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We present an elementary introduction to quantum field theory formulated in terms of Dirac’s
light front variables. In addition to general principles and methods, a few more specific topics
and approaches based on the author’s work will be discussed. Most of the discussion deals
with massive two-dimensional models formulated in a finite spatial volume starting with a
detailed comparison between quantization of massive free fields in the usual field theory and
the light front (LF) quantization. We discuss basic properties such as relativistic invariance
and causality. After the LF treatment of the soluble Federbush model, a LF approach to spon-
taneous symmetry breaking is explained and a simple gauge theory – the massive Schwinger
model in various gauges is studied. A LF version of bosonization and the massive Thirring
model are also discussed. A special chapter is devoted to the method of discretized light cone
quantization and its application to calculations of the properties of quantum solitons. The
problem of LF zero modes is illustrated with the example of the two-dimensional Yukawa
model. Hamiltonian perturbation theory in the LF formulation is derived and applied to a few
simple processes to demonstrate its advantages. As a byproduct, it is shown that the LF the-
ory cannot be obtained as a ”light-like” limit of the usual field theory quantized on an initial
space-like surface. A simple LF formulation of the Higgs mechanism is then given. Since our
intention was to provide a treatment of the light front quantization accessible to postgradual
students, an effort was made to discuss most of the topics pedagogically and a number of
technical details and derivations are contained in the appendices.
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1 Introduction

Quantum field theory (QFT) was invented as a conceptual and computational tool for calculating
processes of elementary particles (originally electrons and photons) moving with (almost) speed
of light. In this kinematical regime, transmutation of different species of particles, i.e. their cre-
ation and destruction, was experimentally observed and the adequate theoretical scheme had to
include a mathematical apparatus capable to decribe these features. A natural path was to try to
generalize the nonrelativistic quantum mechanics to the many-body situation and to include the
relativistic kinematics by working with operators satisfying the Poincaré algebra. The physical
systems where these ideas were successfully tested were electrons interacting with quanta of the
electromagnetic fields, photons. Two immediate problems were encountered: the lack of com-
putational methods beyond perturbation theory (where by construction only small corrections to
the properties of a free system can be evaluated in powers of the coupling constant and where
a piece of physical information may simply be overlooked by the limitations of the method it-
self) and emergence of infinite quantities in the course of higher-order calculations. Although
technical tools have been invented during the subsequent development for removing the infinite
pieces of amplitudes, it is probably fair to say that there is no general consensus until today if
these problems are due to the wrong formulation of the fundaments of QFT or they just reflect
inadequate mathematical techniques of the perturbation method.

What was taken as a self-evident basis in the development of QFT was the parametrization
of the space-time in the manner known from nonrelativistic quantum mechanics. That is, the
use of the time variable t measured in the laboratory frame of an observer and three space coor-
dinates x, y, z, all four united into one four-vector xµ with a specific transformation law under
translations, rotations and boosts in space and time, that collectively form the group of Poincaré
transformations. It was only in 1949 when P. A. M. Dirac [1] noticed that field theory can be
actually formulated in three independent ”languages” depending on the parametrization of the
space-time and the corresponding definition of the ”initial surface” where the initial data for the
fields (equal-time commutation relations in the quantum version) are prescribed. The conven-
tional and most widely used formulation was called the ”instant form” by Dirac reflecting the
fact that the initial surface is simply a fixed moment t = const of the usual time variable. More
generally, the quantization surface can be extended by Lorentz transformations to an arbitrary
space-like surface. The choice of field variables follows the parametrization of the four-vector
xµ = (t,x), i.e. the gauge field is Aµ(x) = (A0,A), etc. We will simply refer to this conven-
tional form known from textbooks as the space-like (SL) field theory.

The second possibility of the relativistic Hamiltonian dynamics is the point form which ini-
tializes fields at a hyperboloid x2 = a2. It is a rarely used formulation which amplifies covariance
but has too many dynamical Poincaré generators, namely, containing interaction terms. In other
words, this scheme has the least number of kinematical, i.e. interaction-free generators and this
feature makes it less appealing.

The topic of the present introductory review is the quantum version of the Dirac’s front form
of relativistic Hamiltonian dynamics. We will call it simply the light front (LF) field theory. A
more adequate characterization would be a quantum field theory expressed in terms of the LF
space-time and field variables. The former are xµ = (x+, x−, x1, x2), x± = t± z, the latter are
fields expressed in terms of xµ and satisfying field equations different from conventional ones. In
addition, vector field Aµ = (A+, A−, A1, A2). The LF fields are quantized at the initial surface
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x+ = const. This surface defines a plane tangent to the light cone. As has been gradually
realized in a rather unsystematic and disconnected development of the LF theory [2,3,4,5,6,7,8,
9], it possesses a few unique properties which simplify the formalism and make it physically more
transparent and closer in spirit to quantum mechanics. For example, a probabilistic interpretation
and notion of relativistic wave functions is well defined here. Consequently, one has a consistent
Fock expansion of relativistic bound states. In fact, the deeper reason for this feature is the
striking character of the LF theory vacuum: it can be derived from kinematical considerations,
i.e. independently of dynamics. In yet another words, the state without particles (the Fock
vacuum) corresponds to the minimum of energy and it is an eigenstate of the full, that is free plus
interacting, LF Hamiltonian. This is in a sharp contrast to the usual SL theory, where the Fock
vacuum state is the lowest-energy eigenstate of only the free part of the Hamiltonian. To find the
eigenstate of the full Hamiltonian is a very difficult dynamical problem which generally cannot
be solved even approximately.

One may ask a question what is the reason for the different status of the vacuum state in the
LF approach. Actually, the answer is quite simple: it is the choice of the variables x± which
are better suited for the relativistic kinematics. In a qualitative sense one can say that they cor-
respond to a reference frame of an observer (physically unrealizable) moving with the speed of
light. This seemingly innocent change of variables has profound consequences for the mathemat-
ical structure of the LF field theory and for the form of representation of physical mechanisms
and phenomena. Here we are talking for example about the structure of field equations and their
different division into dynamical and constrained ones, that leads to a different number of in-
dependent (dynamical) field variables, about a necessity to fix ambiguities in the definitions of
some inverse operators (Green’s functions) by a choice of boundary conditions and also about
the fact that the LF momentum P+ has a positive spectrum of eigenvalues p+ = p0 + p3 (the
spectrum has a ”bottom”, it is bounded from below) which is the reason for the possibility to
find the LF vacuum as a state with the minimal value of P+ or, equivalently, with particle num-
ber zero. One should make a remark here that the latter feature appears sometimes confusing
since at least at the first sight it seems to forbid any vacuum processes. This looks as a serious
difficulty and induces questions related to the overall consistency of the LF scheme. One of the
key premises of the present text is the opposite idea: since there is no a priori reason for doubts
concerning validity and consistency of the LF form of the field theory (if treated in a mathemati-
cally correct manner), the theory itself should contain a correct physical information in the form
following from its intrinsic structure and properties. One should develop fresh and independent
ideas and techniques to be able to extract this physical content of the front form of the relativistic
dynamics.

The light front version of the field theory, also known as the light-cone theory, the light-cone,
light front or null-plane quantization, has a complicated history and an unsystematic develop-
ment. On one hand, it has been studied from the axiomatic point of view [7, 10], on the other
hand, used in numerous phenomenological applications (see for example [11, 12]), sometimes
in a rather heuristic or at least pragmatic manner. In our review, we will adhere to the defini-
tion of the LF quantization as the canonical (Hamiltonian) version of the QFT, predominantly
formulated in a finite space volume with properly chosen boundary conditions. It is the strong
conviction of the author that the advantages of the LF approach are best reflected in the Hamilto-
nian language where one can study properties of quantum states, calculate (at least in principle)
relativistic wave functions and related observables, implement symmetries on the quantum level
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in terms of (regularized) unitary operators, etc. Some subtleties of the LF theory are more clearly
displayed in the discrete finite-volume form, with its denumerable Fock basis and the discrete
spectrum of momenta. This is particularly true for infrared aspects of the dynamics, related to the
so called (Fourier) zero-momentum modes and to vacuum properties. The formulation of the LF
theory in a finite volume with fields obeying periodicity or antiperiodicity in spatial coordinates
is known as the discretized light cone quantization – DLCQ [13,14,15,16]. Because of presence
of discrete momenta and of consistent Fock expanions for composite states, it leads to quantum
Hamiltonians in the form of large matrices which can be diagonalized numerically. In this way,
spectrum of physical states, their low-lying masses and other observables have been determined
for numerous low-dimensional models. The ”discretized” formulation of the light front field the-
ory can be viewed also as a convenient analytical framework. Admittedly, prefering the finite-
volume formulation may appear a bit subjective and there exist different opinions in literature.
In addition to the standard continuum formulation (i.e., infinite volume, continuous spectrum of
momenta, Feynman integrals in perturbation theory, etc.), for some applications accompanied by
an infrared cutoff [17], a LF version of the Epstein-Glaser non-perturbative regularization and
renormalization of the continuum theory [18] has been developed recently [19, 20, 21] to give a
mathematically sound formulation of the LF field theory in an axiomatic spirit [22]. It is based
on a consistent interpretation of quantum fields as operator-valued distributions defined with the
help of test functions. The attitude of the present author is that a consistent and careful analysis
of field-theory models formulated canonically in a finite volume in terms of light front variables
actually yields a mathematically well defined, physically complete and yet relatively simple ver-
sion of the LF dynamics. We will make an attempt to justify this perhaps a little bit intuitive
attitude in course of the present notes by analyzing a few examples and explaining additional
supportive arguments.

In addition to the review papers cited in the main text of the present notes, a very readable
and pedagogical introduction to the light front field theory is due to A. Harindranath [23].

In order to make this review accessible to graduate students, a large portion of the discussion
will focus on two-dimensional models, starting from the LF quantization of free massive fields.2

We will try to explain the differences between the SL and LF formulations already at this simple
level and simultaneously to emphasize the necessity to work with mathematically well defined
objects in a careful way using fully and consistently intrinsic properties of the front form of
relativistic dynamics.

2 Free massive space like fields in D = 1 + 1

2.1 Quantum scalar field

It will be instructive to compare a few basic properties of quantum fields in light front theory
with those quantized in the usual space-like scheme. For this reason, we recall some simple facts
about the conventional quantization of the massive scalar and Fermi fields in a finite volume.

The free massive scalar field satisfies the Klein-Gordon equation, which in the covariant form

2 The massless LF fields in two dimensions are a subtle subject. Their consistent treatment and relationship to the
conformal field theory (which is a powerful method in the conventional quantization) remains to be clarified.
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reads (∂µ ≡ ∂/∂xµ)(
∂µ∂

µ + µ2
)
φ(x) = 0 (2.1)

and which in terms of the usual space-time variables is of the second order in the time derivative:

(
∂0∂0 − ∂1∂1 + µ2

)
φ(x) = 0. (2.2)

Its solution is expressed as a superposition of plane waves with the operator coefficients which
have a meaning of the operators creating and destroying a scalar-field quantum:

φ(x) =
1√
2L

∑
p

1√
2ω(p)

[
a(p)e−ip.x + a†(p)eip.x

]
. (2.3)

Here p.x = p0x0 − p1x1 and p0 ≡ ω(p) = +
√
p2
1 + µ2. If there will be no danger of a

confusion, we will use the symbols x, p etc. instead of x1, p1. The field φ(x) is defined on a line
−L ≤ x1 ≤ L. Imposing the periodic boundary condition φ(t,−L) = φ(t, L), we easily find
that the momentum p is discrete,

p ≡ pn =
2π
L
n, n = 0,±1,±2, . . . . (2.4)

So, the summation in Eq.(2.3) runs over the integers n. Note that the mode with n = 0 is
also included. It is an independent degree of freedom with the time dependence exp

(
± imt

)
.

Of course, upon inserting the solution (2.3) into the Klein-Gordon equation, one recovers the
dispersion relation of a free massive quantum ω2(pn) = p2

n + µ2, appropriate for the discrete
values of the energy and momentum.

The creation and annihilation operators of the scalar field obey the commutation relation[
a(p), a†(q)

]
= δp,q, (2.5)

which is a direct consequence of the assumed canonical equal-time commutation relation (ETCR)

[
φ(0, x), ∂0φ(0, y)

]
= iδP (x− y). (2.6)

In the above expressions, δp,q = δm,n is the Kronecker symbol for the momenta p and q, or
equivalently, for the integers m,n which parametrize their discrete values. The delta function
δP (x− y), given by the infinite series

δP (x− y) =
1

2L
+

1
2L

∑
n

eipn(x−y) ≡ δ0 + δN (x− y) (2.7)

is periodic in both space variables x and y (hence the subscript P ) as is required by the periodicity
of the scalar field itself. The two parts of δP are called the zero-Fourier mode and the normal-
Fourier mode pieces of the full delta function. The first one obviously corresponds to the plane
wave with n = 0, the second one to the sum of all plane waves with non-zero n.
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Let us also remind the rest of the usual canonical formalism in this very simple theory. Ac-
tually, (the classical version of) the Klein-Gordon equation (2.1) is obtained from the variational
principle δS = 0 with fixed variations at the boundaries. Here S is the classical action of the
system, S =

∫∞
−∞ dtL(φ, ∂µφ) and L(φ, ∂µφ) =

∫ L
−L dxL(φ, ∂µφ) is the Lagrangian of the

system defined as the space integral over the density L:

L =
1
2
∂µφ∂

µφ− 1
2
µ2φ2 =

1
2
(
∂0φ
)2 − 1

2
(
∂1φ
)2 − 1

2
µ2φ2. (2.8)

The quantization conditions (2.6) transform the classical theory into the quantum one. They have
been postulated in a full analogy with the classical mechanics, defining the momentum conjugate
to the field ”coordinate” φ(x):[

φ(x),Πφ(y)
]

= iδP (x− y), Πφ(x) =
δL
δ∂0φ

= ∂0φ(x). (2.9)

Here, the Poisson brackets of the classical mechanics, generalized to the classical field theory (see
the Appendix D), have been replaced by the commutator −i[A,B] = −i

(
AB −BA

)
according

to the rules of the canonical quantization. Next, one goes over to the Hamiltonian, corresponding
to the above Lagrangian density:

H ≡ P 0 =

+L∫
−L

dxT 00(x). (2.10)

The components of the energy-momentum tensor (or density) are

Tµν(x) = Πµ∂νφ− gµνL, Πµ =
δL
δ∂µφ

, Π0 ≡ Πφ. (2.11)

and follow from the Noether theorem for the case of space-time translations. The quantity gµν is
the metric tensor with g00 = −g11 = 1, g12 = g21 = 0. The other two Poincaré generators 3 are
the momentum operator P 1 and the operator of the boost M01:

P 1 =

+L∫
−L

dxT 01(x), M01 = tH −
+L∫
−L

dxxT 01(x). (2.12)

Explicitly, one easily finds

H =

+L∫
−L

dx
[1
2
Π2
φ +

1
2
(
∂1φ
)2 +

1
2
µ2φ2

]
,

P 1 = −
+L∫
−L

dxΠφ∂1φ, M
01 = Ht−

+L∫
−L

dxxΠφ∂1φ. (2.13)

3Since there are no transverse dimensions, no transverse translations, rotations and transverse boosts are possible,
hence the number of Poincaré generators in one spatial dimension is equal to three.
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The Fock representation of the above operators is obtained by inserting the field expansion
(2.3) into their definitions (2.13) with the results (see the Appendix B for details)

H =
∑
p

ω(p)a†(p)a(p), P =
∑
p

pa†(p)a(p). (2.14)

In the next step, one should check the overall relativistic consistency of the quantized theory by
verifying that the abstract Poincaré algebra is satisfied by the three quantum generators (2.13)
by using the ETCR (2.6). Neglecting the surface terms that appear due to the integration by
parts, this is indeed the case for our simple non-interacting theory. Similarly, the relativistic
covariance requires that the scalar field transforms in a particular way under the action of the two
translational generators and of the boost M01 along the one space direction (see Sec. 5 ). In the
infinitezimal form, this leads to the familiar Heisenberg equations

−i∂µφ(x) =
[
Pµ, φ(x)

]
, Pµ = (P 0, P 1). (2.15)

Again, it is easily checked by applying repeatidly the ETCR (2.6) that the Heisenberg equa-
tions reproduce the Euler-Lagrange field equations obtained from the action principle in the
Lagrangian formulation. Both properties (validity of Poincaré algebra and correct transforma-
tion laws of quantum fields) together establish the relativistic invariance of the field theory on
quantum level.

A very important object in any quantum field theory model is the vacuum state |0〉. Some-
times it is simply defined as

a(p)|0〉 = 0, (2.16)

but actually the above relation is a consequence of a more profound property: positivity of the
spectrum of the eigenvalues of the Hamiltonian operator H . The positivity of H spectrum in-
deed implies the existence of a state with the above property which moreover is translationally
invariant:

eiaµP
µ

|0〉 = |0〉 → Pµ|0〉 = 0. (2.17)

The first statement (positivity⇒ vacuum) follows from the most general definition of the vacuum
as a state that minimizes the energy. This minimum can be always adjusted to zero, even in the
case of diverging zero-point energy (see the Appendix B) because the physically measurable
energies are differences in which the infinite constant parts cancel.

One of the basic principles of relativistic quantum field theory assumes that the spectrum of
physical states is contained in the forward light cone PµPµ ≥ 0, P 0 ≥ 0 (see the Appendix
A). To prove the statement discussed in the previous paragraph, one uses the translational invari-
ance (2.17) of the assumed vacuum as well as the Heisenberg equation (2.15) of a scalar field
φ(x), −i∂µφ(x) = [Pµ, φ(x)]. This together with a general Fourier decomposition, valid for an
arbitrary scalar field with a priori unknown time dependence

φ(x) =
∑
p

1√
4Lω(p)

[
a(p, t)eip

1x1
+ a†(p, t)e−ip

1x1]
(2.18)
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implies

− i
∑
k

1√
4Lω(p)

(
∂0a(p, t)eip

1x1
+ ∂0a

†(p, t)e−ip
1x1
)

=

=
∑
p

1√
4Lω(p)

([
P 0, a(p, t)

]
eip

1x1
+
[
P 0, a†(p, t)

]
e−ip

1x1
)
. (2.19)

By comparing the coefficients at the plane waves, it follows from this equation that

∂0a(p, t) = i
[
P 0, a(p, t)

]
. (2.20)

To be able to proceed, we need to know the time dependence of the Fock operators a and a†,
which is equivalent to solving the dynamics and thus generally impossible. The exception is a
free theory, with the time dependence of the form exp(±iω(p)t), ω(p) = (m2 + p2)1/2. Then
after letting the equation (2.20) act on the state |0〉, we find

−a(p, t)P 0|0〉+ P 0a(p, t)|0〉 = −ω(p)a(p, t)|0〉. (2.21)

Due to translational invariance of the vacuum |0〉, exp (iaµPµ|0〉 = |0〉, i.e. P 0|0〉 = 0, and
positivity of P 0 eigenvalues, the only non-contradictory solution of the above relation (2.21) is
a(p, t)|0〉 = 0 which defines the vacuum state.

It is important to remember that this construction was done in a free theory. It is extremely
difficult to repeat it in the case of an interacting theory because there the time dependence of
the creation and annihilation operators is unknown (and even their form is unclear [24]) since
its knowledge would be equivalent to knowing the solution to the coupled field equations. Thus
to find the vacuum of an interacting theory is a complicated dynamical problem. As we will
demonstrate in the next section, the situation in the LF theory is quite different.

Let us derive a solution of the Klein-Gordon equation in an alternative way, considering for
a moment the continuum theory. This will turn out to be useful for the introduction of the so-
called Pauli-Jordan commutator function and its relationship to the initial data specifying the
time development of a dynamical system.

The general solution of the Klein-Gordon equation (2.1) in the covariant form is given by

φ(x) =
∫ +∞

−∞

d2p

2π
δ(p2 − µ2)χ(p)e−ip.x. (2.22)

The two-dimensional integration measure is dp0dp1. Integrating over p0 with the help of the
identity δ(p2 − µ2) = 1

2ω(p)

[
δ
(
p0 − ω(p)

)
+ δ
(
p0 + ω(p)

)]
, where ω(p) = +

√
p2 + µ2, we

find

φ(x) =
∫ +∞

−∞

dp
4πω(p)

[
χ
(
ω(p), p

)
e−iω(p)x0+ipx + χ

(
− ω(p), p

)
eiω(p)x0−ipx

]
. (2.23)

For t = 0, this equation together with its time derivate represents a system of two equations for
two amplitudes χ

(
ω(p), p

)
and χ

(
− ω(p), p

)
:

f(x) ≡ φ(0, x) =
∫ +∞

−∞

dp
4πω(p)

[
χ
(
ω(p), p

)
+ χ

(
− ω(p), p

)]
eipx,

g(x) ≡ ∂0φ(0, x) = −i
∫ +∞

−∞

dp
4π

[
χ
(
ω(p), p

)
− χ

(
− ω(p), p

)]
eipx. (2.24)
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Performing the inverse Fourier transformation, i.e. multiplying both sides by e−iqx and integrat-

ing over x with
+∞∫
−∞

dxei(p−q)x = 2πδ(p− q), one obtains

χ
(
ω(p), p

)
=
[
ω(p)f(p) + ig(p)

]
, χ
(
− ω(p), p

)
=
[
ω(p)f(p)− ig(p)

]
. (2.25)

These relations show that one indeed needs information about both the field and its time deriva-
tive at the initial surface t = 0 to know the field at arbitrary t. In quantum theory, χ

(
ω(p), p

)
and χ

(
− ω(p), p

)
are interpreted as annihilation and creation operators for a massive quantum

with momentum p:

φ(x) =
∫ +∞

−∞

dp
4πω(p)

[
a(p)e−iω(p)x0+ipx + a†(p)eiω(p)x0+ipx

]
. (2.26)

With [
a(p), a†(q)

]
= 4πω(p)δ(p− q) (2.27)

we find[
φ(0, x), ∂0φ(0, y)

]
= iδ(x− y). (2.28)

Let us derive the Pauli-Jordan commutator function. With the expansion (2.26), we have

[
φ(x), φ(y)

]
=

1
4π

∫ +∞

−∞

dp1

ω(p1)
[
e−ip.(x−y) − eip.(p−x)

]
, (2.29)

where p0 = ω(p1). In the above integral, we have changed p1 → −p1 in the second term. This
results only in the reverse of sign in the exponent since the changes in dp1 and the integral limits
compensate. Returning to the covariant form and combining the two terms with the help of the
sign function ε(x0), we get[

φ(x), φ(y)
]

= i∆(x− y;µ), (2.30)

where

∆(x− y;µ) = − i

2π

∫ +∞

−∞
d2pe−ip.(x−y)δ(p2 − µ2)ε(x0). (2.31)

Upon inspection, we can directly find the following properties of the ∆(x;µ) function: it obeys
the Klein-Gordon equation(

∂µ∂
µ + µ2

)
∆(x− y;µ) = 0 (2.32)

with the initial conditions (ε(0) = 0)

∆(0, x1;µ) = 0, ∂0∆(x;µ)x0=0 = −δ(x1). (2.33)
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The latter condition follows directly from the representation (2.29). The Pauli-Jordan function
also satisfies ∆(−x) = −∆(x) and the relation ∆(x−y) = 0 for (x−y)2 < 0 called locality or
causality. The PJ function thus incorporates the important property of causality. Its vanishing of
the PJ function outside the light cone, that is, for space-like separations (x−y)2 < 0 of the points
x, y, is the manifestation of the fact that for these intervals measurements of physical quantities
at the two points are causally independent. This of course just reflects the finite value c of the
speed of light (set to one here) which implies that no signal can connect such two points.

For the free theory, we can calculate additional quantities that are important for determining
properties of the quantum field theoretical models generally. These are the correlation functions
defined as the vacuum expectations of the (unordered) products of field operators in different
space-time points. For example, we have for the two-point function

D(x− y) = 〈0|φ(x)φ(y)|0〉 =
1
4π

∫ +∞

−∞

dp1

ω(p1)
[
e−ip

0(x0−y0)+ip1(x1−y1) =

=
1
2π

∫ +∞

−∞
d2pe−ip.(x−y)δ(p2 − µ2). (2.34)

Its explicit form, calculated in the Appendix B, is

D(x) = −1
4
θ(x2)

[
N0(µ

√
x2) + iε(x0)J0

(
µ
√
x2
)]

+ θ(−x2)
1
2π
K0

(
µ
√
−x2

)
, (2.35)

where J0(x),K0(x) and N0(x) are Bessel, modified Bessel and Neumann functions [25].
The last property of the theory of free massive scalars that we would like to discuss are

inequivalent representations of the commutation relations (2.5). Although it may seem a little bit
formal it actually has profound consequences for the very existence of the QFT models and their
mathematical sensibility. We will see that this is one of the moments where the conventional
SL theory and the LF theory differ drastically. Here we will sketch only the main steps of the
derivation, the details can be found in the Appendix B.

Let us study two real scalar fields φ1(x), φ2(x) (2.3) with masses µ1 and µ2. Let us assume
that the Fock operator algebra (2.5) is satisfied separately for two species of the creation and
annihilation operators which are independent, i.e. [a1(p), a2(q)] = [a1(p), a

†
2(q)] = 0, etc.

Since the field equation (2.1) is second order in the time derivative, let us choose the boundary
conditions at the initial time t = 0 as

φ1(0, x) = φ2(0, x), ∂0φ1(0, x) = ∂0φ2(0, x). (2.36)

We then insert the field expansions (2.3) with the same momentum p into the relations (2.36).
After some simple algebraic manipulations one finds two algebraic equations for four operators
a1(p), a

†
1(p), a2(p), a

†
2(p) where the simplified notation ω1(p) ≡ ω1 = +

√
p2 + µ2

1, ω2(p) ≡
ω2 = +

√
p2 + µ2

2 is used. Their solution expresses the annihilation and creation operators of
the first scalar field as a linear combination of the Fock operators of the second field:

a1(p) =
ω1 + ω2√

4ω1ω2
a2(p) +

ω1 − ω2√
4ω1ω2

a†2(−p) ≡ c1(p)a2(p) + c2(p)a
†
2(−p). (2.37)

This relation permits us to express the vacuum of the first scalar field, defined as a1(p)|01〉 = 0,
in terms of the vacuum of the second scalar field, defined as a2(p)|02〉 = 0 (the vacua are
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normalized: 〈01|01〉 = 〈02|02〉 = 1) in the following form:

|01〉 = K exp
(∑

p

c3(p)a
†
2(p)a

†
2(−p)

)
|02〉 ≡ Â|02〉, (2.38)

where c3(p) is a simple function and K is the normalization factor (see the Appendix B).
With this result and taking into account (2.37), one indeed verifies

a1(p)|01〉 = 0. (2.39)

Thus we can see that the complicated exponential state (2.38) is indeed the vacuum state for the
annihilation operator a1(p).

Now we are ready for an important statement: the vacua |01〉 and |02〉 are orthogonal in the
continuum limit. Indeed, we find

〈02|01〉 = 〈02|Â|02〉 = K, (2.40)

because the creation operators in the exponent of Â annihilate |0〉 when acting to the left so that
only the factor 1 yields a non-zero contribution leading to 〈02|02〉 = 1. Now, using the relation∑
p →

2L
2π

∫
dp (2L is the ”volume” of our one-dimensional space) for a transition from the

finite to infinite volume, we get

K = exp
{ L

4π

∫
dp ln

(
1− (ω2 − ω1)2

(ω2 + ω1)2
)}
. (2.41)

The integral is a negative number because its integrand is negative for −∞ ≤ p ≤ ∞ as it is
equal to− ln

(
1
2 + 1

4

(
ω1
ω2

+ ω2
ω1

))
. Thus K will approach zero as exp(−cL), where c is a positive

number. In other words, in the infinite-volume limit L→∞, the overlap between the two vacua
as well as between arbitrary Fock states vanishes, i.e. the two Fock spaces become orthogonal.
This means that there is no unitarity operator connecting these two spaces and one says that they
are unitarily inequivalent.

2.2 Quantum Fermi field

The fermion field of the mass m obeys a two-dimensional version of the Dirac equation(
iγµ∂µ −m

)
ψ(x) = 0. (2.42)

As in (3 + 1) dimensions, it can be derived by a factorization of the Klein-Gordon operator
∂µ∂

µ − m2 into two components with matrix coefficients which have to satisfy special anti-
commutation properties to recover the original Klein-Gordon operator. In the two-dimensional
space-time, there are two such 2× 2 matrices γµ = (γ0, γ1) and they satisfy{

γµ, γν
}

= 2gµν 1̂. (2.43)

Their concrete form is not unique and there exist a few possible representations, for example
γ0 = σ1, γ

1 = iσ2 (σ1 and σ2 are the Pauli matrices). More details are given in the Appendix B.
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With the choice of the periodic boundary condition ψ(t,−L) = ψ(t, L), the mode expansion of
the Fermi field is written as

ψ(x) =
1√
2L

∑
p

√
m

E(p)

[
b(p)u(p)e−ip.x + d†(p)v(p)eip.x

]
. (2.44)

As in the case of the scalar field, E(p) = +
√
p2 +m2 and the momenta p ≡ pn are discrete,

pn = 2π
L n, n = 0,±1,±2, . . . . The coefficients u(p) and v(p) are the two dimensional ”spinors”

appropriate for the 2 by 2 γ-matrices. For the chosen representation of the gamma matrices, one
can check that with the ”spinors”

u(p) =

√
E(p) +m

2m

(
1
p

E(p)+m

)
, v(p) =

√
E(p) +m

2m

( p
E(p)+m

1

)
(2.45)

the field ψ(x) (2.44) indeed satisfies our Dirac equation. Some useful properties of the spinors
u(p), v(p) and their conjugates u(p) = u(p)†γ0, v(p) = v(p)†γ0 are listed in the Appendix B.
In order to guarantee the necessary condition of the positivity of energy, the annihilation and
creation operators for fermions (b(p), b†(p)) and antifermions (d(p), d†(p)) have to satisfy the
anticommutation relations (see again the Appendix B){

b(p), b†(q)
}

=
{
d(p), d†(q)

}
= δp,q, (2.46)

the other combinations being equal to zero. From this anticommutators and using the spinor
relations (B.32) we directly find the equal-time anticommutators for the Fermi field{

ψ(0, x), ψ†(0, y)
}

= δP (x− y), (2.47)

with the periodic delta function defined in Eq.(2.7). In a complete analogy with the scalar field
case, the Dirac equation (2.42) is obtained in the classical theory from the variational principle.
The corresponding Lagrangian density is

L =
i

2
ψγµ

↔
∂µ ψ −mψψ =

i

2

(
ψ†

↔
∂0 ψ + ψ†α1

↔
∂1 ψ

)
−mψ†γ0ψ, (2.48)

where a
↔
∂µ b = a(∂µb)− (∂µa)b and ψ = ψ†γ0. The canonical momenta conjugate to the fields

ψ and ψ† are

Πψ(x) =
δL
δ∂0ψ

=
i

2
ψ†(x), Πψ†(x) =

δL
δ∂0ψ†

= − i
2
ψ(x). (2.49)

The formula (2.11) then leads to the Hamiltonian, momentum and the boost operators of the form

H =

+L∫
−L

dx
[
− iψ†α1∂1ψ +mψ†γ0ψ

]
,

P = −i
+L∫
−L

dxψ†∂1ψ, M01 = tH −
+L∫
−L

dxxψ†∂1ψ. (2.50)
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Their form in the Fock representation is calculated in the Appendix B and reads

H =
∑
p

E(p)
[
b†(p)b(p) + d†(p)d(p)

]
,

P =
∑
p

p
[
b†(p)b(p) + d†(p)d(p)

]
. (2.51)

The fermionic vacuum is the state that minimizes the energy (which is bounded from below and
its minimal value is conventionally adjusted to zero) and from this definition we directly have
b(p)|0〉 = d(p)|0〉 = 0 analogously to the scalar field case. The translational invariance of the
vacuum state is then expressed by the formula (2.17).

In a complete analogy with the scalar field, the Dirac equation is reproduced at the quantum
level as the Heisenberg equation

−i∂µψ(x) =
[
Pµ, ψ(x)

]
. (2.52)

This can be verified in a straighforward manner using the generators in the coordinate or mo-
mentum representation and the equal-time anticommutation relation (2.47) or (2.46).

The two-point correlation function is defined as

Sαβ(x− y) = 〈0|ψα(x)ψβ(y)|0〉 (2.53)

and the Pauli-Jordan commutator function is

Fαβ(x− y) = 2ImSαβ(x− y) =
{
ψ(x), ψ(y)

}
αβ
. (2.54)

An interesting question is again the inequivalent representations of the basic anticommutation
relation (2.47). Let us consider two massive Fermi fields with masses m1 and m2. Since the
Dirac equation is linear in the time derivative, we have to specify only one boundary condition:

ψ1(0, x) = ψ2(0, x). (2.55)

Inserting the field expansion (2.44) into this relation and solving two algebraic equations, one
finds

b2(p) = α(p)b1(p) + β(p)d†1(−p),
d2(p) = α(p)d1(p)− β(p)b†1(−p). (2.56)

The coefficients α(p), β(p) are equal to

α(p) =
√
E1 + E2

2E1
, β(p) =

√
E1 − E2

2E1
,

E1 =
√
p2 +m2

1, E2 =
√
p2 +m2

2. (2.57)

The vacua are again defined as

b1(p)|01〉 = d1(p)|01〉 = 0,
b2(p)|02〉 = d2(p)|02〉 = 0. (2.58)
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It is easy to check now that the vacuum corresponding to the second Fermi field is expressed in
terms of the creation operators of the first Fermi field as

|02〉 =
∏
p

[
α(p)− β(p)b†1(p)d

†
1(−p)

]
|01〉. (2.59)

Analogously to the scalar field case, one finds that two vacua are orthogonal in the infinite volume
limit L → ∞: 〈01|02〉 = 0. The same property holds also for the Fock spaces corresponding to
two Fermi fields with different masses.

3 Free massive light front fields in D = 1 + 1

3.1 Light front definitions and notation

The light front formulation of field theory begins by the different choice of the time and space
variables. The LF evolution parameter x+ and the third space coordinate x− are given as linear
superpositions of the usual (non-relativistic) time t and the z coordinate:

x± = t± z, xµ = (x+, x−, x1, x2) ≡ (x+, x)
p± = E ± pz, p

µ = (p+, p−, p1, p2) ≡ (p−, p). (3.1)

It is sometimes useful to use the notation x⊥ = (x1, x2), p⊥ = (p1, p2). For two-dimensional
theories, the perpendicular components x1 ≡ x, x2 ≡ y, p1 ≡ px, p

2 ≡ py , which are the same
as in the conventional field theory, are of course equal to zero.

The scalar product of two LF vectors is (i = 1, 2)

p.x = gµνpµxν = pµx
µ = p+x

+ + p−x
− + pix

i =

=
1
2
p−x+ +

1
2
p+x− − p1x1 − p2x2. (3.2)

The off-diagonal form of the scalar product follows from the light front metric tensor gµν ob-
tained from the metric tensor of the usual theory g̃µν = diag(1,−1,−1,−1):

p.x = prgrsxs ≡ pgx = p̃C−1Cg̃C−1Cx̃, (3.3)

where we passed to the matrix notation and the matrix Crs has been chosen in such a way that it
transforms the usual four-vector (a column) ãµ into the LF four-vector aµ according to a = Cã.
Explicitly, we find

C =


1 0 0 1
1 0 0 −1
0 1 0 0
0 0 1 0

 , C−1 =


1
2

1
2 0 0

0 0 1 0
0 0 1 0
1
2 − 1

2 0 0

 , CC−1 = 1. (3.4)

The off-diagonal form of the LF metric tensor is responsible also for the following relations:

a± = 2a∓,
∂

∂x±
≡ ∂± =

1
2
∂∓ ≡ 1

2
∂

∂x∓
. (3.5)
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Since for a free massive quantum (particle) its energy E(p) = +
√
m2 + p2

1 + p2
2 + p2

3 is
always greater then the absolute value of the p3 component, the LF momentum p+ is always
positive. In other words, in the LF form of the relativistic dynamics we have two quantities
that take on only positive values (in quantum theory, two operators with a positive spectrum of
eigenvalues). One of these quantities that are bounded from below is kinematical, i.e. interaction-
independent, and this feature eventually leads to a possibility to define the vacuum irrespectively
of the dynamics as a state with minimum LF momentum p+. In contrast, the third component of
the momentum can be negative in the conventional field theory, i.e. it is not bounded from below
and the only quantity with a positive spectrum of eigenvalues is the energy which is however
unknown in the interacting theory before we solve it. Thus, probably the main advantage of the
LF quantization is the possibility to get the vacuum state of any given model without the need
to solve its dynamics. The other advantages which will be discussed in a more detail in the
subsequent chapters, is the possibility to write down a consistent Fock expansion for a composite
system (this property is also related to the kinematical definition of the vacuum state, i.e. to the
absence of vacuum fluctuations) and the minimal number - 3 - of Poincaré generators containing
interaction, among all three main types of relativistic Hamiltonian dynamics.

There is another simplification in the LF scheme in comparison with the conventional theory.
It is the dispersion relation for a free massive quantum, following from pµp

µ = m2. It reads

p− =
m2 + p2

⊥
p+

(3.6)

and shows that there is no sign ambiguity between the LF energy and momentum. Thus, for
positive LF momentum we have only positive energy. The negative- energy solutions of the field
equations are conventionally reinterpreted as antiparticles with positive energy and hence we are
dealing with only positive values of these two quantities in the LF scheme, in contrast to the

usual scheme, where for the given momentum the energy is ±
√
→
p

2

+m2.

3.2 Quantum scalar field

The massive light front scalar field obeys the Klein-Gordon equation which has the same covari-
ant form as the Eq.(2.1). However, written explicitly in terms of the LF variables, the D’Alambert
operator changes its structure and becomes linear in the LF time derivative:(

4∂+∂− + µ2
)
φ(x) = 0. (3.7)

Considered as a classical differential equation, this means that it is sufficient to specify only a
value of the field itself at some initial time x+

0 . Analogously, in quantum theory, one needs to
know only the value of the field, not its time derivative, to prescribe the equal-time commuta-
tion relation, which plays the role of initial data for the commutator at an arbitrary time. The
latter quantity is the Pauli-Jordan or the Schwinger function that we already discussed. All this
becomes evident when one writes down the Lagrangian (2.8)

L0 =
1
2
∂µφ∂

µφ− 1
2
µ2φ2
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in terms of LF variables:

Llf = 2∂+φ(x)∂−φ(x) +
1
2
µ2φ2(x). (3.8)

Again, since the Lagrangian is linear in the time derivative of the field, the canonical momentum
is the spatial derivative, not the time derivative of the field:

Πφ =
δLlf
δ∂+φ

= 2∂−φ(x). (3.9)

Then the canonical commutation relation [φ(x),Πφ(y)] is for x+ = y+ = 0 proportional to
the Dirac delta function δ(x− − y−) and can be integrated to yield the commutator between
two scalar fields proportional to the integral of the delta function which is essentially the sign
function x

|x| (see below for more details).
In a complete analogy with the conventional field theory discussed in the previous sections,

we will consider the system in a spatial (one-dimensional) box, −L ≤ x− ≤ L. We impose
the periodic boundary condition φ(−L) = φ(L). The periodicity condition applied to the plane
waves yields e

i
2p

+L = e−
i
2p

+L leading to the discrete momenta p+ = p+
n = 2πn/L. Then the

solution of the massive Klein-Gordon equation is given as a superposition of plane waves with
the coefficients that incorporate the quantum nature of the field by their non-trivial commutation
relations:

φ(x+, x−) = φ0 +
1√
2L

∞∑
n=1

1√
p+
n

[
a(p+

n )e−ip.x + a†(p+
n , x

+)eip.x
]
,

[a(p+
m), a†(q+n )] = δmn, (3.10)

where p.x = 1
2p

+x−+ 1
2 p̂
−x+, p̂− = µ2/p+. In the expansion (3.10), we have separated the n =

0 Fourier mode corresponding to p+
n = 0, the so-called LF zero mode which is x−−independent,

from the sum of the normal modes which have p+
n 6= 0. The latter will be denoted by ϕ(x). Then

the relation (3.9) and the equation of motion (3.7) holds only for ϕ(x), because by definition
∂−φ0 = 0: Πϕ(x) = 2∂−ϕ(x),Πφ0 = ∂−φ0 = 0. The equation for the zero mode following
from (3.7) is µ2φ0 = 0 which tells us that in the free massive theory the scalar zero mode
vanishes. This will no longer be true in an interacting theory like for example the λφ4 model or
the Yukawa model which we will discuss later. The fact that the canonical momentum of the LF
scalar field is not given by the LF time derivative of the field is supplemented by the observation
that the equation of motion (3.7) is actually a constraint for ∂+ϕ(x) which can be easily inverted
by means of the normal-mode part of the periodic sign function εN (x− − y−) (see below):

∂+ϕ(x) = −µ
2

4

+L∫
−L

dy−

2
1
2
εN (x− − y−)ϕ(x+, y−). (3.11)

The time dependence of the creation and annihilation operators a†(p+
n , x

+) and a(p+
n , x

+)
is obtained by inserting the expansion (3.10) into the field equation (3.7) yielding the oscillatory
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behaviour e±
i
2 p̂
−
n x

+
, where p̂−n ≡ µ2/p+

n . The precise form of the equal-time commutator can
be found in the simplest way from the Fock commutation relation in (3.10):[

ϕ(0, x−), ϕ(0, y−)
]

=
1

2L

∞∑
m,n=1

1√
p+
mp

+
n

{[
a(p+

m), a†(p+
n )
]
e−

i
2p

+
mx

−+ i
2p

+
n y

−
+

+
[
a†(p+

m), a(p+
n )
]
e

i
2p

+
mx

−− i
2p

+
n y

−
}

=

=
1

2L

∑
n

1
p+
n

[
e−

i
2p

+
n (x−−y−) − e

i
2p

+
n (x−−y−)

=
1
8i
εN (x− − y−). (3.12)

Here, we have used the symbol εN (x−) for the normal-mode part of the sign function (which in
the continuum theory is given by 2θ(x)−1, θ(x) = 1(0) for positive (negative) x) adapted to the
finite interval and periodic boundary conditions, εN (−L) = εN (L) = 0. It has a Fourier-series
representation

εN (x− − y−) =
4i
L

∑
n

1
p+
n

[
e−

i
2p

+
n (x−−y−) − e

i
2p

+
n (x−−y−)

]
. (3.13)

The full periodic sign function is εP (z−) = z−/L+ εN (z−) and satisfies the defining property
∂−εP (z−) = 2δP (z−), where

δP (x−) =
1
L

+
1
L

∑
n

[
e−

i
2p

+
nx

−
+ e

i
2p

+
nx

−]
≡ δ0 + δN (x−). (3.14)

The canonical formalism for the LF theory is completely paralel to the formalism of the
conventional theory described previously. However, we would like to emphasize that in addition
to replacing the Lorentz indices 0, 3 by the ”LF values” +,− one has to keep in mind that the
structure of the theory has been changed: we are dealing with field equations different from the
mathematical point of view, some of them being constraints that effectively reduce number of
dynamically independent field variables. Correspondingly, LF fields are initialized on a different
surface (usually chosen as x+ = 0), the vacuum states have different properties and the Fock
operators create and destroy different excitations 4.

Thus, the LF energy-momentum tensor is constructed according to the formula (2.11) with
the indices taking on the values +,− (+,−, 1, 2 in four dimensions). In particular, the LF energy
density is

T+−(x) = Πφ(x)∂−φ(x)− g+−Llf (x). (3.15)

In this way, one arrives at the LF Hamiltonian

P− =

+L∫
−L

dx−

2
T+−(x) = µ2

+L∫
−L

dx−

2
φ2(x). (3.16)

4One could expect existence of a unitary operator providing a connection between these two representations of the
physical reality. The only attempt known to the author is a perturbative analysis [26] in the case of the Yukawa model
where it has been demonstrated that an operator creating a single particle in the LF scheme appears as a complicated
superposition of Fock operators of the conventional theory, the same being true also for the vacuum state.
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Note that there is no kinetic term in P−, just (minus twice) the potential part of the Lagrangian.
In a similar way, we find the LF momentum and boost operators:

P+ =

+L∫
−L

dx−

2
T++(x) = 4

+L∫
−L

dx−

2
∂−φ∂−φ,

M+− = x+P− −
+L∫
−L

dx−

2
x−T++(x−). (3.17)

The Fock representation follows in a straightforward way by inserting the field expansion (3.10)
into the P± given in (3.16, 3.17):

P− =
∑
n

µ2

p+
n
a†(p+

n )a(p+
n ), P+ =

∑
n

p+
n a

†(p+
n )a(p+

n ). (3.18)

Next, let us consider the vacuum state in the scalar LF field theory [7, 5, 27]. There is one
important difference with respect to the usual space-like QFT: in addition to the positivity of
the LF energy P− we also have positive definite spectrum of the kinematical quantity - the LF
momentum P+. From a general Fourier decomposition of an interacting LF scalar field

ϕ(x+, x−) =
1√
2L

∞∑
n=1

1
p+
n

(
a(p+

n , x
+)e−

i
2p

+
nx

−
+ a†(p+

n , x
+)e

i
2p

+
nx

−
)

(3.19)

and the non-dynamical Heisenberg equation −2i∂−φ(x) = [P+, φ(x)] we get in an analogy
with the conventional field theory

−2i
1√
2L

∞∑
n=1

1
p+
n

(
a(p+

n , x
+)∂−e−

i
2p

+
nx

−
+ a†(p+

n , x
+)∂−e

i
2p

+
nx

−
)

=

=
1√
2L

∞∑
n=1

1
p+
n

([
P+, a(p+

n , x
+)
]
e−

i
2p

+
nx

−
+
[
P+, a†(p+

n , x
+)
]
e

i
2p

+
nx

−
)

(3.20)

and consequently also

−p+
n a(p

+
n , x

+) =
[
P+, a(p+

n , x
+)
]

(3.21)

since instead of the time derivative acting on the annihilation operator (the situation in the case
of conventional field theory, Eq.(2.20)), here the spatial derivative acts on the kinematical part of
the plane wave. With P+|0〉 = 0 we immediately have

−a(p+
n , x

+)P+|0〉+ P+a(p+
n , x

+)|0〉 = −p+
n a(p

+
n , x

+)|0〉 ⇒ a(p+
n , x

+)|0〉 = 0. (3.22)

Thus, |0〉 is a state of an interacting theory with minimum possible momentum p+ = 0. It
is at the same time a state with minimum possible LF energy p−, because the vacuum |0〉
is annihilated also by P− due to the fact that the latter does not contain terms of the form
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a†(p+
1 )a†(p+

2 )a†(p+
3 )a†(p+

4 ) (and their hermite conjugates). This again follows from the pos-
itivity of P+ as well as from its conservation: these terms, after space integration of their
plane-wave factors in the Hamiltonian, are multiplied by a Dirac delta function of the form
δ(p+

1 + p+
2 + p+

3 + p+
4 ) which is zero because positive momenta cannot add to zero. The state

without particles, the Fock vacuum |0〉 is the physical vacuum ! This is a most remarkable result.
But also a troublesome one: where has the complicated vacuum structure gone? We will try to
answer this question, at least partially, in the following chapters.

3.3 Quantum LF Fermi field

The Lagrangian of a free massive fermion field

L =
i

2
ψγµ

↔
∂µ ψ −mψψ (3.23)

takes in terms of the LF fermionic field components ψ2 and ψ1 the form

Llf = iψ†2
↔
∂+ ψ2 + iψ†1

↔
∂− ψ1 −m(ψ†2ψ1 + ψ†1ψ2). (3.24)

We are using the chiral representation where

γ5 =
(
−1 0
0 1

)
, ψ =

(
ψ1

ψ2

)
. (3.25)

The other Dirac matrices are

γ0 = σ1 =
(

0 1
1 0

)
, γ1 = iσ2 =

(
0 1
−1 0

)
. (3.26)

A very useful feature of the LF fermionic fields is the projection-operator interpretation of the
algebra of Dirac γ matrices:{

γµ, γν
}

= 2gµν 1̂ ⇒
{
γ+γ− + γ−γ+

}
= 41̂, (3.27)

where γ± = γ0 ± γ1. We see that the matrices

Λ+ =
1
4
γ−γ+, Λ =

1
4
γ+γ− (3.28)

have the properties of projection operators:

Λ+ + Λ− = 1̂, Λ2
± = Λ±, Λ±Λ∓ = 0. (3.29)

Writing the matrices explicitly, we have

γ+ =
(

0 2
0 0

)
, γ− =

(
0 0
2 0

)
, Λ+ =

(
0 0
0 1

)
, Λ− =

(
1 0
0 0

)
. (3.30)

Using these relations in the covariant Lagrangian (3.23) we find that the projectors indeed sepa-
rate the upper and lower fermion field components as shown in (3.24). Also the Dirac equation

(
iγµ∂µ −m

)
ψ(x) = 0 (3.31)
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separates into two equations

2i∂+ψ2(x) = mψ1(x), 2i∂−ψ1(x) = mψ2(x). (3.32)

The first equation contains a time derivative and thus it is the true dynamical equation for the
ψ2 Fermi field component. The second one is non-dynamical, i.e. it is a constraint expressing
the upper Fermi field component ψ1 in terms of the dynamical component ψ2. The advantage
of using the chiral representation of the γ-matrices is that in this representation the dynamical
component is simply the lower entry of the ”spinor” in Eq.(3.25) and the dependent component is
the upper entry. In the representation that we used in the case of massive space-like fermions the
dynamical and constrained Fermi field components are given as a superposition of the upper and
lower ”spinor” components. Here we would also like to contrast the description of the fermionic
fields in both schemes. We can see that the matrix and ”spinor” structure plays only a marginal
role in the LF case, simplifying the picture considerably, while the matrix algebra in the case of
the space-like Fermi field is in principle as complicated as in 3+1 dimensions (technically, it is
of course simpler because the matrices are only 2 by 2). One may say that the LF description is
more adequate because there is no spin in one space dimension (no rotations are possible) and
the whole machinery of the spinors and matrices seems to be redundant. The only feature (in
addition to Fermi statistics incorporated by using anticommutators instead of commutators) that
really distinguishes the two-dimensional fermionic field from the scalar field is that the former
one has two components described by the ”square root” of the Klein-Gordon equation and this is
correctly incorporated in the LF formalism. The fact that the LF Fermi field is ”almost” a scalar
field becomes also evident if one combines two LF Dirac equations into one by eliminating ψ1

from its constraint

ψ1(x) =
m

2i
∂−1
− ψ2(x), (3.33)

and inserting it into the dynamical equation (the precise form of the symbolic inverse derivative
∂−1
− will be given below). This leads to the Klein-Gordon type of equation for the independent

component:(
4∂+∂− +m2

)
ψ2(x) = 0. (3.34)

The dynamical field ψ2(x) can be expanded at x+ = 0 into the Fourier series:

ψ2(0, x−) =
1√
2L

∞∑
n= 1

2

[
b(p+

n )e−
i
2p

+
nx

−
+ d†(p+

n )e
i
2p

+
nx

−]
. (3.35)

The Fock operators are assumed to satisfy the anticommutation relations{
b(p+

m), b†(p+
n )
}

=
{
d(p+

m), d†(p+
n )
}

= δmn, (3.36)

the other combinations being equal to zero. As it is evident, we again consider a system in a
spatial ”box” (a finite line −L ≤ x− ≤ L in one spatial dimension) and impose antiperiodic
boundary conditions (BC) ψ2(−L) = −ψ2(L) which lead to a discrete set of momenta p+

n =
2πn/L labeled by half-integers 1/2, 3/2, . . . . The reason for the choice of antiperiodic boundary
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condition is that it avoids the fermionic zero mode in interacting theories where its treatment is a
little bit tricky. In the free theory with periodic BC, the ZM vanishes. 5

With the antiperiodic boundary condition, the inverse derivative is determined uniquely as
the integral operation:

ψ1(x) = m

+L∫
−L

dy−

2
Ga(x− − y−)ψ2(x+, y−), Ga(x− − y−) =

1
4i
εa(x− − y−). (3.37)

The symbol εa(x−) stands for the antiperiodic counterpart of the periodic sign function εP (x−)
from the previous Section. Its form is identical to (3.13) with the index running over half-integers
instead of integers:

εa(x− − y−) =
4i
L

∑
n= 1

2

1
p+
n

[
e−

i
2p

+
n (x−−y−) − e

i
2p

+
n (x−−y−)

]
. (3.38)

The Green function Ga(x− − y−) that we used to invert the fermionic constraint satisfies the
defining property 2i∂−Ga(x− − y−) = δa(x− − y−). When applied to Eq.(3.37), one recovers
the initial constraint. It is an elegant feature of the LF formalism that for some simple inter-
acting theories like massive QED(1+1) (massive Schwinger model), massive Thirring model
(four-fermion current-current interaction) and even four-dimensional quantum electrodynamics,
the fermionic constraint is still solvable in a closed form although it contains interacting terms.
Its solution will turn out to be given in terms of a Green function generalizing Ga(x− − y−) in
a natural way.

It is quite simple to obtain ψ1(x) in Fock representation. Combining Eqs.(3.38) and (3.35)
in (3.37), we find

ψ1(0, x−) =
m√
2L

∑
n

1
p+
n

[
b(p+

n )e−
i
2p

+
nx

−
− d†(p+

n )e
i
2p

+
nx

−]
. (3.39)

The passage to the Hamilton formalism follows the procedure sketched for the case of the
scalar field. The canonical momenta are

Πψ2 = iψ†2, Πψ†2
= −iψ2 (3.40)

and the energy-momentum tensor

T+ν(x) = Πψ2(x)∂
νψ(x) + ∂νψ†(x)Πψ†2

(x)− g+νLlf (x) (3.41)

analogous to Eq.(3.15) yields the LF Hamiltonian and the momentum operator:

P− = m

+L∫
−L

dx−

2

(
ψ†2ψ1 + ψ†1ψ2

)
, P+ =

+L∫
−L

dx−

2
2iψ2

↔
∂− ψ2. (3.42)

5For the periodic BC, one can decompose ψ2 into the mode with n = 0 and the set of normal modes with p+n 6= 0.
The ZM is isolated by the ”volume” integration: ψ0 =

R +L
−L

dx−

2L
ψ2(x). Eq.(3.34) yields 0 = m2ψ0 showing that for

a massive field ψ0 = 0 analogously to the scalar field case.
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The Fock representation of these operators reads

P− =
∑
n

m2

p+
n

(
b†(p+

n )b(p+
n ) + d†(p+

n )d(p+
n )
)
,

P+ =
∑
n

p+
n

(
b†(p+

n )b(p+
n ) + d†(p+

n )d(p+
n )
)
. (3.43)

We conclude this section by a simple observation: as in the case of two LF scalar fields, also
the mode expansions of two LF Fermi fields with different masses coincide (see Eq. (3.35)),
since the mass parameter does not enter into the expansion. This is true also in the continuum
formulation where the integration measure is simply (suitably regularized) dp+/p+ (it comes
from p− integration of the δ-function δ(pµpµ −m2) which in terms of the LF variables has the
form δ(p+p−−m2).) Thus the vacua of two fermion fields with different masses coincide in the
light front description.

4 Some mathematical subtleties in the continuum LF theory

In the previous chapters, we showed several times that the LF field theory requires specification
of boundary conditions in order to have a mathematically well-defined treatment, in particular
unique solutions of certain constrained equations. It seems probable that the quantization in a
finite spatial volume is then the most appropriate formulation which yields a regularized theory
and permits us to analyze consistently the infrared region of the theory in terms of zero modes
and certain unitary operators that are well defined in a finite volume. Although some authors [28]
have emphasized a necessity to incorporate boundary conditions also in the case of the contin-
uum LF quantization for a consistent treatment, this issue is quite often neglected. It is worth
to recall at this place that the continuum field theory is typically applied in a heuristic manner
and its mathematically correct treatment actually requires to regard quantum fields as distribu-
tions which have to be regularized by means of test functions. This axiomatic or constructive
field theoretical approach was developed by Wightman, Jaffe, Haag, Schroer, Strocchi and many
others. Although being certainly very valuable from the point of view of mathematical rigour, it
was very difficult to apply it for calculations of real physical problems and predictions outside
the realm of simple lower-dimensional models. 6

We shall adhere to the finite-volume (sometimes called discretized) approach to the LF theory
also in the rest of these notes. However, we will switch to the continuum formulation in some
specific topics. In this section, we want to illustrate one source of difficulties in the LF theory
caused by an improper mathematical treatment. We shall work within the continuum form for
simplicity since the corresponding formulae involve integrals and continuous functions (Bessel
functions) while in the discretized form one works with infinite series which are more difficult
to handle. However, some conclusions from the continuum formulation are relevant also for the
discretized one.

The main objects here will be the two-point correlation functions which are vacuum expec-
tation values of products of two fields taken at different space-time points. These products are
unordered in the time variable, i.e. no T -ordering is applied. They are also called the Wightman

6 A new promising LF approach based on the Epstein-Glaser non-perturbative regularization and renormalization has
been formulated recently and applied also to higher-dimensional theories [29].
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functions. Since we will work in an infinite volume, we will present the continuum versions of
the field expansions discussed already in the finite-volume form. The conventions, definitions
and field equations will coincide with those presented in the previous chapters.

Let us start with the massive LF Fermion field. The independent component ψ2 can be
expanded at x+ = 0 into the Fourier integral with the operator coefficients b(p+), d(p+) and
their hermite conjugates. The dynamical equation from (3.32) determines its LF time evolution:

ψ2(x) =

∞∫
0

dp+

4π
√
p+

[
b(p+)e−

i
2p

+x−− i
2

m2

p+ x
+

+ d†(p+)e
i
2p

+x−+ i
2

m2

p+ x
+]
. (4.1)

The solution of the constraint equation is

ψ1(x) = m

∞∫
0

dp+

4π
√
p+p+

[
b(p+)e−

i
2p

+x−− i
2

m2

p+ x
+

− d†(p+)e
i
2p

+x−+ i
2

m2

p+ x
+]
. (4.2)

The quantization prescription{
ψ2(0, x−), ψ†2(0, y

−)
}

=
1
2
δ(x− − y−) (4.3)

is equivalent to the following anticommutation relations for the Fock operators:{
b(p+), b†(q+)

}
=
{
d(p+), d†(q+)

}
= 2πp+δ(p+ − q+). (4.4)

The two-point Wightman functions Sαβ(x− y) are easily obtained as

S22(x− y) = 〈0|ψ2(x)ψ
†
2(y)|0〉 =

∞∫
0

dp+

8π
e
− i

2p
+(x−−y−−iε)− i

2
m2

p+ (x+−y+−iδ)
,

S11(x− y) = 〈0|ψ1(x)ψ
†
1(y)|0〉 =

∞∫
0

dp+

8π
m2

p+2
e
− i

2p
+(x−−y−−iε)− i

2
m2

p+ (x+−y+−iδ)
,

S12(x− y) = 〈0|ψ1(x)ψ
†
2(y)|0〉 =

∞∫
0

dp+

8π
m

p+
e
− i

2p
+(x−−y−−iε)− i

2
m2

p+ (x+−y+−iδ)
. (4.5)

Note that we have introduced the small imaginary parts in time and space coordinates. This step
is dictated by the mathematical consistency. Without the damping factors the integrals would
not exist as mathematical objects. 7 The corresponding formulae and references to the relevant
mathematical literature can be found for example in the tables of integrals by Gradshteyn and
Ryzhik [25]. It will turn out that this mathematical subtlety has quite remarkable consequences
for more physical aspects of the theory.

7 It is possible to interpret the corresponding damping exponential functions as a specific choice of the test functions
[30].
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In order to evaluate the correlation functions S22, S11 and S12 , one has to consider four
combinations of the signs of x+−y+, x−−y− because the results of the integrations are different
for different combinations [25]. We also have to change the sign of iε accordingly to guarantee
the exponential damping of the form exp(−εp+). The results can be read-off directly from [25]
and are summarized as follows:

S22(z) = − θ
(
z2
)m

8

√
z+

z−

[
J1

(
m
√
z2
)
− i sgn(z+)N1

(
m
√
z2
)]

+

+ θ
(
− z2

)
sgn(z+)

im

4π

√
−z

+

z−
K1

(
m
√
−z2

)
,

S11(z) = θ
(
z2
)m

8

√
z−

z+

[
J1

(
m
√
z2
)
− i sgn(z+)N1

(
m
√
z2
)]
−

− θ
(
− z2

)
sgn(z+)

im

4π

√
−z

−

z+
K1

(
m
√
−z2

)
,

S12(z) = − θ
(
z2
)m

8

[
N0

(
m
√
z2
)

+ i sgn(z+)J0(m
√
z2)
]

+

+ θ
(
− z2)

m

4π
K0

(
m
√
−z2

)
(4.6)

We have set z = x − y and used the ”function” sgn(z±) for the sign function z±/|z±|. Note
however that the latter has only a symbolical meaning here since we do not require the property
sgn(0) = 0. The x+ = 0 limit of the above expressions has to be calculated separately. The
implicit small imaginary parts in the arguments with appropriate sign are crucial for this step.
Let us also remind that J1(z),K1(z) and N1(z) are the Bessel, modified Bessel and Neumann
functions. Note that the calculation of the analogous correlation functions in the conventional
theory is more complicated and requires a clever change of variables [31] (see the Appendix B).

Next we will study the equal-time limit of the S-functions. This is a self-consistency check
since in that limit S22(x) should reduce to the Eq.(4.3) and S12 to the anticommutator{

ψ1(0, x−), ψ†2(0, y
−)
}

=
m

8i
sgn(x− − y−) (4.7)

which is easily computed from the constraint (4.2) and the basic anticommutator (4.3). We
will consider the fields at space-like separations and choose x+ − y+ < 0, x− − y− > 0 for
definiteness. With all factors explicitly shown, we have

∆(x− y) ≡
{
ψ2(x), ψ

†
2(y)

}
= S22(x− y) + S∗22(x− y) =

= − im
4π

[√
|x+ − y+|+ iε

x− − y− − iε
K1

(
m
√

(|x+ − y+|+ iε)(x− − y− − iε)
)
−

−

√
|x+ − y+| − iε

x− − y− + iε
K1

(
m
√

(|x+ − y+| − iε)(x− − y− + iε)
)]
. (4.8)

For −(x+ − y+) = η << 1, we can use the expansion K1(z) ≈ 1/z +O(z2) to obtain{
ψ2(0, x−), ψ†2(0, y

−)
}

=
−i
4π

[ 1
x− − y− − iε

− 1
x− − y− + iε

]
=

1
2
δ(x− − y−), (4.9)
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because the time difference η canceled out. The relation 1/(x − iε) = P 1
x + iπδ(x) was used

in the final step (P stands for the principal value). The same result is obtained for x+ − y+ >
0, x−− y− < 0. The presence of the iε part was essential for deriving the correct equal-time an-
ticommutator. We would have obtained the wrong result, namely zero, without the convergence
factor. In other words, one can directly set x+ = y+ in the correctly defined anticommutator
function. But, generally speaking, the equal-time limit of the anticommutator function is not
immediately the Dirac delta function δ(x− − y−) but the expression

∆(0, x− − y−) = − im
4π

[√
iε

|x− − y−| − iε
K1

(
m
√
iε(|x− − y−| − iε)

)
−

√
−iε

|x− − y−|+ iε
K1

(
m
√
−iε(|x− − y−|+ iε)

)]
(4.10)

which for finite x− − y− reduces to 1/2δ(x− − y−).
A similar conclusion can be reached for the x+ − y+ = 0 limit of the S12 function. Here we

have for x+ − y+ < 0, x− − y− > 0{
ψ1(x), ψ

†
2(y)

}
= S12(x− y)− S∗12(x− y) ≡ mΣ(x+ − y+, x− − y−) =

=
m

4π

[
K0

(
m
√

(|x+ − y+|+ iε)(x− − y− − iε)
)

− K0

(
m
√

(|x+ − y+| − iε)(x− − y− + iε)
)]
. (4.11)

The relative minus sign in the first line of the above expression is due to the negative sign of the
second term in the Fock representation of ψ1(x). With the expansion K0(z) ≈ −γE − ln z2 we
find in the −(x+ − y+) = η → 0 limit{

ψ1(0, x−), ψ†2(0, y
−)
}

=
m

4π

[
− ln

(m
2

√
iε(x− − y− − iε)

)
+

+ ln
(m

2

√
−iε(x− − y− + iε)

)]
=

m

4π

[
− 1

2
ln(i) +

1
2

ln(−i)
]

= −im
8
. (4.12)

For the case x−−y− < 0, one gets the above result with the opposite sign. Hence we recover the
correct anticommutator, Eq.(4.7). The essential role played by the iε factor is evident. Generally
speaking however, the equal time limit of the considered anticommutator function is not the sign
function but the expression

mΣ(0, z−) =
m

4π

[
K0

(
m
√
iε(|z−| − iε)

)
−K0

(
m
√
−iε(|z−|+ iε)

)]
. (4.13)

5 Poincaré algebra and surface terms

A necessary condition for the Lorentz invariance of a relativistic quantum field-theory model is
that the abstract algebra of the Poincaré generators has to be satisfied when one calculates the
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corresponding commutators using the equal-time commutation relations of field variables. There
are no rotations and only one boost, represented by the generator M+−, in the two-dimensional
space-time and the abstract Poincaré algebra one should reproduce is simply[

P+, P−
]

= 0,
[
P+,M+−] = −2iP+,

[
P−,M+−] = 2iP−. (5.1)

This is a special case of the general abstract algebra of ten Poincaré generators in D=3 + 1:[
Pµ, P ν

]
= 0,

[
Pλ,Mµν

]
= igλµP ν − igλνPµ,

[
Mµν ,Mρσ

]
= −igµρMνσ + igµσMνρ + igνρMµσ − igνσMµρ. (5.2)

The above relations can be derived from the basic coordinate representation of a relativistic point
particle, p̂µ = −i∂µ, M̂µν = i

(
xµp̂ν − xν p̂µ

)
by a direct computation.

There is also the second condition for the full relativistic invariance of a quantum field-
theoretical model. It is a correct transformation of the quantum field under Lorentz transforma-
tions Λ and translations aµ. As is well known, the former ones are defined by x′µ = Λµνx

ν , where
the property gµνΛµρΛ

ν
σ = gρσ guarantees invariance of the interval xµxµ. In the classical theory,

the values of the fields as seen by two observers related by a Lorentz transformation x′ = Λx are
related according to

φ′(x′) = φ(x), ψ′(x′) = S(Λ)ψ(x), (5.3)

for the scalar and fermion field, respectively. S(Λ) is a matrix transforming the components
of the Dirac fields in such a way that the Dirac equation in the transformed coordinate system
maintains its form (covariance). The above relations should be generalized to amplitudes of a
quantum field in the quantum theory, where one assumes existence of an operator implementing
Lorentz transformations for state vectors, |Φ′〉 = U(a,Λ)|Φ〉. The operator U(a,Λ) must be
unitary to conserve probability. Then the classical relations (5.3) are replaced by

〈Φ|U−1(Λ)φ(Λx)U(Λ)|Φ〉 = 〈Φ|φ(x)|Φ〉,

〈Φ|U−1(Λ)ψ(Λx)U(Λ)|Φ〉 = S(Λ)〈Φ|ψ(x)|Φ〉 (5.4)

and we immediately find the transformation laws for the two fields:

φ(x′) = U(Λ)φ(x)U−1(Λ), φ(x+ a) = U(a)φ(x)U−1(a),

S−1(Λ)ψ(Λx) = U(Λ)ψ(x)U−1(Λ), ψ(x+ a) = U(a)ψ(x)U−1(a). (5.5)

In course of calculation of the Poincaré algebra one has to perform partial integrations that
generate terms at spatial infinity. In the conventional field theory one usually omits these surface
terms since the fields themselves (at least classically) are assumed to vanish at spatial infinity.
In the light front theory, it was found that even for free massive fermions [32] the corresponding
surface terms do not vanish. This fact was interpreted as a failure of relativistic invariance of the
LF quantization. Since this problem was identified already for the continuum formulation, we
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shall temporarily leave the finite volume and will study carefully surface terms arising in the LF
Poincaré algebra (5.1) of the free massive fields quantized in an infinite volume.

Let us start with the scalar field. We will first use this opportunity and show yet another
derivation of the field expansion in the continuum theory. It is parallel to that shown for the
space-like scalar field. The general solution of the Klein-Gordon equation (2.1) can be written in
the covariant form as

φ(x) =
∫ +∞

−∞

dp2

2(2π)2
πδ(p2 − µ2)χ(p)e−ip.x. (5.6)

In the LF variables, using δ(p+p− − µ2) = 1
|p+|δ

(
p− − µ2

p+

)
and the notation f(p) = 2πχ(p),

we get, with p̂− = µ2

p+ ,

φ(x) =
∫ 0

−∞

dp+

8π|p+|
f
(
p+, p− = p̂−

)
e−

i
2p

+x−− i
2 p̂
−x+

+

+
∫ +∞

0

dp+

8πp+
f
(
p+, p− = p̂−

)
e−

i
2p

+x−− i
2 p̂
−x+

. (5.7)

Changing p+ → −p+ in the first term, we find

φ(x) =
∫ ∞

0

dp+

8πp+

[
a(p+)e−

i
2p

+x−− i
2 p̂
−x+

+ a∗(p+)e
i
2p

+x−+ i
2 p̂
−x+

]
, (5.8)

where we called a(p+) ≡ f
(
p+, p− = p̂−

)
, a∗(p+) ≡ f

(
− p+, p− = −p̂−

)
. As before, one

promotes the amplitudes a, a∗ to operators in quantum theory:

φ(x) =

∞∫
0

dp+

8πp+

[
a(p+)e−

i
2p

+x−− i
2 p̂
−x+

+ a†(p+)e
i
2p

+x−+ i
2 p̂
−x+]

. (5.9)

where small imaginary parts for x± are understood as discussed for the case of fermions. The
corresponding two-point function

D(x− y) = 〈0|φ(x)φ(y)|0〉 =

∞∫
0

dp+

8πp+
e
− i

2p
+(x−−y−−iε)− i

2
µ2

p+ (x+−y+−iε) (5.10)

can easily be obtained using the commutation relation[
a(p+), a†(q+)

]
= 4πp+δ(p+ − q+). (5.11)

With the help of known integral formulae [25], we again find

D(z) = −1
8
θ
(
z2
)(
N0(µ

√
z2)− isgn(z+)J0(µ

√
z2)
)

+
1
4π
θ
(
− z2

)
K0(µ

√
−z2). (5.12)

In a complete analogy with the fermionic case, one can calculate the x+ = y+ projection of the
commutator function [φ(x), φ(y)] = D(x− y)−D∗(x− y)i:

Σ(x− − y−) =
1
4π

[
K0

(
µ
√
iε(x− − y− − iε)

)
−K0

(
µ
√
−iε(x− − y− + iε)

)]
(5.13)
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which for finite |x− − y−| reduces to − i
8 sgn(x− − y−).

The Hamiltonian, the LF momentum operators and the boost generator M+− (3.16), (3.17)
are given in terms of the energy-momentum densities

Θ++(x) = 4∂−φ(x)∂−φ(x), Θ+−(x) = µ2φ2(x) (5.14)

as

P+ =

+∞∫
−∞

dx−

2
Θ++(x), P− =

+∞∫
−∞

dx−

2
Θ+−(x),

M+− = x+P− −
+∞∫
−∞

dx−

2
x−Θ++(x). (5.15)

It is now straightforward to calculate the commutators (5.1) using the anticommutation relations
(4.3),(4.7). One finds that in the first two commutators the surface terms cancel. However, it
was claimed in Ref. [32] that in the latter commutator an unwanted surface term appears. A
similar redundant term was found in the four-dimensional theory in the commutator between the
LF rotational generator M−i and the scalar field 8. These difficulties were not clarified in the LF
literature so far. If the above-mentioned violations of relativistic invariance were really true, the
LF field theory would face a serious consistency problem [33]. A careful mathematical analysis
shows however that the claimed violation is an artifact and the surface terms actually vanish. In
what follows, we shall justify our statement in the case of free massive fermions.

The problematic surface term is equal to

s(L) = −8imLψ†1(L)ψ2(L), (5.16)

where L is a value of x− tending to infinity (a cutoff). The surface term is obviously non-
vanishing in this form and violates the Lorentz invariance. Let us again use our careful definitions
of the anticommutators and replace the δ(x−) and ε(x−) functions by 2∆(x) (4.8) and 8iΣ(x)
(4.11) for x+ = 0. Then we find

[
P−,M+−] = −

+∞∫
−∞

dx−

2

+∞∫
−∞

dy−

2
y−
[
Θ+−(x),Θ++(y)

]
=

= −4im

+∞∫
−∞

dx−

2

+∞∫
−∞

dy−

2
y−
{

Σ(x− y)ψ†2(x)∂−ψ2(y)

− ∂y−∆(x− y)ψ†2(y)ψ1(x) + ∆(x− y)ψ†1(x)∂−ψ2(y)

− m

2i
∆(x− y)ψ†2(y)ψ2(x)

}
. (5.17)

8 This commutator implements correct transformation properties of the quantum scalar field under one type of rota-
tions. It is a particular form of Eq.(5.5) for an infinitesimal value of the rotational parameter.
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Performing the partial integration and using the limiting values of the ∆(x) and Σ(x) functions
we obtain that the expression (5.17) equals to 2iP− plus the surface term

s(iε, x−−L) = 4imL

+∞∫
−∞

dx−

2

[
Σ(iε, x−−L)ψ†2(L)+Σ(iε, x−+L)ψ†2(−L)

]
ψ1(x). (5.18)

To proceed we have to look at the large-distance behaviour of the function Σ(iε, x− ± L):

Σ(iε, x− − L) =
m

2π

{
K0

(
m
√

(−iε)|x− − L|
)
− m

2π
{K0

(
m
√
iε|x− − L|

)}
. (5.19)

Using the value of the modified Bessel function Kν(z) for large z

Kν(z) ≈
√

π

2z
exp (−z), (5.20)

we get

K0

(
m
√
±iεL

)
≈
√

π

2m
√
±iεL

exp (−m
√
±iεL)

≈ L−1/4 exp
[
− m√

2
(1± i)

√
εL
]

(5.21)

and similarly for other surface terms. Thus, all of them are exponentially suppressed for L →
∞ and the correct Poincaré algebra is recovered. A possibility of this mechanism for higher
dimensional LF field theories was mentioned also in [34].

6 Discrete correlation functions and causality in the finite-volume LF theory

As we have already indicated and as will be further demonstrated, for studying non-perturbative
problems, it is often desirable to analyze light-front fields in a finite spatial volume where they
can be decomposed to a discrete infinity of modes. Such dynamical systems can be regarded
as a quantum field theory in its own right. This implies that one should verify all usual well-
established properties (such as causality, Poincaré invariance, singularity structure, etc.) in this
framework to check its overall consistency. In this section, we will focus on the problem of
microcausality or locality. This principle is derived from a finite value of the speed of light
which is the limiting speed with which a signal can propagate in the space-time. This implies
that two events or measurements separated by a space-like interval cannot influence each other
and thus are causally independent. In quantum theory, this property is incorporated by vanishing
of a commutator of two fields separated by the ispace-like interval xµxµ < 0. One may ask a
question if this principle holds true in a finite volume with fields (anti)periodic in x−.

Here one should realize that the introduction of a finite volume generally speaking violates
some symmetries present in the continuum or infinite-volume theories. A natural requirement is
that this violation should go away in the infinite-volume limit so that for example the relativistic
invariance (invariance under boosts, rotations and translations) is restored. Thus, there would
be no reason to worry if one would find a violation of causality in a finite volume which would
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disappear for L → ∞. Since it was claimed by some authors [36] that already a massive scalar
field in two dimensions fails to satisfy this property we found it important to clarify the situation.
We will present the method and results of our study [35] in this section. If the conclusion that
periodic boundary conditions are incompatible with causal behavior of the (infrared-regularized)
light-front quantum theory were indeed correct it would cast considerable doubts on the validity
of the DLCQ approach.

The method used to demonstrate the causality failure for L → ∞ was a numerical study
of the infinite series, represented the LF Pauli-Jordan function in the finite volume, truncated at
some value of discretized LF momentum p+ for which the results stabilized. This method gave
a very satisfactory picture of the causality in the usual field theory, where the Pauli-Jordan (PJ)
has the finite-volume form

∆(x− y) = −i
[
φ(x), φ(y)

]
= − 1

2L

∞∑
n=1

1
ω(p)

sin
(
ω(p)(x0− y0)− πn

L
(x1− y1)

)
. (6.1)

We have used the expansion (2.3) for the periodic scalar field (p1 = 2πn/L) as well as the Fock
commutators (2.5) to obtain the above discrete representation. Truncation of this series at some
moderate value of n lead to vanishing (up to negligible numerical effects) of PJ function for
space-like separations between the points x and y and a usual oscillatory behaviour for time-like
separations. This picture however failed for a LF system restricted to −L ≤ x− ≤ L. Not
only did the numerical results for the PJ function fail to vanish for x2 < 0, but it was even
found not to converge to the correct continuum expression. One has to conclude that either
the discretized light-front theory has some fundamental difficulty or the numerical computations
have some internal difficulty and are not reliable. To clarify this issue it would be preferable
to find a method for analytical evaluation of the infinite series expansion of the PJ function,
corresponding to the integral form of the PJ function in the continuum formulation.

In the following, we will briefly discuss such an analytical formalism for evaluation of in-
finite series corresponding to various correlation functions of the discretized LF theory. This
formalism is very well adapted to the form of LF kinematics and dispersion relation and it uses
some properties of polylogarithm functions. As a result, an integral representation can be given
for these infinite series expansions. This representation explicitly depends on the box length L.
Then one can use analytical methods to study the large L dependence of the integral representa-
tion of the PJ function.

The expression for the Pauli-Jordan function of a massive LF scalar field quantized in a
finite volume and satisfying periodic boundary condition is obtained by commuting two scalar
fields (3.10) at different space-time points (x+, x−) and (y+, y−) using the corresponding Fock
commutation relations. The result is expressed in terms of the correlation function

D̂(x) =
1
4π

∞∑
n=1

1
n
e
− i

2p
+
nx

−− i
2

µ2

p
+
n
x+

, p+
n =

2π
L
n (6.2)

as

∆̂ = −i[ϕ(x), ϕ(y)] = −i
(
D̂(x)− D̂∗(x)

)
= 2ImD̂(x). (6.3)

To demonstrate the general nature of the present approach, we will derive corresponding formu-
lae also for the fermionic case although the implications for causality will be discussed only for



Discrete correlation functions and causality in the finite-volume LF theory 439

the scalar field. We will work with periodic fermi field ψ(−L) = ψ(L) to keep the discussion
close to the scalar field case,

The field expansions (3.35), (3.39) yield for the correlation functions

Ŝ22(x) =
1

2L

∞∑
n=1

e
− i

2p
+
nx

−− i
2

m2

p
+
n
x+

,

Ŝ11(x) =
m2L

8π2

∞∑
n=1

1
n2
e
− i

2p
+
nx

−− i
2

m2

p
+
n
x+

,

Ŝ12(x) =
m

4π

∞∑
n=1

1
n
e
− i

2p
+
nx

−− i
2

m2

p
+
n
x+

. (6.4)

The key question now is: do the discrete representations (6.2) and (6.4) lead to the continuum
results (5.12) and (4.6) for L → ∞? More specifically, does 2 ImD̂ reproduce the continuum
Pauli-Jordan function in this limit?

To answer this question, we replace the infinite series (6.2) by an integrals using an integral
representation of the polylogarithm functions. Consider the function of two independent complex
variables defined by

F1(z, q) =
∞∑
n=1

zn

n
eq/n. (6.5)

For any finite q it can be shown that the power series converges only within the unit circle |z| < 1.
Expanding eq/n in powers of its argument we obtain

F1(z, q) =
∞∑
k=0

(q)k

k!

∞∑
n=1

zn

nk+1
=

∞∑
k=0

qk

k!
Lik+1(z). (6.6)

Here we have used the definition [37] of the polylogarithm function Lim,

Lim(z) =
∞∑
n=1

zn

nm
. (6.7)

Note that this series representation (6.7) of Lim converges only if |z| < 1. Its analytic continua-
tion to the rest of the complex z plane is provided by the integral representation

Lim(z) =
1

(m− 1)!

∞∫
0

du
um−1

z−1eu − 1
, ( m ≥ 1), (6.8)

which shows that Lim(z) is actually analytic throughout the z-plane except for a cut on the
positive real z axis, linking +1 to +∞. Substituting this formula into (6.6) and interchanging



440 Light front field theory: An advanced primer

integration on u with the summation on k, we arrive at the integral representation of the series
(6.5),

F1(z, q) =
∫ ∞

0

du
1

z−1eu − 1
I0(2

√
qu). (6.9)

To obtain this result we have used the identity

∞∑
k=0

(v)k

(k!)2
= I0(2

√
v), (6.10)

where I0(z) is the modified Bessel function [25]. Comparing (6.2) and (6.5) we note that

D̂(x) =
1
4π
F1(eiξ/Q, iQ), (6.11)

where

ξ = µ2x+x−/4, Q =
µ2L

4π
x+. (6.12)

This is the first step of the analysis whereby the infinite series (6.2) has been rewritten in integral
form via (6.9) and (6.11).

There are four distinct cases to consider each associated with a quadrant of the x+, x− plane.
Consider first the case where both x± are positive (Q > 0, ξ > 0). We may rewrite Eqs.(6.9) and
(6.11) as

D̂(x+ > 0, x− > 0) =
1

4πQ

∫ ∞

0

du
1

exp
(

1
Q (u− iξ)

)
− 1

I0(2eiπ/4
√
u). (6.13)

The continuum limit is then obtained by considering the limiting value of the RHS of Eq.(6.13)
for Q → +∞. The result is the reduced version of Eq.(5.12) appropriate to the regime x± > 0.
Before demonstrating this we note that I0(2eiπ/4

√
u) is an analytic function of u throughout

the entire finite complex plane since its Taylor series expansion in powers of the argument has
an infinite radius of convergence. The remaining factor in the integrand of (6.13) is analytic
throughout the u plane with the exception of simple poles at the discrete set of points un =
i(2nπQ+ ξ) on the imaginary axis, where n is any integer. In view of these analytic properties
of the integrand we can alter the integration contour without changing the value of the integral in
(6.13) as long as we avoid crossing through any of the singular points un and maintain the given
endpoints. The simplest choice of a preferable contour has a rectangular shape and consists of the
straight-line segments (C1) on the imaginary axis, the semi-circle (C2) centered on the pole u0,
the line (C3) parallel to the positive real axis, and finally the straight-line segment (C4) parallel
to the imaginary axis. Individual contributions are calculated in the Appendix C. The overall
result is

lim
Q→∞

D̂(x+ > 0, x− > 0) = −1
4

(
N0(µ

√
x2)− iJ0(µ

√
x2)
)
, (6.14)
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in agreement with Eq.(5.12). The first contribution comes from the segment C1 and the second
one correspond to the residuum of the integral at the pole. Contributions from the segments C3

and C4 vanish in the continuum result.
From the expression (6.14), it is not difficult to find the results corresponding to other three

combinations of signs of x+, x−. First, we conclude from the formula (6.9) that results for finite
L for the case x+ < 0, x− < 0 (ξ > 0, Q < 0) can be obtained from those for x+ > 0, x− > 0
by complex conjugation:

F1(e−iξ/|Q|,−i|Q|) =
[
F1(eiξ/Q, iQ)

]∗
. (6.15)

Likewise, we have for x+ > 0, x− < 0 (Q > 0, ξ < 0)

D̂(x) =
1
4π
F1(e−i|ξ|/Q, iQ), (6.16)

and this can be used to generate the results also for the regime x+ < 0, x− > 0 (ξ < 0, Q < 0)
according to

D̂(x) =
1
4π
F1(ei|ξ|/|Q|,−i|Q|) =

[ 1
4π
F1(e−i|ξ|/Q, iQ)

]∗
. (6.17)

The evaluation of F1 in Eq.(6.16) for large L proceeds as above using the same multi-component
contour except that the semicircle C2 is not applicable since the pole u0 is situated at −i|ξ|. The
final result is

lim
Q→+∞

D̂(x+ > 0, x− < 0) =
1
4π

∞∫
0

dv
J0(2

√
v)

v + ξ
=

1
2π
K0(2

√
|ξ|), (6.18)

in agreement with the continuum formula (5.12). In particular, this result means that since the
imaginary part of the function D̂(x) vanishes for spacelike x2, the causality is restored in the
infinite-volume limit. For large L the leading L-dependent terms are of the order L−1/4. The
results for the PJ function 2ImD̂(x) are consistent with the results of Ref. [38] although their
intepretation is somewhat different. Also, as will be shown next, the method that we desribed in
this chapter can be extended to calculate the complete Wightman functions of two-dimensional
free massive bosons and fermions quantized in a finite volume.

Let us therefore briefly discuss the correlation functions Ŝ22 and Ŝ11 of (6.4). The first of
these is a special case of the function

F0(z, q) =
∞∑
n=1

zneq/n =
z

1− z
+ q

∞∫
0

du
1

z−1eu − 1
I1(2

√
qu)

√
qu

, (6.19)

while Ŝ11 is a special case of

F2(z, q) =
∞∑
n=1

zn

n2
eq/n =

∞∫
0

du
u

z−1eu − 1
I1(2

√
qu)

√
qu

. (6.20)
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In the regime x± > 0 we find that

lim
Q→+∞

Ŝ22(x) = 4ei
π
4 P

∞∫
0

dw
J1(w)
w2 − 4ξ

− π√
ξ
e−i

π
4 J1(2

√
ξ)

= −m
4

√
x+

x−

(
J1(m

√
x2) + iN1(m

√
x2)
)
. (6.21)

Likewise, in the same regime, we have

lim
Q→+∞

Ŝ11(x) = −2π2

m

√
x−

x+

(
J1(m

√
x2) + iN1(m

√
x2)
)
. (6.22)

These results are in agreement with the continuum formulas (4.6).
In principle, one may try to evaluate the integral (6.9) representing the Pauli-Jordan function

in finite volume numerically for increasing values of L to examine the rate of convergence to-
wards the continuum result. In practice, this is rather difficult to achieve since the integrand of
the representation (6.9) oscillates rapidly due to the presence of the Bessel function I0. Already
for relatively small values of Q the amplitudes of these oscillations are so large and the spacings
of successive zeros are so small that it is very difficult to reliably evaluate the integral by stan-
dard numerical routines. The numerical computations of the integral were therefore restricted
to a few relatively small values using an integration method based on Chebyshev polynomials
as well as by a Clenshaw-Curtis method. The results for Q = 4 and Q = 18 are displayed in
Fig.(6.1). For definiteness one can set µ2x+ = 1 so that the corresponding box lengths given
by L = 4πQ are approximately L = 50 and 226. A qualitative difference in the behavior of
the Pauli-Jordan commutator function between the space-like region (negative values of x−/L)
and time-like region (positive x−/L) is obvious already for the smallest value Q = 4. It is also
evident that for larger Q the oscillatory behavior of the continuum curve in the time-like region
is resolved with increased accuracy. Although the Pauli-Jordan function for finite volumes is not
zero in the space-like region, it is fairly close to it. We recall that for our choice of Q values
we are still very far from the infinite-volume limit so the obtained behavior of the Pauli-Jordan
function is plausible and consistent with our analytical results. It would be desirable however to
be able to compute the behaviour of the PJ function numerically for much higher values of Q
and verify that the curve in the space-like region indeed converges to zero.

The physical conclusions of this mathematical treatment are summarized as follows. With
the infinite number of field modes the violation of microcausality in a LF finite volume with
periodic scalar field is only a marginal effect and continuum results including the causal behavior
are restored in the L → ∞ limit. In practice, the DLCQ calculations of mass spectra and
wavefunctions are always performed for finite L and with a finite number of Fourier modes. At
this step, the causality may seem to be violated [36] (see also [39] for a treatment that averages
over some range of L values and restores the causal behavior in a finite volume). However, as
physical quantities calculated with the DLCQ method have to be extrapolated to the continuum
limit, there is no inconsistency, since, as we have shown, the causality is restored there.
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Fig. 6.1. The commutator function 2ImD(x+, x−) evaluated numerically is plotted for Q = 4 and Q = 18
as a function of s = x−/L and compared with the continuum function 1/4J0(

√
Ls) (solid line) in the box

of the length L = 4πQ. For simplicity, we chose µ2x+ = 1. The time-like region corresponds to positive
values of s, the space-like region to negative ones.

7 Soluble interacting model

As a first example of interacting models which are the main focus of the quantum field theory,
let us study a very simple model with two species of the Fermi field with masses m and M inter-
acting via a current-current coupling, proposed by Federbush a long time ago [40]. The correct
mathematical formulation was later given by Wightman [41] and Schroer and Truong [42]. The
model can be considered as a toy version of the massive Thirring model which is a surprisingly
rich, non-trivial but still relatively simple relativistic quantum model. The Federbush model was
not discussed in the light front formulation so far and we will use it here to demonstrate the LF
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approach (and simplifications it offers) to an interacting theory in the simplest yet non-trivial
setting. The Lagrangian of the model in the covariant form reads

L =
i

2
Ψγµ

↔
∂µ Ψ−MΨΨ +

i

2
χγµ

↔
∂µ χ−mχχ− gεµνJ

µjν . (7.1)

The vector currents are Jµ =: ΨγµΨ : and jµ =: χγµχ :, where the colon denotes the normal-
ordered expressions, i.e. the operators where all creation operators stand to the left of all anni-
hilation operators. This is dictated by the C-parity requirements of the electromagnetic current,
namely the current should be odd under the charge conjugation on physical grounds (opposite
charges of a fermion and an antifermion). The antisymmetric symbol εµν is defined by ε01 = 1.
From εµνε

µν = −2 we obtain its LF components ε+− = 2, ε+− = 1/2. The light front version
of the Lagrangian (7.1) is

Llf = iΨ†
2

↔
∂+ Ψ2 + iΨ†

1

↔
∂− Ψ1 −M

(
Ψ†

2Ψ1 + Ψ†
1Ψ2

)
+

+ iχ†2
↔
∂+ χ2 + iχ†1

↔
∂− χ1 −m

(
χ†2χ1 + χ†1χ2

)
+
g

2
J+j− − g

2
J−j+. (7.2)

The LF currents are conserved and their components are

J+(x) = 2 : Ψ†
2(x)Ψ2(x) :, J−(x) = 2 : Ψ†

1(x)Ψ1(x) :,

j+(x) = 2 : χ†2(x)χ2(x) :, j−(x) = 2 : χ†1(x)χ1(x) : . (7.3)

Here we are using our previous convention

Ψ =
(

Ψ1

Ψ2

)
, χ =

(
χ1

χ2

)
, (7.4)

where the upper components are the constraint fields while the lower ones are dynamical. This
is obvious from the (classical) equations of motion which are derived from the action principle
as in the usual field theory:

2i∂+Ψ2(x) = MΨ1 − gj−Ψ2, 2i∂−Ψ1 = MΨ2 + gj+Ψ1,

2i∂+χ2(x) = mχ1 + gJ−χ2, 2i∂−χ1 = mχ2 − gJ+χ1. (7.5)

Note that the equations are coupled in two ways: equation for the upper component depends on
the lower one and vice versa and moreover the current components of one Fermi field enters into
the equation for the other Fermi field. However, due to the specific form of the coupling term,
the set of field equations is explicitly solvable. On the quantum level, one has a rare situation
that one knows the operator solution of the field equations and can calculate various correlation
functions, test their singularity structure [42] etc.

Using the equations of motion (7.5) one easily establishes that the currents Jµ(x) and jµ(x)
are conserved:

∂µj
µ(x) = ∂+j

+(x) + ∂−j
−(x) = 0, ∂µJµ(x) = 0. (7.6)

Since there exists an independent gamma matrix γ5, one can define also the axial-vector currents
jµ5 (x), Jµ5 (x) according to

jµ5 (x) = χ(x)γµγ5χ(x), Jµ5 (x) = Ψ(x)γµγ5Ψ(x). (7.7)
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Inserting the components of the Fermi fields and the gamma matrices (3.26) and (3.25), we find

j+5 (x) = j+(x), j−5 (x) = −j−(x),
J+

5 (x) = J+(x), J−5 (x) = −J−(x). (7.8)

The axial-vector currents are not conserved:

∂µj
µ
5 (x) = 2imχ(x)γ5χ(x), ∂µJ

µ
5 (x) = 2iMΨ(x)γ5Ψ(x). (7.9)

Again, these equations are easily verified by means of the equations of motion. Their explicit LF
form reads

∂+j
+
5 (x) + ∂−j

−
5 (x) = 2im

(
χ†1(x)χ2(x)− χ†2(x)χ1(x)

)
,

∂+J
+
5 (x) + ∂−J

−
5 (x) = 2iM

(
Ψ†

1(x)Ψ2(x)−Ψ†
2(x)Ψ1(x)

)
. (7.10)

We will consider the Federbush model on a finite line−L ≤ x− ≤ L and will choose antiperiodic
boundary conditions for the Fermi field:

Ψ(−L) = −Ψ(L), χ(−L) = −χ(L). (7.11)

All considerations in the previous paragraphs are valid irrespectively of this choice. Defining the
”integrated currents” Σ(x) and σ(x) [41]

Σ(x) =
√
π

4

+L∫
−L

dz−

2
εN (x− − z−)J+(x+, z−),

σ(x) =
√
π

4

+L∫
−L

dz−

2
εN (x− − z−)j+(x+, z−), (7.12)

we can convince ourselves that the constraints in (7.5) are solved by

Ψ1(x) = e
− ig√

π
σ(x)

ψ1(x), χ1(x) = e
ig√

π
Σ(x)

ϕ1(x), (7.13)

where ψ1(x) and ϕ1(x) are the solutions of the free constraint equation (3.32). Actually, contrary
to the massive Thirring model which will be discussed later, the dynamical equations admit the
solutions in the same form:

Ψ2(x) = e−
ig
2 σ(x)ψ2(x), χ2(x) = e

ig
2 Σ(x)ϕ2(x), (7.14)

where again ψ2(x) and ϕ2(x) are the solutions of the free dynamical equation (3.32). To verify
that the expressions (7.13, 7.14) represent the solutions of the classical field equations, take
simply the derivative of the assumed solution for Ψ2 to obtain

2i∂+Ψ2(x) = e−
ig
2 σ(x)2i∂+ψ2(x) + g∂+σ(x) = MΨ1(x)− gj−(x)Ψ2(x). (7.15)
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In the second step, we used the dynamical equation 2i∂+ψ2 = mψ1 and the current conservation

∂+σ(x)
√
π

4

+L∫
−L

dz−

2
εN (x− − z−)∂+j

+(x+, z−) =

= −
√
π

4

+L∫
−L

dz−

2
εN (x− − z−)∂−j−(x+, z−) =

= −
√
π

2

+L∫
−L

dz−

2
δN (x− − z−)j−(x+, z−) = −

√
π

2
j−(x), (7.16)

where the sign function εN (x− − y−) was defined in (3.13) and the partial integration was
preformed in the third step. The same derivation is valid also for the solution of the χ2(x) field.
The relation (7.16) together with an analogous one for ∂µσ(x) shows that the integrated currents
satisfy the conditions

∂µΣ(x) =
√
πεµνJ

ν(x), ∂µσ(x) =
√
πεµνj

ν(x). (7.17)

Let us quantize the model. At x+ = 0, we assume the standard anticommutation relations
for the free fermion fields{

ψ2(0, x−), ψ2(0, y−)
}

=
{
ϕ2(0, x−), ϕ2(0, y−)

}
=

1
2
δa(x− − y−). (7.18)

The field expansions read

Ψ2(x) =
1√
2L

∞∑
n= 1

2

[
a(p+

n )e
− i

2p
+
nx

−− i
2

M2

p
+
n
x+

+ c†(p+
n )e

i
2p

+
nx

−+ i
2

M2

p
+
n
x+]

,

χ2(0, x−) =
1√
2L

∞∑
n= 1

2

[
b(p+

n )e
− i

2p
+
nx

−− i
2

m2

p
+
n
x+

+ d†(p+
n )e

i
2p

+
nx

−+ i
2

m2

p
+
n
x+]

(7.19)

and the corresponding constraint components are

Ψ1(0, x−) =
M√
2L

∑
n

1
p+
n

[
a(p+

n )e−ip.x − c†(p+
n )eip.x

]
,

χ1(0, x−) =
m√
2L

∑
n

1
p+
n

[
b(p+

n )e−ip.x − d†(p+
n )eip.x

]
. (7.20)

where ip.x stands for i
2p

+
nx

− + i
2
µ2

p+n
x+ with µ = M or µ = m. The non-vanishing anticom-

mutators of the Fock operators are{
am, a

†
n

}
=
{
cm, c

†
n

}
=
{
bm, b

†
n

}
=
{
dm, d

†
n

}
= δmn, (7.21)
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where we have introduced the simplified notation bn ≡ b(p+
n ), etc.

It is straightforward to find the currents j+, j− in Fock representation:

j+(x) =
1
L

∑
m,n

[
b†mbne

i(p−q).x + b†md
†
ne
i(p+q).x + dmbne

−i(p+q).x

− d†ndme
−i(p−q).x

]
, (7.22)

j−(x) = − 1
L

∑
m,n

m2

p+
mp

+
n

[
b†mbne

i(p−q).x − b†md
†
ne
i(p+q).x − dmbne

−i(p+q).x

− d†ndme
−i(p−q).x

]
. (7.23)

The currents J+, J− have the same form with an, a†n, cn, c
†
n instead of bn, b†n, dn, d

†
n. Now it is

simple to check that the correct form of the ”potentials”, satisfying (7.17) is

σ(x) = − i
√
π

L

∑
m,n

[
b†mbn

ei(p−q).x

p+
m − q+n

+ b†md
†
n

ei(p+q).x

p+
m + p+

n
− dmbn

e−i(p+q).x

p+
m + q+n

+d†mdm
e−i(p−q).x

p+
m − q+n

]
, (7.24)

Σ(x) = − i
√
π

L

∑
m,n

[
a†man

ei(p−q).x

p+
m − q+n

+ a†mc
†
n

ei(p+q).x

p+
m + p+

n
− cman

e−i(p+q).x

p+
m + q+n

+c†mcm
e−i(p−q).x

p+
m − q+n

]
. (7.25)

The appearance of
√
π in the above definitions will be explained in a moment. In the sums in

Eqs.(7.24), (7.25), the m = n terms should be omitted for the b†b and d†d terms because these
correspond to the zero-mode part of e.g. the j+ current, j+0 = Q/L,Q =

∑
n

(
b†nbn−d†ndn

)
. Its

inclusion would violate periodicity of σ(x−). The same remark applies for the Σ(x−) potential.
The Fock representation of σ(x),Σ(x) is obtained by an ”educated guess” from their definitions
because the momentum dependence of the currents is very simple (this is not the case for the
conventional space-like treatment of the model [41]). The same result follows from the formal
inversions (7.12) after inserting the expansions (7.23).

Some calculations get simplified if one uses instead of the currents (7.23) their bosonized
form obtained after taking the Fourier transform of the expressions (7.23). Writing

j+(x) = j+0 +
1
L

∑
n=1

[
Ane

−ip.x +A†ne
ip.x
]

J+(x) = J+
0 +

1
L

∑
n=1

[
Cne

−ip.x + C†ne
ip.x
]

(7.26)

and taking the inverse Fourier transformation

An =

+L∫
−L

dx−

2
j+(x)e

i
2 q

+
n x

−
, Cn =

+L∫
−L

dx−

2
J+(x)e

i
2 q

+
n x

−
(7.27)
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we find

Al =
∞∑
k= 1

2

(
b†kbl+k + d†kdl+k + dl−kbk

)
,

A†l =
∞∑
k= 1

2

(
b†l+kbk + d†l+kdk + b†kd

†
l−k

)
. (7.28)

and an analogous expressions for Cn, C†n in terms of a, c operators. Note that the summation in
the last terms runs only up to l−1/2 because the index of the Fock operator corresponding to the
LF momentum can only be positive. Also, being fermion bilinears, the ”fusion” operatorsAl, A

†
l

are labeled by integers, although the fermionic index in the sums (7.28) runs over half-integers.
The time dependence of the current (7.26) is found to be very simple, exp

(
± i

2
m2

p+n

)
, as a result

of cancellations in the exponents of (7.27) caused by the momentum Kronecker symbols.
A straightforward but lengthy calculation based on a multiple use of the basic Fock anticom-

mutation relation reveals the commutation relation[
Ak, A

†
l

]
=
[
Ck, C

†
l

]
= kδkl (7.29)

obeyed by these composite Fock operators which also satisfy Al|0〉 = 0, Cl|0〉 = 0, as follows
from their representation (7.28). This means that the original fermionic Fock vacuum is also the
vacuum of the composite bosonic operators.

Inserting now the expressions (7.26) into the definitions (7.12), we also have

σ(x) =
i

L

√
π
∑
n=1

1
p+
n

[
Ane

− i
2p

+
nx

−− i
2

m2

p
+
n
x+

−A†ne
i
2p

+
nx

−+ i
2

m2

p
+
n
x+]

,

Σ(x) =
i

L

√
π
∑
n=1

1
p+
n

[
Cne

− i
2p

+
nx

−− i
2

m2

p
+
n
x+

− C†ne
i
2p

+
nx

−+ i
2

m2

p
+
n
x+]

. (7.30)

The commutators for the composite scalar field σ(x) at x+ = 0 is then equal to

[
σ(x−), σ(y−)

]
=
π

4

+L∫
−L

du−

2

+L∫
−L

dv−

2
εN (x− − u−)εN (y− − v−)

[
j+(u−), j+(v−)

]
,

and analogously for Σ(x). If one calculates the current-current comutator naively in the x-
representation, one obtains zero. This result is however wrong because the latter commutator is
actually equal to the so-called Schwinger term proportional to a derivative of the delta function:[

j+(x−), j+(y−)
]

=
i

π
∂x−δN (x− − y−). (7.31)

The corresponding momentum-space calculation is lengthy but straightforward. Then we get[
Σ(x−),Σ(y−)

]
=
[
σ(x−), σ(y−)

]
= − i

8
εN (x− − y−). (7.32)
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These relations show that the composite fields have been rescaled above by a factor
√
π in order

to satisfy the canonical commutation relation of a scalar field, Eq.(3.12).
Actually, it is quite easy to calculate the full Pauli-Jordan function of the σ(x),Σ(x) fields

by means of their bosonized form (7.30) because we know their time dependence. One has[
σ(x), σ(y)

]
=

π

L2

∑
m,n

1√
p+
mp

+
n

{[
A†m, An

]
eip.xe−iq.y −

[
Am, A

†
n

]
e−ip.xeiq.y

}
=

=
1

2L

∑
n

1
p+
n

[
e
− i

2p
+
n (x−−y−)− i

2
m2

p
+
n

(x+−y+)
− e

i
2p

+
n (x−−y−)+ i

2
m2

p
+
n

(x+−y+)
]
.

(7.33)

The same result holds also for Σ(x).
One should give a precise mathematical meaning to the operators exp

(
− ig√

π
Σ(x)

)
and

exp
(
− ig√

π
σ(x)

)
in quantum theory. These operators are singular due to the infinity of field

modes without a proper renormalization. Here we will follow the approach of Coleman [43] in
which one subtracts the two-point correlation function at the origin.

The exponential operators are then well-defined and one can calculate the equal-time com-
mutators of the interacting Fermi fields as well as the same commutators for arbitrary unequal
times and various n-point correlation functions.

The LF Hamiltonian of the Federbush model has a surprisingly simple structure. Perform-
ing the Legendre transformation as in the case of the free massive fermions and inserting the
fermionic constraint (7.5), we find

P− = m

+L∫
−L

dx−

2
[
χ†2χ1 + χ†1χ2

]
+M

+L∫
−L

dx−

2
[
Ψ†

1Ψ2 + Ψ†
2Ψ1

]
. (7.34)

But since the exponential factors cancel in the product of interacting fields χ(x) and Ψ(x), the
Hamiltonian is the free one,

P− = m

+L∫
−L

dx−

2
[
ϕ†2ϕ1 + ϕ†1ϕ2

]
+M

+L∫
−L

dx−

2
[
ψ†1ψ2 + ψ†2ψ1

]
. (7.35)

In Fock representation, it has the form presented in Eq.(3.43). Despite the fact that the LF
Hamiltonian of the LF Federbush model coincides with the free Hamiltonian, it generates the
correct dynamical equations of motion (7.5) (the Heisenberg equations) when commuted with
the interacting fields χ2(x) and Ψ2(x).

It is instructive to compare the Hamiltonians of the Federbush model in the LF and SL for-
malisms.

The interacting part of the Fock Hamiltonian in the usual space-like theory is obtained by in-
serting the fermion field expansions (2.44) into the definitions of the currents in the Hamiltonian

Hint = g

+L∫
−L

dx
(
j0(x)J1(x)− j1(x)J0(x)

)
. (7.36)
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The computation is straightforward and the main steps involve the space integration which yields
a Kronecker symbol reducing number of momenta to three, and the use of spinor identities for
different momenta. They are listed in the Appendix B.

The resultant interacting Hamiltonian has a rather complicated four-fermion form

Hint = − 1
2L
g
∑
p,q,r

{
a†(p)a(q)b†(r)b(p+ r − q)

[
f1(p, q)f3(r, p+ r − q)− f1(r, p+ r − q)f3(p, q)

]
+a†(p)a(q)b†(r)d†(q − p− r)

[
f1(p, q)f4(q − p− r)− f2(r, q − p− r)f3(p, q)

]
−a†(p)a(q)d(r)b(p− q − r)

[
f1(p, q)f4(r, p− q − r)− f3(p, q)f2(r, p− q − r)

]
+a†(p)a(q)d†(q + r − p)d(r)

[
f1(p, q)f3(r, q − p+ r) + f3(p, q)f1(r, q + r − p)

]
+a†(p)c†(q)b†(r)b(p+ q + r)

[
f2(p, q)f3(r, p+ q + r)− f4(p, q)f1(r, p+ q + r)

]
−a†(p)c†(q)d(r)b(p+ q − r)

[
f2(p, q)f4(r, p+ q − r) + f4(p, q)f2(r, p+ q − r)

]
+a†(p)c†(q)d†(r − p− q)d(r)

[
f2(p, q)f3(r, r − p− q) + f4(p, q)f1(r, r − p− q)

]
+c(p)a(q)b†(r)b(r − p− q)

[
f2(p, q)f3(r, r − p− q) + f4(p, q)f1(r, r − p− q)

]
+c(p)a(q)b†(r)d†(p+ q − r)

[
f2(p, q)f4(r, p+ q − r) + f4(p, q)f2(r, p+ q − r)

]
+c(p)a(q)d†(p+ q + r)d(r)

[
f2(p, q)f3(r, p+ q + r)− f4(p, q)f1(r, p+ q + r)

]
−c†(q)c(p)b†(r)b(q + r − p)

[
f1(p, q)f3(r, q + r − p) + f3(p, q)f1(r, q + r − p)

]
−c†(q)c(p)b†(r)d†(p− q − r)

[
f1(p, q)f4(r, p− q − r) + f3(p, q)f2(r, p− q − r)

]
+c†(q)c(p)d(r)b(q − p− r)

[
f1(p, q)f4(r, q − p− r)− f3(p, q)f2(r, q − p− r)

]
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−c†(q)c(p)d†(p+ r − q)d(r)
[
f1(p, q)f3(r, p+ r − q)− f3(p, q)f1(r, p+ r − q)

+a†(p)c†(q)b†(r)d†(−P )
[
f2(p, q)f4(r,−P )− f4(p, q)f2(r,−P )

]
−c(p)a(q)d(r)b(−P )

[
f2(p, q)f4(r,−P )− f4(p, q)f2(r,−P )

]}
, (7.37)

where P = p+ r + q. We have also used the notation

f1(p, q) =

√
Ep +M

2Ep

√
Eq +M

2Eq

(
1 +

pq

(Ep +M)(Eq +M)

)
,

f2(p, q) =

√
Ep +M

2Ep

√
Eq +M

2Eq

(
p

Ep +M
+

q

(Eq +M)

)
,

f3(p, q) = −

√
Ep +m

2Ep

√
Eq +m

2Eq

(
1− pq

(Ep +m)(Eq +m)

)
,

f4(p, q) =

√
Ep +m

2Ep

√
Eq +m

2Eq

(
p

Ep +m
− q

(Eq +m)

)
. (7.38)

In comparison with this a bit cumbersome Hamiltonian, the simplicity of the LF Hamiltonian
is quite remarkable. The main reason for the striking difference between the two representations
is the simplified LF description of the ”spinor” structure of two-dimensional massive fermions.

Additional aspects of the LF Federbush model, its regularization by using the so-called triple-
dot ordering, calculation of the various correlation functions and comparison with the space-like
treatment [42] requires further studies.

8 LF picture of spontaneous symmetry breaking

Spontaneous symmetry breaking (SSB) is a fundamental non-perturbative phenomenon of quan-
tum field theory. It occurs when the Hamiltonian of a theory is symmetric under a group of
transformations while the ground state is non-invariant. This implies that the vacuum is not
unique since its non-invariance means that it is transformed to another vacuum state. Hence
there must be a family of ground states which all correspond to the same energy, i.e. they are
degenerate. The degeneracy follows from a simple consideration. Let U = exp

(
iαQ

)
is the

unitary operator that implements the symmetry, U(α)HU−1(α) = H , where Q is the generator
- i.e. the charge equal to the volume integral of the symmetry current. If |0〉 is a vacuum state,
corresponding to the energy E0, then

U(α)H|0〉 = E0U(α)|0〉 = U(α)HU−1(α)U(α)|0〉 = HU(α)|0〉. (8.1)

We can see that the new vacuum state, |α〉 ≡ U(α)|0〉, is the eigenstate of the Hamiltonian H
with the same eigenvalueE0. It can be shown that there exists also a field operator (elementary or
composite) with non-zero expectation value in our vacuum state. For continuous symmetries, if
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there exists a corresponding conserved current and the property of locality is satisfied, it follows
that the spectrum of such a theory contains a massless state, the Nambu-Goldstone boson [44,45,
46], if the space dimension is greater than one [47]. This is the content of the Goldstone theorem.

This overall picture of the broken phase is well understood in the conventional field theory.
On the other hand, SSB still remains a bit mysterious in the light-front field theory. The main
reason for difficulties with obtaining a clear picture of SSB in the LF theory is the simplicity of
the LF vacuum discussed previously. In the following, we will develop a simple LF picture of
the symmetry breaking. It is based on a concept which is close to the scheme known from the
conventional field theory. Let us first illustrate the idea of the SSB in the simplest setting of the
λφ4 theory in two dimensions. Since the field φ(x) is real, there is only a discrete symmetry
φ(x) → −φ(x) following from the fact that only even powers of the field or its derivative are
present in the Lagrangian:

L =
1
2
∂µφ∂

µφ− λ

4
(
φ− v

)4
. (8.2)

For positive value of the parameter v, the quadratic term has negative sign and the classical
potential has a form of double well with minima at φ = ±v. In quantum description, we have
〈Ω±|φ(x)|Ω±〉 = ±v, 〈0|φ(x)|0〉 = 0. Here, |Ω±〉 denotes the two ”non-trivial” vacua which
correspond to the minimum of the potential in (8.2) and |0〉 is the ”false” vacuum corresponding
to the local maximum of the potential. To have the usual physical situation, we should build the
theory on the state corresponding to the true minimum of the energy, i.e. we should shift the field
φ(x) to ϕ(x) = φ(x)−v so that 〈Ω+|ϕ(x)|Ω+〉 = 0. This is accomplished by a unitary operator
U(v):

〈0|φ(x)|0〉 = 0 = 〈0|U−1(v)ϕ(x)U(v)|0〉 = 〈Ω+|ϕ(x)|Ω+〉. (8.3)

The ”physical” vacuum |Ω+〉 is obviously a shifted state

|Ω+〉 = U(v)|0〉, U(v) = exp
(
− iv

∫
dxΠ(x)

)
, (8.4)

where Π(x) is the conjugate momentum,
[
φ(t, x),Π(0, y)

]
t=0

= iδ(x−y). The operator identity
eABe−A = B + [A,B], valid if the commutator [A,B] is a c-number, is useful in showing that
U(v) shifts the field φ(x) by the constant value v. It is possible to derive a Fock representation
of the vacua |Ω〉 if one considers the system in a box with periodic boundary conditions. With
the Fock expansion (2.3), we find

U(v) = exp
[
− iv

√
mLi[a+

0 − a0]
]
,

|Ω+〉 = exp
[
− mL

2
v2
]
exp

[√
mLva+

0

]
|0〉, (8.5)

because the x-integration leads to δ(p) which separates just the zero mode from the infinite
number of Fourier modes in the field expansion. Thus, in this semiclassical description, the
physical vacuum is a coherent state of the scalar-field zero mode which is a dynamical degree of
freedom. The whole derivation could have been based alternatively on the second vacuum |Ω−〉
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with the identical result. Both vacua are connected by the ”parity” transformation a†0 → −a†0
which follows from φ(x) → −φ(x). Finally, it is simple to establish the orthogonality of the two
vacua in the continuum limit L→∞:

〈Ω+|Ω−〉 = e−mLv
2
〈0|e

√
mLa0e

√
mLa+

0 |0〉 = e−2mLv2 (8.6)

in agreement with the discussion concerning the inequivalent representations of the Fock com-
mutation relations, see Eqs.(2.40) and (2.41). Note also that the state |0〉 which was transformed
to the ”physical” vacua |Ω±〉 is not an eigenstates of the full interacting Hamiltonian

H =

+∞∫
−∞

dx−

2

[(
∂0φ
)2 +

(
∂1φ
)2 +

λ

4
(
φ− v

)2]
, (8.7)

because the last term contains besides the quadratic and the constant term also the quartic self-
interaction. The latter will generate operator structure a†(p1)a†(p2)a†(p3)a†(p4) which will not
annihilate the Fock vacuum |0〉. Hence the true vacuum even before its transformation to |Ω±〉
is unknown and working with |0〉 which is the eigenstate of H0, is just an approximation.

It is generally believed that this type of description of spontaneous symmetry breaking is
impossible in the LF theory because the Fock vacuum, i.e. the state without particles, is the
”final” physical vacuum, since it is an eigenstate of the complete Hamiltonian, not only its free
part. Hence there is just one unique vacuum, and no degenerate set, necessary for the standard
picture of SSB, can be constructed. The detailed reason is that charges, i.e. the symmetry
generators in a scalar theory always annihilate the LF Fock vacuum because due to positivity
of the momentum p+ they cannot contain terms composed of purely creation operators [48, 49]
if there are no dynamical zero modes, i.e. independent degrees of freedom corresponding to
p+ = 0, in the theory. Put in the simplest way, these terms are absent because they are multiplied
by a delta function expressing the momentum conservation whose argument can never vanish for
positive momenta. Without such terms it is not possible to transform the LF Fock vacuum into a
more complex object and one cannot construct multiple vacua.

The prevailing opinion in the LF literature is that the the vacuum physics is encoded in the
zero-mode constraint [50, 51, 38]. For example, starting from the symmetric phase of the two-
dimensional λφ4 with periodic boundary condition, an approximative non-perturbative solution
of the operator zero mode constraint

φ0 = − λ

6µ2

+L∫
−L

dx−

2L
(φ0 + ϕ)2 (8.8)

showed two branches above certain critical coupling replacing the picture with two vacua. In-
serting these two solutions into the LF Hamiltonian one found two Hamiltonians corresponding
to these doubly-degenerate vacuum states.

In four dimensions, it is usually assumed that the scalar zero mode contains a constant piece.
As a consequence, symmetry breaking is found to manifest itself in a rather unusual way by a
non-conservation of the current even in the symmetry limit while the physical vacuum is identi-
fied with the Fock vacuum [52, 53].
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As already indicated, here we will develop a different scenario for the description of the
broken phase. The “trivial” LF vacuum, being a simple but rigorously defined non-perturbative
state, will be viewed as an intermediate object, not the ultimate physical vacuum. This is pos-
sible due to a simple observation that for scalar theories with polynomial self-interaction and
negative quadratic term the LF Fock vacuum is not the state of minimum LF energy [54]. The
energy is minimized by a specific coherent state and this state is not annihilated by the symme-
try generators. Hence, the unitary operators implementing the discrete or continuous symmetry
will generate, when applied to this state, a discrete or continuous set of new (semiclassical) vac-
uum states. One might expect that a unitary operator could be constructed which would shift the
scalar field φ(x) to the true minimum of the LF energy in the way we discussed for the space-like
theory. Unfortunately, for φ(x+, x−) periodic in the space coordinate x−, such a construction
is very difficult. This is due to the complicated non-linear operator zero-mode constraint. On
the other hand, choosing antiperiodic boundary conditions in x− [55] (which is a consistent
choice for polynomial interactions with even powers of fields) allows one to define shift opera-
tors which transform the Fock vacuum to new states that correspond to lower LF energy. They
are coherent states of large but finite number of Fourier modes. We will illustrate this mecha-
nism for two models [56]. The first one is the two-dimensional λφ4 theory in broken phase (8.2)
possessing classically two degenerate ground states. The second model is a three-dimensional
O(2)-symmetric linear sigma model. It has a continuum of degenerate vacuum states and one can
expect the Goldstone phenomenon to take place. Both models are superrenormalizable. Renor-
malization can be performed by normal ordering the Hamiltonian or equivalently by adding a
mass counterterm (an operator with two fields contracted to a point, called a ”tadpole”) in the
first case and a tadpole together with the second-order self-energy counterterm in the second
case [57, 58].

A separate problem related to the symmtery breaking is a transition from the symmetric phase
of the theory to the broken phase. To calculate characteristic of this phase transition like the value
of the critical coupling and critical indices, is a challenge for the DLCQ method because these
properties are associated with the behaviour of systems at large distances. The first encouraging
results in have [59]. These quantities have been computed in the continuum LF theory from the
zero-mode dynamics [19].

Let us look closer at two two-dimensional λφ4 theory in the broken phase. We will use a
version of the Lagrangian density

L =
1
2
∂µφ∂

µφ+
1
2
µ2φ2 − λ

4
φ4, µ2 > 0, (8.9)

differing from (8.2) by a term λv2/4! which only shifts energy levels by an irrelevant constant.
Lagrangian (8.9) is invariant under the discrete transformation of the real scalar field φ(x) →
−φ(x). Classically, the potential energy in (8.9) has two minima at φc = ±µ/

√
λ. As was

already shown, in the tree-level analysis, one usually shifts the field by ±φc and obtains two
Lagrangians which reveal the particle spectrum of the theory in terms of “small” oscillations
above φc. The original symmetry becomes hidden in the sense that the two Lagrangians are
individually not symmetric under φ(x) → −φ(x) but the symmetry operation transforms one to
the other. We have also seen that due to the existence of more than one minimum of the potential,
the model exhibits in addition to symmetry breaking also nontrivial topological properties [60].
There exist solutions of the classical equations of motion with finite energy which interpolate
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between the minima. They carry a conserved topological charge, proportional to the difference
of the field values at the boundaries, and corresponding to the conserved topological current
kρ =

√
λ
µ ε

ρν∂νφ.
The Lagrangian (8.9) is expressed in terms of the LF variables as

Llf = 2∂+φ∂−φ+
1
2
µ2φ2 − λ

4
φ4, (8.10)

where ∂± = ∂/∂±. We restrict the spatial coordinate by −L ≤ x− ≤ L. In order to obtain
a clear physical picture of SSB we wish to avoid the difficult zero-mode problem present in the
case of periodic BC. The point is that it is not clear how one could solve the corresponding ZM
operator constraint in a non-perturbative manner (for approximative solution in the continuum
theory, see [19]). We impose therefore the antiperiodic boundary condition φ(L) = −φ(−L)
which results in discrete Fourier modes

p+
n =

2π
L
n, n = 1/2, 3/2, . . .∞. (8.11)

The antiperiodic BC also implies that in the quantum theory we can define the operator of the
topological charge Q =

√
λ
µ [φ(L)− φ(−L)] = 2

√
λ
µ φ(L).

The standard canonical treatment yields the energy-momentum tensor components T+− and
T++ which define the LF Hamiltonian P−

P− =
1
2

+L∫
−L

dx−

2
T+−(x−) =

1
2

+L∫
−L

dx−

2
:
[
− µ2φ2 +

λ

2
φ4
]

: . (8.12)

as well as the LF momentum operator

P+ =
1
2

+L∫
−L

dx−

2
T++(x−) =

1
2

L∫
−L

dx−4 :
[
∂−φ∂−φ

]
: . (8.13)

The field expansion at x+ = 0 in terms of the Fourier modes reads

φ(0, x−) =
1√
2L

∞∑
n=1/2

1√
p+
n

[
ane

− i
2p

+
nx

−
+ a†ne

i
2p

+
nx

−]
. (8.14)

The annihilation and creation operators are required to satisfy the quantization condition

[am, a†n] = δmn. (8.15)

As a consequence, one recovers the familiar commutator at equal LF times,[
φ(0, x−), φ(0, y−)

]
= − i

8
εa(x− − y−), (8.16)

where εa(x−) is the antiperiodic sign function

εa(x−) =
4i
L

∞∑
n=1/2

1
p+
n

[
e−

i
2p

+
nx

−
− e

i
2p

+
nx

−]
, (8.17)
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defined in terms of the discrete momenta (8.11). Recall that the conjugate momentum Πφ is
not equal to the time derivative of the scalar field in the LF theory. It is a dependent variable,
determined by φ(x) itself, Πφ = 2∂−φ [7]. Hence, the alternative form of the basic commutation
relation, following from Eq.(8.16), is[

φ(0, x−),Πφ(0, y−)
]

=
i

2
δa(x− − y−), (8.18)

where δa(x−) is the antiperiodic delta function, δa(x−) = 1/2∂−εa(x−). The same quantiza-
tion rules can be obtained more rigorously by the Dirac-Bergmann method [61] for constrained
systems (see the Appendix).

Consider now a unitary operator

U(b) = exp
[
− 2ib

+L∫
−L

dx−

2
Πφ(x−)

]
. (8.19)

For antiperiodic boundary conditions, it reduces to

U(b) = e−8ibφ(L) (8.20)

and translates the field φ(x−) by a constant b as can be again shown by means of the operator
relation exp(A)B exp(−A) = B + [A,B] + . . . :

U(b)φ(x−)U−1(b) = φ(x−)− 8ib
[
φ(L), φ(x−)

]
= φ(x−)− bεa(L− x−). (8.21)

Thus, the antiperiodic scalar field can be shifted by a constant without violating its antiperiodic-
ity. The reason for that is the simple property of the sign function εa(L − x−): it is equal to 1
for all x− in the box except for the endpoints where it drops to zero. This is of course a direct
consequence of the basic property εa(0) = εa(2L) = 0. It is much more difficult to perform a
similar shift of the field in the case of periodic boundary condition because of the presence of the
a priori unknown operator zero mode. As demonstrated in Eq.(8.5), the volume integration in
the shift operator analogous to Eq.(8.19) projects out only its zero-mode component in the usual
theory.

We should note however that the above considerations were a bit formal and the actual situa-
tion is slightly more complicated. The point is that the operator U(b) (8.20) exists (is non-zero)
only if we impose a cutoff on the number of modes (see Eq.(8.26) and the discussion after
Eq.(8.32)). Consequently, the sign function in (8.21) is replaced by a truncated series εΛ(x−)
defined by Eq.(8.17) with n ≤ Λ.

We may use U(b) to generate a family of shifted vacuum states |b〉 = U(b)|0〉, where |0〉 is
the Fock vacuum, an|0〉 = 0. Can one of these states be a better candidate for the true physical
vacuum? To determine this, let us minimize the expectation value of the LF Hamiltonian,

〈b|P−|b〉 = 〈0|U−1(b)P−U(b)|0〉 = 〈0|1
2

+L∫
−L

dx−

2
T+−
b (x−)|0〉 (8.22)
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where

T+−
b (x−) =:

[
− µ2

(
φ+ bεΛ(L− x−)

)2 +
λ

2
(
φ+ bεΛ(L− x−)

)4] : (8.23)

As illustrated in the figures of the Appendix, for sufficiently large value of Λ the powers of
εΛ(L − x−) in (8.23) differ only negligibly from 1 at the interval −L ≤ x− ≤ L and we will
therefore suppress them henceforth in the formulae where they appear. Thus, we find 〈b|P−|b〉 =
Lb2(λ2 b

2 − µ2) which has a non-trivial minimum for b2 = µ2

λ ≡ v2. The LF energy density is
lower in the new vacuum |v〉:

〈v|P
−

2L
|v〉 = −µ

4

4λ
< 〈0|P

−

2L
|0〉 = 0. (8.24)

The vacuum expectation value (VEV) of the scalar field in this state coincides with the position
of the minimum of the classical potential:

〈v|φ(x−)|v〉 = 〈0|U−1(v)φ(x−)U(v)|0〉 =
µ√
λ
εΛ(x− − L) =

µ√
λ
. (8.25)

The last equality holds in the approximative sense described above. Due to the finite number of
Fourier modes, the function εΛ(L−x−) does not have an exactly rectangular shape but is smooth
in the neighborhood of the points x− = ±L (see the Figure).

Inserting the field expansion (8.14) into the definition of U(v), we get a coherent state repre-
senting the physical vacuum of the model in the semi-quantum approximation:

|v〉 = exp
{
v

Λ∑
n=1/2

c̃n
(
a†n − an

)}
|0〉 = N exp

{
v

Λ∑
n=1/2

c̃na
†
n

}
|0〉, (8.26)

where

c̃n = 4(−1)n−1/2/
√
πn, N = exp

{
− v2

2

Λ∑
n=1/2

c̃2n
}
≈ exp

{
− 8v2

π
lnΛ

}
. (8.27)

Notice that the coherent states (8.26) are L-independent and also correctly normalized, 〈v|v〉 =
1. Further, the scalar product 〈−v|v〉 = N 4 = Λ−32v2/π and thus the overlap between the two
vacua vanishes in the limit Λ → ∞. This means that, in contrast to the space-like theory, the
two vacua are orthogonal even in the finite volume as long as the number of degrees of freedom
is infinite. The corresponding multiparticle spaces are also orthogonal. They can be generated
by applying creation operators a†n on |v〉. Alternatively, one can transform just the original Fock
states, built on |0〉, by means of U(v) [62]. The Hamiltonian matrix elements will be (up to
normalization) of the form

〈0|am1am2 ...amiU
−1(v)P−U(v)a†nj

...a†n2
a†n1

|0〉. (8.28)

In both cases the physically relevant Hamiltonian is the transformed (“effective”) one, equal to
P−(v) = U−1(v)P−U(v) which for Λ →∞ approaches the form

P−(v) =
1
2

+L∫
−L

dx−

2
:
[
2µ2φ2 +

λ

2
φ4 + 2λvφ3 − µ4

2λ
]

: . (8.29)
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It has a correct sign of the term quadratic in φ and thus describes a massive scalar field with mass
equal to

√
2µ. However, it has lost the symmetry of the original Hamiltonian under φ(x) →

−φ(x) – this symmetry has been broken by choosing |v〉 as the vacuum state. Actually, the
theory originally had also the second ground state. This can be demonstrated by considering a
unitary operator that implements the original discrete symmetry,

V (π) = exp
[
− iπ

Λ∑
n=1/2

a†nan
]
. (8.30)

It acts correctly on the creation and annihilation operators,

V (π)anV −(π) = −an, V (π)a†nV
−(π) = −a†n (8.31)

and hence leaves P− invariant, V (π)P−V −(π) = P−. The operator V (π) generates the second
vacuum:

V (π)|v〉 = | − v〉. (8.32)

Indeed, using the operator identity exp(A) exp(B) = exp(eρB) exp(A), valid if [A,B] = ρB
(ρ = real parameter), we get V (π)U(v) = U(−v)V (π). We also easily find 〈−v|φ(x−)| −
v〉 = −v. The corresponding “effective” Hamiltonian P−(−v) in the space sector built on | − v〉
coincides with the expression (8.29) up to the opposite sign of the cubic term. Although both
Hamiltonians are individually not invariant, they are connected by the parity transformation:
P−(−v) = V (π)P−(v)V

−1(π) and vice versa. Of course, we can choose any of the two vacua and
the corresponding “effective” Hamiltonian to describe the physical system.

An alternative way of obtaining the coherent state vacuum (8.26) is to minimize the expecta-
tion value of the Hamiltonian in the coherent states |α〉, |α〉 ∼ exp

(∑
αna

†
n

)
|0〉, imposing the

condition that the expectation value of the iantiperiodic field is constant. If one requires instead
of a constant value for 〈α|φ(x−)|α〉 the value −v for −L ≤ x− ≤ 0 and v for 0 ≤ x− ≤ L, i.e.
a step-like shape, one obtains a configuration that also minimizes the LF energy and qualitatively
approximates a kink [63]:

|α〉 = exp
[
v

Λ∑
n=1/2

αn
(
a†n − an

)]
|0〉, αn =

4i√
π

1√
n
. (8.33)

In x-representation, the state |α〉 can be expressed in terms of the unitary operator W (v) as

|α〉 = W (v)|0〉, W (v) = ei8vφ(0) (8.34)

and one easily obtains

〈α|φ(x−)|α〉 = 〈0|W−1(v)φ(x−)W (v)|0〉 = vεΛ(x−), (8.35)

which indeed has a qualitative shape of a kink. Note also that the kink state |α〉 is for Λ → ∞
orthogonal to the vacuum state, 〈v|α〉 ∼ exp

(
− lnΛ

)
. These states belong to the sectors with

different topological charges:

〈α|Q|α〉 = v−1〈0|W−1(v)φ(L)W (v)|0〉 = 8i[φ(L), φ(0)] = εΛ(L) = 1.
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〈v|Q|v〉 = v−1〈0|U−1(v)φ(L)U(v)|0〉 = v−1〈0|φ(L)|0〉 = 0. (8.36)

Quantitative predictions of the properties of kink and antikink in quantum theory as obtained by
LF Hamiltonian matrix diagonalizations using the DLCQ method [63, 64] will be presented in
the second half of this chapter.

Finally, let us discuss the LF momentum of the coherent-state vacuum U(v)|0〉 and of the
transformed Fock states U(v)a†m1

a†m2
...|0〉. The VEV of normal-unordered P+ would be

〈v|P+|v〉 =
π

L

Λ∑
n=1/2

(
n+

32
π
v2
)
. (8.37)

The first term is removed by normal ordering. The second term, equal to 16v2δΛ(0) is a con-
sequence of the fact that ∂−εΛ(x− − L) = 2δΛ(x− − L) which for Λ → ∞ is singular just at
the endpoints x− = ±L. This term is generated in the vacuum expectation value of P+ (8.13)
due to the shift (8.21). For finite Λ this constant C is a finite number. It is also present in the
expectation values of the LF momentum of particle states:

〈0|alU−1(v)P+U(v)a†l |0〉 = p+
l + C, (8.38)

and similarly for many-particle states. Thus the LF momentum of the transformed states is
shifted by the same constant value which is physically irrelevant since it cancels in the differences
between any two levels. We shall therefore subtract this unphysical constant. Let us remark that
the necessity to perform the (trivial) renormalization of the P+ operator may seem a little unusual
but actually it is natural and physically transparent: the shift of the scalar field due to U(v) is
equal to a constant in the whole box except for the endpoints. Hence the derivative of the shifted
field is equal to the derivative of the unshifted field at the interval −L < x− < L and as a
consequence the eigenvalue of the momentum operator will remain unchanged if we subtract
contributions of the points x− = ±L.

Previous attempts to understand SSB in the LF theory were made either without imposing
boundary conditions explicitly or by employing periodic ones [52], typically starting from the
symmetric phase of the theory. Can one give a formulation of the broken phase using PBC? The
problem is complicated because one has to solve the operator constraint for the dependent zero
mode φ0. At present, this appears possible only for small coupling, where one can use pertur-
bation theory. Perturbative solution is however quite interesting because it corresponds to the
semiclassical regime of the broken phase (small coupling implies a large value of the condensate
v) and one can compare the results with the results of the previous section. The physical picture
obtained by imposing antiperiodic boundary condition should be quite accurate far from the crit-
ical region, i.e. also for small value of the coupling constant. As already discussed, a derivation
of a semiclassical vacuum state similar to the case of antiperiodic boundary conditions seems not
to be possible for PBC. One may therefore expect that the physical vacuum state will coincide
with the Fock vacuum and SSB will manifest itself by the presence of two Hamiltonians [50].

The field equation for the scalar field following from the Lagrangian (8.10) is

4∂+∂−φ = µ2φ+ λφ3. (8.39)

The scalar field can be decomposed as φ(x) = φ0(x+) + ϕ(x+, x−), with φ0 being the x−-
independent part carrying p+ = 0. Projection of the field equation (8.39) on the zero-mode
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sector

µ2φ0 = −λ
+L∫
−L

dx−

2
(
φ0 + ϕ

)3
(8.40)

shows that φ0 is a dependent variable which has to be expressed in terms of all other (normal)
modes [13]. The perturbative solution of the classical zero mode constraint to order λ was given
by Robertson [65]. It has two physical branches:

φ
(1)
0 =

µ√
λ
− 3

2

√
λ

µ

+L∫
−L

dx−

2L
ϕ2 − 1

2
λ

µ2

+L∫
−L

dx−

2L
ϕ3

φ
(2)
0 = − µ√

λ
+

3
2

√
λ

µ

+L∫
−L

dx−

2L
ϕ2 − 1

2
λ

µ2

+L∫
−L

dx−

2L
ϕ3. (8.41)

To the given order it can be taken over to the quantum theory since there is no ordering ambiguity.
Note that the solutions contain a constant piece and their structure differs completely from the
perturbative solution in the symmetric phase because of the opposite sign of the µ2-term in the
field equation. Under ϕ→ −ϕ, we have φ(1)

0 → −φ(2)
0 and vice versa. When these two solutions

are inserted into the PBC Hamiltonian, analogous to (8.12)

P− =
1
2

+L∫
−L

dx−

2
[
− µ2

(
φ0 + ϕ

)2 +
λ

2
(
φ0 + ϕ

)2]
, (8.42)

one indeed gets through O(λ) two Hamiltonians

P− =
1
2

+L∫
−L

dx−

2
[
2µ2ϕ2 +

λ

2
ϕ4 ± 2µ

√
λϕ3 − µ4

2λ
− 9

2
λφ2

+L∫
−L

dx−

2L
ϕ2
]
. (8.43)

Their structure is similar to the Hamiltonians P−v from the case of antiperiodic boundary condi-
tions. Each Hamiltonian separately violates the symmetry under ϕ→ −ϕ but the transformation
connects them. Any of them can be chosen for calculating physical properties of the system.
Their eigenstates will also be connected by the parity transformation.

As the next step, we could consider a two-dimensional theory of a self-interacting complex
scalar field. The corresponding Hamiltonian has a continuous symmetry instead of the discrete
one. Since the full treatment requires a discussion of the LF version of the Coleman theorem
which prohibits SSB in one space dimension [47], we will instead study the O(2) symmetric
sigma model in two space dimensions. It is defined by the classical Lagrangian density

L =
1
2
∂µφ

†∂µφ+
1
2
µ2φ†φ− 1

4
λ(φ†φ)2. (8.44)
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The system will be studied in a finite volume V = 4LL⊥, −L ≤ x− ≤ L, − L⊥ ≤ x⊥ ≤ L⊥.
Scalar fields are taken antiperiodic in both x− and the transverse coordinate x⊥. In terms of two
real scalar fields introduced by φ(x) = σ(x) + iπ(x), the corresponding LF Lagrangian density

Llf = 2∂+σ∂−σ + 2∂+π∂−π −
1
2
(∂⊥σ)2 − 1

2
(∂⊥π)2 +

+
µ2

2
(
σ2 + π2

)
− λ

4
(σ2 + π2)2 (8.45)

is invariant under O(2) rotations

σ(x) → σ(x) cosα− π(x) sinα,
π(x) → σ(x) sinα+ π(x) cosα. (8.46)

The associated conserved current is jµ = σ∂µπ − ∂µσπ. The field expansions at x+ = 0 are

σ(x) =
1√
V

∑
n

1√
p+
n

[
a(pn)e−ipn.x + a†(pn)eipn.x

]
, (8.47)

π(x) =
1√
V

∑
n

1√
p+
n

[
c(pn)e−ipn.x + c†(pn)eipn.x

]
. (8.48)

We use the notation x = (x−, x⊥), n ≡ (n, n⊥), pn = (p+
n , pn⊥) = ( 2π

L n,
π
L⊥
n⊥) with n, n⊥ =

1/2, 3/2, . . .∞. The conjugate momenta are Πσ = 2∂−σ,Ππ = 2∂−π. The σ field operators
satisfy the commutation relation[

σ(0, x), σ(0, y)
]

= − i
8
εa(x−− y−)δa(x⊥− y⊥). (8.49)

The commutator of the π fields has the same form. The Hamiltonian is

P− =
∫
V

d2x
[
(∂⊥σ)2 + (∂⊥π)2 + 2V (σ2 + π2)

]
,

V (σ2 + π2) = −µ
2

2
(
σ2 + π2

)
+
λ

4
(σ2 + π2)2, (8.50)

where d2x = 1
2dx

−dx⊥. In principle, both σ(x) and π(x) can be transformed by the unitary
operators Uσ(b) and Uπ(b) in analogy with Eq.(8.21). It is simpler however to start by shifting
only one field which we choose in accord with the standard treatment to be σ(x):

Uσ(b)σ(x)U†σ(b) = σ(x)− b, (8.51)

(the εa(L− x−)εa(L− x⊥) factor multiplying b is implicit here) with

Uσ(b) = exp
[
−4ib

∫
V

d2xΠσ(x)
]

= exp
[
−8ib

+L⊥∫
−L⊥

dx⊥σ(L, x⊥)
]
. (8.52)
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By minimization of 〈b; 0|P−|b; 0〉, where |b; 0〉 = Uσ(b)|0〉, we again find that the physical
vacuum |v; 0〉 = Uσ(v)|0〉 corresponds to the value b2 = µ2

λ ≡ v2 and

|v; 0〉 = exp
{
− v

∑
n

c̃(pn)
[
a†(pn)− a(pn)

]}
|0〉, (8.53)

c̃(pn) =
8
π

√
L⊥
2π

(−1)n+n⊥

√
nn⊥

. (8.54)

The rotations (8.46) are implemented by the unitary operators V (α) = eiαQ, where Q =∫
V

d2xj+(x):

σ(x) → V (α)σ(x)V †(α), π(x) → V (α)π(x)V †(α), (8.55)

V (α) = exp
[
α
∑
n

(
a†(pn)c(pn)− c†(pn)a(pn)

) ]
. (8.56)

The operators V (α) extend the “primary” vacuum |v; 0〉 to the infinite family |v;α〉 = V (α)|v〉.
Explicitly, we get

|α; v〉 = exp
{
−v
∑
n

c̃(pn)
[(
a†(pn)− a(pn)

)
cosα+

(
c†(pn)− c(pn)

)
sinα

]}
|0〉. (8.57)

In spite of the presence of the box length L⊥ in the coherent state (8.53), the orthogonality
〈v;α|v;α′〉 = δαα′ holds in the limit of infinite number of longitudinal modes n.

We can interpret the relation for vacuum and particle matrix elements of P− (cf. Eq.(8.28))
as defining an effective Hamiltonian P−v = U†σ(v)P

−Uσ(v):

P−v =
∫
V

d2x
[
(∂⊥σ)2 + (∂⊥π)2 + 2µ2σ2

+ 2
√
λµσ(σ2 + π2) +

λ

2
(σ2 + π2)2

]
. (8.58)

The form of the above Hamiltonian suggests that σ(x) corresponds to a massive field because its
mass term has a correct sign while the mass term is missing for π(x) which became a Goldstone
boson field. This tree-level result is more rigorously expressed by the Goldstone theorem.

In the usual proof of Goldstone theorem [46], one inserts a complete set of four-momentum
operator eigenstates into the VEV of the commutator [Q, π(x)] = σ(x) and then invokes trans-
lational invariance to show a singularity in the spectral function for p2 = 0 [46, 66]. This means
that there exists a massles state in the spectrum. We can proceed analogously because we have
all the necessary components for the proof. A difference with respect to the usual theory is that
here we have an explicit realization of the vacuum in the Fock representation, not just an ab-
stract state with postulated properties. The states |α; v〉 represent however only an approximative
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variational estimate of the true degenerate family of ground states. But its existence tells us that
there must exist exact eigenstates of the LF Hamiltonian with energy lower than the energy of
the Fock vacuum |0〉. This is sufficient for the usual proof of the Goldstone theorem. Some
ingredients of the proof are actually valid also for the approximative |α; v〉 states. Namely, the
above commutator is a rigorous consequence of Eqs.(8.46) and (8.55). To show that, one only
has to use the infinitesimal form of both transformation laws and compare the leading terms in
the expansion. The vacuum expectation value of the commutator is v

〈v; 0|
[
Q, π(0)

]
|v; 0〉 = 〈0|U−1

σ (v)σ(0)Uσ(v)|0〉 = v. (8.59)

If we denote the set of exact vacuum state by |Ωα〉, then we should also have

〈Ω0|
[
Q, π(0)

]
|Ω0〉 = 〈Ω0|σ(0)|Ω0〉 = fv, (8.60)

where fv is the (precisely unknown) expectation value of he σ field in the exact vacuum |Ωα〉. Let
|n〉 be the set of simultaneous eigenstates of the LF momentum and energy operators, Pµ|n〉 =
pµ|n〉, where pµ = (E−n , P

+
n , P

1
n). Inserting such a complete set into the relation (8.60) in the

form of 1̂ =
∑
n |n〉〈n|, using the definition of the charge as a volume integral of j+(x) as well

as translational invariance of the theory

j+(x) = exp (ixµPµ)j+(0) exp (−ixµPµ), exp
(
ixµP

µ
)
|Ωα〉 = |Ωα〉, (8.61)

we find
2
V

∑
n

δ2(p
n
) exp

(
− i

2
E−n x

+
)
〈Ω0|j+(0)|n〉〈n|π(0)|Ω0〉 −

− 2
V

∑
n

δ2(p
n
) exp

( i
2
E−n x

+
)
〈Ω0|π0|n〉〈n|j+(0)|Ω0〉 = fv. (8.62)

It follows from the VEV of the volume integral of the commutator [∂µjµ, π(0)] = 0 that fv has
to be x+-independent:

[(
∂+

+L∫
−L

dx−

2
j+(x) +

+L∫
−L

dx−

2
∂−j

−(x)
)
, π(0)

]
= ∂+

[
Q, π(0)

]
= 0, (8.63)

where the second term in the commutator vanishes due to the fact that the current always satisfies
periodic boundary conditions. In the SL theory, this term vanishes due to locality. In order that
the left-hand side of the equation (8.60) is also x+-independent, there must exist an eigenstate
|G〉 of Pµ which for p+ = 0, p⊥ = 0 (so that the delta function is non-zero) hasE− = 0 (so that
the x+-depence vanishes), while 〈Ω0|π(0)|G〉 6= 0, 〈Ω0|j+(0)|G〉 6= 0. Since M2 = E−p+ −
p2
⊥, this state is massless. Note that the Nambu-Goldstone state is not simply c†(k)|Ω0〉 since the

latter is not an eigenstate of P−. The correct linear combination of Fock states representing the
Goldstone boson can be (at least in principle) obtained by a Hamilton matrix diagonalization.

Thus, the approximate description of the not-trivial vacuum structure in terms of coherent
states labeled by a continuous parameter enabled us to demonstrate the Nambu-Goldsone phe-
nomenon in the light front scalar theory in a manner analogous to the usual formulation. Later in
these notes we will extend this approach to the (abelian) gauge theory in three space dimensions
and explain the spontaneous symmetry breaking of the gauge theory and the occurence of the
Higgs phenomenon (mass generation) along similar lines.



464 Light front field theory: An advanced primer

9 Quantum solitons from numerical LF Hamiltonian diagonalizations

We have already mentioned the method of Discretized Light Cone Quantization (DLCQ). It is
based on the finite-volume formulation of the given LF model accompanied by building of the
many-particle Fock space. In contrast to the usual field theory, this is a well defined step due
to the fact that the LF Fock vacuum is an eigenstate of the full LF Hamiltonian, not just its free
part. The hamiltonian matrix Hij is then calculated from the (rescaled) Hamiltonian operator
in Fock representation H = 2π

L P
− as 〈i|H|j〉. The states symbolically denoted by |j〉 are

composed from j particles with the momenta p+
1 , p

+
2 . . . p

+
j (p+

1 ≡ 2π
L k1, etc.) in such a way that

p+
1 + p+

2 + · · · = P+ where P+ is the total LF momentum of the system. For the moment, we
will again consider the two-dimensional scalar model with quartic self-interaction. Taking into
account the fact that we are dealing with bosons so that each state can be multiply occupied (the
indices ji) , the general form of the Fock state normalized to unity is

|j〉 =
a†j1l1√
j1!

a†j2l2√
j2!
...
a†jmln√
jm!

|0〉. (9.1)

The indices satisfy the constraints l1j1 + l2j2 + · · · + lnjm = K, j1 + j2 + . . . jm = j. K
is the dimensionless (rescaled) LF momentum K = L

2πP
+ which is an integer. The number

of Fock states grows rapidly with K and their generation, enumeration and storage becomes
a task for a computer. In a similar way, computation of the hamiltonian matrix elements which
involves commuting of many creation and annihilation operators, and the final step, the numerical
diagonalization of the large but sparse matrix, is efficiently performed on a computer. This is the
essence of the DLCQ approach. The entries of the diagonalized matrix are real numbers because
one has to choose definite numerical values for all masses and coupling constants present in the
Hamiltonian. The results of the diagonalization are not only a few lowest eigenvalues of the mass
operator M̂2 = P+P− but also the corresponding wave functions expressing the probability
amplitude for the given Fock state to be present in the resulting bound state with given values
of the discrete momenta of its constituents. Schematically, a generic bound state will have the
structure

|BS〉 = ψ1(p+
K)a†K |0〉+

∑
n

ψ2(p+
K−n, p

+
n )a†Ka

†
K−n|0〉+

+
∑
m,n

ψ3(p+
K−m−n, p

+
m, p

+
n )a†K−m−na

†
ma

†
n|0〉+ · · ·+ ψK(p+

1 )a†K(p+
1 )|0〉. (9.2)

The summation runs over all integers (half-integers in the case of antiperiodic boundary condi-
tions) for which all momenta K − n,K −m− n etc. are positive. Obviously, we can talk about
two-particle, three-particle etc. sectors of the Fock states. The amplitudes ψi(p+

j1
, p+
j2
, . . . ) are

the output of the numerical diagonalization of the hamiltonian matrix. They are complex numbers
stored in an array whose first part is a set of positive integers ji which represent the dimensionless
momenta of the particles in the given Fock state. The amplitudes encode an important physical
information and can be used to calculate additional observables. For more complicated theories,
they depend on additional quantum numbers like spin or flavour. A necessary requirement in the
DLCQ method is to work with sufficiently high values of the harmonic resolution K so that the
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results become stable. The stability indicates that one has in practice achieved the continuum
limit. A more reliable option is to extrapolate the observables computed for (sufficiently large)
finite values of K to infinite k. It is believed that the Fock expansion in the LF scheme converges
fast so that states with higher particle numbers have negligible amplitudes and the given bound
state is reasonably described by a few low-particle number states.

So far we have discussed the two-dimensional situation. The problem with higher dimen-
sional models is not only that the dimension of the Fock space grows even more rapidly because
of the presence of perpendicular components of the momenta labeled by two additional inte-
gers nx, ny . The main difficulty is a necessity to perform a non-perturbative renormalization in
the Hamiltonian framework in order to deal with finite quantities. A consistent renormalization
program of this kind has not been formulated so far.

There exists a different approach to the bound-state problem in the LF theory called the
Tamm-Dancoff method. It is based on a projection of the fundamental relativistic eigenvalue
equation (the relativistic version of the Schroedinger equation in the second-quantized form)
P+P−ψ(x) = M2

i ψ(x) onto a few lowest Fock sectors (typically two- and three-particle states).
Since one works in the continuum formulation, one arrives at a set of coupled integral equations.
It is beyond the scope of the present work to give more details of the method which can be found
in the review [16]. Recently, a systematic program of non-perturbative renormalization within the
Tamm-Dancoff method has been formulated in the approach called covariant light front dynamics
which substitutes quantization on a preferred surface x+ = 0 by a general surface tangent to the
light cone and parametrized by a light-like vector ω [67, 68], ω2 = 0.

The DLCQ method was proposed and applied in the work of Pauli and Brodsky [14, 15]. In
the latter case, the two-dimensional Yukawa theory was analyzed omitting the scalar zero mode.
In this section, we will discribe a different application of the method to a scalar theory in the
phase of broken symmetry. Since the interaction is of the λφ4 kind this discussion will be a quan-
titative extension of our analytical treatment of the broken phase described in the previous sec-
tion. The chosen theory is interesting because as it is known from its classical version and from
the semiclassical approximations, the spectrum of the model in the broken phase consists of col-
lective excitations called solitons [60]. Since the DLCQ method is intrinsically non-perturbative
(although one cannot completely avoid certain plausible approximations) one is in a good posi-
tion to compute properties of genuine quantum solitons, called kinks in this particular model, and
compare them with classical and semiclassical results. This permits us to test the reliability of the
semiclassical methods, to calculate masses ab initio from the micsoscopic Hamiltonian and also
to determine additional observables from Hamiltonian eigenfunctions (probability amplitudes).

In the variational approach, kinks can be well-approximated by coherent states. This appears
to have two implications for the Fock space expansion in our discretized approach: one may need
an infinite number of bosons to describe solitons, and, since the dimensionless total longitudinal
momentum K automatically provides a cutoff on the number of bosons, convergence in K may
be difficult to achieve for a kink-like state [55].

Here, we show how a nonperturbative evaluation of topological excitations and their observ-
ables is feasible in a finite Fock basis.

A popular nonperturbative numerical approach to field theory is the Euclidean lattice formu-
lation. In the topologically non-trivial sector of the two-dimensional φ4 theory, results available
from lattice simulations are far limited to the determination of the kink mass [69]. The results for
the configuration average of the kink profile are not smooth and are difficult to interpret, probably



466 Light front field theory: An advanced primer

due to finite volume limitations.
These Euclidean lattice calculations are highly non-trivial and a brief overview displays the

degree of effort needed to reveal topological observables. In one approach, one computes the kink
mass from the decay of the correlation functions of an operator with nonvanishing projection on
the topological sector under consideration, the dual field in the present case. On a finite lattice,
the definition of such an operator is often ambiguous. Another approach involves integrating the
difference between the expectation values of the lattice actions with antiperiodic and periodic
boundary conditions. To obtain results for the continuum field theory, one has to work in the
critical region of the lattice theory. Here, calculations are severely hampered by the phenomena
of critical slowing down. Given these difficulties, it is understandable that Euclidean lattice
calculations of the mass and other properties of the kink-antikink state have not been reported to
date.

Let us mention for completeness that the present model was studied also from the point of
view of constructive field theory. It was proven rigorously that in quantum theory a stable kink
state is separated from the vacuum by a mass gap of the order λ−1 and from the rest of the
spectrum by an upper gap [70]. More detailed nonperturbative information on the spectrum
of the mass operator or on other observables from rigorous approaches is not available. This
illustrates one of the problems of quantum field theory: it is very difficult to solve even relatively
simple models if one insists on mathematical rigour.

In this situation, the DLCQ approach represents a powerful method capable to generate pre-
dictions for physical observables nonperturbatively and from first principles. We will present
results of DLCQ computations for the case of both antiperiodic and periodic boundary condi-
tions. As will become clear soon, these two situations correspond to the different regimes of the
theory distinguished by different values of a specific quantum number, called topological charge.
It stemms from the topological properties of the theory defined by the choice of boundary condi-
tions.

Before diving to the DLCQ procedure, we shall briefly discuss the classical solitons in the
usual [60] as well as LF version of the theory [71]. It is convenient to start with a general
potential part V (φ) of the classical Lagrangian density which is assumed to possess multiple
minima. Then the equation of motion is

∂2
0φ(x)− ∂2

1φ(x) = −δV
δφ

(x). (9.3)

The (classical) energy is given by

E(φ) =
∫ +∞

−∞
dx
[1
2
(
∂0φ
)2 +

1
2
(
∂1φ
)2 + V (φ)

]
. (9.4)

Let the minimum of V (φ), adjusted to zero, occurs in N values φi0 of the field φ(x). The
minimum of the energy, equal to zero, is then achieved for these space-time independent con-
figurations of the field. This is in agreement with the equation of motion, which takes the form
δU/δφ = 0. For the static solutions, the equation becomes

∂2
1φ(x) =

δV

δφ
(x). (9.5)
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The solitons are defined as the solution of the above static equation which have finite energy
and are non-dissipative, having energy density that is spatially localized. It follows that for
x→ ±∞ these solutions approach one of the minima φi0. This provides boundary conditions for
the problem. To solve the equation (9.5), one multiplies it by ∂1φ(x) and integrates to get

+∞∫
−∞

dx∂1φ ∂
2
1φ =

+∞∫
−∞

dx
δV

δφ
∂1φ ⇒ dφ/dx = ±

[
V (φ)

]1/2
. (9.6)

The integration constant is zero because ∂1φ and V (φ) vanish for x → −∞. Integrating the
latter equation again, we find

x− x0 = ±
∫ φ(x)

φ(x0)

dφ′[
2V (φ′)

]1/2 . (9.7)

Since by construction V (φ) approaches arbitrary two minima for x → ±∞ which are equal to
zero, it is positive between them. Choosing x0 and φ(x0), we may integrate Eq.(9.7) and invert
the result to find the solution φ(x). For the quartic potential V (φ) = 1

4λ(φ2 − µ2

λ )2 the two
minima are at φ±0 = ±µ/λ. There are two solutions interpolating between these two minima:
one starting at φ+

0 for x → ∞ and ending at φ−0 for x → −∞ and the second going in the
opposite direction. For the static solution, we have

∂2
1φ =

δV

δφ
= λφ3 − µ2φ (9.8)

leading to the equation (9.7) in the form

x− x0 = ±
∫ φ(x)

φ(x0)

dφ′√
λ/2
[
φ′2 − µ2/λ

] . (9.9)

We can choose φ(x0) = 0 and use the simple integration formula∫ a

0

dx
x2 − c2

=
1
2c

ln
c− a

c+ a
(9.10)

to calculate the right hand side. Exponentiating both sides, one finds

φ0(x) = ± µ√
λ

th
[ µ√

2
(x− x0)

]
. (9.11)

The two signs correspond to the two possibilities to connect two minima of the potential and
are called a kink and an antikink. The translational invariance of the solution is seen from the
fact that changing the point x0 only moves the hyperbolic tangent along the x-axis. The energy
density of the solution is

ε(x) =
1
2
(
∂1φ0

)2 + V (φ0) = 2V (φ0) (9.12)
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and taking the derivative according to Eq.(9.6), we arrive at

ε(x) =
µ4

2λ
sech4

[ µ√
2
(x− x0)

]
, (9.13)

where sech(x) = 1/ch(x). The classical energy or mass of the kink is

Mcl =
∫ +∞

−∞
dx ε(x) =

2
√

2
3

µ3

λ
. (9.14)

In obtaining this result, the integration formula∫
dxch−4(x) =

sh(x)
3
[
ch−3(x) + 2ch−1(x)

]
(9.15)

was used.
Let us turn now to a calculation of the properties of a classical kink in the light front theory.

The main difference is the structure of the equation of motion where the operator ∂µ∂µ = 4∂+∂−
is not quadratic in the time and space derivatives and consequently one cannot look for static
solutions simply by making the time derivative term vanish. One however has the mass-squared
operator M2 = P+P− at the disposal:

M2 = 4

+∞∫
−∞

dx−

2
:
(
∂φ(x−)
∂x−

)2

: 2

+∞∫
−∞

dy−

2
: V
(
φ(y−)

)
: (9.16)

whose classical minimum is given by

δM2

δφ(x)
= 0 (9.17)

leading to

−2
∂2φcl(x−)
∂x−2

+∞∫
−∞

dy−

2
V
(
φ(y−)

)
+ V ′(φcl(x−)

+∞∫
−∞

dy−

2

(
∂φcl(y−)
∂y−

)2

= 0, (9.18)

where V ′(φ) ≡ δV (φ)/δφ. We have also used partial integration in the first term and the relation
δφ(x−)/δφ(y−) = δ(x− − y−). φcl(x) is the anticipated solution for which the integrals in the
above relations are some constants (unknown at this stage):

A =

+∞∫
−∞

dx−

2
V
(
φcl(x−)

)
, B =

+∞∫
−∞

dx−

2

(
∂φcl(x−)
∂x−

)2

. (9.19)

Then Eq.(9.18) takes the form

−2A
∂2φcl(x−)
∂x−2

+BV ′
(
φcl(x−)

)
= 0. (9.20)
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After rescaling y = −x−
√

B
2A we finally find the classical equation

−∂
2φcl(x−)
∂y2

+ V ′
(
φcl(x−)

)
= 0, (9.21)

which has the same form as the equation in the SL theory. We can identify therefore

φcl(x−) = φ0(x). (9.22)

This equation means that the shape of the LF solution in terms of the LF space variable x− is
identical to the shape of the solution (9.11) of the space-like theory.

Now we proceed to the DLCQ treatment of the λφ4 theory to find the quantum counterparts
of the above classical solutions and their properties. For completeness, let us recall that we start
from the Lagrangian density

L =
1
2
∂µφ∂

µφ+
1
2
µ2φ2 − λ

4!
φ4, (9.23)

which leads to the LF Hamiltonian

P− =

+L∫
−L

dx−

2

[
− µ2φ2 +

2λ
4!
φ4
]
≡ L

2π
H (9.24)

where L defines our compact domain −L ≤ x− ≤ +L. The main goal in this section will be to
compute the energy spectrum of H .

The LF momentum operator is

P+ = 4

+L∫
−L

dx−

2
∂−φ∂−φ ≡

2π
L
K (9.25)

where K denotes the dimensionless momentum operator. The mass squared operator M2 =
P+P− = KH . In DLCQ with antiperiodic BC, the field expansion has the form

φ(x−) =
1√
4π

∑
n

1√
n

[
ane

−inπ
L x− + a†ne

inπ
L x−

]
. (9.26)

Here n = 1
2 ,

3
2 , . . . .

The normal ordered Hamiltonian is given by

H = −µ2
∑
n

1
n
a†nan +

λ

4π

∑
k≤l,m≤n

1
N2
kl

1√
klmn

a†ka
†
l anamδk+l,m+n +

+
λ

4π

∑
k,l≤m≤n

1
N2
lmn

1√
klmn

[
a†kalaman + a†na

†
ma

†
l ak

]
δk,l+m+n (9.27)
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with

Nlmn = 1, l 6= m 6= n,

=
√

2!, l = m 6= n, l 6= m = n,

=
√

3!, l = m = n, (9.28)

and

Nkl = 1, k 6= l,

=
√

2!, k = l. (9.29)

The final result of the DLCQ numerical computations will be certain sets of numerical data
that need to be analyzed and interpreted. It will be useful to have an analytical guidance. This
is provided by the so-called constrained variational approach introduced in this context in [72].
The result of the constrained variational calculation, being semi-classical, is especially reliable
in the weak coupling region and we can use its functional form to extract the kink mass from the
numerical results of matrix diagonalization.

Let us first discuss the simpler unconstrained variational treatment. The main ingredients of
the method are following. Choose as a trial state the coherent state

| α〉 = N exp
(∑

n

αna
†
n

)
| 0〉 (9.30)

where N is a normalization factor. This is a reasonable choice if the coupling constant is small
because in this case we are close to the classical limit. The coherent states are an adequate
approximation in this regime since they are by construction the ”most classical” quantum states
[73, 74].

With antiperiodic BC we have

〈α | φ(x−) | α〉
〈α | α〉

=
1√
4π

f(x−) (9.31)

where

f(x−) =
N∑
m=1

1√
m− 1

2

[
αm− 1

2
e−i

π
L (m− 1

2 )x− + α∗m− 1
2
ei

π
L (m− 1

2 )x−
]
, (9.32)

where the defining property an|α〉 = αn|α〉 has been used. The expectation value of the Hamil-
tonian (9.24) will have the same form as (9.24) with φ(x−) replaced by f(x−). Minimizing this
expectation value, we obtain

fmin = ±
√

24πµ2

λ
= ±

√
3
g
. (9.33)

Let us choose f(x−) =
√

3/g for 0 < x− < L and f(x−) = −
√

3/g for −L < x− < 0.Then
we get

αm− 1
2

=
√

3
g

i

π

1√
m− 1

2

, m = 1, 2, 3, . . . , (9.34)



Quantum solitons from numerical LF Hamiltonian diagonalizations 471

and

f(x−) =
2
π

√
3
g

∑
j

1
j

sin
jπx−

L
(9.35)

where j = 1
2 ,

3
2 ,

5
2 , etc. The number density of bosons with momentum fraction x = j

K is given
by

χ(x) =
〈α | a†jaj | α〉
〈α | α〉

= α2
j (9.36)

where αj ∼ 1√
j
.

We also find

1
〈α | α〉

2π
L

∫
dx−〈α | φ2(x−) | α〉 =

2
π2

3
g

∑
j

1
j2
. (9.37)

In the unconstrained variational calculation, the expectation value of the LF momentum operator
is infinite for an infinite number of modes for the reason we discussed in the previous section:
f(x−) is discontinous, here at x− = 0, hence the space derivative in (9.25) is infinite. To cure
this deficiency for the present purpose, it is convenient to switch to a constrained variational
calculation. Its details are presented in the Appendix E, where it is shown that in the limit
〈K〉 → ∞ the expectation value of the Hamiltonian H in the generalized coherent states has the
functional form

〈α | H | α〉
〈α | α〉

= −6πµ4

λ
+

32µ6

λ2〈K〉
. (9.38)

Interpreting the state |α〉 to be a kink state, we identify the first term as the vacuum energy density
which is the classical vacuum energy density. The second term is identified as M2

kink

〈K〉 . Then we

get the classical kink mass Mkink = 4
√

2µ3

λ .
An observable that yields considerable insight for the spatial structure of the topological

object is the Fourier transform of its form factor. The form factor is defined as the matrix element
of the field operator in a physical state. We compute the Fourier transform of the form factor of
the lowest state which, according to Goldstone and Jackiw [75], in the weak coupling (static)
limit, represents the kink profile, i.e. a semiclassical or quantum counterpart of the classical
solution. Let | K〉 and | K ′〉 denote this state with momenta K and K ′. Then in the continuum
LF theory, the starting formula reads∫ +∞

−∞
dq+exp{− i

2
q+a}〈K ′ | Φ(x−) | K〉 = φc(x− − a). (9.39)

It has to be adapted to the application within the DLCQ method, where we diagonalize the
Hamiltonian for a given K = L

2πP
+. For the computation of the form factor, we need the same

state at different K values since K ′ = K + q. We can proceed as follows. We diagonalize
the Hamiltonian, say, at K = 41 (even particle sector). Then we diagonalize the Hamiltonian
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at the neighbouring K values, K = 40.5, 41.5, 39.5, 42.5, 38.5, 43.5, 37.5, 44.5, 36.5, 45.5 (odd
particle sectors). In this particular example, the dimensionless momentum transfer ranges from
−4.5 to +4.5. If K is large enough to be near the continuum limit, then, in the spontaneous
symmetry broken phase, with degenerate even and odd states, we can be confident that all these
lowest states correspond to the same physical state observed at different longitudinal momenta.
The test that the states are degenerate is that they have the same M2, so the eigenvalues of H fall
on a linear trajectory as a function of 1

K , cf. Eq.(9.38).
As the next step, one computes the matrix element of the field operator between the lowest

state at K = 40 and the other specified values of K and sum the amplitudes which corresponds
to the choice of the shift parameter a = 0. The summation replaces integration in (9.39). In
summing the amplitudes, we need to be careful about the phases. First we note that K is a con-
served quantity, so eigenfunctions at different K values have an independent arbitrary complex
phase factor. To fix the phases, we accept the guidance of the coherent state analysis. We set the
overall sign of the lowest states for all K values such that the matrix elements 〈K + n | a†n | K〉
is positive and 〈K − n | an | K〉 is negative. In addition, there is one overall complex phase
that we apply to the profile function so that it is real at the boundaries. That the sum of all terms
for the profile function produces the shape of a kink, with very small imaginary component, is
nevertheless a non-trivial result. It is a further non-trivial result that the magnitude of the kink
represents a physically sensible result.

Let us analyze the numerical results. With antiperiodic BC, for integer (half integer) val-
ues of K we have even (odd) number of particles. The dimensionality of the matrix in the
even and odd sectors for different values of K is for example equal to 295, 61316, 813177 for
K = 295, 39.5, 54.5 and to 336, 67243, 880962 for K = 16, 40, 55. All results presented
here were obtained on small clusters of computers (≤ 15 processors) using the Many Fermion
Dynamics (MFD) code adapted to bosons [76] with the Lanczos diagonalization method. Since
the Hamiltonian exhibits the φ→ −φ symmetry, the even and odd particle sectors of the theory
are decoupled, i.e. matrix elements of the Hamiltonian between these two sectors vanish. Let
us compare the situation between the two phases in a qualitative way. In the symmetric phase,
where one has a positive µ2, and at weak coupling, the lowest state in the odd particle sector is
a single particle carrying all the momentum. In the even particle sector, the lowest state consists
of two particles. Thus for massive particles, there is a distinct mass gap between odd and even
particle sectors. In the broken phase we are studying µ2 is negative and, at weak coupling, the
situation is drastically different. Now, the lowest states in the odd and even particle sectors con-
sist of the maximum number of particles carrying the lowest allowed momentum. Thus, in the
continuum limit, the possibility arises that the states in the even and odd particle sectors become
degenerate. A clear signal of SSB is the degeneracy of the spectrum in the even and odd particle
sectors. Thus at finiteK, we can compare the spectra for an integer K value (even particle sector)
and its neighbouring half integer K value (odd particle sector) and look for degenerate states.

In Fig. 9.1 we show the lowest four energy eigenvalues in the broken symmetry phase for
the even and odd particle sectors for λ=1.0 as a function of 1

K . The points represent results at
half integer increments in K from K = 10 to K = 55. The overall trend is towards smoother
behavior at higher K. There is an apparent small oscillation superimposed on a generally linear
trend for each state. The oscillations represent probably an artifact of discretization. These
oscillations decrease with increasing K. The smooth curves in Fig. 9.1 are linear fits to the
eigenvalues in the range from K = 40 to K = 55 constrained to have the same intercept.
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Tab. 9.1. Comparison of vacuum energy density and soliton mass extracted from the continuum limit of our
DLCQ data, with classical results. For soliton mass, the semi-classical result [77] is also shown.

λ vacuum energy soliton mass
classical DLCQ classical semi-classical DLCQ

1.0 -18.85 -18.73 ±0.05 5.66 5.19 5.3 ±0.2

With guidance from the constrained variational calculation, see Eq. (9.38), we can extract the
kink mass from the linear fit to the DLCQ data for the ground state eigenvalue. We fit the λ = 1.0
data in the range 40 ≤ K ≤ 55 to a linear form (C1+C2/K). The reason for this choice of theK
range is that the finite-vilume effects seem reasonably absent. We quoteC1 as the vacuum energy
density andC2 as the kink mass in Table 9.1. We obtain the uncertainties from the spread in these
results arising from constrained fits to subsets of the data in this same range. For comparison,
the corresponding classical values (classical vacuum energy density E = −6πµ4/λ) are also
presented. The agreement appears reasonable.

Next we examine the behaviour of the number density χ(x) for the kink state. In the broken
phase, the ground states in the even and odd particle sectors are degenerate in the continuum
limit. In Fig. 9.2 we show χ(x) for K = 55 and K = 54.5 for λ = 1. For this coupling
the number densities for even and odd sectors are almost identical to each other indicative of
degenerate states. In Fig. 9.2, we also compare the DLCQ number density with that predicted
by the unconstrained and constrained variational calculations. At sufficiently large K and low λ,
they appear to agree at a level which is reasonable for the comparison of a quantal result with a
semi-classical result.

Following Goldstone and Jackiw, one can calculate the Fourier transform of the form factor
of the kink state in DLCQ at weak coupling. In Fig. 9.3(a) we show the profile calculated in
DLCQ for λ = 1 at three selected K values. It is clear that at λ = 1 the profile is that of a
kink which appears reasonably converged with increasing K. In Fig. 9.3(b) the K = 41 DLCQ
profile is compared with that of a constrained variational coherent state calculation of Eq. (F.14)
with 〈K〉 = 41. In the unconstrained variational calculation, this function is discontinuous at
x− = 0 and 〈K〉, the expectation value of the dimensionless LF momentum operator, is infinite.
In the variational calculation where 〈K〉 is constrained to be finite, the kink profile is a smooth
function of x− as seen in Fig. 9.3(b). In the limit 〈K〉 → ∞, the kink profile from constrained
variational calculation approaches that of the unconstrained case. For each K shown, we utilize
11 sets of DLCQ results to construct the profile function. Thus, for K = 41 we employ results
at K = 41 and at K = 36.5 through 45.5 in unit steps.

In the light front literature it has been suggested that (see the review [16]) without a field mode
carrying exactly zero momentum, it would be impossible to describe spontaneous symmetry
breaking.

In this section, we shall show that it is possible to obtain the correct physics of the broken
phase even without the explicit presence of the notorious zero-momentum mode as anticipated
by Rozowsky and Thorn [72]. We will also compute the Fourier transform of the form factor
of the lowest state (i.e., the “ profile” of the kink-antikink configuration) and its parton content,
results not yet available from other methods. In addition, at weak coupling, we extract the value
of the vacuum condensate from two observables, namely the computed vacuum energy density
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profile at K=41 with constrained variational result with 〈K〉 = 41.

and the asymptote of the profile function.
Let us highlight the main results of the DLCQ analysis of quantum kinks for the case of

periodic boundary conditions. The scalar field can be decomposed in this case as φ(x−) =
φ0 + Φ(x−), where φ0 is the zero mode operator. Since it will be deliberately omitted in our
Hamiltonian, Φ(x−) is the normal mode operator (9.26) where now the index n runs over integers
instead of half-integers.

We again diagonalize this Hamiltonian in the basis of all many-boson configurations at a fixed
K where K is the sum of the values of the dimensionless momenta of all bosons in the config-
uration. The Hamiltonian is symmetric under φ → −φ and thus, with PBC, the Hamiltonian
matrix becomes block diagonal in even and odd particle number sectors. The dimensionality of
the largest matrix we solve, K = 60, is equal to 483 338 (even sector) and 483 129 (odd sector).

Since we dropped the P+ = 0 mode, degenerate vacuum states, characterized by a spatially
uniform field expectation value, are not explicitly present in our formulation. However, one may
expect degeneracy of the energy levels in the even and odd particle sectors at sufficiently high
resolution, K. The argument is as follows. For small coupling, variational coherent states |α〉
represent a good approximation of the lowest lying physical states [72]. Even and odd states are
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Fig. 9.4. Ratio of lowest state even-odd energy difference to classical energy density for λ = 0.5, 1.0, 1.5.

linear combinations of |α〉 and | − α〉 and for large enough K they have the same energy. We
also expect that our lowest state will be an excitation above the vacuum state and we will show
it corresponds to a configuration with properties of a kink-antikink pair. In Fig. 9.4 we present
a ratio, the difference between the lowest eigenvalues of different parity divided by the classical
vacuum energy density, as a function of the inverse resolution. Curves for λ = 0.5, 1.0, 1.5
all demonstrate the trend to degeneracy in the continuum limit (K → ∞). That is, we obtain
SSB at each coupling through degeneracy of even and odd parity states when we extrapolate to
the continuum limit. At any finite K the lifting of the degeneracy is simply a reflection of the
tunneling present in a finite system. As seen from Fig. 9.4, the tunneling is relatively strong for
K ≤ 20.

The obtained behaviour of the few lowest eigenvalues with K is quite similar to the case of
antiperiodic B as they follow smooth curves that become more linear as K increases.

The lowest state is expected to be a kink-antikink configuration and should have a positive
invariant mass (twice the mass of the single kink at weak coupling). One can extract this mass
from finite K results analogously to the case of antiperiodic BC. For massive states, the light
front energy E scales like (1/K) so that it approaches zero in the infinite K limit. On the other
hand, a coherent state variational calculation shows that in the infinite K limit, the energy of
the lowest state approaches the classical ground state energy density E = −(6πµ4/λ) for small
λ. As we show in what follows, our results are increasingly compatible with a coherent state as
K increases towards the continuum limit. Thus, we fit our finite K results for the eigenvalues
at small λ to the formula C + M2/K, where C is the vacuum energy density and M is the
kink-antikink mass.
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Tab. 9.2. Comparison of vacuum energy and soliton mass from the continuum limit of our results, with
classical results. Semi-classical results for the mass [77] are also shown. The estimated uncertainties in the
last significant digit are quoted in parenthesis.

λ vacuum energy soliton mass
classical this work classical semi-class. this work

0.5 -37.70 -37.90(4) 11.31 10.84 11.26(4)
1.0 -18.85 -18.97(2) 5.657 5.186 5.563(7)
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Fig. 9.5. Comparison of the number density χ(n) from our approach (”Ab initio”) (K = 60) and the
constrained and unconstrained coherent state variational calculation for λ = 1.0.

Extracted values of C and the kink or soliton mass M/2 are compared to their classical and
one loop corrected (“semi-class.”) counterparts in Table 9.2. The vacuum energy nearly coincides
with the classical result probably as the result of dropping the zero mode. M/2 is also close to the
classical value since our coupling constant is small and the kink-antikink interactions are weak.
Our soliton mass and vacuum energy at λ = 1 are in reasonable agreement with results using
antiperiodic boundary conditions. The fact that the mass of the quantum kink is larger than the
semi-classical one is peculiar to the choice µ2 = 1 and does not occur for µ2 away from 1 [69].

As an example of another observable, we again evaluate the occupation number density χ(n),
the analog of the parton distribution function of more realistic theories. Note that in the uncon-
strained variational state [72], the shape of χ(n) is independent of the coupling λ which affects
only its overall normalization. On the other hand, in the variational calculation, constrained to
have a fixed value of 〈K〉, λ affects not only the overall normalization but also the shape of the
distribution. In Fig. 9.5 our result at K = 60 is compared with that of the unconstrained and
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constrained (〈K〉 = 60) coherent state approximation for λ = 1.0. We find that the shape and
normalization of our χ(n) depends on λ. Our results display the same sawtooth pattern as the
constrained and unconstrained variational results. This is due to the PBC and and omission of
the zero mode, the sawtooth pattern was not present in the number density in the case of antiperi-
odic BC. It is natural to expect sensitivity to the boundary conditions in topologically non-trivial
sectors even in the infinite volume limit.

Next, we compute the Fourier transform of the formfactor for the lowest state, using the dis-
crete version of the formula (9.39). The Fourier transform represents the classical kink-antikink
profile in the weak coupling limit and thus yields information about the spatial structure of the
low lying states. Let | K〉 and | K ′〉 denote this state with momenta K and K ′. Then we follow
the technique discribed in the case of antiperiodic BC, namely we sum the matrix elements of
the field operator for the same state but seen at different values of K.

The topology of a kink - antikink structure and other properties of the form factor thus rely
on the detailed behavior of the amplitudes over a range of K values. The result for the lowest
eigenstate for λ = 1 is presented in Fig. 9.6. This striking kink - antikink behavior is particular
to the lowest state.

Taking the vacuum energy results of Table 9.2 together with the φc(x−) results of Fig. 9.3,
we have two independent but consistent methods for extracting 〈φ〉 in the weak coupling limit.
From our vacuum energy density for λ = 1.0, we obtain 〈φ〉 = (E/πµ2)1/2 = 2.457. From the
calculation of the profile function, shown in Fig. 9.3, we extract 〈φ〉 as the asymptotic (x− = ±1
in units of L) intercepts to be equal to 2.447. These results may be compared with the classical
value of

√
6 = 2.449, which agrees with the result from the variational coherent state.

One can summarize the results of the present chapter as follows. We have demonstrated the
phenomenon of spontaneous symmetry breaking in a discretized light front approach without P+

zero mode and calculated several nonperturbative physical quantities. The degeneracy of energy
levels is both a signature of spontaneous symmetry breaking and essential for the existence of
kinks. We find that a finite Fock space yields features of the lowest excitation that are similar to
those of a variational coherent state ansatz. We have extracted the quantum kink mass and the
vacuum energy density for small λ by extrapolating our lowest eigenvalue to the continuum limit.
At weak coupling, the mass of the quantum kink is closer to the classical value than to the semi-
classical mass. We have extracted the number density of elementary constituents of the lowest
state and compared it with the coherent state prediction. We have also evaluated the Fourier
transform of the lowest state form factor in a fully non-perturbative quantum approach and ob-
tained a kink profile (antiperiodic BC) and a kink-antikink profile (periodic BC). These results
can be interpreted as indicative of the viability of DLCQ for addressing non-trivial phenomena
in quantum field theory.

10 Discretized LF quantization of the two-dimensional Yukawa model

This model describes interaction of the charged massive fermion field with neutral massive scalar
field. Its two-dimensional version was studied in the Hamiltonian framework in ( [78]) where
spectrum of bound states was investigated. The same problem was later on analyzed in the light
front formalism using the discretized approach (the DLCQ method) [14, 15]. A clear advantage
of the DLCQ computations of bound-state properties was demonstrated. The main reason was
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a consistent Fock expansion of composite states not available in the conventional form of the
theory where disconnected vacuum fluctuations considerably complicate calculations.

We will briefly describe the LF quantization of D = 1 + 1 Yukawa model in a finite volume
focusing on the solution to the scalar zero mode constraint and on contributions of this zero mode
to the Hamiltonian. The scalar ZM was neglected in the original treatment [14, 15].

Consider the covariant Lagrangian

L =
i

2
ψγµ

↔
∂µ ψ −mψψ +

1
2
∂µφ∂

µφ− 1
2
µ2φ2 − gψψφ (10.1)

with the trilinear interaction between massive fermion and boson fields. Expressed in terms of



480 Light front field theory: An advanced primer

the light front variables, the Lagrangian is

Llf = iψ†2
↔
∂+ ψ2 + iψ†1

↔
∂− ψ1 −m(ψ†1ψ2 + ψ†2ψ1) +

+ 2∂+φ∂−φ−
1
2
µ2φ2 − g(ψ†1ψ2 + ψ†2ψ1)φ (10.2)

leading to three field equations

2i∂+ψ2 = mψ1 + gψ1φ, (10.3)

2i∂−ψ1 = mψ2 + gψ2φ, (10.4)

4∂+∂−φ = −µ2φ− g(ψ†1ψ2 + ψ†2ψ1). (10.5)

Since the scalar field is taken to be periodic in x− coordinate, it can be decomposed into the
zero mode and normal mode parts, φ(x) = φ0(x+) + ϕ(x+, x−). As before, fermion field is
antiperiodic, ψ(−L) = −ψ(L). Projecting the equation (10.5) onto the ZM sector by integration
over the ”volume” 2L, we get the constraint analogous to (8.40) from the λφ4 theory,

φ0 = − g

µ2

+L∫
−L

dx−

2L
(
ψ†1ψ2 + ψ†2ψ1

)
. (10.6)

The constraint equation (10.4) has a simple solution

ψ1(x) =
1
4i

+L∫
−L

dx−

2
εa(x− − y−)

[
m+ gφ0(x+) + ϕ(y−, x+)

]
ψ2(y−, x+), (10.7)

which contains the ZM (10.6). Obviously, the two equations are coupled. Let us try to find the
corresponding solution φ0. Neglecting for simplicity the problem of ordering of operators, let us
introduce the short-hand notation:

ψ1(x) = mf2(x) + gφ0f2(x) + gf3(x), (10.8)

where

f2(x−) =
1
4i

+L∫
−L

dx−

2
εa(x− − y−)ψ2(y−, x+) =

=
1√
2L

∑
n

1
p+
n

(
bne

− i
2p

+
nx

−
+ d†ne

i
2p

+
nx

−
)
, (10.9)

f3(x−) =
1
4i

+L∫
−L

dx−

2
εa(x− − y−)ϕ(y−, x+)ψ2(y−, x+) =

= − 1
2L

∑
m,n

1√
p+
m

[ 1
p+
m + p+

n

(
a†md

†
ne

i
2 (p+m+p+n )x− − ambne

− i
2 (p+m+p+n )x−

)
+

+
2

p+
m − p+

n

(
a†mbne

i
2 (p+m−p

+
n )x− − d†name

− i
2 (p+m−p

+
n )x−

)]
. (10.10)
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In the above sum, only terms with m 6= n contribute. We have also displayed the Fock form of
the operators f2 and f3 obtained by using the basic field expansion (3.35) valid at x+ = 0

ψ2(0, x−) =
1

2L

∑
n

(
bne

− i
2p

+
nx

−
+ d†ne

i
2p

+
nx

−
)
. (10.11)

Inserting the expression (10.8) into the constraint (10.6), we find

φ0 = − g

µ2

+L∫
−L

dx−

2L

[
(m+ gφ0)

(
f†2ψ2 + ψ†2f2

)
+ g
(
f†3ψ2 + ψ†2f3

)]
(10.12)

with the solution

φ0 = − g

µ2

mF2 + gF3

1 + g2

µ2F2

, (10.13)

where we used the abbreviations

F2 =

+L∫
−L

dx−

2L
(
f†2ψ2 + ψ†2f2

)
, F3 =

+L∫
−L

dx−

2L
(
f†3ψ2 + ψ†2f3

)
. (10.14)

The LF Hamiltonian is obtained in the canonical way described in the case of the Federbush
model. Here it reads

P− =

+L∫
−L

dx−

2
[
µ2ϕ2 + µ2φ2

0 +m
(
ψ†1ψ2 +ψ†2ψ1

)
+ g
(
φ0 +ϕ

)(
ψ†1ψ2 +ψ†2ψ1)

]
. (10.15)

It can be simplified by inserting the solution of φ0. In the original DLCQ treatment of the LF
Yukawa model ( [14, 15]), the zero-mode terms were neglected.

11 LF massive Schwinger model

Most of physically relevant models of quantum field theory nowadays are gauge theories. They
are based on the gauge principle. The interaction of the fermionic or scalar matter fields with
the massless vector fields is derived in these theories from the requirement that the correspond-
ing Lagrangian be invariant under a group of local transformations, i.e. those with space-time
dependent parameters. The change of phase of the matter fields is compensated by a suitable
transformation of the massless gauge (vector) field so that the Lagrangian (or the action) re-
mains unchanged. A simpler class of gauge theories are the models with abelian group of sym-
metry characterized by the property that two such transformations commute. If they are non-
commuting, the theory is called non-abelian and is quite complicated from the technical point of
view. The microscopic theory of strong interactions, quantum chromodynamics or QCD, is the
prominent representative of the non-abelian gauge theories.
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Although the gauge principle determines the structure of the interactions uniquely, there is
a well known difficulty: a conflict between the relativistically covariant description of the vec-
tor field and the number of its physical degrees of freedom. For example, in four-dimensional
quantum electrodynamics, QED(3 + 1), the gauge field Aµ(x) has four components while the
observable electric and magnetic fields are derived only from two transverse gauge potentials.
Similarly, in two space-time dimensions, the gauge field has two components, A0(x) and A1(x)
in the conventional space-like parametrization, orA+(x) andA−(x) in the LF description, while
there are no physical gauge fields in two dimesions (the only exception is one space-independent
component of the gauge field in the finite-volume formulation which is physical, i.e. gauge
invariant). The standard solution of the problem is the gauge-fixing, which ammounts to elim-
inating the redundant degrees of freedom by imposing chosen conditions. Then it is not quite
straightforward to compare the emerging physical picure in different gauges. In principle, it
would be more satisfactory to formulate the theory in a gauge-independent manner.

So far, we did not study any gauge model in these notes. We rather tried to elucidate principal
differences between the conventional and light front field theories using simple examples of
massive scalar and fermion fields. In this chapter, we will analyze the simplest gauge theory,
namely quantum electrodynamics with massive fermions in two dimensions, QED(1 + 1), also
called the massive Schwinger model [101, 102, 103], in the light front formulation. It is rather
clear that the original massless model proposed by Schwinger [79] can be consistently formulated
and its physical contents understood only as the massless limit of the massive theory in the LF
approach. This follows from the fact that the mass has a different status in the LF field theory [7]
in comparison with the SL theory (we have discussed unitary equivalence of the fields with
different masses, the property not shared by the usual form of field theory). Two-dimensional
models are particularly sensitive to this aspect due to the lack of transverse momenta. Non-
vanishing m serves as an infrared regulator. Setting m = 0 from very beginning simply leads
to the loss of important physical information contained for example in the fermionic constraint.
Also the Pauli-Jordan function involving ψ1(x) and some correlation functions would vanish for
massless theory while they are non-zero in the limiting sense. This attitude is supported also by a
calculation of the axial anomaly in the Weyl-gauge version of the present model [104], where the
correct (mass-independent) result emerged due to a cancellation of mass dependence in a ratio of
two factors.

Although massive QED(1 + 1) is an abelian gauge theory, it is sufficiently non-trivial and
encodes in a baby-version many of essential aspects of more complicated gauge theories. Sur-
prisingly enough, even its exactly soluble massless version is not understood uniquely neither
in the space-like field theory nor in the LF approach. In other words, there is no ”canonical”
physical picture of this prototype gauge theory since various authors differ in their explanation
of the essential physical aspects of the model (vacuum structure, number of the so-called vacuum
angles, presence of chiral symmetry and a mechanism of its breaking, the explanation of the U(1)
problem). The massive Schwinger model appears to be the ideal play ground for testing different
ideas of the LF gauge theory and we will describe a few possible approaches to the gauge poblem
within this model.
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11.1 Formulation without a gauge condition

The classical Lagrangian density of the two-dimensional QED looks formally as that of the four-
dimensional quantum electrodynamics:

L =
i

2
ψ(x)γµ

↔
∂µ ψ(x)−mψ(x)ψ(x)− 1

4
FµνF

µν − ejµ(x)Aµ(x), (11.1)

where m is the mass of the Fermi field ψ(x) and e is the coupling constant, i.e. the electric
charge. Of course, in addition to the fields depending on time and one space variable, the gauge
potential Aµ(x) as well as the vector current jµ(x) = ψ(x)γµψ(x) has only two components
here. The electromagnetic tensor Fµν = ∂µAν − ∂νAµ. The γ-matrices in the SL formalism
are expressed as before in terms of Pauli matrices, γ0 = σ1, γ1 = iσ2. The conjugate Fermi
field ψ = ψ†γ0. Let us recall that the first term in the Lagrangian is invariant under a phase
transformation with a global parameter, ψ(x) → e−iΛψ(x). If the parameter is x-dependent,
i.e. local, this term is changed by ∂µΛ(x)jµ(x), where Λ(x) is called the gauge function. To
maintain the invariance, an introduction of the vector field Aµ(x) transforming as Aµ(x) →
Aµ(x) + 1

e∂
µΛ(x) is mandatory. Its kinetic term − 1

4FµνF
µν is invariant (because Fµν is), as

well as the fermion mass term. The change of Aµ(x) induces a change of the last, interacting
term in the Lagrangian, which precisely cancels the change of the fermion kinetic term, leading
to the gauge invariance of the classical Lagrangian. We say that the theory is invariant under the
abelian gauge group U(1) which consists of the infinite number of phase factorsU(Λ) = e−iΛ(x).
Under the action of this group, the fields transform as

ψ(x) → U(Λ)ψ(x), ψ(x) → ψ(x)U−1(Λ),

Aµ(x) → U(Λ)
(
Aµ(x)−

i

e
∂µ

)
U−1(Λ). (11.2)

The most common way to eliminate the redundant gauge-field components is to impose a set
of conditions on Aµ(x) at the classical level and to take the corresponding form of the theory
over to the quantum level. For the usual SL formulation, the examples are the temporal gauge
A0 = 0 and the axial gauge A1 = 0 which in one space dimension is equivalent to the Coulomb
gauge ∂1A

1 = 0 in continuum theory. Such conditions are however not arbitrary but should be
obtained from the transformation law for the gauge field by a specific and explicit choice of the
gauge function Λ(x). Here the boundary conditions may play a role.

In terms of LF space and time variables xµ = x±, the Lagrangian (11.1) has the form

LLF = iψ†2
↔
∂+ ψ2 + iψ†1

↔
∂− ψ1 +

1
2
(∂+A

+ − ∂−A
−)2 −

− m(ψ†2ψ1 + ψ†1ψ2)−
e

2
j+A− − e

2
j−A+. (11.3)

We recall that the dynamical (ψ+) and dependent (ψ−) projections of the fermi field are defined
as ψ± = Λ±ψ, where Λ± = 1

2γ
0γ±, γ± = γ0 ± γ1. In the chosen representation of the γ-

matrices, ψ†+ = (0, ψ†2), ψ
†
− = (ψ†1, 0) and the vector current j± = 2ψ†±ψ± has the components

j+ = 2ψ2
†ψ2, j

− = 2ψ1
†ψ1. The classical Euler-Lagrange equations read

2i∂+ψ2 = mψ1 + eA−ψ2, ∂+(∂+A
+ − ∂−A

−) = −e
2
j−, (11.4)
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2i∂−ψ1 = mψ2 + eA+ψ1, ∂−(∂+A
+ − ∂−A

−) =
e

2
j+. (11.5)

We will consider the theory on a finite interval −L ≤ x− ≤ L with (anti)periodic fields:
ψ(−L) = −ψ(L), A±(−L) = A±(L). This implies that the gauge field can be decomposed
into the x−-independent zero-mode (ZM) part A±0 and the normal mode (NM) part A±n (x−). 9

The classical Lagrangian (11.3) is then invariant under the gauge transformations (GT)

ψ2(x) → e−iΛ(x−)ψ2(x), A±(x) → A±(x) +
2
e
∂∓Λ(x−). (11.6)

The fermion constraint (11.5) implies that ψ1(x) transforms in the same way as ψ2(x). A+
0 is a

physical variable invariant under ”small” GT (see below).
The conjugate momenta of the dynamical field components are calculated according to

Πϕi
=

δLLF
δ∂+ϕi

, (11.7)

where ϕi stands for any of the dynamical fields. One easily finds

Πψ2 = iψ†2, Π†
ψ2

= −iψ2, Πψ1 = Π†
ψ1

= 0,

ΠA+
n

= ∂+A
+
n − ∂−A

−
n , ΠA+

0
= ∂+A

+
0 , ΠA−n

= ΠA−0
= 0. (11.8)

The conjugate momenta of the non-dynamic field components A−n and ψ1 vanish because there
are no time derivatives of these field in the Lagrangian. The LF Hamiltonian P− and momentum
P+ are obtained from the energy-momentum tensor Tµν

Tµν(x) =
∑
i

δLLF
δ∂µϕi

∂νϕi − gµνLLF (11.9)

which is analogous to the free-field tensor (3.41), as

P− =

+L∫
−L

dx−

2

[
Π2
A+

n
+m(ψ†2ψ1 + ψ†1ψ2)− (2∂−ΠA+

n
− ej+n )A−n

]
+ P−ZM ,

P− + ZM = Π2
A+

0
+ Lej+0 A

−
0 , (11.10)

P+ =

+L∫
−L

dx−

2

[
4iψ†2∂−ψ2 + 2ΠA+

n
∂−A

+
n

]
. (11.11)

The pair of ”Maxwell” equations is easily decomposed into the normal-mode and zero-mode
parts:

∂+(∂+A
+
n − ∂−A

−
n ) = −e

2
j−n , ∂−ΠA+

n
=

e

2
j+n , (11.12)

9Quantities defined in the normal-mode sector will be labeled by small n in this section.
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∂2
+A

+
0 − = −e

2
j−0 , j

+
0 = 0. (11.13)

The second one is the Gauss’ law valid in the normal-mode sector, the third one is the already
discussed dynamical equation for the gauge zero mode and the last one is the Gauss’ law in the
zero-mode sector. It is equivalent to the relation Q = 0 (because j+0 = Q/L) which clearly
cannot be satisfied as an operator equation on the quantum level. It is the first class constraint in
the language of Dirac-Bergmann quantization and has to be imposed weakly as a condition on
physical states: Q|phys〉 = 0.

As a matter of fact, neither the normal-mode Gauss’ law can be satisfied as an operator
equation on the quantum level. Indeed, assuming the standard equal-LF time (anti)commutation
relations{

ψ2(0, x−), ψ2
†(0, y−)

}
=

1
2
δa(x− − y−),

[
A+
n (0, x−),ΠA+

n
(0, y−)

]
= iδn(x− − y−), (11.14)

one immediately sees that the Gauss’ law as an operator statement is incompatible with the latter
commutator as it leads to an operator relation[

A+
n (x−), ej+n (y−)

]
= 2i∂y−δn(x

− − y−) (11.15)

which contradicts the rules of canonical quantization: A+ and j+ should commute since they are
independent variables.

The operator Gn(x) = 2∂−ΠA+
n
(x) − ej+n (x) of the Gauss’ law, being non-zero, is in fact

closely related to the generator of gauge transformations. The unitary operator Ω[Λn]

Ω[Λn] = exp
[
− i

e

+L∫
−L

dy−

2
Gn(y−)Λn(y−)

]
(11.16)

indeed implements the ”small” gauge transformation (i.e. those with the periodic gauge function
Λn(x)) quantum-mechanically:

Ω
[
Λn
]
A+
n (x−)Ω†

[
Λn
]

= A+
n (x−) +

2
e
∂−Λn(x−),

Ω
[
Λn
]
ψ2(x−)Ω†

[
Λn
]

= e−iΛn(x−)ψ2(x−). (11.17)

These relation follow from the commutators[
Gn(y−), A+

n (x−)
]

= 2i∂x−δn(x
− − y−),

[
Gn(y−), ψ2(x−)

]
= eδa(x− − y−)ψ2(y−) (11.18)

and the operator identities

exp(A)B exp(−A) = B + [A,B], exp(A)B exp(−A) = exp(ρ)B, (11.19)
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valid if [A,B] is a c-number and [A,B] = ρB, respectively.
A possible solution to the problem of incompatibility between the canonical commutator

and the operator validity of the Gauss’ law is the approach called the ”minimal quantization”
[105, 106]. This method consists in solving the Gauss’ law explicitly on the classical level and
inserting the solution back to the Lagrangian. The latter can be then rewritten in terms of gauge-
invarint fields (this idea goes back to the original formulation due to Dirac [107],Dirgi2). In the
present context, the solution of the Gauss’ law can be written in the symbolic form as

A−n (x) = −e
2

1
∂2
−
j+n (x) +

1
∂−

∂+A
+(x). (11.20)

The inverse operators can be given a precise form in terms of Green’s functions G∞(x− − y−)
and G∈(x− − y−):

G∞(x− − y−) = 1/2εn(x− − y−), ∂2
−G∈(x− − y−) = δn(x− − y−). (11.21)

In the following, we will study a few aspects of the massive Schwinger model in the gauge-
fixed framework.

11.2 Vacuum structure in the light-cone gauge

Let us study vacuum properties of the LF massive Schwinger model choosing the most common
gauge condition, namely the finite-volume version of the light cone gauge which in the contin-
uum theory is defined by the condition A+(x) = 0. In the case of periodic gauge field in a finite
volume, he gauge transformation (11.6) tells us that the zero mode A+

0 cannot be removed by
any choice of the gauge function Λ and hence it is a physical, gauge-invariant degree of freedom.
It obeys a dynamical equation (see below) and is therefore called the dynamical zero mode.

As has been already discussed, if the dynamical zero modes are absent or neglected in the
given model, the physical ground state contains no quanta. This remarkable simplification of
the vacuum aspects of dynamics causes however at the same problems with the understanding
of vacuum degeneracy within the light-front theory. For example, it is not quite clear how one
could reproduce non-zero fermion condensate in the present model [79,80]. An approach to these
problems, which uses initialization of fields on both characteristic surfaces x± = 0 has been pro-
posed by some authors [81,82]. It leads however to a complicated theory with its own subtleties.
Another proposed solution [83] uses the so-called light-cone representation but actually is not a
light-front quantization.

In the approach developed here, the LF vacuum problem is studied strictly within the the
framework of the Hamiltonian LF quantization using basic principles of quantum theory. In
particular, it will be shown that despite the triviality of the LF vacuum in the sector of normal
Fourier modes, the physical vacuum of this simple gauge theory quantized on x+ = 0 surface
can have a rich structure in terms of dynamical quanta. Moreover, a degenerate set of light-
front vacuum states can emerge at the quantum level. Both properties are a direct consequence
of a topologically non-trivial residual “large” gauge symmetry present in the formulation with
compactified LF coordinate x− [84, 85].

The general idea is of course not new. The key role of topology in vacuum aspects of gauge
field theories is well established. Gauge transformations with non-trivial topological properties
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are known to be responsible for the vacuum degeneracy [86, 87, 88, 89, 90, 91, 92]. Among vari-
ous topologically non-trivial gauge field configurations, studied usually within the path integral
approach, instantons [93] are a well known example.

In the light front theory, a few attempts have been made to relate non-trivial vacuum structure
to the dynamical zero modes (ZM) of the gauge field [85, 94, 95, 96, 97, 98]. They transform in
a simple way under a finite-volume analogue of large gauge transformations [85] which are in
continuum theory characterized by a gauge function tending to a non-zero constant at spatial
infinity. The zero-mode dynamics is usually studied in terms of wavefunctions in coordinate rep-
resentation [99] which are lowest-energy solutions of a Schrödinger equation with some “vacuum
potential” (see for example [95, 96, 100]).

The present approach is based on the quantum-mechanical implementation of large gauge
transformations by unitary operators, which leads in a natural way to the description of the phys-
ical vacuum in terms of coherent states of the dynamical gauge-field zero mode as well as of
fermion bilinear Fock operators.

As we have already see, periodic boundary condition for the Aµ(x+, x−) field defined on
the finite interval −L ≤ x− ≤ L imply a decomposition of the gauge field into the zero-mode
(ZM) part Aµ0 and the part Aµn containing only normal Fourier modes. The ZM A+

0 becomes a
physical variable [84,99,109,110,85] since it cannot be gauged away. A natural gauge condition,
which completely eliminates redundant gauge degrees of freedom and which we adopt here, is
A+
n = 0, A−0 = 0. In quantum theory, the gauge ZM satisfies the commutation relation[

A+
0 (x+),ΠA+

0
(x+)

]
x+=0

=
i

L
, (11.22)

where ΠA+
0

= ∂+A
+
0 is the operator of the spatially constant LF electric field. The fermi field

satisfying at x+ = 0 the familiar anticommutation relation{
ψ2(x−), ψ2

†(y−)
}

=
1
2
δ(x− − y−) (11.23)

is expanded at x+ = 0 as

ψ2(x−) =
1√
2L

∞∑
n= 1

2

(
bne

− i
2p

+
nx

−
+ d†ne

i
2p

+
nx

−
)
, (11.24)

with p+
n = 2π

L n, n = 1
2 ,

3
2 , . . .∞ and with Fock operators satisfying

{bn, b†n′} = {dn, d†n′} = δn,n′ . (11.25)

While the LF momentum operator P+ is given in terms of ψ2 quanta alone, the gauge invariant
(see below) LF Hamiltonian of the model is expressed in terms of the both unconstrained vari-
ables ψ2 and A+

0 . This light-cone gauge Hamiltonian is derived from the Lagrangian density
(11.3) in the usual canonical way after setting A+

n = 0, A−0 = 0 in it. With this choice, the
fermionic constraint and the Gauss’ law become

2i∂−ψ1 = mψ2 + eA+
0 ψ1, − ∂2

−A
−
n =

e

2
j+ (11.26)
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and can be inverted to find ψ1(x) and A−n (x). Inserting these constrained field components to
the Hamiltonian, we finally find

P− = LΠ2
A+

0
− e2

4

+L∫
−L

dx−

2

+L∫
−L

dy−

2
j+(x−)G2(x− − y−)j+(y−) +

+ m2
f

+L∫
−L

dx−

2

+L∫
−L

dy−

2

[
ψ2

†(x−)Ga(x− − y−;A+
0 )ψ2(y−) + h.c.

]
. (11.27)

G2 is the periodic Green’s function ∼ (p+)−2 (mentioned at the end of the previous section)
corresponding to the operator ∂2

− in the Gauss’ law and the antiperiodic Ga is given by

Ga(x−− y−;A+
0 ) =

1
4i

exp
(
− ie

2
(x−− y−)A+

0

)[
εa(x−− y−) +

+iεa(L− y−) tan(
eL

2
A+

0 )
]
, (11.28)

where εa is the sign function, ∂−εa(z−) = 2δa(z−). The solution of the first equation in (11.26)
is expressed as

ψ1(x) =

+L∫
−L

dy−

2
Ga(x−− y−;A+

0 )ψ2(x+, y−). (11.29)

It generalizes the solution of the free fermionic constraint.
As before, the Gauss’ law in the ZM sector is equivalent to the condition of electric neutrality

of the physical states, Q|phys〉 = 0.
The LF Hamiltonian (11.27) exhibits a residual symmetry [99, 110, 85, 91, 111] which is not

explicitly present in the continuum formulation. It corresponds to transformations with non-
trivial topological properties. In the LF theory, the associated gauge function is linear in x−

(and hence non-vanishing at x− = ±L) with a coefficient, given by a specific combination of
constants. These simple properties follow from the requirement to maintain boundary conditions
for the gauge and matter fields, respectively.

For the considered U(1) theory, the corresponding gauge function has the form Λν = π
Lνx

−

and defines a winding number ν:

Λν(L)− Λν(−L) = 2πν, ν ∈ Z. (11.30)

Thus, the residual gauge symmetry of the Hamiltonian (11.27) is

A+
0 → A+

0 +
2π
eL
ν, ψ+(x−) → e−i

π
Lνx

−
ψ+(x−). (11.31)

Let us discuss the ZM part of the symmetry first. At the quantum level, it is convenient to
work with the rescaled ZM operators ζ̂ and π̂0 :

A+
0 =

2π
eL
ζ̂, ΠA+

0
=

e

2π
π̂0,

[
ζ̂, π̂0

]
= i. (11.32)
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Note that the box length dropped out from the ZM commutator. The shift transformation of A+
0

is for ν = 1 implemented by the unitary operator Ẑ1:

ζ̂ → Ẑ1ζ̂Ẑ
†
1 = ζ̂ + 1, Ẑ1 = exp(iπ̂0). (11.33)

The transformation of the ZM operator ζ̂ is accompanied by the corresponding transformation
of the vacuum state. The latter is defined by a0Ψ0 = 0, where a0(a

†
0) is the usual annihilation

(creation) operator of a boson quantum:

a0 =
1√
2

(
ζ̂ + iπ̂0

)
, a†0 =

1√
2

(
ζ̂ − iπ̂0

)
,
[
a0, a

†
0

]
= 1. (11.34)

Ẑν = (Ẑ1)ν is essentially the displacement operator defining the coherent states [73] |ν; z〉 =
ẐνΨ0:

Ẑν = exp
[
−ν√

2

(
a†0 − a0

)]
, a0|ν; z〉 =

−ν√
2
|ν; z〉. (11.35)

One can interpret the displaced vacuum expressed in terms of the harmonic oscillator Fock states
|n〉 (Cn are the corresponding amplitudes) [73, 112]

|ν; z〉 =
∞∑
n=0

Cn(ν)|n〉 (11.36)

as the condensate of zero-mode gauge bosons.
Alternatively, working in the coordinate representation, one has π̂0 = −i ddζ and the vacuum

wavefunction (wf) Ψ0(ζ) = π−
1
4 exp(− 1

2ζ
2) transforms as

Ψ0(ζ) → Ψν(ζ) = exp(ν
d

dζ
)Ψ0(ζ) = π−

1
4 exp(−1

2
(ζ + ν)2). (11.37)

The ZM kinetic energy term of the LF Hamiltonian (11.27) is given by

P−0 = −1
2
e2L

2π2

d2

dζ2
. (11.38)

Usually, a Schrödinger equation with the ZM hamiltonian is invoked to find the lowest energy
eigenfunctions subject to a gauge-fixing periodicity condition at the boundaries of the fundamen-
tal domain 0 ≤ ζ ≤ 1 [99, 95]. Here we are naturally led to consider the eigenstates of a0 with a
non-vanishing eigenvalue ν instead [98]. Since the operators Ẑν commute with P−0 , the infinite
set of vacuum states Ψν(ζ), ν ∈ Z is degenerate, i.e. the corresponding LF energy

E0 =

+∞∫
−∞

dζΨν(ζ)P−0 Ψν(ζ) =
e2L

8π2
(11.39)

is independent of ν. In addition, the vacuum states are not invariant under Ẑ1,

Ẑ1Ψν(ζ) = Ψν+1(ζ) (11.40)
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and those which differ by unity in the value of ν have a non-zero overlap. The latter property
resembles tunnelling due to instantons in the usual formulation. Note however that in our pic-
ture one does not consider minima of the classical action. The lowest energy states have been
obtained within the quantum mechanical treatment of the symmetry consisting of the c-number
shifts of an operator. This residual symmetry within the light-cone gauge generates copies of the
gauge field A+

0 which are essentially Gribov copies [113].
Implementation of the large gauge transformations for the dynamical fermion field ψ2(x) is

based on the commutator[
ψ2(x−), j+(y−)

]
= ψ2(y−)δa(x− − y−) (11.41)

which follows from the basic anticommutation relation (11.23). The unitary operators F̂ν =
(F̂1)ν that implement the phase transformation (11.31) are

ψ2(x−) → F̂νψ2(x−)F̂ †ν , F̂ν = exp

i π
L
ν

+L∫
−L

dx−

2
x−j+(x−)

, (11.42)

as can be shown using the operator identity (11.19) for the case [A,B] = ρA.
The Hilbert space transforms correspondingly. But since physical states are states with zero

total charge and the pairs of operators b†kd
†
l , which create these states, are invariant, it is only the

vacuum state that changes to

|0〉 → F̂ν |0〉 = exp

[
ν

∞∑
m=1

(−1)m

m
(A†m −Am)

]
|0〉 ≡ |ν; f〉. (11.43)

The boson Fock operators Am, A†m [114], where

A†m =
m− 1

2∑
k= 1

2

b†kd
†
m−k +

∞∑
k= 1

2

[
b†m+kbk − d†m+kdk

]
, (11.44)

satisfy
[
Am, A

†
m′

]
= mδm,m′ . They emerge naturally after taking a Fourier transform of the

j+(x−) current expressed in terms of fermion modes. This yields

j+(x−) =
1
L

∞∑
m=1

[
Ame

− i
2p

+
mx

−
+A†me

i
2p

+
mx

−
]

(11.45)

as well as the exponential operator in Eq.(11.43). The states |ν; f〉 are not invariant under F̂1:
|ν; f〉 → |ν + 1; f〉, in analogy with Eq.(11.40).

To construct the physical vacuum state of the massive Schwinger model, one first defines
the operator of the full large gauge transformations T̂1 = Ẑ1T̂1 as a product of the commuting
operators Ẑ1 and F̂1. The requirement of gauge invariance of the physical ground state [22] then
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leads to the θ vacuum, which is obtained by diagonalization, i.e. by summing the degenerate
vacuum states |ν〉 = (T̂1)ν |0〉 = |ν; z〉|ν; f〉 with the appropriate phase factor:

|θ〉 =
+∞∑

ν=−∞
e−iνθ

(
T̂1

)ν
|0〉, T̂1|θ〉 = eiθ|θ〉. (11.46)

(|0〉 here denotes both the fermion and gauge boson Fock vacuum). Thus |θ〉 is an eigenstate of
T̂1 with the eigenvalue exp(iθ). In other words, it is invariant up to a phase, which is the usual
result [80, 22].

The physical meaning of the vacuum angle θ as the constant background electric field [103]
can be found by a straightforward calculation:

〈θ|ΠA+
0
|θ〉 =

eθ

2π
, (11.47)

where the infinite normalization factor 〈θ|θ〉 has been divided out.

11.3 Formulation in the LF Weyl gauge

Let us turn now to the analysis of the massive Schwinger model in the light front temporal or
Weyl gauge A−(x) = 0. The solution of the fermionic constraint for can be again given in a
closed form as

ψ1(x+, x−) = m

+L∫
−L

dy−

2
Ga(x− − y−;A+)ψ2(x+, y−), (11.48)

Ga(x−− y−;A+) =
1
4i
[
εa(x−− y−) + itgα

]
e

ie
2 (y−−x−)A+

0 e−
ie
2 [ϑ(x−)−ϑ(y−)].

The quantities ϑ and α are equal to

ϑ(x−) =
1
2

+L∫
−L

dy−

2
εn(x− − y−)A+

n (y−), α =
eL

2
A+

0 . (11.49)

A rigorous way to quantize the model in the Weyl gauge is to perform the Dirac-Bergmann
analysis and use A− = 0 as a supplementary condition in that procedure. Here we simply
prescribe the standard (anti)commutation relations between the independent fields ψ2, A

+
0 and

A+
n and their conjugate momenta at x+ = 0 and obtain all other from the solution (11.48):{

ψ2(x−), ψ†2(y
−)
}

=
1
2
δa(x−− y−),

[
A+
n (x−),ΠA+

n
(y−)

]
= iδn(x−− y−),

{
ψ2(x−), ψ†1(y

−)
}

=
{
ψ1(x−), ψ†2(y

−)
}

=
m

2
Ga(x−− y−;A+),

[
A+

0 ,ΠA+
0

]
=

i

L
. (11.50)
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Gauss’ law is not an equation of motion in the Weyl gauge. One has to impose it as a condition
on states which selects the physical subspace. The ZM condition is again simply Q|phys〉 = 0
while the NM part reads

〈phys|Gn(x−)|phys〉 = 0, Gn(x−) = 2∂−ΠA+
n
(x−)− ej+(x−). (11.51)

Furthermore, the Gauss’ law is closely related to the generator of residual time-independent
gauge transformations. Using the above field algebra and the operator identitie (11.19), we obtain

A+
n (x−) → Ω[Λ]A+

n (x−)Ω†[Λ] = A+
n (x−) +

2
e
∂−Λn(x−),

ψ2(x−) → Ω[Λ]ψ2(x−)Ω†[Λ] = e−iΛ(x−)ψ2(x−), (11.52)

where the unitary operator, implementing the residual symmetry, is

Ω[Λ] = exp

− i
e

+L∫
−L

dy−

2
Gn(y−)Λn(y−)

 exp [ieQΛ0] T̂ν , T̂ν = Ẑν F̂ν ,

Ẑν = exp(iνπ̂0), F̂ν = exp
[
i
π

L
ν

+L∫
−L

dy−

2
y−j+(y−)

]
, π̂0 =

2π
e

ΠA+
0
. (11.53)

The operator T̂ν implements the residual large gauge transformations

ψ2(x−) → T̂νψ2T̂
−1
ν = e−ieΛνψ2(x−), A+

0 → T̂νA
+
0 T̂

−1
ν = A+

0 + 2∂−Λν

which are manifestly present in the finite volume with (anti)periodic fields. The gauge function
Λν = π

Lx
−ν satisfies Λν(−L) − Λν(L) = 2πν, ν ≡ Z. It is a part of the most general

decomposition of the full gauge function Λ(x−) = Λn(x−) + Λ0 + Λν compatible with our
boundary conditions.

Next, the independent fields can be expanded at x+ = 0 as (p+
n = 2π

L n)

ψ2(x−) =
1√
2L

∞∑
n= 1

2

[
bne

− i
2p

+
nx

−
+ d†ne

i
2p

+x−n

]
,

A+
n (x−) =

1√
2L

∞∑
n=1

1√
p+
n

[
gne

− i
2p

+
nx

−
+ g∗ne

i
2p

+
nx

−
]
,

ΠA+
n
(x−) = − 2i√

2L

∞∑
n=1

√
p+
n

[
hne

− i
2p

+
nx

−
− h∗ne

i
2p

+
nx

−
]
. (11.54)

The Fock operators then satisfy {bm, b†n} = {dm, d†n} = [gn, h∗m] = δmn. Note the unusual
commutator corresponding in fact to an indefinite-metric space [115]. The associated quanta
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are unphysical (there are no physical gauge degrees of freedom except for a zero mode in a
compactified theory) and have to carry zero energy and momentum. The chosen form of the
above commutator indeed leads for example to the vanishing of the norm of the one-particle
ghost state |g〉 ≡ g∗m|0〉 as well as to 〈g|P+|g〉=0.

The full gauge invariance of our theory requires also the vacuum state to be invariant. The
Fock LF vacuum satisfies Q|0〉 = 0 and 〈0|Gn(x−)|0〉 = 0, but not T̂ν |0〉 = |0〉. In a complete
analogy to the case of the light cone gauge, one has to form a superposition |θ〉

|θ〉 =
∞∑

ν=∞
e−iνθT̂ν |0〉 (11.55)

which is invariant up to a phase: T̂ν |θ〉 = exp(iθ)|θ〉. It is easy to show that the NM Gauss’ law
is satisfied by the theta vacuum, 〈θ|Gn(x−)|θ〉 = 0. The Fock representation of the individual
vacua |ν〉 = T̂ν |0〉 is given by Ẑν = exp

[
− ν/

√
2
(
a†0 − a0

)]
, where a0 = 1/

√
2(ζ̂ + iπ̂0), ζ̂ =

2πA+
0 /eL and [a0, a

†
0] = 1. Also, inserting the Fourier transform of the j+ current

j+(x−) =
1
L

[
A0 +

∞∑
m=1

(
Ame

− i
2p

+
mx

−
+A†me

i
2p

+
mx

−)]
,

Am =
∞∑
k= 1

2

[
b†kbm+k − d†kdm+k

]
+
m− 1

2∑
k= 1

2

dm−kbk (11.56)

to the expression for F̂ν we get the ame ermion Fock vacuum structure as in the light cone gauge,

F̂ν |0〉 = exp
[
ν

∞∑
m=1

(−1)m

m

(
A†m −Am

)]
|0〉. (11.57)

By a direct calculation one finds [Am, A†n] = mδmn which is equivalent to the commutator in
x-representation with the Schwinger term:[

j+(x−), j+(y−)
]

=
i

π
∂x−δ(x

− − y−). (11.58)

It is known that the Schwinger model has interesting chiral properties [80, 22] such as spon-
taneous chiral symmetry breaking (SCSB), axial anomaly and the U(1) problem. What is the
chiral structure of the massive model in the LF version of the theory ? The answer is rather
surprising. Since the ψ−(x−) fermi field component satisfies the constraint (11.5), its chi-
ral transformations are determined by those of the independent componet ψ+(x−). Defining
ψ+(x−) → exp (−iβγ5)ψ+(x−) classically, one finds

ψ2(x−) → e−iβψ2(x−), ψ1(x−) → e−iβψ1(x−), (11.59)

i.e. both components rotate with the same sign. There is simply not enough independent spinor
degrees of freedom to have true chiral transformations (this is no longer true in four dimensions
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where two components of ψ+(x) will transform with opposite sign). To summarize, there is no
chiral symmetry on the classical level associated with two-dimensional LF fermi fields. Hence,
there is nothing to be implemented on the quantum level, no possibility of spontaneous chiral
symmetry breaking, no puzzle of the non-existent Goldstone boson known as the U(1) prob-
lem. The present picture provides the simplest conceivable solution to the U(1) problem in the
Schwinger model. We want to emphasize that the above conclusion does not mean that LF theory
has missed something: it simply clarifies the physical picture as much as possible (but not more).

In the usual picture with spontaneous chiral symmetry breaking, the vacuum expectation
value of the fermi bilinear serves as an order parameter. The known result is 〈θ|ψψ|θ〉 =
e

2
√
π3 e

γE cos(θ) with γE being the Euler constant. Although lacking order-parameter interpreta-
tion, this VEV will still be non-zero in our case due to the fermionic structure of the theta vacuum
following from topological properties. We have all ingredients (explicit Fock representation of
the theta vacuum and exact solution of the fermionic constraint) for a calulation of 〈θ|ψψ|θ〉
which however is rather complicated and lies beyond the scope of the present review.

On the other hand, we can still define the axial-vector current jµ5 because we have an inde-
pendent γ5 matrix in the LF theory. Naively, j+5 appears to be identical to the vector current
component j+. However, in quantum theory jµ has to be taken as normal ordered product of
fermi fields. This is equivalent to having C-parity odd jµ which is dictated by opposite charges
of fermion and antifermion. There is no such a requirement for the axial current. Then, using
the point-splitting regularization of jµ5 as well as the solution (11.48) to the fermionic constraint,
one finds [104]

∂µj
µ
5 (x) = 2imψ(x)γ5ψ(x)− e

π
∂+A

+ (11.60)

which agrees for m = 0 with the space-like result − e
2π ε

µνFµν . The derivation performed in
the continuum theory relied crucially on the existence of a 1/x+ singularity in the “bad” com-
ponent j−5 . This singularity is a consequence of the fact that the contraction (i.e., vacuum ex-
pectation value or a correlation function) 〈j−5 〉 of j−5 ∼ m2 is given by the Bessel function
K1(m

√
−x+x−). In the present finite volume treatment the same mechanism works: although

the contraction 〈ψ†1(x + ε)ψ1(x)〉 is now expressed as an infinite series instead of an integral,
this series contains the continuum result [35] in addition to (here irrelevant) L-dependent terms.

Another ingredient of our calculation was a gauge invariant version of the anticommu-
tator (11.50). Without this correction, the lhs and rhs of the anticommutator transform dif-
ferently under GT leading to inconsistent Fock calculations. The problem is not present in
gauge-fixed schemes such as the usual light cone gauge. An alternative treatment of this dif-
ficulty, related to the ”minimal quantization” method, is to define a gauge invariant fermi field
ψ̂2(x−) = exp( ie2 ϑ(x−))ψ2(x−) and require {ψ̂2(x−), ψ̂†2(y

−)} = i/2δa(x− − y−). Some
operators will change their form when expressed in terms of this field. For example, we find

P+ =

+L∫
−L

dx−

2

[
4iψ̂†2∂−ψ̂2 +Gn(x−)A+

n

]
, (11.61)

where the second term vanishes on physical states. Hence 〈phys|P+|phys〉 is gauge invariant.
On the other hand, P− being manifestly gauge invariant will keep its form when expressed in
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terms of ψ̂2 and ψ̂1. But it contains at the same time redundant gauge variables. To clarify the
physical picture, it is useful to transform the theory to a different representation [115, 111].

Let us consider a unitary operator (ϑ(x−;A+
n ) is defined above Eq.(11.49))

U [ϑ] = exp
[
− ie

2

+L∫
−L

dx−

2
j+(x−)ϑ(x−;A+

n )
]
. (11.62)

Using the field algebra (11.50) and the BCH formulae, we find thatA+
0 ,ΠA+

0
andA+

n (x−) do not
change under U [ϑ] while

U [ϑ]ψ2(1)(x−)U†[ϑ] = e−i
e
2ϑ(x−)ψ2(1)(x−), (11.63)

U [ϑ]ΠA+
n
U†[ϑ] = ΠA+

n
+
e

2

+L∫
−L

dy−

2
1
2
ε(x− − y−)j+(y−). (11.64)

The Hamiltonian changes its structure: P− → U [ϑ]P−U†[ϑ] = P−lc + P−gh,

P−lc =

+L∫
−L

dx−

2

[
Π2
A+

0
− e2

4

+L∫
−L

dy−

2
j+(x−)G2(x−− y−)j+(y−) +

+ m
(
ψ†2(x

−)ψ1(x−) + ψ†1(x
−)ψ2(x−)

)]
, ∂2

−G2(x−) = δn(x−),

P−gh =

+L∫
−L

dx−

2
[
Π2
A+

n
(x−) +

e

2

+L∫
−L

dy−

2
ΠA+

n
(x−)ε(x−− y−)j+(y−)

]
. (11.65)

P−lc is the Hamiltonian of the usual light-cone (LC) gauge A+
n (x−) = 0 while unphysical P−gh

has vanishing matrix elements on physical states defined by the transformed Gauss’ operator
〈phys|Ĝn|phys〉 = 0. Ĝn = 2∂−ΠA+

n
does not generate any GT of ψ2(1). They are the fermi

fields in the LC gauge,

ψ1(x−) =
m

4i

+L∫
−L

dy−

2

[
ε(x−− y−) + itgα

]
e−

e
2 (x−−y−)A+

0 ψ2(y−). (11.66)

One of the advantages of the transformation to the LC gauge representation is that now it is
simple to derive the Fock representation of ψ1(x−):

ψ1(x−) =
m√
2L

∞∑
n= 1

2

[ bn

p+
n − eA+

0

e−
i
2p

+
nx

−
− d†n
p+
n + eA+

0

e
i
2p

+
nx

−
]

(11.67)

The theta vacuum becomes U [ϑ]|θ〉 ≡ |θ̂〉 and contains the unphysical ghost quanta,

|θ̂〉=
∞∑

ν=−∞
eiν(π̂0−θ) exp

∞∑
n=1

(−1)n
[ ν√

2L
e

p
+3/2
n

(
g∗n−gn

)
+
ν

n

(
A†n−An

)]
|0〉.
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12 Light front bosonization

It is a remarkable property of two-dimensional field theory in the conventional space-like formu-
lation and fermionic field variables. Thus, there exists a kind of “duality” in the description of
corresponding dynamics, as has been explicitly found by Coleman [43] and Mandelstam [116]
for the case of sine-Gordon and Thirring models, and implicitly by Klaiber [117] and others.
These results have later on been made more rigorous by Schroer and Truong [118] and Lehmann
and Stehr [119]. For the case of the massive Schwinger model, bosonization was demonstrated
by Coleman, Jackiw, Susskind and Kogut [102, 103, 101].

The bosonization corresponding rules are summarized by

jµ(x) =
1√
π
εµν∂νφ(x),

jµ5 (x) =
1√
π
∂νφ(x),

ψ(x)ψ(x) = c : cos 2
√
πφ(x) :,

ψ(x)γ5ψ(x) = c : sin 2
√
πφ(x) :,

ψL(R)(x) =
√
cµ

2π
: exp

[
− i
√
π
(∫ x

−∞
dξφ̇(ξ)± φ(x)

)]
: (12.1)

Some elements of bosonization have been treated also in the LF formulation [114] but no sys-
tematic study was done.

Let us start with the case of free LF fermions in the continuum formulation. All necessary
ingredients are paralel to those discussed in a previous section. The goal here will be to find an
equivalent representation of the fermion field in terms of a bosonic field which obeys canonical
bosonic commutation relation.

For this purpose, let us consider the commutation relation between two dynamical current
components

j+(x) = 2 : ψ2
†(x)ψ2(x) : . (12.2)

It is convenient again first to Fourier transform the current,

j+(x−) =

∞∫
0

dp+

4π
√
π

[A(p+)e−
i
2p

+x− +A†(p+)e
i
2p

+x− ], (12.3)
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where the composite operator A(k+) is given by

A(k+) = 2

+∞∫
−∞

dx−

2
j+(x−)e

i
2k

+x− =

=

∞∫
0

dp+

2π
√
p+(p+ + k+)

[
b†(p+)b(p+ + k+)− d†(p+)d(p+ + k+)

]
+

+

k+∫
0

dp+

2π
√
p+(k+ − p+)

d(p+)b(k+ − p+). (12.4)

This is the continuum version of the current bosonization that was described in the previous
section for the finite-volume massive Schwinger model. By a direct calculation one finds

[A(p+), A†(p′+)] = 2πp+δ(p′+ − p+), [A(p+), A(p′+)] = 0 (12.5)

and as a consequence also

[j+(x−), j+(y−)] =
i

π
∂x−δ(x

− − y−). (12.6)

The latter relation is the basis for deriving the bosonized version of the fermi field operator ψ2.
Indeed, consider the exponential operator

Φ(x−) = c1e
−ic0φ(x−) = c1c2 : e−ic0φ(x−) : = c1c2e

−ic0φ(+)(x−)e−ic0φ
(−)(x−), (12.7)

where φ(±) are the positive and negative frequency parts of φ(x) (parts with creation and anni-
hilation operators) and the constant c2 = exp

{
1/2c20

[
φ(+)(x−), φ(−)(x−)

]}
. This factorized

form is the result of using the first opoerator identity from (11.19). The scalar field φ given by

φ(x−) =
√
π

+∞∫
−∞

dy−

2
1
2
ε(x− − y−)j+(y−). (12.8)

The constants c0 and c1 are left as free parameters for the moment. The operator φ satisfies the
commutation relation for the canonical scalar LF field at x+ = y+ = 0:

[φ(x−), φ(y−)] =
π

4

+∞∫
−∞

du−

2

+∞∫
−∞

dv−

2
ε(x− − u−)ε(y− − v−)

[
j+(u−), j+(v−)

]
= − i

8
ε(x− − y−), (12.9)

The crucial point for deriving the above commutation relation is the Schwinger term in the
current-current commutator. Inserting the momentum representation of the antisymmetric sign
function

ε(x− − y−) =
2i
π

∞∫
0

dp+

2
1
p+

[
e−

i
2p

+(x−−y−−iε) − e
i
2p

+(x−−y−+iε)
]

(12.10)
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into Eq.(12.8) one finds

φ(x−) =
i

4π

∞∫
0

dq+
1
q+
[
A(q+)e−

i
2 q

+x− −A†(q+)e
i
2 q

+x−
]

(12.11)

and

Φ(x−) = c1c2 exp[−Â†(x−)] exp[Â(x−)] (12.12)

with

Â(x−) =
c0
4π

∞∫
0

dq+
A(q+)
q+

e−
i
2 q

+x− . (12.13)

Can the operator Φ(x−) satisfy anticommutation relation ? It turns out that the constant c0 may
be chosen in such a way that it can. Indeed, applying the operator relation following from (11.19)
exp(A) exp(B) = exp[A,B] exp(B) exp(A) in the product Φ(x−)Φ(y−) to interchange order
of the two operators, one gets

Φ(x−)Φ(y−) = c21c
2
2e
−Â†(x−)eÂ(x−)e−Â

†(y−)eÂ(y−) =
= c21c

2
2 exp

{
− [Â(x−), Â†(y−)]

}
exp

{
− [Â†(x−), Â(y−)]

}
×

× e−Â
†(y−)eÂ(y−)e−Â

†(x−)eÂ(x−) =

= exp[− c20
4π

∞∫
0

dq+

q+
e−

i
2 q

+(x−−y−)]×

× exp[
c20
4π

∞∫
0

dq+

q+
e

i
2 q

+(x−−y−)]Φ(y−)Φ(x−). (12.14)

Taking into account the definition of the sign function (12.10) and choosing c0 = 2
√

2π, the
two exponentials in the last line of the above equations combine to exp[iπε(x− − y−)] = −1
yielding the desired anticommutation property.

The situation is slightly more complicated for the anticommutor between Φ(x) and Φ†(y)
which we should find to be proportional to δ(x− − y−). We remind here the form of the two-
point function of the massive LF scalar field φ̃(x) of a mass µ that will be needed. The field
expansion is

φ̃(x−) =

∞∫
0

dq+

4πq+
[
a(q+)e−

i
2 q

+x−− i
2

µ2

q+ x
+

+ a†(q+)e
i
2 q

+x−+ i
2

µ2

q+ x
+]
, (12.15)

where small imaginary parts for x± are understood. Using the Fock commutation relation
[a(p+), a†(p′+)] = 2πp+δ(p+ − p′+), one straightforwardly gets for the two-point function

D(x) = 〈0|φ̃(0, 0)φ̃(x+, x−)|0〉 =

∞∫
0

dp+

8πp+
e

i
2p

+(x−+iε)+ i
2

µ2

p+ (x++iδ)
. (12.16)
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We already found that this integral is equal to

D(x) = − i

16
|sgn(x+) + sgn(x−)|

(
N0(µ

√
x2)− isgn(x+)J0(µ

√
x2)
)

+

+
1
8π
|sgn(x+)− sgn(x−)|K̃(x+, x−), (12.17)

where K̃ is equal to

K̃(x+, x−) = K0(µ
√

(x+ − iδ)(x− + iε), if x+ > 0, x− < 0 (12.18)

or to a complex conjugate expression if x+ < 0, x− > 0. J0(z) (K0(z)) is the (modified) Bessel
function of the order 0. This expression is useful because the 2-point correlation function of the
composite field φ(x) (12.11) is the same as the one of the elementary scalar field φ̃(x):

〈0|φ(0, 0)φ(x+, x−)|0〉 = D(x). (12.19)

The calculation of the anticommutator in the bosonized form requires an explicit presence of the
small imaginary part of the LF time in the two operators Φ. As in the previous calculation, we
get, using the familiar operator identities,

Φ(x+, x−)Φ†(0, 0) = exp [Â(x+, x−), Â†(0, 0)] : Φ(x+, x−)Φ†(0, 0) :,

Φ†(0, 0)Φ(x+, x−) = exp [Â(0, 0), Â†(x+, x−)] : Φ†(0, 0)Φ(x+, x−) : . (12.20)

It follows that

Φ(x+, x−)Φ†(0, 0) + Φ†(0, 0)Φ(x+, x−) =: Φ(x+, x−)Φ†(0, 0) : ×

[
exp

( ∞∫
0

dk+

k+
e−

i
2k

+x−− i
2

µ2

k+ x
+
)

+ exp
( ∞∫

0

dk+

k+
e

i
2k

+x−+ i
2

µ2

k+ x
+
)]
. (12.21)

From Eqs.(5.10) and (12.18) we see that the integrals Ê1, Ê
∗
1 in the exponentials of the latter

expression are related to the function D(x). For x2 < 0 we have

Ê1 = 2K0

(
µ
√

(x+ − iδ)(x− + iε)
)
. (12.22)

Taking into account the form of the Bessel function K0(z) for small z, K0(z) ≈ −γE− ln( z2 )+
O(z2), where γE is the Euler’s constant, we find{

Φ(x+, x−),Φ†(0, 0)
}

= e−2γE
4
µ2

: Φ(x+, x−)Φ†(0, 0) : ×

×
[

1
(x+ − iδ)(x− + iε)

+
1

(x+ + iδ)(x− − iε)

]
(12.23)
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which for x+ = 0 reduces to the equal-time anticommutator{
Φ(0, x−),Φ†(0, 0)

}
= c22e

−2γE
8π
εµ2

δ(x−), (12.24)

because : Φ(0, 0)Φ†(0, 0) := 1 and we have used the relation (x− + iε)−1 − (x− − iε)−1 =
−2iπδ(x−). The normalization constant c1 can now be determined from the requirement that
the anticommutator (12.24) is equal to 1/2δ(x−). One finds c1 = µ

√
ε e

γE

4
√
π

. Since the constant
c2 was

exp
(
− 1

2
[
Â(x), Â†(x)

])
= exp

(
− 1

2
K0(µε)

)
=
√
µε

2
(12.25)

the final expression for the bosonized dynamical Fermi field component is

Φ(x) = C : e−i2
√
πφ(x) :

C = c1c2 = eγE

√
µ

8π
. (12.26)

It is interesting to note that a small imaginary part of the time argument of the bosonized fermion
field was used also in the original space-like treatment by Mandelstam:

ψL(x) = (cµ/2π)1/2eµ/8ε : exp
[
− 2iπ

∫ x

−∞
dξφ̇(ξ)− i

2
βφ(x)

]
: (12.27)

has been found in the original Mandelstam’s paper [116] starting from the commutation relation[
φ+(x, t+ dt), φ−(y, t)

]
= ∆+

(
(x− y)2 − (dt+ iε)2

)
, (12.28)

where

∆+ = − 1
4π

ln
{
c2µ2

[
x2 − (dt+ iε)2

]}
+O(x2). (12.29)

µ is a mass parameter and β defines the interacting term cos
(
βφ(x)

)
of the sine-Gordon model.

The last two properties we have to understand is if one really has j− = −∂+φ and if one can
write the mass term as something proportional to cos(φ).

From Eq.(12.8) we easily get, using partial integration

j+(x) =
2√
π
∂−φ(x). (12.30)

In a similar way, assuming the vector-current conservation ∂+j
+(x) + ∂−j

−(x) = 0, we find

∂+φ(x) = −
√
π

∞∫
−∞

dy−

2
1
2
ε(x− − y−)∂−j−(x+, y−) = −

√
π

2
j−(x−). (12.31)
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The Eqs.(12.30,12.31) are summarized in the familiar statement

jµ(x) =
εµν√
π
∂νφ(x). (12.32)

To derive the bosonized form of the mass term, one has to take into account the fact that the
second component of the Fermi field satisfies an equation of constraint in the LF formulation.
This implies

χ(x) =
m

4i

∞∫
−∞

dy−

2
ε(x− − y−)Φ(x+, y−) (12.33)

The free fermionic Hamiltonian becomes

P− =
m2

4i

+∞∫
−∞

dx−

2

∞∫
−∞

dy−

2
ε(x− − y−)

[
Φ†(x)Φ(x+, y−)− Φ†(x+, y−)Φ(x)

]
(12.34)

or

P− =
m2

4i
C2

+∞∫
−∞

dx−

2

∞∫
−∞

dy−

2
ε(x− − y−)

[
: e2i

√
πφ(x−) : : e−2i

√
πφ(y−) : −

: e2i
√
πφ(y−) : : e−2i

√
πφ(x−) :

]
(12.35)

It is instructive to compare this result with the derivation of the bosonized form of the mass
in the conventional field theory. In one approach ( [120]) one uses the commutators between
pseudoscalar density J5 and the axial current density j05 :

J5(x) = ψ†LψR − ψ†RψL = F+

(
φ(x)

)
− F−

(
φ(x)

)
,

j50 = ψ†LψL − ψ†RψR,[
j05(x), F−

(
φ(y)

)]
= −2δ(x− y)F−

(
φ(y)

)
. (12.36)

The Fermi field ψ(x) has the upper and lower components ψR and ψL and satisfies the canonical
anticommutation relation. Since from the current bosonization one has j05(x) = 1√

π
∂0φ(x) =

1√
π
Πφ(x), the two commutators can be rewritten as

1√
π

[
Πφ(x), F±

(
φ(y)

)]
= ±2δ(x− y)F±

(
φ(y)

)
. (12.37)

The corresponding solution is

F±
(
φ(x)

)
= c exp

{
± 2i

√
πφ(x)

}
(12.38)
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so that J(x) = c cos 2
√
πφ(x) (c is a constant). Note that this result is based on the canonical

commutator of the scalar field[
φ(x),Πφ(y)

]
= iδ(x− y) (12.39)

and cannot be used in the LF theory where Π 6= ∂+φ. Thus one can expect a modification of the
bosonized mass term in the LF formulation.

Bosonic represention of the two-dimensional massive LF fermion field can be derived also in
the discretized formulation. The starting expressions are the Fock expansions of the dynamical
fermion field and current

ψ2(0, x−) =
1√
2L

∞∑
n= 1

2

[
bne

− i
2p

+
nx

−− i
2

m2

p+ x
+

+ d†ne
i
2p

+
nx

−+ i
2

m2

p+ x
+]
,

j+(x) =
1
L

[
A0 +

∞∑
m=1

(
Ame

− i
2p

+
mx

−
−A†me

i
2p

+
mx

−
)]
,

where A0 = Q. We already had the relation[
Am, A

†
n

]
= mδm,n (12.40)

and the current-current commutator with the Schwinger term[
j+(x−), j+(y−)

]
=

1
π
∂x−δn(x

− − y−).

From the DLCQ definition of the scalar field φ(x)

φ(x) =
√
π

+L∫
−L

dx−

2
εN (x− − y−)j+N (y−) (12.41)

we find

φ(x) =
∞∑
m=1

1
p+
m

[
Ame

− i
2p

+
mx

−
−A†me

i
2p

+
mx

−
]
,

Am =
∞∑
k= 1

2

(
b†kbk+m − d†kdk+m

)
+
m− 1

2∑
k= 1

2

dm−kbk. (12.42)

To show that the dynamical Fermi field component ψ2(x) has a representation in terms of a
bosonic field, one can proceed as follows. First, calculate the commutator

[
Am, ψ2(x)

]
= −e

i
2p

+
mx

−+ i
2

m2

p+ x
+

ψ2(x), (12.43)
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where a few nontrivial cancellations between different terms occured. Since Am|0〉 = 0, we
immediately get that the state ψ2(x)|0〉 is an eigenstate of the annihilation operator Am:

Amψ2(x)|0〉 = −e
i
2p

+
mx

−+ i
2

m2

p+ x
+

ψ2(x)|0〉 (12.44)

and hence it is a boson coherent state. Its form has to be

ψ2(x)|0〉 = N exp
{
−

∞∑
m=1

A†m
m

e
i
2p

+
mx

−
}
|0〉. (12.45)

or

ψ2(x)|0〉 = c′ exp
{
−

∞∑
n=1

1
n

(
A†ne

i
2p

+
nx

−+ i
2

m2

p
+
n
x+

−Ane
− i

2p
+
nx

−− i
2

m2

p
+
n
x+)}

|0〉. (12.46)

To check the validity of the representation (12.45) it is sufficient to act on it with Am and to use
the first operator relation (11.19) in the form B exp(−A) = exp(−A)B + [A,B] exp(−A). In
the next step, one can show that the same relation holds for an arbitrary Fock state generated
by A†n, i.e. in the whole space of states. Hence the bosonization correspondence holds as an
operator relationship.

Let us try to generalize the above considerations to the case of interacting models. First,
consider the light-front massive Schwinger model in the continuum formulation and in the LC
gauge A+ = 0. The corresponding Lagrangian is

Llf = iψ2
† ↔
∂+ ψ2 + iψ1

† ↔
∂− ψ1−m(ψ2

†ψ1 +ψ1
†ψ2) +

1
2
(∂−A−)2− e

2
j+A−. (12.47)

Using the constraints

2i∂−ψ1(x) = mψ2(x), ∂2
−A

−(x) = −e
2
j+(x) (12.48)

one gets the Hamiltonian in terms of dynamical variable ψ2(x) only which is analogous to the
finite-volume Hamiltonian (11.27):

P− =

+∞∫
−∞

dx−

2

[
− e2

4
j+

1
∂2
−
j+ +

+
m2

2i

∞∫
−∞

dy−

2
ε(x− − y−)

(
ψ2

†(x)ψ2(y)− ψ2
†(y)ψ2(x)

)]
. (12.49)

Expressing now the field ψ2 and the current j+ by their bosonic forms, we find

P− =

+∞∫
−∞

dx−

2

[e2
π
φ2 +

m2

2i
C2

∞∫
−∞

dy−

2
ε(x− − y−)×

×
(

: e2i
√
πφ(x−) :: e−2i

√
πφ(y−) : − : e2i

√
πφ(y−) :: e−2i

√
πφ(x−) :

)]
. (12.50)



504 Light front field theory: An advanced primer

Another possibility is to consider the massive Schwinger model in the Weyl gauge A− = 0.
The corresponding LF Hamiltonian in the continuum theory is

P− =

+∞∫
−∞

dx−

2

[
Π2
A+ +m

(
ψ2

†ψ1 + ψ1
†ψ2

)]
. (12.51)

The dependent component ψ1 in (12.51) satisfies the constraint

2i∂−ψ1(x) = mψ2(x) + eψ1A
+(x), (12.52)

which has a similar stucture than the fermionic constraint in the Thirring model (see below). In a
full analogy with the finite-volume treatment, it can be inverted by means of the Green’s function
G(z−;A+):

ψ1(x) = m

∞∫
−∞

dy−

2
G(x− − y−;A+)ψ2(x+, y−),

G(x− − y−;A+) =
1
2i
εa(x−− y−)e−ieϑ(x−)+ieϑ(y−),

ϑ(x−) =
1
2

∞∫
−∞

1
2
ε(x− − z−)A+(x+, z−). (12.53)

It is interesting to observe that an exponential form of the Green’s function G(x− − y−)
emerges also in the LF treatent of the massive Thirring model. In the conventional field the-
ory, massive Thirring model was found to be equivalent to the sine-Gordon model by Coleman,
Mandelstam, Schroer and others. It is defined by the Lagrangian density

L =
i

2
ψγµ

↔
∂µ ψ −mψψ − 1

2
gjµj

µ (12.54)

where jµ =: ψγµψ:. The corresponding LF expressions are

Llf = iψ2
† ↔
∂+ ψ2 + iψ1

† ↔
∂− ψ1 −m

(
ψ2

†ψ1 + ψ1
†ψ2

)
− 1

2
gj+j−,

j+ = 2 : ψ2
†ψ2 :, j− = 2 : ψ1

†ψ1 : . (12.55)

The Euler-Lagrange equations read

2i∂+ψ2 = mψ1 + gj−ψ2,

2i∂−ψ1 = mψ2 + gj+ψ1. (12.56)

The latter equation is a constraint. It can be used to bring the LF Hamiltonian to the form

P− = m

+∞∫
−∞

dx−

2
[
ψ2

†ψ1 + ψ1
†ψ2

]
(12.57)
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Derivation of the Hamiltonian as well as its form is identical to the case of the Federbush model.
The difference is that one can write down solution of the dynamical equation in the latter case and
this leads to a simplification of the bilinear fermionic structure because the exponential factors
cancel. The Hamiltonian of the massive Thirring model is more compex due to the presence of
exponential factors. Note that the interaction term jµj

µ disappeared from P− and the interaction
is contained solely in the ψ1(x) which is the solution of the constraint:

ψ1(x) =
m

2i

∞∫
−∞

dy−

2
ε(x− − y−) exp

{ ig
2

y−∫
x−

dz−j+(z−)
}
ψ2(x+, y−). (12.58)

Defining the Green’s function G

G(x− − y−) =
1
2i
ε(x− − y−) exp

{
− igφ(x−) + igφ(y−)

}
,

φ(x−) =
√
π

+∞∫
−∞

dz−

2
1
2
ε(x− − z−)j+(z−), (12.59)

the dependent Fermi field component can be written as

ψ1(x) = m

∞∫
−∞

dy−

2
G(x− − y−)ψ2(x+, y−). (12.60)

Inserting the bosonic representation of ψ2(x) into P−, we get

P− =
m2

2i
C2

+∞∫
−∞

dx−

2

∞∫
−∞

dy−

2
ε(x− − y−)

(
: e2i

√
πφ(x−) : e−

ig
2 φ(x−)+ ig

2 φ(y−) : e−2i
√
πφ(y−) : −h.c.

)
(12.61)

This LF Hamiltonian can be further treated by using operator identities. The detailed analysis is
a bit technical and will not be discussed here.

13 Higgs mechanism in a LF formulation

The Higgs mechanism in the LF formalism was studied on the tree level in the continuum formu-
lation [53]. It was assumed that a scalar field contains a c-number piece which gave a justification
for performing a usual shift in the Lagrangian leading to the generation of the mass term for the
gauge field. A support for the above assumption comes from the fact that the solution of the
zero-mode constraint of the real scalar field in the DLCQ analysis contains such a constant non-
operator part [65, 56].
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In the present work, we study the SSB of an abelian symmetry in the Higgs model. Our ap-
proach is based on the discrete light-cone quantization method (DLCQ) considered as a hamilto-
nian analytical framework with large but finite number of Fourier modes to approximate quantum
field theory with its infinite number of degrees of freedom. A (regularized) unitary operator that
shifts the scalar field by a constant will be used to transform the Fock space. The motivation for
this step is a natural physical requirement to find ground states in the broken phase which would
correspond to a lower LF energy than the usual Fock vacuum. This is suggested already by con-
sidering minima of the classical LF potential energy. A procedure, equivalent to transforming
the states, is to work with a transformed Hamiltonian and calculate its matrix elements between
the usual Fock states. In this way one naturally arrives at the effective type of the Hamiltonian
that incorporates the usual pattern of the Higgs mechanism.

The Lagrangian density of the abelian Higgs model that we wish to analyze has the form

L = −1
4
FµνF

µν +
1
2
(Dµφ)†Dµφ+

1
2
µ2φ†φ− λ

4
(φ†φ)2, (13.1)

where Fµν = ∂µAν − ∂νAµ, Dµφ = ∂µφ + ieAµφ, µ2 > 0. The Lagrangian is invariant
under two groups of transformations: the global rotations of the complex scalar field φ(x) →
exp

(
− iβ

)
φ(x) and the local gauge transformations

φ(x) → exp
(
− iω(x)

)
φ(x), Aµ(x) → Aµ(x) + ∂µω(x)/e. (13.2)

In terms of the LF variables, the Lagrangian (13.1) is

Llf =
1
2
(
∂+A

+ − ∂−A
−)2 +

(
∂+A

i +
1
2
∂iA

−)(2∂−Ai + ∂iA
+
)
−

−1
2
(
∂1A2 − ∂2A1)2 + ∂+φ

†∂−φ+ ∂−φ
†∂+φ−

1
2
∂iφ

†∂iφ−
ie

2
φ†

↔
∂+ φA+ −

− ie
2
φ†

↔
∂− φA− − ie

2
φ†

↔
∂i φA

i +
e2

2
(
A+A− −AiAi

)
φ†φ+

µ2

2
φ†φ− λ

4
(
φ†φ

)2
.(13.3)

Writing φ = σ + iπ, the conserved current corresponding to the global symmetry is Jµ(x) =

−iφ†(x)
↔
∂µ φ(x) = 2σ(x)

↔
∂µ π(x).

We will work in a finite volume V = 8L3 with space coordinates restricted to −L ≤
x−, x1, x2 ≤ L. Our notation is xµ = (x+, x), x = (x−, x1, x2), p.x = 1

2p
−x+ + 1

2p
+x− −

p1x1 − p2x2. The gauge field will be chosen periodic in all three directions, while the scalar
field will be antiperiodic: Aµ(x+, x− = −L, x, y) = Aµ(x+, x− = L, x, y), σ(x+, x− =
−L, x, y) = −σ(x+, x− = L, x, y), and similarly in the perpendicular directions x1, x2).10 The
boundary conditions imply discrete values of the three-momentum labeled by an integer or a half-
integer and also lead to the presence of global and proper zero modes of the gauge field [96]. The
proper ZM are constrained variables that can modify the LF Hamiltonian. For small coupling
the corrections may be evaluated perturbatively [97]. We shall however neglect the gauge-field

10 The alternative periodic BC for scalar fields imply presence of the constrained zero mode which in some cases lead
to a non-vanishing vacuum expectation value (VEV) of a field [50, 51, 27]. We believe however that the overall physical
picture of the symmetry breakdown is considerably clearer with the choice of antiperiodic BC.
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ZM in the present discussion because they are not crucial for the phenomenon under study. The
fields below refer then to the sector of normal Fourier modes.

The LF Hamiltonian, obtained in the canonical way from the Lagrangian (13.3), reads

P− =
∫
−V

d3x
{
F 2

12 + Π2
A+ + 2ΠA+∂−A

− −ΠAi∂iA
− − 2eσ

↔
∂− πA−

− 2eσ
↔
∂i πA

i − e2A2
(
σ2 + π2

)
+ (∂iσ)2 + (∂iπ)2 −

− µ2
(
σ2 + π2

)
+
λ

2
(
σ2 + π2

)2}
. (13.4)

Here A2 = A+A− −AiAi, i = 1, 2 and the canonical momenta are

ΠA+ = ∂+A
+ − ∂−A

−, ΠAi = 2∂−Ai + ∂iA
+

ΠA− = 0, Πσ = 2∂−σ − eπA+,Ππ = 2∂−π + eσA+. (13.5)

At x+ = 0, we assume the usual LF commutation rules[
σ(x+, x), σ(x+, y)

]
=
−i
8
ε(x− − y−)δ2(x⊥ − y⊥),

[
π(x+, x), π(x+, y)

]
=
−i
8
ε(x− − y−)δ2(x⊥ − y⊥),

[
A+(x+, x),ΠA+(x+, y)

]
=
i

2
δ3(x− y)

[
Ai(x+, x),ΠAj (x+, y)

]
=
i

2
δijδ3(x− y). (13.6)

The mode expansions of the scalar fields are

σ(0, x) =
1√
V

∑
n

1√
p+
n

[
a(pn)e−ipn.x + a†(pn)eipn.x

]
,

π(0, x) =
1√
V

∑
n

1√
p+
n

[
c(pn)e−ipn.x + c†(pn)eipn.x

]
, (13.7)

where pn = (p+
n , pn1 , pn2), p

+
n = 2π

L n, n = 1/2, 3/2, . . . , and similarly for the perpendicular
components. The global rotations are implemented by the unitary operators V (β) in terms of the
charge Q =

∫
−V

d3xJ+(x):

σ(x) → V (β)σ(x)V †(β) = σ(x) cosβ − π(x) sinβ,
π(x) → V (β)π(x)V †(β) = σ(x) sinβ + π(x) cosβ. (13.8)

Here

V (β) = eiβQ (13.9)
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with

V (β) = exp
{ Λ∑

n

(
a†(pn)c(pn)− c†(pn)a(pn)

)}
. (13.10)

The Hamiltonian (13.4) is invariant under x+-independent gauge transformations. They are im-
plemented by the unitary operator

U [ω(x)] = exp
{
i

∫
−V

d3x
[
2ΠA+∂− −ΠAi∂i + eJ+

]
ω(x)

}
(13.11)

Indeed, we easily find

U [ω(x)]φ(x)U†[ω(x)] = exp
(
− iω(x)

)
φ(x),

U [ω(x)]Aµ(x)U†[ω(x)] = Aµ(x) + e−1∂µω(x). (13.12)

Consider now the unitary operators

Uσ(b) = exp
{
− 2ib

∫
−V

d3xΠσ(x)
}

Uπ(b) = exp
{
− 2ib

∫
−V

d3xΠπ(x)
}
. (13.13)

They shift the corresponding scalar field by a constant. To follow the usual treatment, we will
perform only shifts in the σ-direction:

Uσ(b)σ(x)U−1
σ (b) = σ(x)− 2ib

∫
−V

d3y
[
Πσ(y), σ(x)

]
= σ(x)− bεΛ(L− x−)εΛ(L− x1)εΛ(L− x2). (13.14)

The subscript Λ attached to the sign function ε(x) indicates that their Fourier series is truncated
at Λ:

εΛ(x−) =
4i
L

Λ∑
n= 1

2

1
p+
n

(
e−ip

+
nx

−
− eip

+
nx

−
)

(13.15)

and analogously for the perpendicular components. The point is that one has to take a large but
finite number of field modes in all three space directions in order to have a well-defined operator
Uσ(b). In practice, for Λ ≈ 103 the sign functions are equal to unity to a very good approximation
everywhere on the finite interval −L < x−, x1, x2 < L except for a very small neighborhood of
the end-points. Therefore we will not write these sign functions explicitly henceforth.

By means of the shift operator Uσ(b), we can define a set of states |b〉 = Uσ(b)|0〉 (|0〉 is the
Fock vacuum). Minimizing the expectation value of the energy density V −1〈b|P−|b〉, we easily
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find that the minimum of the LF energy, equal to −µ4

2λ is achieved for b = µ√
λ
≡ v. It is lower

than the usual (vanishing) value of the LF energy in the “trivial” vacuum |0〉. From Eq.(13.14)
we also have the property that the vacuum expectation value of the σ-field is non-zero which is
the indication of broken symmetry:

〈v|σ(x)|v〉 = 〈0|U−1
σ (v)σ(x)Uσ(v)|0〉 = v. (13.16)

Here, the sign functions multiplying the value v are understood as in Eq.(13.14). The accom-
panying vacuum degeneracy is easily obtained by rotating our “trial” vacuum (chosen in the
σ-direction):

V (β)|v〉 = V (β)Uσ(v)|0〉 ≡ |v;β〉. (13.17)

Thus we have an infinite set of vacuum states corresponding to the above minimum of the LF
energy and labeled by the angle β.

The next step in the Hamiltonian formalism is to construct the space of states. A natural
possibility would be to apply a string of creation operators of all fields to the new vacuum,
chosen to be |v; 0〉, and calculate the corresponding matrix elements of P−. A simpler option is
to build a usual set of Fock states from the Fock vacuum |0〉 and transform all of them by Uσ(v).
This type of states is known as displaced number states in quantum optics [62]. In either case
one can easily see that instead of the original Hamiltonian (13.4) one actually works with the
new “effective” LF Hamiltonian

P̃− = U−1
σ (v)P−Uσ(v) (13.18)

in which the σ-field is shifted by the value v. This of course leads to the structure known from
the lagrangian formalism in the conventional field theory [121]: the mass term of the gauge field
of the form e2v2A2 is generated, the pion field becomes massless and the σ-field acquires mass
equal to

√
2µ. The change in the Hamiltonian density shows this explicitely:

δP− = −µ
4

2λ
+ 3µ2σ2 + µ2π2 − e2v2A2 − 2e2vσA2 +

+ 2
√
λµσ

(
σ2 + π2

)
− 2ev

(
∂−πA

− + ∂iπA
i
)
. (13.19)

The latter non-diagonal term and the kinetic term (∂iπ)2 can be removed by introducing the new
field B:

B+(x) = A+ +
2
ev
∂−π, B

i(x) = Ai(x)− 1
ev
∂iπ(x), (13.20)

while B− = A−. In this way, the π field disappeared from the quadratic part of the Hamiltonian
but it is still present in the interacting part. One may suspect that it is actually a redundant degree
of freedom because the gauge freedom has not been removed.

In a full analogy with the space-like treatment, a clearer physical picture is obtained in the
unitary gauge. Introducing the radial and angular field variables:

φ(x) = ρ(x)eiΘ(x)/v, (13.21)
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the LF Hamiltonian will take the form

P−r =
∫
−V

d3x
{

Π2
A+ + 2ΠA+∂−A

− −ΠAi∂iA
− + F 2

12 + (∂iρ)2+

+ ρ2(∂iΘ/v)2 − 2eρ2∂−A
−Θ/v − 2eρ2Ai∂iΘ/v − e2ρ2A2 − µ2ρ2 +

λ

2
ρ4
}
. (13.22)

To fix the gauge at the classical Lagrangian level, one observes that the gauge transformations
simply shift the angular field variable Θ(x) by the gauge function ω(x). Choosing ω(x) =
−Θ(x)/v, one has

φ(x) → ρ(x), Aµ(x) → Bµ(x) = Aµ(x)− 1
ev
∂µΘ(x) (13.23)

with the corresponding Lagrangian

Lu = −1
4
GµνG

µν +
1
2
|∂µρ− ieBµρ|2 +

1
2
µ2ρ2 − λ

4
ρ4. (13.24)

Taking this gauge fixing over to the quantum theory, defined by the commutation relation at
x+ = 0[

ρ(x+, x), ρ(x+, y)
]

= − i
8
ε(x− − y−)δ2(x⊥ − y⊥), (13.25)

we find the quantum LF Hamiltonian P−u in the unitary gauge. It coincides with the Hamiltonian
(13.22) except for the missing Θ-terms and the Bµ replacing the Aµ field. The equal-LF time
algebra (13.25) enables us to introduce the shift operator (Πρ = 2∂−ρ)

Uρ(v) = exp
{
− 2iv

∫
−V

d3xΠρ(x)
}

(13.26)

which defines the “effective” LF Hamiltonian P̃−u = U−1
ρ (v)P−u Uρ(v) corresponding to the

unitary gauge:

P̃−u =
∫
−V

d3x
{

Π2
B+ + 2ΠB+∂−B

− −ΠBi∂iB
− +G2

12 +

+ (∂iρ)2 − e2(ρ+ v)2B2 − µ2(ρ+ v)2 +
λ

2
(ρ+ v)4

}
. (13.27)

From its form it is easy to find that it describes one massive scalar field ρ and a vector field with
the mass e2v2. The massive vector field emerged as a combination of the the massless gauge
field Aµ and the scalar Θ field.

Another possibility is to analyze the symmetry breaking in the light-cone gauge. This means
that we setA+ = 0 in the normal-mode sector. The starting Hamiltonian and conjugate momenta
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are then the expressions (13.4),(13.5) without the terms containing A+. One proceeds as in
the case without the gauge fixing, namely defines the shift operator Uσ(v) and constructs the
infinite set of degenerate (approximative) vacuum states by applying the unitary operator V (β)
(Eq.(13.10)) to the coherent-state vacuum |v〉. The corresponding effective LF Hamiltonian is
obtained by the transformation (13.18). One observes an important difference as compared with
the unitary-gauge treatment. It is related to the fact that the choiceA+ = 0 eliminates theA+A−

part of the vector field mass term generated by shifting the σ field in the −e2A2(σ2 + π2) term
in the Hamiltonian (13.4). Thus the massive vector field seems to have only two components and
this is not correct. The resolution of this difficulty comes from the observation [53] that in the
light-cone gauge the Gauss’ law becomes a constrained equation for the A− component of the
gauge field:

∂2
−A

−(x) + ∂−∂iA
i(x) = eσ(x)

↔
∂i π(x). (13.28)

The shift of the σ field by means of the operator Uσ(v) generates an additional term of the form
ev∂−π(x) on the righ-hand side of this equation. Upon inserting the shifted constraint to the
Hamiltonian, the latter piece leads to the new term e2v2π2 (i = 1, 2):

P̃−lc =
∫
−V

d3x
[
F 2

12 + (∂iAi)2 + (∂iπ)2 + e2v2
(
π2 +A2

i

)
+ . . .

]
. (13.29)

To see that this Hamiltonian corresponds to a free massive vector meson field, it is useful to
consider the gauge-invariant form of the scalar electrodynamics with a massive vector field [122].
It differs from the Lagrangian of the massless scalar QED by the term 1

2 (mAµ − ∂µB)2 which
makes the vector field massive. B is a scalar field andm a mass parameter. The usual formulation
with the condition ∂µAµ = 0 corresponds to the gauge B = 0. In the A+ = 0 gauge we obtain

P− =
∫
−V

d3x
[
F 2

12 +
(
∂iA

i)2 + (∂iB)2 +m2A2
i +m2B2

]
, (13.30)

plus the interaction terms. Comparing the two Hamiltonians, one can see that also in the light-
cone gauge picture of the LF Higgs mechanism the gauge field became massive possessing three
components (π,A1, A2) with the mass m = ev. The mass term of the σ field is generated as in
the previous case.

In summary, we gave three versions of the Higgs phenomenon in the light front abelian Higgs
model for different gauge choices. Our light front formulation was based on the finite-volume
quantization with antiperiodic boundary conditions for the scalar fields. Minimization of the
LF energy led to the semiquantum description of the degenerate vacuum states. In this way,
the concept of the trivial LF vacuum containing no quanta was generalized to a more complex
vacuum state with the non-trivial structure. The overall picture of the spontaneous breaking of
the (abelian) gauge symmetry was thus found to be quite analogous to the conventional theory
quantized on the space-like hypersurface, namely one scalar field and the gauge field become
massive (the tree-level masses e2v2 and

√
2µ, respectively) and there is no massless Goldstone

boson in the particle spectrum.
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14 Two-dimensional perturbative LF scattering matrix in DLCQ

Perturbative amplitudes of self-energy and scattering processes have been studied in the contin-
uum formulation of light front quantization since its inception [123]. Chang and Yan [8] showed
the formal equivalence of S matrix elements in light front quantization and the more familiar
space-like quantization.

Most of the applications of the DLCQ method following the work of Pauli and Brodsky
[14, 15] have been to bound state spectra. It is however an interesting question to develop per-
turbation theory in a finite volume and to study the continuum limit of the corresponding ampli-
tudes. In particular, it is important to understand the role of the constrained zero modes which
are explicitly present in the DLCQ approach for obtaining answers that agree with the usual co-
variant results. There exist claims about iconsistencies of the LF perturbative results [124]. In
this section we will show that the Hamiltonian LF perturbation theory in a finite volume with
(anti)periodic boundary conditions yields correct results provided it is applied consistently and
carefully. This agreement is non-trivial taking into account the fact that the Hamiltonian scheme
is not manifestly covariant and has different structure. One uses energy denominators instead of
propagators and calculates individual time-ordered diagrams, not the covariant (Feynman) ones.
Also, the zero-mode contributions in a finite volume have to be added and extrapolated to the
infinite-volume limit. This issues will be studied in this subsection for a simple case of one loop
scattering amplitude in λ

4!φ
4 theory in the continuum and discretized formulation including also

a few numerical results.
Let us first review the calculation of the scattering amplitude in the forward limit (scattering

angle equal to zero) and in the continuum formulation. For simplicity we will again study two-
dimensional theory.

Consider the scattering amplitude at one loop level in φ4 theory. p1, p2 are the initial mo-
menta and p3, p4 are the final momenta. Let us denote s = (p1+p2)2 = (p1+p2)+(p1+p2)− =
(p+

1 + p+
2 )2m2/p+

1 p
+
3 and t = (p1 − p3)2 = (p1 − p3)+(p1 − p3)− = −(p+

1 − p
+
3 )2m2/p+

1 p
+
3 .

According to the rules of (Hamiltonian) light front perturbation theory, listed in the Appendix,
we have to consider two cases separately. For p+

1 > p+
3 , which defines one possible x+ ordering,

the amplitude (Fig. 14.1a) is

Mfi =
1
2
λ2

4π
θ(p+

1 − p+
3 )
∫ p+1 −p

+
3

0

dq+1
1
q+1

1
p+
1 − p+

3 − q+1
×

× 1
p−1 + p−2 − p−3 − p−2 − q−1 − (p1 − p3 − q1)−

=
1
2

λ2

4πm2

p+
1 p

+
3

p+
1 + p+

3

θ(p+
1 − p+

3 )
p+
1 − p+

3

∫ p+1 −p
+
3

0

dq+1

[ 1
q+1 − p+

1

− 1
q+1 + p+

3

]
, (14.1)

where the step function θ(p+
1 − p

+
3 ) incorporates the chosen condition on the momenta or equiv-

alently the given time ordering of the two vertices in Fig. 14.1a. The energy denominator cor-
responds to the difference of the LF energies between the incoming state and the intermediate
state. The latter contains four particles as can be visualized by drawing a vertical line through the
loop in the diagram. The second form of the integrand has been obtained by using the dispersion
relation for a free quantum k− = m2/k+ for all energies in the denominator (recall that in the
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Fig. 14.1. φ4 scattering diagrams in time-ordered LF perturbation theory

quanta are off energy shell but on mass shell in the Hamiltonian form of the perturbation theory)
and performing some simple algebraic manipulations to simplify the expression. For p+

1 < p+
3 ,

the scattering amplitude (Fig. 14.1b) is equal

Mfi =
1
2
λ2

4π
θ(p+

3 − p+
1 )
∫ p+3 −p

+
1

0

dq+1
1
q+1

1
p+
3 − p+

1 − q+1
×

× 1
p−3 + p−2 − p−1 − p−2 − q−1 − (p3 − p1 − q1)−

=
1
2

λ2

4πm2

p+
1 p

+
3

p+
1 + p+

3

θ(p+
3 − p+

1 )
p+
3 − p+

1

∫ p+3 −p
+
1

0

dq+1

[ 1
q+1 − p+

3

− 1
q+1 + p+

1

]
. (14.2)

We have used overall energy conservation p−1 + p−2 = p−3 + p−4 and hence p−2 − p
−
4 = p−3 − p

−
1 .

We are interested in the forward scattering amplitude, i.e., in | p+
1 − p+

3 |→ 0 limit. In this
limit q+1 is very small compared to both p+

1 and p+
3 and it is legitimate to expand the integrands.

We get,

1
q+1 − p+

1

− 1
q+1 + p+

3

≈ −p
+
1 + p+

3

p+
1 p

+
3

,

1
q+1 − p+

3

− 1
q+1 + p+

1

≈ −p
+
1 + p+

3

p+
1 p

+
3

. (14.3)

Thus, in the forward scattering limit, we get,

Mfi = −1
2

λ2

4πm2
, (14.4)

because the integrand does not depend on the integration variable, the integration contributes
only the factor coming from the upper limit and the momentum-dependent factors cancel. Al-
ternatively, we can use the first form of the integrand, change the variables according to P+ =
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p+
3 − p+

1 , q
+
1 = yP+ to find

Mfi =
1
2
λ2

4π

1∫
0

dy
1

y(1− y)t−m2 + iε
(14.5)

After decomposing the denominator into two fractions and performing an elementary integration,
the explicit result is

Mfi(t) = −1
2
λ2

4π
1

t
√

1
4 −

m2

t

log

2
√

1
4 −

m2

t − 1

2
√

1
4 −

m2

t + 1

 . (14.6)

In the forward scattering limit t→ 0, one again finds the result (14.4).
In order to calculate the one-loop scattering amplitude in DLCQ perturbation theory for the

λ/(4!)−1φ4 (1+1) model with periodic boundary conditions, we need to derive the light front
Hamiltonian with O(λ2) zero-mode effective interactions. This will be done in the subsequent
section where we will also show that contributions from zero modes vanish in the continuum
limit. We shall therefore ignore these contributions here. Recall that the mode expansion for the
normal mode field φn(x−) is

φn(x−) =
1√
2L

∑
k+

n>0

1√
k+
n

[
ane

−ikx + a†ne
ikx
]
. (14.7)

The notation is kx ≡ 1
2k

+
n x

− and k+
n = 2π

L n, n = 1, 2, . . .∞.
The scattering amplitude can be calculated by the old fashioned perturbation theory formula

(see the Appendix)

Tfi =
∑
j

〈p′|HI |j〉〈j|HI |p〉
p− − p−j

, (14.8)

where HI denotes the interacting Hamiltonian. Using the formula (14.8) with |p〉 → |p+
1 , p

+
2 〉,

|p′〉 → |p+
3 , p

+
4 〉 and with four-particle intermediate states, one finds the following expression

for the second-order normal mode scattering amplitude

Tfi =
δp+4 +p+3 ,p

+
2 +p+1

θ(p+
3 − p+

1 )

(2L)2
√
p+
4 p

+
3 p

+
2 p

+
1

λ2

4

∑
q+1

1
q+1 (p+

3 − p+
1 − q+1 )

×

× 1
p−3 − p−1 − q−1 − (p3 − p1 − q1)−

(14.9)

plus another term with 1 ↔ 3. The above equation must be treated with care. Due to the presence
of the θ-function, p+

1 may approach p+
3 to an arbitrary precision but not to the exact value. In

DLCQ, we have,

t = (p+
1 − p+

3 )(p−1 − p−3 ) = −m2 (p+
1 − p+

3 )2

p+
1 p

+
3

= −m2 (n1 − n3)2

n1n3
, (14.10)
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Tab. 14.1. M(t̃) versus t̃ in DLCQ. For the definition of t̃, see the text. The correct answer is −1 in our
choice of units.

n1 −t̃ M(t̃)

6 .166667 ×100 -.980000
8 .833333 ×10−1 -.989796
10 .500000 ×10−1 -.993827
20 .111111 ×10−1 -.998615
30 .476190 ×10−2 -.999405

100 .408163 ×10−3 -.999949
500 .160643 ×10−4 -.999998
1000 .400802 ×10−5 -.999999

independent of L. For convenience, we set m2 = 1.0 and without loss of generality take p+
1 >

p+
3 . The scattering amplitude (up to the irrelevant factor λ

2

8π ) is

M(t) =
n1n3

n1 + n3

1
n1 − n3

n1−n3∑
n=1

[ 1
n− n1

− 1
n+ n3

]
. (14.11)

With antiperiodic boundary condition, the mode expansion for the field is

φ(x−) =
1√
2π

∑
1,3,...

1√
n

[
ame

− i
2

π
Lmx

−
+ a†me

− i
2

π
Lmx

−
]
. (14.12)

The scattering amplitude in the t-channel in this case reads

M(t) = 2
n1n3

n1 + n3

1
n1 − n3

n1−n3−1∑
n=1

[ 1
n− n1

− 1
n+ n3

]
. (14.13)

Let us evaluate the scattering amplitude given in Eq. (14.11) in DLCQ. Note that the mini-
mum allowed value for n1, n3 is 1. Thus we start from n1 = 2. In this case n3 = 1 and DLCQ
gives the answer -1 for the scattering amplitude for t = −1/2 which is obviously wrong. It is
easy to check that for each n1, since the maximum n3 is n1 − 1, the corresponding minimum
t is - 1

n1(n1−1) and for this particular t DLCQ always gives the answer −1 for the scattering
amplitude which is wrong for finite n1 but is correct for n1 →∞.

The next maximum value of n3 is n1 − 2 and we denote the corresponding t by t̃ =
− 4
n1(n1−2) . In Table 14.1. we present the behavior of M(t̃) with n1 as t̃ → 0. It is clear

from Fig. 14.1. that DLCQ produces the correct answer which is −1 in our units, for the limit
of forward scattering. Again, the limit may be approached to an arbitrary numerical precision.
For a given n1, we increase n3 by steps of 2 and study the behavior of M(t) as a function of
t for small values of t. The result is plotted in Fig. 14.2. Recall that for n1 = 2, n3 = 1,
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Fig. 14.2. The behaviour of the amplitude M(t) as a function of t for n1 = 2, 4, 6, 8, 10 for small values
of t.

t = −1/2 and M(t) = −1. For n1 = 4, n3 = 2, t = −1/2 and M(t) = −0.94 which is
close to the continuum limit (−0.92). Thus, for very small n1, with periodic boundary condi-
tion, the convergence is from below. We can see that the results for very small n1 are affected
by discretization but reliable results emerge already for n1 = 10. This is further confirmed by
Fig. 14.3. where we present the results for n1 = 10, 20 and 30. The continuum result given in
Eq. (14.6) is also plotted for comparison. In Fig. 14.4. we present the result for n1 = 2000 and
the continuum result. It is evident that DLCQ reproduces the continuum answer for the entire
range of t including the forward scattering limit t = 0. One can evaluate the scattering amplitude
given in Eq. (14.13) for antiperiodic boundary condition in DLCQ. For the minimum value of
n1 = 3, n3 = 1, t = −4/3, M(t) = −3/4 which is away from the continuum limit. For n1 = 9,
n3 = 3, t = −4/3, M(t) = −0.81 which is closer to the continuum limit (−0.82). Thus for
very small n1, with antiperiodic boundary condition, the convergence is from above. We can see
that results for very small n1 are affected by discretization but reliable results emerge already for
n1 = 9. The behavior of M(t) as a function of t for small values of n1 is plotted in Fig. 14.5. In
Fig. 14.6. we present the result for n1 = 2001 and the continuum result. It is evident that DLCQ
reproduces the continuum answer for the entire range of t including the forward scattering limit
t = 0 also for antiperiodic boundary condition.

The question whether DLCQ can produce the correct continuum limit is nontrivial in 3+1 di-
mensions due to divergences and the need to renormalize the calculated perturbative amplitudes.
Two dimensional scalar field theory allowed us to unambiguously answer this question. The con-
clusion is that the continuum limit of DLCQ produces the correct covariant limit for the one-loop
scattering amplitude including processes with p+ = 0 exchange in the t-channel. In the next sec-
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Fig. 14.3. The amplitude M(t) plotted as a function of log(−t) in DLCQ for n1 = 10, 20, 30 and compared
with the continuum result.

Fig. 14.4. The amplitude M(t) plotted as a function of log(−t) in DLCQ for n1 = 2000 and compared
with the continuum result.
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Fig. 14.5. The amplitude M(t) plotted as a function of t in DLCQ for n1 = 3, 5, 7, 9 for small values of t
and antiperiodic boundary condition.

Fig. 14.6. The amplitude M(t) plotted as a function of log(−t) in DLCQ for n1 = 2001 and compared
with the continuum result for antiperiodic boundary condition.
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tion, we will extend this analysis to the self-energy and scattering processes calculated in three
seemingly equivalent schemes, namely the genuine LF theory, the so called infinite-momentum
frame approach and the ”near-LC” formalism.

15 LF, infinite-momentum frame and near-light cone perturbative amplitudes

Problems pertaining to compactification near and on the light front have become interesting
also in the context of string theory [125]. Compactification means that the space variable of a
quantum field has topology of a circle, so that in fact one is using a finite domain with periodic
boundary conditions. Perturbative scalar field theory has been taken as a testing ground for the
zero-mode dynamics encountered also in the string theory context [125]. In the formalism of
compactification near the light front certain divergences were found in the one loop scattering
amplitude in scalar field theory at finite box length as one tried to approach the light front. These
divergences were presumed to be caused by the longitudinal zero momentum modes in the light
front theory.

Zero modes in the light front formalism have been studied for a long time [13, 84, 126]. We
have already discussed the role of the dynamical ZM in the vacuum structure of the massive
Schwinger model and the constrained ZM in the two-dimensional Yukawa model. In the latter
case as well as in the DLCQ treatment of scalar field theory with periodic boundary conditions,
the zero modes are dependent and they have to be determined in terms of the non-zero modes
by solving a nonlinear operator equation. Thus the zero mode in scalar light front theory is
quite different from the zero mode in equal time theory where it is a dynamical mode just as any
non-zero mode. It is important to keep this distinction in mind.

Since zero modes pose a major challenge in the nonperturbative context, attempts have been
made to perform the quantization on a space like surface [127] close to the light front (a param-
eter η characterizes the “closeness”, see the Appendix). By taking η → 0 one is supposed to
reach the light front surface. However, this limiting procedure need not be smooth since a light
front surface cannot be reached from a space-like surface by a finite Lorentz transformation. On
the other hand, S-matrix elements should be independent of η for any value of η since this pa-
rameterization simply labels different space-like surfaces. Thus any η dependence in an S-matrix
element signals breakdown of Lorentz invariance as in the results of Ref. [125].

Let us recall the major differences between the discretized versions of near light front theory
and light front theory. We shall restrict the ”longitudinal” coordinate x− to a finite interval while
keeping two transverse coordinates unbounded. To avoid confusion, we shall denote the light
front box length by L and the near light front box length by Let. In order to check Lorentz
invariance one has to perform the continuum limit of DLCQ. Let us consider the mass operator
M2 = P+P− − (P⊥)2, where P+, P− are the light-front momentum and energy operators
and P⊥ ≡ (P 1, P 2). In DLCQ one often introduces P+ = 2π

L K and P− = L
2πH . The

semi-positive definite operator K, the harmonic resolution, is dimensionless momentum and H ,
the Hamiltonian, has the dimension of M2. In DLCQ the mass operator is given by M2 =
KH − (P⊥)2. The box length L has disappeared from the operator. Eigenvalues of K represent
the total momentum of the system. The continuum limit is given by K → ∞. This is to be
contrasted with the near light front discretization where the box length does not disappear from
the mass operator. Also the momentum operator is not semi-positive definite. Nevertheless for
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Fig. 15.1. Two time-ordered one-loop diagrams of the boson self-energy in the Hamiltonian perturbation
theory for the λφ3 model. Only the first diagram contributes in the LF case.

the ease of comparisons, let us denote the total dimensionless momentum in the near light front
case byK. The longitudinal momentum P in this case can take both positive and negative values
and we can put only | P |= 2π

Let
K.

The infinite momentum frame [128, 2] is a concept that allows one to simulate perturbative
light front theory calculations in an equal time framework by taking the external total longitudinal
momentum to infinity. In scalar field theory, in the discretized version, one can ask whether one
can simulate DLCQ perturbation theory by considering the infinite momentum frame starting
from the equal time formulation. Obviously this cannot be achieved by takingK very large since
that should correspond to the continuum limit of DLCQ. One choice is to take Let → 0 since this
can simulate infinite momentum for non-zero modes. Then one can ask the question whether Let
drops out of scattering amplitudes and if they in turn approach DLCQ scattering amplitudes. Of
course by taking Let → 0 we have moved as far away from the continuum limit as possible and if
we find Lorentz non-invariant answers we should not be surprised. Another choice is to discretize
the near light front theory, let η → 0 and see whether Let dependence drops out (characteristic of
the DLCQ formalism). At finite η, L→∞ readily reproduces covariant answers, but at finite L,
η → 0 produces divergent answers. From this one cannot conclude anything about DLCQ since
Lorentz invariance is broken. Note that in the discretized near light front formulation, where
modes are specified by integers n, the expression n

η , encountered in [125], presents for the zero
mode (n = 0) a 0

0 problem for η → 0 which means that the limit is undefined.
To clarify this issues, we perform and compare perturbative calculations for scalar field theory

in the continuum and discretized versions of three formulations, namely, light front quantization,
infinite momentum limit of equal time quantization and space-like quantization parameterized
by η. For simplicity, we consider here mainly the self-energy diagram in φ3 theory. The same
overall picture emerges also in the case of scattering diagram in φ4 theory.

First we compare results of the light front perturbation theory with those of the covariant
perturbation theory, both in continuum formulation.

Consider the one loop self-energy diagram in φ3 theory. Note that in this case there is only
one time ordered diagram (the first diagram of Fig. (15.1) ) in the light front case. Using the
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Fig. 15.2. Feynman diagram of the one-loop boson self-energy in the standard perturbation theory for the
λφ3 model.

rules of light front old fashioned perturbation theory [6] (see also the Appendix), we have

Σ(p2) =
1
2
λ2

∫ p+

0

dq+d2q⊥

2(2π)3
1

q+(p+ − q+)
1

p− − (q⊥)2+m2

q+ − (p⊥−q⊥)2+m2

p+−q+ + iε
.(15.1)

The factor 1/2 is a symmetry factor. Introducing y = q+/p+, we get

Σ(p2) =
1
2

λ2

2(2π)3

∫ 1

0

dyd2q⊥
1

y(1− y)p2 − (q⊥)2 −m2 + iε
(15.2)

with p2 = p+p− − (p⊥)2.
Note that the integrand is nonsingular at y = 0.
Next we derive this result starting from the Feynman diagram. The corresponding amplitude

Fig.(15.2) is

− iΣ(p2) =
1
2

(−iλ)2

(2π)4

∫
d4k

i

k2 −m2 + iε

i

(p+ k)2 −m2 + iε
. (15.3)

Using d4k = 1
2dk

+dk−d2k⊥, we have

Σ(p2) = − i
2

(−iλ)2

(2π)4
1
2

∫ +∞

−∞
dk+

∫
d2k⊥

∫ +∞

−∞
dk−

1
k+(p+ + k+)

×

× 1

k− − (k⊥)2+m2

k+ + i εk+

1

p− + k− − (p⊥+k⊥)2+m2

p++k+ + i ε
p++k+

. (15.4)

Let us now perform the k− integration. Let p+ > 0. For k+ > 0, p+ +k+ > 0, both poles are in
the lower half of the complex k− plane. We can close the contour in the upper half plane and the
integral is zero. For k+ < 0, if p+ < −k+, p+ + k+ < 0, both poles are in the upper half plane.
We can close the contour in the lower half plane and the integral again is zero. For p+ > 0, we
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get a non-vanishing contribution when k+ < 0 and k+ > −p+. Then, closing the contour in the
upper half plane, we get

Σ(p2) =
1
2

(−iλ)2

2(2π)3

∫ 0

−p+

dk+d2k⊥

k+(p+ + k+)
×

× 1

p− + (k⊥)2+m2

k+ − (p⊥−k⊥)2+m2

p++k+ − i εk+ + i ε
p++k+

(15.5)

or

Σ(p2) =
1
2
λ2

∫ p+

0

dq+d2q⊥

2(2π)3
1

q+(p+ − q+)
1

p− − (q⊥)2+m2

q+ − (p⊥−q⊥)2+m2

p+−q+ + iε
. (15.6)

We recover the expression (Eq. (15.1)) from old fashioned perturbation theory with energy de-
nominator and integration over three momentum.

The same amplitudes can be calculated in the DLCQ framework. As we already pointed out,
light front quantization in a finite volume with periodic fields has some conceptual advantages.
First of all, it allows one to work explicitly with Fourier modes of quantum fields, carrying
vanishing light front momentum p+ – the zero modes. While in the case of gauge fields some ZM
are dynamically independent, ZM of scalar fields are always dependent (constrained) variables,
as follows from the structure of the equations of motion, containing ∂µ∂µ = 4∂+∂−−∂2

⊥, ∂
2
⊥ ≡

∂i∂i, i = 1, 2. Analogously to the case of two dimensions, due to periodic boundary conditions
in x− and x⊥ ≡ (x1, x2) (−L ≤ x− ≤ L,−L⊥ ≤ x⊥ ≤ L⊥), the full scalar field can be
decomposed as φ(x) = φ0(x+, x⊥) + φn(x+, x), where x ≡ (x−, x⊥). The mode expansion
for the normal-mode field φn(x) is

φn(x) =
1√
V

∑
k

1√
k+

[
ake

−ikx + a†ke
ikx
]
. (15.7)

Here we have used the notation kx ≡ 1
2k

+x− − k⊥x⊥ and k+ = 2π
L n, n = 1, 2, . . . N, k⊥ =

2π
L⊥
n⊥, n⊥ = 0,±1,±2, · · · ± N⊥. In the following, the integration over the 3-dimensional

volume V will be denoted by
∫
V
d3x ≡ 1

2

∫ L
−L dx

− ∫ L⊥
−L⊥ d

2x⊥.
Let us calculate now the self-energy loop in the φ3 theory. The corresponding DLCQ Hamil-

tonian, obtained in the canonical way from the energy-momentum tensor, is

P− =
∫
V

d3x

[
m2φ2 + (∂⊥φ)2 +

λ

3
φ3

]
. (15.8)

It contains ZM terms, which have to be expressed by means of the normal-mode field φn(x).
To do so we need to obtain the lowest-order solution of the ZM constraint. As we have already
seen in the two-dimensional version of the theory, the latter is simply the ZM projection of the
equation of motion

(4∂+∂− − ∂2
⊥)φ = −m2φ− λ

2
φ2 (15.9)

and reads

(m2 − ∂2
⊥)φ0 = −λ

2

∫ L

−L

dx−

2L
(φ2

0 + φ2
n). (15.10)
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It can be solved iteratively and to the lowest order in λ one has

φ0 = −λ
2

1
m2 − ∂2

⊥

∫ L

−L

dx−

2L
φ2
n. (15.11)

The symbolic inverse operator (m2 − ∂2
⊥)−1 is defined in momentum representation by replac-

ing ∂2
⊥ by the minus square of the perpendicular momentum of the composite operator in the

integrand. In the Fock representation, one finds

φ0(x⊥) = − λ

V

∑
k1,k2

δk+
1 ,k

+
2√

k+
1 k

+
2

e−i(k
⊥
1 −k

⊥
2 )x⊥

m2 + (k⊥1 − k⊥2 )2
a†k1

ak2
− λ

2m2

1
V

∑
k1

1
k+
1

, (15.12)

where the second term comes from the normal ordering. This term will be neglected henceforth
because it generates divergent terms in the Hamiltonian, which are presumably a manifestation of
the well known pathology of the λφ3 theory (no lower bound of the energy). Indeed, in the case
of the λφ4 interaction, the constrained zero mode is expressed automatically as a normal-ordered
product of creation and annihilation operators without a c-number piece.

The interacting Hamiltonian P−int contains a term, corresponding to the usual one of the
continuum formulation, plus the ZM term, calculated to O(λ2):

P−int = PNM + P
−(2)
ZM , PNM =

λ

3

∫
V

d3xφ3
n, (15.13)

P
−(2)
ZM =

∫
V

d3x

[
φ0(m2 − ∂2

⊥)φ0 +
λ

3
(φ0φ

2
n + φnφ0φn + φ2

nφ0)
]

(15.14)

with φ0 given by Eq.(15.11). The symmetric operator ordering has been used in the last term.
The O(λ2) self-energy amplitude, corresponding to the first term in (15.13), can be calculated
by the Hamiltonian (time-ordered) perturbation theory formula

Tfi =
∑
n

〈p′|PNM |n〉〈n|PNM |p〉
p− − p−n

, (15.15)

where HI denotes the interacting Hamiltonian, |p〉 ≡ a†p|0〉 and the summation runs over the

two-particle intermediate states |n〉 ≡ 2−
1
2 a†i1a

†
i2
|0〉. After inserting the field expansion (15.7)

and performing the operator commutations, we arrive at

Tfi=
δp,p′√

p+V p′+V

λ2

4

∑
q

1
q+(p+ − q+)

1
(p⊥)2+m2

p+ − (q⊥)2+m2

q+ − (p⊥−q⊥)2+m2

p+−q+
, (15.16)

where q+ < p+ = 2πKL−1, |q⊥| < 2πΛ⊥L−1
⊥ and K,Λ⊥ are integers. From this expression,

the continuum answer for the self-energy Σ(p2) (15.1) or (15.2) can be extracted in the infinite
volume limit K,L,Λ⊥, L⊥ → ∞ (p+ kept fixed) with 1

V Σq → 1
(2π)3

∫
dq+

2 d2q⊥, V
2 δp,k →

(2π)3δ(p − q). We recall that Σ corresponds to the invariant amplitude Mfi which differs by
(2π)3 times the kinematical factor (first term in (15.16)) from Tfi.
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As we have anticipated in the previous discussion, the ZM Hamiltonian does not contribute
in the continuum limit. Indeed, the first term in (15.14) to O(λ2) is

P
−(2)
ZM1

=
1
2
λ2

V

{ ∑
k1...k4

δk+
1 ,k

+
2
δk+

3 ,k
+
4√

k+
1 k

+
2 k

+
3 k

+
4

δ2k⊥1 +k⊥3 ,k
⊥
2 +k⊥4

a†k1
a†k3

ak2
ak4

m2 + (k⊥1 − k⊥2 )2

+
∑
k1,k

⊥
2

1
k+2
1

a†k1
ak1

m2 + (k⊥1 − k⊥2 )2

}
. (15.17)

The second term of (15.14) has the same structure with the individual coefficients −1 and − 2
3

instead of the overall 1
2 and thus the full O(λ2) ZM Hamiltonian is equal to

P
−(2)
ZM = −1

2
λ2

V

{ ∑
k1...k4

δk+
1 ,k

+
2
δk+

3 ,k
+
4√

k+
1 k

+
2 k

+
3 k

+
4

δ2k⊥1 +k⊥3 ,k
⊥
2 +k⊥4

a†k1
a†k3

ak2
ak4

m2 + (k⊥1 − k⊥2 )2

+
1
3

∑
k,q⊥

1
k+2

a†kak

m2 + (k⊥ − q⊥)2
}
. (15.18)

Its contribution to the boson self-energy in the first order perturbation theory is

T̃fi = −1
6

δp′,p√
p+V p′+V

λ2

p+

∑
q⊥

1
m2 + (p⊥ − q⊥)2

. (15.19)

The corresponding M -amplitude vanishes in the continuum limit due to the extra L−1 factor (a
similar result in the case of λ

4!φ
4(1 + 1) has been obtained in Ref. [51]:

Σ̃(p+, p⊥) = −1
6

λ2

(2π)2
1
L

1
p+

∫
d2q⊥

1
m2 + (p⊥ − q⊥)2

. (15.20)

In this way, DLCQ calculation yields the correct covariant result for the one-loop self-energy in
λφ3 theory in the infinite-volume limit.

In order to calculate the one-loop scattering amplitude in DLCQ perturbation theory for
(4!)−1φ4 (3+1) model, we again need to derive the light front Hamiltonian with O(λ2) ZM
effective interactions. Following the same steps as in the previous subsection with (3!)−1λφ3

interaction replaced by (4!)−1λφ4, we find

P−int =
2λ
4!

∫
V

d3x φ4
n(x) + P

−(2)
ZM , (15.21)

where the second-order ZM Hamiltonian is

P
−(2)
ZM =

∫
V

d3x

[
φ0(m2 − ∂2

⊥)φ0 +
2λ
4!

4φ0φ
3
n

]
. (15.22)

In the last term, the symmetric operator ordering between the lowest-order solution of the ZM
constraint

φ0 = − λ

3!
1

m2 − ∂2
⊥

∫ L

−L

dx−

2L
φ3
n (15.23)
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and φ3
n is assumed. In the Fock representation, one obtains

φ0(x⊥) = −λ
2

1
V

3
2

∑
k1,k2,k3

1√
k+
1 k

+
2 k

+
3

δk+
1 ,k

+
2 +k+

3

m2 + (k⊥1 − k⊥2 − k⊥3 )2
×

×
[
a†k3

a†k2
ak1

e−i(k
⊥
3 +k⊥2 −k

⊥
1 )x⊥ + h.c.

]
. (15.24)

Using the formula (15.15) with |p〉 → |p
1
, p

2
〉, |p′〉 → |p

3
, p

4
〉 and with four-particle interme-

diate states, one finds after a lot of algebra for the second-order NM scattering amplitude the
expression

Tfi =
δp

4
+p

3
,p

2
+p

1√
p+
4 V p

+
3 V p

+
2 V p

+
1 V

λ2

4

∑
q

1
q+(p+

3 − p+
1 − q+)

×

× 1
p−3 − p−1 − (p3 − p1 − q)−

+ (1 ↔ 3)

(15.25)

The continuum-limit invariant scattering amplitude Mfi, extracted from (15.25), coincides with
the covariant answer. It follows that for consistency the ZM contribution has to vanish in the
continuum limit. That this is indeed the case can be checked in the first-order perturbation theory.
In the Fock representation, part of the ZM Hamiltonian relevant for 2 → 2 scattering, takes the
form

P
−(2)
ZM4

= −λ
2

4
1
V 2

∑
q⊥

∑
k4,k3,k2,k1

δk4+k3,k2+k1√
k+
4 k

+
3 k

+
2 k

+
1

1
k+
1 − k+

2

a†k3
a†k1

ak4
ak2

m2 + (q⊥ + k⊥2 − k⊥1 )2
.

The corresponding scattering amplitude is

T̃fi = −
δp

4
+p

3
,p

2
+p

1√
p+
4 V p

+
3 V p

+
2 V p

+
1 V

λ2

8
1

p+
3 − p+

1

∑
q⊥

1
m2 + (q⊥ + p⊥1 − p⊥3 )2

+

+ (1 ↔ 3) (15.26)

and the invariant amplitude M̃ indeed vanishes for L→∞:

M̃fi(p+
3 − p+

1 , p
⊥
3 − p⊥1 ) =

− λ2

8(2π)3
1

p+
3 − p+

1

1
L

∫
d2q⊥

1
m2 + (q⊥ + p⊥1 − p⊥3 )2

+ +(1 ↔ 3). (15.27)

15.1 Near light front approach

Let us focus now on the one-loop self-energy diagram calculated within the near light front time-
ordered perturbation theory. In the continuum version, for the φ3 self-energy, we have, using the
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formula (H.26) from the Appendix

Σ(p2) =
1
2
λ2

∫ +∞

−∞

dq−d
2q⊥

(2π)3
( 1

1
η2 (Eon(p)− Eon(q)− Eon(p− q)) + iε

− 1
1
η2 (Eon(p) + Eon(q) + Eon(p− q))− iε

)
(15.28)

= ΣI(p2) + ΣII(p2). (15.29)

The two contributions correspond to two different time orderings (Figs. 15.1a,b) in old fashioned
perturbation theory.

Let us now take the η → 0 limit of these expressions. First consider ΣI(p2). We have,
limη→0 Eon(q) =| q | +η2(m2+(q⊥)2)

2|q| + .... Without loss of generality, we shall set p− > 0.
Then we get

ΣI(p2) =
1
2

λ2

(2π)3

∫ +∞

−∞
dq−d

2q⊥
1

2 | q− |
1

2 | p− − q− |
×

× 1
p−
η2 − |q−|

η2 − |p−−q−|
η2 + m2+(p⊥)2

2p−
− m2+(q⊥)2

2|q−| − m2+(p⊥−q⊥)2

2|p−−q−|

. (15.30)

Now we have to distinguish various regions. For q− > 0, p− − q− > 0, we get

ΣI(p2) =
1
2

λ2

(2π)3

∫ p−

0

dq−

∫ +∞

−∞
d2q⊥

1
q−

1
p− − q−

×

× 1
m2+(p⊥)2

2p−
− m2+(q⊥)2

2(q−) − m2+(p⊥−q⊥)2

2(p−−q−)

+O(η2)

(15.31)

which agrees with the light front answer. For q− > 0, p− − q− < 0, the amplitude scales as η2

which vanishes as η → 0. For q− < 0, p− − q− > 0 the amplitude again scales as η2 and thus
vanishes also.

Next we consider ΣII(p2). In the limit η → 0, we get

ΣII(p2) = −1
2
λ2

∫ +∞

−∞

dq−d
2q⊥

(2π)3
1

2 | q− |
1

2 | p− − q− |
×

× 1
1
η2

(
p−+ | q− | + | p− − q− |

)
+ m2+(p⊥)2

2p−
+ m2+(q⊥)2

2|q−| + m2+(p⊥−q⊥)2

2|p−−q−|

. (15.32)

For the three cases namely, (a) q− > 0, p− − q− > 0, (b) q− > 0, p− − q− > 0, and (c)
q− < 0, p− − q− > 0, we find that ΣII(p2) scales as η2 which vanishes in the limit.

Thus we observe that for φ3 self-energy, for finite η there are two time ordered diagrams. As
η → 0 the ”backward moving” diagram vanishes as η2 and we get the light front perturbation
theory answer. It is important to note that for any value of η, the sum of the two contributions
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should be independent of η as dictated by Lorentz invariance. However, it is sufficient for our
purposes to show η independence in the limit η → 0.

Let us now consider the first term of φ3 self energy diagram (Fig. 15.1a) in the discretized
version. Restricting the longitudinal coordinate to a finite interval, we obtain

ΣI(p2) =
1
2
λ2 1

2L

∑
n

∫
d2q⊥

(2π)2
1

2
√

(nπL )2 + η2((q⊥)2 +m2)
×

× 1

2
√

( (j−n)π
L )2 + η2((p⊥ − q⊥)2 +m2)

1
1
η2 (Ei − EI) + iε

(15.33)

where the energy of the initial (i) and intermediate (I) state is given by

Ei =

√
(
jπ

L
)2 + η2((p⊥)2 +m2),

EI =
√

(
nπ

L
)2 + η2((q⊥)2 +m2) +

√
(
(j − n)π

L
)2 + η2((p⊥ − q⊥)2 +m2) (15.34)

and the discretized longitudinal momenta are

q− =
nπ

L
, p− =

jπ

L
, n, j = 0,±1,±2, . . . (15.35)

For j, n 6= 0, as η → 0, we get the result independent of η and L.
For n > j, the amplitude vanishes as η2L2 for fixed L. For n = j = 0, the amplitude

diverges as 1
ηL .

For Fig. 15.1b, we have

ΣII(p2) = −1
2
λ2 1

2L

∑
n

∫
d2q⊥

(2π)2
1

2
√

(nπL )2 + η2((q⊥)2 +m2)
×

× 1

2
√

( (j−n)π
L )2 + η2((p⊥ − q⊥)2 +m2)

1
1
η2 (Ei + EI)− iε

. (15.36)

For j, n 6= 0, as η → 0, the amplitude vanishes as η2L2. For n = j = 0, the amplitude di-
verges as 1

Lη . It is not difficult to understand the origin of this divergence. We have already
seen that there is no dynamical scalar zero mode on the light front and thus the sum over inter-
mediate states cannot include this mode. On the other hand, for arbitrarily small but non-zero η
(space-like quantization) there is a dynamical zero mode in the sum over intermediate states. By
requiring this state to exist in the limit we are not approaching the light front theory but some pe-
culiar (divergent) regime of the space-like theory. The light-front theory has its own mechanisms
(constraints for zero modes) to replace this “missing” dynamical mode.
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15.2 Infinite momentum frame approach

Let us calculate the same self-energy diagram of the φ3 theory in the infinite momentum formu-
lation. Using the rules of old fashioned perturbation theory, we obtain

Σ(p2) =
1
2
λ2

∫ +∞

−∞

d3q

(2π)3
1

2Eq
1

2Ep−q

( 1
Ep − Eq − Ep−q + iε

− 1
Ep + Eq + Ep−q − iε

)
. (15.37)

= ΣI(p2) + ΣII(p2). (15.38)

Here Ep =
√
p2 + (p⊥)2 +m2. For ease of notation we have denoted the third component

of the three-vector p as p. The two contributions correspond to two different time orderings in
old fashioned perturbation theory. To facilitate the infinite momentum limit, we parametrize the
internal momenta as follows: q = (xp, q⊥), p− q = ((1 − x)p, p⊥ − q⊥). It is important
to note that the range of x is −∞ < x < +∞. Now d3q

2Eq
= pdxd2q⊥

2Eq
. Let us now take the

infinite momentum, p → ∞ limit of these expressions. It follows that pdx
2Eq

→ 1
2
dx
|x| , Eq →| x |

p+ m2+(q⊥)2

2|x|p .
First consider ΣI(p2). We get

ΣI(p2) =
1
2

λ2

(2π)3

∫ +∞

−∞
dxd2q⊥

1
2x

1
2 | 1− x | p

×

× 1

p(1− | x | − | 1− x |) + m2+(p⊥)2

2p − m2+(q⊥)2

2|x|p − m2+(p⊥−q⊥)2

2|1−x|p

. (15.39)

Now we have to distinguish various regions. For x ≥ 0, 1− x ≥ 0, we get

ΣI(p2) =
1
2

λ2

(2π)3

∫ 1

0

dx
1

m2+(p⊥)2

2 − m2+(q⊥)2

2x − m2+(p⊥−q⊥)2

2(1−x)

(15.40)

which agrees with the light front answer. For x > 0, 1−x < 0, the amplitude scales as 1
p2 which

vanishes as p→∞. For x < 0, 1− x > 0 the amplitude again scales as 1
p2 and vanishes in the

limit.
Next we consider ΣII(p2). In the limit p→∞ , we get

ΣII(p2) = −1
2

λ2

(2π)3

∫ +∞

−∞
dx

1
2 | x |

1
2 | 1− x | p

× (15.41)

× 1(
p(1+ | x | + | 1− x |) + m2+(p⊥)2

2p + m2+(q⊥)2

2|x|p + m2+(p⊥−q⊥)2

2|1−x|p

) .
For the three cases namely, (a) x > 0, 1−x > 0, (b) x > 0, 1−x < 0, and (c) x < 0, 1−x > 0,
we find that ΣII(p2) scale as 1

p2 which vanishes in the limit.
Thus in old fashioned perturbation theory in the infinite momentum limit (p → ∞), the

“backward going diagram” vanishes as 1
p2 in accordance with Weinberg’s results [2].
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In the finite-volume or discretized calculations, we again restrict the longitudinal coordinate
to a finite interval. Specifically, we set −L < x3 < +L. The longitudinal momenta q3 → q3n =
π
Ln, n = 0,±1,±2, . . .. The field operator at t = 0 becomes

φ(x) =
1√
2L

∑
n

∫
d2q⊥

1√
2ωn

[
an(q⊥)ei

nπx3
L +iq⊥·x⊥+ a†n(q

⊥)e−i
nπx3

L −iq⊥·x⊥
]
.(15.42)

Let us consider the φ3 self energy. For the external momentum we set p = ( jπL , p
⊥). We get

Σ(p2) =
1
2
λ2 1

2L

∑
n

∫
d2q⊥

(2π)2
1

2
√

(nπL )2 +M(q⊥)

1

2
√

( (j−n)π
L )2 +M(p⊥ − q⊥)

( 1√
( jπL )2 +M(p⊥)−

√
(nπL )2 +M(q⊥)−

√
( (j−n)π

L )2 +M(p⊥ − q⊥)

− 1√
( jπL )2 +M(p⊥) +

√
(nπL )2 +M(q⊥) +

√
( (j−n)π

L )2 +M(p⊥ − q⊥)

)
, (15.43)

where we used the abbreviation M(p⊥) ≡ (p⊥)2 + m2, etc. If we take the continuum limit,
then 1

2L

∑
n →

dq
2π and we obtain the result of the previous subsection. Then, taking the infinite

momentum limit, the second contribution drops out and we get the light front answer from the
first contribution alone.

Suppose one takes the limit L → 0, which is the opposite of the continuum limit L → ∞.
This is an attempt to simulate DLCQ results in a space like box. We do not expect the result to
agree with the continuum limit of DLCQ which agrees with covariant perturbation theory results.

For n 6= 0, j 6= 0, n < j, in the limit L → 0, the amplitude becomes independent of L. For
j = n = 0, the amplitude diverges like 1

L . For n > j the amplitude vanishes like L2. But none
of these results have anything to do with either continuum or DLCQ results.

We should summarize the main conclusions of these a bit lengthy but instructive calcula-
tions. The first of them is a demonstration of one important feature of the covariant perturbation
theory, namely that when Feynman amplitudes are rewritten in terms of the light front variables
and the contour integration in the light-front energy complex plane is performed, the Feynman
amplitudes reduce back to the continuum light front answers [3]. Also, as stressed already by
Weinberg in 1966 [2], the light front perturbation theory (old-fashioned perturbation theory in a
reference frame with ”infinite-momentum” at that time) is more economical in the sense that one
does not need to introduce Feynman parameters to combine propagators in the corresponding
integrals, and the four-dimensional Euclidean integration is replaced by a two-dimensional one.
Feynman parameters appear in the light front formulation naturally as light front longitudinal
momentum fractions.

More specifically, after demonstrating that the continuum light front perturbation theory has
no problem with zero modes and its results agree with the covariant results, we have analyzed
the continuum limit of the light-front perturbation theory formulated in a finite volume with
periodic fields (DLCQ method). This investigation was motivated by claims [125] that DLCQ
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is ill-defined since it is divergent when formulated as a limit of the space-like quantization on a
hypersurface close to the light front [129]. In this connection, we have first shown that the DLCQ
perturbation theory is consistent, because parts of the perturbative amplitudes due to the effective
interactions induced by the constrained zero mode vanish in the infinite-volume limit and the
covariant results are reproduced. Second, when one considers the light front limit (η → 0) of the
near light front discretized amplitudes, the zero-mode contribution indeed diverges for fixed box
length. But this disagrees with the light front answer and actually cannot tell anything about the
light front zero modes. The point is that the light front zero mode is not dynamical in the scalar
theory and thus it is not present in the complete set of intermediate states. By letting η → 0
one is forcing the dynamical space-like zero mode to exist on the light front which leads to an
incorrect, diverging amplitude.

In other words, the η → 0 limit does not lead us to the light front theory but to a peculiar
non-covariant regime of the discretized space-like theory.

On the other hand, the continuum version of the near light front old fashioned perturbation
theory reproduces the light front answers (which agree with the covariant ones). But since this
formulation has no particular advantages there is no real reason to use it in practical calculations.

The conclusion relevant for the light front theory is that the ”light-like compactification” is
feasible and DLCQ is a consistent scheme. The discretized (compactified) formulation of the
quantum theory on the light-like surface does exist as a straightforward light front field theory,
but not as a limit of a space-like compactification.

16 Concluding remarks

Our intention in the present review was to give a pedagogical introduction to quantum field the-
ory formulated in terms of light front space-time and field variables. We have tried to ellucidate
principal differences between this approach and the usual field theory starting with the example
of free massive scalar and fermion fields. We compared derivation of the vacuum state in both
forms of field theory and reminded a few additional general aspects of the operator formalism
not so frequently discussed in textbooks nowadays like causality and unitary non-equivalence of
the fields with different masses. A large part of the review was based on the views and results of
the present author (and in many cases also of his collaborators). The underlying general attitude
is that although the light front field theory is a very promising theoretical scheme, one has to go
beyond the conventional schemes to uncover its full potential. In particular, an opinion was em-
phasized that the concept of the non-perturbative LF vacuum as a state without particles is sound
but not sufficient. We believe that it requires additional mechanisms to make it more complex.
Details of such mechanisms depend on the dynamics and/or symmetries of the given model. It is
possible that simplifications of the LF formulation could make an explicit construction of a com-
plex non-perturbative vacuum state possible in case of simpler models like for example massive
Schwinger model. Approximate description of degenerate sets of vacuum states was discussed
also for the case of spontaneous breakdown of global symmetries as well as for abelian gauge
symmetry. A conceptual basis for most of our analyses is formed by the quantization of LF fields
in a finite volume with (anti)periodic boundary conditions in space coordinates, on the corre-
sponding canonical operator formalism and on implementation of symmetries at quantum level
in terms of (regularized) unitary operators. A necessity of paying attention to mathematical sub-



Postulates of quantum field theory 531

tleties especially in the continuum formulation was pointed out and illustrated with the example
of vanishing of surface terms in the commutators of the Poincaré algebra.

One of our aims was also to hightlight advantages of the light front formulation as compared
to the conventional field theory. We discussed a few cases where the LF simplifications are
quite striking. A simple example is the structure and solutions of the Dirac equation in two
dimensions. One could compare also Hamiltonians of the LF and conventional formulation of the
explicitly soluble Federbush model. The Hamiltonian LF diagonalization was shown to be very
efficient in obtaining non-perturbative information about detailed properties of quantum solitons
not available from lattice calculations. A detailed comparison of the conventional ”covariant”
perturbation theory and the Hamiltonian LF perturbation theory showed that inspite of larger
number of diagrams the latter is a very efficient tool and actually captures just the non-zero part
of the usual perturbative amplitudes. A related observation is that the LF field theory cannot be
obtained as a ”light-like” limit of the conventional theory quantized on a space-like hypersurface
because this limit is singular. The two formulations of field theory have different structure of field
degrees of freedom and hence transition from one representation to the other cannot be smooth.

We would like to conclude our discussion with two observations. First, one has to admit
that despite its potential, the structure of the LF field theory is still not understood sufficiently
well and its novel predictions have been so far rather rare. Our goal here was to at least par-
tially explain why the LF formulation is considered by many workers to be conceptually as well
as computationaly very well suited as a natural ”language” for relativistic elementary particle
physics. It is probable that some solutions proposed by the present author are far from being per-
fect and will require further improvements. We believe however that they point out to the correct
direction. We apologize to many colleagues in the LF community whose work did not find a
proper space in this review. One reason is a certain heterogenity of the LF conceptual basis that
is also reflected in the LF literature. Our intention was to make a modest attempt to formulate
and interpret the LF theory, its ideas and predictions from a unified point of view.

Acknowledgement: This work was supported by the grant No. APVT 51-005704 of the Slovak
Research and Development Agency, by the French NATO fellowship and by the IN2P3-CNRS.
Hospitality of the Department of Physics and Astronomy of the Iowa State University and of the
LPTA Laboratory at the Montpellier University where parts of this work have been done is also
gratefully ackowledged.

Appendices

A Postulates of quantum field theory

Over its development, quantum field theory has been formulated on different levels of mathemat-
ical rigour. Nowadays it exists on the one hand in the form of a pragmatic computational scheme,
based on the use of Feynman integrals for calculation of observable processes perturbatively, on
the other hand in the form of highly abstract algebraic scheme, called local quantum physics.
At present, we are far from the situation of the non-relativistic quantum mechanics, where the
conceptual and mathematical foundations are in a reasonable symbiosis with the calculational
strength. One important branch of a more rigorous approach to QFT was due to Wightman [130]
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who (among others) tried to define a minimal set of mathematical assumptions derived from ob-
servable phenomena. A modern formulation of general non-perturbative aspects of QFT can be
found for example in lectures by F. Strocchi [22]. We include here a list of this postulates in
a ”popular” form for completeness since we referred to some of them in our disussion of the
vacuum states in the main text. This list is probably not a unique one, in particular, the discov-
ery of spontaneous symmetry breaking and gauge theories lead to relaxation of some postulates
(uniqueness of the vacuum state, e.g.). The axioms can be divided into three main groups:

1. Postulates of quantum theory and covariance (structure of the Hilbert space, representa-
tions of the Lorentz group, definition of a quantum field).

2. Postulates of microcausality (or locality): Commutator of two operators that represent ob-
servable quantities vanish for space-like separations of their space-time arguments. This
incorporates the fact that due to the finite speed of light such two points are causally inde-
pendent.

3. Spectral postulates

(a) in a general form: the spectrum of energy-momentum is contained in the closed
forward light-cone V+, which means that aµPµ is a positive operator for every aµ ⊂
V+

(b) in a sharper form, the following requirements are added
i) the existence of a vacuum state, that is of a normalizable Lorentz invariant state
|0〉
ii) the existence of an eigenstate spectrum of the mass operator M̂2 = P̂µP̂

µ and
the identification of the particles described by quantum field theory with these eigen-
states.

.

B Quantization of massive scalar and fermion fields

B.1 Fock representation, operators of energy and momentum, ground state

In this Appendix, a few details of the calculation of the energy and momentum operators for the
free massive scalar and Fermi fields are given. The formulae we need are

φ(x) =
∑
p

1√
4Lω(p)

[
a(p)e−ip.x + a†(p)eip.x

]
, [a(p), a†(q)] = δpq. (B.1)
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For P 1 and at t = 0, we have

P 1 = −
+L∫
−L

dx∂0φ∂1φ = −
∫ L

−L
dx
{∑

p

(−i)
√
ω(p)
4L

[
a(p)eipx − a†(p)e−ipx

]
×

∑
q

iq√
4Lω(q)

[
a(q)eiqx − a†(q)e−iqx

]}
=

= − 1
4L

∑
p,q

√
ω(p)
ω(q)

q
[
a(p)a(q)

+L∫
−L

dxei(p+q)x − a(p)a†(q)

+L∫
−L

dxei(p−q)x −

− a†(p)a(q)

+L∫
−L

dxe−i(p−q) + a†(p)a†(q)

+L∫
−L

dxe−i(p+q)
]

=

= −1
2

∑
p

p
[
a(−p)a(p)− a(p)a†(p)− a†(p)a(p) + a†(−p)a†(p)

]
, (B.2)

where we have used the relation

+L∫
−L

dxe±i(p−q)x = 2Lδpq (B.3)

and one summation was performed in the last step using this identity. Now, the first and the last
terms in (B.2) vanish since the summation runs over positive and negative values of p = 2πn/L
and the change p → −p leads to the relation of the type A = −A for these two terms. The
second term can be rewritten with the help of the commutation relation (B.1) as a(k)a†(k) =
a†(k)a(k) + 1 and we finally get

P 1 =
∑
p

pa†(p)a(p) +
1
2

∑
p

p. (B.4)

The last term is a divergent constant which is physically irrelevant since it cancels in the phys-
ically measurable differences of the momenta of the given states. Formally, this subtraction is
accomplished by prescribing the normal-ordered definition for P 1.

The calculation of the Fock representation of the Hamiltonian proceeds in a similar way.
Evaluating the three terms in

H =

+L∫
−L

dx
[1
2
(
∂0φ

2) +
1
2
(
∂1φ
)2 +

1
2
µ2φ2

]
. (B.5)

separately, using the formula (B.3), performing one summation by means of the Kronecker sym-
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bols and grouping the coefficients of the four operator structures, we find

H = −1
4

∑
k

[(
ω(p)− p+ µ2

ω(p)

)
a(−p)a(p)−

(
ω(p) +

p+ µ2

ω(p)

)
a(p)a†(p)−

−
(
ω(p) +

p+ µ2

ω(p)

)
a†(p)a(p) +

(
ω(k)− p+ µ2

ω(p)

)
a†(−p)a†(p)

]
. (B.6)

In this case the trick with p → −p does not work because there is no term linear in p and
ω(−p) = ω(p). The first and the last terms vanish simply because their coefficients are equal to
zero while the coefficients of the second and the third terms are equal to 2ω(p). In this way we
get

H =
1
2

∑
p

ω(p)
[
a(p)a†(p) + a†(p)a(p)

]
,

H =
∑
p

√
p2 + µ2 a†(p)a(p), (B.7)

where the infinite constant 1/2
∑
p ω(p) was subtracted by the reasons mentioned above.

Let us sketch the similar calculations for the massive Fermi field. We will start from the
old-fashioned ”pre-hole” formulation and show in detail how the Dirac’s reinterpretation of the
negative-energy solutions of the Dirac equation leads to the particle-antiparticle picture. In two
dimensions, the free Dirac equation looks formally like the usual four-dimensional one:(

iγµ∂µ −m
)
ψ(x) = 0. (B.8)

The simplest realization of the three γ-matrices is given in terms of a set of 2× 2 matrices which
we choose for definiteness as

β = γ0 = σ3 =
(

1 0
0 −1

)
, γ1 = βα1 = iσ2 =

(
0 1
−1 0

)
,

γ5 = γ0γ1 = α1 = σ1 =
(

0 1
1 0

)
. (B.9)

σ1, σ2, σ3 are the Pauli matrices. Transition to a different representation is possible by using a
suitable unitary matrix.

Let us look for the solution of the Eq.(B.8) in the form

ψ(x) = u(p)e−ip.x. (B.10)

The general solution will be a superposition of the plane waves (B.10) with some coefficients. It
is clear that the quantity u(p) is a two-dimensional object because (B.8) is a 2×2 matrix equation

(
i∂0 −m i∂1

−i∂1 −i∂0 −m

)
u(p)e−ip

0x0+ip1x1
= 0. (B.11)
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Writing u(p) =
(
a
b

)
and performing the derivatives, we get a simple system of two linear

equations

(p0 −m)a− p1b = 0, p1a− (p0 +m)b = 0, (B.12)

which has a solution if the determinant of the matrix in p-representation, m2 − (p2
0 − p2

1), is
equal to zero. Hence we have two types of solutions: one with positive and one with negative
energy, p0 = ±

√
p2
1 +m2. Let us concentrate on the former one first. Eliminating for example

a from the first equation and inserting it to the second one leads to an identity, i.e. the equation
is satisfied for arbitrary a. Choosing the simplest option, a = 1, we get b = (E(p)−m)/p and

u(p) = N

(
1

E(p)−m
p

)
= N

(
1
p

E(p)+m

)
, (B.13)

Here and in the following, E(p) = +
√
p2 +m2. N is the normalization factor. Also, we are

using the notation p instead of p1 if there will be no danger of a confusion. We will apply the
covariant normalization condition, u†(p)u(p) = E(p)

m , which leads to

u+(p) =

√
E(p) +m

2m

(
1
p

E(p)+m

)
, u−(−p) =

√
E(p) +m

2m

( p
E(p)+m

1

)
. (B.14)

We have also displayed the second solution, u−(−p), which corresponds to the equation (pµγµ+
m)u(p) = 0. The latter is obtained from the original one by changing pµ → −pµ, i.e. u−(−p)
is a negative-energy solution with −p1. As a result, we have two independent solutions of the
Dirac equation, namely

w1(p) = u+(p), w2(p) = u−(−p). (B.15)

The first one corresponds to the positive energy, the second one to the negative energy. The full
solution is a superposition of the plane waves with momentum-dependent coefficients and reads

ψ(x) =
1√
2L

∑
p

√
m

E(p)

[
b1(p)w1(p)e−ip.x + b2(p)w2(p)eip.x

]
. (B.16)

The hermite conjugate field is defined as

ψ†(x) =
1√
2L

∑
p

√
m

E(p)

[
b†1(p)w

†
1(p)e

ip.x + b†2(p)w
†
2(p)e

−ip.x
]
. (B.17)

In the classical theory, the coefficients b are simply c-number amplitudes and we have the com-
plex conjugate b∗(p) instead of b†(p). In quantum theory, these coefficients are operators that
incorporate the property of creating and annihilating a particle with a mass m and momentum p.
Choosing a commutation relation for these Fock operators would result in violation of the Pauli
exclusion principle which is valid experimentally for real fermions and which is assumed also in
the ”toy” two-dimensional models. The anticommutators{

br(p), b†s(q)
}

=
{
br(p)b†s(q) + b†s(q)br(p)

}
= δrsδ(p− q), r, s = 1, 2,
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{
br(p), bs(q)

}
=
{
b†r(p), b

†
s(q)

}
= 0, (B.18)

incorporate correctly the Pauli principle. For example, we get for the number operator N1(p)
(see below)

N2
+(p) = b†1(p)b1(p)b

†
1(p)b1(p) = b†1(p)

(
1− b†1(p)b1(p)

)
b1(p) =

= b†1(p)b1(p) = N+(p), (B.19)

where the property b†1(p)b
†
1(p) = b1(p)b1(p) = 0 implied by the above anticommutation re-

lations has been used. It follows that the occupation number for a state with given mass and
momentum p can only be zero or one.

Let us calculate the Hamiltonian in terms of the b(p), b†(p) operators, that is in the Fock
representation. Inserting this expansion into the Hamiltonian

H =

+L∫
−L

dx
[
− i

2
ψ†α1

↔
∂1 ψ +mψ†βψ

]
(B.20)

and evaluating all terms using the formula of the Kronecker symbol (B.3), the ”spinor” identities
(B.32) below as well as the relations

w†1(−p)α1w2(p) = w†2(−p)α1w1(p) = 1,

w†1(−p)βw2(p) = −w†2(−p)βw1(p) = −p/m, (B.21)

we get

H =
∑
p

mp

E(p)

[ p
m

(
b†1(p)b1(p)− b†2(−p)b2(−p)

)
− b†1(−p)b2(−p) + b†2(p)b1(p)

]
+

+
∑
p

m2

E(p)

[
b†1(p)b1(p)− b†2(−p)b2(−p)

+
p

m

(
b†1(−p)b2(−p)− b†2(p)b1(p)

)]
. (B.22)

The terms off-diagonal in Fock operators cancel and using p2 +m2 = E2(p) we find

H =
∑
p

E(p)
[
N+(p)−N−(p)

]
, N+(p) = b†1(p)b1(p), N−(p) = b†2(p)b2(p). (B.23)

We have written b†2(p)b2(p) instead of b†2(−p)b2(−p) in the above expression because E(p) is
quadratic in p and the change of variables p→ −p leaves it unchanged. One notices immediately
that the modes corresponding to negative-energy solutions contribute to the Hamiltonian with a
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negative sign and hence the energy operator is not positive definite. Dirac has overcome this
difficulty by assuming that the physical vacuum satisfies the conditions

N−(p)|0〉 = |0〉, N+(p)|0〉 = 0, (B.24)

for all momenta p. This means that the vacuum state |0〉 has all negative-energy states filled (due
to the exclusion principle, there is only one fermion for given p) and the positive-energy states
are empty. Then the vacuum energy has an infinite negative value E0 = −

∑
pE(p):

H|0〉 = −
∑
p

E(p)|0〉 (B.25)

and the same is true for the vacuum charge Q0 = −e
∑
p 1, where

Q = −e
+L∫
−L

dxψ†(x)ψ(x) = −e
∑
p

[
N+(p) +N−(p)

]
. (B.26)

However, since only differences, not absolute values of these quantities are measurable, we can
replace

H → H − E0 =
∑
p

E(p)
[
N+(p) +

(
1−N−(p)

)]
,

Q → Q−Q0 = −e
∑
p

[
N+(p)−

(
1−N−(p)

)]
. (B.27)

A negative-energy state contributes only if the value of N−(p) on this state is zero, i.e. when this
state is empty, and the corresponding contribution to energy and charge is positive. Thus such an
empty state is a state of an antiparticle and this can be formally incorporated to the formalism by
writing

b2(−p) = d†(p), b†2(−p) = d(p). (B.28)

Sometimes this reinterpretation is expressed in a form of a Bogoliubov-type of transformation

b(p) = θ(p0)b1(p) + θ(−p0)b†2(−p), d(p) = θ(p0)b2(p) + θ(−p0)b†1(−p), (B.29)

where the step function θ(x) = 1 for x > 0 and vanishes for x ≤ 0. The second term in the
expressions for modified H and Q (B.27) now reads

1−N−(p) = 1− b†2(−p)b2(−p) = b2(−p)b†2(−p) = d†(p)d(p). (B.30)

We then get for the field expansion and the Fock anticommutators the commonly used formulae

ψ(x) =
1√
2L

∑
p

√
m

E(p)

[
b(p)u(p)e−ip.x + d†(p)v(p)eip.x

]
,

{
b(p), b†(q)

}
=
{
d(p), d†(q)

}
= δpq, (B.31)
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where u(p) ≡ w1(p), v(p) ≡ w2(p). The ”spinor” identities that will be useful in the course of
the calculations are

u(p)u(p) = −v(p)v(p) = 1, u(p)v(p) = v(p)u(p) = 0,

u†(p)u(p) = v†(p)v(p) =
E(p)
m

,

u†(p)v(−p) = v†(p)u(−p) = 0,

u†(p)α1u(p) = v†(p)α1v(p) =
p

m

u†(p)α1v(−p) = v†(p)α1u(−p) = 1,

u†(p)γ0u(p) = −v†(p)γ0v(p) = 1,

u†(p)γ0v(−p) = −v†(p)γ0u(−p) = − p

m
. (B.32)

In the case of the Federbush model, we also used the identities for different momenta

u†(p)u(q) = v†(p)v(q)

=

√
E(p) +m

2m

√
E(q) +m

2m

(
1 +

pq(
E(p) +m

)(
E(q) +m

))
≡ f1(p, q),

u†(p)v(q) = v†(p)u(q)

=

√
E(p) +m

2m

√
E(q) +m

2m

( p

E(p) +m
+

q

E() +m

)
≡ f2(p, q),

u†(p)α1u(q) = −v†(p)α1v(q)

= −
√
E(p) +m

2m

√
E(q) +m

2m

(
1− pq(

E(p) +m
)(
E(q) +m

))
≡ f3(p, q),

u†(p)α1v(q) = −v†(p)α1u(q)

=

√
E(p) +m

2m

√
E(q) +m

2m

( p

E(p) +m
− q

E(q) +m

)
≡ f4(p, q). (B.33)
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Using the relation (B.32), we have

P = −i
+L∫
−L

dxψ†∂1ψ =

− i

+L∫
−L

dx
{∑

p

√
m

2LE(p)

[
b†(p)u†(p)e−ipx + d(p)v†(p)eipx

]
×

×
∑
q

√
m

2LE(q)
iq
[
b(q)u(q)eiqx − d†(q)v(q)e−iqx

]}
=

= m
∑
p

p

E(p)

[
u†(p)u(p)b†(p)b(p)− u†(p)v(−p)b†(p)d†(−p)

+ v†(p)u(−p)d(p)b(−p)− v†(p)v(p)d(p)d†(p)
]
. (B.34)

In the last step, one summation was performed by means of the Kronecker symbols δp,±q. With
the help of appropriate spinor identities from the list (B.32), we can see that the second and the
third terms in (B.34) vanish. Using the anticommutation relation d(p)d†(p) = 1− d†(p)d(p) in
the last term and subtrating the infinite irrelevant constant −

∑
p p, we finally obtain

P 1 =
∑
p

p
[
b†(p)b(p) + d†(p)d(p)

]
. (B.35)

The calculation of the Hamiltonian is only slightly more complicated because it contains two
terms. We can proceed as for the momentum operator: insert the field expansions, integrate over
x and perform summation over one of the momenta by means of the Kronecker symbols, or
simply combine our erlier resuls (B.27) and (B.30) to obtain

H =

+L∫
−L

dx
[
− iψ†α1∂1ψ +mψ†γ0ψ

]
=
∑
p

E(p)
(
b†(p)b(p) + d†(p)d(p)

)
. (B.36)

B.2 Negative-energy solutions for the LF fermion field

It is instructive to analyze the problem of negative-energy solutions of the Dirac equation in the
light front theory. One immediately notices the striking simplicity of the LF description. As
mentioned also in the main text, two projections of the LF Dirac equations

2i∂+ψ2(x) = mψ1(x), 2i∂−ψ1(x) = mψ2(x) (B.37)

can easily be combined into one equation for the dynamical component,(
4∂+∂− −m

)
ψ2(x) = 0 (B.38)

which replaces the matrix equation (B.8) of the space-like theory. As in the latter, we are looking
for the positive-energy one-particle solutions

ψ2(x) = e−ipµx
µ

= e−
i
2p

+
nx

−− i
2p
−
n x

+
, p+

n = 2πn/L. (B.39)
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For the sake of this discussion, we have imposed periodic boundary conditions in x− for the
Fermi field. Notice that there is no ”spinor” part multiplying the plane wave because the equation
is free from any matrix structure. Inserting (B.39) into Eq.(B.38) yields

p+
n p

−
nψ2(x) = m2ψ2(x). (B.40)

The negative-energy solution exp
(
ipµx

µ
)

leads to the same relation which simply reproduces
the dispersion law for a free quantum, p− = m2/p+. For positive (negative) p+, p− is positive
(negative). The general solution will be the superposition

ψ2(x) =
1√
2L

+∞∑
n=−∞

a(p+
n )e−ipµx

µ

=

=
1√
2L

+∞∑
n=1

[
b(p+

n )e−
i
2p

+x−− i
2 p̂
−
n x

+
+ b(−p+

n )e
i
2p

+x−+ i
2 p̂
−
n x

+]
. (B.41)

It is in principle sufficient now simply to redefine b(−p+
n ) = d†(p+

n ). To paralel the discussion of
the space-like fermion field, let us show in details the introduction of the Dirac sea. The solution
of the constraint (the second equation in (B.37)) is given by

ψ1(x) =
m√
2L

∞∑
n=1

1
p+
n

[
b(p+

n )e−
i
2p

+x−− i
2 p̂
−
n x

+
− b(−p+

n )e
i
2p

+x−+ i
2 p̂
−
n x

+]
. (B.42)

This can be checked by inserting the latter into the original constraint or derived formally by
means of the Green function (see the main text). If we insert these two components expressed in
Fock representation into the expression of the LF Hamiltonian, also derived in the main text, we
get

P− = m

+L∫
−L

dx−

2

[
ψ†1ψ2 + ψ†2ψ1

]
=

∞∑
n=1

m2

p+
n

[
N+(p+

n )−N−(−p+
n )
]
,

N+(p+
n ) = b†(p+

n )b(p+
n ), N−(−p+

n ) = b†(−p+
n )b(−p+

n ). (B.43)

The mixed terms vanished because the x−-integration gives for them Lδp+m,−p+n = Lδm,−n = 0
for positive m,n.

Obviously, the above Hamiltonian is not bounded from below and this disease can be cured
like in the case of the space-like field, assuming N+(p+

n )|0〉 = 0, N−(−p+
n )|0〉 = |0〉.

B.3 Orthogonality of Fock spaces for different masses – more details

Let us study two real scalar fields φ1(x), φ2(x) (2.3) with masses µ1 and µ2. Let us assume
that the Fock operator algebra (2.5) is satisfied separately for two species of the creation and
annihilation operators which are independent, i.e. [a1(p), a2(q)] = [a1(p), a

†
2(q)] = 0, etc.

Since the field equation (2.1) is second order in the time derivative, let us choose the boundary
conditions at the initial time t = 0 as

φ1(0, x) = φ2(0, x), ∂0φ1(0, x) = ∂0φ2(0, x). (B.44)
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Inserting the field expansions (2.3) with the same momentum p into the two relations (B.44),
changing p → −p in the second (creation-operator) parts and comparing the coefficients at the
same plane waves, we find two algebraic equations

1
√
ω1
a1(p) +

1
√
ω1
a†1(−p) =

1
√
ω2
a2(p) +

1
√
ω2
a†2(−p),

√
ω1a1(p)−

√
ω1a

†
1(−p) =

√
ω2a2(p)−

√
ω2a

†
2(−p) (B.45)

for four operators a1(p), a
†
1(p), a2(p), a

†
2(p) (ω1(p) ≡ ω1 = +

√
p2 + µ2

1, ω2(p) ≡ ω2 =
+
√
p2 + µ2

2). The solution expresses the annihilation and creation operators of the first scalar
field as a linear combination of the Fock operators of the second field:

a1(p) =
1√

4ω1ω2

[
(ω1 + ω2)a2(p) + (ω1 − ω2)a

†
2(−p)

]
≡ c1(p)a2(p) + c2(p)a

†
2(−p). (B.46)

This relation permits us to express the vacuum of the first scalar field, defined as a1(p)|01〉 = 0,
in terms of the vacuum of the second scalar field, defined as a2(p)|02〉 = 0 (the vacua are
normalized: 〈01|01〉 = 〈02|02〉 = 1) in the following form:

|01〉 = K exp
(∑

p

c3(p)a
†
2(p)a

†
2(−p)

)
|02〉 ≡ Â|02〉,

c3(p) =
ω2 − ω1

2(ω2 + ω1)
, (B.47)

where K is the normalization factor

K = exp
{1

4

∑
p

ln
(
1− (ω2 − ω1)2

(ω2 + ω1)2
)}
. (B.48)

Indeed, using the operator identity B exp(A) = exp(A)B − [A,B] exp(A), we get

a2(p) exp
(∑

q

c3(q)a
†
2(q)a

†
2(−q)

)
|02〉 = exp

(∑
q

c3(q)a
†
2(q)a

†
2(−q)

)
a2(p)|02〉

−
∑
q

c3(q)
[
a†2(q)a

†
2(−q), a2(p)

]
exp

(∑
q

c3(q)a
†
2(q)a

†
2(−q)

)
|02〉

=
(
c3(p)a

†
2(−p) + c3(−p)a†2(−p)

)
exp

(∑
q

c3(q)a
†
2(q)a

†
2(−q)

)
|02〉,

where we have used the vacuum definition a2(p)|0〉 = 0 as well as the commutator[
a2(p), a

†
2(q)a

†
2(−q)

]
= a†2(−q)δpq + a†2(q)δp,−q. (B.49)
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With this result, we get by means of (B.46)

a1(p)|01〉 = K
(
c1(p)a2(p) + c2(p)a

†
2(−p)

)
exp

(∑
q

c3(q)a
†
2(q)a

†
2(−q)

)
|02〉 =

= K
(
2c1(p)c3(p) + c2(p)

)
a†2(−p)Â|02〉 = 0, (B.50)

because the terms in the bracket add to zero (we have also made use of c3(−p) = c3(p)). Thus
we can see that the complicated exponential state (B.47) is indeed the vacuum state for the
annihilation operator a1(p). Now we are ready for a very important statement: the vacua |01〉
and |02〉 are orthogonal in the continuum limit. Indeed, we find

〈02|01〉 = 〈02|Â|02〉 = K, (B.51)

because the creation operators in the exponent of Â annihilate |0〉 when acting to the right so that
only the factor 1 yields a non-zero contribution leading to 〈02|02〉 = 1. Now, using the relation∑
p →

2L
2π

∫
dp (2L is the ”volume” of our one-dimensional space) for a transition from the

finite to infinite volume, we get

K = exp
{ L

4π

∫
dp ln

(
1− (ω2 − ω1)2

(ω2 + ω1)2
)}
. (B.52)

The integral will be a negative number because its integrand is negative for −∞ ≤ p ≤ ∞ since
it is equal to − ln

(
1
2 + 1

4

(
ω1
ω2

+ ω2
ω1

))
. Thus K will approach zero as exp(−cL), where c is a

positive number. In other words, in the infinite-volume limit L → ∞, the overlap between the
two vacua as well as between arbitrary Fock states vanishes, i.e. the two Fock spaces become
orthogonal. This means that there is no unitarity operator connecting these two spaces and one
says that they are unitarily inequivalent.

B.4 Explicit form of the Pauli-Jordan function in two dimensions

It is instructive to compare the LF calculation of the Pauli-Jordan commutator function with the
conventional approach. In the latter case, the definition of the PJ function of the scalar field
yields after inserting the field expansion gives

i∆(x) =
[
φ(x), φ(0)

]
=

1
(4π)2

∫
dp1dq1

ω(p1)ω(q1)

{
4πω(q1)δ(p1 − q1)×

× e−iω(p1)x0+ip1x1
− 4πω(q1)δ(p1 − q1)eiω(p1)x0−ip1x1

}
=

=
1
4π

∫
dp1

ω(p1)

{
e−iω(p1)x0+ip1x1

− eiω(p1)x0−ip1x1
}
. (B.53)

The latter expression can be rewritten in a manifestly covariant form as

∆(x) = − 1
2π

∫
d2p ε(p0)δ(p2 − µ2)e−ip.x. (B.54)
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Similarly, one has for the two-point correlation function

D(x− y) = 〈0|φ(x)φ(y)|0〉 =
1
4π

∫
dp1

ω(p1)

{
e−iω(p1)(x0−y0)+ip1(x1−y1)

}
=

=
∫

d2p

2π
δ(p2 − µ2)e−ip.x. (B.55)

Calling x1 = x, p1 = p, ω(p) = +
√
p2
1 + µ2 ≡ p0 for simplicity and making the substitu-

tion p0 = m sinhϕ, p = µ coshϕ, we have to calculate the integral

f(x) =
1
4π

∫ +∞

−∞

dp
p0
e−i(p

0x0−px) =
1
4π

∫ +∞

−∞
dϕe−iµ(x0 coshϕ−x sinhϕ). (B.56)

Now it is necessary to distinguish four cases:

1. x0 > 0, x0 > x, 2. x0 > 0, x0 < x,

3. x0 < 0, |x0| > x, 4. x0 < 0, |x0| < x, (B.57)

because the integrand has different structure for these four cases and hence the results will differ.
For the first case, set x0 =

√
λ coshϕ0, x =

√
λ sinhϕ0, where λ = x2 = x2

0 − x2
1. This

choice respects positivity of both x0 and x as well as the relation of their magnitudes. Using the
formula cosh(ϕ− ϕ0) = coshϕ coshϕ0 − sinhϕ sinhϕ0, we find

f(x) =
1
4π

∫ +∞

−∞
dϕe−iµ

√
λ cosh(ϕ−ϕ0). (B.58)

The table of integrals [25] tells us that the latter integral is equal to

f(x) = − i
4
J0(µ

√
λ)− 1

4
N0(µ

√
λ). (B.59)

J0 and N0 are the standard Bessel functions [25]. One can proceed similarly for the other three
cases with the overall result for the two-point correlation function

D(x) = −1
4
θ(λ)

[
N0(µ

√
λ) + isgnx0J0(µ

√
λ)
]

+
1
2π
θ(−λ)K0(µ

√
λ). (B.60)

Note that in the LF calculation we did not have to perform the sophisticated change of variables
and four cases of the integrand were available immediately.

C Details of calculations of discrete LF correlation functions

Let us describe the main elements of the calculation of the Pauli-Jordan function D̂(x) in the
finite volume. As shown in the main text, there are a few contributions to the integral represen-
tation of the discrete PJ function corresponding to the segments of the rectangular integration
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contour. On the segment C1 we have u = iv, where v is positive real. One immediately finds
that this contribution to D̂(x) may be written as

1
8πQ

P

πQ+ξ∫
0

dvJ0(2
√
v) cot

(
(v − ξ)/(2Q)

)
− i

8πQ

πQ+ξ∫
0

dvJ0(2
√
v), (C.1)

where P denotes principal value. Each of the two integrals is real and finite. The second term
can be evaluated in closed form and the result is

− i

8π

√
πQ+ ξ

Q
J1(2

√
πQ+ ξ), (C.2)

and in particular it vanishes in the large Q limit.
In order to obtain the L→∞ limiting behavior of the first term of (C.1), one can replace the

cotangent function by the inverse of its argument, so that after the change of variable v = w2/4
one obtains

P
1
4π

∞∫
0

dv
J0(2

√
v)

v − ξ
= P

1
2π

∞∫
0

dw
wJ0(w)
w2 − 4ξ

= −1
4
N0(2

√
ξ). (C.3)

On the infinitesimal semicircle C2 defined by u − iξ = εeiθ,−π/2 ≤ θ ≤ π/2, with ε → 0+,
we may use the approximation

1

exp
(

1
Q (u− iξ)

)
− 1

≈ Q

εeiθ
. (C.4)

Replacing further the function I0 by its value at u0 and using the relation [25] I0(2i
√
ξ) =

J0(2
√
ξ), we find that this contribution to D̂ is equal to i

16πJ0(2
√
ξ). Note that this quantity is

independent of L and thus survives in the large-Q limit.
On the horizontal semi-infinite line C3 we may write u = iξ + Q(iπ + v), where v is real,

positive. The contribution to D̂(x) is given by

− 1
4π

αQ∫
0

dv
1

ev + 1
J0

(
2
√
ξ + πQ− iQv

)
. (C.5)

The asymptotic analysis of Eq.(C.5) in the limit Q → +∞ is very lengthy and involves sub-
stitution of an integral representation of J0 combined with the method of steepest descent. The
final result is that the leading behavior of the expression (C.5) is given by a term proportional to
exp(iQ). This vanishes in the limit L→∞ as long as for any finite L the quantity x+ includes
a small positive imaginary part such that L × Im(x+) → ∞. This requirement is satisfied for
example by the choice Im(x+) = O(L−1/2).

Finally, points on the line segment C4 are described by u = R+ iv, where v is real, positive.
The contribution to D̂(x) from C4 is then found to be dominated by exp

[
−
(
α−

√
2α
)
Q
]

and
thus vanishes in the large-Q limit since we choose α > 2.
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D The Dirac-Bergmann quantization for constrained systems

In this Appendix, we first very briefly describe the Dirac-Bergmann algorithm for quantization
of theories with constraints and then apply it to the light front λφ4(1 + 1) model. A detailed
derivation of the method can be found in the Dirac’s lectures [61] and its more recent applications
in the monographs [131, 132]. The method (or its alternative [133]) is suitable and sometimes
even inevitable for Lagrangians which are linear in velocities, e.a. in time derivatives of the
fields. Here we just summarize the main steps of the procedure in a form of a recipe. It consists
of the following steps.

1. Identify primary constraints ϕi, e. a. calculate conjugate momenta Πi and construct

ϕi = Πi −
δL
δ∂0φi

≈ 0 (D.1)

for those Πi which are not time derivatives of fields. The ≈ sign indicates the “weak equality”
which means that it should be implemented only after all Poisson brackets have been calculated.
The Poisson bracket is defined in field theory as

{A,B} =
∫
dz

[
δA

δφi(z)
δB

δΠi(z)
− δB

δφi(z)
δA

δΠi(z)

]
. (D.2)

2. Prescribe the fundamental Poisson brackets between pairs of fields and their conjugate
momenta (even in the case if a field is non-dynamical, i.e. its conjugate momentum vanishes).

3. Construct the primary Hamiltonian from the canonical Hamiltonian Hc, the primary con-
straints and the Lagrange multiplier functions uj :

Hp = Hc +
∑
i

∫
d3xui(x)ϕi(x) . (D.3)

The multipliers ui are determined from the self-consistency condition that the primary constraints
do not depend on time. This means that they have vanishing Poisson brackets with the primary
Hamiltonian:

∂0ϕi(x) = {ϕi(x),Hp}+
∑
j

∫
d3yuj(y){ϕi(x), ϕj(y)} ≈ 0 . (D.4)

One has to require the self-consistency for the secondary, terciary, etc. constraints (which may
arise in the course of solving the above equation) until no new constraints appear.

4. The residual gauge freedom is indicated by a presence of the first-class constraints ϕk
satisfying

{ϕk(x), ϕi(y)} = 0 (D.5)

for all i. In this case a subsidiary condition(s) χk(x) has to be imposed to uniquely find ui(x).
After this step, all constraints θα(x) which include primary, secondary, . . . constraints and the
gauge-fixing (subsidiary) conditions are second class. A constraint θβ is called second class if it
has non-vanishing Poisson bracket with at least one of the other constraints θα:

{θα(x), θβ(y)} 6= 0 (D.6)
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at least for one β.
5. The second-class constraints change the canonical quantization procedure: the matrix

Cαβ = {θα, θβ} of the Poisson brackets between all second-class constraints is used to construct
the Dirac bracket {A,B}∗

{A,B}∗ = {A,B} − {A, θα}C−1
αβ {θβ , B} . (D.7)

6. To obtain a quantum theory, Dirac brackets are replaced by commutators according to the rule

{A,B}∗ → −i[A,B] . (D.8)

Now the second-class constraints can be taken strongly and implemented in the HamiltonianHp.
Let us illustrate the method on a concrete light front example of the two-dimensional self-

interacting real scalar field with the Lagrangian density

Llf = 2∂+φ∂−φ−
1
2
µ2φ2 − φ4

4!
, (D.9)

where the quadratic term is the true mass term, i.e. the Lagrangian corresponds to the theory in
the symmetric phase. We consider the model on the finite interval −L ≤ x− ≤ L and impose
periodic boundary conditions leading to the decomposition φ(x) = φ0 + ϕ(x). φ0 is the x−-
independent part, the zero mode, and ϕ is the sum of all Fourier modes with p+

n 6= 0. The
Dirac-Bergmann procedure then has to include also the zero-mode sector. As we have seen in
the main text, the canonical Hamiltonian of the model is

P− =

+L∫
−L

dx−

2

[
µ2φ2 + 2

λ

4!
φ4
]

=

+L∫
−L

dx−

2

[
µ2φ2

0 + µ2ϕ2 + 2
λ

4!
(
φ0 + ϕ

)4]
. (D.10)

The canonical momentum Πφ = 2∂−φ leads to two primary constraints

θ1 = Πϕ − 2∂−ϕ ≈ 0, θ2 = Π0 ≈ 0 (D.11)

The primary Hamiltonian is

P−p = P−c +

+L∫
−L

dy−

2
u1(y−)θ1(y−) + Lu2θ2. (D.12)

The last term is y− - independent and the integration yielded just the factor L. The fundamental
Poisson brackets are{

ϕ(x−),Πϕ(y−)
}

= δN (x− − y−),
{
φ0,Πφ0

}
=

1
L
, (D.13)

where 1/L is the zero-mode part of the full periodic delta function δP (z−). The Poisson bracket
of the primary constraints are easily calculated as{

θ1(x−), θ1(y−)
}

= −4∂x−δN (x− − y−),
{
θ2, θ2

}
= 0,

{
θ1(x−), θ2

}
= 0. (D.14)
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Next we have to require that the primary constraints are conserved (the consistency condition):

{
ϕ1(x−), P−p

}
=

+L∫
−L

dy−

2

[
− 2µ2ϕ(y−)− 2λ

3!
(
3φ2

0ϕ(y−) + 3φ0ϕ
2(y−) +

+ ϕ3(y−)
)
− 4u1(y−)∂x−

]
δN (x− − y−) ≈ 0. (D.15)

Using partial integration and integrating with the help of the delta function, we find that this
equation determines the Lagrange multiplier u1:

∂−u1(x−) ≈ −1
2
µ2ϕ(x−)− λ

2.3!
[
3φ2

0ϕ(x−) + 3φ0ϕ
2(x−) + ϕ3(x−)

]
. (D.16)

Note that without prescribing boundary condition, the inversion of this equation would not be
unique since an arbitrary function of x+ could be added to u1. With periodic boundary condition,
the inversion of Eq.(D.16) is unique. The solution is expressed in terms of the Green’s function
G1(x− − y−) = 1/2εN (x− − y−) which is the inverse of the operator ∂−: ∂x−G1(x− − y−) =
δN (x− − y−).

The consistency condition for the constraint θ2 yields

{
θ2, P

−
p

}
=

{
Π0,

+L∫
−L

dx−

2

[
µ2φ2

0 +

+
2λ
4!

(
φ4

0 + 4φ3
0ϕ(x−) + 6φ2

0ϕ
2(x−) + 4φ0ϕ

3(x−) + ϕ4(x−)
)]}

=

= −2µ2φ0 −
λ

3

+L∫
−L

dx−

2L

[
φ3

0 + 3φ0ϕ
2(x−) + ϕ3(x−)

]
≈ 0. (D.17)

We have to impose a consistency condition on the secondary constraint θ3

θ3 = µ2φ0 +
λ

3!

+L∫
−L

dx−

2L

(
φ0 + ϕ

)3

(D.18)

because no u multiplier appears in it:

{
θ3, P

−
p

}
=
{
µ2φ0 +

λ

3!

+L∫
−L

dx−

2L

(
φ3

0 + 3φ0ϕ
2(x−) + ϕ3(x−)

)
,

+L∫
−L

dy−

2
u1(y−)

(
Πϕ(y−)− 2∂−ϕ(y−)

)
+ Lu2Π0

}
. (D.19)
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Evaluation of individual terms yields a weak equation for the multiplier u2:

(
µ2 +

λ

2
φ2

0

)
u2 +

λ

2

+L∫
−L

dx−

2L
u1(x−)

[
2φ0ϕ(x−) + ϕ2(x−)

]
≈ 0. (D.20)

At this point, both multipliers are determined and the procedure terminates. The non-vanishing
Poisson brackets between the final set of three constraints

θ1 = Πϕ − 2∂−ϕ, θ2 = Π0, θ3 = µ2φ0 +
λ

3!

+L∫
−L

dx−

2L
(
φ0 + ϕ

)3
(D.21)

are {
θ1(x−), θ1(y−)

}
= −4δN (x− − y−),

{
θ1(x−), θ3

}
= − λ

2L
ϕ(x−)

[
2φ0 + ϕ(x−)

]
,

{θ2, θ3} = −µ
2

L
− λ

2L
[
φ2

0 +

+L∫
−L

dx−

2L
ϕ2(x−)

]
. (D.22)

They are second class because each has non-vanishing Poisson bracket with at least one of them.

Denoting ∆ ≡ µ2 + λ
2

[
φ2

0 +
+L∫
−L

dx−

2L ϕ3(x−)
]

and f(x−) = ϕ(x−)
[
2φ0 +ϕ(x−)

]
, these Poisson

brackets determine the matrix C as:

C(x−, z−) =

 −4∂x−δN (x− − z−) 0 − λ
2Lf(x−)

0 0 −∆
λ
2Lf(z−) ∆ 0

 . (D.23)

Its inverse can be found for example with Mathematica:

C−1(z−, y−) =

 − 1
4G1(y− − y−) λ

8
G1(z

−−y−)f(y−)
L∆ 0

λ
8
G1(z

−−y−)f(z−)
L∆ −λ2

16
G1(z

−−y−)f(y−)f(z−)
L2∆2

1
L2∆

0 − 1
L2∆ 0

 . (D.24)

One can check that the matrices indeed satisfy the required property

+L∫
−L

dz−

2
Cαγ(x− − z−)C−1

γβ (z− − y−) = δαβδ(x− − y−), (D.25)

which in the presence of zero modes reads

+L∫
−L

dz−

2
C(x− − z−)C−1(z− − y−) = diag

(
δN (x− − y−), 1/L, 1/L

)
. (D.26)
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The last two entries correspond to the zero-mode sector.
Now we can calculate the Dirac brackets according to the formula (D.7), which here has a

detailed form{
A(x−), B(y−)

}∗
=
{
A(x−), B(y−)

}
−

−
+L∫
−L

du−

2

+L∫
−L

dv−

2

{
A(x−), θα(u−)

}
C−1
αβ (u−, v−)

{
θβ(v−), B(y−)

}
, (D.27)

and using the Poisson brackets between the fields and the three constraints:{
ϕ(x−), θ1(y−)

}
= δ(x− − y−),

{
Πϕ(x−), θ1(y−)

}
= −2∂x−δ(x

− − y−),

{
Πϕ(x−), θ3(y−)

}
= − λ

2L
f(x−)

{φ0, θ2} =
1
L
, {Π0, θ3} = −∆

L
. (D.28)

The calculation is straightforward albeit a bit tedious. As the result, with the correspondence
(D.8) and the strong relations

Πϕ = 2∂−ϕ, Π0 = 0, φ0 = − 1
3!
λ

µ2

+L∫
−L

dx−

2L

(
φ0 + ϕ

)3

, (D.29)

the following set of equal-LF time quantum commutators is found:[
ϕ(x−), ϕ(y−)

]
= − i

8
εN (x− − y−),

[
ϕ(x−),Πϕ(y−)

]
=
i

2
δN (x− − y−),

[
Πϕ(x−),Πϕ(y−)

]
= i∂x−δN (x− − y−),

[
φ0,Π0

]
= 0,

[
ϕ(x−), φ0

]
= i

λ

16∆

+L∫
−L

dy−

2L
ε(x− − y−)f(y−),
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[
Πϕ(x−), φ0

]
= i

λ

4L∆
f(x−), (D.30)

all the rest being equal to zero. The first three commutators correspond to the normal mode
sector and are also found in the continuum theory. The mixed normal mode – zero mode sector
commutators are specific to the finite-volume treatment. The assumed canonical commutator[
φ0,Π0

]
= i

L has been changed to a vanishing one in accordance with the strong relation Π0 =
0. Note the highly non-linear nature of the latter two commutators. It is not clear how one
could use them outside an iterative treatment. This of course is tightly related to the lack of
non-perturbative techniques of solving the fundamental ZM constraint (D.29). At the quantum
level, also an operator-ordering problem arises in the canonical LF Hamiltonian due to the non-
vanishing commutator

[
φ0, ϕ

]
. These are still the open questions.

E Regularized special functions in the finite volume
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Fig. E.1. Regularized delta function. The number of terms N = 24× 104, the box length L = 100 and the
regulator ε = 5× 10−4.

We will display detailed behaviour of the regularized sign function and Dirac delta functions
in this Appendix. As defined in the main text, the regularization is twofold: a cutoff on number
of modes and a convergence factor governed by a small parameter ε. Then the corresponding
formulae read

δΛ(x− − y−) =
1

2L

Λ∑
n= 1

2

(
e−

i
2p

+
n (x−−y−−iε) + e

i
2p

+
n (x−−y−+iε)

)
(E.1)
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Fig. E.2. Regularized sign function εΛ(x−) for N = 7×104 and L = 100 in the neighborhood of x− = 0.
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Fig. E.3. Detailed behaviour of the unregularized sign function εΛ(x−) around the endpoint x− = 0.0.
The rapid oscillations are evident.
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and

εΛ(x− − y−) =
4i
L

Λ∑
n= 1

2

1
p+
n

(
e−

i
2p

+
n (x−−y−−iε) − e

i
2p

+
n (x−−y−+iε)

)
. (E.2)

F Constrained variational method in the broken phase of λφ4 theory

In this Appendix, we present details of the mathematical procedure to obtain the generalization
of the unconstrained variational method which uses the coherent states and infinite value of the
dimensionless momentum K, to the finite value of K. The idea is to add a chosen value of K
via a Lagrange multiplier to the Hamiltonian and determine the coefficients of the generalized
coherent states from the minimization of this constrained problem. The case of the antiperiodic
boundary condition will be discussed.

With 〈K〉 = L
2π

〈α|P+|α〉
〈α|α〉 , and f ′ = ∂f(x−)

∂x− we have

K =
L

4π2

∫ +L

−L
dx−(f ′)2 . (F.1)

Minimizing

1
µ2

〈α | Hβ | α〉
〈α | α〉

=
1
L

∫ +L

−L
dx−

[
β
{ L2

4π2
(f ′)2 − 〈K〉L

}
− 1

4
f2 +

λ

192µ2
f4
]

(F.2)

we obtain

−2β
L2

4π2

∂2f

∂(x−)2
− 1

2
f +

λ

48πµ2
f3 = 0. (F.3)

Putting f(x−) = f0F (u) where the variable u = 2x−+L
L K with

K = K(k) =
∫ 1

0

dt(1− t2)−
1
2 (1− k2t2)−

1
2 , (F.4)

we have,

∂2F

∂u2
= − 1

4K
2
β
F +

λf2
0

96K
2
βπµ2

F 3. (F.5)

Comparing with the differential equation satisfied by the Jacobi Elliptic Function sn(u, k),
namely,

∂2sn(u, k)
∂u2

= −(1 + k2) sn(u, k) + 2k2 sn3(u, k), (F.6)

we get

f(x−) = f0 sn

(
x−

L
K, k

)
(F.7)
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with

β =
1

4K
2
(1 + k2)

and f2
0 =

48k2πµ2

λ(1 + k2)
. (F.8)

Note that we have imposed APBC on the solution. By explicit calculation we get

〈K〉 =
8µ2

πλ
K
[
E(k)− 1− k2

1 + k2
K(k)

]
(F.9)

with

E(k) =
∫ 1

0

dt

√
1− k2t2√
1− t2

(F.10)

and

〈α | H | α〉
〈α | α〉

= − 24k2πµ4

λ(1 + k2)2
+

64µ6

λ2(1 + k2)〈K〉

[
E(k)− 1− k2

1 + k2
K(k)

]2
. (F.11)

In the 〈K〉 → ∞ limit, k → 1 and we get

〈α | H | α〉
〈α | α〉

= −6πµ4

λ
+

32µ6

λ2〈K〉
. (F.12)

Interpreting the state | α〉 to be a kink state, we identify the first term as the vacuum energy
density which is the classical vacuum energy density. The second term is identified as M2

kink

〈K〉 .

Then we get the classical kink mass Mkink = 4
√

2µ3

λ .
Using the Fourier expansion [134]

sn(u, k) =
1
K

2π√
k2

∞∑
m=1

qm−
1
2

1− q2m−1
sin

(2m− 1)πu
2K

(F.13)

where q = exp
(
−πK(1−k2)

K(k2)

)
we have

f(x−) =
2π
K

√
48πµ2

λ(1 + k2)

∑
j

qj

1− q2j
sin

jπx−

L
. (F.14)

In the limit k2 → 1, using q → limitk2→1

(
1− π K(k2−1)

K(k2)

)
so that (1 − q2m−1)K → (2m −

1)π
2

2 since K(0) = π
2 , it is readily verified that in the limit k2 → 1, the expression for f(x−) in

the constrained variational calculation given by Eq. (F.14) goes over to that in the unconstrained
variational calculation given by Eq. (9.35).
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G Light front perturbation theory

Perturbative calculations in the LF field theory are most often performed in the (”old-fashioned”)
Hamiltonian form. This perturbation theory is also called time-ordered formalism because one
considers all possible orderings of vertices along the time arrow. The main reason for the Hamil-
tonian formulation (which is not manifestly covariant) is smaller number of time-ordered dia-
grams in comparison with their number in usual space-like perturbation theory where they can
be obtained from covariant Feynman diagrams by integration over k0. In literature, one can also
find LF calculations [135,136] starting from the usual Feynman amplitudes which are expressed
in terms of covariant integrals.11 The LF time-ordered diagrams are then generated by perform-
ing integration over the LF energy variable k− (recall that d4k = 1

2dk−dk+dk1dk2 in the LF
parametrization.) Mathematically, this is a delicate step because a typical element of a Feynman
diagram – the propagator of a scalar boson i(k2−m2)−1 – is equal to i(k+k−−k2

⊥−m2)−1 in
the LF formalism while it is more convergent in the space-like parametrization i(k2

0−~k2−m2)−1.
As a consequence, in the contour integration method, there are additional contributions in the LF
perturbative computations coming from e.g. the arch in the complex k− plane [135] and one has
to be very careful to take all of them correctly into account. Thus it seems more appropriate to
base the LF perturbative calculations on a genuine (and more straightforward) approach which
consists of the following steps.

As in the usual manifestly covariant perturbation theory, one works in the Dirac or interaction
representation of field operators and states, in which the state vector Φ satisfies the equation

i
∂Φ(t)
∂t

= HI(t)Φ(t). (G.1)

HI is the interaction part of the Hamiltonian constructed from the fields in interaction represen-
tation. Suppose that the state Φ can be expressed at arbitrary time t as Φ(t) = S(t, t0)Φ(t0).
Then one obtains from the Eq.(G.1)

i
∂S(t, t0)

∂t
= HI(t)S(t, t0). (G.2)

Let us try to find an iterative solution of this equation in the form S(t, t0) =
∑∞
n gnSn(t, t0),

where g is the coupling constant of the given model. Inserting this series into (G.2) and compar-
ing terms of the same order in g, we obtain a sequence of relations

i
∂S0(t, t0)

∂t
= 0, i

∂S1(t, t0)
∂t

= HI(t)S0, . . . i
∂Sn(t, t0)

∂t
= HI(t)Sn−1, (G.3)

where we also used that HI ∼ g. The first relation tells us that S(t, t0) = 1̂ since it has to
be time-independent and obviously S(t0, t0) = 1̂. Then the second relation in (G.3) can be
integrated yielding

S1(t1, t0) = −i
∫ t1

t0

dt2HI(t2). (G.4)

11 It is to be noted however that they are obtained from Feynman rules based on conventional space-like version of the
theory.
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Similarly, integrating the third relation in (G.3) for n = 2, one finds

S2(t, t0) = −i
∫ t

t0

dt1HI(t1)S1(t1, t0) = (−i)2
∫ t

t0

dt1HI(t1)
∫ t1

t0

dt2HI(t2), (G.5)

and then also

S3(t, t0) = −i
∫ t

t0

dt1HI(t1)S2(t1, t0) =

= (−i)3
∫ t

t0

dt1HI(t1)
∫ t1

t0

dt2HI(t2)
∫ t2

t0

dt3HI(t3), (G.6)

etc. For the scattering problems, one usually chooses t0 = −∞, t = +∞. The above consid-
erations were quite general as they were not based on any specific feature of the conventional
space-like field theory, so they are equally valid if we choose the LF time x+

n instead of tn and
the LF Hamiltonian P−I instead of HI . Then the first few terms in the perturbative series for the
LF scattering matrix are given by

S = 1̂− i

2

∫ +∞

−∞
dx+P−I (x+) +

(
− i

2

)2 ∫ +∞

−∞
dx+

1 P
−
I (x+

1 )
∫ x+

1

−∞
dx+

2 P
−
I (x+

2 ) +

+
(
− i

2

)3 ∫ +∞

−∞
dx+

1 P
−
I (x+

1 )
∫ x+

1

−∞
dx+

2 P
−
I (x+

2 )
∫ x+

2

−∞
dx+

3 P
−
I (x+

3 ) + . . . (G.7)

In the next step, one calculates the matrix elements of the above operator. Assume that |Φi〉 and
|Φf 〉 are eigenstates of the free LF Hamiltonian P−0 at x+ = −∞ and x+ = +∞, respectively.
Then we have from the expression (G.7)

Sfi ≡ 〈Φf |S|Φi〉 = δfi −
i

2

∫ +∞

−∞
dx+〈Φf |P−I (x+)|Φi〉 −

− 1
4

∫ +∞

−∞
dx+

1 〈Φf |P
−
I (x+

1 )
∫ x+

1

−∞
dx+

2 P
−
I (x+

2 )|Φi〉+

+
i

8

∫ +∞

−∞
dx+

1 〈Φf |P
−
I (x+

1 )
∫ x+

1

−∞
dx+

2 P
−
I (x+

2 )
∫ x+

2

−∞
dx+

3 P
−
I (x+

3 )|Φi〉+ . . .(G.8)

We can insert the complete set of states 1̂ =
∑
n |Φn〉〈Φn| between any two P−I (x+

n ) operators
and use the translation operator to obtain all P−I at the same time x+ = 0:

P−I (x+) = e
i
2P

−
0 x

+
V (0)Pe−

i
2P

−
0 x

+
, (G.9)

where we have denoted the interacting Hamiltonian at x+ = 0 as V (0) ≡ V for simplicity.
Since all states |Φn〉 including |Φf 〉 and |Φi〉 are eigenstates of P−0 corresponding to the LF
energy E−n , action of the translational operator e

i
2P

−
0 x

+
on the state |Φn〉 generates the factors

e
i
2E

−
n x

+
which can be easily integrated leading to energy dependent denominator factors. Thus

for example the first non-trivial term is

S
(1)
fi = − i

2

∫ +∞

−∞
dx+e

i
2 (E−f −E

−
i )x+

〈Φf |V |Φi〉 = −2πiδ(E−f −E
−
i )〈Φf |V |Φi〉. (G.10)
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The next correction is

S
(2)
fi = −1

4

∑
n

∫ +∞

−∞
dx+

1 e
i
2E

−
f x

+
1 〈Φf |V e−

i
2P

−
0 x

+
1 |Φn〉 ×

×
∫ x+

1

−∞
dx+

2 〈Φn|e
i
2P

−
0 x

+
2 V |Φi〉e−

i
2E

−
i x

+
2 =

= −2πiδ(E−f − E−i )
∑
n

〈f |V |n〉〈n|V |i〉
E−i − E−n

. (G.11)

Here the simplified notation is |f〉 ≡ |Φf 〉, E−n is the energy of the intermediate state |n〉.
Presence of appropriate convergence factors is understood, so that the energy in the exponents
is actually E−n ± iε and ±iε terms are also present in the energy denominators. The conver-
gence factors eliminate integral contributions at x+ = ±∞. The summation runs over all many-
particle intermediate Fock states generating elementary time-ordered processes (or diagrams in
the graphical language). Only those bra-states contribute in which all creation (annihilation) op-
erators are contracted with annihilation (creation) operators from the interaction Hamiltonian or
from a ket-state. The latter situation corresponds to spectator particles not affected by interac-
tion. Note that the energy is not conserved at vertices in this form of perturbation theory. We
say that particles (or more properly particle states) are off energy shell instead of being off mass
shell as in the manifestly covariant form of the perturbative expansion. In the latter approach,
the space-like version of the representation (G.7) is not the final step. One introduces the time
ordering operation T to set all upper integration limits to +∞. In this way one is left with inte-
grals of the form

∫ +∞
−∞ d4xH, where H is the Hamiltonian density, which by inserting the field

expansions are converted to four-dimensional integrals in the momentum space with the measure
proportional to d4k. Contrary to this, in the time-ordered perturbation theory summation over
intermediate states includes summation over momenta not fixed by momentum conservation. In
the continuum form of the theory, one thus performs only three-dimensional momentum integra-
tion (or one-dimensional integration in the case of two-dimensional theories). No k− integration
is necessary avoiding the subtleties mentioned earlier.

Finally, let us present also a formula for the fourth order correction to the scattering matrix.
It reads

S
(4)
fi = −2πiδ(E−f − E−i )

∑
l,m,n

〈f |V |l〉〈l|V |m〉〈m|V n〉〈n|V |i〉
(E−i − E−l )(E−i − E−m)(E−i − E−n )

(G.12)

and can be applied for example to calculations of the so-called box diagrams, i.e. those with four
internal lines.

One can formulate a set of rules analogous to Feynman rules which simplify the task of
writing down perturbative amplitudes of elementary processes of given quantum fields with a
prescribed interaction Hamiltonian [11]. The rules in the case of (3 + 1) dimensional theory are:

1. Draw all time-ordered diagrams, i.e. all diagrams which correspond to a different ordering
of the vertices along the x+ arrow and which are topologically nonequivalent.

2. For each vertex, insert the factor 2(2π)3δ3(pf −pi) which guarantees the four-momentum
conservation, and an elementary matrix element of the given interaction Hamiltonian.
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These matrix elements have to be worked out separately for each theory using the Fock
representation.

3. For each internal line, sum over momentum and helicity. In the continuum theory, the
former means integration

∫
dp+d2p⊥
2(2π)3p .

4. Insert the energy denominator (p−i − p−I + iε)−1 for each intermediate state I . Here
p−I =

∑
j p

−
j is the LF energy of the intermediate state equal to the sum of on-mass shell

energies (since one is working in the interaction picture) p−j = m2/p+
j of particles present

in the intermediate state.

5. In theories with bosons, a symmetry factor has to be included for each boson loop since it
is necessary to use symmetrized boson states.

H Field theory in near light front coordinates

Consider the set of coordinates

x+ =
1√
2
(x0 + x3) +

1
2
η2 1√

2
(x0 − x3)

x− =
1√
2
(x0 − x3)

x⊥ = (x1, x2). (H.1)

They generalize our LF time variable to an arbitrary ”mixture” of usual t and x3 coordinates.
Then x− is the third space (” longitudinal”) coordinate. The metric tensor in the new coordinate
system is given by

g̃µν =


0 1 0 0
1 −η2 0 0
0 0 −1 0
0 0 0 −1

 ,

g̃µν =


η2 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

 . (H.2)

Thus we have,

x2 = g̃µνx
µxν =

2x+x− − η2(x−)2 − (x⊥)2 = g̃µνxµxν = η2(x+)2 + 2x+x− − (x⊥)2. (H.3)

Furthermore,

x+ = x−, x− = x+ − η2x−. (H.4)
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The scalar product is k·x = k+x−+k−x+−η2k−x−−k⊥ ·x⊥ = k+x
++k−x−−k⊥ ·x⊥. Thus

k+ which is conjugate to x+ is the energy and k− which is conjugate to x− is the longitudinal
momentum. It is important to keep in mind that −∞ < k− < +∞.

For an on mass-shell particle of mass m, k2 = m2 yields

η2(k+)2 + 2k+k− − (k⊥)2 −m2 = 0 (H.5)

which leads to the dispersion relation

k+ =
−k− ±

√
(k−)2 + η2(m2 + (k⊥)2)

η2
. (H.6)

For an on mass-shell particle, since k0 > k3, k0 > 0 implies k+ > 0 and hence the Lorentz
invariant phase space factor

d4k

(2π)4
2πδ(k2 −m2)θ(k+) =

=
dk+dk−d

2k⊥

(2π)3
δ(η2(k+)2 + 2k+k− − (k⊥)2 −m2)θ(k+) =

dk−d
2k⊥

(2π)32Eon
, (H.7)

where Eon(k) =
√

(k−)2 + η2(m2 + (k⊥)2).
Consider now the free massive scalar theory with the Lagrangian density

L =
1
2
∂µφ∂

µφ− 1
2
m2φ2 =

1
2
η2∂+φ∂+φ+ ∂+φ∂−φ−

1
2
∂⊥φ · ∂⊥φ− 1

2
m2φ2. (H.8)

The equation of motion

(∂µ∂µ +m2)φ = 0 (H.9)

becomes(
η2∂+∂+ + 2∂+∂− − (∂⊥)2 +m2

)
φ = 0. (H.10)

The general solution is

φ(x) =
∫

d4k

(2π)4
f(k)2πδ(k2 −m2)eik·x, (H.11)

or

φ(x) =
∫

dk−d
2k⊥

(2π)32Eon(k)
[a(k)ei(k+onx

++k−x
−−k⊥·x⊥) +

+ a∗(k)e−i(k+onx
++k−x

−−k⊥·x⊥)], (H.12)

where

k+(on) =
−k− +

√
(k−)2 + η2(m2 + (k⊥)2)

η2
. (H.13)
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In the quantum theory we have

φ(x) =
1

(2π)3

∫ +∞

−∞

dk−d
2k⊥

2Eon(k)
[
a(k)ei(k+onx

++k−x
−−k⊥·x⊥) +

+ a†(k)e−i(k+onx
++k−x

−−k⊥·x⊥)
]
. (H.14)

The conjugate momentum is

π(x) =
∂L
∂∂+φ

= η2∂+φ+ ∂−φ, (H.15)

π(x) = −i 1
(2π)3

∫ +∞

−∞

dk−d
2k⊥

2Eon(k)
Eon(k)

[
a(k)ei(k+onx

++k−x
−−k⊥·x⊥)

− a†(k)e−i(k+onx
++k−x

−−k⊥·x⊥)
]
. (H.16)

We have,

[φ(x), π(y)]x+=y+ = iδ(x− − y−)δ2(x⊥ − y⊥), (H.17)

provided[
a(k), a†(k′)

]
= (2π)32Eon(k)δ(k− − k′−)δ2(k⊥ − k′⊥),

[a(k), a(k′)] = 0,
[
a†(k), a†(k′)

]
= 0. (H.18)

The Hamiltonian density is

H = π∂+φ− L =
1
2

(π − ∂−φ)2

η2
+

1
2
∂⊥φ · ∂⊥φ+

1
2
m2φ2 (H.19)

and the Hamiltonian in the Fock representation takes the form

H =
∫
dx−d2x⊥H =

=
∫

dk−d
2k⊥

(2π)32Eon(k)
−k− +

√
(k−)2 + (m2 + (k⊥)2)η2

η2
a†(k)a(k). (H.20)

The propagator is given by

iSB(x) = 〈0 | T (φ(x)φ(0)) | 0〉 =
= θ(x+)〈0 | φ(x)φ(0) | 0〉+ θ(−x+)〈0 | φ(0)φ(x) | 0〉

=
1

(2π)3

∫
dk−d

2k⊥

2Eon(k)

[
θ(x+)e−i(k+x

++k−x
−−k⊥·x⊥)

+ θ(−x+)ei(k+x
++k−x

−−k⊥·x⊥)
]
.

(H.21)
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Using

θ(x) =
1

2πi

∫ +∞

−∞
dyeiyx

1
y − iε

(H.22)

and changing integration variables, we get

iSB(x) =
1

(2π)4

∫
dk+dk−d

2k⊥ei(k+x
++k−x

−−k⊥·x⊥) ×

× i

η2(k+)2 + 2k+k− − (k⊥)2 −m2 + iε
,

iSB(x) =
1

(2π)4

∫
d4keik.x

i

k2 −m2 + iε
. (H.23)

Finally, let us present the perturbative formula for the S matrix in the near light front version:

Sfi = δfi − 2πiδ(p+(on)f − p+(on)i)Tfi, (H.24)

Tfi = 〈f | VS | i〉+
∑
n

〈f | VS | n〉〈n | VS | i〉
p+(on)i − p+(on)n + iε

+ . . . (H.25)

Since the longitudinal momentum p− is conserved at the vertex, we get

Tfi = 〈f | VS | i〉+
∑
n

〈f | VS | n〉〈n | VS | i〉
1
η2 (E(on)i − E(on)n) + iε

+ . . . (H.26)

The sum over intermediate states
∑
n →

∫ dk−d
2k⊥

(2π)32Eon
.
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