
mechanics in connection with the problem of field ionization of atoms and the nuclear decay
of alpha particles. Shortly thereafter, the concept of tunneling was firstly applied in solid state
physics to explain the field emission of electrons from metals into vacuum. A brief overview of
the history of tunneling can be found in Ferry and Goodnick (1997); Garcia-Calderon (1993).
Single barrier tunneling has found widespread applications. One of the most prominent is the
invention of the scanning tunneling microscope (STM), in which particles tunnel through a con-
trollable vacuum barrier and which made it possible to make images on an atomic scale.

In the case of tunneling through a single barrier of height V0, the energy-dependent transmis-
sion probability T (E), which is defined as ratio of the transmitted to the incident flux, decreases
exponentially with the barrier width W :

T (E) ∝ e−2W
√

2m(V0−E)/~, (V.1)

where m denotes the particle mass. When a second barrier of same width is added one might
intuitively suggest that, following Ohm’s law, the total resistance of the structure is just doubled.
This is indeed true if the region between the barriers is much larger than the de Broglie wave-
length of the electrons, which in semiconductors is typically of the order of 10-100 nanometers.98

However, if the middle region is only a few nanometers in width the carrier transport remains
phase-coherent and for some incident energies Em within a small energy range of width γ, the
particle is transmitted with a high probability, eventually up to one. This extraordinary enhance-
ment of the transmission probability is known as resonant tunneling. The physical explanation
is that the resonant energies correspond to the energies of the quasibound eigenstates of the

98It is rather the dephasing or decoherence length that determines the tunneling character. Typically an inellastic scat-
tering, in which energy is exchange with phonons or with other electrons, contribute to decoherence. Elastic scattering
off static impurities does not cause irreversible loss of phase, though it can change the tunneling properties.
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V0

W

Fig. V.5. Left: Tunneling through a single barrier; the wave function amplitude decreases exponentially
with the barrier thickness W and height V0. Right: Occurrence of resonant tunneling through a double
barrier structure when the energy of the incident electrons coincides with one of the discrete well state
energies.

quantum well formed by the double-barrier system. These states are not truly bound, because
electrons, which are localized in such a state, can leak out through the barriers with a finite
probability. Due to the uncertainty principle, the finite lifetime τ of the electron causes an un-
certainty in the energy ∆Eτ ≈ ~, which effectively leads to the broadening of the resonance
γ = ∆E ≈ ~/τ . The whole process of resonant tunneling can be understood as a constructive
interference between the waves leaking through the first barrier and the reflected waves of the
second barrier, similar to what happens to electromagnetic waves in a Fabry-Perot etalon. In a
more particle-like picture corresponding to wave packets an incident electron at resonant energy
tunnels through the first barrier, bounces then several times back and forth in the quantum well
in a way that adds up coherently, and finally tunnels out through the second barrier. The single
versus double-barrier tunneling process is schematically sketched in Fig. V.5.

In the pioneering work of Tsu and Esaki (1973) such double barrier structures were realized
by an epitaxial growth of alternating ultrathin films of two semiconductor materials with differ-
ent band gaps. Using GaAs as smaller band gap material and Ga1−xAlxAs as barrier with the
barrier height controlled by the molecular fraction x of Al, the conduction band profile of the lay-
ered structure exhibits sharp discontinuities at the heterointerfaces, effectively realizing a double
barrier structure as shown in Fig. V.6. Nowadays it is possible to grow well-controlled semicon-
ductor heterostructure layers with atomic precision due to the impressive advances in epitaxial
growth techniques such as molecular beam epitaxy (MBE) (Yu and Cardona, 2001). The double
barrier structure is usually surrounded by heavily doped layers, which provide low-resistance
emitter and collector contacts. To prevent diffusion of the dopants from the high doped regions
into the inner double-barrier structure usually also thin undoped buffer layers are included in ex-
periments. By attaching ohmic contacts to the whole structure an external bias can be applied to
the resonant tunneling diode (RTD). The N -shaped current-voltage (IV) characteristics exhibits
a region of negative differential resistance (NDR), which allows for interesting technological
applications such as high frequency oscillators, switching devices, or realization of simplified
digital logic circuits (Capasso, 1990; Chang et al., 1991; Mizuta and Tanoue, 1995).

This NDR-behavior of a RTD can be qualitatively easily understood if we recognize that
the electrons which are trapped between the two barriers exhibit a discrete energy spectrum
whose spacing increases if the confinement gets stronger, i.e., the quantum well width becomes
smaller. Let us assume, for simplicity, that the quantum well is thin enough that there is only one
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Fig. V.6. A double barrier structure realized by the epitaxial growth of a few nanometers thick planar layers
of AlGaAs and GaAs. By sandwiching the middle GaAs layer between two AlGaAs barriers a quantum
well is formed, in which conduction electrons become confined.
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Fig. V.7. Left: Typical current-voltage (IV ) characteristic of a resonant tunneling diode exhibiting a nega-
tive differential resistance (NDR) region. Right: Conduction band profile for different applied biases. Point
A (small applied voltages): current starts to flow through the resonant level when the resonant well level E0

is pulled down to the emitter’s Fermi energy Ef . Point B (peak voltage): the resonant well level coincides
with the emitter conduction band edge E0 = 0. Point C (NDR-regime): E0 < 0.

quasibound state in the energy range of interest as shown in Fig. V.7. With a positive bias Va

applied to the right (collector) lead the resonant energy level is lowered relative to the energy of
the incident electrons from the left (emitter) lead. In a first approximation one can assume that
the voltage drops linearly from the emitter to the collector side. The electrons in the left (emitter)
and right (collector) contact are considered to be always in thermal equilibrium which allows to
introduce chemical potentials µL, µR for both reservoirs and to describe the electrons distribution
by the Fermi-Dirac function. This means that at low temperatures incident electrons from the
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emitter with energies reaching from the bottom of the conduction band up to the Fermi energy
are available. However, since the RTD effectively acts as an energy filter only electrons with the
resonant energyE0 can transmit to the collector side if there are unoccupied states at that energy;
otherwise the electrons are blocked by the Pauli principle. By applying positive bias to the
collector the resonant level passes through the emitter’s Fermi energy and current starts flowing
(see point A in Fig. V.7). Increasing the bias leads to higher and higher current magnitudes.
However, at a certain voltage (the peak voltage) the resonant level becomes energetically aligned
with the bottom of the emitter’s conduction band as illustrated by point B in Fig. V.7. Further bias
pushes the resonant level E0 below this edge (depicted by point C in Fig. V.7), which suddenly
cuts off the supply of emitter’s electrons causing a sharp drop in the current and thereby leading
to the phenomenon of NDR.

A.3 Coherent tunneling

For the purpose of obtaining a more quantitative understanding of resonant tunneling and the re-
lated NDR-effect in semiconductor heterostructures we assume at first that the transport through
the structure is fully phase-coherent.99 This assumption allows to apply a wave function treat-
ment of the transport similar to what is done in the description of electromagnetic wave prop-
agation in planar layers of different permittivity. To emphasize the basic conceptual issues we
restrict our discussion here primarily to electrons in a parabolic conduction band, e.g., one can
think of the Γ-valley (k ≈ 0) electrons in GaAs. In the case of coherent transport between
two contacts the flowing current density can be obtained in general from the Landauer-Büttiker
formula (Landauer, 1957, 1970; Büttiker et al., 1985; Datta, 1995; Ferry and Goodnick, 1997)

j =
2e
h

∫
T̂ (E)[fL(E)− fR(E)]dE, (V.2)

where the factor 2 takes into account the spin degeneracy, e is the elementary charge, h =
2π~ is Planck’s constant, and fL,R are the electrons distribution function in the left and right
reservoir, which are usually assumed to be given by Fermi-Dirac functions. The single particle
transmission function T̂ (E) describes physically how likely a single electron of energy E can
transmit through the structure and is more rigorously defined as the sum over all transmission
probabilities Tn←m(E) of an electron starting in the input mode m and ending up in the output
mode n of the left and right leads, respectively, which connect the reservoirs with the structure
(Datta, 1995). As we will see below, in the specific case of planar heterostructures these lead
modes are easily identified with the plain wave electron states of fixed in-plane momentum q,
i.e., of a certain momentum component perpendicular to the growth direction. If we assume that
the in-plane momentum is conserved during the transport, which means that there is no scattering
from one lead mode to another, the transmission function can be written as

T̂ (E) =
∑
q′,q

Tq′←q =
∑
q′,q

δq′,q Tq(E) =
∑
q

Tq(E). (V.3)

This assumption is reasonable for elastic scatterers, which do not change the electron’s momen-
tum considerably, and as long as inelastic scattering processes are not important (which should

99In the coherent transport regime the phase of the wave function is preserved, which excludes inelastic scattering
processes, which randomize the particles’ phase.
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be actually the case to allow for a phase-coherent propagation).
The transmission function Tq(E) can be determined from the solution of the single-particle

Schrödinger equation if the electrons can be treated as independent coherently propagating quasi-
particles. This demands that the effect of electron-electron interactions is describable by an
effective single-particle potential, which, by following the approach of local density functional
theory, depends only on the local electron density. For simplicity we will include here only
the selfconsistent Hartree terms and neglect the exchange potentials or other electron-electron
correlations. The influence of the periodic lattice potential of the crystal on the electrons is treated
in the effective mass approximation. Under these assumptions the steady-state envelope function
ψ(r, z) of an single electron in the heterostructure can be determined from the Schrödinger-like
equation(

~2

2
∂

∂z

1
ml(z)

∂

∂z
+

~2

2mt
∇2

r + Veff(z)
)
ψ(r, z) = Eψ(r, z). (V.4)

Here, r is the in-plane or transversal position vector and z denotes the growth direction or what
we call the longitudinal direction, ml(z) is the longitudinal effective mass perpendicular to the
heterointerface, mt is the in-plane effective mass and E denotes the total energy. The kinetic
energy operator for the longitudinal motion takes into account the z-dependence of the longi-
tudinal effective mass and satisfies the requirement of being Hermitian. The effective potential
Veff(z) = Ui(z) + Uel(z) contains the intrinsic conduction band discontinuities Ui and the elec-
trostatic potential Uel(z), which depends on the fixed ionized impurity density and the electron
density profile in the structure. Since the effective potential varies only in the longitudinal di-
rection the in-plane motion of the electrons, which is of free electrons plane-wave type, can be
separated from the growth-direction dynamics, justifying a product ansatz for the envelope func-
tion: ψ(r, z) ∝ eiqrϕ(z). With this the lead input and output modes can be characterized by the
plane wave states eiqr and Eq. (V.4) can be reduced to an effective one-dimensional Schrödinger
equation for the growth direction motion(

~2

2
∂

∂z

1
ml(z)

∂

∂z
+ Veff(z)

)
ϕ(z) = Elϕ(z), (V.5)

where we introduce the longitudinal energy El = E − ~2q2/2mt = E − Et, which we always
measure in the following from the bottom of the emitter’s conduction band. From the definition
of the longitudinal energy it is evident that El is conserved during the transport if we assume
that the total energy and the in-plane momentum q are conserved and that mt is independent
of z. As we will see, these assumptions considerably simplify all further calculations, since the
transmission function Tq(E) = T (El) will only depend on the longitudinal energy, having no
explicit dependence on the in-plane momenta q.

According to our mean field approach for the electron-electron interaction the electrostatic
potential Uel = −eφ can be obtained from the Poisson equation

∂

∂z
ε(z)

∂

∂z
φ(z) =

1
ε0

[en(z)− ρimp(z)], (V.6)

where ε denotes the, in general, z-dependent static dielectric constant, ε0 is the permeability
of the vacuum, ρimp(z) is the fixed impurity charge density of the structure, and n(z) is the
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Fig. V.8. Illustration of the transfer matrix technique. The structure is divided along the growth direction
z into a sequence of n different layers [zi−1, zi] with constant effective masses mi and potentials Vi, i =
1, . . . , n. The total transfer matrix M connects the wave amplitudes of the incoming and reflected electrons
from the first layer (A1, B1) with those of the last layer (An, Bn).

electron density. The Poisson equation (V.6) is nonlinearly coupled to the envelope function
equation (V.5) via the particle density n[ϕ(z)], since the electron density profile of the structure
is established by occupying the energy-dependent scattering states ϕ(z) according to the distri-
bution functions of the electron reservoirs in the emitter and collector leads. Hence, the coupled
Schrödinger-Poisson system has to be solved in a selfconsistent way, which can be done itera-
tively by alternately solving both equations and using the solution of one equation as input for
the other, until convergence is reached.

In order to solve the Schrödinger equation (V.5) and to find the transmission function T (El)
we introduce here the transfer matrix technique, which is widely used in literature (Tsu and
Esaki, 1973; Vassell et al., 1983; Ricco and Azbel, 1984; Ferry and Goodnick, 1997). The
basic idea of the method is to divide the z-axis into a sequence of regions where the solution
can be obtained analytically. These local solutions are then composed to a global one by using
the continuity conditions of the wave function between the different regions. To illustrate the
method let us assume that we have n different layers with different effective masses mi and
constant effective potentials Vi in each layer as illustrated in Fig. V.8. The solution for each
individual layer zi−1 ≤ z ≤ zi can then generally be written as the sum of left and right moving
plane wave states

ϕi = Aiϕ
+
i +Biϕ

−
i = Aie

ikiz +Bie
−ikiz (V.7)

with ki =
√

2mi(El − Vi)/~ andAi, Bi denoting the amplitudes of right and left moving waves,
respectively. The continuity of the wave function demands,

ϕi(zi) = ϕi+1(zi) (V.8)

and the conservation of the probability current leads to,

1
mi

d

dz
ϕi(zi) =

1
mi+1

d

dz
ϕi+1(zi). (V.9)
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These relations between neighboring layers can be rewritten in matrix form,

Ui(zi)
(
Ai

Bi

)
= Ui+1(zi)

(
Ai+1

Bi+1

)
, i = 1, . . . , n− 1 (V.10)

with the matrix

Ui(z) =
(

ϕ+
i ϕ−i

1
mi

(ϕ+
i )′ 1

mi
(ϕ−i )′

)
(V.11)

where the prime denotes the derivative with respect to z. Starting with i = 1, Eq. (V.10) allows
to express the transition amplitudes of the second layer as a function of the amplitudes of the
first one, C2 = U−1

2 (z1)U1(z1)C1, using the vector notation Ci = (Ai, Bi). The matrix M1 =
U−1

2 (z1)U1(z1) is called a transfer matrix between the first and second region since it connects
the corresponding amplitudes. Repeating successively this procedure for i = 2, . . . , n−1 finally
allows to correlate the amplitudes of the last layer with those of the first one:(

An

Bn

)
= M

(
A1

B1

)
, (V.12)

where we have introduced the composed transfer matrix,

M = U−1
n (zn−1)Un−1(zn−1)U−1

n−1(zn−2) . . . U2(z2)U−1
2 (z1)U1(z1) =

∏
i=1,n−1

Mi. (V.13)

Hence, the total transfer matrix can be composed by the individual transfer matrices Mi just by
using conventional matrix multiplications.

The amplitudes C1 are determined by the boundary conditions of the Schrödinger equation.
For instance, if we assume only impinging electrons from the left we can setA1 = 1 andBn = 0.
Using the relationCn = MC1 leads toB1 = −M21/M22 withMij denoting the matrix elements
of M . The knowledge of the first layer amplitudes C1 allows to successively calculate all other
layer amplitudes (C2 = M1C1, C3 = M2C2, . . .), constructing in this way the envelope function
throughout the whole structure.

The transfer matrix connects the left and right amplitude coefficients of the structure. This
representation is not unique and it is often more convenient to connect the incoming and outgoing
amplitudes by the scattering matrix(

B1

An

)
= S

(
A1

Bn

)
=
(
r t′

t r′

)(
A1

Bn

)
. (V.14)

The S-matrix is a natural representation for scattering problems, since the diagonal elements
are given by the reflection amplitudes r and r′ for waves coming from the left and right hand
side of the sample, respectively, and the off-diagonal elements are related to the wave transmis-
sion amplitudes t and t′. This physical interpretation of Sij becomes immediately evident by
recognizing that the outgoing amplitudes can be always composed by reflected and transmitted
parts of incoming wave amplitudes of electrons impinging from the same and opposite side, e.g.,
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(B1 = S11A1 + S12Bn = rA1 + t′Bn). By using Eqs. (V.14) and (V.12) the transfer matrix can
be also expressed in terms of these wave amplitudes

M =
(
t− r′(t′)−1r r′(t′)−1

−(t′)−1r (t′)−1

)
. (V.15)

It should be noted that for the general case ofN incoming channels the amplitudesA1, B1, An

and Bn become complex vectors of length N and the transmission and reflection amplitudes are
replaced by N × N matrices. The elements of the transfer matrix are not independent due to
the flux conservation and other physical symmetries. For instance, for symmetric structures time
reversal symmetry leads to the relation t = (t′)T , where the superscript T denotes transposition
of the matrix. In the simple one-dimensional case, as considered here, this simplifies to t = t′

confirming the intuitive expectation that the transmission amplitude is the same for left and right
incident electrons of equal energy, since the left-moving electron follows the time-reserved tra-
jectory of the right moving one.

If the transmission matrix is known, the single particle transmission function T (El) can be
easily obtained as follows. Physically the transmission function is defined as the ratio of the
transmitted to the incident probability flux of a particle: T = ftrans/finc. Similarly, the reflec-
tion coefficient is defined by R = frefl/finc with frefl denoting the reflected probability flux.
Conservation of the total particles flux demands that T + R = 1. The incident probability flux
is given by the squared wave amplitude times the group velocity of the incident electron, which
we assume here to impinge from the left, finc = |A1|2~k1/m1, and the reflected and transmitted
fluxes are accordingly determined by frefl = |B1|2~k1/m1 and ftrans = |An|2~kn/mn. With
these definitions the transmission function reads as

T (El) =
knm1|An|2

k1mn|A1|2
. (V.16)

By applying the corresponding boundary conditions of left incident electrons (A1 = 1, Bn = 0)
and by using the relation Cn = MC1 we obtain

An =
detM
M22

A1. (V.17)

The determinant of the transfer matrix results in detM = k1mn/knm1, since one easily finds
det[Ui(zi)U−1

i (zi−1)] = 1 and det[U−1
n (zn−1)U1(z1)] = k1mn/knm1, which can be easily

verified by using the explicit expressions for M and Ui stated in Eq. (V.13) and (V.11), respec-
tively. With this the transmission function can finally be written as

T (El) =
k1mn

knm1

1
|M22|2

. (V.18)

An important point to note here is that the transmission function can also be defined as the
squared current transmission amplitude T = |t̃|2. The current transmission amplitude t̃ is related
to the wave transmission amplitude t, which we have introduced in the definition of the S-matrix
in Eq. (V.14), by t̃ = tL→R

√
vR/vL, where vL, vR are the left and right side group velocities.

The renormalized scattering matrix based on current amplitudes, S̃ij = Sij

√
vi/vj , has the
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Fig. V.9. Energetics of a model tunnel diode at applied bias. Left: Contour plot of the local density of states
of electrons versus energy and growth direction z. Bright regions correspond to high densities and dark to
small ones. The first two quasibound states in the quantum well and their energetic broadening is clearly
visible. The conduction band profile is indicated by the white solid line. Right: Transmission probability
of the electrons as a function of the incident electrons energy. Resonant tunneling T (E) ≈ 1 occurs at the
well state energies. Near resonance the transmission function can be described in good approximation by a
Lorentzian profile according to the Breit-Wigner formula.

advantage of being unitary due to current flux conservation (Ferry and Goodnick, 1997). With
this it follows that T (E) = (vR/vL)|t|2, which is consistent with our previous results Eq. (V.18)
and Eq. (V.15) by taking into account that t̃ = t̃′ and, hence, t′

√
vL/vR = t

√
vR/vL according

to time reversal symmetry.
In order to investigate the basic physics of resonant tunneling we apply these general results

to the special case of a double barrier structure. The typical appearance of the transmission
function versus the electron’s incident energy is illustrated in the right plot of Fig. V.9 showing
its strongly “spiky” characteristic, whereas the left plot of Fig. V.9 displays the local density of
states of the conduction electrons, in which the forming of quantum well states and their energetic
broadening become clearly apparent. Since such a double-barrier structure consists of two single
barriers in series we can calculate the total transmission matrix M by using the composition law
M = M2M1, where M1 and M2 are the transfer matrices of the first and second single barrier.
Using the general expression given in Eq. (V.15) the composed transmission amplitude t results
in

t =
t1t2

1− r′1r2
, (V.19)

where ti, ri and r′i denote the amplitudes of the single barriers i = 1, 2. The transmission
function is given by the squared current transition amplitude

T (El) =
vR

vL
|t|2 =

T1T2

1− 2
√
R1R2 cos(θ) +R1R2

(V.20)

with T1 = vw/vL|t1|2, T2 = vR/vw|t2|2 with vw denoting the group velocity in the well, Ri =
|ri|2 = |r′i|2, i = 1, 2 and θ is the phase of r′1 + r2. The phase shift θ corresponds to the
phase acquired by the electron when it makes one round-trip between the two barriers, which
means that the electron is reflected once from each barrier before transmitting the structure. The



782 Semiconductor Spintronics

analytical form of the transmission function T1, T2 for the single barriers is easily obtained from
the transfer matrix technique (Ferry and Goodnick, 1997) showing an exponential dependence
on the barrier widthW , as stated in Eq. (V.1), in the limit of thick and/or high barriersWkb � 1,
where kb =

√
2m(V0 − E)/~.

The expression, Eq. (V.20), for the composed transmission function of the double barrier
structure can be further simplified if we assume, as is normally the case, that T1, T2 � 1, and
consequently the reflection coefficients are of the order of unity, R1, R2 ∼ 1:

T (El) =
T1T2

(1−
√
R1R2)2 + 2

√
R1R2(1− cos θ(El)]

≈ T1T2

[(T1 + T2)/2]2 + 2[1− cos θ(El)]
. (V.21)

Resonance occurs when the denominator becomes very small, which means that θ is a multiple of
2π. At resonance Tres = 4T1T2/(T1 + T2)2, which approaches unity for the case of symmetric
barriers T1 = T2. In the off-resonant case, T ≈ T1T2/4, indicating that the double barrier
behaves as two independent barriers. Close to the resonance, El = E0, we can further simplify
Eq. (V.21) by performing a Taylor series expansion of the cosine function

1− cos[θ(El)] ≈
1
2

[θ(El)− 2nπ]2 ≈ 1
2

(
dθ
dEl

∣∣∣∣
E0

)2

(El − E0)2. (V.22)

This yields the well-known Breit-Wigner-formula for the transmission function near the reso-
nance,

T (El) ≈
γ1γ2

(El − E0)2 + [(γ1 + γ2)/2]2
(V.23)

where

γi =
dEl

dθ

∣∣∣∣
E0

Ti, i = 1, 2. (V.24)

Historically, the Breit-Wigner-formula was first derived in studying the decay of resonant states
in nuclear problems and is often also written in the form,

T (El) =
γ1γ2

γ1 + γ2
A(El − E0) (V.25)

with the Lorentzian function

A(ξ) =
γ

ξ2 + (γ/2)2
, γ = γ1 + γ2. (V.26)

This analytical expression shows that the transmission function is sharply peaked around the
resonant energy E0 and that its broadening is determined by γ, which corresponds to the full
width at half maximum (FWHM) of A(ξ). Physically γ1/~ and γ2/~ represents the rate at
which an electron leaks out of the quantum well through barrier 1 and 2, respectively. To make
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this more plausible one can roughly approximate the acquired round-trip phase by θ ≈ 2kwa,
where kw is the longitudinal momentum of the electron in the quantum well and a is the width
of the well. Hence,

γi

~
=

1
~

dEl

dθ

∣∣∣∣
E0

Ti ≈
1

2a~
dEl

dkw

∣∣∣∣
Er

Ti =
vw

2a
Ti, (V.27)

where vw is the group velocity of the electron in the quantum well at the resonant energy level.
The attempt frequency vw/2a tells us the number of escape attempts of the electron per second
through a single barrier when the electron bounces forth and back in the quantum well. Mul-
tiplying the attempt frequency by the transmission probability of the single barrier gives us the
rate of successful escapes of the electron per second. Hence, the lifetime of the electron is given
by the inverse of the total escape rate γ/~ = (γ1 + γ2)/~. Since γ is the FWHM of the reso-
nant transmission peak this again leads to the general result that the energetic broadening of the
quasibound state E0 is inversely proportional to the lifetime of the electron in this state.

If the transmission function is known the current density can be calculated by using the
Landauer-Büttiker formula, Eq. (V.2). In the case that the transmission depends only on the
longitudinal energy, as considered here, Eq. (V.2) results in

j =
4πem

(2π)3~3

∫ ∞
0

dElT (El)
∫ ∞

0

dEt[fL(El, Et)− fR(El, Et)], (V.28)

where we have rewritten the summation over the in-plane momentum q in the usual integral
form,

T̂ (E) =
∑
q

Tq =
S

(2π)2

∫
dqxdqyT (El) (V.29)

with S denoting the cross sectional area of the structure, and transforming to the longitudinal and
transversal energy as integration variables. Assuming Fermi-Dirac distributions in the leads

fL,R =
1

1 + exp[(El + Et − µL,R)/kBΘ]
, (V.30)

where µL,R are the chemical potentials in the left and right lead (µR = µL − eVa), Θ denotes
the reservoir temperature to avoid confusion with the transmission T , and kB is the Boltzmann
constant, the integration over the transversal energy is easily evaluated to give the Tsu-Esaki
formula (Tsu and Esaki, 1973):

j =
emkBΘ
2π2~3

∫ ∞
0

dElT (El) ln
(

1 + exp[(µL − El)/kBΘ]
1 + exp[(µR − El)/kBΘ]

)
. (V.31)

The logarithmic term is the so-called supply function which determines the energy interval of
interest. The range of electron energies, which can contribute to the total current, is restricted
to the energy window between the left and right chemical potentials [µR, µL] plus/minus several
kBΘ due to the thermal smearing of the Fermi-Dirac functions in the leads. The dominant
contributions to the current integral are given by the resonant peaks of the transmission function.
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If we assume that there is only one single transmission peak in the energy range of interest and
that T (El) is very sharply peaked aroundE0 due to thick and/or high barriers we can approximate
its Lorentzian form by a Dirac-Delta function by using the asymptotic limit

δ(El − E0) =
1
2π

lim
γ→0

A(El − E0). (V.32)

With this approximation the current density results in

j =
e

~
γ1γ2

γ
kBΘD0 ln

(
1 + exp[(µL − E0)/kBΘ]
1 + exp[(µR − E0)/kBΘ]

)
, (V.33)

where we have introduced the constant density of states of a two-dimensional (2D) electron gas
D0 = m/π~2. In the special case of zero temperature, Θ = 0, this further simplifies to the
expression

j =
e

~
D0

γ1γ2

γ
[µL − E0(Va)], 0 < E0 < µL, (V.34)

where the voltage dependence of the current is “hidden” in the voltage-dependent resonant energy
level E0(Va), which is shifted energetically downwards by the applied bias Va. If we assume,
in a first approximation, that the voltage is equally divided between the barriers the voltage
dependence of the resonant level can be explicitly written as E0(Va) = E00 − eVa/2 with
E00 = E0(Va = 0) denoting the resonant level position when no bias is applied. Equation (V.34)
shows that the current initially increases linearly with the applied voltage, reaching its peak value

jp =
e

~
D0

γ1γ2

γ
µL (V.35)

when the resonant level approaches the bottom of the emitters conduction band (E0 = 0) at the
corresponding peak voltage of eVp = 2E0. At higher voltages the quasibound state becomes
off-resonant causing a sudden cutoff of the current, as long as no other higher lying resonant
level is pulled down into the energy window of interest.

A.4 Sequential Tunneling

In our discussion of resonant tunneling so far we assumed that inelastic, phase-breaking scat-
tering processes are negligible, which enables us to apply a wave function treatment of the
underlying electron transport. However, if scattering is important the electrons will lose their
phase memory during propagation and the transport becomes incoherent. In this case one can
use the sequential tunneling model introduced by Luryi (1985). In a sequential tunneling process
electrons tunnel through the first barrier, reside some time in the quantum well where they lose
coherence by phase-randomizing scattering processes and, finally, tunnel out through the second
barrier by a second uncorrelated tunneling process. The regime of sequential tunneling can be
characterized by the condition τphγ � ~ saying that the lifetime ~/γ of the electrons in the
quantum well is much greater than the phase breaking time τph.

As argued by Luryi, NDR generally follows from the reduction of the dimensionality as the
electrons tunnel from a three dimensional Fermi sea in the emitter to a 2D electron gas in the
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Fig. V.10. Schematic explanation of the occurrence of negative differential resistance (NDR) caused by the
tunneling from a 3D Fermi sea to a 2D electron gas in the quantum well according to Luryi (1985). Only
those electrons from the 3D emitter Fermi sea with conserved longitudinal momentum (kz = k0), which
are indicated by the dark disk, can tunnel through the resonant level E0. As the applied bias V increases
the resonant level and the disk move downwards. The current and the corresponding disk area increases
linearly until the equatorial plane is reached (or equally E0 is pushed down to the emitter’s conduction
band edge). Further bias cuts off the electrons supply from the Fermi sea giving rise to a sharp drop in the
IV -characteristics.

quantum well. Assuming an energy and in-plane momentum conserving tunneling process leads
to the constraining condition El = ~k2

z/2m = E0, where E0 is the energy of the resonant
level in the well, measured from the bottom of the emitter conduction band. Therefore, only
electrons with the fixed longitudinal momentum kz = k0 =

√
2mE0/~ can tunnel from the

emitter Fermi sea into the quantum well, as illustrated by the shaded disk in Fig. V.10. As the
bias is increased the shaded disk moves downwards, leading to an linear increase of the disk area
and correspondingly of the current proportional to µL − E0. The maximum current is reached
at the equatorial plane k0 = 0. If E0 < 0 no resonant tunneling from the emitter into the
well is possible anymore, which leads to an abrupt drop of the current giving rise to NDR. This
explanation shows that for the occurrence of NDR it does not matter if the electrons propagation
is coherent or not.

To calculate the current in the sequential tunneling regime we can use a master equation
approach, since the in- and out-tunneling processes become uncorrelated. For this purpose, we
introduce a single particle distribution function fα for the electron states |α〉 in the quantum
well. The states |α〉 = |m,q〉 are characterized by the in-plane momentum q of the electrons
and the subband index m, which enumerates the well quasibound states starting from the ground
state m = 0. In real-space representation the state |α〉 reads 〈r, z|α〉 ∼ eiqrφm(z), where
φm(z) is the quasibound wave function. In the leads the electrons occupy plane-wave Bloch
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states, shortly denoted by |k〉. With these definitions the master equation for the quantum well
distribution function reads as

∂fα

∂t
=
∑
jk

Γj
αkf

j
k(1− fα)− Γj

kαfα(1− f j
k), (V.36)

where f j
k denotes the electron distribution function in the left and right lead (j = 1, 2 = L,R)

and Γj
α←k denotes the transition rate from state |k〉 in the lead j to the state |α〉 in the quantum

well. The physical meaning of the two terms on the right hand side of Eq. (V.36) is easily un-
derstood. The first term is the gain term which describes the tunneling of the electrons from the
leads into the quantum well state |α〉 by taking into account the Pauli blocking factor (1 − fα),
whereas the second term describes all loss processes due to tunneling out of the state |α〉. The
transition rate Γj

kα can be calculated by using the transfer Hamiltonian approach (Bardeen, 1961;
Harrison, 1961; Duke, 1969), which was first developed for describing single barrier tunneling
and has been extensively used in the context of transport in superconducting tunnel junctions. In
the case of single barrier systems the basic idea of the method is to represent the total Hamil-
tonian of the system by H = HL + HR + HT , where HL and HR describes the Hamiltonian
of the left and right subsystem and HT is the tunneling Hamiltonian describing the transport
between the two subsystems. The main advantage of the method is that if the coupling between
the two subsystems is weak, HT can be treated as a perturbation term, which allows to use per-
turbative techniques developed in many-body theory. In our case of a double barrier structure the
total Hamiltonian consist of three subsystems: the emitter HL, the well Hw, and the collector
HR Hamiltonian, which are connected by two tunneling Hamiltonians Hj

T for the left and right
barrier:

H = HL +HR +Hw +HL
T +HR

T . (V.37)

Assuming a free electron gas in the emitter and collector the corresponding Hamiltonians read

HL,R =
∑

k

EL,R
k c+k ck, (V.38)

and the well Hamiltonian is given by

Hw =
∑
α

Eαc
+
α cα, (V.39)

with ck, cα and c+k , c
+
α denoting the annihilation and creation operators of the leads and well

states, respectively. The energies, EL,R
k = (~kt)2/2m + (~kz)2/2m + UL,R, and Eα =

Em + (~q)2/2m + Uw, include the electrostatic energies of the reservoirs UL,R and the well
Uw. By measuring the energy from the conduction band edge of the emitter it follows that
UL = 0 and UR = −eVa. The electrostatic potential of the well Uw depends on the space charge
density in the structure, and has to be calculated in general in a selfconsistent way. The tunneling
Hamiltonians are formulated in the standard form,

Hj
T =

∑
α,k

tjαkc
+
α ck + h.c., (V.40)
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where h.c. abbreviates the hermitian conjugate of the first term and tjαk are the tunneling matrix
elements. If we assume that the leads are weakly coupled to the well, the tunneling Hamiltonian
can be treated as a perturbation term and the transition rates between the well and the lead states
follow from Fermi’s golden rule, which gives in first order

Γj
kα =

2π
~

∣∣∣〈k|Hj
t |α〉

∣∣∣2 δ(Eα − Ek) =
2π
~

∣∣∣tjkα

∣∣∣2 δ(Eα − Ek). (V.41)

By assuming that the in-plane momentum is conserved during the tunneling process this becomes

Γj
kα =

2π
~
|tjm(kz)|2δkt,qδ(Eα − Ek). (V.42)

with the kz-dependent tunneling matrix element tjm(kz), which physically corresponds to the
overlap of the lead and well wave function in the barriers and is given by Bardeen’s formula
(Bardeen, 1961):

tjm(kz) =
~2

2m

[
ψj

kz
(z)

d
dz
φ∗m(z)− φ∗m(z)

d
dz
ψj

kz
(z)
]

z=z0

. (V.43)

Here, ψj
kz

is the longitudinal part of the lead wave function, which is exponentially decaying in
the barrier regions, the superscript ∗ denotes complex conjugation, and the expression has to be
evaluated at some point z0 inside the jth barrier-region.

The total leaking rates from a certain quantum well state |α〉 = |m,q〉 through the left and
right barriers into the leads are defined by

γm
1

~
=

∑
k,kz<0

Γ1
kα,

γm
2

~
=

∑
k,kz>0

Γ2
kα, (V.44)

which by using Eq. (V.42) is readily simplified to

γm
j =

m1/2L
√

2~2
√
Ej

m

|tjm(kj
m)|2, Ej

m =
~(kj

m)2

2m
= Em + Uw − Uj . (V.45)

with L denoting the length of the leads. With these definitions and by exploiting the microscopic
reversibility of the tunneling processes Γj

kα = Γj
αk, the master equation Eq. (V.36) can be written

in the form

∂fα

∂t
=
∑

j

γm
j

~
[
f j(Eα)− fα

]
, (V.46)

If we now assume, as before, that fj are given by Fermi-Dirac distributions and that there is only
one resonant level E0 in the energy range of interest we can obtain a simple rate equation for the
quantum well particle density, which is defined by

n =
∑
α

fα. (V.47)
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Summation of the master equation over all well states α = |0,q〉 yields the rate equation

dn
dt

=
γ1

~
n1 +

γ2

~
n2 −

γ

~
n (V.48)

with

nj =
∑
α

fj(Eα) = D0kBΘ ln{1 + exp[(µj − E0)/kBΘ]}, (V.49)

and γj = γ0
j , γ = γ1 + γ2. The steady state particle density n0 follows from the condition

dn/dt = 0, which by using Eq. (V.48) results in

n0 =
γ1n1 + γ2n2

γ
. (V.50)

This expression confirms the naive expectation that at steady state the quantum well has to es-
tablish a “compromise” between the opposing efforts of equilibrating with both leads at the
same time and, hence, the particle density becomes a balanced sum of the lead particle densities
weighted according to the coupling strengths to the particle reservoirs. At steady state the current
is constant throughout the whole structure, since from the particle continuity equation it follows
that dn/dt = ∇ · j = dj/dz = 0. Therefore, it does not matter at which z-point the current
density is evaluated, and calculating the current at the first barrier yields

j0 = e
γ1

~
(n1 − n0) =

e

~
γ1γ2

γ
(n1 − n2)

=
e

~
γ1γ2

γ
kBΘD0 ln

(
1 + exp[(µL − E0)/kBΘ]
1 + exp[(µR − E0)/kBΘ]

)
, (V.51)

which is exactly the same result as we get for the coherent model in Eq. (V.33) in the limit
of a delta-like resonant level. This limit is physically reasonable, since in order to apply the
transfer Hamiltonian formalism we had to assume that the well is only very weakly coupled to
the reservoirs and accordingly the electrons can stay a long time in the well before they tunnel
out. A long lifetime in the well corresponds to only a very narrow energetic broadening of the
quasibound states resulting in a delta-like resonance.

At first glance it appears surprising that the sequential and coherent tunneling models give
essentially the same values for resonant currents, although the underlying physical pictures are
very different. In particular the peak current of the IV-characteristic has been shown to be in-
sensitive to scattering (Weil and Vinter, 1987). This conclusion can be justified by using a more
general model that includes both a coherent and sequential part of the tunnel current (Jonson and
Grincwaijg, 1987; Stone and Lee, 1985; Datta, 1995), showing that scattering processes effec-
tively lead to an additional broadening of the resonant level. This broadening hardly influences
the total current density, bearing in mind that the current, as shown in Eq. (V.31), is proportional
to the folding integral of the transmission function with the supply function. In contrast to the
peak current, the off-resonant valley current depends strongly on the presence of inelastic scat-
tering processes. In the coherent model such processes are completely ignored and there is no
simple way to include scattering terms into the Schrödinger equation. This is actually the reason
why the coherent model predicts valley currents, which are usually much smaller than what is
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observed in experiments, and the theoretical results overestimate the peak to valley ratio (PVR),
which is an important figure of merit for technical applications of RTDs. Although it is possible
to include inelastic scattering processes in the sequential tunneling model by adding additional
scattering terms on the right hand side of the master equation (V.36),100 a proper treatment of in-
coherent quantum transport needs the introduction of single-particle quantum distribution func-
tions as formulated in the density matrix, Wigner function or non-equilibrium Greens functions
approach (Frensley, 1990; Datta, 1995; Ferry and Goodnick, 1997). The latter has become most
popular nowadays, where scattering is included by self-energy terms (Lake et al., 1997), which
can be evaluated perturbatively by diagrammatic techniques. In the framework of these advanced
formulations, the coherent and sequential model can be understood as two extreme limit cases of
completely phase conserving and phase randomizing transport regimes in the well.

A.5 Space charge effects and bistability

The fixed ionized impurities and the free carrier charge density stored in the well give rise to
an electrostatic potential profile in the structure, which might considerably differ from the linear
voltage drop considered so far. The free electron density due to the electron flux from the left
and right contacts is determined by occupying the scattering states φL,R(kz) according to the
electron distributions in the contacts,

nL,R(z) =
2

(2π)3

∫
dkt

∫ ∞
0

dkz|φL,R(kz, z)|2fL,R(kt, kz). (V.52)

The scattering states are determined from the Schrödinger equation (V.5) by using the boundary
conditions of left and right incident plane waves, respectively. If we again assume that fL,R are
given by Fermi-Dirac functions we can easily perform the integration over the transverse motion,
which yields

nL,R =
D0kBΘ

2π

∫ ∞
0

dkz|φL,R(kz)|2 ln{1 + exp[(µL,R − Ez)/kBΘ]}. (V.53)

As already discussed, using a mean-field approach for the electron-electron interaction allows
to calculate the electrostatic potential profile from the Poisson equation (V.6), which couples via
Eq.(V.53) to the Schrödinger equation (V.5). Hence, one needs to find a selfconsistent solution of
the Schrödinger-Poisson system, which is usually obtained iteratively by solving both equations
alternatively until convergence is reached (Ohnishi et al., 1986; Cahay et al., 1987; Brennan,
1987; Pötz, 1989). For the boundary conditions local charge neutrality is assumed in the asymp-
totic contact regions far away from the tunneling region, which leads to flat conduction bands
beyond certain points in the lead. These points can be used to define the boundaries of the active
system, where the interior solution is matched to the plane-wave states of the contacts.

The space charge effects lead to several important changes in the potential profile and con-
sequently in the IV-characteristic of RTD. A characteristic result for the conduction band profile
obtained from a selfconsistent calculation is shown in Fig. V.11. Typically a substantial fraction
of the bias already drops outside of the double barrier structure, which resembles in some sense

100For instance one can introduce in a first approach a simple relaxation time approximation for the scattering term:
(fα − f0)/τrel, where f0 is an equilibrium distribution and τrel denotes the scattering relaxation time.
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Fig. V.11. Contour plot of the local density of states of the conduction electrons for a model tunnel diode
at applied bias. Bright (dark) areas correspond to high (low) densities. The solid white line indicates
the selfconsistent conduction band profile, illustrating the forming of a potential notch at the emitters side
(starting at around≈ 18 nm) at higher applied voltages. As can be seen a substantial fraction of the applied
voltage already drops in the emitter and collector lead regions.

a series resistance effect. Therefore, the peak current is reached at a higher applied voltage as
found in non-selfconsistent simulations. Most interestingly, at higher voltages a potential notch
is formed on the emitter side of the double barrier structure as shown in Fig. V.11. The quantum
confinement in triangular-like well profile of the notch leads to the occurrence of quasibound
notch states, where electrons can become trapped. This leads to the forming of an accumulation
layer adjacent to the tunnel barrier. The contribution to the total current due to tunneling out
of the notch states is not taken into account in the above considered transport model, since the
trapping of electrons in these states requires some sort of inelastic scattering processes. Again,
a quantitative treatment of describing the injection from the emitter quasibound states needs ad-
vanced formalisms based on quantum distribution functions (Klimeck et al., 1995).

Another striking consequence of including space charge effects is the occurrence of intrinsic
bistability in the IV-characteristic due to the charge storage of free electrons in the quantum well
(Goldman et al., 1987; Mains et al., 1989), as illustrated in Fig. V.12. For increasing voltages
free charges pile up in the well, causing a negative electrostatic well potential which pushes the
resonant level to higher energies as compared to the case when no electrons would be stored in
the well. This causes different peak voltages for increasing and decreasing voltages. The well
is charged in the case of an up-sweep of the applied voltage shortly before the resonant state
becomes off-resonant, i.e., when it drops below the emitters conduction band edge. Whereas for
the down-sweep the well is almost uncharged before the quasibound state becomes resonant. This
causes a higher peak voltage for increasing than for decreasing voltages leading to a hysteresis
loop in the IV-characteristics in the NDR-region. In practical experiments, however, there is
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Fig. V.12. Left: schematic illustration of the occurrence of an intrinsic bistability in the IV curve of a
RTD. The peak voltage in the case of an up sweep of the applied voltage (case A) is higher than for the
down-sweep (case B), since in case A charges are piled up in the quantum well, which pushes the resonant
level to higher energy values as compared to an almost empty well (case B). Right: The conduction band
profile and the relative position of the resonant well level for both cases (A and B) at the peak voltage of
the voltage up-sweep.

a great difficulty to separate this predicted intrinsic bistability due to the charge storage in the
well from external measurements circuits effects when the RTD is driven into the unstable NDR-
regime. Nevertheless, convincing observations are possible by using asymmetric barriers which
emphasizes the effect (Zaslavsky et al., 1988).

B. Diluted magnetic semiconductor heterostructures

So far we discussed resonant tunneling in double barrier structure made of planar layers of non-
magnetic semiconductors only. In order to attain a spin-dependent transmission it is a fairly
straightforward idea to use heterostructures, in which one or several layers are made of magnetic
semiconductors as illustrated in Fig. V.13. In ferromagnetic materials the spin up and down states
of the valence and/or conduction band are appreciably split in energy. This makes, e.g., tunnel-
ing through a single magnetic barrier already spin selective, because electrons with different spin
components experience unequal tunnel barrier heights and, hence, the tunneling probability of
one spin type is exponentially suppressed compared to the other. Spin filtering becomes even
more efficient in a double barrier structure with a magnetic quantum well, where spin split quasi-
bound states are formed. For instance, pulling one spin-resolved state down to off-resonance,
it means below the emitter’s conduction band edge, by an applied voltage, while the other spin
state is still resonant, would allow to create highly spin-polarized currents. The phenomenology
of spin-dependent transport becomes further enriched in triple barriers structures with two mag-
netic quantum wells. In such structures, resonant tunneling only occurs if the spin-split resonant
levels of both wells are energetically aligned as well as they correspond to the same spin state. In
the case that the aligned adjacent well levels belong to different spin states, the current becomes
blocked; a phenomenon which is known as the spin-blockade effect. These simple examples
of magnetic barrier systems give a first impression of how band-structure engineered magnetic
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Fig. V.13. Spin filtering in heterostructures made of magnetic semiconductors. The magnetic layers have
colored background. (a) Single magnetic barrier with different barrier heights for spin up and down elec-
trons. Here, the tunneling of the spin up electrons is exponentially suppressed. (b) Double barrier structure
with magnetic quantum well, in which the well states become spin split. Spin filtering is achieved by
bringing one spin level to off-resonance, while the other remains in resonance. (c) Spin blockade effect in
coupled magnetic quantum wells. Resonant tunneling occurs only if the adjacent well states are energeti-
cally aligned and are of the same spin type.

heterostructures can open up a whole plethora of novel opportunities for controlling and tuning
the spin-dependent magneto-transport properties in low dimensional semiconductor systems.

B.1 Diluted magnetic semiconductors

For a long time few magnetic semiconductors have been known, e.g., europium based chalco-
genides (e.g. EuO) (Kasuya and Yanase, 1968), or Cr-based spinels (e.g. CdCr2Se4) (Baltzer
et al., 1965; Park et al., 2002b). This changed substantially with the discovery of diluted mag-
netic semiconductors (DMSs) in the 1980s (Furdyna, 1988; Dietl, 1994). DMSs are made mag-
netic by doping with transition metal elements. The dopants are substituted more or less ran-
domly on the host crystal sites where they introduce local magnetic moments. It turns out that
manganese dopants are especially appropriate for this purpose, since they provide well defined
high spin S = 5/2, Mn2+ local moments and appear to alter the band structure of the host crys-
tal only very weakly. First mainly Mn-doped II-VI semiconductor compounds, e.g., CdMnSe,
CdMnTe, ZnMnSe, or ZnMnTe, made of group II and VI elementary semiconductors have been
investigated. Since Mn exhibits the same valence (s2) as the cations of the host they are easily
incorporated on the cation sites. The Mn moments can be aligned by relatively weak magnetic
fields, which causes a giant Zeeman splitting of the carriers bands of the order of tens of meV
leading to a rich variety of magneto-optical and magneto-electrical effects. However, most of
the II-VI compounds remain in a paramagnetic state; long range ferromagnetic order, if any,
usually only occurs at very low temperatures [here, ZnCrTe constitutes an interesting exception
being ferromagnetic up to room temperature (MacDonald et al., 2005)]. A breakthrough in the
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research for DMSs was the discovery of ferromagnetism in Mn-doped III-V semiconductors in
the 1990s, first in InMnAs (Ohno et al., 1992; Munekata et al., 1989) and then in GaMnAs (Ohno
et al., 1996; Ohno, 1999; Matsukura et al., 2002b). In the nowadays prototypical Ga1−xMnxAs
compound the transition temperature reaches values well above 100 K, when heavily doped with
Mn. [The current reported record lies at 173 K (Jungwirth et al., 2005)]. The key difference
to II-VI DMSs is that in III-V hosts the Mn acts at the same time as an acceptor introducing
holes in valence band. The ferromagnetic order only appears if the doping and the correspond-
ing hole density is high enough. The low equilibrium solubility of Mn in GaAs is overcome by
non-equilibrium, low temperature MBE, allowing for doping densities of about x ≈ 5 − 10%
and hole densities of about p ≈ 1−3×1020 cm−3. Together with theoretical predictions of pos-
sible room temperature ferromagnetic transition temperatures in other doped III-V compounds
(Dietl et al., 2000) these findings initiated an enormously growing research interest in ferromag-
netic DMSs. The theoretical predictions and the experimental properties of bulk ferromagnetic
III-V compounds have been reviewed by several authors (Jungwirth et al., 2006; Dietl, 2002;
MacDonald et al., 2005; König et al., 2003; Dietl, 2007).

For a significant practical impact, however, magnetic semiconductors are required which
exhibit transition temperatures well above room temperature and can be simply incorporated
into semiconductor electronics. Due to the considerable research efforts in the last years there
have already been several experimental reports on above room temperature ferromagnetism in
different classes of semiconductors when doped with transition metals, e.g., in wide band gap
III-V semiconductors (GaN, GaP), in III-IV-V2 chalcopyrites (CdGeP2, ZnSnAs2), in the group
IV semiconductors (Ge, Si) or in some oxide semiconductors (ZnO, TiO2). A discussion of
promising spintronic materials and criterions for an ideal ferromagnetic semiconductor are given
in the review articles (MacDonald et al., 2005; Pearton et al., 2003b,c; Ivanov et al., 2004; Felser
et al., 2007). In Tab. V.1 we present a selection of important candidates with their reported Curie
temperatures and transport properties, including references to more detailed review papers. The
ongoing progress has substantially expanded the list of possible magnetic semiconductors, but
the current understanding of the ferromagnetism in these new materials is far from complete.
The challenge of finding the optimal magnetic semiconductor is an exciting, still open question
in current material research.101

B.2 Mean field model of ferromagnetism in heterostructures

In order to understand how the transport and magnetic properties become closely intertwined in
ferromagnetic heterostructures, we discuss here a minimal mean field approximation of the Zener
model of the ferromagnetism in the most prominent DMS GaMnAs, following the treatments of
Refs. (Das Sarma et al., 2003b) and (Lee et al., 2000) for the bulk and spatially inhomogeneous
case, respectively. In GaMnAs the Mn ions substitutionally replace Ga at the cation sites and
act simultaneously as acceptors in the ideal case, as shown in Fig. V.14(a). The provided Mn

101There are encouraging results that DMS nanostructures, such as Mn-doped quantum dots have desirable materials
properties (Mackowski et al., 2004; Leger et al., 2006; Holub et al., 2004; Govorov, 2005; Abolfath et al., 2007a). The
interplay of strong Coulomb interactions and quantum confinement can lead to the onset of magnetization at temperatures
much higher than in their bulk counterparts (Fernandez-Rossier and Brey, 2004; Holub et al., 2004; Abolfath et al.,
2007b). Such quantum dots could provide a versatile control of magnetism including switching the magnetization on and
off by the gate voltage at fixed number of carriers in the absence of applied magnetic field (Abolfath et al., 2007c).



794 Semiconductor Spintronics

Tab. V.1. Selection of important semiconductor spintronic materials (FM abbreviates ferromagnetism).

Material Tc [K] Comments References
II-VI Diluted Magnetic Semiconductors
ZnCrTe ∼ 300 recent findings show that FM is caused

by the formation of Cr-rich metallic
nanocrystalls embedded in a Cr-poor
matrix

(Saito et al., 2003; Kuroda
et al., 2007; MacDonald et al.,
2005)

CdTe, ZnSe,
CdSe, CdS

∼ 1 n-doping at most 1019 cm−3, p-doping
difficult; paramagnetic phase with giant
Zeeman splitting of bands

(Furdyna, 1988; Dietl, 1994)

III-V Diluted Magnetic Semiconductors
InMnAs 35 p-type, first reported III-V DMS (Ohno et al., 1992; Pearton

et al., 2003b; Schallenberg
and Munekata, 2006)

GaMnAs < 170 p-type, p ≈ 1020 − 1021 cm−3, pro-
totype of carrier mediated ferromagnet,
Mn acts as an acceptor

(Ohno et al., 1996; Jungwirth
et al., 2006; Dietl, 2002; Mac-
Donald et al., 2005; König
et al., 2003; Dietl, 2007)

InGaMnAs 110 p-type (Pearton et al., 2003b)
GaMnN 10-940 mostly n-type, n ≈ 1019 cm−3 at 300

K, p-doping with most common Mg ac-
ceptor is limited up to 1018 cm−3 at
room temperature due to deep acceptor
levels; mean field theory not very accu-
rate, role of electrons in stabilization of
ferromagnetism is not clear

(Pearton et al., 2003b,a; Liu
et al., 2005; Sasaki et al.,
2002; Overberg et al., 2001;
Thaler et al., 2002)

GaMnP > 300 p-type, p ≈ 1020 cm−3, Tc suppressed
for n-type GaP substrates, nearly lattice
matched with Si

(Pearton et al., 2003b,d;
Theodoropoulou et al., 2002)

Group IV Ferromagnetic Semiconductors
MnxGe1−x ≈ 100 Tc depends linearly on Mn concentra-

tion, hole mediated exchange, p-type
with p ≈ 1019 − 1020 cm−3

(Park et al., 2002a)

Si:Mn > 400 ion implantation of Mn, both n- and p-
doping, saturation magnetization is de-
creased for n-type samples, MnSi ex-
hibits a quantum phase transition at low
temperatures resulting in a non-Fermi
liquid behavior

(Bolduc et al., 2005; Pflei-
derer et al., 1997)

Table V.1 continues on the next page.
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Table V.1

Material Tc [K] Comments References
Magnetic Oxide Semiconductors
ZnMnO 30-425 transparent films, mainly p-type but n-

type doping possible
(Pearton et al., 2003b; Liu
et al., 2005; Pearton et al.,
2003c; Fukumura et al., 2005;
Sharma et al., 2003)

Zn(Co)O > 300 n-type; films are transparent, FM might
not be carrier induced and is predicted
without need of additional charge car-
riers

(Ueda et al., 2001; Pearton
et al., 2003b; MacDonald
et al., 2005; Sluiter et al.,
2005; Xu et al., 2006b)

(Co)TiO2 > 300 can be made n-type (n ≈ 1019 cm−3),
experimental reports of forming of Co
nanocluster

(Pearton et al., 2003b; Mat-
sumoto et al., 2001; Fuku-
mura et al., 2005; Champers
et al., 2003)

Chalcopyrites (II-IV-V2)
CdMnGeP2,
ZnMnGeP2,
ZnMnSiGeN2,
ZnMnSnAs2

> 300 exhibit interesting non-linear optical
properties useful for applications, both
n- and p-type conductivity were re-
ported, first principle calculations iden-
tified a small set of promising chal-
copyrites exhibiting lattice-matching
with common semiconductors

(Pearton et al., 2003b;
Medvedkin et al., 2000; Er-
win and Žutić, 2004; Picozzi,
2004; Cho et al., 2002)

Concentrated Magnetic Semiconductors
Cr-chalcogenide spinels (CdCr2Se4,CdCr2S4, etc.)
CdCr2Se4 < 130 n-type, reasonably lattice matched with

Si and GaP (≈ 1.7% tensile mismatch)
(Baltzer et al., 1965;
Kioseoglou et al., 2004;
Park et al., 2002b)

Eu-chalcogenides (EuSe, EuS, EuO)
EuO < 100 thoroughly investigated in the 1960s,

used as FM barriers in tunneling struc-
tures

(Kasuya and Yanase, 1968;
Moodera et al., 2007)

moments couple to holes by an on-site exchange interaction due to the overlap of the hole wave
functions with the d-orbitals of the local Mn electrons. If the concentration of dopants is high
enough a long range ferromagnetic state among the local moments is established by the itinerant
holes; a mechanism which is usually denoted as carrier mediated ferromagnetism and which is
schematically sketched in Fig. V.14(b). Such a ferromagnetic state, which is tuneable by the car-
rier density, is especially interesting for magneto-electronic applications, since the carrier density
in semiconductors can be simply modulated by external electric fields. The electrical control of
ferromagnetism has already been demonstrated for high gate voltages in a field effect transis-
tor structure comprising a conduction channel made of InMnAs (Ohno et al., 2000). Moreover,
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Mn

Mn

Mn Mn

Mn

(a) (b)

Fig. V.14. (a) Zincblende lattice structure of GaMnAs. In the ideal case Mn substitutes for Ga at the
lattice sites (MnGa) acting as an acceptor and providing a local magnetic moment S = 5/2. The hole
density is usually heavily compensated by antisite and interstitial defects (MnI). Reprinted figure with
permission from T. Jungwirth, J. Sinova, J. Mašek, J. Kučera, and A. H. MacDonald, Rev. Mod. Phys.
78, 809 (2006). Copyright (2006) by the American Physical Society. (b) Schematic illustration of carrier
mediated ferromagnetism. The itinerant holes (blue circles) couple antiferromagnetically to the local Mn-
moments via the exchange interaction due to the overlap of the hole wave function with the d-orbitals of
the local Mn electrons. For high enough hole densities a long range ferromagnetic order is established. The
bordered boxes illustrate the flipping of a local Mn-moment caused by the kinetic exchange interaction with
a passing-by hole.

the phase coherence length in GaMnAs nanowires and rings was experimentally demonstrated
to be of the order of 100 nm at low temperatures, although the typical mean free path of holes
in metallic GaMnAs is only of the order of a few lattice constants (Wagner et al., 2006). This
remarkable finding is of particular importance for resonant tunneling diodes or other interference
device applications, whose functioning rely on a coherent particle propagation. The analysis of
the observed universal conductance fluctuations as shown in Fig. V.15 for a nanowire of 400 nm
diameter revealed a T−1 dependence of the dephasing time.

The strong kinetic exchange coupling between the holes and the Mn spins, which proves to be
antiferromagnetic in Ga1−xMnx As, is the basic physical mechanism underlying the occurrence
of ferromagnetic order. Usually the hole density p is a small fraction (of the order of 10%)
of the magnetic dopant density, since the holes become heavily compensated by both antisite
defects, which means that As is bound at a Ga site, and interstitial defects (i.e. Mn settles down
on an interstitial site) (Bouzerar et al., 2005). These defects act as double donors, delivering
two free electrons. The local Mn moment density ni is usually also smaller than the total Mn
concentration in the crystal host, because the presence of the unavoidable interstitial defects
lowers the density of magnetically active Mn ions. In the spirit of presenting here a minimal
model we neglect all band structure effects and assume a single parabolic band of the holes with
a constant effective mass. Actually, it has been shown (Dietl et al., 2000) that including the band-
structure allows to understand the anisotropy effects in GaMnAs, e.g., the orientation of magnetic
easy axis or the influence of strain. Therefore it has been argued that in relatively disorder-free
metallic systems (x > 5%) the ferromagnetism is mediated by valence band holes. However, it
has been also suggested, particulary in the metal-insulator-transition regime, that the extended
hole states of the impurity band are responsible for the establishment of the ferromagnetic order.
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Fig. V.15. Magnetoresistance of a GaMnAs ring with a diameter of 400 nm and a ring width of 40 nm. The
inset displays a top view of the ring. At temperatures below 200 mK reproducible resistance fluctuations
emerge due to long hole phase coherence lengths of the order of 100 nm. To demonstrate the reproducibility
of the observed resistance oscillations the 30 mK trace is shown for an up (blue line) and down sweep
(dashed black line) of the magnetic field B. Reprinted figure with permission from K. Wagner, D. Neumaier,
M. Reinwald, W. Wegscheider, and D. Weiss, Phys. Rev. Lett. 97, 56803 (2006). Copyright (2006) by the
American Physical Society.

Indeed, very recent experiments have shown strong evidence that impurity band holes play a
major role, challenging the standard model for GaMnAs based on valence band holes (Burch
et al., 2006). This newly flared up debate about which type of holes mediate the ferromagnetic
order points out again that our current understanding of DMSs, even in the most prominent
GaMnAs, is not complete. With these open questions in mind the simple parabolic effective mass
approximation for the holes is a good starting point to understand at least the typical features of
DMSs.102

In the Zener model of ferromagnetism the exchange interaction between the impurities and
the holes is described by the contact kinetic exchange Hamiltonian

HKE =
∫

d3r
∑

j

JpdSj · s(r)δ(r−Rj) =
∑

j

JpdSjs(Rj), (V.54)

where Jpd is the p-d coupling strength between the impurity spin Sj located at Rj and the local
hole spin density s(r). In the simplest mean field approach both the action of the spin hole

102Here we do not consider the temperature dependence of carrier density which can significantly modify the magnetic
phase diagram (Petukhov et al., 2007).
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density on a single magnetic impurity and the action of the magnetic impurities on the local spin
density can be expressed in terms of effective mean fields.

We first discuss the effect of the holes on a single local impurity. Following mean field theory
(Ashcroft and Mermin, 1976), the effective Hamiltonian for the local manganese impurity reads
as

Hi
KE,eff = Jpd〈sz〉Sz, (V.55)

where 〈sz〉 is the mean hole spin density with z labeling the direction of the spontaneous magne-
tization of the spins. In planar heterostructures 〈sz〉 depends in general on the growth direction,
which we denote in the following by ξ to avoid confusion with the spin quantization axis z. The
relative simplicity of the mean-field model also allows to account for the direct Mn-Mn antifer-
romagnetic (AF) exchange interaction among the impurities themselves, which can be described
in general by a Heisenberg spin Hamiltonian of the form,

HAF =
∑
ij

JAF
ij Si · Sj . (V.56)

Usually the contribution of this AF coupling is much smaller than that of kinetic exchange cou-
pling because the AF coupling strength JAF

ij decays rapidly with the distance between the ions
and for the typical doping densities x � 1 the magnetic ions are separated from each other by
several nonmagnetic atoms. According to the relative weakness of the direct Mn-Mn exchange
coupling, we will in the following consider its effect only for the bulk case, but neglecting it for
inhomogeneous problems. By singling out one of the ions and replacing the polarizations of all
others by a mean value 〈Sz〉, we get the additional effective Hamiltonian,

HAF
eff = zAFJ

AFSz〈Sz〉, (V.57)

where we take into account only the nearest neighbor interactions described by a single coupling
constant JAF and an effective number of surrounding magnetic impurities zAF. If we introduce
an effective magnetic field Bi

eff acting upon a single magnetic impurity given by,

Bi
eff =

Jpd

giµB
〈sz〉+

JAF zAF

giµB
〈Sz〉, (V.58)

the total effective Hamiltonian can be now rewritten in the form

Hi
eff = giµBSB

i
eff , (V.59)

with S = 5/2 being the Mn spin, gi the Mn g-factor, and µB the Bohr magneton. The param-
agnetic response of the impurity spin to this effective field at the temperature T is then given by
the expression (Ashcroft and Mermin, 1976)

〈Sz〉 = SBS

(
SgiµBB

i
eff

kBT

)
, (V.60)

where the Brillouin function BS(x) is defined by

BS(x) =
2S + 1

2S
coth

2S + 1
2S

x− 1
2S

coth
1

2S
x. (V.61)
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The expression, Eq. (V.60), together with the effective magnetic field given by Eq. (V.58) couples
the mean fields of both the impurities 〈Sz〉 and of the holes 〈sz〉.

In order to calculate the effect of the magnetic ions on the itinerant carriers (in our case
holes), we proceed in an analogous way by rewriting the kinetic exchange Hamiltonian (V.54) in
a mean field form,

Hc
eff = Jpd

∫
d3r

∑
j

〈Sz〉sz(r)δ(r−Rj). (V.62)

Comparing this mean field hole Hamiltonian with

Hc
eff = gcµB

∫
dr3sz(r)Bc

eff(r), (V.63)

where gc denotes the g-factor of the holes, the action of the impurities can again be expressed in
terms of an effective magnetic field given by

Bc
eff(r) =

Jpd〈Sz〉
gcµB

∑
j

δ(r−Rj). (V.64)

If we furthermore assume that the randomly distributed magnetic ions are dense in the in-plane
(i.e. in the plane perpendicular to ξ) of the heterostructure on a scale given by Fermi wave vectors
of the free holes, we can apply a continuum limit,∑

j

δ(r−Rj) ≈ ni(ξ). (V.65)

where the volume density of magnetically active ions ni can be experimentally controlled during
the growth of the structure. In this way we get rid of the necessity to take care of the concrete
random impurity distribution, greatly simplifying the theoretical treatment. The continuum limit
corresponds to a virtual-crystal approximation for the positional disorder of the Mn-atoms.

In the effective magnetic field, Bc
eff , caused by the polarized impurities the holes experience

a spin-dependent kinetic exchange potential,

Hpd =
σ

2
hpd(ξ) =

σ

2
gcµBB

c
eff =

σ

2
Jpd〈Sz〉(ξ)ni(ξ) (V.66)

with σ = ±1 corresponding to the spin up (sz = 1/2, ↑) and down state (sz = −1/2, ↓). Fol-
lowing spin density functional theory, the dynamics of the holes can be described by an envelope
function equation (Jungwirth et al., 1999) completely analogous to the previously discussed case
of electrons in Sec. A.3, Eq. (V.4). But since the holes experience now different potentials de-
pending on their spin state, we have to consider two equations, one for each component of the
hole spinor wave function ψσ(ξ). Assuming plane wave motion of the holes in the in-plane of the
structure and parabolic bands, the problem can be again reduced to an effective one-dimensional
Schrödinger equation similar to Eq. (V.5),(

~2

2
∂

∂ξ

1
ml(ξ)

∂

∂ξ
+ Veff(ξ)− σ

2
hpd(ξ)

)
ψσ(ξ) = El,σψσ(ξ), (V.67)
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with Veff including the band offsets, the electrostatic potential due to the hole and ionized impu-
rity density, and eventually the spin-dependent hole exchange correlation potential. By inserting
the mean field results for 〈Sz〉 given by Eq. (V.60) and for the effective magnetic field acting on
the impurities Bi

eff , stated in Eq. (V.58), into Eq. (V.66), the kinetic exchange potential becomes

hpd(ξ) = Jpdni(ξ)SBS [JpdS(n↑ − n↓)s/kBT ], (V.68)

where we neglected the weak direct AF coupling between the Mn impurities and we used the
relation 〈sz〉 = s(n↑ − n↓) with s = 1/2 denoting the hole spin. Since the spin densities nσ(ξ)
have to be calculated by a summation over the hole spinor envelope functions ψσ(ξ) analogous
to Eq. (V.52), both the kinetic exchange potential and the Poisson equation for the electrostatic
potential are coupled to the Schrödinger equation (V.67).

In the framework of the spinor envelope function description also the effect of the giant Zee-
man splitting, which appears especially in paramagnetic DMSs layers when an external magnetic
field B is applied, is easily included. The magnetic field aligns the manganese spins leading to
a mean polarization 〈Sz〉 of the ions, where the z-axis now corresponds to the external magnetic
field direction. Due to the Zener exchange interaction the Mn-polarization induces again an ef-
fective magnetic field acting on the carriers Bc

eff = Jpd〈Sz〉ni/gcµB as given by Eq. (V.66).
In paramagnetic DMSs both the s-like conduction and p-like valence bands can exhibit a giant
Zeeman splitting depending on the relative strength of the corresponding coupling coefficients
Jsd and Jpd for electrons and holes, respectively. Typically the splitting is several times larger
for holes than for electrons (Brandt and Moshchalkov, 1984). In literature the effective magnetic
field is usually written in the phenomenological form

Bc
eff = N0αxeff〈Sz〉/gcµB = N0αxeffSBS

[
SgiµBB

kB(T + Teff)

]
, (V.69)

where N0α is the so-called sp-d exchange integral, 103 xeff denotes the effective manganese con-
centration, and the effective temperature Teff takes into account that the direct antiferromagnetic
interaction of the Mn-impurities counteracts a parallel Mn-spin alignment. The Zeeman field
leads to a spin-splitting of the carriers bands introducing an additional spin-dependent potential
in the hole Hamiltonian of Eq. (V.67)

HZeeman =
σ

2
gcµBBeff =

σ

2
geffµBB, (V.70)

where we introduced an effective giant g-factor given by

geff =
gcN0αxeff

B
SBS

[
SgiµBB

kB(T + Teff)

]
. (V.71)

This discussion shows that mean field theory allows to describe the transport properties of
magnetic heterostructures made of both ferromagnetic and paramagnetic DMSs by a closed,
coupled set of a few physically transparent equations: (i) the spinor Schrödinger equation (V.67),

103It is believed that the s-d coupling between s-like conduction band electrons and electrons localized in the d-shell of
the Mn impurities is ferromagnetic in the bulk but there are experimental reports of finding antiferromagnetic coupling
in heterostructures (Myers et al., 2005).
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(ii) the Poisson equation (V.6), and (iii) the spin-dependent potentials given by Eqs. (V.68) and
(V.70). It is straightforward to solve these equations numerically in a selfconsistent way (Lee
et al., 2000; Ganguly et al., 2005). However, one should be aware that in such a mean field
model the dynamic correlations between the spins are completely neglected and its application
is mostly feasible due to the relative simplicity of the model.

B.3 Curie temperature in the bulk and in a magnetic quantum well

The mean field description allows a qualitative insight into the anticipated phenomena occurring
in magnetic heterosystems. In particular, it allows to derive an explicit analytic expressions for
the collective Curie temperature of a magnetic quantum well. However, before discussing this
spatially inhomogeneous system it is elucidating to derive at first the Curie temperature for the
simpler bulk case. In the bulk all mean fields are homogenous, which means that we can ignore
any ξ-dependence in the above derived mean field expressions. For temperatures closely below
the Curie temperature the effective fields are weak and we can linearize Eq. (V.60) using the first
order expansion of the Brillouin function, BS(x) ≈ (S + 1)x/3S, which yields

〈Sz〉 =
S(S + 1)

3
giµBB

i
eff

kBT
. (V.72)

Analogously we can linearize the relationship between the spin hole density and the effective
magnetic field acting on the holes,

〈sz〉 =
∂〈sz〉
∂Bc

eff

Bc
eff = χsB

c
eff , (V.73)

by introducing the spin susceptibility χs = ∂〈sz〉/∂Bc
eff . Inserting the mean field results for

both effective magnetic fieldsBi
eff andBc

eff , given in Eqs. (V.58) and (V.64), into Eqs. (V.73) and
(V.72), and combining the results, yields the selfconsistent equation for the mean ion magnetiza-
tion, defining the Curie temperature Tc:

〈Sz〉 = 〈Sz〉
S(S + 1)

3
1

kBTc
(J2

pd

χs

gcµB
ni + JAF zAF ). (V.74)

The Curie temperature in the bulk immediately follows as

kBTc =
S(S + 1)

3
(J2

pd

χs

gcµB
ni + JAF zAF ). (V.75)

The hole spin susceptibility can be expressed in terms of the magnetic Pauli susceptibility χm =
∂M/∂B = gcµBχs, with M denoting the hole magnetization. In the case of a degenerate hole
gas at thermal equilibrium, χm is proportional to the hole density of states at the Fermi energy
D(Ef ) (Ashcroft and Mermin, 1976):

χm = (gcµBs)2D(Ef ). (V.76)

Hence, the equilibrium bulk Curie temperature results in

kBTc =
S(S + 1)

3
[
J2

pdnis
2D(Ef ) + JAF zAF

]
, (V.77)
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leading to the important conclusion that Tc is controllable by the hole density p since D(Ef ) ∝
p1/3. Moreover, Tc depends quadratically on the coupling constat, which indicates that high
transitions temperatures are most likely in p-type materials, since the p-d coupling for holes is
usually much stronger than the s-d coupling of the electrons.

In the inhomogeneous case of a narrow magnetic quantum well the above derivation for the
bulk can be generalized as follows (Lee et al., 2000). Let us assume that the quantum well is
narrow enough that only the first hole subband of the quantum well is occupied by holes. The
kinetic exchange potential given by Eq. (V.66) leads to a rigid spin splitting of the subband. Since
the effective field Bc

eff or, equivalently, the Mn polarization 〈Sz〉 can be considered to be weak
just below the Curie temperature, we can calculate the spin-dependent subband energies εσ by
applying first order perturbation theory:

εσ = 〈φ0|Hpd|φ0〉 =
σ

2

∫
dξJpdni(ξ)〈Sz〉(ξ)|φ0(ξ)|2, (V.78)

denoting by |φ0〉 the unperturbed lowest subband envelope function which depends on the ap-
plied bias. Hence, the subband splitting ∆ results in

∆ = ε↓ − ε↑ = Jpd

∫
dξ ni〈Sz〉|φ0|2. (V.79)

Since we assumed that only the first well subband is occupied by holes, it is reasonable that the
profile of the spin hole density nσ(ξ) is proportional to the normalized envelope functions ψσ(ξ)
of the spin-split subband,

nσ(ξ) = Nσ|ψσ(ξ)|2,
∫
|ψσ(ξ)|2dξ = 1, (V.80)

where we introduced the two-dimensional quantum well densities Nσ ,

Nσ =
∫
nσ(ξ)dξ. (V.81)

If we approximate the spin up and down wave functions in zeroth order by the unperturbed
ground state, ψ↑(ξ) = ψ↓(ξ) = φ0(ξ), the ξ-dependent spin density can be written as

〈sz〉(ξ) = s(N↑ −N↓)|φ0(ξ)|2 = 〈s2D〉|φ0(ξ)|2, (V.82)

where we have defined the 2D spin density of the quantum well, 〈s2D〉 = s(N↑ − N↓). Close
to Tc we can assume a linear relationship between 〈s2D〉 and the band splitting ∆, analogous to
Eq. (V.73) in the 3D bulk case:

〈s2D〉 =
∂〈s2D〉
∂∆

∆ = χ2D∆, (V.83)

introducing the 2D-spin susceptibility, χ2D = ∂〈s2D〉/∂∆. Hence, by using Eq. (V.79), the spin
density profile results in

〈sz〉(ξ) = χ2D|φ0(ξ)|2∆ = χ2D|φ0(ξ)|2Jpd

∫
dξ′ ni(ξ′)〈S〉(ξ′)|φ0(ξ′)|2. (V.84)
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In order to obtain a selfconsistent equation from which one can obtain the Curie temperature,
we use the linearized mean field expression for the Mn-polarization 〈Sz〉 given by Eq. (V.72),
and insert the explicit form of the effective field Bi

eff given by Eq. (V.58), which yields

〈Sz〉 =
S(S + 1)

3
1

kBT
(Jpd〈sz〉+ JAF zAF 〈Sz〉). (V.85)

By combining this result with Eq. (V.84), and again neglecting the contribution of the weak direct
antiferromagnetic coupling, we obtain the desired selfconsistent relation,

〈Sz〉(ξ) =
S(S + 1)
3kBTc

J2
pdχ2D|φ0(ξ)|2

∫
dξ′ni(ξ′)〈Sz〉(ξ′)|φ0(ξ′)|2 (V.86)

which represents a linear integral equation for 〈Sz〉(ξ). This relation can be also understood as
an eigenvalue problem Î〈Sz〉 = kBTc〈Sz〉 of the integral operator,

Î[f(ξ)] =
S(S + 1)

3
J2

pdχ2D|φ0(ξ)|2
∫

dξ′ni(ξ′)|φ0(ξ′)|2f(ξ′). (V.87)

The critical temperature is given by the highest temperature at which Î〈Sz〉 = kBTc〈Sz〉 is
fulfilled, corresponding to the largest eigenvalue with the eigenfunction f(ξ) ∝ |φ0(ξ)|2. Simply
inserting the relation Eq. (V.86) for 〈Sz〉 iteratively, yields the desired analytical expression for
the collective Curie temperature in a magnetic quantum well

kBTc =
S(S + 1)

3
J2

pdχ2D

∫
dξni(ξ)|φ0(ξ)|4. (V.88)

In the case of a 2D-hole gas, which is in thermal equilibrium, the 2D-spin susceptibility is again
proportional to the 2D density of states per spin, χ2D = sD0/2 = sm∗/2π~2, yielding the
equilibrium critical temperature

kBTc =
S(S + 1)

12
D0J

2
pd

∫
dξni(ξ)|φ0(ξ)|4. (V.89)

The latter two expressions for Tc show that we can define a single Curie temperature for the
whole quantum well instead of a ξ-dependent Tc, which would follow from a naive adaption of
the bulk results to quasi-2D systems. Most important, in contrast to the bulk case, there is no
obvious carrier density dependence of Tc at equilibrium, since the 2D density of states D0 is a
constant.

However, there is an “hidden” indirect dependence, because the coupling constant becomes
generally a function of the carrier density in quasi-2D systems (Priour, Jr. et al., 2005) and for
nonequilibrium cases the spin susceptibility can change considerably when an external bias is
applied (Ganguly et al., 2005). Moreover, Eq. (V.89) points out the intriguing possibility of
changing Tc by modulating the overlap of the impurity density profile ni(ξ) with the quantum
well wave function φ0(ξ). Since the wave function profile can be influenced by changing the
confinement potential due to external electric fields, this would allow to control the appearance
of ferromagnetism in confined systems electrically.
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C. Resonant tunneling in magnetic double and multi-barrier systems: a review

In the last years there have been several theoretical and experimental studies on magnetic double
and multibarrier heterosystems demonstrating the enriched possibilities of such band-engineered
structures. The work can be loosely grouped into three different categories: (i) structures in
which only the emitter lead is magnetic and the nonmagnetic quantum well structure is used to
detect the spin polarization of the injected carriers either optically, e.g., in spin light emitting
diodes (spin-LEDs) (Fiederling et al., 1999; Jonker et al., 2000; Hanbicki et al., 2002; Ohno
et al., 1999; Holub and Bhattacharya, 2007) or electrically by resonant tunneling spectroscopy
(Ohno et al., 1998; Nonoyama and Inoue, 2001; Slobodskyy et al., 2007), (ii) tunneling mag-
neto resistance (TMR)-structures or spin-valve structures in which a nonmagnetic quantum well
is sandwiched between magnetic emitter and collector leads, and (iii) magnetic or spin-RTDs,
which are double- and multibarrier structures where also the quantum wells and/or barriers are
made of magnetic semiconductors, and which allow to realize highly efficient spin filtering and
spin switching devices or to electrically control the ferromagnetic order in the quantum wells.
In the following we will mainly focus on the latter two types of structures, (ii) and (iii), where
resonant tunneling and quantum size effects are expected to be crucial for the understanding of
the observed transport properties. A review of spin-LEDs and of the related more general issues
of all-semiconductor spin injection can be found in the Refs. (Žutić et al., 2004; Jonker et al.,
2003; Schmidt, 2005).

C.1 Double-barrier TMR-structures

In TMR-structures of kind (ii) the emitter serves as a spin polarizer whereas the collector acts as
a spin analyzer, realizing in this way the concept of a spin valve. The resistance of a spin-valve
structure depends on the relative alignment of the magnetization directions of the two magnetic
layers, which is illustrated in Fig. V.16. The TMR ratio is usually defined as (RAP − RP)/RP,
where RP and RAP are the resistances for parallel and antiparallel alignments of the lead mag-
netizations, respectively. In the last years metallic magnetic tunnel junctions, which consist of
two metallic ferromagnetic layers separated by a single thin insulator barrier, e.g. Fe/MgO/Fe,
have been studied exhaustively (see Sec. II.H.1). Nowadays such metallic structures have al-
ready become the key building blocks in the latest generation of magnetoelectronic devices, such
as magnetic random access memories or magnetic read heads in hard disks. However, for inte-
gration into existing semiconductor processing techniques an all-semiconductor magnetic tunnel
junction would be a significant advance. All-semiconductor single barrier structures such as
GaMnAs/AlAs/GaMnAs or GaMnAs/GaAs/GaMnAs have been grown and demonstrated to ex-
hibit large TMR-ratios up to 290 % at low temperatures (Tanaka and Higo, 2001; Chiba et al.,
2004; Elsen et al., 2006; Mattana et al., 2005) and they have been studied theoretically in several
papers (Krstajić and Peeters, 2005; Brey et al., 2004; Sankowski et al., 2007, 2006). However,
in single-barrier structures the TMR and the spin polarization decreases rapidly with the increase
of the applied bias. It is believed that this problem can be overcome by using a double barrier
structure sandwiched between the magnetic leads (Petukhov et al., 2002; Yuasa et al., 2002;
Kalitsov et al., 2004). Such a resonant tunneling spin-valve structure was proposed by (Bruno
and Wunderlich, 1998). A theoretical investigation of resonant tunneling through the double
barrier system GaMnAs/AlAs/GaAs/AlAs/GaMnAs predicts a tremendous enhancement of the
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Fig. V.16. Schematic flat band diagrams illustrating the spin-valve effect in a double-barrier TMR structure
with barriers of width W and a quantum well of width L. The upper plots show the band profile in the
case of a parallel (here denoted as ferromagnetic, F) alignment of the lead magnetizations M for (a) the
majority and (b) the minority spins. The band diagrams in the case of an antiparallel (here denoted as
antiferromagnetic, AF) orientation are sketched in the lower plots (c) and (d) for majority and minority
spins, respectively. The band edge in the leads is spin-split by the exchange field ∆ex with the energy
measured here from the unsplit band edge. If the first resonant level ER falls into the energy interval
0 < ER < ∆ex/2, as assumed in the diagrams and which can be achieved by properly tuning the geometric
parameters of the structure, only the majority channel of the F configuration contributes to the conductance;
all other channels are blocked. Reprinted figure with permission from A. Petukhov, A. Chantis, and D.
Demchenko, Phys. Rev. Lett. 89, 107205 (2002). Copyright (2002) by the American Physical Society.

TMR if the thickness of the quantum well is properly tuned (Petukhov et al., 2002). The effect
has been calculated to be as high as 10000% for generic parabolic bands and calculations based
on a more realistic k · p band structure model still reveal high TMRs of about 800%, as shown
in Fig. V.17. By replacing the GaMnAs leads with digitally doped Mn monolayers adjacent
to the RTD-barriers, TMR values in excess of 1000% were predicted (Stewart and van Schilf-
gaarde, 2003). However, in transport measurements of the first realized GaMnAs-based double
barrier structures resonant tunneling of holes could not be clearly observed (Mattana et al., 2003;
Hayashi et al., 2000), although magneto-optical measurements show blueshifts of the magnetic
circular dichroism (MCD) spectra, which strongly suggest the existence of quantum size-effects
(Shimizu and Tanaka, 2002; Oiwa et al., 2004). One possible reason for the difficulty to observe
resonant tunneling is due to the band profile in the structure, since it has been shown that in terms
of the hole energy the valance band bottom of GaAs is about 87-140 meV higher than the Fermi
level in GaMnAs (Ohno et al., 2002). Hence, one needs to apply high biases of at least 200 meV
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Fig. V.17. Tunneling magneto resistance (TMR) of GaMnAs/AlAs/GaAs/AlAs/GaMnAs double barrier
structure as a function of the quantum-well width L for different barrier widths w calculated by using the
Kohn-Luttinger hole Hamiltonian model. The upper inset shows the Fermi surface in the emitter (solid
line) and the quantum well (diamonds) for heavy (HH) and light holes (LH), respectively, corresponding
to the maximum TMR. Lower inset: schematic band diagram. Reprinted figure with permission from A.
Petukhov, A. Chantis, and D. Demchenko, Phys. Rev. Lett. 89, 107205 (2002). Copyright (2002) by the
American Physical Society.

to pull down the resonant levels to the emitter Fermi energy. Unfortunately, at such high biases
the TMR ratio becomes already very small and, hence, it is difficult to observe TMR associated
with resonant tunneling in such GaMnAs-based structures. The valence band offset of the quan-
tum well can be decreased by using InGaAs instead of GaAs as the well material. The observed
oscillating behavior of the TMR in GaMnAs/AlAs/InGaAs/AlAs/GaMnAs structures between
positive and negative values with increasing the AlAs barrier thickness has been explained by
the resonant tunneling effect (Ohya et al., 2005).

Further enhancement of the TMR-ratio up to 106% is expected by introducing a ferromag-
netic quantum well, e.g., GaMnAs/AlAs/GaMnAs/AlAs/GaMnAs, according to the resonant tun-
neling effect through the spin-split resonant levels in the GaMnAs quantum well 104(Hayashi
et al., 2000). Clear experimental evidence of resonant tunneling and the correlated increase of
TMR has been found in GaMnAs/AlGaAs/GaMnAs/AlAs/Be-doped GaAs heterostructures in
which thin GaAs spacer layers between the magnetic and nonmagnetic layers were inserted to
prevent Mn diffusion into the barrier layers and to smooth the interfaces (Ohya et al., 2007,
2006).

104Strictly following our classification scheme this structure falls into category (iii) but we discuss it also here, since it
promises high TMR-ratios.
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C.2 Magnetic RTDs

Magnetic RTDs of type (iii) with a magnetic quantum well open up the interesting opportunity
of realizing efficient voltage-controlled spin injectors or spin switching devices, i.e., structures
in which the spin character of the carriers ending up at the collector side can be controlled elec-
trically. Such a controllable spin-selective injection by magnetic RTDs would be very desirable,
since the usual spin injection based on magnetic contacts can only be utilized to transfer the ma-
jority spin from the magnetic into nonmagnetic layer, making it necessary to apply an external
magnetic field to flip the injected spin polarization by switching the magnetization of the emitter
contact. Furthermore, magnetic RTDs also allow for new routes of determining the spin polar-
ization of a injected current employing the double barrier structure as a spin detector (Giazotto
et al., 2003). The basic idea of a magnetic RTD used for spin injection, switching or detection is
fairly straightforward. Since the quasibound states in magnetic quantum wells are spin-split, the
collector current becomes spin polarized by bringing either the spin up or spin down state of the
quantum well into resonance.

As another interesting field of applications, magnetic RTDs comprising a ferromagnetic DMS
quantum well afford the possibility of realizing a voltage-controlled phase transition between the
para- and ferromagnetic order, which would offer prospects of new functionalities in magneto-
electronic device applications (Lee et al., 2002).

In the following we will group the work done so far on magnetic RTDs into five categories:
(i) RTDs with a quantum well made of a paramagnetic semiconductor material, (ii) RTDs with a
ferromagnetic or delta-doped quantum wells, (iii) heterostructures, in which only the barriers are
magnetic, (iv) structures, which employ interband tunneling, and (v) nonmagnetic heterosystems,
which utilize the spin-splitting due to spin-orbit coupling.

C.3 Paramagnetic spin-RTDs

In RTDs with a paramagnetic quantum well a giant Zeeman splitting of the well states of the
order of tens of meV is induced by applying moderate external magnetic fields of a few tesla.
This is due to the fact that an applied magnetic field aligns the local impurity spins leading to
an impurity spin polarization, which via the Zener exchange coupling gives rise to an strong
effective magnetic field acting on the carriers. Such paramagnetic structures provide a perfect
framework for investigating the potential of magnetic resonant tunneling structures, since the
growing of high quality structures is possible and the magnetoelectronic effects are tuneable by
the experimentally adjustable magnetic field strengths. Most of the structures employ transport
of electrons, which in terms of mobility and spin life time is advantageous compared to p-type
conductivity, usually encountered in III-V ferromagnetic DMS.

The forming of spin superlattices by a periodical doping with paramagnetic ions were pro-
posed by Ortenberg (von Ortenberg, 1982) and later realized for Mn and Fe-based multilayer
systems (Dai et al., 1991; Chou et al., 1991; Guo et al., 2001b). Magnetic RTDs, in which the
leads are nonmagnetic and only the quantum well is made of a magnetic material were realized
by Brehmer et al. (1995), who fabricated RTDs consisting of semimetallic ErAs quantum well
and AlAs barriers sandwiched between GaAs layers and observed a large spin splitting of the
electron states in the quantum well in magnetic field. The unusual behavior of resonant tunnel-
ing through ErAs layers in magnetic fields of different orientation was theoretically explained in
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terms of tunneling of electrons into the valence band states of ErAs in the vicinity of the Γ point
(Petukhov et al., 1996). Further realizations of paramagnetic quantum wells became possible
with the discovery of the II-VI DMSs coming along with the technical progress of growing high-
quality magnetic heterostructures. Haury et al. (1997) realized a modulation doped quantum well
made of CdMnTe with a very low Curie temperature of Tc = 2 K evidenced by photolumines-
cence measurements. However, the electrical properties were not studied. The diffusive in-plane
transport in magnetic two dimensional electron gases and its spin dependence has been observed
and investigated in single quantum wells utilizing ZnSe/Zn1−x−yCdxMnySe (Smorchkova et al.,
1997, 1998), ZnTe/Cd1−xMnxSe (Knobel et al., 1999), or Cd1−yMgyTe/Cd1−xMnxTe hetero-
junctions (Jaroszyński et al., 2000). An overview of the interesting work done at that time con-
cerning the spin dynamics and quantum transport properties in II-VI DMS quantum structures
can be found in the review paper of (Awschalom and Samarth, 1999).

The vertical transport properties of a double barrier structure doped with magnetic impurities
under the influence of parallel electric fields were firstly examined theoretically by (Sugakov and
Yatskevich, 1992). The occurrence of a spin filtering effect in ZnSe/ZnMnSe heterostructures
with a single paramagnetic layer was proposed by Egues (1998), finding a strong suppression of
one spin-component of the current density with increasing magnetic fields. Similar results were
also predicted by (Chang and Peeters, 2001) revealing conductivity oscillations with increasing
magnetic field and the thickness of the single DMS-layer. These considerations were general-
ized by Guo et al. (2000) by taking into account an external electric field, the conduction band
offset of ZnSe and ZnMnSe (Zhai et al., 2001) and studying systems which comprise symmet-
ric and asymmetric paramagnetic double layers (Guo et al., 2001a). Their results showed that
the spin-dependent transmission can become either enhanced or suppressed depending on the
applied bias as well as on the structural asymmetry. By employing an additional semimagnetic
emitter contact it has been shown theoretically (Egues et al., 2001) that the voltage-dependent
magnetoresistance should exhibit robust features like spin split kinks and beating patterns in the
case of single barrier and double barrier structures, respectively. The theoretical investigation of
asymmetric tunnel structures with differently doped paramagnetic layers reveal high spin filter-
ing effects of up to nearly 100% for suitable magnetic and electric fields in the case of conduction
electrons in ZnSe-based structures (Zhai et al., 2003; Zhu and Su, 2004; Papp et al., 2005, 2006;
Saffarzadeh et al., 2005) as well as for holes and electrons in CdTe/Cd1−xMnxTe heterosystems
(Malkova and Ekenberg, 2002; Gnanasekar and Navaneethakrishnan, 2006; Lev et al., 2006).
Recently, Borza et al. (2007) investigated the interesting possibility of an electric field manip-
ulation of the electronic states in a two-partitioned quantum well, which consists of a magnetic
and nonmagnetic layer, resulting in the forming of a potential step in the quantum well for one
spin component, while the other experiences a deeper well in the magnetic layer region. Also
all-magnetic RTD, in which the whole structure including the barriers, the emitter and collector
lead consists of II-VI DMSs layers of different magnetic ion concentrations x, were investigated,
e.g., using Zn1−xMnxS (Beletskii et al., 2005), or Cd1−xZnxTe (Chitta et al., 1999). In the latter
work also the influence of spin flip scattering caused by thermal fluctuations of the magnetic ion
moments was taken into account, showing that it is inefficient in depolarizing the current.

The prospects of very high spin filtering effects also inspired several experimental realizations
of II-VI paramagnetic RTDs. The experimental observation of resonant tunneling in semimag-
netic (Zn,Mn)Se/BeTe double barrier structures were reported by Keim et al. (Keim et al., 1999)
although no spin splitting of subbands could be detected in electrical measurements. A suc-
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Fig. V.18. Left: (a) Layered structure of the spin-RTD with a 9 nm thick paramagnetic quantum well
made of ZnMnSe. (b) Schematic profile of the conduction band of the structure under applied bias. Right:
Experimental (lines) and modeled (circles) IV curves of the magnetic RTD with a ZnMnSe quantum well
exhibiting (a) 8% Mn concentration and (b) 4% Mn concentration. For clarity curves are offset by 10 µA and
are taken in 0.5 T intervals from 0 to 3 T and in 1 T intervals form 3 to 6 T. The spin-splitting of the quantum
well levels leads to a splitting of the transmission resonance into two separate peaks, which becomes clearly
observable for higher magnetic fields. Reprinted figures with permission from A. Slobodskyy, C. Gould, T.
Slobodskyy, C. Becker, G. Schmidt, and L. W. Molenkamp, Phys. Rev. Lett. 90, 246601 (2003). Copyright
(2003) by the American Physical Society.

cessful efficient injection of spin-polarized current into GaAs using BeTe/ZnMnSe/BeTe RTDs
were later demonstrated by the same group (Gruber et al., 2001). Clear evidence of spin split-
ting of the transmission resonance into two separate peaks was found in the IV-characteristics
of ZnSe/BeZnSe/ZnMnSe/BeZnSe/ZnSe RTDs (Slobodskyy et al., 2003; Gould et al., 2004b).
The experimental setup of Ref. (Slobodskyy et al., 2003) and the measured IV-curves for a Mn
concentration of 4% and 8%, respectively, in the quantum well for different applied magnetic
fields at low temperatures T = 1.3 K are shown in Fig. V.18. For appropriate high magnetic
fields the giant Zeeman splitting of the well states becomes sufficient to be also observable in the
IV-curves. The experimental results agree very well with modeled values (indicated by circles
in Fig. V.18), using the simplifying assumptions that both spin-split levels exhibit approximately
the same conductivity and that the level conductivity depends merely on the relative alignment
of the well level to the emitter Fermi energy. The electrical demonstration of the well splitting
constitutes a first important step for realizing a voltage controlled spin switching device, which
works by selectively bringing either the spin-up or down level into resonance. Such a device op-
eration was also theoretically investigated (Havu et al., 2005) simulating the experimental setup
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of Ref. (Slobodskyy et al., 2003) and comparing the numerical results obtained from both the
Wigner and Greens function approach. Very recently another successful realization of a magnetic
RTD based on paramagnetic Zn1−x−yMnyCdxSe with a pillar diameter down to 6 µm have been
reported (Fang et al., 2007), again demonstrating the current peak splitting in moderate external
magnetic fields. At high fields, when the giant Zeeman splitting in the well is already saturated,
the Zeeman splitting in the contacts starts to play a role, leading to a spin-polarization of the
injected carriers. As a result the peak current becomes modified dependent on the injected spin
polarization; an effect which can be utilized for spin detection (Sánchez et al., 2007).

Moreover, structures with several quantum wells have been realized, e.g., modulation-doped
ZnSe/(Zn,Cd,Mn)Se systems (Berry et al., 2000). The theoretical investigation of such multiple
quantum well systems reveals that the nonlinear transport phenomenology become considerably
enriched by an interplay between the charge accumulation in the wells and the resonant interwell
tunneling, resulting in a formation of electric field domains (Sánchez et al., 2001, 2002).

C.4 Ferromagnetic spin-RTDs

The exhaustive work done so far on II-VI DMSs based RTDs resulted in a better understand-
ing of the magnetic properties of thin transition metal doped paramagnetic layers as well as
revealed important findings for possible high efficient all-semiconductor spin injection and de-
tection schemes. However, in such structures always external magnetic fields of a few tesla are
necessary to induce the giant Zeeman splitting. By using ferromagnetic DMSs layers nonvolatile
devices could be realized, which can operate without the need of auxiliary, external magnetic
fields. The successful growing of short-period GaMnAs/GaAs superlattices showed that the
ferromagnetic order can sustain in layers of a few nm width (Shimizu and Tanaka, 2002; Math-
ieu et al., 2002; Kolovos-Vellianitis et al., 2006) and the formation of spin-resolved quantized
states in III-V-based ferromagnetic quantum wells has been confirmed by optical measurements
(Oiwa et al., 2004). The appearance of a ferromagnetic, paramagnetic, or a canted spin phase in
AlAs/GaMnAs quantum wells, depending on the carrier concentration and magnetic layer width
has been studied with the aid of Monte Carlo simulations (Boselli et al., 2000). Theoretical
considerations of the ferromagnetism in inhomogeneous layer systems based on mean field the-
ory and local spin density functional theory (Dietl et al., 1997; Jungwirth et al., 1999; Lee et al.,
2000; Fernández-Rossier and Sham, 2001; Brey and Guinea, 2000; Ghazali et al., 2001) revealed
that the magnetic properties of a Mn-doped quantum well considerably depends on the overlap
of the subband wave function with the spatial profile of the magnetic impurity density, as already
discussed in Sec. B.3. The wave function can be modulated in situ by an external bias voltage,
thereby strongly influencing the collective Curie temperature of the well (Lee et al., 2000). The
idea of a voltage-controlled magnetization switch in a RTD with a ferromagnetic quantum well
made of GaMnAs has already been proposed (Ganguly et al., 2005) and it has been shown that
the effect should be also observable if moderate scattering is present in the well (Ganguly et al.,
2006b). In such magnetic RTDs the voltage-dependent Curie temperature can become bistable
(Ganguly et al., 2006a) due to the hysteretic behavior of the IV-characteristic of the diode (see
Sec. A.5). The forming of a bistable state through hole redistribution between a magnetic and
nonmagnetic quantum well has also been predicted in double quantum well structures, which
was proposed to be utilized as a stable memory element, down-scalable to a few-hole regime
(Semenov et al., 2005). Theoretical investigations of the ferromagnetic properties of quantum
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Fig. V.19. (a) Schematic device structure of a GaMnAs/AlGaAs/GaMnAs/AlAs/GaAs:Be RTD junc-
tion with imbedded thin GaAs spacer layers for smoothing the interfaces and preventing Mn diffusion.
Schematic band diagrams for negative (b) and positive (c) applied biases, respectively. (d) Measured
d2I/dV 2 − V characteristic of the ferromagnetic RTD for various quantum well thicknesses d for par-
allel magnetization of the emitter and well at 2.6 K. The peak voltages and the period of the oscillations
become smaller with increasing d, which indicates that the oscillating features are induced by resonant
tunneling of light and heave holes (LH,HH). (e) Measured dI/dV − V characteristics of the junction with
d = 12 nm for parallel (blue curve) and antiparallel (red curve) magnetization. Reprinted figures with per-
mission from S. Ohya, P. N. Hai, Y. Mizuno, and M. Tanaka, Phys. Rev. B 75, 155328 (2007). Copyright
(2007) by the American Physical Society.

wells made of InMnP, GaMnN, or ZnO (Kim et al., 2006, 2005) based on the mean field ap-
proximation have shown that by taking into account the carrier-carrier exchange correlations the
Curie temperature of the wells can be substantially enhanced to values well above room tem-
perature. Recently, magnetic RTDs comprising two coupled magnetic quantum wells made of
GaMnN were proposed as a spintronic device offering large magnetocurrents, which are defined
as relative current magnitudes for parallel and antiparallel orientations of the quantum well mag-
netizations (Ertler and Fabian, 2006b).

The quantum transport of holes and the corresponding spin filtering effect through magnetic
RTDs with a GaMnAs quantum well have been investigated in several theoretical studies. In
the simplest approach simple parabolic or tight-binding band models were used to calculate the
spin-polarized current by solving either the Schrödinger-Poisson system (Makler et al., 2002) or
by applying the Keldysh non-equilibrium Greens function technique (Lebedeva and Kuivalainen,
2005; Ganguly et al., 2005). For more quantitative predictions the complex band structure of the
holes has to be considered by using either the hole Kohn-Luttinger Hamiltonian (Petukhov et al.,
2000; Wu et al., 2003a) derived from the k ·p approximation of the band structure or by applying
an empirical multiorbital tight-binding description (Sankowski et al., 2007). Also experimentally
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F

Fig. V.20. Schematic illustration of a δ-doped ferromagnetic quantum well with a single layer grown of
MnAs. The ferromagnetic order can be controlled by an external electric field, which modulates the overlap
of the subband wave function with the Mn-atoms. Left: paramagnetic state. Right: ferromagnetic state.

the resonant tunneling effect of holes through a double barrier structure with a GaMnAs quantum
well has been observed (Ohya et al., 2007, 2006). The characteristic oscillatory features become
eminently apparent in the voltage dependent d2I/dV 2 curves, i.e., in the second derivative of
the measured IV characteristics, as shown in Fig. V.19. The growing of high quality structures
with clean interfaces appears difficult, since the necessary usage of low temperature MBE for
the magnetic layers leads to suboptimal grow conditions for the whole structure. Nevertheless,
the successful growth of highly periodic and homogenous heterostructures without structural and
compositional fluctuations has been reported recently (Kolovos-Vellianitis et al., 2006).

Another interesting approach to realize high Tc ferromagnetic quantum wells is the inclusion
of so-called magnetic δ-doped layers (Kawakami et al., 2000; Nazmul et al., 2003, 2004), in
which a single or several monolayers are grown of MnAs. According to the delta function-like
doping profile, the Mn atoms are expected to substitute for all Ga sites in a single layer, which
can exhibit high transition temperatures close to room temperature due to local high dopant and
carrier concentration (Nazmul et al., 2005). Recent theoretical considerations show that ferro-
magnetism can be stabilized in such a single layer of magnetic ions (Melko et al., 2007), although
the Mermin-Wagner theorem implies that in the absence of magnetic anisotropy gapless spin ex-
citations always destroy the ferromagnetic order in two dimensions. The stabilized ferromagnetic
order in 2D layers however comes along with quantum fluctuations, which suppresses the total
magnetic moment from its fully saturated value. Investigation based on mean field models reveal
that p-d exchange interaction in δ-doped layers tends to be further enhanced by an additional
confinement of the carriers, e.g., in a quantum well, leading accordingly to higher Curie temper-
atures (Fernández-Rossier and Sham, 2001; Kim and Yi, 2002; Lee et al., 2002). In such digital
ferromagnetic heterostructures the occurrence of spin separation (the majority and minority-spin
carriers reside in different spatial regions) has been predicted (Fernández-Rossier and Sham,
2002). Furthermore, it has been shown that the Curie temperature can be controlled over a broad
range by external electric fields, which modulate the overlap of the subband wave functions with
the Mn δ-doping profile (Nazmul et al., 2004; Lee et al., 2000), as schematically sketched in
Fig. V.20. A strong enhancement of Tc in a asymmetric double quantum wells structure, which
consist of a Mn δ-doped and a p-type doped well, was found by Kim et al. (2004) under applying
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moderate external electric fields of about ≈ 1.5 meV/nm. Such an enhancement was also pro-
posed very recently in a single quantum well of about 40 nm width for low electric fields (≈ 0.3
meV/nm) (Lv et al., 2007).

C.5 Spin-RTDs with magnetic barriers

Spin-filtering devices can also be realized by structures, which consist of a nonmagnetic quantum
well but utilize magnetic barriers to achieve spin-dependent tunneling. Since the barrier height
is spin-dependent the transmission of one spin component is strongly reduced compared to the
other one leading to a spin filtering effect. High spin polarizations of about 80% were achieved
experimentally in samples with a single barrier made of EuS (Moodera et al., 1988; Hao et al.,
1990; Moodera et al., 2007); a spin injection device based on two EuS magnetic tunnel barriers
have been proposed by Filip et al. (2002). The TMR of double barrier structures was investigated
in both the coherent and sequential tunneling limit and predicted to reach values of about 100%
(Wilczyński et al., 2003; Saffarzadeh, 2003). Spin dependent resonant tunneling has been also
found in a parabolic quantum well, which is sandwiched between two magnetic barriers and
subjected to external electric and magnetic fields, where in the case of resonance the effective
potential becomes similar to a double quantum well profile (Santiago and Guimarães, 2003). In
order to achieve room temperature operation without external magnetic fields, a ferromagnetic
RTD with a InGaN quantum well and magnetic barriers made of GaMnN has been proposed
recently (Li et al., 2006a), confirming the intuitive result that the spin splitting of the barrier
height has to exceed at least kBT to observe the spin splitting also in the IV-characteristics.
The temperature evolution of the spin splitting of the barrier height directly affects these IV
characteristics (Lebedeva and Kuivalainen, 2003; Oliveira et al., 2007).

C.6 Magnetic interband RTDs

Another interesting approach for injecting highly spin-polarized electrons is to employ interband
or Zener tunneling. It has been proven experimentally that electrons have remarkably long spin
life times in III-V semiconductors, whereas the hole spin relaxes much faster (Žutić et al., 2004;
Kikkawa and Awschalom, 1999). Hence, the injection of spin polarized electrons rather than
holes appears favorable for further spin manipulations. By using Zener-Esaki-diodes, success-
ful electrical injection of electrons by interband tunneling from the valence band of p-GaMnAs
into the conduction band of an adjacent n-GaAs has been demonstrated (Kohda et al., 2001;
Johnston-Halperin et al., 2002; Kohda et al., 2006b). Recently, high spin polarizations of the
injected electron current of about 80% were obtained in such devices (Dorpe et al., 2004; Ko-
hda et al., 2006a). However, the polarization decreases rapidly with increasing applied bias
(Sankowski et al., 2007). Again theoretical considerations suggest that double barrier struc-
tures, which utilize spin-dependent resonant tunneling in magnetic heterostructures with type-II
broken-gap band alignment, allow for very efficient electron spin injection even at higher biases
(Petukhov et al., 2003; Vurgaftman and Meyer, 2003a,b). The system investigated in these stud-
ies was an interband RTDs based on a InAs/AlSb/GaMnSb/AlSb/InAs heterostructure with its
schematic band structure shown in Fig. V.21. Since the bottom of the conduction band of InAs is
energetically below the top of the valence band of GaMnSb, electrons from the InAs emitter can
tunnel through the hole states of GaMnSb to the InAs collector side. According to the spin-split
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Fig. V.21. Schematic flat band diagram of the conduction, Ec, and valance, Ev , bands for a resonant
interband tunneling diode. Electrons from the InAs emitter tunnel through the confined spin-split hole
states of GaMnSb to the collector side, resulting in an efficient spin injection.

quantized hole states the emerging electrons become spin polarized, resulting in a highly efficient
spin injection of the electrons into the collector semiconductor material. The theoretical results
for the calculated transmission coefficient and the spin polarization are shown in Fig. V.22, in
which a 8×8k ·p Kane Hamiltonian was used to describe the carriers dynamics (Petukhov et al.,
2003).

C.7 Nonmagnetic spin-RTDs based on spin-orbit coupling

So far all discussed structures included some magnetic layers, giving rise to a spin-dependent
vertical transport. However, it has been shown that the creation of spin-polarized current is
also possible in nonmagnetic structures, which consist only of nonmagnetic semiconductors, by
utilizing the spin-orbit coupling effects to induce spin-split resonant levels. The spin-orbit inter-
action in III-V semiconductors is usually described by two contributions; one is referred to as the
Bychkov-Rashba term, which is induced by the inversion asymmetry of the confining potential
profile and the other is known as Dresselhaus term caused by the bulk inversion asymmetry of
the zinc-blende lattice structure. For narrow-gap semiconductors the Rashba coupling has been
shown to be the dominant effect (de Andrada e Silva, 1992; de Andrada e Silva et al., 1994)
compared to the Dresselhaus term, which is therefore often neglected in a first account. Non-
magnetic spin filters are interesting from the viewpoints of both the absence of magnetic stray
fields, which can cause undesirable effects, and the possible growth of high-quality structures.

In asymmetric heterostructures with built-in or external electric fields, the spin-orbit Rashba
interaction provides a coupling of the spin to the in-plane motion of the electrons, which is
controllable by electric fields. A Rashba spin filter based on resonant tunneling in double barrier
structures has been proposed by Voskoboynikov et al. (1999, 2000), showing that the structure
can provide some degree of spin polarization (≈ 40%). The spin splitting in such structures in
the absence of external magnetic fields was also confirmed experimentally (Yamada et al., 2002;
de Carvalho et al., 2006). To achieve even higher spin polarizations Koga et al. (2002) suggested
to use a nonmagnetic triple barrier RTD, as shown in Fig. V.23, which combines the resonant
tunneling with the spin blockade effect. The current spin polarization exceeds almost 100% at
the peak positions of the IV-curve. High spin filter efficiencies were also predicted in asymmetric



Spintronics devices and materials 815

0

0.2

0.4

0.6

0.8

1

T
ra

ns
m

is
si

on
 C

oe
ffi

ci
en

t

W
barrier

= 10 Å

W
barrier

 = 20 Å

W
barrier

 = 30 Å

0 0.05 0.1 0.15 0.2

Electron Energy (eV)

-50

0

50

S
pi

n 
P

ol
ar

iz
at

io
n 

(%
)

W
well

= 70 Å

LH
1LH

2

GaMnSb

InAs InAs

AlSb AlSb

E
F

E
V

E
C

a)

b)

Fig. V.22. (a) Transmission coefficients versus electron energy of a InAs/AlSb/GaMnSb heterostructure
with a 70 Å quantum well and various barrier widths w. (b) Calculated spin polarization for carriers with
vanishing in-plane momentum kt = 0. Reprinted figure with permission from A. Petukhov, D. Demchenko,
and A. N. Chantis, Phys. Rev. B 68, 125332 (2003). Copyright (2003) by the American Physical Society.

resonant interband RTDs (Ting and Cartoixà, 2002), exploiting the strong spin-orbit interaction
in the valence band. In a first realized side-gated prototype of such a Rashba interband-RTD
based on a AlSb/InAs/GaSb/AlSb heterosystem the tunneling current show modulations with
the applied side gate bias (Moon et al., 2004). Ting and Cartoixà (2003) showed that a further
enhancement of the current spin polarization in such interband structures is possible if the effect
of the Dresselhaus term is included in the theoretical description. A nonmagnetic spin transistor
based on the seminal Datta-Das proposal (Datta and Das, 1990), in which nonmagnetic interband
RTDs are used as spin injector and detectors and the spin precession in the lateral transport
channel is controlled by the gate voltage exploiting the Rashba coupling, has been proposed by
Hall et al. (Hall et al., 2003).

Due to the Dresselhaus coupling spin-polarized tunneling can also occur through a single
symmetric barrier, where Rashba-splitting is ineffective owing to the structural symmetry (Perel’
et al., 2003). The Dresselhaus term can also induce an observable spin splitting of the trans-
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Fig. V.23. (a) Schematic illustration of the spin filter device based on the Rashba effect in a nonmagnetic
triple barrier structure. (b) and (c) Conduction band profile of the device illustrating how the matching of the
spin-split well levels is performed by controlling the collector bias VEC. Reprinted figure with permission
from T. Koga, J. Nitta, H. Takayanagi and S. Datta, Phys. Rev. Lett. 88, 126601 (2002). Copyright (2002)
by the American Physical Society.

mission resonances of a symmetrical double-barrier structure (Glazov et al., 2005). Dynamical
investigations of the resonant tunneling process revealed that the tunneling time of electrons of
opposite spin orientations can vary over a few order of magnitudes (Yu and Voskoboynikov,
2005; Wang et al., 2002; Guo et al., 2005; Wu et al., 2003b). Such a spin-dependent tunneling
time can actually serve as the basis for a dynamical or time-resolved spin filtering device (Romo
and Ulloa, 2005; Yu and Voskoboynikov, 2005; Li and Guo, 2006). A recent more exhaustive
discussion of possible device concepts based on Rashba and Dresselhaus spin splitting can be
found in Ting and Cartoixà (2005).

D. Digital magneto resistance in magnetic MOBILEs

As an example for a magnetoelectronic device exploiting resonant tunneling we will discuss
here in detail the concept of a magnetic monostable bistable logic element, shortly denoted
as m-MOBILE. The principle of the device operation, which rests on the nonlinear N -shaped
IV-characteristics of RTDs, has been proposed and realized by (Maezawa and Mizutani, 1993;
Maezawa and Förster, 2003). The conventional MOBILE consists of two nonmagnetic RTDs, a
load and a driver, which are connected in series, as schematically illustrated in Fig. V.24. The
device is driven by an oscillating input voltage Vin, performing a transition between the mono-
and bistable working point regimes of the circuit. The occurrence of a bistable state at higher
input voltages can be readily understood by drawing a circuit load line diagram. From Kirchoff’s
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Fig. V.24. Left: Circuit configuration of the nonmagnetic MOBILE proposed by Maezawa and Mizutani
(Maezawa and Mizutani, 1993). The peak current of the load RTD can be modified by an external gate
voltage VG. Right: Schematic load line diagrams for (a) low input voltage and (b) high input voltage Vin.
For small input voltages only one stable dc-working point is possible (monostable regime), whereas for
high input voltages two stable working points become feasible (bistable regime).

laws it follows that Vload +Vout = Vin and Iload(Vload) = Idriver(Vout), where Vout is the output
voltage, Vload denotes the voltage drop at the load-RTD, and Iload and Idriver are the currents
flowing through the load and driver RTD, respectively. Combining both expressions yields the
condition

Iload(Vin − Vout) = Idriver(Vout), (V.90)

which determines the dc-working point of the circuit. The possible solutions to this working
point equation can be found in a graphical way. For this purpose one plots both the driver and the
load IV-curves, Idriver(Vout) and Iload(Vin−Vout), as functions of the output voltage, resulting in
a mirrored load IV starting at Vout = Vin as illustrated in the left plot of Fig. V.24. The crossing
points of both curves correspond to the possible dc-working points of the circuit fulfilling the
condition Eq. (V.90). As we can see from Fig. V.24, for low input voltages only one crossing
point appears; the circuit is said to be in the monostable regime. However, by increasing the input
voltage the mirrored load IV-curve is shifted to the right and at appropriate high input voltages we
end up with three crossing points and, hence, three possible dc working points of the circuit. The
middle crossing point in the NDR region is proven to be unstable as shown in detailed stability
analysis including the dynamic behavior of the circuit (Kidner et al., 1991; Chow, 1964). For
a stable working point the sum of load and driver conductivity Gload, Gdriver has to be greater
than zero, giving the stability criterionGload +Gdriver > 0, which is clearly violated in the NDR
region. Therefore, at high input voltages the circuit resides in a bistable regime with a stable
working point either at low or high output voltage.

Which of the two possible working points is actually realized depends on the difference of
the load and driver peak currents. As illustrated in Fig. V.25(a), if the load peak current is smaller
than the driver peak value, the working point is unable to “overcome” the driver’s current peak
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Fig. V.25. Schematic load line diagrams for the case of a lower (a) and higher (b) load peak current com-
pared to the driver peak value. The mirrored load IV-characteristic is shifted from the left to the right when
the input voltage Vin is increased and the actual (stable) working point of the circuit is marked by a circle.
Only in case (b) the working point can “overcome” the driver’s current peak.
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Fig. V.26. Left: The circuit configuration of the paramagnetic-MOBILE. The load is a conventional RTD,
whose peak current can be modified by an external gate voltage VG. The driver device consists of a magnetic
RTD [here made of a Zn(Be,Mn)Se material system]. The peak current of the driver is controlled by the
magnetic field. Right: Schematic conduction band profile of the magnetic RTD with giant Zeeman splitting
∆E of the first well state.

when the input voltage is increased and, hence, the working point remains always at low output
voltages. However, in the opposite case of a higher load peak current, the working point can
“climb” over the driver peak voltage, resulting in a high output voltage for high input voltages,
as displayed in Fig. V.25(b). In short, the whole device acts as a comparator of the load and
driver’s peak currents, giving either low or high output in the bistable regime. For performing
the switching between the low and high output voltage states the difference of the peak currents
can be actually very small, since the transition is in some sense analogous to a second order phase
transition as discussed in Maezawa and Mizutani (1993).

A magnetic variant of the MOBILE can be realized by replacing the conventional driver
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Fig. V.27. (a) Current-Voltage characteristics of the magnetic RTDs at the temperature of T = 4.2 K for
different Zeeman energy splittings ∆E. The thick solid lines indicate the mirrored IV-curve of the load
RTD for low and high input voltages. The inset shows a contour plot of the local density of states versus
energy and growth direction z at zero bias and ∆E = 40 meV. The solid line in the inset indicates the
conduction band profile. The two spin resonances are visible by the large density (dark) in the well. (b)
Scheme of the operation principle of the digital magneto resistance MOBILE. The vertical dotted lines
indicate the points of time when a mono-to-bistable transition is performed. The output voltages fluctuate
within the intervals ∆V out

i , i = 1, 2, 3.

RTD by a magnetic RTD, which comprises either a para- or ferromagnetic quantum well (Ertler
and Fabian, 2006a, 2007). Figure V.26 shows the schematic circuit diagram for a paramagnetic
MOBILE. The magnetoelectronic device operation is based on the possibility of modulating the
peak current of the magnetic driver RTD by applying an external magnetic field, which controls
the spin splitting of the quantum well states. For instance, in a paramagnetic RTD with a quantum
well made of ZnMnSe, selfconsistent numerical calculations have shown that the peak current
becomes appreciably decreased by increasing the applied external magnetic field (Ertler and
Fabian, 2006a) as shown in Fig. V.27(a). For high magnetic fields the Zeeman splitting of the
well states becomes also observable in the IV-characteristics, leading to two separated current
peaks; an effect which has already been observed experimentally (Slobodskyy et al., 2003; Fang
et al., 2007; Sánchez et al., 2007). The influence of the magnetic field on the driver peak current
can be utilized to realize the effect of digital magneto resistance (DMR) introduced by Ertler
and Fabian (2006a, 2007): the output voltage makes a discrete jump from low to high after
performing the mono-to-bistable transition if the external magnetic field is higher than some
electrically controllable threshold value, or to define it more generally, if a particular device
characteristic, which can be influenced by an external magnetic field, exceeds a certain threshold.

The DMR effect relies on the following operation principle. Let us assume that at zero
magnetic field the driver peak current is higher than the load peak current (the load peak current
can for instance be modulated by an external gate voltage VG). By applying an external magnetic
field the driver peak current is reduced, and at some threshold value Bt both load and drive peak
currents become equal. The threshold field depends on the initial difference (at B = 0) of load
and driver peak currents, which can be easily controlled by VG. By applying an input voltage,
which oscillates between low and high voltage levels, the circuit constantly performs a transition
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Fig. V.28. Left: Sketch of the circuit configuration of the ferromagnetic MOBILE. The load is a conven-
tional RTD, whereas the driver device consists of a RTD with a ferromagnetic emitter and quantum well.
The peak current of the driver is controlled by twisting the well magnetization, which is assumed to be soft.

between the mono- and bistable working point regime. If the magnetic field is higher (lower)
than the threshold value during the transition the output voltage in the bistable regime ends up
at a high (low) level. As illustrated in Fig. V.27(a) the spreading of the possible working points
∆V out

i , i = 1, 2, 3 in the mono- and bistable regime according to different magnetic field values
is much smaller than the separation of the low and high voltage levels, which allows for a direct
digital interpretation of the output voltage. The operation principle is schematically illustrated in
Fig. V.27(b), where for simplicity a rectangular input signal is assumed. In the monostable regime
(Vin is low) the output voltage is always low. However, if the magnetic field is higher than the
threshold Bt, which is indicated by the horizontal dashed line in Fig. V.27(b), at the moment of
transition from a low to a high input signal, i.e., from monostable to bistable regime, as marked
by the vertical dashed lines in Fig. V.27(b), the output voltage in the bistable regime is high;
otherwise low. Ultrahigh frequency operations of nonmagnetic MOBILEs of about 100 GHz
have been demonstrated by employing a symmetric clock configuration (Maezawa et al., 2006).
As an application this proposed paramagnetic MOBILE might be potentially used as a very fast
read head of conventional hard disks performing a direct conversion of the magnetically stored
information into a binary electrical signal.

The effect of DMR has, in fact, already been experimentally demonstrated in a somewhat
different circuit setup, in which a metallic giant magneto resistance (GMR) element is shunted
to a nonmagnetic driver RTD (Hanbicki et al., 2001). Depending on the relative orientation of
the magnetization directions of the ferromagnetic layers (parallel or antiparallel) in the GMR
element either a high or low output voltage is observed in the bistable regime. In this way the
circuit becomes nonvolatile upon the loss of power, since the state of the device is actually stored
in the alignment of the ferromagnetic layers. Nonvolatile devices are very attractive for a fast
and reliable data storage, e.g, in random access memory applications (Daughton, 1999), or for
reprogrammable logic (Dery et al., 2007), in which the mode of logical operation can be modified
by changing the magnetic state of the device.

Such a nonvolatile ferromagnetic MOBILE might be also realized in a simplified setup as
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Fig. V.29. (a) Selfconsistent current-voltage characteristics of the ferromagnetic driver-RTD for several
relative orientations of the quantum well magnetization (indicated by the angle ϕ) at the temperature of
T = 100 K. The solid black lines show the mirrored IV curve of the nonmagnetic load-RTD for low
and high input voltages, respectively; working points are indicated by circles. For these fixed low and
high input voltages the output voltages are restricted to the intervals ∆V out

i , i = 1, 2, 3. (b) Blow up
of the selfconsistent IV curves displayed in (a) for low voltages. By replacing the load-RTD ba a linear
resistance (indicated by the black solid line) allows to perform the monostable-to-bistable transition by
flipping the well magnetization from parallel to antiparallel configuration. The working points are indicated
by circles. The inset shows schematically the arrangement of the spin-split well levels at the peak voltage
in the antiparallel case.

shown in Fig. V.28, where instead of a GMR-element a ferromagnetic driver RTD is used (Ertler
and Fabian, 2007). One conceivable way to modulate the driver’s peak current would be to
change the magnitude of the spin-splitting of the ferromagnetic quantum well, by varying the
value of the well magnetization using external magnetic fields similar to what is done in the
above discussed paramagnetic MOBILE. However, in ferromagnetic layers it is usually much
easier to change the orientation of the magnetization than its absolute value. Indeed, in the
case of a ferromagnetic well, in which the exchange splitting is strongly anisotropic, a simple
twisting of the well magnetization would be sufficient to observe DMR. For the isotropic case,
however, DMR becomes only possible if an additional ferromagnetic layer is used. It appears
advantageous to employ a ferromagnetic emitter instead of a ferromagnetic collector lead in
order to obtain a noticeable effect on the peak current when the well magnetization direction is
changed. This is due to the fact that the exchange splitting in the collector lead, which can be
assumed to be typically of the order of a few tens of meV, becomes ineffective in influencing
the current magnitude at high voltages, since the collector’s band edge is then already shifted
far below the resonant well states, which determine the carriers transmission. Hence, using
an additional ferromagnetic collector lead would result only in a very small magnetocurrent at
the peak voltage, making the MOBILE operation unfeasible. This reasoning also suggests that
hardly any DMR can be observed by utilizing double barrier TMR-structures with a nonmagnetic
quantum well sandwiched between two ferromagnetic leads.

Selfconsistent numerical simulations of the IV-characteristics of a RTD with a ferromagnetic
emitter and quantum well made of a GaMnN-like system suggest a strong dependence of the
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peak current on the relative magnetization orientations (Ertler and Fabian, 2007), as shown in
Fig. V.29(a). The magnetization of the emitter lead is assumed to be fixed, whereas the well is
“soft”, which means that its magnetization direction indicated by the angle φ can be altered by an
external magnetic field. For room temperature operation of the ferromagnetic MOBILE a band
splitting of the order of several tens of meV (well exceeding kBT ) is needed, regardless by which
underlying microscopic mechanism the exchange splitting is actually induced. From the view-
point of observing the DMR-effect the most prominent feature of the IV-curves in Fig. V.29(a)
is that the driver peak current is remarkably reduced when the well magnetization is distorted a
little bit, let’s say by an angle of a few tens of degrees, from its parallel alignment φ = 0. If we
assume that the load peak current is smaller than the driver’s one in the initial case of parallel
magnetization alignment, we can define a threshold angle φth as the angle of distortion where
the load and driver peak currents become equal. The threshold angle depends on the difference
of load and driver peak currents at φ = 0, which can be controlled by applying a gate voltage to
the nonmagnetic load RTD, influencing thereby its peak current value. When the ferromagnetic
MOBILE is driven into the bistable regime by applying a high input voltage the output voltage
is low for φ < φth but suddenly jumps to a high value if φ > φth, effectively realizing DMR.
In this way the distortion of the well magnetization above a electrical controllable angle can be
converted directly into an digital electrical signal; an effect which again might be utilized for a
very fast “readout” of magnetically stored information.

Moreover, by properly tuning the emitter’s Fermi energy of such a ferromagnetic RTD one
can modify the IV-characteristic in the low voltage regime from ohmic to NDR behavior just by
changing the relative magnetization orientations. This is illustrated in Fig. V.29(b) showing a
blow-up of the IV-curves of Fig. V.29(a) at low voltages. For the antiparallel case the spin down
quasibound state becomes off-resonant before carriers from the emitter can flow via the spin up
level, as sketched in the inset of Fig. V.29(b), effectively leading to the appearance of a NDR
region in the IV-curve. This interesting behavior might be utilized, for instance, to perform a
mono-to-bistable working point transition merely by flipping the well magnetization instead of
increasing the input voltage from low to high as done usually. For this purpose, we assume a
modified circuit setup, in which the load RTD of Fig. V.28 is replaced by a simple linear load re-
sistance. By drawing the load line diagram (see. Fig. V.29)(b) it becomes evident that we always
obtain only one single working point for the parallel alignment but in the case of antiparallel
orientation we can acquire two stable points for appropriate high input voltages. This allows
again to realize DMR as follows. Let us assume that in the beginning the magnetic layers are
antiparallel aligned and that the circuit operates at the high voltage level of the bistable regime.
By increasingly distorting the well magnetization out of the antiparallel configuration at some
threshold angle the circuit is switched from the bistable to the monostable regime. This results
in a sudden swing of the working point to a low voltage state, which allows to detect electrically
any disturbance of the antiparallel orientation above a certain threshold. After recovering the
antiparallel orientation the circuit will end up in the low voltage state of the bistable regime. In
order to reset the device to the initial state a small current pulse can be applied, which induces a
voltage swing back to the high voltage state.

As another application one can also think of using this circuit as a memory element, in which
the parallel and antiparallel alignments are utilized to store a binary information. The state of the
device can then be simply read out by applying a small current pulse. Such a pulse would provoke
a voltage swing to the high voltage state if the circuit operates initially in the low voltage state
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of the antiparallel configuration, but it would remain ineffective for the other cases of parallel
magnetization alignment or that the circuit is already in the high voltage state of the antiparallel
setup. Hence, after the short current pulse one would always end up with a low or high voltage
state corresponding to the parallel or antiparallel magnetization orientation.

This example of a spintronic device with its operation relying on resonant tunneling through
paramagnetic or ferromagnetic layers nicely illustrates that the current characteristics can be
drastically modulated and engineered just by changing the magnetic characteristics of the device.
The intriguing effects rest largely on the physical fact that resonant tunneling is a strongly energy
filtering process and, hence, even small energy splittings for the different spin states can have
substantial implications on the carriers transmission. This makes resonant tunneling devices
very promising for realizing all-semiconductor spintronic concepts, in which the charge current
is strongly modulated by the carriers spin state.

E. Bipolar spintronic devices

Bipolar spintronic devices refer to semiconductor devices in which the spin-polarized transport of
both electrons and holes determine the device workings. We will discuss magnetic p-n junctions
as magnetic diodes and magnetic bipolar transistors. In order to explain how the magnetic devices
operate, we also introduce relavant terminology and scheme of the conventional counterparts, p-
n junction and bipolar junction transistors. Although not everything will be derived from the
underlying drift-diffusion models, we present qualitative arguments as well as computational
scheme of calculating the I-V characteristics of magnetic diodes and magnetic transistors. Spin
transport theory of magnetic p-n junctions has been worked out in (Fabian et al., 2002b); see also
(Lebedeva and Kuivalainen, 2003).

E.1 Conventional p-n junctions

We will briefly remind the reader of the physical principles of conventional, spin-unpolarized p-n
junctions. Take a semiconductor material whose left side is p-type, doped with Na acceptors per
unit volume, and whose right side is n-type, doped withNd donors per unit volume. We consider
the whole system to be made of the same semiconductor105 with the intrinsic carrier density
ni. At high enough temperatures (usually above 100 K) most of the donors and acceptors are
thermally excited, with carriers residing in the semiconductor bands. Below we consider low
doping densities for which the Bolztmann statistics limit of the Fermi-Dirac distribution applies,
see Sec. II.C. In the p-side there are the p = Na holes and,

n0p = n2
i /Na, (V.91)

electrons at equilibrium. Holes are the majority carriers, electrons form the minority carriers.106

The electron equilibrium distribution follows from statistical considerations (Ashcroft and Mer-
min, 1976; Tiwari, 1992). In the n-region, we have Nd electrons and,

p0n = n2
i /Nd, (V.92)

105Such a system is called a homojunction. If the two regions were of different underlying material, we speak of a
heterojunction.

106Not to be confused with the majority and minority carriers in ferromagnetic conductors, in which these terms refer
to the carriers of higher and lower spin density, respectively.
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Fig. V.30. (a) Two separate regions, one of p-type, the other of n-type, of the same semiconductor material
have different chemical potentials ηp and ηn, respectively. The chemical potentials are shown relative to
the conduction and valence bands. (b) If electrons are allowed to flow between the two regions, a common
thermodynamic equilibrium is established with a uniform chemical potential η. As a result of the charge
rearrangement, a space-charge region (shaded) is formed, in which a macroscopic, so-called built-in field
Eb is present. The initial difference of the chemical potentials is now reflected in the built-in voltage drop,
Vb, across the depletion region. The electron generation current, jgn, equals the electron recombination
current, jrn that flows in the opposite direction. Filled circles indicate electrons, empty one holes.

holes. Electrons are the majority, holes are the minority carriers here. Considered separately, the
two regions would have different chemical potentials, ηp and ηn, as seen in Fig. V.30 a. If the
regions are connected and electrons can flow through the contact, a single chemical potential, η
is established, as in Fig. V.30 b. To establish the uniform chemical potential, electrons flow from
the n-region to the p-region. This leaves a positive, uncompensated charge in the n-region, close
to the contact, as well as a negative charge in the p-region. As a result, a built-in electric field is
induced in the contact. The contact region, in which the field exists, is called the depletion layer,
or the space-charge region, since the built-in field drives the electrons (holes) into the n-region
(p-region). Since the carrier densities are small in the depletion layer, there is a space charge
due to the uncompensated donors and electrons. It is the physics of the space-charge region that
gives rise to the interesting properties of bipolar junction diodes and transistors.

The built-in electric field is an equilibrium field, driving no macroscopic current. The corre-
sponding electrostatic potential drop, called the built-in potential, is not an electromotive force
(emf). No current would flow if we closed the circuit. In order for a current to flow in a p-n junc-
tion, we need to create a difference in the chemical potentials at the two ends of the junctions.
This could be done by attaching battery contacts onto the two regions, or by shining light on the
junction. The latter method, which is the principle behind solar cells, results from the existence
of the built-in field. Excess electron-hole pairs from the optical excitation, arriving or generated
at the space-charge region, are separated by the built-in field: electrons go to the n-side, holes to
the p-side, resulting in an electrical current flowing in the direction of holes, in a closed circuit.

Here we consider the usual current generation by attaching battery contacts on the junction.
How does electrical current flow in the junction? We will first give a qualitative estimate of the
current, then solve the problem using a drift-diffusion model for p-n junctions. Let us start with
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Fig. V.31. (a) Forward bias. If positive voltage, V > 0, is applied to the p-region (say, the n-region is
grounded), the depletion layer gets narrower and the band bending smaller. The electron recombination
current is greater than the electron generation current (similarly for holes), resulting in a flow of electrical
current. The electron chemical potential, ηn, is indicated. The potential drops mainly in the p-region. (b)
Reverse bias. If negative voltage, V < 0, is applied to the p-region, the depletion layer widens and the band
bending increases. The electron recombination current decreases well below the generation current. Only a
small electrical current, of the magnitude essentially of the generation current flows.

a qualitative account. In order to understand the currents that flow under applied bias V , we need
to understand first the currents that flow at V = 0. There are two such currents. Since the physics
is identical for electrons and holes, we only look at electrons. If there is a thermal excitation of an
electron-hole pair in or near the space-charge region, the electrons will be pushed to the n-region
and holes to the p-region, by the built-in field. This gives the so-called generation current jgn, the
name indicating that the current originates from thermal generation of carriers. As there should
be no macroscopic equilibrium current, there needs to be an opposite flowing current. Indeed,
there is the so-called recombination current, jrn, due to the thermal activation of the electrons
from the n-region to the p-region. The terminology comes from the ultimate fate of the thermally
activated electrons: they recombine in the p-region with holes. In equilibrium, jgn = jrn. This
equilibrium currents are indicated in Fig. V.30 b.

Qualitative picture of the currents in a p-n junction. If there is a bias, V , applied across
the junction, a net macroscopic current will flow. As the depletion layer is the region with the
highest resistance, all the bias drops there. If V > 0, in the convention that the higher voltage
is applied to the p-region, electrons flow from the n- to the p-region, and the band bending in
the depletion layer will decrease, as shown in Fig. V.31 a. This case is called the forward bias,
since it results in a relatively large current. If V < 0, the band bending increases, as shown
in Fig. V.31. This case is called the reverse bias, since a very small current flows through the
junction. The asymmetry between the forward and reverse bias gives the p-n junction its current
rectification property.

If the band bending is modified from its equilibrium value, the recombination current has to
change. Indeed, the recombination current depends on the thermal activation over the barrier,
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since the electrons have to be activated from the n- to the p-region:

jrn = KNde
q(−Vb+V )/kBT . (V.93)

Here we indicate that the current is proportional to both the available density of electrons, Nd, as
well as to the rate of thermal transfer, exp[q(−Vb + V )/kBT ], where q is the magnitude of the
electron charge, q = |e|. The higher is the built-in field Vb, the smaller is the transfer; opposite
holds for the applied bias, in the adapted sign convention.

On the contrary, the generation current does not depend on the applied bias. This is crucial
to the rectification property of the junction. The reason why jgn does not depend on V is that the
generation current does not depend on the band bending; it depends on the energy gap,107 which
does not change with the bias. The generation current also depends on the density of available
electrons close to the depletion layer (as we will see later from the drift-diffusion model). The
rate of the electron transfer from the p-region to the n-region due to the generation depends only
on the rate of the electron generation. The rate does not depend on how fast the electron moves
in the depletion layer due to the presence of the built-in field, since the field is so large, that every
electron that enters the layer is swept to the n-region. For one electron thermally excited in the
p-region close to the depletion layer, one electron enters the n-region, per unit time. We thus
require that in equilibrium, in which no net currents flow,

jgn = −jrn(V = 0) = −KNde
−qVb/kBT . (V.94)

The electron current flowing as a result of an applied bias is,

jn = jgn + jrn = jgn

(
eqV/kBT − 1

)
. (V.95)

An analogous expression can be written for holes:

jp = jgp + jrp = jgp

(
eqV/kBT − 1

)
. (V.96)

Putting electrons and holes together, we finally obtain the I-V characteristic of a p-n junction in
the form,

j = jg

(
eqV/kBT − 1

)
, (V.97)

where jg = jgn + jgp. This equation describes the rectification of a p-n junction diode. In the
forward bias, when qV & kBT , the current exponentially increases; in the reverse bias, when
V < 0, the current drops to j ≈ −jg .

Diffusion model of Shockley for a p-n junction. In order to calculate the generation cur-
rent, namely, the value of the unknown parameter K, we need to consider a more quantitative
model. An intuitive model, which turned out extremely practical, was proposed by Shockley
(Tiwari, 1992). The model is based on the following assumptions: (i) The transport of the mi-
nority carriers away from the depletion layer is due to diffusion. The drift can be neglected. (ii)

107The generation current is limited by the thermal excitations of the carriers, electron-hole pairs, in one region only.
Thermal forces do not have to act further to bring, say, the electrons across the depletion layer. All the electrons generated
thermally at the depletion layer are swept by the electric built-in field.
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The chemical potential (or, rather, the quasichemical potential since we are not in equilibrium) is
constant across the space-charge region (depletion layer). The chemical potential, which is dif-
ferent for electrons and holes in the depletion layer, drops in the region in which the carriers are
in minority; see Fig. V.31. This assumption suggests that the carriers are in a sort of quasiequilib-
rium inside the depletion layer. As we will see, assumption (ii) gives boundary conditions for the
diffusion model (i). Related to (ii) is the additional assumption (iii), that the electron-hole recom-
bination inside the depletion layer is inhibited. Electrons and holes are kept at different chemical
potentials throughout the layer. This assumption gives the continuity of the electron and hole
currents across the depletion layer, allowing us to connect the currents at the two regions. This
assumption, unlike (i) and (ii), may be relaxed while still allowing analytical solutions. We stress
that the Shockley model works only at low biases (say, below the voltages corresponding to the
energy band gap), at which we are in the regime of low carrier injection. This means that the
density of the injected carriers, say electrons in the p-region, is much below the corresponding
equilibrium density of electrons there. Fortunately, most useful properties of bipolar junction
devices (diodes and transistors) are in this regime.

Let us formulate the transport model based on Shockley’s conditions for our p-n junction. We
will calculate the electron current and present the expression for the hole current by analogy. The
electron transport in the p-region is governed, due to assumption (i), by the diffusion equation:

d2δn

dx2
=

δn

L2
np

, (V.98)

where δn = n − n0p is the nonequilibrium electron density and Lnp is the electron diffusion
length in the p-region. The diffusion length is limited by electron-hole recombination (typically
nanoseconds in GaAs) in the region, and can be micrometers long.108 There are two boundary
conditions: one, at x → −∞, at the far left edge of the p-region, the other one at x = 0, which
we take to be the interface of the depletion layer and the bulk p-region. Usually one assumes
ohmic contacts to the bulk regions, which means,

δn(−∞) = 0, (V.99)

expressing the fact that nonequilibrium carrier densities are absent in ohmic contacts.
The second boundary condition can be obtained from assumption (ii). If the chemical poten-

tial is constant across the depletion layer, the Boltzmann statistics gives

δn(0) = n0p(eqV/kBT − 1), (V.100)

since the separation of the chemical potential from the conduction band at x = 0 changes by qV
upon application of bias. The higher is the forward bias, the exponentially more minority carriers
appear at the contact to the depletion layer. These nonequilibrium carriers diffuse towards the
bulk, disappearing at the distance of Lnp. On the other hand, at reverse biases, the number of
minority carriers decreases below the equilibrium value.

The solution to the diffusion equation with the above specified boundary conditions is,

δn(x) = δn(0)ex/Lnp . (V.101)
108In indirect band-gap semiconductors such as silicon the recombination is less effective, since phonons must assist to

conserve momentum. The carrier diffusion length is then much longer.
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From this density profile we can calculate the electric current due to the diffusion of electrons in
the p-region:

jn(x) = qDnp
δn(x)
dx

, (V.102)

where Dnp is the diffusion coefficient of electrons in the p-region. We obtain,

jn(x) =
qDnp

Lnp
δn(0)ex/Lnp . (V.103)

In particular, the electron current at the contact with the depletion layer is,

jn(0) =
qDnp

Lnp
n0p

(
eqV/kBT − 1

)
. (V.104)

Due to the assumption (iii), this is also the electron current that appears at the contact of the
depletion layer with the n-region. This current would be more difficult to calculate directly since
it is carried by the majority carriers for which both diffusion and drift are important. By analogy,
the hole current across the depletion layer is,

jp(0) =
qDpn

Lpn
p0n

(
eqV/kBT − 1

)
, (V.105)

where the notation is symmetric to the electron case; for example, Lpn is the diffusion length of
holes in the n-region.

The total electrical current at any point in the junction is the sum of the electron and hole cur-
rents at that point. The current continuity guarantees that we can indeed calculate the current at
any point, at our convenience. If we choose, for example, point x = 0, the Shockley assumptions
give us,

j = jn(0) + jp(0), (V.106)

which leads to

j =
(
qDnp

Lnp
n0p +

qDpn

Lpn
p0n

)(
eqV/kBT − 1

)
. (V.107)

We see that the Shockley model gives us the same rectification characteristic as that obtained
from our qualitative model. We can now identify the generation currents as,

jgn =
qDnp

Lnp
n0p, (V.108)

jgp =
qDpn

Lpn
p0n. (V.109)

The rectification behavior of the diode is then due to the nonequilibrium densities of the minority
carriers. This is an important message which will carry through the rest of this chapter when we
discuss magnetic diodes and transistors.
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Fig. V.32. Scheme of a magnetic diode with the magnetic p-region. The n-region is nonmagnetic. The spin
splitting of the magnetic region is 2ζn. Generation and recombination currents are indicated.

E.2 Magnetic diode

Consider now a straightforward extension of the above picture of bipolar junction diodes includ-
ing magnetic semiconductors (Žutić et al., 2002; Fabian et al., 2002b); the resulting magnetic
diode is a generalization of the concept of spin-polarized diodes (Žutić et al., 2001b,a, 2003). We
can have either one, or both regions magnetic,109 while there is a source of nonequilibrium spin
in the junction. The source can be either electrical or optical. For simplicity we consider only
one type of magnetic diodes—those with magnetic p-region. We further assume that holes are
spin unpolarized, which is a reasonable approximation since holes, due to their strong spin-orbit
coupling, usually lose their nonequilibrium spins very fast in comparison to electrons. However,
if needed, the model can be extended to include hole spin polarization (Fabian et al., 2002b;
Žutić et al., 2006b). The description of bipolar junction diodes (Žutić et al., 2002; Fabian et al.,
2002b) could also be relevant to various manganite-based junctions (Li et al., 2006c,b; Cai and
LI, 2005; Nakagawa et al., 2005) and novel class of ferromagnetic semiconductors in which
carrier polarity can be changed by impurity doping (Motomitsu et al., 2005).

The scheme of our magnetic diode is shown in Fig. V.32. The p-region is magnetic with the
spin-splitting of the conduction band to be 2ζn. The generation current is different for spin up
and for spin down electrons, similarly for the recombination current. This current can be con-
trolled by magnetic field, modifying the splitting of the electron bands in the magnetic region, or
by introducing nonequilibrium spins in the n-region. We will use a qualitative model, developed
in the previous section, to calculate the current through a magnetic diode and discuss its rami-
fications; general approach to calculate spin-polarized currents through arrays of magnetic p-n
junctions will be given later in the section on magnetic bipolar transistors.

The electron recombination current in the magnetic diode of Fig. V.32 is jrn↑+jrn↓. Suppose
the equilibrium spin polarization of electrons in the p-region is P0, and the nonequilibrium spin
polarization in the n-region, due to a spin source, is δP . Then the spin-up and spin-down electron

109We do not address the origin of the magnetism: the semiconductor can be either ferromagnetic, in which case the
carrier band spin splitting is due to exchange coupling, while in case of a general dilute magnetic semiconductor the spin
splitting is due to giant g-factors and an applied magnetic field, giving giant Zeeman splitting.
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currents are,

jrn↑ =
1
2
K(1 + P0)(1 + δP )Nde

q(−Vb+V )/kBT , (V.110)

jrn↓ =
1
2
K(1− P0)(1− δP )Nde

q(−Vb+V )/kBT . (V.111)

The information about ζn is encoded in P0. The above equations have simple interpretations.
The number of spin up electrons available for thermal excitation from the n- to the p-region is
proportional to 1 + δP . On the other hand, the spin up electrons have a lower barrier to cross,
giving a factor of exp(qζn/kBT ) for the thermal excitation. The Boltzmann statistics says that
this factor is proportional to 1 + P0.

The generation current does not depend on nonequilibrium conditions. This means that,

jgn↑ = −jrn↑(V = 0, δP = 0) = −1
2
K(1 + P0)Nde

qVb/kBT , (V.112)

jgn↑ = −jrn↑(V = 0, δP = 0) = −1
2
K(1 + P0)Nde

qVb/kBT . (V.113)

Summing up all the contributions to the electron current we obtain,

je = jgn

[
eqV/kBT (1 + P0δP )− 1

]
. (V.114)

The above equation expresses spin-charge coupling in magnetic p-n junctions. The proximity of
an equilibrium and nonequilibrium spins gives rise to modifications of the I-V characteristis of
the junction. For a parallel orientation of the spins, the current is enhanced; for an antiparallel
orientation, the current is reduced. The relative change of the current with respect to the orien-
tation of the equilibrium and nonequilibrium spin gives rise to a giant magnetoresistive effect in
magnetic diodes. Interestingly, the effect is also present at zero bias. Even for V = 0 electric
current flows due to the spin-charge coupling. The current is either positive or negative, depend-
ing on the sign of the product of P0δP . This phenomenon is called spin-voltaic effect (Žutić
et al., 2002; Fabian et al., 2002b; Žutić et al., 2003; Žutić and Fabian, 2003), producing an emf
from nonequilibrium spin, similarly to the Silsbee-Johnson spin-charge coupling of Sec. II.D.9.
110

The spin-voltaic effect is illustrated in Fig. V.33. In simple terms, we can pose the question
of how can we make the current in the magnetic diode larger or smaller. Looking at the potential
barrier for going from the n- to the p-region, we immediately see that by making the spin in the
n-region nonequilibrium, pointing up, electrons will have a lower barrier to cross, increasing the
recombination current. On the other hand, introducing more spin down electrons in the n-region,
electrons have to climb a higher barrier, reducing the recombination current. Since the generation
current is not influenced by the nonequilibrium properties, the current for the parallel orientation
will be larger than thar for an antiparallel orientation of the equilibrium and nonequilibrium spins.

The spin-voltaic effect have been observed in magnetic p-n junction diodes based on GaM-
nAs (Chen et al., 2006). Fig. V.34 shows the experimental setup. The magnetic diode is formed

110There are various proposals (Žutić et al., 2004) which give emf from nonequilibrium spin, often referred to as
spin(-polarized) pumps, cells, or batteries. They even do not need to have a magnetic element and can span a range
of structures from nonmagnetic p-n junctions (Žutić et al., 2001a) and semiconductors sandwiched between the two
conducting leads (Wu and Ahn, 2006) to double quantum dots (Chia et al., 2006).
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Fig. V.33. Spin-voltaic effect in a magnetic diode. The p-region is magnetic, while the nonmagnetic n-
region contains nonequilibrium spin. In the case that the equilibrium spin is parallel to the nonequilibrium
one, electrons tend to flow left. If the two spins are antiparallel, electrons flow right. Electrical current flows
even in the absence of applied bias, for V = 0.

Fig. V.34. (a) Schematic band diagram of the device structure. The p-region is ferromagnetic, based on
GaMnAs. The n-region is formed by GaAs, which makes a Schottky barrier contact with an iron spin
injecting electrode. (b) The actual experimental setup. The Co/Fe layer is included to magnetically bias the
Fe layer. Reprinted figure with permission from P. Chen et al., Physical Review B 74 241302 (R) (2006).
Copyright 2006 by the American Physical Society.

by n-GaAs and the ferromagnetic p-GaMnAs. The spin source is the iron electrode connected via
the Schottky barrier to the n-region. Spin-charge coupling results from the existence of nonequi-
librium spin, due to the spin injection from the iron electrode, at the depletion layer with the
p-region.

The results of the experiment are shown in Fig. V.35. The iron electrode has higher coercive
field, due to the magnetic biasing with the Fe/Co layer, see Fig. V.34, allowing both parallel and
antiparallel orientations of the two ferromagnets at a large window of external magnetic fields.
As the traces of the resistance versus magnetic field, in different directions of the field indicate,
there is spin-charge coupling due to the injected nonequilibrium spin in GaAs and the equilibrium
magnetization in GaMnAs.111

111Fig. V.35 shows low resistance for antiparallel and high resistance for parallel magnetizations. The actual magneti-
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Fig. V.35. (a) SQUID measurements of the magnetizations of various ferromagnetic layers in the device.
(b1) Magnetoresistance for the [110], an in-plane, orientation of the magnetic field. Arrows indicate orienta-
tions of the magnetizations of the GaMnAs and Fe electrode. (b1) and (b2) show the same, for the indicated
orientation of the magnetic field. (c) Reference data, with no magnetically biasing Co layer. Without this
layer, GaMnAs and Fe in the structure have similar coercivities, so antiparallel orientation is not realized.
The resistance is then constant. Reprinted figure with permission from P. Chen et al., Physical Review B 74
241302 (R) (2006). Copyright 2006 by the American Physical Society.

Similar findings of the spin-voltaic effect were observed in p-InGaAs/n-AlGaAs spin-polar-
ized p-n junctions (Kondo et al., 2006) in applied magnetic fields, using the g-factor differences
of the n- and p-regions: AlGaAs composition was selected to have g ≈ 0, while InGaAs had
g ≈ −1.9. In effect the p-region had a finite spin splitting, while the n-region could be con-
sidered to have zero equilibrium spin. The source spin was induced by optical spin orientation.
Spin-polarized transort in ferromagnetic p-n junctions based on p-InMnAs and n-InAs has been
investigated experimentally in (May and Wessels, 2005), in manganite based junctions in (Cai
and LI, 2005).

Finally we address briefly the question of spin injection across a magnetic p-n junction. Sup-
pose we have a magnetic n-side and wish to inject the spin-polarized electrons into the p-side.
It turns out that at low biases there will be no spin accumulation—spin injection is inefficient
in transforming spin-polarized majority electrons into spin-polarized minority electrons. The
reason is rather simple: although there are more, say, spin up electrons than spin down in the
n-region, due to the equilibrium magnetization, the activation barrier for spin up is greater than
for spin down electrons in crossing over to the p-region. Both effect cancel each other, so that
the current flowing across the depletion layer is spin unpolarized (Fabian et al., 2002b). Spin
injection, as well as spin extraction, is possible only in a high injection limit, in which first a

zation arrangement depends on whether the majority or minority spins are injected across the Schottky barrier, as well as
on the effective g-factor of electrons in GaMnAs.
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nonequilibrium spin accumulation in the magnetic side is set up (Žutić et al., 2002).

E.3 Magnetic bipolar transistor

The structure of the magnetic bipolar junction transistor has been proposed by Fabian et al.
(2002a, 2004); Fabian and Žutić (2004a,b, 2005), as well as by Flatté et al. (2003) and Lebe-
deva and Kuivalainen (2003). The transistor is identical to the conventional (nonmagnetic, spin-
unpolarized) bipolar junction transistor of Shockley (Tiwari, 1992). Two magnetic p-n junctions
are connected in series and a third contact is added to the middle region called the base. The
transistor can have equilibrium spin, coming from the magnetization or the spin splitting of the
carrier bands in any region. In addition, there can be a source of a nonequilibrium spin, such
as coming from electrical spin injection or optical spin orientation (Žutić et al., 2004). Al-
though the equilibrium spin is enough to allow for a magnetic control of amplification—what
is termed magnetoamplification—see also Ref. (Lebedeva and Kuivalainen, 2003; Fabian and
Žutić, 2004a), fascinating new effects appear from the interaction of the equilibrium and nonequi-
librium spin, when they are in an electrical contact. This interaction, which is a realization of the
Silsbee-Johnson spin-charge coupling, see Sec. II.D.9, gives rise to giant magnetoamplification,
the control of current amplification by the relative orientation of the equilibrium and nonequilib-
rium spins (Fabian et al., 2002a; Fabian and Žutić, 2004a).

Important for spintronics application is transfer of spin within the transistor. There are two
possibilities. One is the spin injection from a source or a nonequilibrium spin in the emitter,
another is the spin injection from the equilibrium spin in a magnetic base. The former is similar
to spin injection through a magnetic diode (Žutić et al., 2002), except that we now have two
diodes in series, with opposite polarities (in the useful configuration of forward active regime).
The latter, less trivial spin injection process, has no counterpart in the diode physics and appears
due to a nonequilibrium spin accumulation in the base, resulting from the electrical injection of
initially unpolarized carriers, into the base. The carriers polarize in the base by spin relaxation
processes. We call this process intrinsic spin injection.

Conventional bipolar junction transistors have many applications in information technology.
The junction transistors are faster than field effect transistors; the disadvantage is the vertical
design of junction transistors. They are used for high-speed digital circuits in mobile commu-
nication systems, for example, in small signal amplification devices, in high frequency analog
circuits, as well as for bipolar complementary metal-oxide-semiconductor (CMOS) technolo-
gies. Bipolar transistors form about 20% of the integrated circuit market (the rest is MOSFETs).
Their proposed magnetic variants have chance to greatly enhance functionalities of the present
technologies, with applications such as reprogrammable logic (Black and Das, 2000).112

E.4 Conventional bipolar junction transistor

Bipolar junction transistor is a three terminal semiconductor structure comprising two p-n junc-
tions in series. While p-n junctions rectify current, junction transistors amplify current. In ad-
dition, they are used for fast logic devices, as they allow ON and OFF operations, depending

112Reprogrammable or reconfigurable logic is a term describing logic devices which can be roconfigured by, say,
magnetic field. One set of magnetic transistors can work as an AND logic element for one specific configuration of the
magnetizations, and as an OR element for another configuration.
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Fig. V.36. Scheme of an npn bipolar junction transistor in the forward active regime. The lower figure
shows the conduction and valence bands, as well as the direction of the electric current in the three regions.

on the configuration of the bias drops across the two p-n junctions. To be specific, consider an
npn transistor sketched in Fig. V.36. The n-doped emitter serves to emit electrons; usually it is
highly doped. The collector, which collects electrons, is usually weakly doped. Finally, the base
makes a third contact (bipolar junction transistor is a three-terminal device) which controls the
current between the emitter and the collector. In the usual operating mode, called forward active,
the base-emitter junction is forward biased, Vbe > 0, while the base-collector junction is reverse
biased, Vbc < 0. This is the situation shown in Fig. V.36. The base-emitter barrier is lower than
the equilibrium intrinsic built-in barrier of the junction, pushing electrons from the emitter to
the base. The base-collector barrier is higher than the intrinsic value, allowing the electrons that
reach the barrier from the base region to be swept, without the need for thermal activation, to the
collector.

The electric current flowing in the three regions is indicated in Fig. V.37. The current in the
emitter, je, flows to the left, reflecting the flow of electrons to the right. Similarly for the collector
current, jc. In the base the electrons which recombine with holes leave the region, so the base
electric current, jb, flows into the base. The current gain, or amplification factor, of the transistor
is the ratio of the collector and emitter currents:

β =
jc
jb
. (V.115)

Typically, this ratio is several hundreds. This means that for each electron that recombines in the
base and forms the base current, there are hundreds flowing into the collector. Without the base
electrode there would be no current flowing through the transistor in the forward active region.
Indeed, the electrons recombining in the base would stay there and induce electric force opposing
further injection of electrons from the emitter.

In addition to the forward active regime, there are three more modes in which the bipolar
junction transistor can operate. All four modes, summarized in Tab. V.2, are: (i) forward active,
defined by the forward emitter-base, Vbe > 0 and reverse collector base, Vbc < 0, junctions, as
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Fig. V.37. Currents in a conventional npn bipolar junction transistor. Electrons from the emitter easily
overcome the activation barrier to the base in the forward biased base-emitter junction. Once in the base,
the electrons diffuse towards the collector; some stay in the base because of recombination with holes.

discussed above; (ii) reverse active, with reverse polarities: Vbe < 0 and Vbc > 0; (iii) saturation,
with both junctions forward biased, Vbe > 0 and Vbc > 0, and, finally, (iv) cutoff, with both
junctions reverse biased, Vbe < 0 and Vbc < 0. In the forward active mode the transistor acts
as an amplifier. Due to its design, with high emitter and low collector doping, the reverse active
mode has a much smaller amplification factor than the forward active mode. The saturation
and cutoff modes are used in logic operations as ON and OFF states, respectively. We will see
that magnetic bipolar transistors, while providing additional functionalities in these conventional
modes, offer another regime due to spin-charge coupling.

Tab. V.2. Operational modes of bipolar junction transistors (BJT) and magnetic bipolar transistors (MBT).
Forward (F) and reverse (R) bias means positive and negative voltage over the indicated region, respectively.
Symbols MA and GMA stand for magnetoamplification and giant magnetoamplification, while ON and
OFF are modes of small and large resistance, respectively; SPSW stands for spin switch.

mode Vbe Vbc BJT MBT
forward active F R amplification MA, GMA
reverse active R F amplification MA, GMA

saturation F F ON ON, GMA, SPSW
cutoff R R OFF OFF

spin-voltaic 0 0 OFF SPSW
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Fig. V.38. Physical processes leading to the spin control of amplification of magnetic bipolar transistors.
There is a spin-charge coupling in the base-emitter junction, which controls the injection of the electrons to
the base. In the base the electrons diffuse towards the collectors, recombine with holes, or flip their spin in
an attempt to reach the spin equilibrium.

E.5 Magnetic bipolar transistor with magnetic base

What happens if we replace one of the regions of the transistor, say base, with a magnetic semi-
conductor? For simplicity we assume that the conduction band of the base is exchange or Zeeman
spin split, leading to electron spin polarization P0b, while the holes are spin unpolarized. The
equilibrium spin in the base influences the equilibrium electron density there, through the shift
of the chemical potential. Since the current in the base-emitter junction depends on the minority
electron density in the base, this current depends also on the equilibrium spin polarization in the
base. This dependence allows some control over the amplification factor.

Nontrivial effects appear if we allow for the possibility of nonequilibrium spin in the emitter.
Such a spin can appear as a result of a spin injection, electrical or optical. The origin is not
essential for our discussion. We only assume that there is a nonequilibrium spin polarization
δPe in the emitter, see Fig. V.38. What happens if the spin polarizations are parallel, that is, if
δPeP0b > 0? More electrons in the emitter have spin up than spin down. At the same time there
is a smaller energy barrier for spin up than for spin down, to cross the base-emitter barrier. The
injection of the electrons from the emitter increases, giving a larger collector current and with it
a larger current amplification β. On the other hand, if the two polarizations are antiparallel, that
is, if δPeP0b < 0, the injection as well as the current gain are reduced. This is the basic principle
behind the spin control of the current gain proposed for magnetic bipolar transistors.

In the following we introduce a formalism allowing to calculate the I-V characteristics of
magnetic transistors in the low injection limit. In fact, the formalism applies to a whole array of
magnetic p-n junctions connected in series.
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E.6 Magnetic p-n junctions in series

A magnetic transistor is the simplest nontrivial example of an array of magnetic p-n junctions
serially connected. Indeed, the transistor comprises two such junctions in series. The next exam-
ple would be a magnetic thyristor, comprising three junctions. In general, we impose boundary
conditions on the carrier densities as well as on the spin at the two boundaries of the array. What
needs to be determined are the carrier densities and the spin inside, especially at the depletion
layers. In the following we present a general theory of serial magnetic p-n junctions in which the
spin is in the conduction band. The valence band will be taken unpolarized for simplicity. As we
wish this to be a reference section, we introduce all the relevant notation.

Each magnetic p-n junction is characterized by its equilibrium properties: acceptor doping
Na and donor doping Nd, giving the majority hole and electron densities; equilibrium minority
electron density n0p in the p region and the equilibrium minority hole density n0n in the n region;
equilibrium spin density s0p in the p region and equilibrium spin density s0n in the n region.
The corresponding equilibrium spin polarizations are P0p = s0p/n0p and P0n = s0n/Nd. The
widths of the p and n regions are wp and wn, respectively. The minority electron and hole carrier
diffusion lengths are Lnp and Lpn, respectively, while the electron spin diffusion length in the
n and p regions are Lsn and Lsp, respectively. Similarly, the electron diffusion length in the n
and p regions are denoted by Dnn and Dnp. Finally, we let V denote the voltage drop across the
junction, positive for a forward bias.

The currents across a particular junction are determined by the nonequilibrium minority car-
rier densities, δn = n − n0, and δp = p − p0, as well as by the nonequilibrium spin densities,
δs = s− s0, at both sides of the depletion layer. For a single p-n junction we define the scalar,

u = δsn, (V.116)

and the column vector

v =
(
δnp

δsp

)
. (V.117)

The scalar u describes the nonequilibrium electron spin density in the n region of the junction.
The majority electron density has the equilibrium value of Nd in the low injection limit consid-
ered here. On the other hand, both the minority electron and spin densities can have nonequi-
librium values in the p region. These quantities are described by the vector v. All the relevant
physics of spin injection across magnetic p-n junctions is contained in u and v.

In spin-unpolarized p-n junctions the amount of the nonequilibrium minority carrier density
at the depletion layer depends solely on the voltage drop, V , across the layer, see Sec. E.2.
This follows from the Shockley condition of the constant chemical potential across the layer.
Spin introduces two complications: (i) The nonequilibrium carrier and spin densities at one
side of the depletion layer depend on the densities on the other side. This coupling, referred
to as intrajunction spin-charge coupling, appears due to the generalized Shockley conditions of
constant spin-resolved chemical potentials as well as uniform spin current across the depletion
layer, see (Fabian et al., 2002b). In addition, (ii) the nonequilibrium carrier and spin densities
at one depletion layer depend on the densities at the adjacent layer (a single p or n region is
sandwiched between the two layers). The reason for this coupling, called interjunction spin-
charge coupling, lies in the carrier and spin diffusion across the region between the two layers.
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As a result of the intra and interlayer spin-charge couplings, the minority carrier and spin
densities at each internal magnetic p-n junction depend on the densities at all other junctions.
Since in the low injection limit the couplings are linear, we can write down algebraic expressions
describing the coupling and solve for all the relevant densities in a self-consistent manner. The
apparent simplicity of the algebraic structure is very appealing as the algebraic solution can be
readily found. We will see the technique below for the npn magnetic transistor case.

Let us first define the nonequilibrium carrier and spin densities in the absence of spin-charge
couplings. We start with the more familiar,

v0 =
(
eqV/kBT − 1

)(
n0p

s0p

)
. (V.118)

If no nonequilibrium spin is present in the junction, the minority electron density in the p region
as well as the spin in the p region would be given by the above formula. Only the voltage
drop across the layer determines the nonequilibrium values which increase exponentially with
V . While the nonequilibrium majority electron density in the n region is negligible compared to
Nd, the nonequilibrium spin δs needs to be considered, as in general the equilibrium spin density
can have any value smaller or equalNd. As a result of electron extraction not taking into account
spin-charge coupling, the nonequilibrium spin density is (Fabian et al., 2002b),

u0 = −γ2 cosh(wp/Lnp)s0p

(
eqV/kBT − 1

)
. (V.119)

The electron extraction to the p region with equilibrium spin s0p is spin-selective resulting in the
spin imbalance (with the sign opposite to s0p) in the n region, described by the above formula;
γ2 is a structure factor to be specified below.

Before we proceed and describe the effects of spin-charge couplings on the carrier and spin
densities in an array of magnetic p-n junctions, we introduce two column vectors describing the
strengths of the coupling and the spin injection efficiency across the depletion layer. The vector
C, which is dimensionless, characterizes the intrajunction coupling:

C =
(
P0p(γ2 − γ1)

γ1

)
. (V.120)

The vector D, again dimensionless, characterizes the strength of the interjunction coupling,

D =
n0p

Nd

eqV/kBT

1− P 2
0n

(
P0p − P0n

1− P0pP0n

)
. (V.121)

A single magnetic p-n junction. We first recall the magnetic p-n junction equations (Fabian
et al., 2002b; Fabian and Žutić, 2004a), which we will later generalize using the notation intro-
duced above. The reader should refer to Fig. V.39 where the geometry of the p-n junction is
introduced. The p-region is on the left, the n-region on the right. The effective widths of the
regions are wp and wn, the corresponding dopings Na (acceptor density) and Nd (donor den-
sity). We assume, quite generally, that both regions can have equilibrium electron spin, with the
spin polarizations P0p and P0n. The boundary conditions are fixed densities: np and sp, for the
electron and spin density at the far left of the p region, and sn, the spin density at the far right of
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Fig. V.39. Scheme of a single p-n junction with identified boundary conditions (far left and right regions)
and unknown carrier and spin densities at the left (L) and right (R) of the depletion layer.

the n region. In the array these boundary densities will no longer be fixed, as they will appear
at the depletion layers to other regions. Going back to our single junction: we need to find the
electron and spin densities at the depletion layer: nL and sL, at the left of the layer, and sR at the
right of the layer; the electron density at R is just Nd (see Fig. V.39).

Here we only quote the result, which for the nonequilibrium spin density, δsR = sn − s0n,
at the right side of the depletion layer gives (Fabian et al., 2002b; Fabian and Žutić, 2004a):

δsR = γ0δsn + γ1(δsp − P0pδnp) + γ2P0pδnp

− γ2 cosh (wp/Lnp) s0p

(
eqV/kBT − 1

)
. (V.122)

The structure factors γ are,

γ0 =
1

cosh(wn/Lsn)
, (V.123)

γ1 =
(
DnpLsn

DnnLsp

)
tanh(wn/Lsn)
sinh(wp/Lsp)

, (V.124)

γ2 =
(
DnpLsn

DnnLnp

)
tanh(wn/Lsn)
sinh(wp/Lnp)

, (V.125)

γ3 = γ2 cosh(wp/Lnp). (V.126)

Equation (V.122) is accurate up to the terms of the relative order of n0 exp(qV/kBT )/Nd. While
such terms can be safely neglected when dealing with the spin and carrier densities, they must be
included when calculating the spin current in the n region. The correct formula for the injected
spin density at the low injection limit, δsR, can be cast in the form of Eq. (V.122), with the
coefficients γ divided by the factor 1 + ν:

γ → γ/(1 + ν), (V.127)

where,

ν =
n0pe

qV/kBT

Nd
[γ1 cosh (wp/Lsp)

1− P 2
0p

1− P 2
0n

+ γ3P0p
P0p − P0n

1− P 2
0n

]. (V.128)

Typically ν is a number smaller than 0.1. The equation (V.122) gives the spin injection efficiency
across the p-n junction.
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Fig. V.40. Array of (in general magnetic) p-n junctions. The top indexes refer to the number of the depletion
layer, characterizing the corresponding junction. The bottom indexes show the spin injection parameters γ
corresponding to the junctions.

If δPR = δsR/Nd is known, we can also calculate the injected minority densities δnL and
δsL:

δnL = n0p

[
eqV/kBT

(
1 + δPR

P0p − P0n

1− P 2
0n

)
− 1
]
, (V.129)

δsL = s0p

[
eqV/kBT

(
1 +

δPR

P0p

1− P0pP0n

1− P 2
0n

)
− 1
]
. (V.130)

The following relation connects the spin polarization across the depletion layer:

PL =
P0p

(
1− P 2

0n

)
+ δPR (1− P0pP0n)

1− P 2
0n + δPR (P0p − P0n)

. (V.131)

Equations (V.122), (V.129)-(V.131) form what we call the magnetic p-n junction equations.
An array of magnetic p-n junction The magnetic p-n junction equations can be cast in

a very compact form using the vector notation. Consider an array of p-n junctions depicted in
Fig. V.40.

If the junction is the ith in the series, that is, the depletion layer of the junction has label i,
Eqs. (V.122) and (V.129) for an oriented p-n junction are,

ui = u0
i + γ0,iui+1 + Ci · vi−1, (V.132)

vi = v0
i + Diui. (V.133)

In case the ith junction is of the directed n-p type (that is, the n-region is on the left and the
p-region is on the right), the equations are,

ui = u0
i + γ0,iui−1 + Ci · vi+1, (V.134)

vi = v0
i + Diui. (V.135)

The label i goes from 1 to the number of junctions (two for a transistors). The boundary condi-
tions are the spin and carrier densities at the left (i = 0) and right (i is the number of junctions
plus 1) of the array. The resulting algebraic set of equations can be readily solved. Figures V.41
and V.42 show the stencils for the calculation of the electron and spin densities in the two oriented
magnetic junctions.
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Fig. V.41. Stencil for an oriented magnetic p-n junction.

Fig. V.42. Stencil for an oriented magnetic n-p junctions.

Example: npn magnetic transistor. We will demonstrate the solution for the case of a npn
magnetic transistor. We have the following equations for the first junction, the n-p emitter-base
one, from Eqs. (V.134) and (V.135),

u1 = u0
1 + γ0,1u0 + C1 · v2, (V.136)

v1 = v0
1 + D1u1. (V.137)

The second junction, the p-n base-collector one, described by Eqs. (V.132) and (V.133), is given
by,

u2 = u0
2 + γ0,2u3 + C2 · v1, (V.138)

v2 = v0
2 + D2u2. (V.139)

These equations can be solved analytically giving,

u2 = (C2) · (D1)(γ0,1u0 + u0
1) + C2 · v0

1 + u0
2 + γ0,2u3. (V.140)
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Terms of order [n0p exp(eV/kBT )/Nd]2 have been neglected as small in the low-injection limit;
the magnetic p-n junction equations are themselves valid in this limit only. Since u2 is the
nonequilibrium spin density in the collector (at the junction with the base), Eq. (V.140) describes
the spin injection through the magnetic transistor. The knowledge of u2 gives us also the expres-
sions for u1, v1, and v2, from Eqs. (V.136), (V.137), and (V.139).

The first term in Eq. (V.140) describes the spin injection through the transistor, from a source
of nonequilibrium spin (u0) in the emitter; the term containing u0

1 can be neglected in the low
injection limit, see below. The second term, proportional to v0

1, describes the process of the
intrinsic spin injection resulting from the equilibrium spin polarization in the base. No source
spin is needed for spin injection here! This term vanishes if the base is nonmagnetic. The third
term would describe spin extraction from the collector due to the magnetic base, if the base-
collector junction were forward biased. If the bias is reverse, as in the forward active regime,
this term can be neglected. Finally, the last term describes diffusion of the spin from a possible
source of spin in the collector.

E.7 Spin injection through magnetic bipolar transistor

We will now look at ramifications of Eq. (V.140) and consider two apparently distinct physical
conditions. The first is a nonmagnetic transistor, but with a spin-polarized emitter in which there
is a source (such as electrical or optical spin injection) of nonequilibrium spin. The second is a
magnetic-base transistor, but with no source of nonequilibrium spin in the emitter.

Spin injection due to source spin in the emitter. Consider a conventional bipolar junction
transistor with a source of nonequilibrium spin in the emitter. In the forward active regime, what
is the nonequilibrium spin in the collector? The nonequilibrium spin there appears as a result
of the electric spin injection through two depletion regions! First, the emitter spin is transmitted
to the base. There the accumulated spin diffuses towards to collector, as well as relaxes to
equilibrium in the base itself. The spin that moves towards to the collector is swept by the
electric field in the base-collector depletion layer and accumulates in the collector. Looking at
Eq. (V.140), for the case at hand we have the following conditions: (i) u3 = 0, meaning there is
no nonequilibrium spin in the far boundary of the collector. (ii) u0

1 = u0
2 = v0

2 = 0, reflecting our
conventional transistor with no equilibrium spin as well as with little nonequilibrium electrons at
the reverse biased base-collector junction. Using these conditions we obtain for the spin injection
density in the collector:

u2 = γ0,1C2 ·D1u0, (V.141)

and

D1 =
n0,1

Nd,1
eqV12/kbT

(
0
1

)
, (V.142)

C2 =
(

0
γ1,2

)
. (V.143)

This translates directly to the emitter-base-collector language:

δsc = γ0,be
n0b

Nd,e
eqVbe/kBT γ1,bcδse. (V.144)
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Fig. V.43. Spin injection through a conventional bipolar junction transistor, from a nonequilibrium spin,
δse, in the emitter. First the spin is injected into the base. In the base the spin density is lowered due to the
low density of the injected spins. The spin that reaches the depletion layer to the collector is swept by the
large electric field E to the collector where it accumulates. The corresponding factors lowering the initial
spin density in the process are shown at the top.

The factor of γ0,be describes the diffusion of the nonequilibrium spin within the emitter. This
factor is close to one if the emitter’s width is comparable to the spin diffusion length, which
would be a practical case of submicron transistors. The spin density that arrives at the emitter-
base depletion layer can then be as large as the source spin itself.

The spin then proceeds through the depletion layer. Since the spin in our model is attached
to electrons, once it overcomes the barrier and comes to the base, it becomes part of the minority
carrier density, since the base is p-doped. This is why the spin density drops by the factor of,

n0b

Nde
eqVbe/kBT , (V.145)

which defines the electron density in the base. This lowers the spin density to less than perhaps
10% of the initial value in the emitter. In the base the spin relaxes as well as diffuses towards
the collector. The spin injection through the base-collector depletion layer proceeds through the
process of the minority-carrier spin pumping, akin to the processes that appear in spin-polarized
p-n junctions or solar cells (Žutić et al., 2001b,a). This process is described by γ1,bc. The whole
spin injection process is illustrated in Fig. V.43.

The injected value of the spin density in the collector is much smaller than the density of the
source spin, in large part due to the low injection intensity from the emitter to the base. What
about the spin polarization in the collector? It is,

δPc = γ0,be
n0b

Ndc
eqVbe/kBT γ1,bcδPe. (V.146)

The denominator is now Ndc, which is typically much less than the emitter donor density Nde,
in practical transistors. Next, the factor γ1,bc can be quite large in the limit of a narrow base and
a wide collector (relative to the spin diffusion lengths), γ1,bc ≈ Lsc/wb, which can be a hundred
or so. As a result, even in the low injection limit, the injected spin polarization through the
conventional bipolar junction transistor can be a significant portion of the source spin polarization
in the emitter.
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Fig. V.44. Calculated spin injection of a source spin through a conventional bipolar junction transistor.
A source spin is injected into the emitter. The spin is injected by a forward current to the base, diffuses
towards the collector-base junction, where it is swept into the collector. In the figure the source spin is
δPe = 0.9. The calculated electron and spin densities (top) as well as the spin polarization P profile
(bottom) are shown. The geometry of the transistor is indicated between the graphs, with the shaded areas
corresponding to the depletion layers. After (Fabian et al., 2002b).

A realistic calculation, for a GaAs based npn transistor, is shown in Fig. V.44. The electron
as well as the spin densities are shown as they change within the transistor. The source spin
polarization in the emitter is Pe = 0.9. The spin density as well as the spin polarization drop
when reaching the base. While the spin density still increases as going from the base to the col-
lector, due to the minority electron spin pumping, the spin polarization is the same (it eventually
vanishes at the right edge of the collector, due to our boundary conditions). The spin injection
results in Pc ≈ 0.1. The forward voltage drop across the base-emitter junction in the calculation
is Vbe = 0.5 V (the low injection limit holds for values up to about 0.8 V). No voltage drop is
applied for the base-collector junction, keeping it effectively in the reverse bias. Details of the
calculations as well as the geometric and materials parameters of the simulated structure can be
found in (Fabian and Žutić, 2004a).

Spin injection due to equilibrium spin in the base. Suppose now that there is only an
equilibrium spin in the transistor, in the base. The equilibrium spin polarization is P0b. No
source of nonequilibrium spin exists in the emitter. Will there be any spin injected across the
transistor? Based on the impossibility of spin injection due to equilibrium spin in magnetic p-n
junctions (Žutić et al., 2002; Fabian et al., 2002b) we would be tempted to answer this question
negative. However, transistors are not simple extensions of diode and the answer is actually
positive, due to simultaneous build up of charge and spin in the base in the forward active region.

The situation we are describing has the following conditions for Eq. (V.140): (i) u0 = u3 =
0, since there are no source spins in the emitter or collector and (ii) u0

2 ≈ 0, since we are in the
forward active region and can set V23 = 0. As the only equilibrium spin polarization is P0b we
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have that,

u2 = D1 ·C2u
0
1 + C2 · v0

1, (V.147)

where now,

u0
1 = −γ2,1 cosh(wp,1/Lnp,1)s0p,1e

qV12/kBT , (V.148)

v0
1 = eqV12/kBT

(
n0p,1

s0p,1

)
, (V.149)

and

D1 =
n0p,1

Nd,1
eqV12/kBT

(
P0p,1

1

)
, (V.150)

C2 =
(
P0p,2(γ2,2 − γ1,2)

γ1,2

)
. (V.151)

In the expressions for u0
1 and v0

1 we have used the fact that since in the forward active regime
qV12 � kBT , the exponent is much larger than one. We see that,

D1 ·C2u
0
1 ≈ s0p,1e

qV12/kBT

(
n0p,1

Nd,1
eqV12/kBT

)
, (V.152)

is much smaller than,

v0
1 ·C2 ≈ s0p,1e

qV12/kBT , (V.153)

due to the low injection limit in which n0p,1
Nd,1

eqV12/kBT � 1. We are thus left with

u2 ≈ C2 · v0
1, (V.154)

which translates into the npn transistor language to,

δsc ≈ γ0,beγ1,bce
qVbe/kBT s0b. (V.155)

The spin polarization at the collector then is,

δPc ≈ γ0,beγ2,bc
n0b

Ndc
eqVbe/kBTP0b. (V.156)

In the limit of a thin base, that is, for wb � Lnb, Lsb, the factor γ2 ≈ γ1. Then the above
equation for the spin injection is exactly the same as the spin injection due to the source spin, Eq.
(V.146), if we replace the source spin δPe with the equilibrium spin in the base, P0b. The spin
injection has the same intensity in both cases!

Since there is no analogue of the spin injection of the equilibrium spin in the diode, we call
the spin injection intrinsic. The physical reason for the intrinsic spin injection is as follows. The
electrons injected from the emitter into the base accumulate there and form a nonequilibrium
electron density. These electrons, initially spin unpolarized, become polarized in the base with
the same spin polarization as that of the base, by both spin-selective transfer across the depletion
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Fig. V.45. Intrinsic spin injection and spin extraction in a magnetic-base magnetic bipolar junction tran-
sistor. The extracted spin density in the emitter is negative, the corresponding spin polarization being
significantly lower than the equilibrium spin polarization in the base. The intrinsic spin injection into the
collector is positive; the injected spin polarization can be a large fraction of the equilibrium polarization.
The corresponding factors changing the initial equilibrium spin density in the process are shown at the top.

layer as well as by spin relaxation. While the base spin polarization is kept at equilibrium, the
spin density is not, as it is tied with the nonequilibrium electron density. It is this nonequilibrium
spin density in the base, at the depletion layer with the emitter, that serves as the spin source
for the minority electrons which is injected into the collector by the process of minority electron
spin pumping. This is in line with our statements that first a nonequilibrium spin density has to
be build in order to have a spin injection across a depletion layer. The intrinsic spin injection is
illustrated in Fig. V.45.

As we drive electrons from the emitter to the magnetic base, we also extract spin from the
emitter. The reason is that electrons with spins parallel to the preferred spin in the base have
larger probability to cross—their barrier is lower than the opposite spin, due to the spin splitting
of the conduction band. Is this behavior predicted by our model above? From Eq. (V.136) we
have (u0 = 0):

u1 = u0
1 + C1 · v2. (V.157)

Now, Eq. (V.139) gives (v0
2 ≈ 0 due to the reversed biased junction 2):

v2 = D2u2, (V.158)

where, finally, u2 is given by Eq. (V.156). In the low injection limit we can neglect the second
term in Eq. (V.157), as it contains the small factor n0b/Ndc. We are left with

u1 ≈ u0
1, (V.159)

which in the language of the npn transistor reads

δse ≈ −γ2,be cosh(wb/Lnb)eqVbe/kBT s0b. (V.160)

The negative sign reflects the spin extraction. The extracted spin polarization,

δPc ≈ −γ2,be cosh(wb/Lnb)
n0be

qVbe/kBT

Nde
P0b, (V.161)
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Fig. V.46. Calculated spin extraction and intrinsic spin injection in a magnetic bipolar transistor with a
magnetic base. No source spin is present. Calculated electron- and spin-density profiles (top) and the spin
density polarization P (bottom). In the emitter region the spin density is negative, here plotted as positive
in the log scale. The intrinsic spin injection results in a spin polarization in the collector of δPc ≈ 0.1.
After (Fabian and Žutić, 2004a).

is rather small due to the small value of n0b/Nde. Note that the intrinsic spin injection into the
collector results in a large spin polarization there since the collector donor doping is by design
smaller than in the emitter. The spin extraction is illustrated in Fig. V.45.

A realistic calculation of the intrinsic spin injection across a magnetic bipolar transistor is
shown in Fig. V.46. The equilibrium spin polarization in the base is set to P0b = 0.762, which
corresponds to the conduction band splitting of kBT . The bias voltages are Vbe = 0.5 V and
Vbc = 0 V, as in Fig. V.44. The spin density in the emitter is actually negative, as expected
for spin extraction. The injected spin polarization in the emitter is about 10%. Details of the
calculations as well as the geometric and materials parameters of the simulated structure can be
found in Fabian and Žutić (2004a).

E.8 Magnetoamplification effects

Magnetic bipolar transistors allow for magnetic and spin control of current amplification. In
addition, they can operate as a spin switch, even in the absence of bias, only due to spin-charge
coupling. Both phenomena enhance functionalities of conventional transistors.

Currents in a transistor. The primary application of bipolar junction transistors is current
amplification or gain. In order to evaluate the current gain in magnetic bipolar transistors, we
need to look at the distribution of electron and hole currents in all three regions of the transistor.
This distribution is shown in Fig. V.47. There is a zoo of relevant currents. We first calculate the
electron currents in the base. Electrons in the base are minority carriers whose transport, in the
low injection limit, is given solely by diffusion. The electron (charge) current then is

jn
b (x) = −qDnb

dδnb(x)
dx

, (V.162)
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Fig. V.47. The distribution of currents flowing in a npn bipolar junction (magnetic or not) transistor. The
currents in a box result from the diffusion of the minority carriers. All other come from both diffusion and
drift of the majority carriers.

where x measures the distance from the base-emitter junction (see Fig. V.47). We have included
the minus sign in order to keep with the convention that in the forward active regime the positive
currents are opposite to the x direction, see Fig. V.36. In order to find the current, we need to
calculate first the nonequilibrium electron density profile δnb in the base.

The electron density in the base is given by the diffusion equation,

d2δnb

dx2
=
δnb

L2
nb

, (V.163)

with the boundary conditions fixed by the electron densities at the depletion layer with the emit-
ter, δnbe ≡ δnb(0), and at the depletion layer with the collector, δnbc ≡ δnb(wb). With these
boundary conditions the solution to the above diffusion equation is,

δnb = δnbe
sinh[(wb − x)/Lnb]

sinh(wb/Lnb)
+ δnbc

sinh(x/Lnb)
sinh(wb/Lnb)

. (V.164)

The electric current can now be readily obtained from Eq. (V.162). We do not need to know the
full electron current profile inside the base, only the two boundary values: jn,be ≡ jnb(0) and
jnbc ≡ jnb(wb). These two values are,

jn
be =

eDnb

Lnb

[
δnbe

tanh(wb/Lnb)
− δnbc

sinh(wb/Lnb)

]
, (V.165)

jn
bc =

qDnb

Lnb

[
δnbe

sinh(wb/Lnb)
− δnbc

tanh(wb/Lnb)

]
. (V.166)

We will also need the hole currents flowing in the emitter and collector, where holes are minority
carriers. Again, in these two regions holes are transported by diffusion only. The boundary
conditions are now simpler since we can assume that the contacts with electrodes are ohmic,
in which case the nonequilibrium density at the contact vanishes (no charges build up in ohmic
contacts). For example, if now x runs within the emitter from the contact to an external electrode,
to the depletion layer with the base, the hole density profile is,

δpe = δpeb
sinh(x/Lpe)
sinh(we/Lpe)

. (V.167)
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At x = 0, the place of the Ohmic contact, the nonequilibrium density vanishes. Similarly, if now
x measures the distance in the collector from the depletion layer to the base all the way to the
contact with an external electrode, the hole profile is,

δpc = δpcb
sinh[(wc − x)/Lpc)]

sinh(wc/Lpc)
. (V.168)

Again at the contact, x = wc, the density vanishes. The hole current can be obtained from (see
the sign convention for the current in Fig. V.36),

jp = qDp
dδp

dx
, (V.169)

which gives for the hole current in the emitter, at the depletion layer with the base, the value of,

jp
eb ≡ jpe(we) =

qDpe

Lpe
coth(we/Lpe)δpeb, (V.170)

and for the hole current in the collector, at the depletion layer with the base,

jp
cb ≡ jpc(0) = −qDpc

Lpc
coth(wc/Lpc)δpcb. (V.171)

The signs of the currents are such that in the forward active regime all the currents point left
(positive direction for the currents), as shown in Fig. V.47.

Unlike the individual electron and hole currents, the full charge current in any region must
be uniform. Take the emitter. The current anywhere within the region must be equal to jn

eb + jp
eb,

the current flowing at the depletion layer with the base. We have calculated already jp
eb, from the

diffusion transport model of minority holes. A direct calculation of jn
eb would be more difficult

since both diffusion and drift contribute to the majority carrier transport. Fortunately, we can, to a
good accuracy, assume that as the electrons are transported through the depletion layer, electron-
hole recombination does not severely reduce the electron current, so we can write that jn

eb = jn
be,

which we already calculated. Similarly for other majority currents. Here is the summary:

jn
eb = jn

be, (V.172)
jp
be = jp

eb, (V.173)
jn
cb = jn

bc, (V.174)
jp
bc = jp

cb. (V.175)

We can thus use the simple expressions obtained from the diffusion currents and use them for
diffusion-drift currents!

The electric current flowing in the emitter then is,

je = jn
be + jp

eb. (V.176)

Substituting Eqs. (V.165) and (V.170) for the electron and hole currents, we obtain,

je = jn
gb

[
δnbe

n0b
− 1

cosh(wb/Lnb)
δnbc

n0b

]
+ jp

ge

δpeb

p0e
. (V.177)
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Here we simplified the notation by introducing the generation currents in the base and the emitter,

jn
gb =

qDnb

Lnb
n0b coth(wb/Lnb), (V.178)

jp
ge =

qDpe

Lpe
p0e coth(we/Lpe). (V.179)

Similarly, the collector current is given by,

jc = jn
bc + jp

cb. (V.180)

Substituting Eqs. (V.166) and (V.171) we get,

jc = jn
gb

[
−δnbc

n0b
+

1
cosh(wb/Lnb)

δnbe

n0b

]
− jp

gc

δpcb

p0c
. (V.181)

Here,

jp
gc =

qDpc

Lpc
p0c coth(wc/Lpc). (V.182)

Finally, the current in the base,

jb = je − jc, (V.183)

follows from the current conservation (see Fig. V.36).
Equations (V.177), (V.181), and (V.183), allow us to calculate the gain factor β, given by

Eq. (V.115). It is remarkable that the equations are valid for both conventional as well as for
magnetic bipolar magnetic transistors. Indeed, except for the materials parameters like diffu-
sivities and mean free paths, the only parameters that specify the type of the transistor are the
nonequilibrium carrier densities. These, in turn, can be obtain from our vector model solution,
Eq. (V.140) and the defining equations Eqs. (V.136), (V.137), and (V.139).

Magnetoamplification. To explain the phenomenon of magnetoamplification, we will try
to stay within the formalism already developed for conventional transistors since this is how the
contrast is best illustrated. Let us first rewrite the gain factor β as (Tiwari, 1992),

β =
1

α′T + γ′
, (V.184)

where α′T , a base transport parameter, is a measure of how inefficient is electron recombination
with holes in the base, and γ′, an emitter injection parameter, is a measure of how inefficient is
the electron injection from the emitter to the base. In electronics literature one usually introduces
the efficiency factors αT and γ by,

αT =
1

1 + α′T
, (V.185)

γ =
1

1 + γ′
. (V.186)
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We need to specify what α′T and γ′ are. For a general magnetic transistor Eq. (V.115), as well as
Eqs. (V.177), (V.181), (V.183) lead to, in the forward active regime,

α′T = cosh(wb/Lnb)− 1, (V.187)
γ′ = γ′0/η, (V.188)

where the magnetoamplification coefficient η equals one for a conventional transistor, for which
the emitter injection parameter is

γ′0 =
Nab

Nde

Dpe

Dnb

n2
ie

n2
ib

Lnb

Lpe

sinh(wb/Lnb)
tanh(we/Lpe)

, (V.189)

and ni denote the intrinsic carrier concentrations.
The expression for the base transport parameter is the same in conventional and magnetic

transistors. In the thin base limit, wb � Lnb, it becomes,

α′T ≈
w2

b

2L2
nb

. (V.190)

The base transport parameter decreases quadratically with decreasing of the width of the base.
The thinner is the base, the less chance the electrons have to recombine with holes and more
electrons arrive at the depletion layer with the collector. The thinner is the base, the greater is the
current gain β.

What distinguishes magnetic from conventional transistors is the emitter injection parameter
γ′. The factor η depends both on the equilibrium spin, as well as on spin-charge coupling.
We will see that the former dependence leads to magnetoamplification, while the latter to giant
magnetoamplification. In the thin base limit the emitter injection parameter behaves as,

γ0 ∼
wb

Lnb
. (V.191)

The parameter decreases linearly with decreasing of the width. In essence the smaller is the width
of the base, the faster is the diffusion of electrons as the electron density gradient increases, so
that more electrons can be injected from the emitter to accommodate in the base (recall that γ′

is inefficiency, not efficiency of emitter injection). Important for gain consideration is that for
practical thin-base transistors, one can neglect the base transport factor as small compared to the
emitter efficiency, due to the quadratic versus linear dependence on wb/Lnb. In this case, which
we will use further, the current gain is determined by,

β = ηβ0, (V.192)

where β0 is the gain of the conventional transistor with a thin base.
In the following we will obtain η in two important cases: (i) magnetic transistor without a

source of a nonequilibrium spin, and (ii) magnetic transistor with a source of a nonequilibrium
spin. In the case (i), the magnetoamplification coefficient is readily found to be,

η =

√
1− P0e

1− P 2
0b

, (V.193)
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so that the current gain of the transistor is,

β = β0

√
1− P0e

1− P 2
0b

. (V.194)

The current gain can be simply controlled by the equilibrium magnetizations either in the emitter
or in the collector. The dependence is opposite. Increasing the emitter magnetization leads to an
increase of the minority hole density. Indeed, in the presence of a spin-split bands the Boltzmann
statistics gives for holes,

p0e =
n2

i

Ndc

1√
1− P 2

0e

. (V.195)

More minority holes means a large hole current (since the generation current is proportional to the
equilibrium minority density) relative to the electron current, so the emitter injection parameter
γ′ must increase (efficiency decreases). The current gain decreases. On the other hand, the
equilibrium electron density in the base is,

n0b =
n2

i

Nab

1√
1− P 2

0b

. (V.196)

The electron density increases with increasing of the equilibrium spin polarization in the base,
leading to the increase of the electron current from the emitter and thus decrease of γ′. The
current gain increases. We call magnetoamplification the change of the current gain due to the
change in the equilibrium spin polarization in the transistor. Magnetoamplification was described
also in pnp transistors by Lebedeva and Kuivalainen (2003).

The above described behavior is illustrated in Fig. V.48, using a realistic calculation for
GaAs-based hypothetical magnetic transistor. As expected from the analytical formula, see
Eq. (V.194), the current gain increases with increasing the magnitude of the polarization (the
sign is not relevant for the statistics) if the base is magnetic. If the emitter is magnetic, the gain,
as predicted, decreases.

Let us move to the less trivial case (ii). We have an equilibrium spin polarization as well as a
source of a nonequilibrium spin. From our analytical model we obtain the following expression
for the magnetoamplification parameter:

η =

√
1− P 2

0e

1− P 2
0b

[1 + δPe
P0b − P0e

1− P 2
0e

]. (V.197)

If the nonequilibrium spin vanishes, that is, δPe = 0, we recover the magnetoamplification factor
for the equilibrium spin, Eq. (V.193). In order to illustrate the spin-charge coupling effects in
current amplification, let us first consider the case of a magnetic base: P0b 6= 0, P0e = 0. The
current gain becomes,

β = β0
1 + δPeP0b√

1− P 2
0b

. (V.198)
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Fig. V.48. Calculated magnetoamplification of a magnetic-base and a magnetic-emitter npn magnetic bipo-
lar transistor. Gain β is plotted as a function of the equilibrium spin polarization P0b in the base (solid) and
of the equilibrium spin polarization P0e in the emitter (dashed). No source spin is present. After (Fabian
and Žutić, 2004a).

The spin-charge coupling is described by the product δPeP0b. If the product is positive, the gain
increases. If the product is negative, the gain decreases. Where does this behavior come from?
We have already encountered similar physics Sec. E.2. If the equilibrium and nonequilibrium
spins point in the same direction, the current across the depletion layer increases, since there are
more electrons with a lower barrier to overcome. In the context of magnetic transistors, this spin-
charge coupling operates at the emitter-base junction. If the nonequilibrium spin in the emitter is
aligned with the equilibrium spin in the base, the injection efficiency from the emitter increases,
γ′ decreases, and the gain goes up. If the two spins are antiparallel, the things go in the other
direction. To put it briefly, spin-charge coupling controls the emitter injection parameter which,
in turn, controls the current gain in the thin base limit.

The effect is opposite if we have a magnetic emitter. Indeed, now the current gain is,

β = β0(1− δPeP0e)
√

1− P 2
0b. (V.199)

The spin-charge coupling is described by −δPeP0b. If the equilibrium and nonequilibrium spins
are aligned, now we have a large barrier for a large number of electrons to cross, so emitter
injection decreases. If the spins are antiparallel, the situation is reversed. Nevertheless, the
control of the gain by spin is equally effective as in the case of the magnetic base.

In order to formalize the above analysis, we call magnetoamplification the effects of spin-
charge coupling on the gain. The corresponding giant magnetoamplification factor, defined as,

GMA =
βmax − βmin

βmin
, (V.200)

depends on whether we deal with a magnetic base or emitter. In the above definition βmax is the
maximum gain, while βmin is the minimum gain, as determined by the relative orientation of the
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Fig. V.49. Calculated gain β for a magnetic-base magnetic bipolar transistor, as a function of the equilibrium
spin polarization in the base, P0b. The emitter spin polarization, δPe, is kept at δPe = 90%. From Ref.
(Fabian and Žutić, 2004a).

equilibrium and nonequilibrium spins. To be specific, for a magnetic base we have,

GMA =
2|δPeP0b|

1− |δPeP0b|
. (V.201)

If the emitter is magnetic, the coefficient becomes,

GMA =
2|δPeP0e|

1− P 2
0e + |δPeP0be|

. (V.202)

For a typical spin polarization of 50%, one would get a GMA of about 67% for the case of a
magnetic base, and 50% for the case of a magnetic emitter.

Figure V.49 illustrates giant magnetoamplification in a realistic calculation using a GaAs-
based hypothetical magnetic transistor with a magnetic base.

E.9 Spin switching

Magnetic bipolar transistors can amplify currents even in the saturation regime, in which both
the emitter-base and the collector-base junctions are forward biased, see Tab. V.2. Both the
collector current, jc, as well as the current gain, β, change the sign with the change of the
relative orientation of the equilibrium spin in the base and the nonequilibrium spin in the emitter
and collector (Fabian and Žutić, 2004b).

Let us first assume that Vbe = Vbc � kBT . We also assume that the emitter and the collector
doping is much larger than the doping in the base so that we can neglect the hole current (typically
in conventional transistors the collector doping is rather small). In the thin base limit (the width
of the base is smaller than the electron diffusion length), it can be shown (Fabian and Žutić,
2004b) that the collector current obeys the following relation:

jc ∼ P0b(δPe − δPc). (V.203)
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The sign of the collector current depends on the relative orientation of the equilibrium spin in
the base and the nonequilibrium spins in the emitter or collector. This switching behavior can
detect the presence of a nonequilibrium spin. In effect, it is the semiconductor counterpart of the
Johnson spin switch (Johnson, 1993).

Even more remarkable is the amplification behavior of the transistor in the saturation regime.
Conventional transistors do not amplify signal when both junctions are forward biased. Magnetic
transistors, on the other hand, do amplify signals. Moreover, the amplification can be negative,
meaning, that the amplified collector current can change sign. Indeed, using the above assump-
tions the current gain is (Fabian and Žutić, 2004b),

β =
P0b (δPe − δPc)

w2
b/L

2
nb + jp

ge/jn
gb + jp

gc/jn
gb

. (V.204)

The gain is solely due to spin-charge coupling: changing the orientation of either the equilibrium
or excess spins the sign of the amplification changes (of course the amplification factor itself is
the amplitude of β). We note that spin switching effects as well as spin-induced amplification
should be observable even when the bias voltages across the two junctions are not identical but
differ by a factor smaller than the thermal energy (Fabian and Žutić, 2004b).
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Awschalom, D. D., and M. Flatté, Challenges for semiconductor spintronics, 2007, Nature
Physics 3, 153.



REFERENCES 857
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Engels, G., J. Lange, T. Schäpers, and H. Lüth, Experimental and theoretical approach to spin
splitting in modulation-doped InxGa1−xAs/InP quantum wells for B → 0, 1997, Phys. Rev.
B 55, R1958.



REFERENCES 867

Epstein, R. J., F. M. Mendoza, Y. K. Kato, and D. D. Awschalom, Anisotropic interactions of a
single spin and dark-spin spectroscopy in diamond, 2005, Nature Physics 1, 94.

Erlingsson, S. I., and Y. V. Nazarov, Hyperfine-mediated transitions between a Zeeman split
doublet in GaAs quantum dots: The role of internal field, 2002, Phys. Rev. B 66, 155327.

Erlingsson, S. I., Y. V. Nazarov, and V. I. Falko, Nucleus-mediated spin-flip transitions in GaAs
quantum dots, 2001, Phys. Rev. B 64, 195306.

Ertler, C., and J. Fabian, Proposal for a digital converter of analog magnetic signals, 2006a, Appl.
Phys. Lett. 89, 193507.

Ertler, C., and J. Fabian, Resonant tunneling magneto resistance in coupled quantum wells,
2006b, Appl. Phys. Lett. 89, 242101.

Ertler, C., and J. Fabian, Theory of digital magneto resistance in ferromagnetic resonant tunnel-
ing diodes, 2007, Phys. Rev. B 75, 195323.

Erwin, S. C., S.-H. Lee, and M. Scheffler, First-principles study of nucleation, growth, and inter-
face structure of Fe/GaAs, 2002, Phys. Rev. B 65, 205422.
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Fabian, J., and I. Žutić, The Ebers-Moll model for magnetic bipolar transistors, 2005, Appl. Phys.
Lett. 86, 133506.
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Garzon, S., I. Žutić, and R. A. Webb, Temperature-depenedent asymmetry of the nonlocal spin-
injection resistance: evidence for spin nonconserving interface scattering, 2005, Phys. Rev.
Lett 94, 176601.

Ghazali, A., I. C. da Cunha Lima, and M. A. Boselli, Hole spin polarization in Ga1−xAlxAs:Mn
structures, 2001, Phys. Rev. B 63, 153305.

Giazotto, F., F. Taddei, R. Fazio, and F. Beltram, Ferromagnetic resonant tunneling diodes as
spin polarimeters, 2003, Appl. Phys. Lett. 82, 2449.

Giddings, A. D., M. N. Khalid, T. Jungwirth, J. Wunderlich, S. Yasin, R. P. Campion, K. W.
Edmonds, J. Sinova, K. Ito, K.-Y. Wang, D. Williams, B. L. Gallagher, et al., Very large
tunneling anisotropic magnetoresistance of a (Ga,Mn)As/GaAs/(Ga,Mn)As stack, 2005, Phys.
Rev. Lett. 94, 127202.

Giglberger, S., L. E. Golub, V. V. Bel’kov, S. N. Danilov, D. Schuh, C. Gerl, F. Rohlfing, J. Stahl,
W. Wegscheider, D. Weiss, W. Prettl, and S. D. Ganichev, Rashba and dresselhaus spin split-
tings in semiconductor quantum wells measured by spin photocurrents, 2007, Phys. Rev. B
75, 035327.

Glazov, M. M., P. S. Alekseev, M. A. Odnoblyudov, V. M. Chistyakov, S. A. Tarasenko, and
I. N. Yassievich, Spin-dependent resonant tunneling in symmetrical double-barrier structures,
2005, Phys. Rev. B 71, 155313.

Glazov, M. M., and E. L. Ivchenko, Precession spin relaxation mechanism caused by frequent
electron-electron collisions, 2002, Zh. Eksp. Teor. Fiz. Pisma Red. 75, 476, [JETP Lett. 75,
403-405 (2002)].

Glazov, M. M., and E. L. Ivchenko, Effect of electron-electron interaction on spin relaxation
of charge carriers in semiconductors, 2004, Zh. Eksp. Teor. Fiz. 126, 1465, [JETP 99, 1279
(2004)].

Gnanasekar, K., and K. Navaneethakrishnan, Spin-polarized hole transport through a diluted
magnetic semiconductor heterostructure with magentic-field modulations, 2006, Europhys.
Lett. 73, 768.



872 Semiconductor Spintronics

Godfrey, R., and M. Johnson, Spin injection in mesoscopic silver wires: Experimental test of
resistance mismatch, 2006, Phys. Rev. Lett. 96, 136601.

Goldman, V. J., D. C. Tsui, and J. E. Cunningham, Observation of intrinsic bistability in resonant
tunneling structures, 1987, Phys. Rev. Lett. 58, 1256.

Golovach, V. N., A. Khaetskii, and D. Loss, Phonon-induced decay of the electron spin in quan-
tum dots, 2004, Phys. Rev. Lett. 93(1), 16601.

Golovach, V. N., A. Khaetskii, and D. Loss, Spin relaxation at the singlet-triplet transition in a
quantum dot, unpublished, cond-mat/0703427 .

Gorelenko, A. T., V. G. Gruzdov, V. A. Marushchank, and A. N. Titkov, Spin splitting of the
conduction band of InP, 1986, Sov. Phys. Semicond. 20, 216.
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g-factor and interband matrix element in GaAs, 2006, cond-mat/0608534.
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Trebin, H.-R., U. Rössler, and R. Ranvaud, Quantum resonances in the valence bands of zinc-
blende semiconductors. I. Theoretical aspects., 1979, Phys. Rev. B 20, 686.

Tse, W. K., and S. Das Sarma, Coulomb drag and spin drag in the presence of spin-orbit coupling,
2007, Phys. Rev. B 75, 045333.
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Žutić, I., Gadolinium makes good spin contacts, 2006, Nature Mater. 5, 771.
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Žutić, I., J. Fabian, and S. C. Erwin, Bipolar spintronics: Fundamentals and applications, 2006a,
IBM. J. Res. & Dev. 50, 121.
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