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A review of methods for computations for the nano-scale is presented. The paper should
provide a convenient starting point into computations for the nano-scale as well as a more in
depth presentation for those already working in the field of atomic/molecular-scale modeling.
The argument is divided in chapters covering the methods for description of the (i) electrons,
(ii) ions, and (iii) techniques for efficient solving of the underlying equations. A fairly broad
view is taken covering the Hartree-Fock approximation, density functional techniques and
quantum Monte-Carlo techniques for electrons. The customary quantum chemistry methods,
such as post Hartree-Fock techniques, are only briefly mentioned. Description of both classi-
cal and quantum ions is presented. The techniques cover Ehrenfest, Born-Oppenheimer, and
Car-Parrinello dynamics. The strong and weak points of both principal and technical nature
are analyzed. In the second part we introduce a number of applications to demonstrate the dif-
ferent approximations and techniques introduced in the first part. They cover a wide range of
applications such as non-simple liquids, surfaces, molecule-surface interactions, applications
in nanotechnology, etc. These more in depth presentations, while certainly not exhaustive,
should provide information on technical aspects of the simulations, typical parameters used,
and ways of analysis of the huge amounts of data generated in these large-scale supercom-
puter simulations.
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4 Computer Simulations for the Nano-Scale

1 Introduction

Computer modeling of matter is a standard tool used in materials science on all length-scales
from macroscopic all the way down to atomic/molecular-scale. In the last decades computational
physics became the third pillar of physics in addition to the two more traditional experimental
and theoretical physics. Computational physics is in many respects akin to experimental physics
as what it often amounts to is a “computer experiment”. Typical example being computational
statistical mechanics, where a given property of interest is literally “measured” on the computer
in a way analogous to how it is measured in the laboratory experiment. On the other hand,
the approach the computational physics uses has a lot in common with theoretical physics. For
example, it often starts with Hamiltonians, equations-of-motion, etc., which form the basis of the
simulations, which are an integral part of the theoretical physics. One could see it as a bridge
between theory and experiment. The simulation tools obviously depend on the length- and time-
scales modeled in the simulation. However, all scales are mutually interconnected and hence,
ultimately one needs to go to the atomic/molecular-scale, which is subject of the present review.

Why do we need the atomic/molecular-scale simulations? Part of the information one needs,
can be measured, but experiments are difficult, expensive, and limited. This is true on all length-
scales, and particularly on the atomic/molecular scale. Simple example is for instance femtosec-
ond processes in condensed systems where it is often easier to set up a credible computer exper-
iment than to perform an accurate enough real laboratory experiment. Sometimes the properties
of interest cannot be measured in a laboratory experiment at all. For example, the properties of
matter under the pressures and temperatures deep in the earth mantle cannot be directly measured
in a laboratory experiment. All that can be done is to set up an accurate simulation able to extract
the properties required. The other advantage of the computational physics is that it deals with
well-defined systems. If the question is what the system response to a probe will be under ideal
circumstances, then computational approach can often deliver the answer more easily than a real
laboratory experiment. The “on-line” research makes exploratory research very easy. It is so
simple to shuffle atoms and design new nanostructures at will on the computer and “watch” the
system response to such modifications. Very often experiments on the nano-scale can relatively
easily be performed with a high degree of reproducibility. However, the underlying atomic-
scale processes typically remain totally murky. For example there are numerous surface probe
microscopy experiments, which have demonstrated the ability to manipulate atoms, molecules,
bonds, etc. Most of them can only be understood with the assistance of a computer simulation
of the tip-sample interactions. There are also cost-related issues. While the cost of the computer
hardware is steadily decreasing and power increasing, no such trend can be seen in the cost of the
experimental equipment. Moreover, experimental equipment is almost always highly specialized
equipment able to measure only one or a small group of properties of matter, whereas comput-
ers are very versatile equipments, which can be used to solve a variety of tasks. These factors
increasingly contribute to the excellent cost/knowledge gained ratio in computational physics.
Hence, on the atomic/molecular scale the complete picture can often only be obtained from the
results of simulations right down to the quantum mechanical atomic/molecular level, where the
many-particle Schrödinger equation at last provides a concise and universal description of mat-
ter.

This review will cover only a fairly limited range of length- and time-scales. Physics studies
matter at all length-scales from astrophysics all the way down to subnuclear. As Fig. 1 shows
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Fig. 1. Outline of the different simulation techniques used in simulation of matter. The techniques, which
are of interest in this review, are indicated in the light blue box and those which will explicitly be dealt with
are indicated in a dark blue box. TB means tight-binding, HF Hartree-Fock, DFT Density functional theory,
post HF means methods such as MP2, configuration interaction (CI), coupled cluster (CC), and QMC stands
for the quantum Monte-Carlo method. The respective degrees-of-freedom modeled are shown on the left.
The two opposite limits: astrophysics and subnuclear physics are also shown for reference.

each length-scale deals with different degrees-of-freedom and requires a different sophistica-
tion in description of the matter at that length- and time-scale. This paper will deal exclusively
with the angstrom/nanometer scale. Our model shall explicitly and simultaneously include two
degrees-of-freedom: electrons and ions.

In practice there are two key parameters, which will determine the method of choice. Those
are:
• the maximum allowed absolute error ε,
• the maximum allowed time T , needed to achieve the specified accuracy.

Most processes of interest, such as chemistry and nanotechnology take place at room tempera-
ture. Current “chemical accuracy” is considered to be ≈ 1 kcal/mol. However, often a consid-
erably higher accuracy is required. For example to calculate energy differences requires an error
of ε ≤ 100 K ≈ 0.1 kcal/mol ≈ 0.01 eV. Many phenomena, e.g. superconductivity, require
even higher accuracy. This level of accuracy is extremely hard to achieve across the board of
applications and only a few of those discussed here (QMC and some post HF methods) have
the aspiration to challenge the chemical accuracy. This review should help the interested reader
to strike the right balance between the required accuracy ε and the allowed computer time T to
achieve it.

The aim of this review is to guide the reader through the world of atomic/molecular-scale
simulations. The first part will provide a self-contained description of the methods of ab-initio
simulation and the basic approximations. First the basic equations will be formulated. Solutions
of those equations will be sought. The line of argument will be divided in three broad parts:
electrons, ions, and techniques for solving the equations. In the part describing the methods for
modeling the electrons the Hartree-Fock, density functional techniques and the quantum Monte-
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Carlo techniques are addressed more in detail. The choice is dictated by practical considerations:
the first, while usually not sufficiently accurate for real applications, is of great pedagogical value.
The density functional techniques are usually the method of choice striking often an ideal bal-
ance between accuracy and feasibility. On the other hand, quantum Monte-Carlo is the method of
choice if correlation effects are important in systems beyond very small molecules. The descrip-
tion of methods for description of ions addresses in addition to classical ions also quantum ions
by the path integral method. Some technical aspects, such as the importance and role of parallel
computers will briefly be addressed. In the second part the application of those methods will be
demonstrated on selected systems. The applications will be mainly taken from the author’s own
work and the work of his group. Where available, the presentation will be accompanied by com-
puter graphics animations of the simulations denoted as { v1, v2, v3, v4, v5, v6, v7, v8, v9, v10,
v11 }. The applications will be augmented by a few selected applications taken from the work
of other groups. Incidentally, the presentation to a certain degree also follows the evolution of
the field in time: from non-simple liquids, disordered systems, surfaces, interaction of atoms and
molecules with surfaces, simulation of surface probe techniques, chemical reactions to applica-
tions relevant to nanotechnology. Contrary to the brief demonstrations of results obtained by the
presented theory, which appear in the first part, the projects presented in the second part are more
in depth presentations aiming at providing information on the typical parameters used in simu-
lations, practically achievable length- and time-scales etc. These projects are also showing how
the results, i.e. huge amounts of numerical data from large-scale simulations, can be interpreted
in order to obtain a coherent picture of the system or process under consideration. The account is
by no means complete. The paper only briefly touches on the methods of quantum chemistry; no
methods for quantum transport are discussed, etc. No account of magnetic properties, biological
applications, etc. is given. Hence, the presented angle of view will be a very personal one with
no aspiration to cover all the facets of the atomic/molecular-scale modeling.

2 The model and basic equations

We start by description of the underlying model for most simulations at the atomic/molecular
scale. A typical example being a molecule, atomic or molecular cluster, crystal, solid surface,
structurally disordered solid, liquid, etc. The model explicitly includes ions with their electrons
constituting the condensed matter under study. Hence, in the most general case, one is seeking
a solution to a quantum mechanical problem for NI ions defined by their masses MI , nuclear
charges eZI , and position vectors {~RI} and Ne electrons defined by electron mass me, electron
charge e, located at positions {~ri}. The corresponding quantum-mechanical Hamiltonian for the
coupled electron-ion system

Ĥ=−
∑

I

h̄2

2MI
∇2

I −
∑

i

h̄2

2mi
∇2

i +
∑
i<j

e2

|~ri − ~rj |
−
∑
I,i

e2ZI

|~RI − ~ri|
+
∑
I<J

e2ZIZJ

|~RI − ~RJ |

=−
∑

I

h̄2

2MI
∇2

I −
∑

i

h̄2

2mi
∇2

i + Vn−e({~ri}, {~RI}) (1)

=−
∑

I

h̄2

2MI
∇2

I + Ĥe({~ri}, {~RI})
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consists of the sum of kinetic energies of the ions, electrons, the electron-electron, electron-
ion, and ion-ion interaction. For simplicity a non-relativistic quantum-mechanical formalism
is assumed and energy is measured in general units. The more convenient atomic units (a.u.)
will be introduced and used throughout later. The state of this coupled electron-ion system
is described by time-dependent wave function Φ({~ri}, {~RI}; t), which is solution to the time-
dependent Schrödinger equation

ih̄
∂

∂t
Φ({~ri}, {~RI}; t) = ĤΦ({~ri, ~RI ; t). (2)

This most general equation is too complicated to be solved directly. Even if it were technically
possible to find the solution to equation (2), for the sake of clarity and insight, it is desirable
to separate the ionic and electronic degrees of freedom as their mass ratio MI/me = 1836.
In other words, the electronic dynamics is always much faster than the ionic, and hence, the
electronic degrees of freedom will always experience “static ions”. The goal here is to separate
the electronic and ionic degrees of freedom in the Schrödinger’s wave equation [1–3]2. The
simplest way to achieve this objective is to consider single-configuration ansatz [4, 5] for the
total wave function Φ({~ri}, {~RI}; t) in the form

Φ({~ri}, {~RI}; t) ≈ Ψ({~ri}, t)χ({~RI}, t) exp

 i
h̄

t∫
t0

dt′
∼
Ee(t′)

 , (3)

with both electronic and ionic wave functions, respectively, separately normalized at every time,
i.e.,

〈
χ{~RI}; t)|χ({~RI ; t)

〉
= 1 and

〈
Ψ{~RI}; t)|Ψ({~RI ; t)

〉
= 1. The phase factor is taken in

a convenient form of mean value of the He

Ẽe =
∫
d~rd~RΨ∗({~ri}; t)χ∗({~RI}; t)ĤeΨ({~r}; t)χ({~RI ; t). (4)

The single-configuration ansatz (3) clearly leads to a mean-field description of the coupled dy-
namics. Using ansatz (3) and (4) in Schrödinger’s equation (2) (after multiplication from left by
〈Ψ| and 〈χ| and imposition of energy conservation d〈H〉/dt ≡ 0) yields

ih̄
∂Ψ
∂t

= −
∑

i

h̄2

2me
∇2

i Ψ +
{∫

d~Rχ∗({~RI}; t)Vn−e({~ri}, {~RI})χ({~RI ; t)
}

Ψ, (5)

ih̄
∂χ

∂t
= −

∑
I

h̄2

2MI
∇2

Iχ+
{∫

d~RΨ∗({~ri}; t)Ĥe({~ri}, {~RI})Ψ({~RI ; t)
}
χ. (6)

This set of equations defines the so-called time-dependent self-consistent field method (TDSCF)
introduced in the early days of quantum mechanics by Dirac [6, 7]. Equations (5), (6) define
quantum-mechanical motion of both ionic and electronic degrees of freedom. The motion pro-
ceeds in time-dependent effective potentials obtained from quantum-mechanical expectation val-
ues

∫
d~R . . .,

∫
d~r . . ., respectively. The single determinant ansatz (Eq. (3)) yields a mean-field

description of the coupled electron-nuclear quantum dynamics.
2 The following part is little technical. The readers who accept that the electronic and ionic dynamics may be separated

and that the ions are usually sufficiently massive to behave classically, may proceed directly to Eq. (11) describing the
Ehrenfest dynamics.
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The ions by being massive, compared to electrons will in most cases behave classically. The
reason is, that the quantum fluctuations, which are of the order of h̄ω (where ω is a typical fre-
quency associated with ionic dynamics) are, under normal circumstances (massive ions, room
temperatures) much smaller than thermal fluctuations, which are of the order of kBT (with kB

the Planck’s constant and T temperature). The case, where the assumption of negligible quantum
fluctuations is not met and h̄ω ≈ kBT will be dealt with later. Hence, it is desirable to reformu-
late the wave equation (6) for ionic dynamics in terms of classical equation of motion. This can
be done in classical limit (h̄ → 0) to quantum mechanics by writing the nuclear wave function
as a product of an amplitude factor A and a phase S in the form [3, 6, 8]

χ({~RI}; t) = A({~RI}; t) exp
[
iS({~RI}; t)

/
h̄
]
. (7)

After insertion of ansatz (7) into Eq. (6) and taking the classical limit, the coupled electron-
nuclear equations take the following form

ih̄
∂Ψ
∂t

= −
∑

i

h̄2

2me
∇2

i Ψ +
{∫

d~Rχ∗({~RI}; t)Vn−e({~ri}, {~RI})χ({~RI ; t)
}

Ψ, (8)

MI
~̈RI(t) = −∇I

∫
d~rΨ∗ĤeΨ = −∇IV

E
e

({
~RI(t)

})
. (9)

The problem with the equations (8), (9) is that Eq. (8) still contains explicitly the nuclear wave
function. This can be remedied by taking the classical limit also in Eq. (8) in which case
the|χ({~RI}; t)|2 in classical limit can be replaced by

∏
I δ(~RI − ~RI(t)). This yields∫

d~Rχ∗
({

~RI

}
; t
)
~RIχ

({
~RI

}
; t
)

h̄→0−→ ~RI(t), (10)

and the coupled electron-nuclear equations become

ih̄
∂Ψ
∂t

= −
∑

i

h̄2

2me
∇2

i Ψ+Vn−e({~ri}, {~RI})Ψ (11)

= −
∑

i

h̄2

2me
∇2

i Ψ + Vn−e({~ri}, {~RI})Ψ,

MI
~̈RI(t) = −∇I

∫
d~rΨ∗ĤeΨ = −∇IV

E
e

({
~RI(t)

})
. (12)

These equations are often referred to as “Ehrenfest molecular dynamics” (EMD) [9]. Equa-
tions (11), (12) are coupled, as the potential energy in the time-dependent electronic equation
depends on the ionic positions and vice versa, the potential energy from which the forces are
derived in Eq. (12) require the knowledge of the electronic wave funtions.

Both TDSCF and EMD are clearly mean-field theories. However, they incorporate transi-
tions between different electronic states, which can be shown by expanding the time-dependent
electronic wave function Ψ({~ri}, {~RI}; t) in terms of eigenstates of the electronic Hamiltonian
He

Ĥe

(
{~ri} ,

{
~RI

})
Ψk

(
{~ri} ,

{
~RI

}
; t
)

= Ek ({RI}) Ψk

(
{~ri} ,

{
~RI

}
; t
)

(13)
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as

Ψ
(
{~ri} ,

{
~RI

}
; t
)

=
∞∑

k=0

ck(t)Ψ
(
{~ri} ,

{
~RI

}
; t
)

(14)

where {ck} are complex numbers giving the probabilities (≡ |ck|2) of finding the system in the
given eigenstate k and {~RI} are instantaneous nuclear positions at time t (Eq. (12)).

The wave function Ψ({~ri}, {~RI}; t) will often be dominated by the ground-state wave func-
tion Ψ0 so that at each tine t,

∣∣c0(t)2∣∣ ≡ 1. Such an approximation will hold if the energy gap
between the ground-state Ψ0 and first excited state Ψ1 is large compared to the thermal energy
kBT . Typical situation where the above approximation is well satisfied are wide-gap insulators.
The opposing limit is a case of a metal, where there is no gap whatsoever. Practical implications
of this approximation will be discussed in chapters 3.1.5.9, 3.1.5.12, and 3.1.5.13. The simpli-
fication brought about by this approximation is large, as in this case the nuclei will move on a
single potential energy surface (PES) following Eq. (12) with

V E
e =

∫
d~rΨ∗

0ĤeΨ0 ≡ E0

({
~RI

})
. (15)

TheE0 can be computed for each configuration of the ions {~RI} by solving the time-independent
Schrödinger’s equation HeΨ0 = E0Ψ0 for only the ground-state. Equation (15) means that
electronic structure is included via static, time-independent Schrödinger equation for a set of
fixed nuclear positions encountered in each molecular dynamics step. This is the basis of the so-
called Born-Oppenheimer molecular dynamics (BOMD), which can be summarized as follows

ĤeΨ0 = E0Ψ0, (16)

MI
~̈RI(t) = −∇I min

Ψ0
{〈Ψ0|He|Ψ0〉} . (17)

A comment is due here. The BOMD was formulated for the ground-state wave function, which is
the most commonly used approximation which will also be widely used in this paper. However,
any other single electronic state Ψk can be used to describe excited state dynamics of a system.
Typical examples being for instance photochemistry or laser excitations in solid-state systems.
From the discussion leading to the BOMD it may seem that this formulation excludes its use to
metal. The use of the BOMD to excited state dynamics and to metals will be discussed later
(chapters 3.1.5.12, 3.1.5.13).

So far two types of dynamics were introduced. The EMD (Eqs. (11 – 12)) and BOMD
(Eqs. (16 – 17)). The two schemes are identical in that both are mean-field approaches staring
from a single-reference wave function but differ in two major respects: (1) the EMD allows for
transitions between different electronic states, whereas the BOMD is strictly limited to one state,
e.g. the ground-state wave function and (2) there is no real electronic dynamics associated with
BOMD as the ground-state electronic wave function is obtained only in each ionic dynamics step,
whereas in EMD, the wave function, which minimized 〈He〉 initially will stay in its minimum
along with the moving ions.

In principle, there is yet another type of dynamics, often referred to as classical trajectory
generation [10]. The basis of this approach is construction of an entire PES E0({~RI}) defined
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Fig. 2. Definition of the geometrical variables characterizing a diatomic molecule approaching a surface.

in Eq. (15) for each ionic configuration {~RI}. From the knowledge of E0({~RI}) one could
generate the gradients∇IE0({~RI}). With this knowledge, one could run “classical trajectories”
containing in principle identical information as the BOMD. The problem here is the dimension-
ality of the underlying configuration space {~RI}. Imagine a very simple system, for instance a
diatomic molecule over a static surface. Already this very simple system has 6 degrees of free-
dom (x, y, z, r, θ, φ): x, y-coordinate of the molecule defining the position of the molecule in the
surface unit cell, z distance of the molecule from the surface, r the molecular stretch, and θ, φ
the molecular orientation; see Fig. 2. If each degree of freedom were sampled with just 10 points
106 independent energies would be required to construct the corresponding PES. Most likely,
most o these points would be calculated for parts of the configuration space which the molecule
at any given temperature would not visit. The situation would be even more computationally in-
volved if surface response, such as surface relaxation due to molecule-surface interaction and/or
surface vibrations were taken into account. This is the reason why the coupled electron-ion dy-
namics defined in Eqs. (11–12) and (16–17) is very economic. Evaluation of the electronic wave
function is typically much more time consuming than classical propagation of the ions. Hence,
computation of the PES on-the-fly, as is the case in both EMD and BOMD greatly reduces the
computational load as only those points on the PES are evaluated, which are actually visited by
the ionic degrees of freedom in a given thermodynamic state. The situation is akin to computa-
tion of integrals in very high-dimensional space. Here too, evaluation of an integral on a regular
grid of points is the least efficient way to evaluate the integral and the alternative stochastic meth-
ods based on Metropolis Monte-Carlo techniques offer a much more computationally economic
approach. The reason is, that similarly to EMD and BOMD, only those integrand points will be
visited, which make a “significant” contribution to the integral value.

3 Reformulation of basic equations

We will now seek the solutions of the EMD and BOMD coupled electron-nuclear dynamics
equations. In both schemes the equations for the electronic and ionic degrees-of-freedom are
very different: the former are solutions to either time-dependent (EMD) or time-independent
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(BOMD) Schrödinger’s equation, whereas the latter are simple, classical Newton’s equations.
The two degrees-of-freedom will be discussed separately.

3.1 Electronic structure

Perhaps the simplest approximation for the total many-body wave function Ψ(ξ1, ξ2, · · · , ξi, · · · ,
ξj , · · · , ξNe) with ξi = (~ri, σi) where ~ri, σi are position vector and projection of the spin of the
ith electron, respectively was made by Hartree [11] in writing Ψ(ξ1, ξ2, · · · , ξi, · · · , ξj , · · · , ξNe)
as a product of non-interacting single-particle molecular orbitals (MO) {ϕi(ξ)}.

ΨH(ξ1, ξ2, · · · , ξi, · · · ξj · · · ξNe) = ϕ1(ξ1)ϕ2(ξ2) · · ·ϕNe(ξNe). (18)

Ansatz (18), also called Hartree approximation, represents a very poor approximation to the true
many-body wave function. The reason is that the wave function in this approximation does not
satisfy the basic symmetry under particle exchange. Electrons are indistinguishable Fermions
and hence, the total electronic wave function, including its spin part, must be antisymmetric
under spatial exchange3

Ψi(ξ1, ξ2, · · · , ξi, · · · ξj · · · ξNe) = −Ψi(ξ1, ξ2, · · · , ξj , · · · ξi · · · ξNe). (19)

The simplest way to satisfy the antisymmetry of the electronic wave function (19) is to take it in
the form of a (Slater) determinant or sum of (Slater) determinants of independent, non-interacting
electrons described by single-particle orbitals {ϕL

i (ξ)}

Ψi =
∑
L

ciLΦL =
∑
L

ciL

∣∣∣∣∣∣∣∣∣
ϕL

1 (ξ1) ϕL
1 (ξ2) . . . ϕL

1 (ξNe
)

ϕL
2 (ξ1) ϕL

2 (ξ2) · · · ϕL
2 (ξNe

)
...

...
. . .

...
ϕL

Ne
(ξ1) ϕL

Ne
(ξ2) · · · ϕL

Ne
(ξNe

)

∣∣∣∣∣∣∣∣∣ . (20)

The familiar Pauli exclusion principle follows directly from the wave function in the form (20).
What happens if we attempt to doubly occupy a spinorbital ϕ(ξ) by putting electron i and j in it?
Two rows in the Slater determinant will be equal and, hence, Ψ ≡ 0! The simplest MO ansatz
includes only a single term in the expansion (20)

ΨHF =
1√
Ne!

∣∣∣∣∣∣∣∣∣
ϕ1(ξ1) ϕ1(ξ2) . . . ϕ1(ξNe

)
ϕ2(ξ1) ϕ2(ξ2) · · · ϕ2(ξNe)
...

...
. . .

...
ϕNe

(ξ1) ϕNe
(ξ2) · · · ϕNe

(ξNe
)

∣∣∣∣∣∣∣∣∣ . (21)

This approximation, called also Hartree-Fock approximation [12, 13] can only be expected to
yield reasonable results if the MOs in ΨHF are variationally optimized: the so-called Self-
Consistent Field (SCF) approach. How this can be done is shown below.

3 Note that the antisymmetry of the many-body wave function implies that there is a node (position(s) in space where
the wave function has a value equal zero) of the wave function inbetween the two paticles positions. The nodal surfaces
are a very important ingredient of the many-body wave function.



12 Computer Simulations for the Nano-Scale

3.1.1 Hartree-Fock theory

The Hartree-Fock theory is described in an excellent manner in book by Szabo and Ostlund [14],
and hence we will limit ourselves to just the outline of the method. Let’s assume a wave function
of the Slater determinant form (21) and find an expression for the expectation value of the energy

EHF = 〈ΨHF | Ĥe |ΨHF 〉 , (22)

Ĥe =
∑

i

ĥ(i) +
∑
i<j

1
rij

= Ĥcore
1 + Ĥ2. (23)

The above Hamiltonian is written in atomic units (a.u.); h̄ = 1, me = 1, e = 1. In these units,
energy is measured in units of Rydbergs and lengths in units of Bohr radii, aB. Atomic units will
be used throughout, unless stated otherwise. First examine the core Hamiltonian Ĥcore

1

〈ΨHF | Ĥcore
1 |ΨHF 〉 =

∑
i

〈ΨHF |ĥ(i) |ΨHF 〉 =

=
∑

i

〈ϕ1(ξ1)ϕ2(ξ2) · · ·ϕNe
(ξNe

)|ĥ(i) |ϕ1(ξ1)ϕ2(ξ2) · · ·ϕNe
(ξNe

)〉 . (24)

The nature of the approximation is best evidenced by considering a very simple case Ne = 2,
e.g. a Helium atom

ΨHF =
1√
2

∣∣∣∣ ϕ1(ξ1) ϕ1(ξ2)
ϕ2(ξ1) ϕ2(ξ2)

∣∣∣∣ = |ϕ1(ξ1)ϕ2(ξ2)〉 . (25)

Look at one term in the above sum, for instance h(1)

〈ϕ1(ξ1)ϕ2(ξ2)| ĥ(1) |ϕ1(ξ1)ϕ2(ξ2)〉 =

=
1
2

∫
[ϕ∗1(ξ1)ϕ

∗
2(ξ2)− ϕ∗1(ξ2)ϕ∗2(ξ1)] ĥ(1) [ϕ1(ξ1)ϕ2(ξ2)− ϕ1(ξ2)ϕ2(ξ1)] dξ1dξ2 =

=
1
2

∫
ϕ∗1(ξ1)ϕ

∗
2(ξ2)ĥ(1)ϕ1(ξ1)ϕ2(ξ2)dξ1dξ2

+
1
2

∫
ϕ∗1(ξ2)ϕ

∗
2(ξ1)ĥ(1)ϕ1(ξ2)ϕ2(ξ1)dξ1dξ2

− 1
2

∫
ϕ∗1(ξ2)ϕ

∗
2(ξ1)ĥ(1)ϕ1(ξ1)ϕ2(ξ2)dξ1dξ2

+
1
2

∫
ϕ∗1(ξ1)ϕ

∗
2(ξ2)ĥ(1)ϕ1(ξ2)ϕ2(ξ1)dξ1dξ2

=
1
2

(
〈ϕ1| ĥ |ϕ1〉+ 〈ϕ2| ĥ |ϕ2〉

)
. (26)

Now look at Ĥ2

〈ϕ1(ξ1)ϕ2(ξ2)|
1
r12
|ϕ1(ξ1)ϕ2(ξ2)〉 =

=
1
2

∫
[ϕ∗1(ξ1)ϕ

∗
2(ξ2)− ϕ∗1(ξ2)ϕ∗2(ξ1)]

1
r12

[ϕ1(ξ1)ϕ2(ξ2)− ϕ1(ξ2)ϕ2(ξ1)] dξ1dξ2
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=
1
2

∫
ϕ∗1(ξ1)ϕ

∗
2(ξ2)

1
r12

ϕ1(ξ1)ϕ2(ξ2)dξ1dξ2

+
1
2

∫
ϕ∗1(ξ2)ϕ

∗
2(ξ1)

1
r12

ϕ1(ξ2)ϕ2(ξ1)dξ1dξ2

− 1
2

∫
ϕ∗1(ξ2)ϕ

∗
2(ξ1)

1
r12

ϕ1(ξ1)ϕ2(ξ2)dξ1dξ2

+
1
2

∫
ϕ∗1(ξ1)ϕ

∗
2(ξ2)

1
r12

ϕ1(ξ2)ϕ2(ξ1)dξ1dξ2.

The 1
r12

operator prevents separation over electronic coordinations of electron 1 and electron 2.
However, since ξ1and ξ2 are dummy variables, the first and second terms are equal, as are the
last two. Thus for the two-electron operator 1

r12
,

〈ϕ1(ξ1)ϕ2(ξ2)|
1
r12
|ϕ1(ξ1)ϕ2(ξ2)〉 = 〈12|12〉 − 〈12|21〉 = 〈12| |12〉 , (27)

where

〈ij|kl〉 =
∫
dξ1dξ2ϕ

∗
i (ξ1)ϕ

∗
j (ξ2)

1
r12

ϕk(ξ1)ϕl(ξ2), (28)

〈ij| |kl〉 = 〈ij|kl〉 − 〈ij|lk〉 . (29)

Generalizing the above results to the general case, we can write down the HF energy for a given
set of occupied spinorbitals

EHF = 〈ϕ1(ξ1)ϕ2(ξ2) · · ·ϕNe(ξNe)| Ĥcore
1 |ϕ1(ξ1)ϕ2(ξ2) · · ·ϕNe(ξNe)〉

+ 〈ϕ1(ξ1)ϕ2(ξ2) · · ·ϕNe(ξNe)| Ĥ2 |ϕ1(ξ1)ϕ2(ξ2) · · ·ϕNe(ξNe)〉 =

=
∑

i

〈ϕ1(ξ1)ϕ2(ξ2) · · ·ϕNe
(ξNe

)| ĥ(i) |ϕ1(ξ1)ϕ2(ξ2) · · ·ϕNe
(ξNe

)〉

+
∑
i<j

〈ϕ1(ξ1)ϕ2(ξ2) · · ·ϕNe(ξNe)|
1
ris
|ϕ1(ξ1)ϕ2(ξ2) · · ·ϕNe

(ξNe
)〉

=
∑

i

〈ϕi| ĥ |ϕi〉+
∑
i<j

〈ij| |ij〉 . (30)

Now consider a more general case, where some orbitals needn’t be doubly occupied. We will
now explicitly decompose the spinorbitals into special and spin component

ϕi(ξ) = ψi(~r)χi(σ). (31)

For an electron χ(σ) can be written as a column/row vector of either spin-up or spin-down and

the expressions for multiplication of the spin wave functions of the type (
...), (· · ·) are easy to

perform. After a little algebra one obtains

EHF = 2
occ∑
i

fihii +
occ∑
i,j

{αij (ii|jj) + βij (ij|ij)}
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= 2
occ∑
i

fihii +
occ∑
i,j

{αijJij + βijKij} (32)

= 2
occ∑
i

fihii +
occ∑
i,j

{
αij

∫
d~r1d~r2ϕ

∗
i (~r1)ϕ

∗
j (~r2)

1
r12

ϕi(~r1)ϕj(~r2)
}

+
occ∑
i,j

{
βij

∫
d~r1d~r2ϕ

∗
i (~r1)ϕ

∗
j (~r2)

1
r12

ϕi(~r2)ϕj(~r1)
}
, (33)

with

fi = 1 if i doubly occupied,
1/2 if i singly occupied,

αij = 2 if i and j doubly occupied,
1 if i or j doubly occupied and the other singly occupied,

1/2 if i and j singly occupied,
βij = −1 if i and j doubly occupied,

−1/2 if i or j singly occupied and the other doubly occupied,
−1/2 if i and j singly occupied with parallel spins,

1/2 if i and j singly occupied with opposite spins.

In Eq. (32) Jij is termed Coulomb integral and has the physically reassuring interpretation
of accounting for electronic repulsion between electrons in molecular orbital i, and molecular
orbital j. Kij , the exchange integral has no classical analog and no true physical interpretation. It
is the heritage of having written the many-body wave function in the form of a Slater determinant.
In loose terms we can say that it “correlates the motion of electrons i and j when they have
parallel spins, lowering the energy since those electrons avoid each other better”.

3.1.1.1 Hatree-Fock equation

Now let us find the optimized molecular orbitals which from the Slater determinant ΨHF =
|ϕ1ϕ2 · · ·ϕNe〉. In other words, we want to find the “best” wave functionΨHF subject to the
constraint that the spin orbitals all remain orthonormal one to another. The best wave function
is the one, which minimizes the electronic energy expression (32) will be determined by the
method of Lagrange multipliers, which is a general method for finding extremes of functions or
functionals subject to constraints. We now return to the spinorbital notation. The orthonormality
constraints can be stated as

〈a|b〉 − δab = 0. (34)

For Ne spinorbitals there are Ne(Ne + 1)/2 independent constraints, so we need that many
multipliers in our constraint minimization. The function, which will be minimized, is the sum of
the energy function EHF and the constraints

= [{ϕa}] = EHF [{ϕa}]−
Ne∑
a

a∑
b

εba (〈b|a〉 − δab).
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Since εab is Hermitian, ε∗ab = εba, the above equation can be rewritten as

= [{ϕa}] = EHF [{ϕa}]−
Ne∑
a

Ne∑
b

εba (〈b|a〉 − δab), (35)

without introducing any new undetermined multipliers. The best set of orbitals {ϕi} can be
determined by setting the variation of = [{ϕa}] to zero

δ= [{ϕa}] = δEHF [{ϕa}]−
Ne∑
a

Ne∑
b

εbaδ 〈b|a〉
!=0. (36)

We have an electronic energy in terms of spinorbitals

EHF =
Ne∑
a

〈a|H1 |a〉+
1
2

Ne∑
ab

〈ab| |ab〉

=
Ne∑
a

〈a|H1 |a〉+
1
2

Ne∑
ab

[〈ab|ab〉 − 〈ab|ba〉],

and we can write the variation of the energy δEHF as

δEHF =
Ne∑
a

(
〈δa| Ĥ1 |a〉+ 〈a| Ĥ1 |δa〉

)
+

+
1
2

Ne∑
ab

[
〈δab|ab〉+ 〈aδb|ab〉+ 〈ab|δab〉+ 〈ab|aδb〉
− 〈δab|ba〉 − 〈aδb|ba〉 − 〈ab|δba〉 − 〈ab|bδa〉

]
. (37)

After some thought one will realize that there are only two unique two-electron integrals in (37),
and that it can be written

δEHF =
Ne∑
a

〈δa| Ĥ1 |a〉+
Ne∑
ab

(〈δab|ab〉 − 〈δab}ba〉) + complex conjugate. (38)

The other variation we need is εabδ 〈a|b〉, which can be written as∑
ab

εab 〈δa|b〉+
∑
ab

εba 〈a|δb〉 =
∑
ab

εba 〈δa|b〉+
∑
ab

εab 〈b|δa〉

=
∑
ab

(εba 〈δa|b〉+ ε∗ba 〈δa|b〉). (39)

So the whole expression boils down to

δ= =
Ne∑
a

〈δa| Ĥ1 |a〉+
Ne∑
ab

(〈δab| |ab〉 − εba 〈δa|b〉) +complex conjugate = 0. (40)
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If we now define a Coulomb operator Jb(1) and exchange operator Kb(1) as

Jb(1) =
∫
d~r2|ϕb(2)|2r−1

12 , (41)

Kb(1)ϕa(2) =
∫
d~r2ϕ

∗
b(2)r−1

12 ϕa(2)ϕb(1). (42)

This allows a more compact notation to be employed in writing the variation in =

δ==
∑

a

∫
d~r1δϕ

∗
a(1)

[
ĥ(1)ϕa(1) +

∑
b

{(Jb(1)−Kb(1))ϕa(1)− εbaϕb(1)}

]
+complex conjugate = 0. (43)

Equation (43) must be valid for an arbitrary variation δϕ∗a(1), and hence, after rearranging the
resulting equation to look like some sort of eigenvalue equation, yields,[

ĥ(1) +
∑

b

(Jb(1)−Kb(1))

]
ϕa(1) =

∑
b

εbaϕb(1), (44)

f̂(1)ϕa(1) =
∑

b

εbaϕb(1), (45)

where f̂ is the so-called Fock operator. As the above equation shows, its solution will converge
to a linear combination of Hartree-Fock canonical orbitals. However, the linear combination
and the canonical orbitals are related by a unitary rotation described by a transformation matrix
Uba, which is unitary, meaning that the sets of wave functions related by unitary transformations
will differ only a phase factor, affecting nothing observable. Hence, we are free to choose Uba

to whatever we please, and if we chose it to make the εba matrix diagonal, we can rewrite the
Hartree-Fock equation as

f̂ |ϕa〉 = εa |ϕa〉 . (46)

When this is done, the resulting orbitals will converge to the Hartree-Fock canonical orbitals.
Equations (46) are coupled integro-differential equations as the solution of orbital a depends
on all other orbitals b, which form a static mean-field in which electron a moves. Hence, the
solutions will have to be obtained by iterative solution. One starts with a guess for the set on
one-particle solutions

{
ϕ0

i

}
, from which the Fock operator f̂ is constructed and a first iteration

on the solutions
{
ϕ1

i

}
obtained. This procedure is repeated until the input wave functions {ϕn

i }
do not differ from the input ones

{
ϕn+1

i

}
.

Though the Hartree-Fock theory has been formulated in the early 1930ths, for a long time
numerical calculations could only be performed for atoms. The breakthrough came in 1951 when
Hall [15] and Roothaan [16] independently proposed to expand the Hartree-Fock orbitals into a

set of atom-centered basis functions, ϕi =
M∑

ν=1
ciνχν . Obviously, M ∝ Ne, as Ne ∝ NI . In

this form the solution of Eq. (46) can be cast in a matrix diagonalization problem. This point
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will be discussed in more detail in chapters 3.1.7.1 and 3.3.2.1. The numerical effort is easy
to estimate: There are M4 integrals 〈ij|kl〉 and the solution of the Hartree-Fock equation (46)
requires diagonalization of aM -dimensional matrix, which is aO(M3) step. The numerical cost
is dominated by the diagonalization step, and hence the overall numerical cost is O(M3).

The eigenvalues εa of the Hartree-Fock equation are called “orbital energies”. In general,
they are negative for occupied (bound) orbitals and positive for virtual (continuum) orbitals. The
orbital energies of the occupied orbitals can be identified with the ionization potentials of the
system

εa = −IP (a) (47)

via Koopmans’ theorem [17]. Equation (47) states that the orbital energyεaof the a-th occupied
orbital is equal to the negative value of the energy necessary to remove an electron from the
orbital ϕa. However, this is only an approximation because in deriving the theorem it has been
assumed that the orbitals do not change after ionization. The accuracy of the Koopmans’ theorem
is of the order of 0.5–2.0eV for valence orbitals and much larger for the core orbitals.

Despite its simplicity, HF approach is a very useful approximation. For instance, equilibrium
structure constants of most main group systems are obtained with errors of about 2% in bond
distances and a few degrees in bond angles. Simple examples are discussed in [14]. Exceptions
are mainly found for weak bonds like those in F2and for systems containing transition metals.
The HF approach is useless for description of metals or binding energies but reaction energies
can be computed to within about 10 kJ/mol for a wide range of reactions. In addition, HF
approach, which features an exact exchange, is an ideal starting point for more accurate treatment
of electronic structure by the so-called post HF methods (chapter 3.1.4) or by the quantum Monte-
Carlo method (chapter 3.1.6).

3.1.1.2 Exchange and correlation in the Hartree-Fock approximation

Let us now talk about the errors introduced by the SCF approach. Hartree-Fock is a mean-
field theory, in which each electron has its own wave function, which in turn obeys an effective
1-electron Schrödinger equation. The effective Hamiltonian (Fock operator) contains the average
field (Coulomb and exchange) of all other electrons in the system. The total electronic wave
function for the system, ignoring the complications introduced by the Pauli exclusion principle,
is a simple product of the orbitals. Following the Born interpretation of wave functions, this
implies that if P (~r1, ~r2) is the probability density for finding electrons labeled 1 and 2 in regions
of space around ~r1 and ~r2, respectively,

P (~r1, ~r2) = P (~r1)P (~r2), (48)

i.e. the probability density for a given electron is independent of the positions of all others.
In reality, however, the motions of electrons are more intimately correlated. Because of the

direct Coulomb repulsion of electrons, the instantaneous position of electron 2 forms a center of a
region in space which electron 1 will avoid. This avoidance is more than that caused by the mean-
field, and is local; if electron 2 changes position, the Coulomb hole for electron 1 moves with it.
In contrast, in the mean-field theory, electron 1 has no knowledge of the instantaneous position of
electron 2, only its average value, and thus motions are uncorrelated, and there is no depletion in
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Fig. 3. Pair-correlation function in unpolarized homogeneous electron gas system [18]. Short-dash line:
Hartree-treatment; dashed line: Hartree-Fock treatment; full line: the result after correlation is introduced.

P (~r1, ~r2) near ~r1 = ~r2. This deficiency can be nicely seen in Fig. 3, which shows the electronic
pair correlation function of an electron in homogeneous electron gas (HEG) [18]. HEG is a
model system in which the ions are smeared out and substituted by a positive background with the
same electronic density. As will become evident later, this much studied system is of paramount
importance is condensed-matter physics. Three types of pair correlation functions are shown
in Fig. 3: Hartree-type of description does not form any hole around an electron; Hartree-Fock
description improves the failure of the Hartree description quite significantly by introduction of
the exchange-hole. However, as mentioned above, inclusion of the true electronic correlation
still significantly modifies the exchange-hole by forming the correlation-hole in addition to the
exchange-hole.

3.1.2 Cusp conditions: short-range correlations

The spurious effects described above, the short-range correlations, can be traced back to the
r−1
ij operator and the corresponding behavior of the wave function in regions close to rij = 0.

Consider first the Schrödinger equation for the ground-state of the hydrogen atom,

ĤΨ1s = −1
2
∇2Ψ1s −

1
r
Ψ1s = E1sΨ1s, (49)

the potential energy diverges as r → 0 but HΨ1s remains finite because there is a canceling
divergence in the kinetic energy, which is reflected in the shape of the 1s wave function, which
has a sharp cusp at the origin.

The potential energy diverges whenever an electron approaches a nucleus or another electron.
Many-electron wave functions therefore contain similar cusps. Any necessary electron-nuclear
cusps are built into the single-particle orbitals obtained by solving the mean-field HF equations.
But these orbitals do not contain the electron-electron cusps [19, 20]. More generally, cusp
conditions apply to any system with Coulomb interactions [19].
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The many-electron wave function Ψ(~r1, ~r2, · · · , ~rNe) satisfies the Schrödinger equation,

ĤΨ(~r1, ~r2, · · · , ~rNe
) = EΨ(~r1, ~r2, · · · , ~rNe

), (50)

where

Ĥ = −1
2

Ne∑
i=1

∇2
i + V (~r1, ~r2, · · · , ~rNe

). (51)

The paradox here is that close to rij = 0 the left hand side of (50) becomes infinite because of
the r−1

ij Coulomb singularity, whereas E is constant, and so the right hand side is well behaved.
The local energy HΨ/Ψ cannot have singularities since it is constant, and the only conclusion
is that there must be an additional singularity or cusp, in the left hand side of (50) which exactly
cancels r−1

ij close to rij = 0. Since the electrons are not necessarily close to a nucleus, the only
candidate for this canceling term is again the kinetic energy.

If we pick a pair of electrons i and j and introduce the center-of-mass, difference coordinates
~r = ~ri − ~rj and rc.m. = (~ri + ~rj)/2, Ĥ may be rewritten as

Ĥ = −∇2
r −

1
4
∇2

~rc.m.
− 1

2

Ne∑
k = 1
(k 6= i, j)

∇2
k + V (~r1, ~r2, · · · , ~rNe). (52)

Since Ψis an exact eigenfunction, the corresponding exact local energy ĤΨ
/

Ψ is everywhere
equal to the eigenenergy E and does not diverge as r → 0.

As we know, the Hartree-Fock wave function ΨHF is not an eigenfunction, so the local
energy ĤΨHF

/
ΨHF is not constant and may diverge as r → 0. To study this possibility we

write an approximation to the true wave function Ψ in the form

Ψ̃ = e−uσiσj
(r)ΨHF . (53)

Consider the behavior of the local energy

ĤΨ̃
/

Ψ̃ =
1

e−uσiσj
(r)ΨHF

Ĥe−uσiσj
(r)ΨHF , (54)

as r → 0 while ~rc.m. and all other electron positions remain held fixed. Any divergent terms in
the kinetic energy must arise from the action of the ∇2

r operator on e−uσiσj
(r). We first treat the

case of antiparallel spins. The local energy remains finite as long as

1
e−u↑↓(r)ΨHF

(
−∇2 +

1
r

)
e−u↑↓(r)ΨHF =

= u
′′

↑↓ +
2u

′

↑↓

r
−
(
u
′

↑↓

)2

+ 2u
′

↑↓~̂r.
∇ΨHF

ΨHF
− ∇

2ΨHF

ΨHF
+

1
r

(55)

remains finite, where ~̂r is a unite vector in the ~r direction, and the primes denote differentiation
with respect to r. If electrons i and j have opposite spins the value of ΨHF (~r = 0) is generally
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Fig. 4. Schematic shape of the exact wave function (full line) and ΨHF (dashed line) around the point of
coalescence. The wave functions are plotted against z = zi − zj with the two electrons having identical x
and y coordinates.

nonzero. We insist that u
′

and u
′′

tend to finite values as r → 0, and so only the second and
the final terms in (55) diverge. These two divergences cancel out if we impose the opposite spin
cusp condition

du↑↓
dr
|r=0 = −1

2
, (56)

and hence also
∂Ψ
∂rij
|r↑↓ → 0 = −1

2
Ψ|r↑↓ → 0. (57)

If electrons i and j have parallel spins, The Pauli principle guarantees, that ΨHF is an odd
function of ~r and

ΨHF = ∇ΨHF |r=0.~r +O(r3). (58)

It follows, that the Laplacian of ΨHF tends to zero as r → 0, but the second, fourth, and last
term in Eq. (55) all diverge. The sum of the divergent contributions is

2u
′

r
+

2u
′

∇ΨHF |r=0.~r
∇ΨHF |r=0.~̂r +

1
r

=
4u

′

r
, (59)

and so the parallel-spin cusp condition is

du↑↑
dr
|r=0 = −1

4
, (60)

and hence also
∂Ψ
∂rij
|r↑↓ → 0 = −1

4
Ψ|r↑↓ → 0. (61)

These are the well-known cusp conditions [19, 20], which show that in whatever direction one
moves from r = 0, the wave function increases linearly. The exact wave function must have the
shape depicted in Fig. 4, showing the existence of a Coulomb hole around the point of coales-
cence.
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Fig. 5. Potential energy surfaces for H2 molecule. Full line very accurate model, long dashes: UHF model,
short dashes RHF model.

3.1.3 Non-dynamical long-range correlations

Let’s take a look at the opposite limit of the so-called long-range or non-dynamical correlations.
The effects of neglecting electron correlation in Hatree-Fock are spectacularly illustrated when
one attempts to compute complete PESs curves for diatomic molecules using SCF. Fig. 5 shows
potential energy curves for H2 from both an accurate calculation and from Hartree-Fock. It
is seen that the spin-restricted Hartree-Fock (RHF) approximation breaks down as dissociation
is reached predicting energies which are much too high, and a PES curve characteristic of the
interaction of ions rather than neutral atoms. The RHF wave function for the X1Σ+

g ground-state
of H2 takes the form

ΨX = Âσα
g (1)σβ

g (2), (62)

where Â is the antisymmetrizing operator, α and β are the usual one-electron spin functions, and
the bonding orbital σg = Zσg (ϕA + ϕB), with ϕA and s-like orbital centered on atom A, and
Zσg a normalization constant. As the atoms become infinitely separated, ϕA ∼ 1sA, Zσg ∼ 1√

2
and thus

ΨX ∼
1
2
Â
(
1sα

A1sβ
B + 1sα

B1sβ
A + 1sα

A1sβ
A + 1sα

B1sβ
B

)
. (63)

The first two terms are direct products of neutral 2S hydrogen atom wave functions on the two
atoms A and B, as desired. However, the last two terms describe a spurious H+... H− pair.
The overall energy of this unphysical wave function exceeds the energy of two hydrogen atoms
by half the difference of the ionization energy and electron affinity of H, i.e. 6.4 eV, and the
long-range potential energy curve has an unphysical ionic R−1 behavior.

The failure of RHF can be easily understood in terms of electron correlation. At long in-
ternuclear distances, if one electron is located near atom A, the other will on physical grounds



22 Computer Simulations for the Nano-Scale

be close to atom B. This correlation is reflected in the exact wave function, which is asymptoti-
cally the product of hydrogenic orbitals on the two nuclei. In contrast, within the Hartree-Fock
framework, each electron is made to experience only the average effect of the other. Since in
RHF, the two electrons are constrained to be in the same special orbital, this σg orbital will be
symmetrical between the atoms, and thus each electron has an equal probability of being on A
or B, irrespective of the position of the other electron. The possibility of both electrons being on
the same atom is not excluded, as reflected in the RHF wave function (63).

In the case of H2, and in fact for a number of other dissociating molecules, Hartree - Fock
theory can give correct behavior provided the restriction to identical special orbitals for α and
β spin is relaxed. The unrestricted HF (UHF) wave function is identical to RHF at short bond
lengths, but when the two atoms are separated, it becomes more advantageous for the α and β
spin orbitals to localize on different hydrogen atoms. In this way, a correct asymptotic energy is
obtained, as seen in Fig. 5. However, the wave function can never be identical to the exact wave
function. Asymptotically, the UHF wave function is either Â1sα

A1sβ
B or Â1sα

B1sβ
A, whereas the

true wave function is the sum of these two degenerate determinants. Moreover, although the
energy is unaffected, the UHF wave function is not an eigenfunction of the spin-squared operator
Ŝ2, being an unphysical mixture of singlet and triplet states. The spin contamination has very
serious effects, such as in the case of F 2, where the UHF does not repair the RHF failure.

3.1.4 Post Hartree-Fock methods

Let’s now return to the above example of the H2 molecule and show how the inability of the HF
method to describe correctly dissociation and long-range correlation can be rectified. We first
examine an excited state 1Σ+

g of H2. The RHF wave function is of the form

ΨE = Âσα
u (1)σβ

u(2). (64)

We now have two electrons in the antibonding orbital σu = Zσu (ϕA − ϕB) and asymptotically

ΨE ∼
1
2
Â
(
1sα

A1sβ
B + 1sα

B1sβ
A − 1sα

A1sβ
A − 1sα

B1sβ
B

)
. (65)

This wave function, similarly to (63) also contains an unphysical mixture of covalent and ionic
terms. Notice, however, that it is now possible to construct purely ionic or purely covalent wave
functions by taking a linear combination of ΨX and ΨE . In ΨX − ΨE = σ2

g − σ2
u, the ionic

terms cancel exactly, and the correct asymptotic wave function is obtained. This is an example of
configuration interaction (CI), where the wave function is considered a mixture of several Slater
determinants, as suggested in Eq. (20). For H2 at general internuclear separation, the form of the
CI wave function is

Ψ = cXΨX + cEΨE . (66)

It is clear, that the coefficients c must be treated as variational parameters, as near equilibrium
the RHF wave function is already a good approximation, and hence cX ∼= 1 and cE ∼= 0. In
contrast, in the dissociation limit their values must be 1√

2
and − 1√

2
.

In general, variational principle is used in the CI method to determine the CI coefficients. For
any approximate wave function, the so-called Rayleigh quotient

Ē =
〈Ψ| Ĥ |Ψ〉
〈Ψ|Ψ〉

(67)
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Fig. 6. Schematic construction o closed-shell ground-state Φ0, singly Φa
i , doubly Φab

ij , triply Φabc
ijk and

quadruply Φabcd
ijkl excited determinants.

is an upper bound to the exact ground-state energy E, i.e., Ē ≥ EG. Variational methods assume
that the best wave function is the one at the minimum of Ē. The linear ansatz (20), (66) boils
down to finding eigensolutions of a symmetric matrix, which is a straightforward and well studied
problem.

The CI method is the conceptually simplest method for accounting for correlation effects
(both short- and long-range). In general, all effects beyond the Hartree-Fock level are termed
as “correlation” effects and the energy difference between the exact energy eigenvalue of a
Ne−electron system and the SCF (HF) energy as correlation energy

Ecorr = E − ESCF . (68)

The main idea is based on the expansion theorem. Let {ϕi} , i = 1, 2, · · ·∞ be a complete basis
of the one-particle Hilbert space (e.g. HF). Then it can be proven that all Ne-electron Slater
determinants ΦL in Eq. (20), which can be constructed by placing Ne electrons into these Slater
determinants in all possible ways, span the full antisymmetric Ne-particle space. This holds, of
course, also for the eigenfunctions of the Ne-electron Hamiltonian. This is schematically shown
in Fig. 6.

Such a procedure has a prohibitive computational cost. Consider, for example, a system of
Ne electrons occupying states chosen from a set of 2Ne single-particle orbitals. The total number
of Ne-electron Slater determinants for large Ne is

(2Ne)!
N !N !

≈
N→∞

e2Ne ln 2Ne

e2Ne ln Ne
= e2Ne ln 2. (69)

Hence, the number of determinants rises exponentially with the number of electrons, Ne. The
full CI approach in conjunction with a good basis set can be applied only to small systems. The
current practical limit is in the region of small molecules, such as H2O.



24 Computer Simulations for the Nano-Scale

The computational load can be reduced by including only the most important determinants.
This is normally done by considering low-energy excitations from a reference determinant, nor-
mally the HF ground-state. One can, for example, include only single and double excitations
(see, Fig. 6), with a computational load which scales as O(N6

e ). Unfortunately, such a truncated
method is not size-consistent as the energy does not scale linearly with the number of electrons.
For that reason, for example, calculation of binding energies is not possible. This is intuitively
clear, as for example, a double excitation on the atoms results to quartet excitations from the
bonded system. The size-consistency problem can be overcome via coupled-cluster (CC) expan-
sion [21]. The CC method implicitly includes all excitations from the reference determinant with
approximated coefficients in the expansion. The method is not variational. The CC methods do
provide highly accurate results but the size of the system is limited by the O(N6

e ) scaling.
A different approach is followed in the so-called Møller-Plesset (MP) perturbation correction,

which adds dominant effects (first-, second- and higher order) of electron correlation to the SCF
treatment. However, there is no way to establish or estimate the convergence properties of this
series in general. The simplest method of this family is the MP2, taking into account the first
term of the perturbation expansion. MP2 typically improves SCF if the latter is already a useful
approximation.

The post-HF methods are described in a straightforward manner in Ref. [14]. Given the
generally prohibitive cost of all the post-HF methods in connection with the coupled electron-
ion dynamics outlined in part 2.1, we will not pursue these methods any further here. Instead,
when highly accurate results are required, and/or the system is highly correlated, we will follow
another path, based on quantum Monte-Carlo (QMC) methods, which have comparable accuracy
to the best post-HF methods and yet much more favorable scaling with the system size.

3.1.5 Density functional theory

Density functional theory (DFT) is, in addition to the Hartree-Fock, another theory limiting the
expansion of the wave function (20) to just a single determinat. However, as will become clear
later, it makes attempt to include electronic correlations in an approximate way. Intuitively, an
integrated quantity, such as the electronic density

n(~r) = Ne

∫
d~r2 · · ·

∫
d~rNeΨ∗ (~r, ~r2, · · · , ~rNe)Ψ (~r, ~r2, · · · , ~rNe) , (70)

should be easier to describe than the much more complicated object, such as the many-body
wave functionΨ(~r1, ~r2, · · · , ~rNe

).
On one hand, the dimensionality of the problem is drastically reduced from 3Ne to just

3, on the other hand, though, the electronic density is a rather featureless object which in a
molecule or solid shows only relatively small departures from the overlapped densities of its
atomic constituents. In order to appreciate some qualitative features of the density in a real
system, we show in Fig. 7 the spherically averaged density in the ground-state of the carbon
atom. The density falls monotonically from the nucleus. Hence, it may be difficult to capture the
details contained in the many-body wave function in a featureless object, as the charge density
is. The difficulty of the task we are up to is appreciated if we consider the energy differences
which govern the stability of the different concurrent structures, such as the different phases of
the same system, concurrent cluster structures or different isomers of a molecular system, which
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Fig. 7. Spherical average of electronic charge density in ground-state of C atom [25].

often are just a tiny fraction of the correlation energy which itself is just a few percent o the total
energy.

3.1.5.1 Thomas-Fermi approximation

A scheme based on the idea of substituting wave function by the corresponding electronic
charge density dates back to the days of Thomas [22] and Fermi [23]. The Thomas-Fermi (TF)
scheme assumes that the motions of the electrons are uncorrelated, and that the corresponding
kinetic energy of the electrons can be described by a local approximation based on results for free
electrons. The electrons are treated as independent particles, and the electron-electron interaction
energy arises solely from the electrostatic energy,

Ees [n] =
e2

2

∫
d~r

∫
d~r

′ n(~r)n(~r′)

|⇀r − ~r′|
. (71)

The kinetic energy functional

T [n] =
∫
d~rt [n(~r)] (72)

can be expressed through kinetic energy density of a system of noninteracting electrons with
density n

t [n] =
2

(2π)3

∫
|k|≤kF

d~k
h̄2k2

2me
= (73)

=
2h̄2

(2π)32me

∫
|k|≤kF

d~kk2 =
2h̄2

(2π)32me

kF∫
0

π∫
0

2π∫
0

k2k2 sin θdθdφdk =
h̄2

10π2m2
k5

F . (74)
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The density is related to the Fermi wave vector via

n =
2

(2π)3

(
4
3
πk3

F

)
⇒ kF = 3

√
3π2n. (75)

This gives,

T0 [n] = ckn
5
3 , (76)

where ck = 3h̄2(3π2)
2
3 /10m. The energy functional in the TF approximation reads

E [n] = T [n] + Ees [n] +
∫
d~rn(~r)Vext(

⇀
r ), (77)

where Vext(~r) is an external potential in which the electrons move, such as the potential gener-
ated by the ions, or external field. We will seek the minimum of the functional (77) subject to the
condition of charge conservation,∫

d~rn(~r) = Ne. (78)

Applying the method of Lagrange multipliers yields the following functional to minimize

= [n] = T [n] + Ees [n] +
∫
d~rn(~r)

{
Vext(

⇀
r ) + λ

}
, (79)

where λ is the Lagrange multiplier imposing the normalization constraint (78). The optimum
electronic density is solution to the equation

δ= [n]
δn

=
5
3
ckn

2
3 + e2

∫
d~r

n(~r′)

|~r − ~r′|
+ Vext(r) + λ

!=0. (80)

Results of the studies with the TF model have shown that the TF model has severe deficien-
cies. The charge density is infinite at the nucleus, and it does not decay exponentially far from
the nucleus of an atom, but as r−6. It has also been shown that TF theory does not result in atoms
binding to form molecules or solids. The absence of shell structure in the TF atom means that
the observed periodic variation o properties with atomic number cannot be reproduced. In fact,
the atoms shrink with increasing atomic number Z as Z1/3 [24].

At this stage it might seem hopeless to consider the electronic density as the basic variable
any further. Yet, this conclusion is wrong as the most successful modern electronic structure
methods take density as the basic variable. The failure of the TF model was due to the fact that,
in addition to a very approximate treatment of the kinetic energy, it almost entirely ignored that
fact that electrons are quantum objects. In fact, TF is a special case of the density functional
theory (DFT), which makes away with most of the shortcomings of the TF model.

3.1.5.2 Basic theorems of the DFT

There are a number of excellent review papers [3, 25, 26] which cover different aspects of
the DFT theory and applications. We will cover here mainly those aspects of the DFT theory,
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which are needed to solve the coupled Born-Oppeheimer (Eqs. (16)-(17)) or Ehrenfest dynamics
(Eqs. (11)-(12)).

The DFT expresses ground-state (GS) properties of a system, including the energy E, in
terms of functionals of the GS electron density, i.e. they are expressed by the knowledge of the
density alone. The basic theorems of the DFT formalism were derived by Hohenberg and Kohn
[27], who have shown that E [n] satisfies a variational principle. Levy [28] provided a simpler
and more general derivation. We consider Ne electrons moving in an external potential, Vext(~r),
i.e. the Hamiltonian is

H̃ = T̂ + Vee +
Ne∑
i=1

Vext(~ri), (81)

where T̂ and Vee are the kinetic and electron-electron interaction operators, respectively. We
consider “N-representable” densities n(~r)4, i.e. those obtainable from some antisymmetric wave
functionΨ(~r1, ~r2, · · · , ~rNe). Levy defined the functional,

F [n] = min
Ψ→n

〈Ψ| T̂ + Vee |Ψ〉 , (82)

where the minimum is taken over all Ψ that give the density n.F [n] is totally universal as it
does not refer to any specific system. Let us denote the ground-state energy, wave function, and
density by EGS , ΨGS , and nGS , respectively. The basic two theorems of the DFT are

E [n] ≡
∫
d~rVext(~r)n(~r) + F [n] ≥EGS , (83)

which is the variational property, and or allN -representable densities n(~r) we have the minimum
property∫

d~rVext(~r)nGS(~r) + F [nGS ] =EGS . (84)

To prove the variational principle (83), we introduce the notation Ψn
min(~r) for a wave fuction

that minimizes F [n] in Eq. (82),

F [n] = 〈Ψn
min| T̂ + Vee |Ψn

min〉 (85)

and setting V =
∑
i

Vext(~ri), we have

∫
d~rVext(~r)n(~r) + F [n] = 〈Ψn

min|V + T̂ + Vee |Ψn
min〉 ≥ EGS (86)

according to the minimum property of the GS. This proves the inequality (83). Using the mini-
mum property once more, we find

EGS = 〈ΨGS |V + T̂ + Vee |ΨGS〉 ≤ 〈ΨnGS

min |V + T̂ + Vee |ΨnGS

min 〉 . (87)

4Hohenberg and Kohn [21] worked in the space of V -represnetable densities, i.e. those that can be realized for some
external potential, Vext. This space is a subspace of N -representable densities.
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We subtract the interaction with the external potential and obtain

〈ΨGS | T̂ + Vee |ΨGS〉 ≤ 〈ΨnGS

min | T̂ + Vee |ΨnGS

min 〉 . (88)

On the other hand, the definition of ΨnGS

min yields the reverse relation between the two sides of
Eq. (88). This is possible only if

〈ΨGS | T̂ + Vee |ΨGS〉 = 〈ΨnGS

min | T̂ + Vee |ΨnGS

min 〉 . (89)

Hence, we have

EGS =
∫
d~rVext(~r)nGS(~r)+ 〈ΨGS | T̂ + Vee |ΨGS〉

=
∫
d~rVext(~r)nGS(~r)+ 〈ΨnGS

min | T̂ + Vee |ΨnGS

min 〉

=
∫
d~rVext(~r)nGS(~r)+F [nGS ] . (90)

These theorems show, that the GS charge density determines the GS wave function, from which
all GS properties can be calculated which themselves, are functionals of the GS density. The
problem remains, how to find the functional F [n] or an approximation to it. As the F [n] func-
tional contains the electron-electron interaction potential Vee, it must contain all the many-body
physics, exchange-correlation effects, etc. Clearly finding a valid approximation to F [n] will
not be an easy task. The simplest approximation, completely ignoring the quantum nature of the
electrons is represented by the TF model, see chapter 3.1.5.1 above.

3.1.5.3 Kohn-Sham equation

Many of the drawbacks of the TF approach can be traced to the approximate treatment of
the kinetic energy. The task of finding good approximations to the energy functional is greatly
simplified by using a different separation, first introduced by Kohn and Sham [29]

E [n] = T0 [n] +
∫
d~rn(~r)

(
Vext(~r) +

1
2
Φ(~r)

)
+ Exc [n] . (91)

T0 is the kinetic energy of a system with density n for a noninteracting system, Φ is the classi-
cal Coulomb interaction for electrons, and Exc [n] defines the exchange-correlation energy. T0

differs from the true kinetic energy T , but it is of comparable magnitude and is treated exactly
in this approach. This removes many of the deficiencies o the TF model, such as the lack of
shell structure of atoms or the absence of chemical bonding in molecules and solids. All terms in
Eq. (91), except for Exc [n], can be evaluated exactly. Hence, at this stage all many-body effects
have been factored into the exchange-correlation term Exc [n]. The approximations to Exc [n]
play a central role in the DFT.

The minimization applied to Eq. (91) subject to the normalization constraint∫
d~rn(~r) = Ne (92)
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leads to the following constraint functional to be minimized

= [n] = T0 [n] +
∫
d~rn(~r)

(
Vext(~r) +

1
2
Φ(~r)

)
+ Exc [n] + λ

(∫
d~rn(~r)−Ne

)
(93)

with λ being the Lagrange multiplier imposing the constraint (92). The optimum density n(~r)
can be found by variation of =[n(~r)],

δ= [n]
δn(~r)

=
δT0 [n]
δn(~r)

+ Vext(~r) +
1
2
Φ(~r) +

δExc [n]
δn(~r)

+ λ
!=0, (94)

where the last term defines the exchange-correlation potential Vxc. This equation is formally
very similar to the corresponding TF equation (80), the only differences being the presence of
the Vxc potential and the form, the kinetic energy is incorporated in the model. While several
approximations to Vxc exist, see chapters 3.1.5.4, 3.1.5.7, and 3.1.5.8, despite considerable effort,
no reliable approximation to the kinetic energy functional exists. Kohn and Sham made at this
stage a step backward and reintroduced the orbitals back into their theory [29]. They conveniently
defined the T0 functional through the independent-particle wave functions {ϕi(~r)} as

T0 =
occ∑
i

〈ϕi| −
1
2
∇2 |ϕi〉 , (95)

and the Φ classic Coulomb energy of the electrons as

1
2

∫
d~rΦ(r)n(~r) =

1
2

∫
d~r

∫
d~r′

n(~r′)

|~r − ~r′|︸ ︷︷ ︸
VH(~r)

n(~r). (96)

The VH(~r) defines the so-called Hartree potential. With these definitions the equation defining
the optimum set of the so-called Kohn-Sham orbitals becomes

= [n] =
occ∑
i

〈ϕi| −
1
2
∇2 |ϕi〉+

∫
d~rn(~r)

(
Vext(~r) +

∫
d~r′

n(~r′)

|~r − ~r′|

)

+ Exc [n]−
occ∑
ij

εij (〈ϕi|ϕj〉 − δij), (97)

where εij is the matrix of Lagrange multipliers imposing the mutual orthonormality of the Kohn-
Sham orbitals

∫
d~rϕ∗i (~r)ϕj(~r) = δij . The optimum orbitals can be found by constraint optimiza-

tion

δ= [n]
δϕ∗i

=

−1
2
∇2 +

1
2

∫
d~r′

n(~r′)

|~r − ~r′|
+ Vext(~r) +

δExc

δn(~r)︸ ︷︷ ︸
Vxc(~r)

ϕi −
occ∑
ij

εijϕj
!=0. (98)

Note that similarly to the case of the SCF equations (44–45), also equation (98) converges to
linear combination of canonical Kohn-Sham equation. In he same way as with the SCF equation
one can manipulate by unitary transformations the matrix εij to be diagonal5. In such a case

5The form of the Kohn-Sham orbitals to which the equation (98) converges depends on the orthonormalization pro-
cedure used; see also chapters 3.3.2.1 and 3.3.3.
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Eq. (98) takes the form

− 1
2
∇2ϕi +

(
1
2

∫
d~r′

n(~r′)

|~r − ~r′|
+ Vxc(~r) + Vext(~r)

)
︸ ︷︷ ︸

Veff (~r)

ϕi = εiϕi. (99)

This is a mean-field equation where the effect of the other electrons enters via charge density

n(~r) =
occ∑
i=1

|ϕi|2. (100)

The corresponding total energy Eq. (91), can be expressed as

EKS =
occ∑
i

εi −
1
2

∫
d~rVH(~r)n(~r) + Exc [n]−

∫
d~rVxc(~r)n(~r). (101)

In order to solve Eqs. (99), (100), we still need an approximation to Vxc(~r). The quality of
this approximation will crucially determine the quality of the resulting single-particle orbitals
{ϕi}, and the GS properties. A very simple model for Vxc(~r) was proposed by Kohn and Sham
[29] who assumed that the inhomogeneous electron gas Eqs. (99), (100) behaves locally as the
homogeneous electron gas with the same density

ELDA
xc =

∫
d~rn(~r)εHEG

xc [n(~r)]. (102)

Here εHEG
xc [n(~r)] is the exchange and correlation energy per particle of a homogeneous elec-

tron gas with density n. The approximation (102) is called local density approximation (LDA).
Numerous approximations as well as very accurate calculations exist for εHEG

xc [n]. Kohn and
Sham [29] also showed that approximation (102) is exact in the limiting cases of slowly vary-
ing density and very high densities. Equations (99 – 102) are the famous Kohn-Sham equations
which is the most widely used model for realistic calculations. Note, that Eq. (99) is nonlin-
ear, as it depends on all occupied orbitals via the electronic density (100). This means, that
similarly to the Hartree-Fock equation (46), its solutions have to be found in a self-consistent
manner. One starts with an initial guess for the set of Kohn-Sham orbitals,

{
ϕ0

i

}
, from which the

charge-density (100) is computed and effective potential Veff (~r) determined. The Kohn-Sham
equation (99) is solved which yields the first iteration of

{
ϕ1

i

}
. This procedure is repeated until

the input wave functions {ϕn
i } and/or potentials do not differ from the output wave functions{

ϕn+1
i

}
and/or potentials. The numerical cost is easily determined as O(N3

e ), as the dominant
step is the diagonalization of the Kohn-Sham Hamiltonian matrix, or a similar procedure with
the same asymptotic scaling; see also chapter 3.3.2.1.

The limiting cases noted above are not realized in most calculations, such as application to
atoms, molecules, surfaces, or solids. So why is it, that despite these facts, the Kohn-Sham
equations are still, after more than 40 years, in use and yield results which are generally of
surprising accuracy? Kohn and Sham themselves did not expect their equations to provide an
accurate description of chemical bonding [29]. A decade passed before the first attempts were
made to test the ability of the DFT in LDA approximation to describe the bonds in molecules,
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and remarkably, they showed that they generally reproduce ground-state geometries and vibration
and phonon frequencies. The reasons for that will be further analyzed in chapter 3.1.5.5. The
DFT remains the basis of most of the parameter-free calculations in extended systems and more
recently also in applications to molecules, clusters, and even bioapplications.

In the above discussion we have tacitly neglected the spin and assumed that the orbitals are
all doubly occupied. The generalization to spin systems requires consideration of spin indices,
in which case the analogy of Eqs. (99 – 102) reads

− 1
2
∇2ϕiσ +

(∫
d~r′

n(~r′)

|~r − ~r′|
+ V σ

xc(~r) + Vext(~r)

)
︸ ︷︷ ︸

V σ
eff

(~r)

ϕiσ = εiσϕiσ, (103)

nσ(~r) =
occ∑
i=1

|ϕiσ|2, (104)

V σ
xc =

δExc [n↑n↓]
δnσ(~r)

, (105)

ELSD
xc [n↑n↓] =

∫
d~rn(~r)εHEG

xc [n↑(~r), n↓(~r)]. (106)

This straightforward extension of the DFT can be shown to lead to analytical problems, as the
ground-state wave function ΨGS(~r1, ~r2, · · · , ~rNe) does not uniquely define the effective potential
V σ

eff (~r) [30, 31]. Nevertheless the practical consequences for spin DFT calculations are not
severe [32], and indeed, they are routinely done.

3.1.5.4 The LDA approximation

In both formulations of the DFT theory the approximation to the exchange-correlation energy
and potential (102) and (106) play a central role and will determine the accuracy of the results.
Let us analyze this point in more detail. The first approximation of the exchange effects in HEG
was given by Dirac [33] in the form

εDirac
x = −3

4

(
3
π

)
n

1
3 =

0.458
rs

(a.u.), (107)

where rs is a measure of the interelectronic distance (n = 1/(4/3)πr3s ⇒ rs = (3/(4πn))1/3).
The exchange interaction means, that an electron of a given spin, say spin ↑, will be surrounded
by a region where the density of electrons with the same spin is reduced. Qualitatively, the
exchange hole of form (107) can be easily inferred from the following argument. Replace an
electron by a uniform density inside a sphere of radius r0, and zero elsewhere. Since the ex-
change hole contains a single electron [34], r0 = (3/(4πn↑))1/3, and we obtain an exchange
energy with the dependence as that of (107). Later, Gáspár adopted the Dirac approximation
and derived a slightly different result using variational approach [35]. This method was shown
to reproduce well the HF results for a positively charged atom, showing that an approximation
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based on homogeneous gas can give realistic results even if the density is far from uniform. The
Gáspár’s form of εGaspard

x is customarily used in the LDA approximation (102) for exchange.
The much more complicated correlation term, εc, is commonly based on the results of very accu-
rate quantum Monte-Carlo results for a homogeneous electron gas of various densities [36, 37];
see also chapters 3.1.6 and 4.7.1.1. The LSD approximation (Eq. 106) requires also results for
spin-polarized system and a means for interpolation for partial polarizations. Perdew and Zunger
[38] proposed the formula

εPZ
c =

{
A ln rs +B + Crs ln rs +Drs, rs ≤ 1,
γ/
(
1 + β1

√
rs + β2rs

)
, rs > 1. (108)

For dense electron densities (rs ≤ 1) the random phase approximation provides the parameters.
Parameters for a fully polarized gas can be obtained from scaling arguments. Other parameters
were obtained by fitting the results of Ceperley and Alder [36]. Another form that has found
widespread use is due to Vosko, Wilk, and Nusair [39] ,

εV WN
c

A
= ln

(
rs

F
(√
rs
))+

2b√
4c− b2

arctan

(√
4c− b2

2
√
rs + b

)

− bx0

F (x0)

[
ln
(√

rs − x0

F (x0)

)
+

2 (b− 2x0)√
4c− b2

arctan

(√
4c− b2

2
√
rs + b

)]
, (109)

where F (x) = x2 + bx + c and the fitting parameters, which differ for the polarized (P) and
unpolarized (U) cases, are obtained from the data of Ceperley and Alder [36]. Interpolation
between U and P results are usually based on a formula involving spin polarization ζ

εxc(n, ζ) = f(ζ)εU
xc(n) + (1− f(ζ)) εP

xc(n), (110)

ζ =
n↑(~r)− n↓(~r)
n↑(~r) + n↓(~r)

. (111)

Functional forms of f(ζ) based on the Hartree-Fock and random phase approximations have
been suggested by Bath and Hedin [40] and Vosko et al. [39].

Few comments are due here. Note that the effective potential, Veff (⇀
r ), is local, and Eqs. (99–

102) are no more complicated than Hartree-Fock’s. The kinetic energy, the electrostatic inter-
action between core and valence electrons are treated exactly. Only the exchange energy, Ex,
and the even smaller correlation contribution require approximation. This is in marked con-
trast to the TF, where the large kinetic energy term is approximated. Note also the problem of
“self-interaction”. In Eq. (99) the Coulomb interaction term includes also interaction with itself.
The same is true also for the HF equations (46), where, however, the nonloal exchange term of

the form − 1
2

∑
ij

∫
d~r
∫
d~r′

ϕ∗
i (~r)ϕ∗

j (~r′)ϕj(~r)ϕi(~r′)

|~r−~r′|
exactly cancels this spurious self-interaction. In

contrast, in the DFT in LDA approximation for exchange (and correlation) the corresponding
Vxc(~r) is local and depends only on the charge density n(~r).

The other comment regards the form of Eq. (99), which at the first glance looks like an
ordinary stationary Schrödinger equation. However, we should keep in mind, that this is not
quite true, as the orbital energies εi are in reality merely Lagrange multipliers, having little to
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do with the excitation energies. For more on this point see also chapters 3.1.5.10-13. This is at
variance with the HF treatment, where the Koopmans’ theorem [17] gives some justification for
equaling the orbital energies with the excitation energies.

3.1.5.5 Exchange-correlation energy, Exc

The crucial simplification in the DFT scheme was achieved by mapping the interacting
system, whose energy we seek, onto the fictitious, non-interacting system of which we solve
Eqs. (99–101). The relationship between these two systems can be studied by considering the
scaled electron-electron interaction λ/|~r− ~r′| with λ varying from 0 (non-interacting system) to
1 (physical system). This is done in the presence of an external potential, Vλ [41], such that the
ground-state of the Hamiltonian

Ĥλ = −1
2
∇2 + Vext(~r) + Vλ + λVee (112)

has the density n(~r) for all λ. The exchange-correlation energy of the interacting system can be
expressed in terms of an integral over the coupling constant λ [42, 43],

Exc =
1
2

∫
d~rn(~r)

∫
d~r′

1

|~r − ~r′|
nxc(~r, ~r′ − ~r), (113)

nxc(~r, ~r′ − ~r) ≡ n(~r′)
∫ 1

0

dλ
(
g(~r, ~r′, λ)− 1

)
, (114)

where g(~r, ~r′, λ) is the pair-correlation unction of the system with density n(~r) and Coulomb
interaction λVee. The exchange-correlation hole, nxc, describes the effect of the interelectronic
repulsions, i.e. the fact that an electron present at point ~r reduces the probability of finding
another one at ~r′. The exchange-correlation energy is viewed as the energy resulting from the
interaction between an electron and its exchange-correlation hole (Eqs. (113), (114)).

We note that since g(~r, ~r′)→ 1 as |~r − ~r′| → ∞, the above separation into electrostatic and
exchange-correlation energies can be viewed as an approximate separation of the consequences
of long-range and short-range effects, respectively, of the Coulomb interaction. Take into account
the isotropic nature of the Coulomb interaction Vee, a variable substitution ~R = ~r′−~r in Eq. (113)
yields

Exc =
1
2

∫
d~rn(~r)

∞∫
0

dRR2 1
R

∫
dΩnxc(~r,R). (115)

This equation shows that the exchange-correlation energy depends only on the spherical average
of nxc(~r,R), so that the approximations to Exc can give excellent values, even if the description
of nonspherical parts nxc(~r,R) are wrong. There is an important sum-rule that requires that the
xc-hole contains one electron for all ~r∫

d~r′nxc(~r, ~r′ − ~r) = −1. (116)
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Fig. 8. Exchange-correlation hole in Si crystal [44]. (a) spin averaged pair correlation function from vari-
ational quantum Monte-Carlo (VMC), (b) exchange-correlation hole (VMC), and (c) exchange-correlation
hole (LDA), with one electron fixed at the tetrahedral interstitial site in the (110) crystal plane.

This means that we can consider−nxc(~r, ~r′−~r) as a normalized weight factor, and define locally
the radius of the xc-hole〈

1
~R

〉
~r

= −
∫
d~r
nxc(~r,R)

|~R|
, (117)

leading to

Exc = −1
2

∫
d~rn(~r)

〈
1
~R

〉
~r

. (118)

This shows that, provided the sum-rule (116) is satisfied, the exchange-correlation energy de-
pends only weakly on the details of the nxc. This property is behind the success of the LDA/LSD
approximation.

The expression for Exc in Eqs. (113-114) can be generalized for the spin case

Exc =
1
2

∑
αβ

∫
d~rnα(~r)

∫
d~r′

nβ(~r′)

|~r − ~r′|

1∫
0

dλ
(
gαβ(~r, ~r′, λ)− 1

)
. (119)

The insensitivity of the xc-energy to the details of the xc-hole, provided the sum-rule (116) is
satisfied is illustrated in Figs. 8, 9. Figure 8 shows the spin-averaged pair-correlation function
ḡ = 1

2

∑
αβ

gαβ(~r, ~r′) and exchange-correlation hole n̄xc =
∑
αβ

nαβ
xc from a very accurate calcu-

lation (quantum Monte-Carlo; see also chapter 3.16) and in the LDA approximation for a real
system, Si crystal [44]. It is evident, that the approximate LDA xc-hole indeed has a form signif-
icantly different from the accurate one, as the former is a single minimum function, whereas the
latter has two minima. However, as shown in Fig. 9 for nitrogen atom, most of the differences in
the xc-hole are removed after the spherical average (Eq. 115) is taken [45]. The figure shows just
the dominant part of the xc-hole, the exchange hole, nx from an exact calculation, namely HF
(remember, that exchange is treated exactly with the HF approach), and in the LDA approxima-
tion (Eq. (102)) for two representative values of ~r. Indeed, the approximate and exact holes are
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Fig. 9. Exchange-hole in a nitrogen atom [45]. Solid line: exact result, dashed line: LDA result for a spin up
electron for r=0.13 (left panel) and r=0.63 (right panel). The top panels show the hole along a line through
the nucleus and the electron. The arrow indicates the nuclear position and ~r − ~r′ = 0 gives the electron
position. Note, that the exact hole has a large weight at the nucleus, while the approximate hole is centered
on the electron. The lower panels show the spherical average of the hole around the electron. The area
under the curve is proportional to the exchange energy.

again qualitatively different: the LDA hole is very symmetric around its center ~r′. The spherical
averages, however, are remarkably similar, and the values of the exchange energy differ by only
a few percent. Hence, the large differences in the exchange hole arise almost entirely from the
non-spherical parts, which contribute nothing to the exchange energy.

3.1.5.6 Accuracy issues

Above we have presented arguments why DFT even in very simple approximations, such
as the local approximations LDA and LSD, should provide not only simple but also reasonably
accurate description of a wide range of realistic systems. Now we want to analyze the accuracy
of the DFT and compare it with the concurrent HF approach. The methods have one common
feature, namely that both are single determinant approaches. However, while the HF has an
exact exchange and no correlation whatsoever, the DFT includes both exchange and correlation
but both at an approximate level. This is immediately clear by comparing the non-local HF
exchange operator (42) with the local LDA exchange contribution (102) and (106). Moreover,
there is yet another error arising from the DFT in the LDA/LSD approximation, namely the
degree by which the system deviates from the homogeneous electron gas by which it is (locally)
approximated. Hence, we expect the largest errors for atoms, smaller for molecules and clusters,
and smallest for solids, especially those, which have quasi free-electron-like behavior, such as,
e.g. aluminum. By the same token, free-electron-like solids exhibit the largest errors in the HF
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Fig. 10. Total energy difference between LDA and quantum Monte-Carlo results for nitrogen atom, dimmer,
molecular (Pa3) and atomic solids (I213) [46].

treatment. The system-size dependence of the LDA error is shown in Fig. 10, where the energy
difference between LDA and very accurate quantum Monte-Carlo results are shown [46]. We
note that the nitrogen system represents a very stringent test, especially for the dimmer, which is
often used as a test case for quantum chemical methods as it has very large correlation energy due
to the triple bond and an extremely small interatomic distance. The errors are indeed appreciable
and even if the error for solids is significantly smaller, there is a small difference between the
atomic and molecular structures, presumably caused by the different character of the correlation
in molecular and atomic solids. The differences in the accuracy between the two solids is quite
understandable, as one is a molecular solid, whereas the other an atomic solid; the latter being
more accurately modeled by LDA than the former.

To set the stage, let us first take a look at the simple example of an H2 molecule, which we
have discussed above in chapters 3.1.3, 3.1.4 on HF and post HF approaches. The DFT result is
shown in Fig. 11. As can be seen, inclusion of correlation in the model has a dramatic effect on
the quality of the result. The calculated DFT points, obtained with an approximate (PBE) XC-
functional, see chapter 3.1.5.7, result in a curve almost indistinguishable from the more accurate
(CI) results. A dramatic improvement of the DFT results over the corresponding HF results
resulting from inclusion of an approximate correlation is quite general.

Let us now take a closer look at the systems of intermediate size, namely molecules and clus-
ters. In Fig. 12 we compare binding energies (Eb =

∑
i

Ei
at −Ebond, i.e. the difference between

the energy of constituent atoms and the bonded system) of two very different medium-size sys-
tems [47]. LDA, HF, and very accurate Quantum Monte-Carlo results (see also chapter 3.1.6)
are compared. The first is a system of Sin clusters of different size [48] and the other is a sys-
tem of hydrocarbons (CH4, C2H2, C2H4, C2H6, C6H6, CH4, C3H4 both propyne and allene),
which cover a variety of carbon-carbon bonds (e.g. C2H2,C2H4,C2H6, and C6H6 correspond
to triple, double, single, and 1.5 C-C bonds, respectively) [49]. These systems represent a cru-
cial test of the accuracy of the LDA approximation as the systems compared are very far from
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Fig. 11. Potential energy surfaces for H2 molecule. Full line: very accurate model (CI calculation), red
points: DFT calculation with PBE XC-functional (see chapter 3.1.5.7 below).

Fig. 12. Comparisons of binding energies in LDA, HF and a very accurate quantum Monte-Carlo method.
Left panel: small and medium-size Sin clusters [48]; right panel: hydrocarbon molecules [49].

the limit of a homogeneous system, where LDA provides an accurate system description. For
both systems we find, as is typically the case, that HF is about 30% underbound and LDA about
20% overbound. The deviations from the true results may be quite considerable (for example,
for benezene: +12eV in the LDA and –15eV in the HF treatment), as the right panel of Fig. 12
indicates. The feature of the true result being bracketed by HF and LDA results from below and
above, respectively, is quite a general feature. This reflects the fact that LDA by the nature of the
approximation tends to homogenize the system whereas HF does just the opposite.

As these examples show, the LDA results are almost always appreciably better than the HF
results. This is especially true of the extended systems, where LDA often provides reasonably
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accurate results. This was one of the main reasons why DFT techniques enjoyed decade-long
popularity in the solid-state community. On the other hand, the DFT techniques, in the LDA
approximation, were long ignored by the quantum chemistry community.

The question arises about whether the accuracy of the DFT techniques could be further im-
proved beyond the LDA/LSD accuracy. While no simple cure exists for the HF techniques,
surprisingly simple improvements can be adopted for the DFT techniques.

3.1.5.7 Beyond the LDA/LSD approximation: GGA functionals

The improvements, which would alleviate the limitations imposed by the local density ap-
proximation, are based on abandoning the strict locality of the approximation. For a while we will
now consider just the dominant term in the exchange-correlation energy, namely the exchange
part. It is clear from the nature of the exchange, that this term cannot be local. A simple-minded
extension is based on a gradient expansion. This takes into account not only the value of the den-
sity at each point ~r but also its curvature, etc. Up to fourth order for the exchange-only energy
functional Ex [n↑, n↓] for a spin compensated systems (n/2 = n↑ = n↓) Herman, van Dyke,
and Ortenburger [50] found the following gradient expansion,

EGE4
x [n] =

∫
d~rεLDA

x (n)
{
1 + cx2ξ + cx4

[
η2 + cxηξηξ + cxξ2ξ2

]}
, (120)

where

eLDA
x (n) = −3kF (~r)

4π
n(~r), (121)

kF (~r) ≡
[
3π2n(~r)

]1/3 , (122)

ξ(~r) ≡
(
∇n(~r)

2kF (~r)n(~r)

)2

, (123)

η(~r) ≡ ∇2n(~r)
4k2

F (~r)n(~r)
. (124)

A simpler version of a gradient expansion, based just on simple density difference, n(~r)−n(~r′),
was proposed as early as 1964 by Hohenberg and Kohn [27]. In fact, keeping just the zero- and
first-order contributions in expansion (120) yields

Ex [n] = Ax

∫
d~rn4/3 + Cx

∫
d~r|∇n|2/n4/3 + · · · , (125)

where Ax = − 3
4 (3/π1/3 and Cx = −7/432π(3π2)1/3 (a.u.). However, all these early attempts

to go beyond LDA were unsuccessful. The reason for this is in the sum rules the exact exchange
hole must satisfy

nx(~r,⇀
r ) = −n(~r)

2
, (126)
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nx

(
~r, ~r + ~R

)
≤ 0, (127)∫

d~Rnx

(
~r, ~r + ~R

)
= −1. (128)

It is well known [42] that the LDA approximation, which retains only the first term on the right
in Eq. (125), satisfies the exact conditions (126-128). It was soon discovered that the gradient
expansion approximation (GEA), which retains both the first and second terms, violates condi-
tions (127) and (128) [51]. This observation explains the failure of GEA to provide the accurate
correction to LDA that might have been expected. It was also found, that a cut-off GEA ex-
change hole, with the cut-offs chosen to satisfy sum-rules (127) and (128), yields an accurate
functional for the exchange energy. In addition to the exchange-hole sum-rules outlined above,
there are other conditions, which the correlation part must satisfy, such as, e.g. behavior in slow
varying/rapidly varying density limit etc. In addition, it has been shown, that the second-order
expansion (125) is generally insufficient and a fourth-order contribution containing ∇2n can
make equal contributions as the second-order [52]. The so constructed functionals are called
generalized gradient approximation, or GGA functionals

EGGA
xc =

∫
d~r
(
n↑, n↓, |∇n↑|, |∇n↓|,∇2n↑,∇2n↓

)
. (129)

Many forms of such functionals have been suggested. Some of the most important are given
in [53]. One should note that some functionals may not be entirely general as they often have
asymptotic behavior valid only for finite systems [54]. Generally, the functionals fall either in
the category of semiempirical, which come up with a general functional form with parameters
fitted to some data base or first-principles, which fix all the parameters without any need for fit-
ting. The semiempirical GGA’s can be remarkably successful for small molecules. For example
the semiempirical Becke exchange [54] with either VWN [39] or LYP [55] correlation outper-
formed correlated ab initio methods (MP2 and CISD) in calculations of atomization energies
of 32 molecules [56]. From this standpoint, DFT is then of semi-empirical nature. For exam-
ple, for the well-known BLYP and B3LYP semiempirical functionals, experimental data from up
to 407 atomic and molecular systems have been used in order to find the best values for the 15
adjustable parameters [57]. The ab initio approach builds on the positive features of the LSD ap-
proximation by incorporating exact constraints with the quest to improve the description by the
added features. A representative example of this type of functional is the so-called PW91 func-
tional [58]. This functional uses second-order expansion in terms of density gradients (up to∇n).
The form of the functional was later slightly reformulated by Perdew, Burke, and Ernzerhof [59],
and is known under the abbreviation PBE. The PBE form has several strong points: (1) it incor-
porates correctly both the slow and rapidly varying limit of n(r), (2) it cancels the logarithmic
singularities ofεLDA

c in the high density limit. The PBE functional for atoms and molecules has
been compared with results of LSD, BLYP, and B3LYP functionals and found to perform equally
well [60] for the properties considered. In Tab. I, we show the results with a range of different
GGA functionals for dissociation energies of the same molecules considered above [47, 48].
Although not quite as accurate as the best correlated calculations considered above, the GGAs
show an enormous improvement over the LDA, with mean error of about 0.3 eV and maximum
error of 2%. However, given the way the GGA functionals are constructed, one must be cautious
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Fig. 13. PES curves for proton movement between the two minima in the H+
5 cluster.

in regarding these results as a benchmark of the accuracy of the GGAs in general. In particular,
while in most cases the GGA energies do represent a definite improvement over the LDA/LSD
results, the GGA XC-hole is unlikely to be any better than in the LDA/LSD approximation.

This last point is illustrated in Fig. 13, which shows results for one of the simplest forms of a
molecular ionic cluster, namely H+

5 [61]. The cluster consists of a H+
3 core ion with one molecule

attached to one of its vertices, H+...
3 H2. As shown in Fig. 13, this structure is qualitatively

correctly described not only by high-quality correlated calculations (MP2, CISD, CCSD), but
even by HF. The failure of the LDA in the VWN form [39] is not rectified by inclusion of the
GGA semilocal corrections, as both methods predict a qualitatively incorrect structure, namely
two H2 molecules with the proton in between, H...

2 H+...H2. Fig 12 also highlights the importance
of the correlation. As can be seen, the effect of the correlation is to lower the barrier for the proton

Tab. I. Binding energies of small hydrocarbon molecules calculated with three different GGA function-
als [47, 48]. The GGA results are compared to HF, LDA, and experimental results.

Binding energies (eV) HF LDA BLYP B3LYP PW91 Exp.
methane (CH4) 14.20 20.59 17.90 18.05 17.78 18.19
acytylene (C2H2) 12.70 20.49 17.31 17.20 17.38 17.59
Ethylene (C2H4) 18.54 28.19 24.12 24.12 24.07 24.41
ethane (C2H6) 23.87 35.37 30.30 30.57 30.29 30.85
allene (C3H4) 22.63 35.87 30.23 30.18 30.43 30.36
propyne (C3H4) 22.70 35.70 30.12 30.12 30.32 30.45
benzene (C6H6) 44.44 70.01 58.38 58.48 59.26 59.24
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diffusion quite considerably ∼ 0.2 eV, compared to the results of correlated methods.
In Eqs. (112 – 114) we have separated the short-range correlations from the long-range cor-

relations and dealt mainly with the short-range once. The overall spectacular success of the DFT
theory has mainly to do with situations where the short-range correlations dominate, such in
extended atomic systems. As the example above shows, it often fails to describe correlations
at long-range, such as van der Waals interactions. Nevertheless, van der Waals interactions, re-
sulting from density fluctuations in regions separated in space, are quite common in numerous
condensed systems. The most widely known system is graphite, where carbon atoms in one
plane are held together by very strong covalent bonds, while the planes interact through only
much weaker, van der Waals, interactions. Other examples are molecular crystals and clusters,
where the LDA approximation is entirely inappropriate and the GGAs may significantly improve
the description of the weak bonds [62]. However, in general, the van der Waals intractions up to
now have not been properly incorporated in the DFT theory [63]

In general, the GGA functionals lead to improved bond angles, lengths, and energies. In
particular, the strengths of hydrogen bonds and other weak bonds between closed-shell systems
are, often but not always (see above), significantly improved over LDA results. This is especially
true for finite systems, even though in some cases the GGA functionals overcorrect [64]. When
applied to extended systems, which typically are much better described by the local functionals,
the GGA functionals in most cases tend to more severely overcorrect.

3.1.5.8 Beyond the GGA approximation: meta and orbital-dependent functionals

The next step in the development of gradient approximations is to incorporate the kinetic
energy density. Version, based on the PBE functional ads a term of the form [65]

τσ(~r) =
occ∑
i

1
2
|∇ψiσ|

2

. (130)

The τσ(~r) is the kinetic energy density for the occupied Kohn-Sham orbitals. However, this
functional, as some other early functionals of the same form, included parameters determined
by fitting to experimental data. This feature is avoided in the recent work, where a new, so-
called TPSS functional was constructed, whose form satisfies the requirement that the exchange
potential be finite at the nucleus for ground-state one- and two-electron densities [66, 67]. This
constraint is satisfied by LDA, but violated by GGAs. Extensive tests indicate results of generally
very high quality.

Other functionals are based on relaxing the requirement that the exchange potential be deter-
mined within the DFT and rely on combination of exact treatment of exchange, as is the case in
the HF, with added approximately treated correlation. These are called hybrid functionals [68],
of which the widely used B3LYP functional [57], is an example.

Let’s now pursue this idea little further. Similarly as Kohn and Sham [29] did with the orbital-

dependent kinetic energy functional setting T0 [n]
!=
∑

σ=↑↓

occ∑
i

〈ϕiσ| − 1
2∇

2 |ϕiσ〉 in deriving their

equation, one can consider a framework based on orbital-dependent functional Exc. If one per-
forms a power series expansion of Excin terms of interaction strength, e2(e being the elementary
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charge), one obtains the exact exchange as leading term

Eexact
x = −1

2

∑
σ=↑↓

Neσ∑
i,j=1

∫
d~r

∫
d~r′

ϕ∗iσ(~r)ϕ∗jσ(~r′)ϕjσ(~r)ϕiσ(~r′)

|~r − ~r′|
(131)

which is nothing but the Hartree-Fock exchange energy but evaluated with KS orbitals. Once
we accept to use an expression for Excwhich explicitly depends on the KS orbitals, the question
is how to compute the corresponding exchange-correlation potential (98), (105). The way to
accomplish this task is indicated by the Hohenberg-Kohn theorem [27]. Application of this theo-
rem to the KS system shows that there is a one-to-one correspondence between n(~r) and Veff (~r).
The latter, in turn, determines the KS orbitals from which the density can be obtained. Thus, we
can formally write any of these quantities as functionals of the other quantities and an explicit
dependence on one of them introduces an explicit dependence on the others. If we use this ob-
servation in order to rewrite Eqs. (98), (105) using the chain rule of functional differentiation we
have

Vxc(~r) =
∑

σ=↑↓

Neσ∑
i=1

∫
d~r′

δExc

δϕiσ(~r′)

δϕiσ(~r′)
δn(~r)

+ complex conjugate. (132)

The functional derivative with respect to the orbitals can easily be calculated from its explicit
functional form. In order to calculate the functional derivative of the orbitals with respect to the
density, we now view the orbitals as functional of Veff (~r) and use, for a second time, the chain
rule for functional differentiation to obtain

Vxc(~r) =
∑

σ=↑↓

Neσ∑
i=1

∫
d~r′
∫
d ~r′′

δExc

δϕiσ(~r′)

δϕiσ(~r′)

δVeff ( ~r′′)

Veff ( ~r′′)
δn(~r)

+ complex conjugate. (133)

The third functional derivative on the right-hand of Eq. (133) is the inverse of the static density
response function of the KS system

χ−1
s

(
~r, ~r′

)
=
δVeff (~r′)
δn(~r)

. (134)

Multiplying Eq. (133) from right one obtains∫
d

⇀

r′Vxc(~r′)χs(~r′, ~r) =
∑

σ=↑↓

Neσ∑
i=1

∫
d~r′

δExc

δϕiσ(~r′)

δϕiσ(~r′)
δVeff (~r)

+ complex conjugate. (135)

We are not going to pursue this avenue any further as the resulting equations are too cumber-
some and are hardly used when solving the coupled Born-Oppenheimer (16), (17) or Ehrenfest
dynamics (11), (12). However, as shown in the next paragraph, they are conceptually important
for the excited-state dynamics.

It is clear from the present discussion that a wide variety of functional approximations to
DFT are available. This, on one hand, makes the possibility of finding an appropriate functional
for any given system under consideration more probable, but on the other hand, makes also
testing the different functionals available a necessity as there is no way to guarantee that a given
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Fig. 14. The ladder of DFT schemes (after Perdew).

functional will provide a good description of the system under consideration. This makes the
DFT theory to a semiempirical method. Nevertheless, the development of approximations to
the exchange-correlation functionals over the last 20 years has improved the performance of the
DFT techniques considerably and many people believe, that the progress up the ladder (Fig. 14)
will continue until the chemical accuracy of ∼ 1 kcal/mol will be achieved. There are numerous
methods, which aim to improve various aspects of the DFT techniques, examples being, for
example the GW [69], LDA+U [70] techniques. We will not pursue these improvements. We
believe that, given the simplicity, the DFT techniques are a perfect choice for systems, where they
provide a decent description. On the other hand for those systems or for those properties where
this is not the case, we believe that rather than trying to improve the shortcomings of the DFT
techniques it is better to use a true many-body approach, such as quantum Monte-Carlo, rather
than to incorporate some many-body aspects into the DFT, which, by its nature, is a mean-field
single-body approach.

3.1.5.9 Generalization to finite temperatures: Free Energy functional

Imagine we deal with systems at high temperatures compared with the Fermi temperature.
In such a case the total energy functional which corresponds to zero temperature has to be gen-
eralized to the free energy functional. This is especially needed if we deal with metals, where
even very small temperatures will lead to electronic excitations around the Fermi level. The free
energy approach is a mean-field approach in the spirit similar to Ehrenfest molecular dynam-
ics (11), (12). In the free-energy approach we assume that the electrons equilibrate more rapidly
than the time-scale of the nuclear motion. The electrons do not follow the ions adiabatically.
The incoherent electronic transitions due to nuclear motion are included in an averaged way by
considering the thermal population of the electronic levels. This is evident from the fact, that free
energy is an averaged macroscopic thermodynamic potential. DFT maps the interacting system
into a fictitious non-interacting system, i.e. into an ideal Fermionic gas. Statistical mechanics of
ideal gasses is well established.
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The grand free energy can be written as

ΩKS (µ, V, T ) = −2kBT
∑

i

ln {1 + exp [−β (εi − µ)]} (136)

where β = 1/kBT and {εi} are single-particle eigenvalues of the Kohn-Sham Hamiltonian,

HKS = −1
2
∇2 − VH(~r)−

∑
I

ZI

|~RI − ~r|
+
δΩxc [n]
δn(~r)︸ ︷︷ ︸
Vxc(~r)

, (137)

HKSϕi(~r) = εiϕi(~r), (138)

where Ωxc is the exchange-correlation functional at finite temperature. In order to obtain the free
energy analogy of the total energy (Eq. 101), the corresponding terms properly generalized to
finite temperatures have to be included. In the framework of the Kohn-Sham-like formulation
the Helmholtz free energy functional for the interacting case becomes

FKS(N,V, T ) = ΩKS(µ, V, T ) + µ

∫
d~rn(~r)− 1

2

∫
d~rV H(~r)n(~r)

+ Ωxc −
∫
d~rVxc(~r)n(~r). (139)

The corresponding single-particle density, which is needed to solve the equations (137)-(139) is
given by

n(~r) =
∑

i

fi(β)|ϕi|2, (140)

fi (β) =
1

1 + exp [β (εi − µ)]
, (141)

where the fractional occupation numbers {fi} are obtained from the Fermi-Dirac distribution at
temperature T in terms of the Kohn-sham eigenvalues {εi}.

The first generalization of the Kohn-Sham theory to finite temperature is due to Mermin [71].
Stability analysis of the free-energy functional (139) shows that this functional, similarly to the
Mermin functional [71], has a stationary point which is a saddle point and not an extremum [72].
This means that direct minimization techniques, see below, cannot be applied. We will return to
this point in chapter 3.3.2.1, when we deal with techniques to solving the Kohn-Sham equations.

3.1.5.10 Excited states and gaps

The KS equations in its usual form are ground-state theory and there is generally no rigorous
way to calculate for example electronic excitation energies due to photoabsorption. In particular,
in usual approximations to Exc, such as LDA, GGA, all the band gaps are severely underesti-
mated. This poses severe problems if one tries to solve the coupled Born-Oppenheimer (16), (17)
or Ehrenfest dynamics (11), (12) in excited state. Such processes are of paramount importance
in photochemistry, photoswitching etc. In the previous chapter we have briefly addressed the
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situation where there are many closely-spaced excited electronic states, such as, for instance, in
a metal. Here we focus on the opposite limit, where a single electronic state, or a bunch of them,
is completely decoupled from the rest.

3.1.5.11 Discontinuity of Exc

The deficiency of the DFT to describe the band gaps and the HOMO (highest occupied molec-
ular orbital)-LUMO (lowest unoccupied molecular orbital) gaps has to do with the discontinuity
of the exchange-correlation functional Exc as a function of particle number, which occurs at in-
teger particle numbers Ne [73, 74]. In order to discuss this property one has to generalize the
definition (82), (83) of the Hohenberg-Kohn functional to non-integer particle numbers, i.e. to
densities of the form∫

d~rn(~r) = Ne + ε (142)

where N is an integer and ε ∈ 〈0, 1〉. The generalization of the Hohenberg-Kohn functional can
be given as

Ffrac [n] = min
D̂→n

Tr
[
D̂
(
T̂ + V̂ee

)]
(143)

where the search runs over all statistical mixtures

D̂ = (1− ν) |ΨNe
〉 〈ΨNe

|+ ν |ΨNe+1〉 〈ΨNe+1| (144)

of an Ne-particle state |ΨNe〉 and an (Ne + 1)-particle state |ΨNe+1〉 which yield the given
density n(~r). The density and energy of the ensemble described by D̂ are given by

n(~r) = Tr
[
D̂n(~r)

]
= (1− ν)nNe

(~r) + νnNe+1(~r), (145)

E[n] = Ffrac[n] +
∫
d~r Vext(~r)n(~r) = (1− ν)ENe + νNNe+1, (146)

where nNe
(~r) and ENe

(nNe+1(~r) and ENe+1) are the density and energy corresponding to the
state |ΨNe〉 (|ΨNe+1〉). Since the functional (146) is defined on the domain of densities with non-
integer particle numbers, its minimum has to be found under the condition of integer particle
number which is enforced by a Lagrange multiplier µ (= to the chemical potential). At the
minimizing density

µ(Ne) =
δE [n]
δn (~r)

∣∣∣∣
nN

=
∂ENe

∂Ne
, (147)

Eqs. (146) and (147) show that the chemical potential µ(N) jumps discontinuously as N passes
though an integer if ENe and ENe+1 are separated by a finite energy gap. The discontinuity is

∆ (N) = lim
ν→0

(
δE [n]
δn (~r)

∣∣∣∣
nNe+ν

− δE [n]
δn (~r)

∣∣∣∣
nNe−ν

)
. (148)
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Tab. II. Calculated Kohn-Sham and experimental energy gaps in semiconductors [75]. xcLDA is the LDA
exchange-correlation, xEXACT+cLDA stands for exact exchange and LDA correlation, ∆x means exact
exchange only and ∆exp the experimental value.

Solid/eV xcLDA xEXACT+cLDA ∆x ∆exp

Si 0.52 1.43 5.84 1.17
C 4.15 5.06 8.70 5.46
GaN(Γ) 1.90 3.46 7.63 3.30
InN(Γ) -018 1.40 6.14 1.95

This expression can be rewritten in terms of the ionization potential I(N) and affinity A(N) of
the N -particle system

∆(Ne) = I(Ne)−A(Ne) = E(Ne + 1) + E(Ne − 1)− 2E(Ne), (149)

where E(Ne) is the ground-state energy of the Ne-particle system. Insertion of Eq. (91) into Eq.
(148) yields

∆(Ne) = ∆KS(Ne) + ∆xc(Ne) (150)

where

∆KS(Ne) = lim
ν→0

(
δT0 [n]
δn (~r)

∣∣∣∣
nNe+ν

− δT0 [n]
δn (~r)

∣∣∣∣
nNe−ν

)
= εNe+1(Ne)− εNe

(Ne) (151)

is the KS gap defined as the difference between Ne + 1-th and Ne-th KS eigenvalue of the Ne-
particle system and

∆xc(Ne) = lim
ν→0

(
δExc [n]
δn (~r)

∣∣∣∣
nNe+ν

− δExc [n]
δn (~r)

∣∣∣∣
nNe−ν

)
(152)

is the derivative discontinuity of the exchange-correlation functional Exc.
This last property is not satisfied by standard LDA and GGA functionals. In order to recover

the discontinuity in Excone would have to go to orbital-dependent functionals briefly mentioned
above (Eqs. (131) – (135). The effect on the band gaps in solids is shown in Tab. II. One can see
that LDA severely underestimates the band gaps for all cases listed. In some cases, such as InN,
the band gap disappears altogether in the LDA description. Adding exact exchange improves
results considerably. This is necessarily due to the discontinuity in the ∆xc term, absent in
the LDA treatment. On the other hand, adding just the exact exchange without any correlation
overdoes the correction and leads to too wide band gaps.

3.1.5.12 Symmetry adapted wave functions

Apart from the subtleties of the discontinuities in the Exc, one can attempt to construct ex-
cited states with correct spin symmetry. This is what the so-called restricted open-shell Hartree-
Fock (ROHF) [76] and Kohn-Sham (ROKS) [77] attempt to do. Most important types of pho-
toreactions are those that take place in the first excited singlet state S1 or in the lowest triplet
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Fig. 15. Symmetry adapted wave functions [77]. Left: the four possible determinants |t1〉, |t2〉, |m1〉,
and |m2〉 as a result of the promotion of a single electron from the HOMO to the LUMO of a closed-shell
system. Right: The energy scheme relating the mixed states |m1〉 and |m2〉 and the spin-adapted states |t3〉
and |s1〉.

state T1, the other states being in general too short-lived to be of interest. Since T1 is the lowest
state with triplet symmetry, the standard Kohn-Sham theory can be used. However, S1 is not
amenable to the ground-state Kohn-Sham theory, as due to the spin symmetry a minimum of two
determinants are necessary for the description of the wave function of non-degenerate excited
singlet states of a closed-shell system.

This can easily be seen. Consider a closed shell system with 2n electrons in n doubly occu-
pied orbitals. The orbitals are taken to be spin-restricted which means that the spatial parts of the
wave functions are the same for spin-up (α) and spin-down (β) orbitals. If a single electron is
transferred from the HOMO orbital a to the LUMO orbital b, four different determinants can be
formed in accordance with the Pauli principle. Two of these determinants are degenerate with an
expectation value of the total spin momentum 〈Ŝ2〉 = 2: t1 = |11̄ · · · ab〉, t2 = |11̄ · · · āb̄〉. The
other two degenerate determinants, m1 andm2, are not eigenfunctions of Ŝ2. The 〈Ŝ2〉 = 0, and
〈Ŝ2〉 = 2 can be isolated by Clebsh-Gordon decomposition:

t3 =
1√
2
(m1 −m2) =

1√
2

(∣∣11̄ · · · ab̄
〉
− |11̄ · · · āb〉

)
,

s1 =
1√
2
(m1 +m2) =

1√
2

(∣∣11̄ · · · ab̄
〉

+ |11̄ · · · āb〉
)
.

As can be seen from the energy diagram in Fig. 15, the energy of the singlet state can be calcu-
lated from the energies of m and t states

ES1 [{φi}] = 2EKS
m [{φi}]− EKS

t [{φi}] . (153)
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A generalized version of this expression can be found in the so-called Ziegler’s sum method [78].
The energies EKS

m and EKS
t of the mixed and triplet determinants

EKS
m [{φi}] = Ts [n] +

∫
d~rVext(~r)n(~r) +

1
2

∫
d~rVH(~r)n(~r) + Exc

{
nα

m, n
β
m

}
, (154)

EKS
t [{φi}] = Ts [n] +

∫
d~rVext(~r)n(~r) +

1
2

∫
d~rVH(~r)n(~r) + Exc

{
nα

t , n
β
t

}
, (155)

are expressed in terms of the Kohn-Sham spin-density functionals constructed from the wave
functions {φi}. The state S1 is given by

|S1 [{φi}]〉 =
1√
2
|m [{φi}]〉 − |t [{φi}]〉 . (156)

The Kohn-Sham equations for the first excited singlet state are obtained by varying Eq. (153) us-
ing (154) and (155) subject to orthonormality constraints

∑n=1
i,j=1 εij (〈φi|φj〉 − δij). The equa-

tion for the doubly occupied orbitals i = 1, 2, · · ·n− 1 reads{
− 1

2∇
2 + VH(~r) + Vext(~r)

+V α
xc

[
nα

m, n
β
m

]
+ V α

xc

[
nα

m, n
β
m

]
− 1

2V
α
xc

[
nα

t , n
β
t

]
− V β

xc

[
nα

t , n
β
t

] }
φi(~r) =

=
n+1∑
j=1

εijφj(r̄), (157)

whereas{
1
2

[
−1

2
∇2 + VH(~r) + Vext(~r)

]
+ V α

xc

[
nα

m, n
β
m

]
− 1

2
V α

xc

[
nα

t , n
β
t

]}
φa(~r) =

=
n+1∑
j=1

εajφj(r̄) (158)

and {
1
2

[
−1

2
∇2 + VH(~r) + Vext(~r)

]
+ V β

xc

[
nα

m, n
β
m

]
− 1

2
V α

xc

[
nα

t , n
β
t

]}
φb(~r) =

=
n+1∑
j=1

εbjφj(r̄) (159)

are the two different equations for the singly-occupied open-shell orbitals a and b, respectively
(Fig. 15). Note, that these Kohn-Sham-like equations feature orbital-dependent exchange-
correlation potentials, which was above identified as a necessity for obtaining the required dis-
continuities of Exc as function of the particle number.

Examples of the results obtained for the vertical and adiabatic excitation energies calculated
for some compounds [77] are shown in Tab. III. As can be seen, due to the orbital-dependent
exchange-correlation potential, the method of symmetry-adapted wave function yields reason-
able results for the excitation energies, which could not be achieved if the differences in Kohn-
Sham energies ∆KS(Ne) = εNe+1(Ne)−εNe(Ne) were used to estimate the excitation energies.



Reformulation of basic equations 49

Tab. III. The calculated excitation energies for the lowest singlet excitations of three molecules [77]. The en-
ergies are in eV. Experimental and theoretical values (CCSD) [79] are given for comparison. LDA (BLYP)
stands for LDA (BLYP) prescription for Exc in Eqs. (150) – (153).

Compound Transition LDA BLYP Theor./CCSD Exp.

Formaldehyde
vertical 3.81 3.51 3.95 4.07

adiabatic 3.55 3.16 3.50

Acetaldehyde
vertical 4.22 3.83 4.26 4.28

adiabatic 3.81 3.35 3.69

Acetone
vertical 4.33 3.93 4.48

adiabatic 3.85 3.41 3.77

3.1.5.13 Time-dependent DFT

A somewhat more general way to deal with excitations and excited states is provided by
the time-dependent DFT method (TDDFT). The method is based on a generalization of the
Hohenberg-Kohn theorem to time-dependent densities and potentials [80]. Runge and Gross
proved that there is a one-to-one correspondence between the time-dependent external potential
Vext(~r, t), and the time-dependent electron density, ρ(~r, t), for a fixed initial state [80]. Similar
to the static case, one can cast the many-electron problem into the Kohn-Sham non-interacting
electrons form assuming non-interacting v-representability. This assumption means that the
density of the interacting system can be reproduced by the non-interacting effective potential
Veff [ρ] (~r, t), i.e.,

ρ (~r, t) =
occ∑
i

|φi (~r, t) |2, (160)

where the orbitals {φi (~r, t)} satisfy the time-dependent Kohn-Sham equations

i
∂

∂t
φi(~r, t) =

−1
2
∇2 + Vext(~r, t) +

∫
d~r′

n(~r′)

|~r − ~r′|
+ Vxc [n] (~r, t)︸ ︷︷ ︸

Veff [n](~r,t)

φi(~r, t). (161)

The Veff [ρ] (~r, t) defines the exchange-correlation potential Vxc [ρ] (~r, t). In the usual adiabatic
approximation [81], the exchange-correlation potential is taken to be simply the derivative of
the ground-state exchange-correlation energy Exc, with respect to the density, Vxc [n] (~r, t) ≈
δExc [n]/δn.

Let us now suppose a time-dependent perturbing potential V1 (~r, t), for instance an oscillating
electric field V1 (~r, t) = Ez cos (ωt), is switched at time t = t0

Vext (~r, t) = V0 (~r) + V1 (~r, t) =
{
V0(~r), t ≤ t0,
V0(~r) + Ez cos (ωt) , t > t0,

(162)
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where V0(~r) is the attractive Coulomb potential between electrons and nuclei. The first-order
density response for interacting particles to the perturbation may be obtained from

n (~r, t)− n0 (~r) ≈ n1 (~r, t) =
∫
dt′
∫
d~r′χ

(
~r, t, ~r′, t′

)
V1

(
~r′, t′

)
(163)

with the interacting response function

χ
(
~r, t, ~r′, t′

)
=

δn(~r, t)

δVext(~r′, t′)

∣∣∣∣∣
V0

. (164)

Expressing the right-hand-side of Eq. (163) in terms of Kohn-Sham response function of non-
interacting particles

χnon−int

(
~r, t, ~r′, t′

)
=

δn(~r, t)

δVeff (~r′, t′)

∣∣∣∣∣
Veff[n0]

(165)

we have

n1 (~r, t) =
∫
dt′
∫
d~r′χnon−int

(
~r, t, ~r′, t′

)
Veff,1

(
~r′, t′

)
, (166)

where

Veff,1 (~r, t) = V1 (~r, t) +
∫
d~r

n(~r′)

|~r − ~r′|
+
∫
d~r′
∫
dt′fxc [n0]

(
~r, t, ~r′, t′

)
n1

(
~r′, t′

)
(167)

with the exchange-correlation kernel

fxc [n0]
(
~r, t, ~r′, t′

)
=
δVxc [n] (~r, t)

δn(~r′, t′)
. (168)

The frequency-dependent linear density response is obtained by Fourier transform

n1 (~r, ω) =
∫
d~rχnon−int

(
~r, ~r′, ω

)
V1 (~r, ω) +∫

d~r′
∫
d ~r′′χnon−int

(
~r, ~r′, ω

)( 1

|~r′ − ~r′′|
+ fxc [n0]

(
~r′, ~r′′, ω

))
n1

(
~r′′, ω

)
(169)

and

χnon−int

(
~r, ~r′, ω

)
=

∑
phσ

φp (~r)φ∗h(~r)φ∗p
(
~r′
)
φh(~r′)

ω − (εp − εh)

−
φ∗p (~r)φh(~r)φp

(
~r′
)
φ∗h(~r′)

ω + (εp − εh)

 . (170)

φp and φh are the Kohn-Sham particle (occupied) and hole (unoccupied) orbitals corresponding
to the Kohn-Sham energies εp and εh, respectively.
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Tab. IV. Comparison of TDDFT excitation energies in eV in H2CO [86] with experiment [87]. Active space
contained 6 h and 70 p states. LDA exchange-correlation potential is used.

Transition 1A2
3A2

3A1
1B1

3B2
1B2

3A1
1A1

n→ π∗ n→ π∗ π → π∗ σ → π∗ n→3s n→3s n→3p n→3p
TDDF(LDA) 3.68 3.08 6.39 8.94 6.56 6.89 7.59 7.83
Exp. 3.94 3.50 5.53 8.68 6.83 7.09 7.79 7.97

Note, that the density response, n1(~r, ω), appears on both sides of Eq. (169), and hence,
Eqs. (169), (170) have to be solved self-consistently. This is most conveniently done by casting
Eq. (169) into a matrix eigenvalue problem [82]. We will not follow this procedure here. One
complication in solving Eqs. (169), (170) is that the sum over hole states are in principle infinite.
However, the excitation energies exhibit typically only minor dependence on the size of the active
space included. Another complication is that TDDFT merely provides excitation energies, but
excited state wave functions are not properly defined. Only recently first excited state geometry
optimization was presented [83–85].

In Tab. IV we show the computed excitation energies for an extended system using the
TDDFT method. Similarly to the spin-adapted wave function approach, there is a reasonable
agreement between the calculated and experimental excitation energies. However, inspecting the
data for the transitions to the 3s and 3p Rydberg states, the deficiency of the LDA exchange-
correlation potential at long-range becomes apparent. Switching to GGA’s changes little.

3.1.6 Quantum Monte-Carlo

In order to achieve chemical accuracy (1 kcal/mol) or to treat strongly correlated systems, one
needs to take into account the many-body nature of the wave function of the electronic subsys-
tem (13). In chapter 3.1.4 we have outlined methods to incorporate the many body effects via
multideterminant expansion of the electronic wave function. While in principle these methods
can be made arbitrarily accurate, their current practical applicability is limited to very small sys-
tems, such as diatomic molecules. The quantum Monte-Carlo (QMC) method [88, 89] attacks
the problem from an entirely different standpoint. Instead of constructing the electronic wave
function (20) with all the possible excitations built in, as is done in the quantum chemistry meth-
ods (chapter 3.1.4), the QMC method attempts just to sample the many-body wave function,
subject, in principle, to only statistical errors.

3.1.6.1 Variational Monte-Carlo

Imagine, for a moment, that we “somehow” know a many-body model wave function, which
we will call trial wave function, ΨT (R̄), with a 3Ne-dimensional vector of electron position
vectors R̄ ≡ (~r1, ~r2, · · · , ~rNe). Then the energy of the system can be estimated as

E ≈
∫

Ψ∗
T (R̄)ĤeΨT (R̄)dR̄∫
Ψ∗

T (R̄)ΨT (R̄)dR̄
. (171)
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In order to evaluate integral (171) we need to perform integration in 3Ne-dimensional space.
Even for systems of medium size, this results in integration in extremely highly dimensional
spaces. The worst way to evaluate the integral (171) would be to start by computing the values
of the function to be integrated on M mesh points R̄ and applying some form of numerical
integration, such as the Simpson’s rule. The reason is that in a d-dimensional space the error
ε scales as O(M−4/d). Therefore, as the dimension d increases, the error falls off increasingly
slowly. In such a situation it is much more efficient to use statistical methods, such as Monte-
Carlo, where ε = O(M−1/2). Notice, that the error is independent of the dimension of the
integration space. In order to use Monte-Carlo methods to evaluate the integral, Eq. (171) can be
rewritten as follows

EVMC =

∫
|ΨT (R̄)|2

[
Ψ−1

T (R̄)ĤeΨT (R̄)
]
dR̄∫

Ψ∗
T (R̄)ΨT (R̄)dR̄

=
∫
p(R̄)g(R̄)dR̄ (172)

with probability density p(R̄) = |ΨT (R̄)|2
/∫

Ψ∗
T (R̄)ΨT (R̄)dR̄

(
p(R̄) ≥ 0,

∫
dR̄p(R̄) = 1

)
.

Metropolis algorithm6 [90] is used to sample a set of points
{
R̄m; m = 1, · · · ,M

}
from the

configuration-space probability density p(R̄). At each of these points the “local energy”

EL

(
R̄
)

= Ψ−1
T (R̄)ĤeΨT (R̄) (173)

is evaluated and the average energy accumulated

EVMC = lim
M→∞

1
M

M∑
m=1

EL

(
R̄m

)
. (174)

The trial moves are usually sampled from a Gaussian centered on the current position of the
walker, the variance of the Gaussian being chosen such that the average acceptance probability
is ≈ 50%. Expression (174) is the basis of the variational Monte-Carlo (VMC) method.

However, in order to evaluate EVMC we need to specify the model trial many-body wave
function ΨT (R). Since we don’t know the exact many-body wave function we have to guess it.
A very successful ansatz is taking ΨT (R) in a Slater-Jastrow type

ΨT (R) =
∑
α

D↑
αD

↓
αJ(R̄) =

∑
α

D↑
αD

↓
α exp

∑
i

χ(~ri)−
∑
j>i

u(~ri, ~rj) + ...

 (175)

where J(R̄) is the so-called Slater-Jastrow factor,D↑
α,D↓

α are Slater determinants of spin-up and
spin-down single-particle orbitals (HF, DFT or similar), χ(~ri) is a one-body function describ-
ing the electron-nuclear correlation, while u(~ri, ~rj) describes the electron-electron correlations.

6The Metropolis algorithm generates the sequence of sampling points R̄m by moving a single walker according to
the following rules: (1) Start the walker at a random position R̄; (2) make a trial move to a new position R̄′ chosen
from some probability density function T (R̄′ ← R̄). After the trial move the probability that the walker initially
at R̄ is now in the volume element dR̄′ is dR̄′ × T (R̄′ ← R̄); (3) Accept the trial move to R̄′ with probability

A(R̄′ ← R̄) = min

(
1,

T (R̄←R̄′)P (R̄′)
T (R̄′←R̄)P (R̄)

)
. If the trial move is accepted, the point R̄′ becomes the next point of the

walk; if the trial move is rejected, the point R̄ becomes the next point of the walk. If P (R̄) is high, most trial moves
away from R̄ will be rejected and point R̄ may occur many times in the set of points making up the random walk. (4)
return to step (2) and repeat.
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In particular, u(~ri, ~rj) is constructed so that ΨT (R) satisfies exactly the cusp-conditions (56)
and (60). Note that wavefunction (175) is constructed in terms of orbitals, instead of spinorbitals
and hence is not antisymmetric on exchange of electrons with opposite spins. It can be shown
[88] that it gives the same expectation value for any spin-independent operator. The role of the
Slater-Jastrow factor is quite straightforward to understand. The antisymmetry of the wave func-
tion creates an exchange hole that keeps parallel-spin electrons apart, but there are no correlations
between the positions of electrons with antiparallel spins. There is a significant probability of
finding two antiparallel-spin electrons very close to each other (c.f. Fig. 3) and electron-electron
Coulomb repulsion is high. The purpose of the two-body term u(~ri, ~rj) is to reduce the mag-
nitude of the many-electron wave function whenever two electrons come close to one another
and decreases the electron-electron interaction energy. The unwelcome effect of the two-body
term is that it pushes electrons away from regions of high charge density. Hence, it overdoes
the correction effect, as the charge densities are normally quite well described even at the single-
particle level (HF, DFT). The one-body term χ(~ri) in (175) alters the charge density without
disturbing the pair-correlation function, which the two-body term was fixing. The Slater-Jastrow
factor has typically around 20 adjustable parameters, which represents a reasonable compromise
between variational freedom and computational complexity. At the first glance the trial wave
function (175) looks quite similar to the CI wave function (20). The main difference between the
two approaches lies in the fact that the cusp conditions are explicitly built in the wave function
of the form (175). This very significantly reduces the number of determinants needed in the
expansion. The reason is that in the CI expansion (20) the singularity in the many-body wave
function due to the cusp conditions is expanded in terms of the multiple determinants, while they
are handled explicitly in the wave function (175). In practical terms, good quality CI calculations
may use 106 − 109 Slater determinants, while often a single determinant is all that is needed in
the QMC trial wave function.

The variational parameters of the trial wave function (175) are optimized by minimizing
either the variance of the local energy

σ2 =

∫
|ΨT |2

[
ĤeΨT

ΨT
− EVMC

]2
dR̄∫

|ΨT |2dR̄
(176)

or total energy EVMC [88, 89]. In practice one generates M configurations using some guess for
the variational parameters in the wavefunction (175) and minimizes σ2 or EVMC by modifying
the variational parameters in (175). This process is repeated until the “best” wave function is
determined within the constraints of the functional form dictated by the Slater-Jastrow factor.
Depending on the sophistication of the parameters of the trial wave function, typically up 85–
95% of the correlation energy is recovered.

3.1.6.2 Diffusion Monte-Carlo

Further improvement can be achieved either by improving the quality of the trial wave func-
tion ΨT , or by the so-called diffusion Monte-Carlo technique (DMC) [88, 89]. While the former
route is certainly a valid option, in practical terms it may often be difficult to improve ΨT to
accuracy comparable to the best quantum chemistry methods. Such accuracy can be achieved
using the DMC technique.
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DMC is a stochastic projection method for solving the many-body Schrödinger equation in
imaginary time

− ∂

∂t
Φ
(
R̄, t
)

=
(
Ĥe − ET

)
Φ
(
R̄, t
)
, (177)

where ET is an energy offset whose importance will become clear later. Equation (177) may be
rewritten in integral form,

Φ
(
R̄, t+ τ

)
=
∫
G
(
R̄← R̄′, τ

)
Φ
(
R̄′
)
dR̄′, (178)

where

G
(
R̄← R̄′, τ

)
=
〈
R̄
∣∣ exp

[
−τ
(
Ĥe − ET

)] ∣∣R̄′〉 (179)

is a Green’s function obeying the same equation as the wave function

− ∂

∂t
G
(
R̄← R̄′, t

)
=
(
Ĥe − ET

)
G
(
R̄← R̄′, t

)
(180)

with the initial condition G
(
R̄← R̄′, 0

)
= δ(R̄ − R̄′). It is easy to show that the operator

exp
[
−τ
(
Ĥe − ET

)]
in the τ →∞ limit projects out the lowest eigenstate |Ψ0〉 with non-zero

overlap with the chosen |Φ (t = 0)〉 = |Φinit〉. Using the spectral expansion of the propagator

exp
(
−τĤe

)
=
∑

i

|Ψi〉 exp (−τEi) 〈Ψi| (181)

where {Ψi}, {Ei} denote a complete set of eigenfunctions and eigenvalues of He, respectively.
In the τ →∞ limit we have

lim
τ→∞

〈
R̄
∣∣ exp

[
−τ
(
Ĥe − ET

)]
|Φinit〉 =

= lim
τ→∞

∫
G
(
R̄← R̄′

)
Φinit

(
R̄′
)
dR̄′ =

= lim
τ→∞

∑
i

Ψi

(
R̄
)
exp [−τ (Ei − ET )] 〈Ψi | Φinit〉 =

= lim
τ→∞

Ψ0

(
R̄
)
exp [−τ (E0 − ET )] 〈Ψ0 | Φinit〉 . (182)

By adjusting ET to be equal to E0 in (182) causes an exponential damping of all higher states in
energy Ψi leaving only the ground-state Ψ0 to survive. This property of the projector exp[−τ(Ĥe

−ET )] is the basis of the DMC method.
Let’s now take a closer look at Eq. (177) by explicitly inserting the Hamiltonian Ĥe into the

imaginary-time Schrödinger equation (177)

− ∂

∂t
Φ
(
R̄, t
)

= −1
2

∑
i

∇2
i Φ
(
R̄, t
)

︸ ︷︷ ︸
diffusion

+
(
V (R̄)− ET

)
Φ
(
R̄, t
)︸ ︷︷ ︸

rate

. (183)
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Equation (183) with just the first term on the right-hand side included represents the diffusion
equation in a 3Ne-dimensional space with diffusion constant 1/2. Φ

(
R̄, t
)

plays the role of
the density of diffusing particles. This equation can be simulated by a random walk of particles
through configuration space: the well-known “drunkard’s walk”. If instead just the second term
is included we have the so-called rate equation, describing branching process, such as radioactive
decay or exponential birth and death process in population. Thus the entire equation (183) can
be simulated as a combination of diffusion and a branching process, in which the number of
diffusers increases or decreases at a given point proportional to the density of diffusers already
there. This branching process serves to decrease the probability density in regions where V (R̄)
is large and enhance it in regions of favorable potential energy.

The Green’s function for a diffusion process in a 3Ne-dimensional space is a 3Ne-dimen-
sional Gaussian with variance τ in each dimension

G
(
R̄← R̄′, τ

)
= (2πτ)−3Ne/2 exp

[
−|R̄− R̄′|2

2τ

]
. (184)

The Green’s function for the entire process can be obtained using the Trotter-Suzuki formula

e−τ(Â+B̂) = e−τB̂/2e−τÂe−τB̂/2 +O(τ3) (185)

and Â = T̂ and B̂ = V̂ − ET we have

G
(
R̄− R̄′, τ

)
=

〈
R̄
∣∣ e−τ(T̂+V̂−ET ) ∣∣R̄′〉

= e−τ[V (R̄)−ET ]/2
〈
R̄
∣∣ e−τT̂

∣∣R̄′〉 e−τ[V (R̄)−ET ]/2 +O(τ3). (186)

The approximate Green’s function for small τ is therefore given by [91]

G
(
R̄− R̄′, τ

)
≈ (2πτ)−3N/2 exp

[
−
(
R̄− R̄′

)2
2τ

]
× exp

[
−τ
(
V (R̄) + V (R̄′)− 2ET

)
/2
]
. (187)

In Eq. (187) the first part of G
(
R̄− R̄′, τ

)
clearly accounts for the diffusion process whereas

the term

P = exp
[
−τ
(
V (R̄) + V (R̄′)− 2ET

)
/2
]

(188)

accounts for the branching or birth/death process, with P being the number of walkers that
survive to the next step [91]. If P < 1, the walker continues evolution with probability P , and
if P ≥ 1, the walker continues and in addition, at the same position a new walker is created
with probability P − 1. These processes can be incorporated via a single command Mnew =
INT (P + η), where Mnew is the number of walkers evolving to the next step at a given position
and η is a random number from a uniform distribution η ∈ 〈0, 1〉.

The energy offset ET , which determines the renormalization (Eq. 187), is used to control the
total population of walkers. The ET is adjusted from time to time during the simulation so that
the total number of walkers fluctuates around a preset number, typically between 102 and 103.
In Fig. 16 we depict the DMC algorithm for the simplest case, a single electron moving in a
parabolic, one-dimensional potential. This figure also illustrates the difficulties that arise if one
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Fig. 16. Illustration of the DMC algorithm for the case of a one-dimensional potential [88]. The initial
walker distribution samples a uniform Ψinit. As the imaginary time progresses, the distribution samples
the ground-state wave function Ψ0. Note the disappearance of the walkers in the regions of high potential
energy and birth in regions of low values.

wants to work with the DMC wave function represented by the density of walkers. Note also that
the walkers, which take the form of a Dirac delta function, δ

(
R̄− R̄′

)
, effectively play the role

of the basis set. This is a very important feature in a highest accuracy approach, as it avoids the
severe problem associated with the choice of basis sets without compromising accuracy; see also
chapter 3.1.7.1.

In the discussion above we have identified the many-body wave function Φ
(
R̄, t
)

as the
density of the walkers and, hence, tacitly assumed that the many-body wave function is non-
negative. In reality, of course, this is not valid for the wave function Φ

(
R̄, t
)
, but for its modulus

squared |Φ
(
R̄, t
)
|2. Any fermionic many-body wave function must have nodes, as it must satisfy

the antisymmetry condition (19). Probabilistic methods, of which DMC is one incarnation, can
handle only positive distributions, and therefore are not suitable to solving the quantum many-
body problem. Straightforward generalizations, which have been applied with good results to
some very small problems [92, 93], generally lead to the well-known Fermionic sign problem.

The way out of this deadlock is provided by the fixed node approximation7 [91, 94-97]. The
fixed node approximation uses the fact that the imaginary-time Shrödinger equation is a linear
equation which allows a general wave function Φ

(
R̄, t
)

with nodes to be decomposed into sep-

7We assume here that the system has time-reversal symmetry, i.e. that the Hmiltonian is real. This is a special case of
a more general fixed-phase approximation [93,97]. Such a generalization is necessary for studying many-body systems
in magnetic field or states with non-zero angular momentum.
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arate domains of positive and negative contributions Φ+

(
R̄, t
)
,Φ−

(
R̄, t
)
, respectively. Both

can be taken as positive and the total wave function constructed from the solutions in the posi-
tive/negative subregions as Φ

(
R̄, t
)

= Φ+

(
R̄, t
)
−Φ−

(
R̄, t
)
. The problem with this approach is

that the antisymmetric wave function Φ
(
R̄, t
)

exponentially decays as exp (−∆Et) for t→∞
where ∆E is the energy difference between antisymmetric and symmetric ground states. The
solution to this problem consists in introducing absorbing barriers placed on the nodal surface,
dividing the configuration space into a set of nodal pockets. The DMC walkers are initially
scattered throughout both regions. The simulations in both pockets proceed independently. In
the t → ∞ limit the walker densities in the two regions are proportional to the lowest-energy
eigenfunctions satisfying zero boundary conditions at the absorbing barrier. The antisymmetric
eigenfunction of the problem solved satisfies the same boundary conditions, which determine
the eigenfunctions within each nodaly bounded region. The t→∞ walker densities within each
region are therefore proportional to the antisymmetric eigenfunction in that region.

The only remaining problem is that the dNe − 1-dimensional nodal surfaces (d being the
dimensionality of the physical space) are almost never known. This difficulty is circumvented by
using an approximate nodal surface, which is normally obtained from a VMC trial wave function.
The fixed-node DMC energies are variational [88, 91, 96]

EG ≤ EDMC ≤ EVMC. (189)

The implementation of the fixed-node DMC is straightforward. One scatters the DMC walkers
throughout the configuration space and moves them in the usual way. After each DMC move
the sign of the trial wave function is checked and when the walker crosses the nodal surface it is
deleted. Within each pocket, the fixed-node DMC projects out the lowest-energy nodeless wave
function satisfying zero boundary conditions on the nodal surface. The typical fixed-node DMC
errors are typically ≈ 5% of the correlation energy. This surprisingly high accuracy is due to
the fact that it is relatively easy to guess the approximate nodal surface8 and the fact that we are
making errors in parts of the space, where the weight of the wave function is small and hence are
rarely visited by the walkers and hence their contribution to the energy is small.

3.1.6.3 Importance sampling

The DMC algorithm outlined above is extremely inefficient. One reason is that the renor-
malization factor P in Eq. (188) typically wildly fluctuates from one MC step to the next. The
efficiency of the configuration space sampling can be highly improved if one uses the informa-
tion which has already been gathered in the VMC calculation. This is the basis of the so-called
importance-sampling transformation [91, 99]. Instead of sampling directly the desired wave
function Φ(R̄, t), let us consider sampling of a different function f(R̄, t), which is a product of
Φ(R̄, t) and the trial wave function ΨT (R̄),

f
(
R̄, t
)

= Φ
(
R̄, t
)
Ψ
(
R̄
)
. (190)

After multiplying Eq. (177) by ΨT

(
R̄
)

we obtain

− ∂

∂t
f(R, t) = −1

2

∑
i

∇if(R, t) +∇ ·
[
v̄D

(
R̄
)
f
(
R̄, t
)]

8It has been shown recently, that under fairly general conditions there are just two pockets divided by a single
plane [98].
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+
[
EL

(
R̄
)
− ET

]
f(R, t) (191)

where

v̄D

(
R̄
)
≡ ∇ ln |ΨT

(
R̄
)
| = ΨT

(
R̄
)−1∇ΨT

(
R̄
)

(192)

is the 3Ne-dimensional drift velocity and EL is the local energy defined in Eq. (173). The
analogy of Eq. (178) now reads

f
(
R̄, t+ τ

)
=
∫
G̃
(
R̄← R̄′

′
, τ
)
f
(
R̄′
)
dR̄′, (193)

where the modified Green’s function G̃
(
R̄← R̄′, τ

)
is by definition equal to

ΨT

(
R̄
)
G
(
R̄← R̄′, τ

)
ΨT

(
R̄
)−1

and the analogy of the short-time approximation to G̃
(
R̄← R̄′, τ

)
reads

G̃
(
R̄← R̄′, τ

)
≈ (2πτ)−3Ne/2 exp

{
−
[
R̄− R̄′ − τ v̄D

(
R̄′
)]2

2τ

}
× exp

{
−τ
[
EL

(
R̄
)

+ EL

(
R̄′
)
− 2ET

]
/2
}

= Gdiff

(
R̄← R̄′, τ

)
Gbranch

(
R̄← R̄′, τ

)
. (194)

The importance sampling has several consequences. If ΨT (R̄) were equal to Ψ(R̄) there would
be no sign problem, an of course, the DMC procedure would be obsolete. This is never the
case and it is easy to see that the effect of the drift velocity, v̄D(R̄) (Eq. (192)), is to drive the
walkers away from the nodal surface toward regions where the weight of the wave function is
large. In addition, there is a modification of the branching term (183), where now instead of the
potential energy and the offsetET difference a difference between the local energy and the offset
ET appears. For a good trial wave function EL is close to the ground-state energy and roughly
constant which means that the fluctuations are largely reduced. Combination of these two factors
has a dramatic improvement on the efficiency of the DMC simulations.

In summary the DMC algorithm with importance sampling consists of the following basic
steps:

1) Generate a set of walkers drawn from |ΨT |2 obtained from VMC.

2) Evaluate the drift velocity v̄D(R̄) for each walker.

3) Propagate each walker for a time step τ , moving it from old R̄′ to the new position

R̄ = R̄′ + χ+ τ v̄D

(
R̄′
)
, (195)

where χ is a 3Ne-dimensional random number vector with normal distribution with vari-
ance τ and zero mean.

4) Check the sign of ΨT and move it back if ΨT changed sign.
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5) Accept the step with probability9

paccept

(
R̄← R̄′

)
= min

[
1,
Gd

(
R̄′ ← R̄

)
|ΨT

(
R̄
)
|2

Gd

(
R̄← R̄′

)
|ΨT

(
R̄′
)
|2

]
(196)

6) For each walker calculate the number of copies

Mnew = INT
{
η + exp

[
−τ
(
EL

(
R̄
)

+ EL

(
R̄′
)
− 2ET

)
/2
]}

(197)

that will continue in the evolution, where η ∈ 〈0, 1〉 is a random number with uniform
distribution.

7) Accumulate the quantities of interest, e.g. EL.

8) After an initial equilibration, repeat steps 2)–7) until the error bars for averages of interest
are sufficiently small. Adjust ET occasionally during the simulation to keep the average
number of walkers roughly constant.

The energy can be estimated either by the offset ET or by the so-called mixed-estimator

EDMC = lim
τ→∞

〈
e−τĤ/2ΨT

∣∣∣ Ĥ ∣∣∣e−τĤ/2ΨT

〉
〈
e−τĤ/2ΨT |e−τĤ/2ΨT

〉 = lim
τ→∞

〈
e−τĤΨT

∣∣∣ Ĥ |ΨT 〉〈
e−τĤΨT |ΨT

〉
=
〈Ψ0| Ĥ |ΨT 〉
〈Ψ0|ΨT 〉

= lim
τ→∞

∫
f
(
R̄, τ

)
EL

(
R̄
)
dR̄∫

f
(
R̄, τ

)
dR̄

≈ 1
M

∑
m

EL

(
R̄m

)
. (198)

Examples of the accuracy in total energy calculation achievable using QMC techniques were
demonstrated and compared with DFT and HF results in standard approximations above (Fig. 12)
for Sin clusters and small hydrocarbon molecules. The superiority is of the QMC over mean-
field methods is evident. Similar superiority is found also for more complex systems, see, e.g.
Ref. 88 and chapter 4.7.1 below.

3.1.6.4 Excited states

It is well-known that many-body correlations have a significant effect on excitations and
gaps. Although QMC methods are inherently ground-state techniques, they can also provide
information on excited states. The lowest band gap, measurable by photoemission experiments
can be formulated in terms of a difference between ground-state energies as

EG = (ENe+1 − ENe)− (ENe − ENe−1) , (199)

9The need for this rejection step results from the approximate nature of the Green’s function (194). The exact Green’s
function satisfies the detailed balance condition

G̃exact

(
R̄← R̄′, τ

)
|ΨT (R̄′)|2 = G̃exact

(
R̄′ ← R̄, τ

)
|ΨT (R̄)|2.

If the trial wavefunction were equal to the exact ground-state wavefunction, the detailed balance could be imposed by
accepting trial moves R̄′ → R̄ with probability paccept (196) [87].
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Tab. V. Excitation energies, in eV, for nitrogen atomic solid (I213 structure) [102] and diamond [103]
compared with experiment.

HF LDA DMC Exp.
Nitrogen Γ→H 18.0 6.1 8.5(4) N/A
DiamondΓ→X 13.2 4.6 5.9(4) 6.1

i.e. in terms of differences between the energies to add and subtract an electron from the Ne-
electron system. One complication with this approach is that by this procedure we create a
charged system, which, in the case of an extended system, causes spurious long-range image in-
teractions. The standard procedure is to use a charged background to maintain charge neutrality.
This bagground interacts with all electrons, which creates an artificial contribution to the en-
ergy. Fortunately, this contribution is exactly known. This procedure was for the first time used
by Ceperley and Alder, who calculated the minimum energy zone center gap of the molecular
hydrogen crystal as a function of pressure [100].

Another straightforward way of obtaining excitation energies is to devise a many-electron
wave function by promotion of the valence electron to conduction band. This creates an ex-
citon, i.e. an electron-hole pair. If we suppose that the exciton is weakly localized (so-called
Mott-Wannier type), then its energy is given by EG minus the exciton binding energy. If the
symmetries of the excitonic and ground state are different, the gap can be easily calculated by
QMC methods. If this is not the case, more complicated procedures need to be used [101]. Un-
less the simulation cell is very large, the exciton is artificially localized and the energy dependent
on the simulation cell size. The Mott-Wannier exciton energy can be expressed as

Eexc =
1

2εr0
(200)

where ε is the static dielectric constant and r0 average distance between the hole and electron,
which is roughly equal to the edge length of the simulation cell. We note that the exciton binding
energy in large gap insulators is relatively small, of the order of ≈ 0.1 eV or smaller. As an
example of the accuracy achievable we give in Table V examples for the gaps in nitrogen and
diamond.

As can be seen, the accuracy of QMC techniques for both ground state as well as excited
states is comparable to the best quantum chemistry methods. The question is how the QMC
methods compare with the best quantum chemistry methods in terms of numerical cost. It turns
out that the scaling with the number of electrons is of the form O(N3 + εN4) with ε ≈ 10−3 −
10−4, hence it has a dominantly cubic scaling, similarly to the mean-field techniques. This
attractive scaling, compared with accuracy similar to the best quantum chemistry methods, make
the QMC methods a very strong candidate for extreme accuracy, large-scale calculations.

3.1.7 Basis sets, pseudopotenials, extended systems and ionic forces

This section will deal with several important ingredients linked to the electronic subsystem.
These are of paramount importance if we want to solve the coupled Eqs. (11), (12) or (15),
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(16) in any of the approximations mentioned above.

3.1.7.1 Basis sets

The single particle orbitals {ϕi} are usually represented in terms of simple analytic functions
{χν} with well-known properties. In general a linear combination of such basis functions

ϕi =
M∑

ν=1

ciνχν (~r) (201)

is used, which represents exactly any reasonable function in the limit of complete set of basis
functions. The basis functions {χν} may or may not be dependent on positions of atoms. This
ansatz, which is quite general, was for the first time used by Hall [15] and Roothahn [16] in
connection with the solutions to the HF equation.

3.1.7.1.1 Gaussians and Slater functions

Typically, basis functions are constructed to mimic true atomic orbitals. The hydrogen atom
can be described rigorously, and the eigenfunctions found. The 1s orbital looks something like
N exp [−ζr]. It satisfies all the appropriate boundary conditions, having a cusp at the nucleus
and exponentially decaying to zero at infinity. Higher angular momentum functions, like 2p’s and
3p’s, can be built from these basic functions through adding the angular nodes by multiplying in
factors of x, y, and z. This type of basis functions, called Slater-type basis (STOs) is popular in
quantum chemistry

χS
νm(~r) = NS

mx
mxymyzmz exp [−ζm|~r|] . (202)

If instead of the exponential N exp [−ζr] we use a Gaussian function N exp
[
−αr2

]
, we loose

the boundary conditions but generate a more tractable problem when it comes to calculating
integrals (see, e.g. chapter 3.1.1.). The Gaussian basis functions (GTOs) of the form

χG
νm(~r) = NG

mx
mxymyzmz exp

[
−αmr

2
]

(203)

have received widespread use. HereNm, ζm, αm are constants that are typically kept fixed during
electronic structure calculation, so that only the orbital expansion coefficients {ciν} need to be
optimized. In addition, fixed linear combinations of the above “primitive” basis functions can be
used for a given angular momentum channel m, which defines the “contracted” basis sets

χCG
µ =

∑
ν

cνχ
G
ν (~r) . (204)

The Slater and Gaussian basis functions are in general centered at the positions of the nuclei,
i.e. ~r → ~r − ~RI in Eqs. (202) and (203), leading to linear combination of atomic orbitals
(LCAO) ansatz. This ansatz, which is intuitively very appealing, leads to several complications.
Firstly, as we will see below in the chapter 3.1.7.4 on ionic forces, localized basis sets coupled
to mobile ions generate additional force contribution, so-called Pullay force, which needs to be
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evaluated. Secondly, use of this basis set leads to superposition error (BSSE) [104]. This error
arises if binding/dissociation energies are computed, because the basis functions localized on one
dissociation product affect the energies on the other one. For that reason, the energies of both
dissociation products are often computed with all basis functions in position before dissociation.

3.1.7.1.2 Plane waves

A very different approach has its roots in solid-state theory. The periodicity of the underlying
lattice produces a periodic potential and imposes the same periodicity on the density. Hence, in
this case the natural basis set is plane waves as the generic basis set to expand the periodic part
of the orbitals. The plane wave basis set is defined as

χPW
~G

(~r) = N exp
[
i ~G · ~r

]
, (205)

where the normalization N = 1/
√

Ω with Ω the volume of the periodic supercell and ~G the
reciprocal lattice vector. Since plane waves form a complete and orthogonal basis set, they can
be used in expansion (201) to expand the orbitals in terms of plane waves. The convergence in
terms of plane waves is very simply controlled by a single number, the plane wave cut-off by
including the G-vectors up to Gmax satisfying: Ecut = G2

max/2 (a.u.). Moreover, planewaves
are originless, i.e. they don’t depend on the positions of the nuclei {~RI}. This, as we show
in chapter 3.1.7.4 below, facilitates calculation of ionic forces, and other properties. This last
feature is also important in the sense, that they do not favor any part of the space and they are
capable of forming any basis fuction that is needed for system description, provided that the
plane wave cutoff Ecutis chosen large enough.

As always, there are also weak points coupled with the use of plane waves. The flexibility
of the plane waves to form any basis function means that the plane waves are merely a Fourier
transform decomposition of the orbitals. If the orbitals exhibit rapid changes on short distances,
very large Gmax are required, making the calculation expensive. Large Gmax may cause insta-
bilities, as G often enters in the denominator in the energy expression (such as in the Hartree
term) making the calculation prone to divergent behavior. This is, for example the case, if we
perform an “all electron” calculation. Each single-particle wavefunction has to orthogonalize to
all preceding ones, which causes their rapid oscillations. Moreover, the inner electrons are more
localized than the valence electrons. Similar situation appears also in the case, when we have a
large unit cell in all or just in one dimension. The plane waves are useful mainly in connection
with pseudopotentials, see chapter 3.1.7.2, which screen out the inner electrons and do away
with the wavefunction oscillations due to the orthogonality constraints to the inner electrons. An
additional complication arises when finite systems are treated, such as clusters or molecules, or
systems with broken 3-dimensional periodicity, such as surfaces. In these situations plane waves
may still be used in combination with an artificial unit cell sufficiently large to preclude image
interactions. For example, a cluster may be placed in a large supercell with sufficiently large vac-
uum region surrounded the molecule and the convergence of the results monitored as a function
of the supercell edge. In such a case, effectively an array of clusters is calculated. Examples of
use of the supercell geometry for treating a variety of systems lacking 3-d periodicity are shown



Reformulation of basic equations 63

Fig. 17. Schematic illustration of a supercell geometry for a vacancy in a bulk crystalline solid (left panel),
for a surface (middle panel) and for an isolated molecule (right panel). The edges of the supercell are shown
by dashed lines.

in Fig. 17. The down side is the need to fill equally all the space with plane waves, i.e. also the
vacuum space, which may significantly increase the associated computational cost.

3.1.7.1.3 Generalized plane waves

A very elegant generalization of the plane wave concept, which eliminates some of the limi-
tations, was suggested by defining them in a curved ξ-space [105, 106],

χGPW
~G

(~r) = Ndet1/2J exp
[
i ~G · ~r(ξ)

]
, (206)

det J =
∣∣∣∣ ∂ri

∂ξj

∣∣∣∣ ,
where J is the Jacobian of the transformation from Cartesian to curvilinear coordinates ~r →
ξ (~r) with ξ =

(
ξ1, ξ2, ξ3

)
and N = 1/

√
Ω. These functions are orthonormal and can be

manipulated by FFT techniques. The important feature is that the curvilinear coordinate system
needen’t be guessed from outset but is rather treated as a variational parameter and determined
by a fully adaptive-coordinate approach [105, 106]. The attractive feature is that an initially flat
Euclidean space (ξ (~r) = ~r) is transformed into a non-uniform curved Riemannien space such
that the density of grid points is highest in the spaces where it is needed, e.g. close to the nuclei,
and lowest where it is least needed, e.g. in the vacuum region, see Fig. 18.

As can be seen, this technique eliminates one of the unpleasant features of plane waves,
namely the need to fill equally the space with plane waves regardless of the real needs. The flip-
side of the coin is that the curvilinear coordinates induce occurrence of the Pulay forces. Besides
the formal beauty, the method of generalized plane waves has found also real applications [107,
108].

3.1.7.1.4 Mixed Basis Sets

This approach attempts to merge the advantages of two very different basis sets, namely
Gaussian basis sets and plane waves. It should be clear from the discussion above what the
merits of the combined approaches could be. More details can be found in Refs. [109–111].
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Fig. 18. Image of a regularly spaced rectangular space grid in ξ (~r) space [106]. The left panel shows the
grid in the plane of CO bond; the right panel shows the grid in a plane of a H2O molecule.

3.1.7.1.5 Real Space Grids

A radically different approach consists of giving up the conventional basis set altogether
and representing the wavefunction ψ (~r) on a finite grid with a certain uniform grid spacing
h, ψ (~r)→ ψ (xi, yj , zk) [112,113]. This is very attractive, compared to plane waves especially
when dealing with finite systems. On the other hand, the kinetic energy operator, trivial in
plane wave and Gaussian representation, has to be discretized. High-order central differences
are typically used, leading to

− 1
2
∇2ψ (~r) =

− 1
2

 N∑
i=−N

Ciψ (x+ ih, y, z) +
N∑

j=−N

Cjψ (x, y + jh, z) +
N∑

k=−N

Ckψ (x, y, z + kh)


+O

(
h2N+2

)
. (207)

Here {Cl} are known expansion coefficients that depend on the selected expansion order. The
combination of the grid spacing h and expansion order can be tuned for any given application.
The discretization points in continuous space can be regarded as a “special” basis set. The
“infinite basis set” is reached as h → 0 for N fixed. A variety of other more sophisticated
implementations followed [114, 115].

Note that a special real-space basis is the walkers in the QMC. The δ
(
R̄− R̄′

)
can be re-

garded as a form of δ-function basis set. This representation is probably the most efficient one to
represent a wavefunctin albeit not the most convenient to work with.

3.1.7.2 Pseudopotentials

There are a number of reasons not to have to deal with all electrons in the system. It has
been found that most physical and chemical properties of condensed matter systems depend,
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Fig. 19. Schematic illustration of an all-electron radial wave function (solid line) and the corresponding
atomic pseudo wavefunction (dashed line) together with the respective external Coulomb potential and
pseudopotential.

to a very good approximation, only on valence electrons. The core electrons, strongly localized
around the nucleus, neither overlap strongly with core electrons in neighboring atoms, nor do they
participate in chemical bond. One can, therefore assume, that the distribution of core electrons
does not depend on the chemical environment in which it is placed. This leads to the concept of
“frozen” core kept equal to the isolated atom core also in a condensed matter environment.

This has a number of consequences. First, we have to deal with fewer electrons. Moreover,
instead of keeping the core electrons frozen, one can screen them out by use of an appropriate
pseudopotential. This has the added advantage, that the resulting wavefunctions are smoother,
as the valence wavefunctions do not have to orthogonalize to the core electrons, a feature which
is important especially in connection with plane wave basis sets. Finally, it is easier to deal
with fewer electrons also because we deal with smaller numbers. Many properties are related
to energy differences, which, in general are very small; often of the order of correlation energy.
Hence, reducing the magnitude of the numbers entering the differences pays dividends. The
downside being, that absolute energies do not have any meaning, leaving just the relative en-
ergies meaningful quantities. Surprisingly, until very recently, the use of pseudopotentials was
almost entirely limited to the physics community and largely ignored by the quantum chemistry
community.

3.1.7.2.1 Norm-conserving pseudopotentials

The first pseudopotentials were of empirical nature, fitted to some property deemed impor-
tant [116]. More accurate and reliable scheme was developed later and was based on norm-
conservation [117]. The norm-conserving pseudopotentials are constructed as follows. (1) First,
Schrödinger’s equation is solved for an isolated atom. A typical result for a radial function is
shown in Fig. 19. The angular part is the spherical harmonics, due to the spherical symmetry of
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the atoms. (2) A cutoff radius Rcut is chosen so that the effective all-electron potential within
Rcut is replaced by a new weaker potential- pseudopotential- which generates a nodeless ground-
state wavefunction to the same eigenvalue as the original all-electron state which matches exactly
the all-electron wavefunction at and outside Rcut (dashed line in Fig. 19).

This is possible, because the physical solution φl(r) is regular for r → 0. The logarithmic
derivative

Ll(ε) =
d

dr
lnφl(r, ε)|Rcut =

φ′l(Rcut; ε)
φl(Rcut; ε)

(208)

is therefore a well-defined function of the energy ε. On the other hand, for a given energy ε
and logarithmic derivative Ll at Rcut the solution of the radial Schrödinger equation is uniquely
defined. From this follows that if the potential inside Rcut is modified in such a way that Ll is
left unchanged, the wavefunction outside Rcut remains unchanged. In order this procedure to
work correctly one has to maintain the norm conservation, i.e., that the all-electron wavefunction
and the pseudo-wavefunction have equal norms insideRcut. This latter condition guarantees that
the all-electron and pseudo-wavefunctions generate identical electron densities inside Rcut. In
fact, there is a fair degree of freedom how to devise the pseudowavefunction following the above
principles and over the last decades a number of different procedures have been proposed [118–
121].

Since the logarithmic derivative (208) depends on angular momentum l, we have to construct
separate pseudopotential V PS

l (r) for each l-channel. This means that the full peudopotential has
to be a non-local operator

V̂ PS = V PS
loc (r) +

∑
l

V PS
nl,l (r)P̂l, (209)

where P̂l = |l〉 〈l| is the projector on l-th momentum component, which by acting on a wave
function projects out the just its l-th component. This guarantees that when a full pseudopoten-
tial operator V̂ PS is applied to a general wavefunction each angular momentum component of the
wavefunction experiences only its corresponding part V PS

l (r). In practical application, the infi-
nite sum over l has to be truncated and the maximum value of l limited by some lmax, the choice
being largely system dependent. The pseudopotential of some specific angular momentum, typ-
ically the one of lmax, is taken to be the local part V PS

loc (r). The nonlocal components V PS
nl,l (r)

are defined as V PS
nl,l (r) = V PS

l (r) − V PS
loc (r). Since all V PS

l (r) are identical outside Rcut, the
nonlocal components V PS

nl,l (r) are short-ranged and strictly confined within Rcut. Note, that the
projection operators P̂l in Eq. (209) act only on the angular variables of ~r and the pseudopotential
V PS(r) is a local operator with respect to the radius r. Hence, the pseudopotential in the form
of (209) is called a semilocal pseudopotential. The semilocal form (209) of the pseudopotntial
is computationally very inefficient. One way to efficiently compute the matrix elements over the
semilocal pseudopotentials was proposed in Ref. [122]. A more radical solution was proposed
by Kleinman and Bylander [123], who managed to cast the pseudopotential in a fully separable
form

V PS(r) = V PS
loc +

∑
mn

|pm(~r)〉Cmn

〈
pn(~r′)

∣∣∣, (210)
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Fig. 20. Illustration of Vanderbilt ultrasoft pseudopotential. Full line: Oxygen all-electron 2p radial wave
function, dotted line: corresponding “ordinary” valence pseudowave function, dashed line: modified wave-
function in the Vanderbilt pseudopotential scheme.

where pm(~r) are suitably chosen projection functions strictly localized in Rcut. As can be seen,
the bits depending on ~r, ~r′ are totally decoupled and can be computed independently.

3.1.7.2.2 Vanderbilt ultrasoft pseudopotentials

It turns out that the pseudopotential scheme is problematic for elements with nodeless valence
states, such as, e.g. 1s, 2p or 3d valence electrons. It may seem useless to use pseudopotential
for hydrogene (the 1s case), as there are no core electrons to screen out. Yet, if the purpose is to
produce a pseudopotential generating a smoother wavefunction, as is the case with plane wave
basis sets, the pseudopoential concept is an indispensable tool also in this case. Unfortunately,
in those cases the pseudo- and all-electron wavefunctions are almost identical. This can be
rationalized by invoking the so-called psudopotential cancellation theorem [124], which states
that in order to generate a “soft” pseudopotential for a given state, there must be a state with the
same angular momentum number in the atomic core.

A way out of this problem was found by Vanderbilt, who introduced a new class of pse-
dopotentials, the so-called ultrasoft pseudopotentials [125, 126]. The ultrasoft pseudopoten-
tials give up the normconservation and instead of representing the full valence wavefunction by
planewaves, only a small part of the wavefunction is treated by plane waves; see, Fig. 20. This
allows a substantial reduction of the size of the plane wave basis set. On the other hand, there
are additional complications in dealing with the part of the wavefunction left out, the fact that
the eigenstates{ϕi}are not orthonormal any more, etc. Nevertheless, the Vanderbilt pseudopo-
tentials have been widely used as they allow treatment of a wide range of systems with fairly
modest computational cost.

3.1.7.3 Extended systems

If the system has a natural 3-dimensional periodicity, as is the case with the crystals or is
treated as 3-dimansionally periodic, as is the case with defects, surfaces, or even disordered sys-
tems (see also chapters 3.1.7.1.2 and 4.1), one has to deal with the crystal or supercell symmetry,
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and the concept of periodicity in the reciprocal space [127]. In particular, the crystal potential of
a periodic system exhibits the same periodicity as the lattice

Vcryst(~r) = Vcryst(~r + ~L), (211)

with an accordingly periodic wavefunction

ψ (~r) = ψ
(
~r + ~L

)
, (212)

where the direct lattice vectors ~L connect equivalent points in different cells. The wavefunctions
are of the Bloch form10 [127]

ψ (~r) = ψi,~k (~r) = ui,~k(~r) exp
[
i~k · ~r

]
, (213)

where ~k is a vector in the first Brillouin zone, The functions ui,~k (~r) have the periodicity of the
direct lattice

ui,~k (~r) = ui,~k

(
~r + ~L

)
. (214)

The index i runs over all (single-particle) states. The states have an occupation number fi,~k(β)
(see chapter 3.1.5.9. and Eq. (141)). Due to dispersion of the single-particle states into bands
in a periodic system, in all energy expressions above (e.g., Eqs. (32), (101)) the summation over
the orbitals of the type

∑
i

has to be substituted by a summation over orbitals and integration over

the Brillouin zone:
∑
i

∫
d~k. As an example we give below a reformulation for extended system

of the KS expression for energy functional (Eqs. 100–101)

EKS =
∑

i

∫
BZ

d~kfi,~kεi,~k −
1
2

∫
d~rVH(~r)n(~r) + Exc [n]−

∫
d~rVxc(~r)n(~r), (215)

n(~r) =
∑

i

∫
BZ

d~k
∣∣∣ϕi,~k

∣∣∣2 . (216)

We have to approximate the integral over the Brillouin zone by a finite sum over so-called “spe-
cial” ~k-points [128–130]∫

BZ

d~k ≈
∑
~k

w~k, (217)

where w~k are weights of the integration points. The idea of approximating the integral by a sum
of integrad values computed over a set of carefully chosen points in the integration domain is
akin to what is done in the usual Gaussian quadrature.

10Bloch’s theorem is one of the cornerstones of the independent-particle electronic structure theory of solids. However,
the reduction of the problem to one single primitive unit cell imposed by the theorem, is possible only in the independent-
particle theories; in many-electron theories, such as QMC, it cannot directly be applied. For more details, see for instance
Ref. [88].
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There is a technical problem with computation of electrostatic energy of an infinite system.
Electrostatic energy consists of three parts: Hartree energy of the electrons with density n(~r),
interaction of electrons with the nuclei and the internuclear interaction

EES =
1
2

∫ ∫
d~rd~r′

n(~r)n(~r′)∣∣∣~r − ~r′∣∣∣ +
∑

I

∫
d~rV core

I n(~r) +
1
2

∑
I 6=J

ZIZJ∣∣∣~RI − ~RJ

∣∣∣ . (218)

The singularities in individual terms in (218) for an infinite system can be avoided by the so-
called Ewald summation method [1]. This is done by smearing each ionic nuclear charge, ZI ,
into a Gaussian distribution centered at ~RI

nI
c(~r) = − ZI

(Rc
I)
π−3/2 exp

−(~r − ~RI

Rc
I

)2
 . (219)

It is convenient to make use of the arbitrariness in the definition of the core potential, and define
it to be the potential of the Gaussian charge distribution (219),

V core
I (~r) =

∫
d~r′

nI
c(~r′)
|~r − ~r′|

= − ZI∣∣∣~r − ~RI

∣∣∣erf

∣∣∣r − ~RI

∣∣∣
Rc

I

 , (220)

where “erf” is the error function. The energy expression (218) can be rewritten by adding and
subtracting the interaction energy of the Gaussian charge distribution as follows

EES =
1
2

∫ ∫
d~rd~r′

n(~r)n(~r′)∣∣∣~r − ~r′∣∣∣ +
1
2

∫ ∫
d~rd~r′

nc(~r)nc(~r′)∣∣∣~r − ~r′∣∣∣ +
∫ ∫

d~rd~r′
nc(~r)n(~r′)∣∣∣~r − ~r′∣∣∣

+
1
2

∑
I 6=J

ZIZJ∣∣∣~RI − ~RJ

∣∣∣ − 1
2

∫ ∫
d~rd~r′

nc(~r)nc(~r′)∣∣∣~r − ~r′∣∣∣ , (221)

where nc(~r) =
∑
I

nc
I(~r). The first three terms can be combined to electrostatic energy of the

total charge distribution ntot(~r) = n(~r) + nc(~r). The remaining terms can be rewritten as a
double sum over nuclei and a sum over self-energy terms of the Gaussian charge distributions

EES =
1
2

∫ ∫
d~rd~r′

ntot(~r)ntot(~r′)∣∣∣~r − ~r′∣∣∣ +
1
2

∑
I 6=J

ZIZJ∣∣∣~RI − ~RJ

∣∣∣erfc

∣∣∣~RI − ~Rj

∣∣∣√
Rc2

I +Rc2

J


−
∑

I

1√
2π

Z2
I

Rc
I

, (222)

where erfc denotes the complementary error fuction.
Now, for a periodic system, the total electrostatic energy is computed from the above expres-

sion. The first term is evaluated in reciprocal (Fourier) space,

ntot(~G) = n(~G) +
∑

I

nc
I(~G)SI(~G)

= n(~G)− 1
Ω

∑
I

ZI√
4π

exp
[
−1

2
G2Rc2

I

]
SI(~G), (223)
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where SI(~G) = exp
[
−i ~G · ~RI

]
is the structure factor. This yields the electrostatic energy of a

periodic system in the form

EES = 2πΩ
∑
~G 6=0

∣∣∣ntot(~G)
∣∣∣2

G2
+ Eovrl − Eself , (224)

Eovrl =
∑
I,J

′
∑

~L

ZIZJ∣∣∣~RI − ~RJ − ~L
∣∣∣erfc


∣∣∣~RI − ~RJ − ~L

∣∣∣√
Rc2

I +Rc2

J

 (225)

and

Eself =
∑

I

1√
2π

Z2
I

Rc
I

. (226)

The sums in Eq. (225) run over all atoms in the cell, all direct space lattice vectors~L, and the
prime in the first sum indicates that I < J is imposed for ~L = 0. As can be seen, the factorization
of the electrostatic energy in (224–226) is done so, that both reciprocal and direct space sums are
rapidly convergent.

3.1.7.4 Ionic forces

As explained in chapter 2, forces exerted on the ions are indispensable ingredient in any
system dynamics. In most cases, we do not solve the wave equation for the ions and, instead, treat
ions as classical objects moving on a PES derived by electronic structure methods of different
sophistication. In other words, in order to solve Eqs. (9), (12), (17), we need to evaluate the
derivatives

~FI = −∇I 〈ψ0| Ĥe |ψ0〉 . (227)

In principle, this can be done either by finite-difference approximation of the total energy or
analytically. Let us follow first the latter possibility.

Analytic evaluation of the derivative yields

∇I 〈ψ0| Ĥe |ψ0〉 = 〈ψ0|∇IĤe |ψ0〉+ 〈∇Iψ0| Ĥe |ψ0〉+ 〈ψ0| Ĥe |∇Iψ0〉 . (228)

The contributions from derivatives of the wavefuction 〈∇Iψ0| Ĥe |ψ0〉 vanish if the wavefunction
is an exact eigenfunction of the Hamiltonian under consideration, and the force can be computed
as

~FHF
I = −〈ψ0|∇IĤe |ψ0〉 , (229)

which corresponds to the Hellmann-Feynman theorem [131, 132]. The theorem is valid for
varialtional wavfunctions, such as DFT, HF, provided a complete basis sets are used. This is
not the case if position-dependent basis functions are used, and the single-particle states ϕi =∑
ν
ciνχν (~r; {RI}) (see chapter 3.1.7.1 above). The explicit dependence of the basis functions
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as well as the implicit dependence of the expansion coefficients on atomic positions generates
two additional contributions to the forces

∇Iϕi =
∑

ν

(∇Iciν)χν (~r; {RI}) +
∑

ν

ciν (∇Iχν (~r; {RI})). (230)

In other words, the complete (generalized) force acting on a nucleus at ~RI can be obtained by
taking a total derivative, of the energy [133]

~FI = ~FHF
I + ~F IBS

I + ~FNSC
I , (231)

where ~F IBS
I is the correction due to the use of incomplete basis set, or the (in)famous Pullay

force [134]

~F IBS
I = −2

∑
i

fiRe

{∑
ν

ciν 〈∇Iχν |ĤNSC
e − εi |ψi〉

}
(232)

and ~FNSC
I is the correction due to non-selfconsistent charge densities

~FNSC
I = −

∫
d~r (∇In)

(
V SCF − V NSC

)
. (233)

Assuming that self-consistency is achieved, which never happens in a numerical calculation,
~FNSC

I vanishes and ~F IBS
I has to be computed with ĤSCF . Similarly, the Pullay force vanishes

in the limit of a complete basis set. The additional contributions to the force, ~F IBS
I and ~FNSC

I ,
complicate the force evaluation. The Pullay force can be eliminated completely by expanding
the wavefunctions in terms of originless basis sets, such as plane waves, Eq. (205). This is
valid irrespective of the type of dynamics, i.e. both for Ehrenfest as well as Born-Oppenheimer
dynamics as long as the number of plane waves remains constant. If the number of plane waves
changes, as is the case in constant pressure dynamics (not to be discussed in this paper), where
the volume/shape of the simulation cell changes and the plane wave cutoff is kept fixed the Pullay
stress appears. If instead of plane waves, localized atom-centered basis sets are used, the Pulay
forces need to be computed [109, 135]. ~FNSC

I vanishes if self-consistency within the subspace
spanned by a given incomplete basis set is reached. Note that this is a weaker requirement than
that required by the Hellman-Feynman theorem, which requires that Ψ0 be an exact eigenstate
of the Hamiltonian and a complete basis set to be used.

In addition to the mean-field methods, outlined above, most correlated electronic structure
methods, including MCSCF [136, 137], MP [138-140], CISD [141], CCSD(T) [142,143], etc.,
allow for analytic force calculations. This represents an enormous savings, as instead of 3NI −6
independent total energy calculations required if finite differences are used, only a single force
calculation is sufficient if analytic derivatives are used.

Here we mention briefly how forces can be obtained in the QMC method. There are a number
of obstacles, which have to be taken into account: (a) unlike DFT and standard quantum chem-
istry, use of the Hellman-Feynman theorem is not practical as the wavefunction is not obtained
by energy minimization, (b) in fixed-node DMC the Hellman-Feynman forces have errors due to
discontinuities in the derivative of the fixed-node wave function at nodes. Hence, the forces have
to be computed from energy differences. However, QMC methods have statistical errors, which
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make computation of energy differences very expensive. Fortunately, one can use correlated
sampling [144, 145]. Instead of performing two independent runs with independent statistical
errors, one generates configurations for a reference situation only sampled from ψ2 of the refer-
ence configuration. Unbiased expectation values for a slightly different secondary wavefunction
ψs are obtained by reweighting configurations sampled from ψ2. In the VMC this means

Es − E =
〈Ψs|Hs |Ψs〉
〈Ψs | Ψs〉

− 〈Ψ|H |Ψ〉
〈Ψ | Ψ〉

=
1
M

M∑
i=1

[
HsΨs(Ri)
Ψs(Ri)

Wi −
HΨ(Ri)
Ψ(Ri)

]
with

Wi =
M
∣∣Ψs(Ri)

/
Ψ(Ri)

∣∣2∑M
i=1

∣∣Ψs(Ri)
/
Ψ(Ri)

∣∣2 .
However, the walkers sampled from ψ2 won’t be optimal for computing Esand they need to be
moved along with the ions by some amount, ∆~ri

~ris = ~ri + ∆~ri.

The same idea can also be used also in the context of DMC where the walker distribution
reweighted by a factor

Wi ∼=
Ψ2

T (Ri)
Ψ2

Ts(Ri)
exp [−∆τ(ELs − EL)/2] .

is used and subsequently propagated for a short time τ . Obviously, if this is to work, the struc-
tural changes need to be very small. Surprisingly, while extremely simple in essence, the QMC
ionic forces world-wide have not been extensively used as yet and only a couple of realistic
applications have been published, see chapter 4.7.1.3.

3.2 Ionic dynamics

3.2.1 Classical ions

Let us initially assume that we want to solve the system dynamics for classical ions (massive ions
at relatively high temperatures) following either the Ehrenfest or Born-Oppenheimer dynamics.
Let us further assume that the electronic structure part of the problem can be solved and the ionic
forces are known. Hence, all that is needed is the solution of the Eq. (12) or (17)

MI
~̈RI(t) = ~FI(t). (234)

These are Newton’s equations of motion which can easily be discretized and solved; see, for
instance, chapter 3.3.1 for one way of disretization. Provided the system is ergodic, the system
dynamics corresponds to dynamics in microcanonical (N,V,E) ensemble. In this ensemble, in
addition to the particle number, simulation cell, and energy, also the total momentum is con-
served [1]. From this follows, that system temperature is not a control parameter, and conse-
quently it cannot be fixed.
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From a statistical physics point of view a legitimate question arises why we from the outset
limit ourselves to MD sampling of the phase space and do not consider Monte-Carlo techniques
as well. There are two reasons. Firstly, most of the computational work comes into electronic
structure computation of the points on the PES visited. As mentioned above, those are computed
“on fly”. If MD scheme is used, the ionic configurations change only marginally from one step to
the other. In such a procedure the electronic structure responds also only weakly and most of the
numerical work done on the preceding ionic configurations needn’t be redone. One can see this
as a reformulation of the perturbation theory. This, though, is not true any more, if one instead
uses MC techniques, where by the very nature of the MC procedure the changes in the atomic
structure and hence also in the electronic structure need not necessarily be small. The downside
of the MD sampling is, that a correct sampling is only achieved if the system is ergodic. The
other reason for favoring MD over MC techniques is that the MD procedure automatically yields
also information on system dynamics, which gives access to computation of other properties,
such as transport properties, entirely from the equilibrium dynamics.

Formally all other ensembles can be obtained from the microcanonical ensemble. Here we
limit ourselves to just one more ensemble, the canonical, or (N,V, T ) ensemble. The system
temperature is related to the total momentum via equipartition theorem. Temperature control can
be exerted by adding a friction term, which suitably scales the particle velocities. A deterministic
algorithm was proposed by Nosé and Hoover [146–148]. The underlying equations of motion
read

MI
~̈RI(t) = ~FI(t)−MI ξ̇(t) ~̇RI(t), (235)

Qξ̈(t) =
∑

I

MI
~̇R

2

I(t)− 3NIkBT , (236)

where ξ is an extra variable, which scales the particle velocities,Q is a fictitious mass of the extra
variable, kB Boltzman’s constant, and T the required system temperature. Nosé has shown [146,
147] that a microcanonical dynamics in the extended 3NI +ξ system leads to canonical dynamics
in the physical system with 3NI degrees of freedom.

The way the thermostat works can intuitively be inferred by inspection of Eq. (235). ξ̇ can be
regarded as a dynamical friction coefficient, which can acquire both positive and negative value.
This leads to either damping or acceleration of the nuclei and hence, via equipartition theorem
to cooling if the instantaneous kinetic energy exceeds kBT or heating otherwise. The velocity
scaling also means, that the system dynamics is perturbed in a way dictated by Eq. (236). While
it can be explicitly proven that, provided the system is ergodic, the static averages computed
along the MD trajectory computed from Eqs. (235), (236), correspond to averages in canonical
ensemble, nothing can be explicitly proven concerning the dynamics. As a matter of fact, the
ξ-dynamics is just one of many, leading to canonical averaging. However, practical experience
has shown, that the effect of the arbitrary coupling of the extra variable ξ to the system dynamics
is in most cases negligible and transport coefficients computed in microcanonical and canonical
ensemble are identical.

It is well known that the standard Nosé-Hoover thermostat suffers from non-ergodicity prob-
lems for certain classes of Hamiltonians. The harmonic oscillator and the Fermi-Ulam-Pasta
lattice of weakly coupled harmonic oscillators are probably the best examples of non-ergodic
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Fig. 21. Coverage of the phase space of a harmonic oscillator [149]. Left: thermostating with a single
Nosé-Hoover thermostat; Right: thermostating with a chain of Nosé-Hoover thermostats.

systems [149]. A solution to MD sampling of non-ergodic systems was recently proposed [149].
The solution consists of using a chain of Nosé-Hoover thermostats. The equations of motion for
the thermostat chain read

MI
~̈RI(t) = ~FI(t)−MI ξ̇1(t) ~̇RI(t), (237)

Q1ξ̈1(t) =

[∑
I

MI
~̇R

2

I(t)− 3NIkBT

]
−Q1ξ̇1(t)ξ̇2(t), (238)

Qk ξ̈k(t) =
[
Qk−1ξ̇

2
k−1(t)−KBT

]
−Qk ξ̇k(t)ξ̇k+1(t) (1− δk,K) , k = 2, · · · ,K. (239)

As can be seen, in the thermostat chain the first thermostat is attached to the physical system, the
second thermostat to the first one, and so on. The fictitious mass parameters of the thermostats
should be chosen so as to maximize the overlap of their power spectra with the power spectra of
the thermostated system,

Q1 ≈
3NIkBT

ω2
; Qk ≈

kBT

ω2
, (240)

where ω is a typical phonon vibrational frequency of the ions. It has been shown (Fig. 21) that
even a fairly short thermostat chain is able to assure ergodic sampling of phase space even for
the harmonic oscillator.

3.2.2 Quantum ions

What happens, if the ions cannot be treated as classical objects? Indeed, there are systems where
the relation kBT � h̄ω does not hold. Imagine dealing with very light ions, such as hydrogen or
helium at very low temperatures. In such a case we should go back to the TDSCF equations (5),
(6). On practical grounds, this is rarely done. More often, the problem is reformulated so, that
the crossdependence of the nuclear and electronic wave functions is eliminated but the quantum
nature of the ions retained. The final equations then resemble the BO dynamics Eqs. (16), (17)
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but with ions treated quantum-mechanically by solving the time-dependent Schrödinger equation
for the ionic system [150]

ih̄
∂χ
({

~RI

}
; t
)

∂t
= ĤIχ

({
~RI

}
; t
)

(241)

The ionic Hamiltonian ĤI = T̂I + V
({

~RI

})
. There are several problems with this formula-

tion. First, the PES V
({

~RI

})
needs to be known. The PES is typically mapped out by direct

computation on a grid of points using some of the electronic structure methods outlined in chap-
ter 3.1. For obvious reasons, the dimensionality of the PES which can be explicitly constructed is
extremely limited. Similarly is limited also the dimensionality of the problem tractable by direct
solution of Eq. (241). Typical upper limit is ∼ 5. Given these limitations, this approach has
found applications mainly in molecular scattering and dissociation on surfaces. Here, provided
the surface is kept frozen, the dimensionality for a diatomic molecule can be as low as 5–6 (see
the example in the Introduction, chapter 2) [151].

3.2.2.1 Path integral approach

A more general approach is provided by a finite-temperature variant of quantum Monte-
Carlo. The basic quantities allowing computation of statistical averages in quantum statistics is
the partition function Z. Let us suppose the system is described by a Hamiltonian ĤI (temporar-
ily abbreviated to Ĥ) with wave functions {χi} and eigenenergies {Ei}. The quantum mechani-
cal average values in canonical ensemble (N,V, T ) at an inverse temperature β = 1/kBT of any
operator Ô can be computed as〈

Ô
〉

= Z−1
∑

i

〈χi|Ô |χi〉 exp [−βEi] = Z−1Tr
(
Ô exp

[
−βĤ

])
, (242)

Z =
∑

i

exp [−βEi] = Tr
(
exp

[
−βĤ

])
, (243)

where in each line the first expression is written in the diagonal energy representation and the
second in invariant representation.

Alternatively, one can reformulate Eqs. (242), (243) in terms of finite-temperature density
matrix ρ. For that purpose we will switch from energy representation to position representation

(i.e. eigenfunctions of the position operator ~̂RI : δ
(
~R− ~RI

)
). We define a composite vector of

ionic positions < =
(
~R1, ~R2 · · · , ~RNI

)
. The density matrix ρ is defined as

ρ (<,<′;β) =
∑

i

χ∗i (<)χi (<′) exp [−βEi] ≡ 〈<| exp
[
−βĤ

]
|<′〉 . (244)

The ρ (<,<′;β) is a 6NI +1-dimensional object; the “+1” dimension stands for the temperature
dependence. Equations (242), (243) expressed in terms of the density matrix ρ read〈

Ô
〉

= Z−1

∫
d<
∫
d<′ρ (<,<′;β) 〈<| Ô |<′〉, (245)
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Z =
∫
d<ρ (<,<′;β). (246)

The question is, can we compute the quantum-mechanical averages
〈
Ô
〉

without having to di-

agonalize the Hamiltonian Ĥ? The answer is positive, and has been given by Feynman in the
fifties in his path-integral (PI) formulation of quantum mechanics [152, 153]. Here we follow a
slightly different line of thoughts. Ceperley published recently an excellent review on the path
integral technique [154]. The essence of the path-integral technique is the fact that the product
of density matrices (DM) is a density matrix: DM × DM = DM

exp
[
−β1Ĥ

]
exp

[
−β2Ĥ

]
= exp

[
− (β1 + β2) Ĥ

]
, (247)

or in position representation∫
d<2ρ (<1,<2;β1) ρ (<2,<3;β2) = ρ (<1,<3;β1 + β2) , (248)

which shows that a density matrix at a certain temperature, can be written as a convolution of
density matrices at different temperatures. Note that in writing Eq. (247) in position representa-
tion (248), we have used the identity operator

∫
d<2 |<2〉 〈<2|.

3.2.2.2 Discrete formulation of PI: high-temperature expansion

In order to move forward, it is useful to realize one important fact. The density matrix at a
very high temperature (β → 0 limit) must behave classically. In other words, if we succeed to
reformulate the low-temperature density matrix in terms of a high-temperature matrix (matrices),
the high-temperature matrix (matrices) will behave classically and hence, classical statistical
mechanics will suffice to study quantum statistics. Let us use the following transformation:
T ⇒ MT , i.e. instead of considering temperature T we consider temperature MT. The density
matrix after transformation becomes

exp
[
−βĤ

]
=
(

exp
[
− β

M
Ĥ

])M

=
(
exp

[
−τĤ

])M

. (249)

The above equation is an identity with the “time” step

τ =
β

M
=

1
kB(TM)

, (250)

or in position representation

ρ (<0,<M ;β) =
∫ ∫

· · ·
∫
d<1d<2 · · ·d<M−1 ρ (<0,<1; τ)

× ρ (<1,<2; τ) · · · ρ (<M−1,<M ; τ) . (251)

Equation (251) is a PI discretization of the DM ρ (<0,<M ;β). Note that the discretization
coordinate is the temperature. If M � 1 is finite, points <1,<2 · · · <M form a discrete “path”
over the temperature, if M →∞, the points form a continuum path {<t}; 0 ≤ t ≤ β. This type
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of discretization is also called imaginary time discretization [154]. The point is that for M � 1,
i.e. at high temperatures the density matrices ρ (<L−1,<L; τ) behave classically and we will see
that a good approximation can be constructed.

3.2.2.3 Primitive approximation

In order to construct an approximation in the β → 0 limit, we need to take into account the
fact that in the Hamiltonian Ĥ = T̂ + V̂ only the potential energy term V̂ is diagonal in the ~R-
representation. The kinetic energy operator is instead diagonal in the reciprocal space. Therefore
it is reasonable to separate the kinetic and potential energy operators in the density matrix ρ.
The problem is that the two operators do not commute and hence the density matrix cannot be
straightforwardly factorized

exp
[
−τ
(
T̂ + V̂

)]
= exp

[
−τ T̂

]
exp

[
−τ V̂

]
− exp

[
τ2

2

[
T̂ , V̂

]]
, (252)

where [X̂, Ŷ ] is the commutator between X̂ and Ŷ operators. The primitive approximation11

consists in neglecting the commutator terms in Eq. (252)

exp
[
−τ
(
T̂ + V̂

)]
≈ exp

[
−τ T̂

]
exp

[
−τ V̂

]
(253)

for τ → 0. Equation (253) shows that the exact density matrix can be approximated by the
product of the density matrices for T̂ and V̂ alone. One might worry that this will lead to a
cumulative error in theM →∞ limit due to build up of small errors to a finite error. Fortunately,
Trotter has proven that under fairly general assumptions the above formula (253) is actually exact
in the M →∞ limit [155]

exp
[
−β
(
T̂ + V̂

)]
= lim

M→∞

[
exp

(
−τ T̂

)
exp

(
−τ V̂

)]M
. (254)

Let us now rewrite the primitive approximation in position representation

ρ (<0,<1; τ) ≈
∫
d<2 〈<0| exp

[
−τ T̂

]
|<2〉 〈<2| exp

[
−τ V̂

]
|<1〉 . (255)

The V̂ operator is diagonal in the position representation, and hence

〈<2| exp
[
−τ V̂

]
|<1〉 = exp [−τV (<2)] δ (<1 −<2) . (256)

The kinetic energy matrix can be evaluated using eigenfunction expansion of T̂ [154],

〈<0| exp
[
−τ T̂

]
|<2〉 =

(
MIM

2πβ

) 3
2 NI

exp
[
−β
{

1
2
MIω

2
M (<0 −<2)

2

}]
, (257)

where the squared frequency

ω2
M =

M

β2
. (258)

11The more sophisiticated methods [154] than the primitive approximation exist but we will not pursue them here.
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Fig. 22. Trace of a free-particle path using the mapping in Eq. (259) onto polymers.

Combining Eqs. (251), (255), (256), and (257) yields the discrete PI expression for the density
matrix in primitive approximation12

ρ (<0,<M ;β) =
∫ ∫

· · ·
∫
d<1d<2 · · · d<M−1

(
MIM

2πβ

) 3
2 NIM

×

× exp

−β M∑
m=1


Vharm︷ ︸︸ ︷

1
2
MIω

2
M (<m−1 −<m)2 +

Vscaled︷ ︸︸ ︷
1
M
V (<m)︸ ︷︷ ︸

Veff


 . (259)

The Veff is a completely classical consisting of a harmonic spring term Vharm and scaled
potential Vscaled. The density matrix (259) can be sampled using exclusively methods of classical
statistical mechanics. Note, that Vscaled is local, and depends only on <m. The only nonlocal
term, which connects different points along the temperature path is the harmonic spring term. The
number of discretization points necessarily depends on the temperature β. In the low-temperature
limit, β → ∞, also M → ∞. In this limit Veff is dominated by the harmonic spring term and
hence, reduces to a potential of a system of weakly coupled harmonic oscillators. Eq. (259) is the
famous mapping from a quantum system (left-hand side) to a classical system (right-hand side).
The classical system is a system of interacting “polymers”, see Fig. 22. Obviously, sampling
of a classical system is much simpler, than sampling of the original quantum system. The price
to be paid is that the dimensionality of the original system has increased from 3NI to 3MNI .
The Feynman-Kacs formula [153] is obtained by taking the M → ∞ limit, i.e. by making a
continuous path. Note, that in this approximation, Eq. (259) the potential energy surface can

12In addition to computing staticquantum-mechanical averages, Eqs. (242)-(246), the PI techniques can also be used
to approximately compute quatum dynamics. Recently, the so-called centroid path dynamics technique was intro-
duced [156, 157]. It was found, that the time evolution of the centroids ~Rc

I(t) = 1
M

∑M

m=1
Rm

I (t) of closed Feynman
paths of the nuclei contains information on the quantum dynamics.
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be rather straightforwardly modeled in the same fashion as for a classical system. For some
systems, such as, for instance He, excellent empirical interatomic or intermolecular potentials
are available [154]. For many other systems, there are no reliable empirical potentials, and hence
the interaction potentials have to be computed from PES constructed by total-energy methods.
The PI method in connection with total-energy methods was for the first time used in Refs. [157–
159]. One advantage of using the PI formalism is the possibility of an easy quantification of the
quantum effects. One can simply perform two simulations one, where the particles are described
by polymers, and, for comparison, a simulation, where the particles are completely classical.

Formula (243) for partition function Z contains the trace, i.e. the discretization points have
to satisfy the periodic boundary condition <(0) = <(β) and hence also <M+1 = <1. Let us
now rewrite Z directly in terms of individual ionic positions

Z = lim
M→∞

M∏
m=1

NI∏
I=1

[(
MIM

2πβ

) 3
2
∫
d~Rm

I

]
×

× exp

−β
M∑

m=1


NI∑
I=1

1
2
MIω

2
M

(
Rm

I −Rm+1
I

)2
+

1
M
V (Rm

I )︸ ︷︷ ︸
Veff



 , (260)

where ~RM+1
I = ~R1

I and V ({Rm
I }) = E0 ({Rm

I }), the ground-state energy in the BO approxi-
mation.

The mapping onto a classical system makes it possible to estimate the degree of quantum
delocalization simply by measuring the special extent of the particle by the radius of gyration

Rg
quant =

〈
1

NIM

NI∑
I=1

M∑
m=1

(
~Rm

I − ~Rc
)2
〉 1

2

, (261)

~Rc =
1

NIM

NI∑
I=1

M∑
m=1

~Rm
I . (262)

The degree to which the different particles behave like quantum-mechanical particles can be
measured also in terms of imaginary time correlation functions [160]. Especially useful is the
rms position displacement correlation function [161]

R̃I (∆τ) =
〈∣∣∣~RI (τ)− ~RI (τ ′)

∣∣∣2〉 1
2

. (263)

where 0 ≤ ∆τ = τ − τ ′ ≤ βh̄ and ~RI (τ) denotes the coordinate of particle I at imaginary
time τ . The midpoint value R̃I (βh̄/2) of this function is a measure of the particle’s spatial
“size”, whereas its variation in imaginary time determines the degree of ground-state dominance
and thus localization [161]. Localized states with a large energy gap ∆E between ground and
excited states are characterized by a constant R̃I (∆τ) in the range of roughly h̄/∆E < ∆τ <
βh̄− h̄/∆E.
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3.2.2.4 Symmetry of the wave function

In the discussion above we have ignored the symmetry of the wave function under particle
exchange. Hence, all formulae above are only valid for distinguishable particles, the so-called
Boltzmannons. For indistinguishable particles, we have to incorporate the appropriate symmetry
of the wave function. It has been shown that this is essential for systems like liquid helium at low
temperature, where exchange plays a crucial role [162]

Let us for simplicity consider system of two particles, which we assume to be Bosons, and de-
note the symmetric eigenfunctions {χS

i (~R1, ~R2)} and the antisymmetric ones by {χA
i (~R1, ~R2)}.

The density matrix for distinguishable particles,

ρD

(
~R1, ~R2; ~R′1, ~R′2;β

)
=

∑
i

χS
i

(
~R1, ~R2

)
exp

[
−βES

i

]
χS∗

i

(
~R′1, ~R′2

)
+

∑
i

χA
i

(
~R1, ~R2

)
exp

[
−βEA

i

]
χA∗

i

(
~R′1, ~R′2

)
. (264)

The only difference when we are dealing with Bosons is that we now sum only over the symmet-
ric states

ρB

(
~R1, ~R2; ~R′1, ~R′2;β

)
=
∑

i

χS
i

(
~R1, ~R2

)
exp

[
−βES

i

]
χS∗

i

(
~R′1, ~R′2

)
. (265)

From this it follows that ρB can be expressed in terms of ρD

ρB

(
~R1, ~R2; ~R′1, ~R′2;β

)
=

1
2

[
ρD

(
~R1, ~R2; ~R′1, ~R′2;β

)
+ ρD

(
~R1, ~R2; ~R′2, ~R′1;β

)]
. (266)

If the particles are Fermions, we would obtain

ρF

(
~R1, ~R2; ~R′1, ~R′2;β

)
=

1
2

[
ρD

(
~R1, ~R2; ~R′1, ~R′2;β

)
− ρD

(
~R1, ~R2; ~R′2, ~R′1;β

)]
. (267)

The corresponding formulae for the partition functions follow immediately. For Bosons, we have

ZB =
∫
d~R1d~R2ρB

(
~R1, ~R2; ~R1, ~R2;β

)
=

1
2

[∫
d~R1d~R2ρD

(
~R1, ~R2; ~R1, ~R2;β

)
+

∫
d~R1d~R2ρD

(
~R1, ~R2; ~R2, ~R1;β

)]
. (268)

When we express ρD in the usual way in terms of discrete chains, we therefore have ZB as the
sum of two terms, one of which involves the integral over configurations of two separate chains
each of M beads, and the other integral over configurations of one larger chain of 2M beads,
the whole thing multiplied by the factor 1

2 . Schematically, where the white circles indicate the
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(269)

positions integrated over in Eq. (268) and the arrows show the sense of increasing bead index
(“time”) m.

If we go through the same argument for three particles, we find

(270)
In general ρB is related to ρD by

ρB (<0,<1;β) =
1
NI !

∑
P

ρD (<0, P<1;β) , (271)

where P is a permutation of particle labels. Examples of the effect of the symmetry of the wave
function are illustrated in Fig. 23. As can be seen, the symmetry has profound consequences at
low temperature. Many of the unusual low-temperature properties of 4He, such as superfluidity,
have to do with the symmetry of the wave function and with the permutations of the density
matrix. On the other hand, at more moderate temperatures both ρB and ρD are almost identical
(Fig. 23). For most systems the threshold temperature is a few Kelvin.

A legitimate question is why the PI technique is used only for the ionic subsystem and not
also for description of the electrons. Electrons are much lighter than protons and hence, unlike
for protons, the symmetry of the wave function is always of paramount importance. This is
the reason why the simplest reasonable form of the electronic wave function is the HF wave
function, Eq. (21) and not the Hartree form, Eq. (18). In general, while the bosonic density matrix
ρB can be relatively easily be constructed, the Fermionic density matrix ρF represents much
harder problem and a systematic way of constructing ρF is still lacking. The reason is related
to the so-called fermionic sign-problem, which is still an open problem; see chapter 3.1.6.2 for
approximations to the fermionic sign-problem in zero temperature QMC. Nevertheless, an all-PI
technique based on variants of the above equations, where both electronic (in an approximate
way) and ionic degrees of freedom are described by PI mapping has been proposed [163].

3.2.2.5 Technical issues

As mentioned above, in the strongly quantum regime (light particles, β → ∞), the PI map-
ping leads to a system of weakly perturbed stiff harmonic oscillators. Such a system is non-
ergodic [149]. At the first glance, this means that the PI formulation is much better suited to MC,
rather than MD sampling. However, MC is introducing pronounced discontinuities is motion
trough configuration space, which are counterproductive (see, chapter 3.2.1 on Nosé-Hoover
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Fig. 23. Left: The trace of the phase of six 4He atoms at a temperature of 2K. The filled circles are markers
for the (arbitrary) beginning of the path. The dashed line indicates the box boundaries. Right: The same as
on the right, except for the temperature, which is 0.75 K.

thermostats). Fortunately, the Nosé-Hoover chains of thermostats can restore ergodicity, and
hence the MD sampling of the configuration space.

Furthermore, the primitive approximation (259), (260) is computationally rather inefficient.
The problem is that the slow paths motion through the phase-space is very difficult to sample,
as the MD time step must be adjusted to capture the high-frequency spring oscillations. A more
efficient approach consists of transformation from the primitive path variables {~Rm

I } to either
normal mode variables {~um

I } [164] or staging variables [165]. The normal modes {~um
I } di-

agonalize the nearest-neighbor harmonic term, which is typically the dominant term. While the
technical details of the staging transformation are different, the spirit of the transformation is very
similar to that of the normal mode transformation. These algorithms effectively separate the fast
and slow variables and so speed up the phase-space sampling efficiency. With these ingredients,
the MD sampling can be made comparable to the best MC sampling [154].

If one has to include the exchange, a straightforward evaluation for large NI as in (268)-
(271) is impossible, since there will be N ! terms to evaluate. For Bosons, each term in the
sum is positive, which opens the possibility to sample the contributions, rather than to explicitly
evaluate each term. A Bosonic simulation consists of a combination of random walks through
path and permutation space [154]. Sampling of the permutation space for Fermions is not pos-
sible due to the cancellation between the contributions of both odd and even permutations (the
(in)famous Fermionic sign-problem). Note also, that sampling of the permutation space is a dis-
continuous process, which rules out MD sampling. Hence, only Boltzmannonic ρD can be MD
sampled. This is a very serious limitation an the prime reason why up to date the PI techniques
in combination with ab-initio computed PESs have been applied only to distinguishable protons
at temperatures ≥ 5 K.

3.3 Solving the basic equations

In the previous paragraphs we have considred the different theories of electronic and atomic
structure. Let us now consider the possibility of really solving the coupled equations of the
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combined system consisting of both electronic and ionic degrees-of-freedom. Basically, we
have the choice between the Ehrenfest molecular dynamics (EMD), Eqs. (110, (12), and Born-
Oppenheimer molecular dynamics (BOMD), Eqs. (16), (17). Both approaches have one key
feature in common, namemly that the high-dimensional PES for the ions is not explicitly con-
structed, but rather computed “on fly” only for the poits really visited.

3.3.1 Ehrenest dynamics

The indisputable advantage of the EMD over the BOMD is the fact that EMD provides real
electronic dynamics as the wave function propagation follows from solution of time-dependent
Schrödinger equation which conforms to unitary propagation [166, 167]

Ψ(t0 +m∆t) = exp
[
iĤe (t0 + (m− 1) ∆t) ∆t/̄h

]
...

× exp
[
iĤe (t0 + 2∆t) ∆t/̄h

]
× exp

[
iĤe (t0 + ∆t) ∆t/̄h

]
× exp

[
iĤe (t0) ∆t/̄h

]
Ψ(t0) , (272)

where the time step ∆t = tmax/m and He(t)13 is the electronic Hamiltonian (Eq. (1)) implicitly
time-dependent via {~RI(t)}. The velocity Verlet algorithm14 [169] can be used to integrate the
equations-of-motion for the ionic degrees-of-freedom15 which consists of the following steps

(1) estimate approximate velocities

˙̃
~R (t0 +m∆t) = ~̇RI (t0 + (m− 1) ∆t) +

∆t
2MI

~F I (t0 + (m− 1) ∆t) , (273)

(2) update atomic positions

~RI (t0 +m∆t) = ~RI (t0 + (m− 1) ∆t) + ∆t
˙̃
~RI (t+m∆t) , (274)

(3) calculate ~F I (t0 +m∆t) ,

(4) correct velocities

~̇RI (t0 +m∆t) =
˙̃
~R (t0 +m∆t) +

∆t
2MI

~FI (t0 +m∆t) . (275)

13He(t) at time t can be evaluated using split-operator techniques [168].
14The simpler Verlet algorithm is perfectly adequate for most applications [170].
15We consider here the microcanonical ensemble. If canonical ensemble is considered, the thermostat equation-of-

motion needs to be discretized in a similar way except that the corresponding coupling to the ions is added.
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There are two very different time-scales involved. The timescale for the electronic dynamics
τe, and the corresponding time-scale for dynamics of the ions, τI . The slower time-scale τI is
dictated by the fastest vibrational frequencies, typically an optic phonon of the lightest particle
in the system. This for hydrogen is ∼ 4000 cm−1 and τI ∼ 10−14. About 10–20 samples of the
highest frequency have to be taken in order to generate a correct, conservative, dynamics, which
gives ∆tmax ∼ τI

10 . A realistic estimate of for the electronic time-scale is τe ∼ 10−16 s. This
gives τe ≈ τI

100 and hence also ∆tmax ∼ τe

10 . As can be seen, the price to be paid for following
the real system dynamics is rather high, as the discretization time step is about two orders of
magnitude slower than what would be the case if the ions dictated the clock speed. Several
attempts have been made to tip the scale toward a more acceptable integration time-scale, such
as use of different integration steps for electrons and ions [171], multiple time-step integration
theory [172], or even use of reduced ionic masses rendering the ionic dynamics fictitious as
opposed to the real electronic dynamics [173].

3.3.2 Born-Oppenheimer dynamics

In BOMD, Eqs. (16), (17), the ions set the clock speed. In practice it means that ∆tmax is about
two orders of magnitude larger compared to the EMP. In other words, the ions, which are now
the primary species, are moving on the PES generated by electronic structure method of prese-
lected accuracy, in most cases a DFT method. The rational being, that the DFT methods strike
an optimum balance between accuracy and feasibility. The disadvantage is that the electronic
dynamics cannot be followed and that the electronic Hamiltonian Ĥe has to be diagonalized for
each new position of the ions {~RI(tm)}. Given the above estimate ∆tmax ∼ τI

10 ∼ 1 fs, this is
computationally a very demanding procedure as the diagonalization has to be made thousands of
times, depending on the system/process under consideration. Let us now briefly outline the most
important diagonalization procedures.

3.3.2.1 Diagonalization of Ĥe

The most straightforward procedure is to transform the solution of the partial differential
equation (16) to an algebraic equation. If we consider a single-particle variant of Eq. (16)16,
and expand the solution in a basis, {χν}, Eq. (201), we have after multiplication by χ∗λ and
integration over ~r the following set of homogeneous algebraic equations∑

ν

(Hλν − ελδλν) cλ = 0. (276)

The eigenvalues are determined by the condition

|Hλν − ελδλν | = 0. (277)

For each {ελ} a different set of coefficients c are obtained and hence, also a set of the solution
{ϕλ}. The above procedure is a highly non-linear problem as the Hamiltonian itself depends on
the set of occupied wave functions {ϕocc

λ }. Hence, the wave functions have to be found by an
iteration procedure, where an initial guess for the wave functions {ϕm=0

λ } is used to construct

16If the same procedure is used in a many-body approach, the determinants play the role of the many-body basis.



Reformulation of basic equations 85

the initial guess for the Hamiltonian matrix Hm=0
λν . Diagonalization of Hm=0

λν yields the first
iteration on the wave functions {ϕm=1

λ } from which a new guess Hm=1
λν for the Hamiltonian

matrix is constructed, and so on. However, such a procedure is usually divergent and in order to
stabilize the procedure, the so-called mixing scheme has to be adopted. In the mixing scheme,
the new charge density is computed as a weighted combination of the charge densities from the
previous steps: ρm+1(~r) = αρm+1(~r) + (1− α)ρm−1(~r), (α � 1). The computational cost of
direct diagonalization is O(M3). Typically M � Ne, especially with basis sets such as plane
waves, where M may easily as large as O(105). Most of the computational work is wasted to
generate unoccupied states.

There are several ways to overcome the aboveO(M3) scaling deadlock. The full matrix diag-
onalization, yielding all M eigenstates, can be replaced by a partial diagonalization [174, 175],
yielding only the lowest Ne eigenstates. In this way the numerical cost of the diagonalization
can be reduced to O(N2M).

A more radical approach abandons diagonalization schemes altogether and replaces them by
direct minimization schemes [122]. Obviously, such an approach is only valid if the total energy
is a single minimum function with respect to the expansion coefficients (Eq. (201)). In most cases
this is indeed the case. This assumption can be tested by repeated minimizations with different
initial conditions.

Perhaps the simplest way to find a minimum of a function with many variables17 is provided
by the steepest descent (SD) method, which can be formulated as

ϕ̇i (~r, t) = − δ̄E

δ̄ϕ∗i (~r, t)︸ ︷︷ ︸
constrained
gradient

= − δE

δϕ∗i (~r, t)︸ ︷︷ ︸
unconstrained
gradient

+ constraints︸ ︷︷ ︸
orthonormality

= −Heϕi (~r, t) + constraints, (278)

where the dot indicates derivative with respect to a fictitious time variable t labeling the suc-
cessive approach steps {ϕ(m)

i } toward the minimum and δ̄/δ̄ϕ∗i (~r, t) indicates the constrained
functional derivative that preserves the orthonormality of the wave functions. The constrained
derivative can be replaced by an unconstrained derivative δ/δϕ∗i (~r, t) followed by reorthonor-
malization of the new set of wave functions using for instance the well-known Gram-Schmidt
orthogonalization scheme. Note, that if one neglects the constraints, Eq. (278) is equivalent
to time-dependent Schrödinger equation in imaginary time. Hence, the SD procedure can be
thought of as a way of projecting the trial wave function onto ground-state wave function. In
discretized form Eq. (278) becomes

ϕ (~r, t+ ∆t) = ϕ (~r, t)−∆tHeϕi (~r, t) + constraints, (279)

where the time step ∆t fixes the time-scale and the convergence rate of the SD scheme. It
plays the role of the ordinary mixing parameter. The procedure described in Eq. (279) must be
started from an initial guess {ϕi(~r, t = 0)} that is nonorthogonal to the ground-state. In such a
case, applying the Gram-Schmidt orthonormalization, iteration of Eq. (279) will provide in the
in sufficiently large limit (t→∞) the ground-state wave functions {ϕi(~r, t→∞)}.

17In large-scale computations the number of optimization parameters may be as large as O(105 − 107).
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Fig. 24. Schematic illustration of nearly orthogonal steps in minimizing a quadratic function using SD
algorithm compared to efficient CG algorithm.

The procedure defined in Eqs. (278), (279) is usually far from efficient. The function near
the minimum has often quadratic shape and the SD procedure generates steps which are often
orthogonal or nearly orthogonal to one another which results in very many steps required to reach
the minimum; Fig. 24.

Such a drawback can be eliminated using methods taking account of the matrix of second
derivatives, i.e. the Hessian A. The problem is that the size of A is NeM × NeM and hence,
its computation is impractical. Fortunately, there are methods, such as conjugate gradients
(CG) [176], which allow to take advantage of the information contained in A without explic-
itly constructing it.

Let us outline the basics of the CG method and suppose that the function to be minimized can
be approximated by a multidimensional quadratic form around some point P taken as the origin
of the coordinates ,

f (X) ≈ c− 〈b|X〉+ 1
2
〈X|A |X〉 , (280)

where

X ≡ (x1, x2, · · · , xL) , c = f (P ) , b = −∇f |P , Aij =
∂2f

∂xi∂xj

∣∣∣∣
P

, (281)

with a symmetric positive-definite L × L Hessian matrix. An iterative minimization procedure
is then defined by the sequence

P (m+1) = P (m) + λ(m)h(m); m = 0, 1, 2, · · · , (282)
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where λ(m) is a scalar obtained by a one-dimensional minimization along the direction h(m) in
the multidimensional space of the expansion coefficients defined by

h(m) =
{
g(m),m = 0
g(m) + γ(m−1)h(m−1),m = 1, 2, 3, · · · (283)

and

g(m) = −∇f
(
P (m)

)
,

γ(m) = 〈g
(m+1)|g(m+1)〉
〈g(m)|g(m)〉 .

(284)

The hm are conjugate and for a quadratic function, Eq. (280), satisfy the conjugacy prop-
erty [176]〈

h(n)
∣∣∣A ∣∣∣h(m)

〉
= 0 ∀n 6= m. (285)

The property (285) guarantees that each step is a definite improvement over all the preceding
ones and eliminates the difficulties with canyon-like quadratic functions. The important ingredi-
ent of the CG algorithm is that the Hessian matrixA is never explicitly required. The CG method
is widely used in optimization problems and the cost of a single step is comparable18 to that of
the much less efficient SD algorithm. It is therefore natural to apply it to the electronic structure
problem [122]. A difficulty arises in the electronic structure problem due to the orthonormality
constraints between the single-particle orbitals. The constraints originate forces of constraint
that must be taken into account in the line minimizations. The orthonormal orbitals {ϕi} may be
related to independent but not orthonormal orbitals {φi} via

ϕi =
∑

j

S
−1/2
ij φj , (286)

where Sij = 〈φj |φi〉 is the overlap matrix. The functional derivative with respect to the non-
orthonormal orbitals {φi} becomes [122]

− δE

δφ∗i (~r, t)
= −Ĥeφi +

∑
m

〈φm| Ĥe |φi〉φm︸ ︷︷ ︸
constraint force

. (287)

This is all we need to set up the CG procedure defined in Eqs. (282)-(284). In order to eval-
uate the line minimizations along the conjugate directions {hm}, we may adopt a parabolic
approximation [177] or can treat the orbitals in a non-selfconsistent manner along the conjugate
directions [122]. Initially orthonormal orbital will become non-orthonormal after a CG step and
hence it is numerically convenient to reorthonormalize the {φi} orbitals after each step.

An important issue is related to existence of different length scales, which often hampers
the rate of convergence. The problem can be solved by preconditioning, i.e. by introduction of
a metric that brings all degrees-of-freedom onto the same length scale. The preconditioning is

18A count of the dominant operations yields an overhead factor of ∼ 2.
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particularly simple for the plane wave basis set. For large ~G vectors, the total energy is domi-
nated by the kinetic energy, which is diagonal in the plane wave representation. Based on this
observation, several preconditioners have been proposed [177–179]. We take the preconditioner
described in Ref. [177] as a representative example,

K~G ~G′ = δ~G ~G′
27 + 18x+ 12x2 + 8x3

27 + 18x+ 12x2 + 8x3 + 16x4
; x =

Ekin

(
~G
)

Emax
kin

, (288)

where Emax
kin is an energy cutoff below which the components of the gradient are to be left un-

changed. The K has the required properties: approaches x = 0 with a value of 1, has derivatives
up to third which guarantees that the low-wave-number components are left unchanged. Above
x = 1,K approaches 1/[2(x−1)]. At small |~G|the algorithm is equal to the

∣∣∣~G∣∣∣ the precondition-
ing avoids spending of most of the optimization making small changes to the high-wave-number
components.

The efficiency of the CG method is compared with other methods in Fig. 25. As can be
seen, the CG approach to minimum is significantly faster than the alternative methods, such
as CG or the Davidson [174] method, especially in difficult to converge situations, such as for
disordered systems. The effect of preconditioning is equally pronounced. As mentioned in
chapter 3.1.5.9, problems are bound to arise if dealing with the electronic free energy functionals.
The optimization can be stabilized by techniques of density mixing akin to what is done in
straightforward matrix diagonalization.

Above we have introduced the all-band formulation of the CG method. An alternative for-
mulation uses the CG iteration individually for each orbital. The advantage of the band-by-band
method [177] is that if the rate of convergence of individual bands exhibits pronounced variations,
the slowly converged orbitals are not hampering the convergence of the faster converging orbitals.
The example of a molecule impinging on a surface from chapter 2, is a prototypical case. Only a
few molecular and surface states around the Fermi level are affected as the molecule approaches
the surface the rest showing only little variation. Hence, the optimization can be tailored individ-
ually for each orbital. The downside is that many operations (for example all terms depending
on the charge density), which were performed only once in the all band-method have now to
be recomputed over and over again for each orbital. Moreover, the fast-converging orbitals will
benefit little from the conjugacy property (285), as only few steps or perhaps only a single step
will suffice to bring them to convergence.

A different approach to diagonalization of the electronic Hamiltonian is based based on ex-
trapolation. A well-known representative is the so-called Direct Inversion of the Iterative Sub-
space (DIIS) method [181, 182]. DIIS uses the information on n previous optimization steps
of both the wave function coefficients {cki } and error vector {ek

i }. The best approximation to
the final solution within the subspace spanned by the n stored vectors obtained in a least square
sense

c
(n+1)
i =

n∑
k=1

dkc
(k)
i (289)
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Fig. 25. Left panel: The rate of convergence of the total energy E in SD, modified SD (MSD) [180] and
Davidson iterative minimization [174] for (a) Si crystal and (b) a strongly disordered system of Si atoms.
Right panel: Effect of the preconditioning on the rate of convergence of the CG method for the Si crystal
system. Original method refers to the MSD algorithm.

subject to the restriction

n∑
k=1

dk = 1. (290)

The expansion coefficients {dk} are calculated from the following system of linear equations
b11 · · · b1n 1
...

. . .
...

...
bn1 · · · bnn 1
1 1 1 0




d1

...
dn

−λ

 =


0
...
0
1

 , (291)

where {bkl} are given by

bkl =
∑

i

〈
e
(k)
i |e

(l)
i

〉
. (292)
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Λ

Fig. 26. Illustration of the drag-effect on the ions due to systematic errors induced by use of first-order
optimization of the electronic structure. The ions are schematized by an open circle and the electronic
structure by a hat-shaped structure over the ion. Left: initial configuration of the combined system of
electrons plus ions; Right: situation after the ions start moving.

The error vectors are unknown but can be approximated. Within the quadratic model we have

e
(k)
i = −K−1δ

(k)
i .

In the same approximation, assuming constant K, the new trial vectors become

ci = c
(n+1)
i −K−1δ

(n+1)
i (293)

where the estimate of the derivative of the energy is

δ
(n+1)
i =

n∑
k=1

dkδ
(k)
i . (294)

The new trial vectors are not orthonormal and hence a reorthonormalization is required. The
efficiency of the DIIS procedure is comparable to that of CG.

3.3.2.2 Accuracy issues

BO dynamics that combines ionic dynamics, either classical (chapter 3.2.1) or quantum via
path integral description (chapter 3.2.2), in combination with the optimization techniques for
the electronic degrees-of-freedom described above has to be applied with care. One problem
that occurs is that this procedure may generate a systematic error in computation of the forces
acting on the ions. The problem can be understood by inspection of Fig. 26. Imagine that the
electronic structure has initially been perfectly optimized and accurate ionic forces obtained. Us-
ing these forces, ionic degrees-of-freedom can be propagated using, for instance, Eqs. (273) –
(275). At that point the electronic structure is “left behind” the ions by some distance. What the
(“first-order”) electronic optimization is doing is to push the wave functions and the associated
charge densities “on top” of the new atomic positions. This may be done with arbitrarily high,
but always finite accuracy. As a consequence, the electrons even after reoptimization will remain
lagging behind the ions by some amount ∆. As the ions keep moving, the situation will repeat
itself and as a result, the finite accuracy of the electronic optimization will lead to generation
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of a systematic artificial “braking” force. As a result, the ionic dynamics will not be conserva-
tive. In microcanonical ensemble, there will be a spontaneous decrease of the temperature. In
canonical ensemble the thermostats will keep the temperature constant, but the thermostat will
be constantly compensating the energy drained from the ions. In either case this procedure will
lead to violation of the constants-of-motion.

A way to prevent this situation from happening is to provide at each step some degree of ran-
domness in the initial set of wave functions. This can be achieved by wave function extrapolation
schemes, where the new set of guess functions are generated by the following algorithm [173,
184]

ϕ̃i (~r, t+ ∆t) = ϕi (~r, t) + α [ϕi (~r, t)− ϕi (~r, t−∆t)] (295)
+ β [ϕi (~r, t−∆t)− ϕi (~r, t− 2∆t)] + constraints︸ ︷︷ ︸

orthonormality

.

Hence, the initial guess is constructed by extrapolation, using three previous electronic config-

urations. The extrapolation coefficients {α, β} are fixed by minimizing the norm ‖ ~̃R(t+ ∆t)−
~R(t+ ∆t)‖ with { ~̃R(t+ ∆t)} being the ionic coordinates extrapolated in the same way as the

wave functions. In most applications setting β
!=0 and using just a first-order extrapolation is

perfectly sufficient. The extrapolation scheme (295) leads to a more efficient electronic opti-
mization but does not solve the problem of the drag force on the ions. Fortunately, one can setup
a procedure which can extrapolate the wave functions so that they can both leg behind as well as
overtake the ions depending, for instance, on the conservation of the constants-of-motion [185].
In this way a perfectly correct, conservative and rather efficient BO dynamics can be generated.

3.3.3 Car-Parrinello dynamics

A completely new approach to solving the dynamics for the combined system of electrons and
ions was proposed by Car and Parrinello (CP) [186]. The aim is to set up an automatic process
where time-scales of both electrons and ions are comparable. In the EMD the time-scale is
completely determined by the electrons, which, in turn are propagated in time without the need
to diagonalize the electronic Hamiltonian Ĥe. Just the opposite is true of the BOMD. From
this point-of-view the CP method in a clever way combines the advantages of both previous
approaches. In simple terms, the time-scale is set somewhere inbetween the electronic and ionic
time-scale and the wave functions are optimized automatically as the ions evolve on the PES.

Let us now outline the CP method. Each point on the PES is considered as being a func-
tional of the electronic degrees-of-freedom, i.e. of the single-particle wave functions {ϕi} used
to build the many-body wave function Ψ0 and of the ionic positions {~RI}. Hence we have
E[{ϕi}, {~RI}] = 〈Ψ0(~RI)|Ĥe(~RI)|Ψ0(~RI)〉 (where Ψ0(~RI) = det{ϕi} or a combination of
more determinants, Eqs. (20), (21)). We have seen above (Eqs. (278), (279)), how local optimiza-
tion procedures can be used to find the minimum of E[{ϕi}, {~RI}]for fixed ions. Let us now
assume that we want to optimize both degrees-of-freedom to the global minimum in the spirit of
simulated annealing [187]. This can be done using MD techniques, which are usually formulated
in terms of Lagrangean dynamics with a Lagrangean L = K −U . Clearly, U = E[{ϕi}, {~RI}],

and KI = 1
2

∑NI

I=1MI
~̇R

2

I . What remains to be fixed is the classical “kinetic energy” Ke of the
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single-particle orbitals. By analogy with the first-order Eqs. (278), (279), where the “velocity”
of the wave functions was fixed by the time-step ∆t, let us assume that the velocity is fixed by
a fictitious “kinetic energy” Ke = 1

2

∑Ne

i=1 µi〈ϕ̇i|ϕ̇i〉, where µi is a fictitious mass of the orbital
ϕi. With this in mind, following Car and Parrinello [186], we can write the following Lagrangean

LCP

[
{ϕi} , {ϕ̇i} ,

{
~RI

}
,
{
~̇RI

}]
=

NI∑
I=1

1
2
MI

~̇R
2

I+
Ne∑
i=1

1
2
µi 〈ϕ̇|ϕ̇〉︸ ︷︷ ︸

kinetic
energy

−E
[
{ϕi} ,

{
~RI

}]
︸ ︷︷ ︸

potential
energy

+ constraints︸ ︷︷ ︸
orthonormality

. (296)

The corresponding Newton’s equations-of-motion are obtained from the Lagrange equations

d

dt

δLCP

δϕ̇∗i
=
δLCP

δϕ̇∗i
(297)

d

dt

∂LCP

∂ ~̇RI

=
∂LCP

∂ ~RI

. (298)

The CP equations-of-motion take the following form

µiϕ̈i (~r, t) = − δ

δϕ∗i (~r, t)
E
[
{ϕi} ,

{
~RI

}]
+

δ

δϕ∗i (~r, t)
contraints (299)

MI
~̈RI (t) = − ∂

∂ ~RI

E
[
{ϕi} ,

{
~RI

}]
+

∂

∂ ~RI

contraints. (300)

The constraints are very important as they induce forces of constraint. We have seen an example
of the orthonormality constraint,

∫
d~rϕ∗i (~r)ϕj(~r) = δij , above (Eq. (287)), when discussing the

CG algorithm. In the present case we have

constraint =
∑
ij

εij

(∫
d~rϕ∗i (~r)ϕj (~r)− δij

)
, (301)

where εij is the Hermitian matrix of Lagrange multipliers. Assuming there is no constraint on
ions, equations (299), (300) thus take the form19

µiϕ̈i (~r, t) = −Ĥe

[
{ϕi} ,

{
~RI

}]
ϕi (~r, t) +

∑
j

εijϕj , (302)

MI
~̈RI (t) = −∇IE

[
{ϕi} ,

{
~RI

}]
. (303)

19In an expansion into a basis set (201), the derivative implies the derivative of the expansion coefficients. As an
example of Eq. (302) we show the explicit form in a plane wave basis set µic̈i

(
~G
)

= −H~G ~G′ci

(
~G
)
+
∑
j

εijcj

(
~G
)

.
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In principle one could start solving these equations and simultaneously control the temperature

of the ions TI ∝
∑
I

1
2MI

~̇R
2

I and electrons Te ∝
∑

I
1
2µi〈ϕ̇i|ϕ̇i〉. However, the equations are

almost always used so, that−∇IE[{ϕi}, {~RI}] ∼ ~FI , which means that E[{ϕi}, {~RI}] is close
to min
{ϕi}

E[{ϕi}, {~RI}] . Notice, that if the condition min
{ϕi}

E[{φi}, {~RI}] is satisfied, ϕ̈i(~r, t) ∼ 0

and

Ĥe

[
{ϕi} ,

{
~RI

}]
ϕi (~r, t) =

∑
j

εijϕj . (304)

Equation (304) looks like an ordinary single-particle Schrdinger equation with solutions {ϕi}
which converge to linear combinations of true solutions. In order for the algorithm to work cor-
rectly, the initial guess for {ϕi(~r, t = 0)}must be such that they are nonorthogonal to the ground-
state. This may be achieved for example by starting from a randomly generated orthonormal set,
subsequently converged to the ground-state by some of the first order methods, such as CG or
DIIS. The solution may converge either to the true single-particle states or to their linear combi-
nations, the result depending on the orthonormalization scheme used. If the symmetry-breaking
Gram-Schmidt is used, {ϕi}will converge to true eigenstates of the Hamiltonian Ĥe [188]. How-
ever, if the objective is to solve Eqs. (302), (303), the constraints have to be implemented in a
way, that does not perturb the dynamics. For example, if we integrated Eq. (302) with Gram-
Schmidt orthonormalization, the resulting dynamics would be nonconservative. The constraints
for all degrees-of-freedom have to be implemented via Lagrange multiplier techniques, such as
RATTLE [189] or SHAKE [190]. The fact that the solutions converge to linear combination of
eigenstates would not matter if the Schrdinger equation was linear. Due to the self-consistency,
this is not the case. It still does not matter if all occupied states have equal occupation num-
bers {fi}, see Eqs. (139) – (141), as is the case for systems with even number of electrons at
T = 0. In such a case, a rotation of equation (302) which diagonalizes εij matrix is a unitary
transformation. This is the regime in which Eqs. (302), (303) have to be used.

The question remains how the CP method works. The system is out of equilibrium with
the electronic-degrees-of freedom at a “fictitious” low temperature Te ∼ 0 and ions at a finite
physical temperature TI . Clearly, the two subsystems will equilibrate in the t → ∞ limit.
Nevertheless, for many systems the CP technique provides a perfectly stable simulation condition
over relevant observation time-scales. The reason for this was analyzed in Ref. [191]. The
authors studied a model system of 8 silicon atoms arranged in a perfect diamond lattice, described
by DFT, with orbitals expanded in plane waves, time step ∆t = 0.3 fs, µi = µ = 300 a.u., with
atoms initially displaced from their equilibrium positions in the direction corresponding to the
optic phonon, in total 20000 time steps (6.3 ps) in microcanonical ensemble [191]. The computed
classical power spectrum of the electronic degrees-of-freedom obtained by Fourier transform of
the velocity autocorrelation function

γ (ω) =

∞∫
0

dt cos (ωt)
∑

i

〈ϕ̇i (t) |ϕ̇i (0)〉 (305)

(the horizontal bar indicates statistical, MD, averaging) are compared with the highest frequency
phonon mode of the nuclear subsystem in Fig. 27. It is evident, that for the chosen parameters
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Fig. 27. Left panel: Model system (see text). Upper panel: Power spectrum of the electronic subsystem
and harmonic approximation (Eq. (15)) thereof (line spectrum) [191]. The triangle indicates the highest
optic phonon frequency of the ionic subsystem. Lower panel: Various energies and constants-of-motion,
Eqs. (306) – (309) [191]. Right panel: Results for a real system, model of amorphous silicon described
by 64 atoms arranged in a cubic cell (Ecut = 12 Ryd, µi = µ = 612 a.u., time step ∆t = 0.24 fs in
microcanonical ensemble) [192]. Various energies and constants-of-motion.

the electronic and ionic subsystems are dynamically decoupled, their power spectra do no have
any overlap and hence the equilibration and the associated energy transfer from the “hot” ionic
subsystem to the “cold” electronic subsystem does not exist, or is taking place on time-scale
irrelevant compared to simulation time scales. Further details corroborating this argument are
shown in the same figure in terms of the following quantities

Econs = H =
∑

i

1
2
µi 〈ϕ̇i|ϕ̇i〉+

∑
I

1
2
MI

~R2
I + E

[
{ϕi} ,

{
~RI

}]
, (306)

Ephys = HI =
∑

I

1
2
MI

~R2
I + E

[
{ϕi} ,

{
~RI

}]
= Econs −Ke, (307)

Ve = Ke = E
[
{ϕi} ,

{
~RI ,
}]

(308)

Ke =
∑

i

1
2
µi 〈ϕ̇i|ϕ̇i〉. (309)

The quantity Econs is a classical constant of motion which should remain constant as all con-
straints are holonomic. As shown in Fig. 27, this is indeed the case. Note also that the kinetic
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energy of the electrons Ke exhibits bound small amplitude oscillations with no signs of the
electronic degrees-of-freedom heating up. This is very important, as Ke is proportional to the
deviation of the electronic structure from the ground-state, which has to be very small.

Another important feature is that the electronic degrees-of-freedom execute high-frequency
oscillations around the minimum. This is because Eqs. (299) and (302) are second order differ-
ential equations. In BOMD first order equations (ϕ̇i(~r, t) = −Ĥeϕi(~r, t)+ortho) are used and,
unless precautions are taken (see chapter 3.3.2.2 above), there is a systematic error generating a
drag force on the ions (see, Fig. 26).

Under which conditions can the adiabatic separation between the electronic and the ionic
deg-rees-of-freedom, we have seen in the model example above, be achieved and sustained? It
can be shown by simple harmonic analysis that the frequency spectrum of the classical electronic
deg-rees-of-freedom close to the minimum is [191]

ωij =
(

2 (εi − εj)
µ

) 1
2

(310)

where εi and εj are eigenvalues of occupied and unoccupied orbitals, respectively. Comparison
of the power spectrum and the harmonic approximation of Eq. (15) in Fig. 27 shows, that the
harmonic approximation works well. In the same spirit we can estimate the lowest electronic
frequency to be related to the electronic gap, Egap, by

ωmin
e ∝

(
Egap

µ

) 1
2

(311)

and, in plane wave expansion of the orbitals, by the same argument the highest frequency is
related to the energy cut-off, Ecut, by

ωmax
e ∝

(
Ecut

µ

) 1
2

. (312)

By the same token, the maximum time step in the discretization of the equations-of-motion (302),
(303) is inversely proportional to the highest frequency in the system, ωmax

e , and hence

∆tmax ∝
(

µ

Ecut

) 1
2

. (313)

Typical values for system with a band gap are µ = 500÷ 1500 a.u. and ∆t = 5÷ 10 a.u.
So far we have only discussed results of one model system [191]. In Fig. 27 we show results

from a realistic simulation, amorphous silicon at room temperature modeled by 64 atoms with
periodic boundary conditions applied [192]. The results are of similar quality and identical
conclusions to those from the model system can be drawn also for the realistic system.

More generally the following theorem can be proven [193]. There are constants C > 0 and
µ∗ > 0 such that

∆µ =
∣∣∣~Rµ (t)− ~R0 (t)

∣∣∣+ ∣∣|ϕµ (t)〉 −
∣∣ϕ0 (t)

〉∣∣ ≤ Cµ 1
2 , 0 ≤ t ≤ T (314)
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and the fictitious kinetic energy satisfies

Ke =
1
2
µ 〈ϕ̇µ (t) |ϕ̇µ (t)〉 ≤ Cµ, 0 ≤ t ≤ T (315)

for all values of the parameter µ satisfying 0 ≤ µ ≤ µ∗, where up to time T > 0 there exists
a unique nuclear trajectory on the Born-Oppenheimer surface with ωmin

e > 0 for 0 ≤ t ≤ T ,
i.e. there is always a finite electronic excitation gap. In Eqs. (314), (315), µ and 0 indicate
trajectory obtained by CP dynamics and BO dynamics, respectively. Note that the theorem above
guarantees that not only the nuclear trajectory but also the wave function will stay close to the
correct one.

Do the above arguments mean that the CP dynamics is only applicable to systems with gaps?
What happens if we want to treat gapless systems, or systems with very small gaps, Egap → 0?
An obvious solution is to control the deviation of the electronic degrees-of freedom from the
BO PES. This can be done by reoptimization of the electronic degrees-of-freedom periodically,
as was done in the first applications of the CP method to metallic systems [194, 195]. A more
elegant solution was proposed in Ref. [196]. The electronic and ionic subsystems were coupled
to separate Nosé-Hoover thermostats [146–148], Eqs. (235), (236). In the most general case (see
chapter 3.2.1 on application of thermostating above) a chain of L thermostats can be attached to
electron subsystem

µiϕ̈i (~r, t) = −Ĥeϕ (~r, t) +
∑
ij

εijϕj (~r, t)− µiη̇1 (t) ϕ̇i (~r, t), (316)

Qe
1η̈1 (t) = 2

[
occ∑
i

µi 〈ϕ̇i (~r, t) |ϕ̇i (~r, t)〉 − T 0
e

]
−Qe

1η̇1 (t) η̇2 (t) , (317)

...
...

...
Qe

l η̈l (t) =
[
Qe

l−1η̇
2
l−1 (t)− kBT

0
e

]
−Qe

l η̇l (t) η̇l+1 (t) (1− δlL) , l = 2, 3, · · · , L, (318)

and a chain of K thermostats to the ions

MI
~̈R (t) = −∇E −MI ξ̇1 (t) ~̇R (t) , (319)

Qn
1 ξ̈1 (t) =

[∑
I

M I
~̈RI − 3NIkBT

]
−Qn

1 ξ̇1 (t) ξ̇2 (t) , (320)

...
...

...
Qn

k ξ̇l (t)=
[
Qn

k−1η̇
2
k−1 (t)−kBT

]
−Qn

k η̇k (t) η̇k+1 (t) (1− δkK), k = 2, 3, · · · ,K. (321)

The thermostats counterbalance the energy transfer from the “hot” ions to the “cold” elec-
trons and thus significantly contribute to maintaining adiabaticity [197]. The CP method has
to be used with extreme caution when applied to gapless systems. The additional complication
is that the orbitals cannot have variable occupation numbers {fi(β)}. In most cases the simu-
lation temperatures are low enough to be approximated by T ≈ 0 and the variable occupation
numbers are used to allow charge flow between different ~k-points used to sample the Brillouin
zone [128–130]. Hence, the use of fixed occupation numbers also means that the system should
be large enough to consider the Brillouin zone to be point-like. There are also accuracy issues.
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Consider the system from chapter 2, of a molecule dissociating over a surface. The dissociation
is normally electronically driven by populating more antibonding molecular state(s). The repop-
ulation is induced by the molecule-surface interaction. Such a process may be hard to correctly
capture by the CPMD, while relatively easy to include in the explicit diagonalization of the elec-
tronic Hamiltonian in the BOMD. These arguments suggest, that for metallic systems or systems
where the electronic structure exhibits pronounced qualitative variations, the BOMD may be the
preferred approach [26].

How does the numerical efficiency of the CP method compare to the EMD and the BOMD?
Within plane wave basis sets, fixed by the plane wave cutoff energy Ecut, the highest electronic
frequency in the EMD is ωEMD

e ∼ Ecut, whereas in CPMD ωCPMD
e ∼ (Ecut/µ)

1
2 (Eq. (312)).

Hence, the electronic frequency increases much more slowly with Ecut in the CPMD than in
the EMD. Taking realistic values for µ yields τCPMD

e ≈ 10−15, which is about one order of
magnitude larger than τEMD

e ≈ 10−16. Comparison with the BOMD is harder to draw, as the
electronic time-scale is irrelevant. For very slow ionic processes and/or metallic systems the
BOMD, which allows much larger ionic time steps to be taken, may be the method of choice.
On the other hand, for systems with a gap and a reasonably fast ionic dynamics, the CPMD is
almost invariably the faster and also more convenient method.

3.3.4 From dynamics to optimization

Often we are not interested in full system dynamics. Imagine, for example, that the task was
to determine the surface structure of a reconstructed surface. We could either use our intuition
and come up with a series of competing surface structures or could use the experimental in-
formation in terms of, e.g., scanning tunneling microscopy (STM) images. In the first case we
would have to find the equilibrium ground-state structures for the surface structure models under
consideration. In the second case, we would have to guess the surface structure from the experi-
mental image20 and compute the simulated STM image for the proposed structure and compare
the simulated and experimental image. In either case a relaxed surface structure is a necessary
prerequisite. Perhaps the simplest way of stating this problem is by starting from the dynamics
equations (302), (303), and reformulating them as steepest descent (SD) equations

µiϕ̇i (~r, t) = −Ĥe

[
{ϕi} ,

{
~RI

}]
ϕi (~r, t) + constraints︸ ︷︷ ︸

orthonormality

, (322)

MI
~̇RI (t) = −∇IE

[
{ϕi} ,

{
~RI

}]
. (323)

The equations should be used so, as to first allow the electronic degrees-of-freedom to converge to
the ground-state for the initial configuration of atoms {~R0

I}. In such a case −∇IE[{ϕi}, {~RI}]
= ~F 0

I . Using these forces in solving Eq. (323) will lead to a series of ionic configurations {~Rm
I }

which in the limit m → ∞ will yield the (local) atomic structure. In a more elaborate search
one could use the ideas of simulated annealing [187]. In many cases an educated initial guess
for the starting structure {~R0

I} will help to speed up the search for the desired relaxed atomic
structure. Clearly, similarly as in the case of electronic structure optimization (see above) the

20The STM images provide information on electronic rather than atomic structure.
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approach outlined in Eqs. (322), (323) is very inefficient. An alternative and more efficient way
is based on use of CG [176] or DIIS [181, 182] optimization methods for both electronic and
ionic degrees-of-freedom. A very significant body of applications is in the spirit of optimization.

3.3.5 Parallelization and O (N) methods

The computational load associated with the combined electron-ion dynamics is often prohibitive.
This load can be to a certain degree reduced by chosing the optimal technique (EMD, BOMD,
CPMD), but even with the best technique many simulations are requiring production runs of
length which is impractical. The length- and time-scale are fixed by the nature of the problem
studied, and hence the computational speed up must be achieved by other means than reduction
of the system size or time. Two techniques are widely used: (a) spreading the load over more
processors, i.e. use of parallel computing, and (b) use of methods that scale linearly with the
system size or so-called O(N) methods. Both are dealing with the length-scales. To make the
time-scales more manageable still represents a major challenge21.

We briefly introduce the techniques which help to deal with the length-scales. With the de-
velopment of parallel supercomputers, it has become clear, that it will be possible to reduce the
workload by distributing it over more processors. At variance with classical molecular dynamics,
due to huge imbalance between the workload needed for integrating the equations-of-motion for
the electronic and ionic degrees-of-freedom, it makes sense to parallelize only over the electronic
degrees-of-freedom. In detail, the parallelization strategies depend on the method to be paral-
lelized. Nowadays, most of the electronic structure methods, including the many-body quantum
chemistry methods and QMC methods, have been parallelized. One of the first attempts at par-
allelization in this field was parallelization of the DFT plane wave pseudopotential codes [184,
200, 201]. We take that method as an example. Using plane wave basis representation we have
the following mapping of the wave function ϕi(~r)into an array C,

ϕi (~r) = ϕn,~k (~r) =
1
Ω

∑
~G

cn,~k
~G

exp
[
i
(
~k + ~G

)
· ~r
]
⇒ C (M,Nb, Nk) , (324)

where n is the band index, ~k indicates the k-points used to sample the Brillouine zone, and Ω
is the unit cell volume. In array C,M represents the number of plane waves used to expand the
wave functions, Nb represents the number of electronic bands, and Nk denotes the number of
k-points. These quantities typically scale with the number of atoms Na in the following way

M ∼ (100− 1000)Na,

Nb ∼ (1− 10)Na,

Nk ∼ 1/Na
.

Observing the structure of the wave function representation, Eq. (324) it is easily seen that one
can consider a number of data driven approaches to parallelizing the calculations.

The simplest, and technically least demanding solution is parallelization over the k-points.
However, as we want to use parallel computers to solve the large systems, which large unit cells

21Recently techniques have been introduced, such as metadynamics [198, 199], which in a controlled way renormalize
the underlying potential energy surface (PES) and hence make simulations of even slow processes feasible.
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Fig. 28. Left panel: Example of division of parts of reciprocal (upper panel) and real space (lower panel)
over nodes. A cubic cell, a uniform 9 × 9 × 9 FFT grid and four computing nodes are assumed. The
x-column index in reciprocal space and the yz-plane index in real space is indicated by indices (1-9) in
square boxes, the node index (1-4) is also shown. Right panel: Variation of CPU time with basis set size
for two different parallel platforms (upper and lower panel) compared with a single processor computer
(CRAY X-MP) is shown as a function of the load (# of plane waves) for otherwise identical system. The
number of processors (n = 16 and 32) are shown as parameters.

and correspondingly small Brillouin zones, this way of distributing the load over the processors is
the least efficient one. More appealing is the divide by band, which represents a viable alternative.
However, the most benefit from parallel execution can be taken from a division of reciprocal and
real space over the processors. An example of division of a 9 × 9 × 9 grid over 4 processors is
shown in Fig. 28. All quantities are computed by parts on different nodes and the results obtained
by summations over the nodes. The summations over nodes require very simple communications
(simple real numbers) and hence do not represent a serious overhead. Each part of energy is
computed in the space in which it is diagonal. For example the kinetic energy is computed in the
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reciprocal space, while the energy due to the external potential is computed in real space. The
spaces are connected by Fast Fourier Transforms (FFT). The FFTs can also be parallelized [184].
However, parallelization of the FFTs require long-range communications.

The performance tests are shown in Fig. 28. As can be seen a parallel computer can always
outperform even a powerful single processor computer. The computational time for a well-loaded
parallel computer always scales with the number of processors, Fig. 28. For example, by dou-
bling the number of processors from n = 16 to 32, results in roughly halving the execution time
around the highest computational load considered. The scaling is slightly sublinear, as there are
communications overheads as well as some residual operations which are or cannot be paral-
lelized. In the opposite limit, Fig. 28, using too many processors for too small systems, results
in execution times almost independent of the number of processors. This happens, because in
this case the communications overhead is larger that the time spent in computing. Examples of
parallel computing for real-world applications will be shown below (chapter 4).

The parallelization strategy and efficiency is determined both by the method and also by the
basis set used. Obviously, for example paralleliztion of QMC techniques will use completely
different strategies than the above mentioned DFT plane wave pseudopotential technique. Cur-
rently most of the electronic structure methods are parallelized. As for the basis sets, the highest
parallel execution is typically achieved by using plane waves or real-space grids. Use of localized
basis sets results normally to somewhat lower parallelization efficiency.

Another way of approaching large length-scales in electronic structure calculation is use of
methods that scale linearly with the system size, say the number of electrons. These methods are
called orderN , orO(N) methods. O(N) methods evoke the “shortsightedness” of the electronic
structure. This means, that, for example, the charge density at point ~r, ρ(~r), depends only weakly
on the charge density at point ~r′ for |~r − ~r′| > Rc, Rc being a cutoff beyond which the fragments
are considered to be non-interacting.

If such a scheme could be established without compromising the accuracy, the consequences
would be far reaching both in the single-particle as well as in the many-body description. In
the single-particle case, one could split the “large” system into smaller fragments which would
be much cheaper to deal with. In the many-body approach the multireference wave function
description this would lead to substantial reduction in the number of integrals that need to be
evaluated. As a byproduct, solution of the O(N) problem would automatically solve also the
embedding problem22.

Many variants of O(N) single-particle methods exist [202–208]. O(N) variants even of
many-body methods, such as CI or QMC [209], have been proposed. We shall not go into de-
tails of these techniques. In general, the above mentioned division into non-interacting/weakly
interacting subunits is never perfect. In other words, if the “perfect” results are to be reproduced,
the numerical overhead is equal to the one for the “perfect” calculation. In addition, use of the
O(N) methods often requires an “expert” control over a number of parameters which control the
efficiency and the accuracy of the calculation. Only an optimum choice of these control param-
eters leads to the desired simultaneous reduction of the computational cost and a tolerable error
in the obtained results. On the other hand, many of the applications in areas where system size

22In the embedding problem the system under consideration is divided in different areas, which are treated at different
levels of accuracy. For example, the most important part of the system may be treated using the most accurate quantum
method, followed by a part treated by less accurate merhod, semiempirical method, empirical method, and finally by a
continuum model.
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is the major issue, such as materials science or bioscience [210] would not have been achieved
without the O(N) methods.

4 Applications: From the silicon crystal to technological processes

In this part we present a selection of applications deemed to demonstrate both the enormous
power of the techniques in dealing with description of matter at atomic/molecular scale as well
as the huge leap forward the techniques have made over the last two decades. A very important
milestone in this trail was the publication of the seminal paper by Car and Parrinello [186]. On
one hand, it may be seen merely as a technical contribution to solving the BOMD. However, a
critical look back reveals that that contribution was far deeper. One can safely say that a new
window on the atomic/molecular/nano-scale has been opened. What has changed was the ability
to open a computer-based “virtual laboratory”. For the first time it became possible to “shuffle”
atoms on the computer and watch the outcome of this virtual nanoscience or nanomanipulation.
Obviously, real laboratory atomic/molecular-scale nanoscience has witnessed a similarly dra-
matic development. This is a very fortunate harmony, as the experiment without the simulation
backup is typically perceived as incomplete, and obviously vice-versa, simulations without an
initial experimental stimulation are futile. In what follows is a very personal view of the ap-
plications of the ab-initio modeling methods, mainly drawn from the author’s own work, with
no aspiration to cover all the facets of the atomic/molecular-scale modeling. Rather than hop-
ping through many different topics, applications which fall into natural groups, such as surfaces,
clusters or surface dissociation of molecules have been given priority.

4.1 Structurally disordered solids and liquids

4.1.1 Liquid and amorphous silicon

One of the earliest applications of the ab initio molecular dynamics techniques was to the disor-
dered Si phases: liquid Si (l-Si) and amorphous Si (a-sSi). This system was the testing ground
for the then new Car-Prrinello technique [186]. While for a-Si several structural models existed
and the properties were fairly well known both experimentally and theoretically, the structure
and properties of the l-Si were in the nineties a mystery. In addition, l-Si is still of key techno-
logical importance in production of Si wafers for electronic application. Understanding the melt
structure plays a crucial role in efforts to limit the defect concentration in the grown wafers.

Upon melting l-Si goes from a fourfold semiconducting structure to a metallic low coordi-
nated liquid with a density ∼ 10% higher than in the solid and structure factor dissimilar to that
of most liquid metals. The average coordination number is between 6 and 7, while most liquid
metals are closely packed with coordination number ∼ 12 − 14. The low coordination number
indicates a persistence of covalent bonding in the liquid. The problem point was also how to
reconcile the persistence of covalent bonding with metallic behavior and fast diffusion.

Such a complex wealth of contradictory physical properties was an ideal ground for tech-
niques of ab initio statistical mechaniques. Not surprisingly, approaches based on empirical
interatomic potentials [211–214] have had only limited success.

The results [194, 195] of one of the first plane wave pseudopotential CPMD simulation
(Eqs. (302), (303)) to real materials (64 atoms arranged in a simple cubic cell, TI = 1800K,



102 Computer Simulations for the Nano-Scale

Fig. 29. (a) Static structure factor and (b) pair correlation function. Full line: simulation; dotted line:
neutron diffraction experiment [215]; dash-dotted line, x-ray diffraction experiment [216].

Te = 0K, DFT in LDA approximation for exchange and correlation energies, Brillouin zone
sampled just at a single k-point, Ecut = 12 a.u., ∆t = 5.5 a.u., µ = 300 a.u., tsim = 1.2 ps after
equilibration) are shown in Figs. 29 – 32. As l-Si is metallic, an approximate adiabaticity of the
CPMD simulation was maintained by reoptimization of the electronic degrees-of-freedom ev-
ery 500 time steps. The electronic reoptimization was used in combination with a Nosé-Hoover
thermostat (Eqs. (235), (236)); see chapter 3.3.3 for alternative solutions.

The results obtained for the structure of l-Si, shown in Fig. 29, are in impressive agree-
ment with both neutron [215] and x-ray [216] diffraction experiments. The coordination number
obtained by integration of g(r) to the first minimum is ∼ 6.5 in perfect agreement with the
experimental value of ∼ 6.4 [215, 216]. Estimation of persistence of covalent bonding may be
assessed by triplet correlations, measured, for instance by bond-angle distribution function g3 ·g3
(not shown) exhibits a broad distribution peaked around angles close to the tetrahedral value.

The simulation generates simultaneously the ionic trajectories, Eq. (303) and the correspond-
ing ground-state electronic structure, Eq. (302). In this way the concept of persistence of covalent
bonding effects in l-Si can be put on a quantitative basis. In Fig. 30 the evolution of electronic
pseudo-charge-density ρ(~r) is shown in a plane defined by three neighboring atoms and com-
pared (Fig. 30(a)) with ρ(~r) is the (110) plane of crystalline silicon (c-Si). In Figs. 30(b) and (c)
the two distances between the triplet of atoms are quite close to the bond length in c-Si. Cor-
respondingly, the electronic densities have several common characteristics, such as a strongly
nonuniorm ρ(~r)and charge accumulation between pairs of adjacent atoms. This provides ev-
idence of persistence of covalent bonding in the liquid. Its subsequent evolution is shown in
Figs. 30(c)–(i). We can see how the charge densities respond to the atomic motion. When the
interatomic distances increase, the electronic pile-up between the atoms disappears. Also evident
is the strong correlation between the covalent bonding (Fig. 30(b)–(d)) and the triplet correlations
(bond-angles close to the tetrahedral angle of ∼ 109◦.

The atomic trajectories allow study of time-dependent phenomena and transport properties23.

23Note that transport coefficients can be obtained (within linear response, or Kubo theory) from equilibrium simulation.
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Fig. 30. Contour plots of the valence electronic density ρ(~r). (a) c-Si in the (110) plane. (b)–(i) evolution
of ρ(~r) in l-Si at time intervals of ∼ 5.5× 10−3 ps. The dots indicate the positions of the ions.

The diffusion coefficient can be obtained from the mean-square displacement [194, 195, 217]

R2 (t) =
1
NI

NI∑
I=1

[
~RI (t)− ~R (0)

]2
∼ 6Dt+ c, as t→∞, (325)

where D is the self-diffusion coefficient and c a constant. The horizontal bar indicates statistical
averaging. The long-time behavior of R2(t) exhibits a quasilinear behavior from which we
extract D ∼ 2.3 × 10−4 cm2 s−1. This extremely high value is at first glance at variance with
the persistence of covalent bonding. However, as can be inferred from Fig. 30, the dominant
process determining the properties of l-Si is a very rapid process of continuous bond breaking
and forming processes. The equilibrium between the two processes gives rise to simultaneous
existence of seemingly contradictory processes of fast atomic diffusion and covalent bonding.

The persistence of covalent bonding can be traced also in the dynamical properties. The
velocity autocorrelation function

Z (t) =
v (t) · v (0)
v (0) · v (0)

(326)
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Fig. 31. (a) Velocity autocorrelation function and (b) the corresponding power spectrum.

Fig. 32. Electronic properties of l-Si. (a) densities of Kohn-Sham eigenvalues from the simulation. The
vertical line indicates the Fermi level. (b) Electrical conductivity from the Kubo-Greewood formula. Drude
fit [219] is shown by dashed-dotted line.

along with the spectral density

Z (ω) =
2
π

∞∫
0

dtZ (t) cos (ωt) (327)

is shown in Fig. 31. The horizontal bars in formula (326) indicate statistical averaging. Z(t)
is always positive, leading to a high value of the diffusion coefficient D. Note, that Z(t) has
an oscillatory decay to zero after ∼ 1.15 ps. This is unusual, because most simple liquids ex-
hibits have a negative oscillation in Z(t). This is due to the so-called caging effect of the shell
of neighboring atoms [218]. The caging affect can be thought of as ion bouncing against the
cage formed by the first coordination shell of atoms and, as effect of the collision, reversing the
velocity. l-Si has much more open structure and exhibits no caging, but only effects due to the
occasional formation of covalent bonds. The power spectrum Z(ω) exhibits the low frequency
diffusive modes. In addition, vibrational modes reflecting covalent bonding are visible at around
40 meV, close to the optical vibrational frequency of c-Si below the melting point.

Another manifestation of the insight into the electronic properties of the system is shown in
Fig. 32, where the single-particle electronic density of states N(E) is reported. The N(E) ex-
hibits metallic behavior as evidenced by the absence of a gap at the Fermi energy. Given the per-
sistence of covalent bonding, the nearly free-electron behavior of N(E) may come as a surprise.
However, the free-electron like behavior is in agreement with x-ray-emission experiments [220].
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Fig. 33. Snapshot of a low-spin configuration of l-Si. Superimposed on the ball-stick model are isosurfaces
corresponding to the total charge of covalent bond (red) spin ↑ (yellow), spin ↓ density (blue). The super-
imposed zoom shows the lower left part of the unit cell. The numbers correspond to the lengths (in a.u.) of
he bonds.

In Fig. 32 we also report the electronic conductivity calculated from the Kubo-Greenwood for-
mula [221]

σ (ω) =
2π
Ω

∑
i,j

|Mij |2

ωji
δ (εj − εi − h̄ω), (328)

where Mij ∝ 〈ϕi| − i∂/∂~r |ϕj〉. Despite the short electronic mean free path τ , the calculated
σ (ω) exhibits Drude-like falloff σ (ω) = σ (0)/

1 + ω2τ2 in agreement with experiments [219].
The extrapolated value of σ (0) gives σdc = 0.38 a.u. in good agreement with the experimental
value of 0.27 a.u.

One might wonder why the electronic properties calculated from DFT theory, where the
single particle energies formally play merely the role of the Lagrange multipliers (see chap-
ter 3.1.5.3), exhibit overall good agreement with the experimentally measured values. The expe-
rience shows, that the single-particle levels, except for the discontinuity ofExcand the associated
error in the band gap (see chapter 3.1.5.10), which are irrelevant here, may often be a reasonable
approximation to the excitation energies.

One might also worry about the system size. Can 64 atoms arranged in a 4 × 4 × 4 cube
with applied periodic boundary conditions really reliably capture the liquid disorder? Finally,
the first set of simulations was done employing the spin unpolarized version of DFT [194, 195,
217]. A legitimate question arises about spin polarization effects as the covalent bonds are bro-
ken. l-Si exhibits also interesting temperature dependence of density, viscosity, surface tension,
and magnetic properties [222]. The latter raise the question of what the magnetic field couples
to. In order to provide the answers to some of those nagging questions, another simulation was
performed [223] with much larger simulation cell (8 × 8 × 8) employing BOMD and the spin-
polarized version of the GGA functional [58]. We have found that the original small simulation
cell was entirely adequate. The spin polarization does indeed play a role, but the effect is quan-
titatively relatively modest. The spin polarization does develop on the bonds of intermediate
lengths which are about to be broken, see Fig. 33. This spin fluctuations result in modifica-
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Fig. 34. Temperature dependence of the properties of the Si melt. Left panel: Static structure factor S(k),
Middle panel: Density of the Kohn-Sham states N(E), and Right panel: a.c. electrical conductivity σ(ω).
The temperatures in (a), (b), and (c) are T ∼ 1550 K, T ∼ 1250 K, and T ∼ 950 K, respectively.

tion of the attractive part of the interatomic potential leading to a slightly higher value of the
self-diffusion coefficient D ∼ 3.1 × 10−4 cm2 s−1 to be compared to the original value of
D ∼ 2.3× 10−4 cm2 s−1 and a slightly improved agreement of computed static structure factor
with experiment [224].

All in all, the original simulations of l-Si, which were among the very first applications of
the ab-initio CPMD techniques to real systems, confirmed the enormous power and wealth of
properties hitherto unheard of.

The next objective in this study was the amorphous phase of Si (a-Si) [192]. Despite the fact
that the structure and properties of a-Si were far better known than those of the liquid counterpart,
there were still a number of issues requiring the “first-principles” insight, such as the nature
of the dominant defects in disordered tetrahedral networks and their link with their physical
properties, or the dependence of the amorphous structures on the preparation conditions. There is
a huge difference between the liquid phase, which is a well defined thermodynamic phase and an
amorphous structure, which is not. The amorphous structure corresponds to a (metastable) local
minimum structure, and hence is strongly dependent on the preparation conditions. A special
problem was that most of the knowledge up to date was obtained with empirical interatomic
potentials which were heavily biasing the obtained results. With regard to the ab-initio techniques
the big question was how well these techniques will be able to describe the change from the
liquid phase, characterized by higher coordination (∼ 6.5), metallic and diffusive behavior, to
the predominantly 4-fold coordinated semiconducting amorphous phase.

The liquid system was first cooled from 1800 K to room temperature at a rate ∼ 1014 K/s,
about two orders of magnitude faster than the estimated laboratory cooling rates. During cooling
the lattice parameter was gradually adjusted so that at the end it corresponded to the smaller
lattice parameter of a-Si24. As the system was still metallic, the same type of dynamics and
parameters was used as in the case of l-Si. The changes which occur in the properties of the
melt upon cooling are shown in Fig. 34 [192]. As can be seen, the crossover from liquid-like

24This could, of course, be done by running the simulation at a constant pressure, but a higher plane-wave cutoff would
be necessary.
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Fig. 35. Characteristics of the annealed a-Si structure. Left panel: Pair-correlation function g(r). Solid
line: simulation; dashed line: neutron diffraction experiment [225]. The arrows indicate the positions of
the first three crystalline coordination shells. Right panel: Vibrational density of states Z(ω). Solid line:
simulation; dotted line: experiment [226].

to amorphous-like character is evident from the splitting of the broad asymmetric first peak of
S(k) in l-Si. At T ∼ 950 K S(k) is practically indistinguishable from that of a-Si at room
temperature (see below). The densities of the Kohn-Sham levels evidently start to develop a
pseudogap, which is accompanied by formation of a tetrahedral network. This is reflected in the
a.c. conductivities which lose the metallic, Drude-like behavior and exhibit zero conductivity in
the d.c. limit. This is a remarkable demonstration of how well the CPMD dynamics was able to
describe the liquid (metal) to amorphous (semiconductor) transition without any need to interfere
with the interatomic potential25.

The system so prepared was not stable and exhibited structural relaxations. In order to stabi-
lize the structure, the system was led through an annealing cycle during which the temperature
was raised to T ∼ 900 K let evolve and finally again reduced to 300 K [192]. The annealed sys-
tem was perfectly stable with the tetrahedral order significantly improved over the as-quenched
sample [192]. As a representative example we show in Fig. 35 the pair-correlation function
g(r)and the vibrational density of states Z(ω) computed for the annealed sample using formu-
las (326), (327).

The comparison of the calculated g(r) [192] with experiment [225] is impressive. The agree-
ment in the first peak is almost perfect, while some slight differences between theory and exper-
iment are visible in the second peak, pointing to a larger bond-angle disorder in the simulated
structure. Similarly, the comparison of the simulated Z(ω) [192] with experiment [226] is very
good. The main differences are a small and almost rigid (∼ 3 meV) shift toward lower frequen-
cies and an overestimation of the weight of the transverse acoustic (TA) peak with respect to
transverse optic (TO). The shift of the weight from the TO to the TA peak is one of the distinc-
tive features of the phonon spectrum of a-Si compared to the crystal [226]. The fact that this
is overestimated in the simulated vibrational spectrum is another indication that the structure is
more disordered than real a-Si.

25Such an ability is absent from the customarily used empirical interatomic potentials [213]. For example the protopy-
pical Stillinger-Weber potential is able to describe correctly (after reparametrization) two of the three condensd phases
(crystalline, amorphous, liquid), but not all three.
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The slight excess of disorder, which is to be expected given the rapid cooling rate and the
small (64-atom) simulation cell which add strain to the simulated sample, does not preclude study
of the structural defects, which will bear some similarity with those present in real a-Si. For a
long time, the dominant structural defect in a-Si, giving rise to the ESR (electron spin resonance)
signal was believed to be a threefold coordinated atom, known as a dangling bond [227]. Later,
instead, a fivefold coordinated atom or floating bond [228] was suggested as a viable candidate.
Analysis of the annealed a-Si sample gave a substantial support to the fivefold coordinated site
as the dominant structure defect [192]. Many of these defects are of weak bond type, such as a
fourfold coordinated site with a nearby threefold coordinated site which, due to slight network
distortions convert to a fivefold plus fourfold coordinated sites: T4 + T3 → T5 + T4. In addition
to the coordination defects, a-Si contains also topological defects. Unlike c-Si, which consists
only of sixfold rings in the structure, there is a large variety of ring sizes, both odd and even in
a-Si. It has been suggested that topological defects may have profound consequences on physical
properties of amorphous solids [229], such as, e.g. the shape of the electronic density of states
N(E). Analysis of the topological defects has shown that no atom in the simulated structure lies
in a local diamond-structure environment.

4.2 Solid surfaces

Solid surfaces represent a very important class of systems. They embody a massive defect where
the atomic structure deviates from that found in the bulk. In the simplest case the atoms relax
from their ideal bulk positions but qualitatively the bulk structure persists also on the surface. In
more complicated cases, such as for example on the semiconductor surfaces, the atoms undergo
reconstruction, whereby the atoms form surface structures significantly and qualitatively deviate
from the structure in the bulk. Moreover, surfaces are very important systems for stabilizing
nanostructures in nanotechnology, many industrial catalytic reactions take place on surfaces, etc.
Not surprisingly, surface science is one of the most active fields of solid-state physics and chem-
istry and materials science. The necessary prerequisite to all those applications is the knowledge
of the atomic and electronic structure, energetics, dynamics, chemical activity, etc. of the surface.
Some of these aspects will be described for selected examples below.

4.2.1 Takayanagi reconstruction of the Si(111) surface

The Takayanagi reconstruction [230] is observed on the (111) surface of silicon, silicon-germa-
nium alloys [231] and strained (compressed) germanium [232]. It is the one of the most complex
reconstruction so far observed on any semiconductor surface. The structure of the Si(111) sur-
face has been subject of continued interest since the first observation of the observed 7 × 7
reconstruction in 1959 [233]. A large number of models have been proposed for the structure but
only the model proposed by Takayanagi [230] is consistent with all the available experimental
measurements. The Takayanagi model incorporates the following features: (i) dimerization of
second-layer atoms, (ii) adatoms, and (iii) a stacking fault between the first and second layers of
atoms over one-half of the unit cell, see Fig. 36. Hence, the Takayanagi structure is commonly
referred to as the DAS model.

The extremely large area and vertical extent of the observed reconstruction presented a
formidable challenge to a fully ab initio calculation of the total energy and structural proper-
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Fig. 36. Upper panel: Top and side views of the 7 × 7 structure. Yellow color: adatoms; Blue color:
restatoms. Lower panel: Top view of a generalized series of 5× 5, 7× 7, and 9× 9 Takayanagi reconstruc-
tions.

ties of this surface. As there are very subtle charge-transfer processes between dangling bonds
on different surface atoms (adatoms and three-fold coordinated atoms in the first layer, the so-
called restatoms), an accurate treatment of the electronic structure is required in order to capture
these effects. For a long time this structure was considered to be too large for total energy meth-
ods. Ab initio calculations for this structure became feasible only after introduction of parallel
computing [184] in the spirit described in chapter 3.3.5 above. These technical advances made it
possible to perform a fully ab initio (plane wave pseudopotential) investigation of a generalized
series of 3 × 3, 5 × 5, and 7 × 7 structures, see Fig. 36 and Tab. VI for details, and to campare
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Tab. VI. Number of characteristic features in the Takayanagi DAS structures. The symbol 1/2 means
stacking fault over one half of the unit cell.

dimer adatom stacking fault restatom cornerhole atoms in supercell
3×3 3 2 1/2 0 1 68
5×5 6 6 1/2 2 1 200
7×7 9 12 1/2 6 1 400

their energetics [200]. Experimentally the 7 × 7 structure is the ground state structure for un-
strained Si(111) surface. Patches of 5× 5 and 9× 9 are observed on strained Si and Ge surfaces.
Simultaneously another group performed relaxation and total energy calculation for the 7 × 7
structure and compared it to the energy of the Si(100) surface [201].

Technical details of this first, truly large-scale calculation were as follows. The electron-
electron interactions were included in the local-density approximation of density-functional the-
ory in Perdew-Zunger’s parametrization [38]. For the 5 × 5 and 7 × 7 reconstruction the unit
cell is large enough for the Brillouine zone to be sampled by a single k point, the Γ point. The
calculation for the 3 × 3 structure was performed using four k-points to provide a comparable
accuracy of Brillouine zone sampling. The electronic wave functions were expanded in plane
waves with an energy cutoff of 7 Ry. The calculations were performed using slabs eight layers
thick with the central two layers kept fixed to simulate the bulk crystal termination of the surface.
A slab with two surfaces was considered with center of symmetry through the slab center.

The results of the calculations for the surface energy are shown in Tab. VII. The 7 × 7 DAS
structure has the lowest energy and the 5 × 5 and 3 × 3 are decreasingly stable. However, it
can be seen that the changes in the surface energies are saturating towards the 7 × 7 structure,
which indicates that the 9 × 9 and larger structures may not be energetically favorable. These
conclusions are corroborated also by analysis of the trends in the structural parameters [200]. The
dominant process in the DAS structure stabilization is an increased stabilization of the adatoms
which move inward towards the ideal tetrahedral positions across the series from 3× 3 to 7× 7.
A similar trend is observed also for the restatoms in the 5 × 5 and 7 × 7 structures. This trend
can, in turn be explained by charge transfer processes which can be assessed from the computed
charge densities n(~r) shown in Fig. 37. The main trend we observe is an increasing transfer of
charge from dangling bonds on the adatoms to the danging bonds on the restatoms across the
series from 3 × 3 to 7 × 7, which is to be expected from the increasing ratio of restatoms to

Tab. VII. Results for the surface energy calculations.

3×3 5×5 7×7
Energy per unit cell [eV] 10.765 29.205 56.509

Energy per surface atom [eV] 1.196 1.168 1.153
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adatoms. The decrease in the height of the adatoms can be explained by the reduction in the
charge in the dangling bonds on these adatoms and the consequent tendency towards sp2 rather
than sp3 hybridization. The charge density in the dangling bonds on the restatoms is smaller in
the 7 × 7 reconstruction than in the 5 × 5 because of the higher ratio of rest atoms to adatoms.
This explains the reduction in the height of the restatoms on moving from the 5× 5 to the 7× 7
structure. Interesting variations between the faulted and unfaulted halves of the unit cell was
observed. In the 3× 3 and 5× 5 reconstructions the charge densities on the adatoms in the two
halves of the unit cell are broadly similar. In the 7 × 7 reconstruction the charge densities in
the two halves of the unit cell are very different. In the unfaulted half of the unit cell the charge
transfer from the adatoms is significantly larger than in the 5× 5 structure and it is the same for
all the adatoms. In the faulted half of the unit cell the adatoms adjacent to the corner hole have
more charge than the adatoms in the middle of the unit cell and both adatoms have more charge
than the adatoms in the unfaulted half of the unit cell. These results are consistent with scanning
tunneling microscope images of the surface; see Fig. 37.

These simulations [200, 201] have had a very large impact on the field of the atomic/molecu-
lar-scale computer physics and chemistry as they paved the way for the truly large-scale applica-
tions which followed.

4.2.2 Dynamics of the Takayanagi reconstructed Si(111)-7× 7 surface

After having established the energetics and the mechanism of stabilization of the Si(111)-7 × 7
surface we turn to the dynamics of this surface. We show below, how the dynamics can be
determined in a nonstandard and computationally very appealing way. The dynamics of this
surface has been subject of interest since electron energy-loss spectroscopy (EELS) [235] found a
split-off 570 cm−1 vibrational mode, 10 % higher than the highest bulk mode of Si, and a broader
feature near 240 cm−1, see Fig. 38. The presence of the high-frequency mode is difficult to
reconcile with the usual picture of a reconstructed semiconductor surface, where bonds typically
undergo stretching.

While the EELS experiment identifies the unusual vibrational modes, it provides no answer
to the origin of these modes. This is a typical situation where a theoretical backup is required.
Several attempts have been made to shed light on the experimental results. Cluster model and ab
initio DFT calculation [235] assigned both the ∼ 570 and ∼ 240cm−1 modes to a z-polarized
vibration localized on the adatom and second-layer atom underneath the adatom moving out of
and in phase, respectively, see Fig. 38(a). Empirical interatomic potentials [236] found a more
complicated picture, with both modes localized on six atoms, see Fig. 38(b). However, both
models are based on methods which have well-known limitations. The cluster model is typically
a very poor representation of a surface which suffers from finite-size effects. The charge trans-
fer processes discussed above are in this model ignored altogether. The empirical interatomic
potentials are known not to be capable of a realistic modeling of semiconductor surfaces, and
hence it is not clear why the dynamical properties should not be plagued by the same problem.
In particular, the charge transfer processes so important for this surface are certainly not included
in this model.

Not surprisingly, a fully ab initio model based on accurate DFT treatment with a complete
model of the Takayanagi reconstruction (DAS surface model) [237, 238] provides not only quan-
titatively more accurate picture but, more importantly, the results, schematically shown in Fig. 38
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Fig. 37. Left panel: Contour plots of the charge density along the long diagonal in the unit cell of (a) 3× 3,
(b) 5× 5, and (c) 7× 7 Takayanagi DAS structures. The faulted half of the unit cell is in the upper part of
the unit cell. Right panel: Experimental STM image of the Si(111) — 7 × 7 structure [234]. The faulted
part of the unit cell is in the upper part of the image. Notice the correspondence between the computed
charge densities and the experimental image.

(c), exhibit also important qualitative differences. The vibrational properties are computed from
a short-time (∼ 1.2 ps) low-temperature (T ∼ 200 K) MD trajectory. How can we determine the
dynamics of a system as large as this? Given the system size it is preferable to use alternative
methods based on signal processing techniques rather than methods based on direct diagonal-
ization of the dynamical matrix. We show below how system dynamics can be extracted from a
very short and poorly equilibrated MD trajectory. Moreover, the simulation, at least in principle
is not limited by the harmonic approximation, which offers the possibility to estimate this ef-
fect. The simulation indeed provides evidence for enhanced surface anharmonicity with respect
to the bulk which should play a role in the 7 × 7 → 1 × 1 phase transition at T ∼ 1100 K.
The dynamical MD simulation provides a wealth of information on a number of properties of
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Fig. 38. Left panel: experimental EELS spectra [235]. Right panel: Labeling atoms accounting for the
surface modes, and a schematic sketch of the modes determined by EELS in various models. (a) ab ini-
tio cluster model [235], (b) model based on empirical interatomic potential [236], (c) fully ab initio MD
model [237, 238]. Red arrows depict the high-frequency mode, and blue arrows the 240 cm−1 mode.

the system. For example, at least the upper two layers are “chemically soft”, by which we mean
that the longer bonds associated with those layers exhibit large amplitude, lower frequency os-
cillations with vastly varying bond charge associated with them. On the other hand, unusually
strong, compressed bonds have been found between atoms in the second- and third-layer atoms.
Thse findings give intuitive hints as to the unusual vibration properties of the surface.

The simulation was based on the 400-atom model described above. The simulation was run in
(E,N, V ) ensemble using the BO dynamics with CG electronic optimization and wave function
extrapolation technique at each MD step, see chapter 3.3.2, 3.3.2.1 and 3.3.2.2, at a fairly low
temperature of T ∼ 200 K for 1.2 ps after initial equilibration.

In addition to the simple estimator Fourier transform (FT) estimator (326), (327) a more
sensitive class of spectral estimators based on the MUltiple SIgnal Classification (MUSIC) al-
gorithm [239] was also used. The reason is that the estimator (326), (327) has a very limited
resolution, namely ∆ω > 2π/τ for equally spaced modes, where τ is the total simulation time.
For very short simulation times the spectral resolution becomes very limited; in the present case
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∆ω ≈ 35cm−1. The resolution is even lower when two modes are exited with different ampli-
tudes. Thermal equilibration proceeds via mode-mode coupling, which is usually weak at low
temperatures. Hence, it may be difficult to extract information about weakly excited modes. In
particular, some modes may be undetectable because the limited resolution due to insufficient
MD observation time hides them inside the main or first aliasing lobe of a close, strongly excited
mode. Nowadays, somewhat longer simulation times would certainly be feasible. However, this
would still not solve the problem of a proper equilibration, unless one led the system through a
set of annealing/cooling cycles.

A more efficient way of dealing with the problem consists of use of a better spectral estimator
which can detect even very weakly excited modes. In the MUSIC algorithm [239] the space
spanned by the collected data is first separated into signal and noise space. In a quasiharmonic
regime the MD trajectory {|<̂(tk)〉} can be modeled by a linear combination of sinusoids,

∣∣∣<̂ (tk)
〉

=
P∑

l=1

|ℵl〉 {Al sin (ωltk) +Bl cos (ωltk)}+ C (tk) , k = 1, 2, · · ·M, (329)

where | · · ·〉 denotes a 3NI -dimensional column vector, with NI being the number of atoms,
|ℵl〉 the vibrational eigenvectors, |Al〉 and |Bl〉 the amplitudes, |ωl〉 vibrational frequencies, and
C additive noise. The MUSIC algorithm exploits the orthogonality between signal and noise
subspace to construct the estimator

PM (ω) =

[
eH
M (ω)

(
M+1∑

m=2P+1

qmq
H
m

)
eM (ω)

]−1

, (330)

where eT
M (ω) = (1, exp[iω(τ/M)], · · · , exp[iωM(τ/M)]), {q1, q2, · · · , q2P } span the signal

subspace, and {q2P+1, · · · , qM+1} span the noise subspace. PM (ω) has sharp peaks at ω = ωl,
and is negligible elsewhere. Compared to the FT estimator, PM (ω) typically achieves com-
parable resolution with ∼ 30 % collected data. An even better signal-to-noise separation can
be achieved by fully exploiting the information contained in the MD trajectory, using the self-
consistent variant of the MUSIC algorithm, wherein {|ℵl〉}, {|Al〉} and {|Bl〉} are all determined
by minimizing the cost function,

Ξ ({|ℵl〉} , {Al} , {B} , {ωl}) =
M∑

k=0

〈
< (tk)− <̂ (tk) |< (tk)− <̂ (tk)

〉
−

∑
i,j

Λi,j (〈ℵi|ℵj〉 − δi,j) , (331)

where Λi,j is the matrix of Lagrange multipliers imposing the orthogonality constraints. A
minimum of Ξ can be obtained by an iterative procedure using a constrained steepest descent
techniques [239]. The frequencies |ωl〉, on the other hand, are always estimated using the high-
resolution MUSIC estimator, but now applied to the partial trajectories obtained by projecting
the original MD trajectory |<(t)〉 onto the fitted eigenvectors {|ℵl〉}

|<l (t)〉 = |ℵl〉 〈ℵl | < (t)〉 (332)
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in a self-consistent manner. The new frequencies are used to determine a better estimate of the
eigenvectors, so improving the result until PM (ω) produces only a single well-resolve peak for
each projected trajectory. Compared to the FT estimator, PSCF (ω) typically achieves compara-
ble resolution with∼ 10 % of collected data. In the present case the resolution is ∆ω ≈ 5 cm−1.
A further improvement can be achieved by applying symmetry consideration and decomposing
the trajectory into a set of trajectories transforming according to a given irreducible transforma-
tion.

Within our model we are left with 151 independent atoms and 453 frequencies. It is not
possible or even meaningful to determine all of them. The search is limited to determining the
dominant dynamical features. The 7 × 7 cell is sufficiently large for translational symmetry to
have little effect on the results, and hence, we consider only the Q = 0 point in the Brillouin
zone. Decomposition of the trajectory according to the point-group symmetry C3v yields three
partial trajectories two of them transforming according to one-dimensional irreducible represen-
tations (A1, A2) and one according to a two-dimensional representation (E). According to group
theory [240] A1and E are IR and Raman active and A1 is also EELS active; 41 modes transform
according to A1, 110 according to A2, and 151 according to E.

The most important results from the dynamics analysis are shown in Fig. 39. A detailed
analysis of all modes found can be done [238]. To make a connection with the EELS ex-
periment [235], we limit ourselves to just the two experimentally determined modes. The ∼
240 cm−1 modes can be associated with peaks of all three symmetries (A1, A2, and E), while
the high-frequency ∼ 528 cm−1 split-off peak is composed of three peaks of A1 and E sym-
metries. The calculated A1 modes (left panel of Fig. 39 (d)) should correspond to the measured
EELS spectra (235). Both peaks can be regarded as in excellent agreement with experiments.
The different peaks can be associated with the motion of individual atoms. This assessment
can easily be made by inspection of the eigenvectors determined by the SCF MUSIC method.
Instead, we use a simpler procedure, namely the lower-resolution FT estimator projected onto
individual atoms (right panel of Fig. 39). We can clearly see that the signal derives from atoms 2
and 4, i.e. from the atoms underneath the adatoms. Those pairs of atoms create pairs of strongly
compressed bonds with bond lengths∼2.25Å as opposed to the bulk Si-Si distance of 2.35 Å, the
2.46 Å for the 1–3 atoms or 2.40 Å for the 1–2 atoms [237, 238]. This provides the answer to the
striking fact, how unusually high frequencies nonexistent in the bulk may exist on reconstructed
surfaces. The analysis of these results yields the assignment as shown in Fig. 38.

The aforementioned strong anharmonicity due to the “softness” of the surface can be assessed
from Fig. 39. The most striking feature is the width of the highest frequency mode peak of E
symmetry at ∼ 528 cm−1 with a satellite at ∼ 400 cm−1. This results from a strong mode
mixing due to the anharmonicity of the potential.

This simulation nicely demonstrates that often alternative techniques are required if one
wants to make most of the huge amount of data from limited, imperfect or incomplete simu-
lations, which is often all one can realistically hope for.

4.3 Interaction of molecules with surfaces

After having dealt with energetics and dynamics of solid surfaces it is of interest to know how
other objects, such as atoms and molecules interact with them. The interaction of particles with
solid surfaces is of interest from both technological and scientific point of view [241]. This is
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Fig. 39. Left panel: The self-consistent MUSIC spectra (full line) and the corresponding FT spectra (dashed
line). (a) FT spectra and MUSIC fit for the total trajectory; (b) The same but for the trajectory transforming
according to E; (c) The same but for the trajectory transforming according to A2; (d) The same but for the
trajectory transforming according to A1. All spectra are normalized to 1. Right panel: Projected FT spectra
onto individual atoms. (a) Adatom spectra corresponding to the four different adatom types. (Spectra of
atom 3 (for labeling see Fig. 38).. (c) Spectra for restatoms. (d) Spectra of atom 2 (for labeling see Fig. 38).
(e) spectra for dimers. (f) Spectra of atom 4 (for labeling see Fig. 38). The different lines in each figure
correspond to different type of adatoms, such as center or corner and/or faulted or unfaulted part of the unit
cell.

a vast field which ranges from helium atom scattering to etching, heterogeneous catalysis, for-
mation of self-assembled monolayers, etc. There is a number of associated questions, such as,
are the species chemisorbed or are they just physisorbed? Do the molecules adsorb in molecular
state or do they dissociate as they adsorbe? What is the energy transfer between the molecule
and the substrate? Is the energy dissipated by phonons or do other dissipation channels, such as
electron-hole pair creation enter? What is the sticking probability for a molecule prepared in a
given state? How do molecules form at and desorb from surfaces? Many of these questions can
be studied experimentally using techniques such as molecular beam scattering techniques [242].
Theory has proven to be an extremely useful tool in understanding the experiments. Simula-
tios have been used to integrate the time-dependent Schrödinger equation (see the discussion of
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Fig. 40. PES for H2 dissociating over the atop site into bridge sites (see inset) of Mg(0001) calculated using
jellium pseudopotential perturbation technique [243].

Eq. (241)) [150] or simpler classical dynamics. A major problem with dynamical simulations
is that they require an adiabatic potential energy surface for the molecule-surface interaction,
whose calculation was made possible only in the last decade. In the following we will show a
few examples.

4.3.1 Explicit determination of PES: Dissociation of H2 on Mg(0001) surface

This system is important as it was considered a textbook example of a successful modeling of
molecule-surface interaction. As discussed in chapter 2 (see, Fig. 2), the PESs for molecule-
surface interaction are at least 6-dimensional. Hence, it is not surprising that until recently it has
not been possible to calculate realistic PESs for even the simplest systems. Even the simplified
surfaces concentrating on two-dimensional sections of the PES, where the molecular axis is
parallel to the surface and the energy is calculated as a function of height above the surface and
molecular bond length, were not feasible before introduction of parallel computing. Note, that
both the electronic structure of the system as well the individual points calculated on the PES can
be spread over the processors. In this situation the benchmark calculation for this system was
based on jellium approximation for the surface with pseudopotential corrections [243]. The result
is shown in Fig. 40. The most prominent feature is the existence of a molecular precursor state,
labeled M in Fig. 40. This state is a weakly chemisorbed molecular species (adsorption energy
is only ∼ 0.4 eV). From this precursor state the molecule may dissociate into bridge sites by
surmounting a barrier of ∼ 0.5 eV. This result was regarded as a strong support to the existence
of molecularly chemisorbed species on surfaces. Experimentally, there is strong evidence that
molecularly chemisorbed species exist in a number of O2 dissociation processes, for example
O2/Pt(111) [244] and O2/Ag(111) [245]. However, there appears to be little evidence for such
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Fig. 41. Left panel: Plan view of the Mg(0001) surface, showing Mg atoms (large circles), a dissociating
H2 molecule (filled circles) and the 2×2 supercell (dashed lines. T stands for top, Cf for fcc center and Ch

for hcp center. Right panel: PESs for dissociation about (a) bridge and (b) top sites into neighboring sites.
Vertical axis is height of H2 above surface, horizontal axis is H2 bond length. Contour spacing is 0.005 eV
per molecule, all distances in Å.

precursor states in H2 dissociation [246].
In this situation a “benchmark” calculation was required. Such a benchmark was provided

by a first realistic PES calculation [247]. The geometry of the H2/Mg(0001) system is shown in
Fig. 41. The slab is two unit cells thick with a large vacuum space separating the adjacent slabs.
A 2 × 2 supercell is used in the basal plane and inversion symmetry is applied throughout. The
calculations are based on pseudopotential LDA methods. The bare Coulomb potential is used
for H. Three Monkhorst-Pack [130] special k-ponts were used with a large (1 eV) selectronic
smearing with an analytic correction to zero smearing [248]. Plane waves with energy up to
300 eV are included. As in other H2/metal calculations, any surface relaxation is neglected on
the grounds that in a dynamical dissociation process the large mass difference between hydrogen
and magnesium will ensure that recoil effects are small.
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The results shown in Fig. 41 suggest that the natural dissociation path is where the molecule
is incident over a bridge site with the hydrogen atoms oriented towards the center sites (Fig. 41).
In order to compare more directly with the results of Ref. [243], the calculations have been
also performed for dissociation about the top site into adjacent center sites. The most striking
feature of the PESs is that they show no sign of any precursor state. Comparison of Figs. 40(a)
and (b) shows that dissociation about the bridge site is strongly favored, with the barrier being
about 0.6 eV lower per molecule that at the top site. Hence both the preferred dissociation site
as well as the qualitative form of the PES strongly differ in the accurate treatment, compared
to PESs calculated with more approximate methods [243]. These early calculations paved the
way for many more calculations of similar spirit [249–251]. With advance of computer power,
calculation of more dimensional PESs became feasible [252, 253].

4.3.2 Statistical sampling of PES: Dissociation of Cl2 on Si(111)-2× 1 surface

The above approach, while totally adequate for the case of light molecules on relatively heavy
surfaces, there is in the limit Mmol/Msurf � 1, suffers from a total neglect of any surface
recoil effect. Such an effect is bound to arise if Mmol/Msurf ∼ 1 [254, 255]. Hence, the
6-dimensional PES V (x, y, z, d, φ, θ) for a full treatment of molecule-surface interaction over
static surfaces has to be extended to allow for interaction with surface degrees of freedom
{uI},V (x, y, z, d, φ, θ, {uI}). This significantly increases the dimensionality of the problem
to at least a few hundred. The high dimensionality of the PES has several implications. Be-
cause of the large number of degrees of freedom this approach is limited to the case where
classical treatment of the atomic dynamics applies (large Mmol), which is in line with the as-
sumption Mmol/Msurf ∼ 1. Returning to the example of Fig. 2 for the 6-dimensional prob-
lem, where the number of points required was O(106) the number of required points for the
V (x, y, z, d, φ, θ, {uI}) PES would increase toO(10n×100). An explicit calculation of this high-
dimensional PES in the spirit of Figs. 40 and 41 is intractable. What can be done to explore this
type of PES? The simplest and most direct way is to apply sampling techniques. The same trick
is done also when a high dimensional integral is to be evaluated; for more details see the dis-
cussion of formula (171), chapter 3.1.6.1. At modest kinetic energies most parts of the PES are
inaccessible, and hence we need to sample only the relevant parts of the PES. One way of doing
that is to use MD sampling. MD has the advantage over MC sampling in that it provides access to
real molecule-surface dynamics. A series of dynamical simulations started from different initial
conditions will determine which regions of the PES are accessible and what degrees-of-freedom
are relevant in the molecule-surface interaction at a given incident energy Ei. The information
gathered during the sampling can be used as the basis of further importance sampling in order to
increase the accuracy achieved in later sampling steps. In absence of such information the PES
may be sampled at random starting from a large number of initial conditions compatible with the
chosen external conditions such as average translational energy, internal beam temperature, etc.

The incident energy of the impingent molecule Ei is of paramount importance in the mole-
cule-surface interaction. Experimentally incident energies ranging from thermal to keV are used.
In collisions at low incident energies the kinetic energy of the molecules is insufficient to break
the molecular bond, i.e. Ediss > Ei, and the dissociation is driven by electronic or chemical
process. At higher translational energies the collision-induced dissociation becomes increasingly
important [256]. The chemical nature of the breakup process places extreme demands on the
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interatomic potentials since it must be capable of describing significant changes in bond lengths
and atomic environments, breaking of chemical bonds within the molecule, and creation of new
bonds with the substrate. This is very difficult to achieve with any empirical interatomic model
and suggests the necessity for an ab initio approach.

The approach outlined above is extremely powerful and in principle should be able to provide
valuable qualitative insights, or even quantitative characterization of many processes of techno-
logical importance, such as molecular beam epitaxy, implantation, or experimental importance,
such as molecular beam scattering technique [242] and the associated sticking coefficients s. As
shown below, the main current limitation of this approach is in the coarse sampling of the PES.
Such a limitation is being relaxed with advance of the computer power which is significantly
improving the achievable statistics in the PES sampling.

The approach is demonstrated [257, 258] on the study of Cl2 dissociation on the π-bonded
Si(111)-2 × 1 surface [259]. In this system clearly Mmol/Msurf ∼ 1. The PES is sampled at
incident energy of Ei = 1 eV. This incident energy remains in the region of chemically driven
breakup, asEdiss ∼ 2.5 eV for a free Cl2. This choice ofEi is motivated by experimental results
indicating a high value of the initial sticking coefficient s0 at incident energies around 1 eV [260].
The study is based on five trajectories, see Fig. 42. Slab geometry with four double layers and
an almost square 2

√
3 × 3 surface unit cell was used with inversion symmetry imposed on the

slab. Electronic structure of the system was treated in the DFT theory using LDA approximation
for the exchange-correlation energy. Pseudopotentials were used to describe all atoms [119].
The electronic states were expanded at the Γ-point with an energy cutoff of 10Ry. The classical
equations of motion were integrated in microcanonical ensemble for between 200 and 400 fs
which is enough elapsed time to permit collision with the surface to occur and to classify the
outcome.

The results are shown in Fig. 42. The first two trajectories represent two extreme choices of
initial conditions. In the former the molecule strikes the surface in a region of high electronic
density generated by the unsatisfied Si bonds on the π-bonded chains. In the latter the molecule
is directed towards the region of low electronic density in the valley. However, in both cases
the Cl 2 molecule spontaneously dissociates upon collision with the surface, the outcome being
dichlorination of the substrate. In response the π-bonded chains deform appreciably and locally
rehybridize towards sp3 bonding, lifting the silicon atoms above the π-bonded chain. It is evident
that the π-bonded chains pay a critical role in both both dissociation processes. Interestingly,
dissociation occurs also in trajectory No. 3, where the molecular axis is parallel to the π-bonded
chain and the molecule-chain interaction is much less direct. The dynamical scenario in the cases
where the molecular axis is oriented along the surface normal (trajectories No. 4 and No. 5)
initially involves monoclorination. The Cl2 molecule remains in a precursor state with the other
Cl atom weakly bonded to the chemisorbed Cl and the bond length stretched by ∼ 50 %. The
initial conditions for trajectory No. 4 were chosen to determine whether Cl2 molecule could
penetrate into the subsurface region since the hole underneath the sixfold ring is intuitively the
most natural entrance channel. Interestingly, the Cl2 molecule does not show any tendency to
penetrate the subsurface region and is instead displaced laterally towards the π-bonded chain.
This demonstrates that even at rather high incident energies parts of the surface unit cell are
inaccessible to the molecule. In this geometry the energy gained from formation of the Si-Cl
bond is largely deposited in the substrate. At longer times the molecule tilts parallel to the π-
bonded chains in trajectory No. 5 and across the valley towards the neighboring π-bonded chain
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Fig. 42. Ball-and-stick model of chlorination of the Si(111)-2×1 surface for five trajectories. Left, middle,
and right panels show three different dissociation stages.

in trajectory No. 4. In both cases the length of the molecular bond increases as the molecule
tilts. In trajectory No. 5 this clearly results in dissociation, with the final reaction product again
being dichlorination of the surface. An interesting feature in this simulation is that a local defect,
which changes the buckling of the π-bonded chain and the topology of the bonding in the silicon
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Fig. 43. Left panel: Molecular orbital diagram of Cl2. Right panel: Analysis of the dissociation process in
terms of charge densities for trajectory 2 showing the repopulation of 3pπ∗g and 3pσ∗g molecular orbitals.
(a) ρSCF at the beginning of the trajectory, (b) ρdiff

SCF at the beginning of the trajectory, (c) after collision
with the surface, and (d) at the end of the trajectory. The position of Cl atoms is indicated by dots. Positive
densities are on greyscale. Note the pronounced charge depletion from the 3pπ∗g (white regions) and charge
accumulation in the 3pσ∗g (black regions) around the molecule in (c).

substrate, is created by the collision.
The selfconsistent electronic structure generated along the reaction coordinate can be used

to analyze the driving force to dissociation. Intuitively very appealing is the molecular orbital
(MO) picture. The MO diagram of the free Cl2 molecule is shown in Fig. 43. A Cl2 molecule has
bond order 1 with the · · · 3pσg, 3pπu, and 3pπ∗g MO’s filled and only the 3pσ∗u empty. Hence, a
chemically driven breakup will be expected to be driven by the filling of the strongly antibonding
3pσ∗u MO by transferring charge from the surface and/or another Cl2 MO. The applicability of
this picture to Cl2/Si(111)-2 × 1 can directly be assesses by analyzing the induced charge upon
molecule-surface interaction

ρdiff
SCF (~r) = ρSCF [Sisubst + Cl2] (~r)− ρSCF [Sisubst] (~r)− ρSCF [Cl2] (~r) . (333)

Here ρSCF [Sisubst + Cl2](~r) denotes the charge density of the interacting molecule-substrate
system, ρSCF [Sisubst](~r)(ρSCF [Cl2](~r)) is the charge density for the substrate alone (adsorbate
alone) with atomic positions corresponding to the interacting adsorbate-substrate system.

As an example we show in Fig. 43 the analysis of trajectory 2. The charge density difference
ρdiff

SCF (~r) in Fig. 43(b) – (d) represent three very different stages during the dissociation process:
the first shows intact molecule, the second the onset of dissociation in which the molecule is
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highly stretched, the third shows a fully dissociated molecule with two atoms bonded to the sur-
face. In the configuration corresponding to Fig. 43(b) the molecule is far from the surface and the
molecule-surface interaction is relatively weak. Accordingly, ρdiff

SCF (~r) is rather featureless. By
contrast, due to the significantly increased molecule-surface interaction, ρdiff

SCF (~r) in Fig. 43(c)
exhibits two pronounced features: charge is transferred into regions along the molecular axis,
and regions perpendicular to the molecular axis are depleted of charge. Finally, ρdiff

SCF (~r) in
Fig. 43(d) shows creation of polar bonds between Cl atoms and the substrate. The most impor-
tant information on the molecular dissociation process is contained in Fig. 43(c). The regions of
charge accumulation around the molecule can be interpreted within the MO picture in terms of
increasing occupancy of the 3pσ∗u MO. We recall that in terms of charge density a characteris-
tic feature of a σ∗u MO are four lobes distributed along the molecular axis. Similarly, the four
lobes of charge depletion off the molecular axis in Fig. 43(c) can be identified as 3pπ∗g . Thus the
molecule-surface interaction splits the degeneracy of the 3pπ∗g doublet by affecting the MO that
couples strongly to the substrate while leaving the other one relatively unchanged. It can be seen
from Fig. 43(c) that more charge is transferred to the more antibonding 3pσ∗u MO’s than is de-
pleted from the 3pπ∗g . The effect of charge transfer into the molecule as well as the repopulation
of the MO’s both destabilize the chemical bond. This analysis indicates the insight provided by
applied method and the power of this approach.

Because of the enormous associated numerical overhead this approach has been relatively
rarely applied up to date. Few years ago this limited such an approach approach to just qualitative
insights. However, with the steady increase of computer power, already nowadays this approach
can yield more quantitative results, such as e.g. the information on sticking coefficient s. All that
is needed is a better statistical sampling of the underlying PES, i.e. more generated trajectories.

4.4 Simulation of surface probe microscopy (SPM)

So far we dealt with different aspects of surfaces such as their atomic and electronic structures,
their interaction with molecules and possible implications for surface catalytic properties. The
quality of computer modeling typically has to be validated against some set(s) of experimental
data. The most direct experimental surface probes are surface probe microscopy (SPM). The
two most important SPM methods are scanning tunneling microscopy (STM) [261] and atomic
force microscopy (AFM) [262]. Both STM and AFM have the ability not only to “see” surfaces,
adsorbed atoms and molecules on surfaces with atomic resolution but have also the capability
to nanomaniplate the surfaces and adosrbates on them. The problem with both techniques is
that while they exhibit an impressive arsenal of capabilities, the understanding of how these
capabilities come about remains very limited. Moreover, the interpretation of what is actually
being measured remains unclear until and unless the results are back-upped by a simulation. Let
us take the more widely used STM as an example. STM measures tunneling currents from the
scanning tip into the surface. Applied voltage, typically ±1 eV around the Fermi level, serves as
a tool to switch on and off different surface orbitals to/from which to tunnel. This, in turn means,
that the STM is primarily an electronic structure rather than atomic structure tool. In other words,
in order to relate the measured STM image to surface atomic structure, typically a simulated STM
image for a set of anticipated atomic structures is required, before the STM identification of a
surface structure is possible. This shows the enormous importance of computer simulation even
in experimental context. We now turn to the other important SPM technique, the AFM. One
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Fig. 44. Upper left: Schematic illustration of the NC AFM apparatus. Upper right: High quality image of
the Si(111)-7 × 7 surface. Lower panel: The basis of the NC AFM imaging: harmonic oscillation Vc(z)
is perturbed in close proximity to the surface by the tip-sample interaction potential Vint(z) to produce the
total potential U(z).

advantage of AFM is that by its nature AFM, probing the tip-surface interaction, is generally
believed to be more directly related to the surface atomic structure than the STM.

4.4.1 Simulation of imaging with dynamic AFM apparatus {v1}

The AFM [262] has developed to one of the most powerful probes of atomic structure of both
conducting and insulating surfaces. Several different operation modes exist [263] but only the
AFM operating in non contact (attractive) regime (NC AFM) has demonstrated the ability to
achieve a true atomic resolution. The apparatus typically works in attractive regime. For that
reason, in order to prevent the tip from snapping into the surface, the tip is oscillated at kilo-
hertz frequencies which minimizes the time the tip spends in close proximity of the surface; see
Fig. 44. This is why it is also called Dynamic Surface Force Microscopy (DSFM). The NC AFM
apparatus can be operated in several different modes [263] but the simplest and most direct is
the technique of Frequency Modulated Atomic Force Microscopy (FM AFM) [264] in which, in

http://www.physics.sk/aps/pubs/2007/aps-07-01/afm_redh.avi
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Fig. 45. Left panel: Imaging by a typical tip. Right panel: Schematization of the tip by a sphere and
formation of the nanotip.

close proximity to the surface sample, a harmonic motion of the tip is perturbed by tip-surface
interaction; Fig. 44. In the simplest case the (negative) frequency shift ∆ω is kept constant
and the corresponding surface topograph collected. The technique was used to image a host of
different reactive surfaces, such as Si(111)-7 × 7 [264], Si(001)-2 × 1 [265], the polar III-V
(110) surfaces: InP(110) [266], GaAs(110) and InAs(110) [267], as well as defects on these sur-
faces [265, 266]. Theory has provided very strong indications that the short-range chemical type
of tip-surface interaction significantly enhances the atomic resolution of the FM AFM [268, 269].
Experiments have corroborated these conclusions [270]. Furthermore, the fact that the atomic
resolution is primarily mediated by a dangling bond type of interaction between the atoms on
a sample surface and a tip is in accordance with the ability to resolve a number of different
atoms (dangling bonds) on the Si(111)-7 × 7 surface [270], whereas on polar surfaces, such as
InP(110) and GaAs(110) only the anion sublattice could be resolved under usual experimental
conditions [266, 267]. These are manifestations of the tip having different “local reactivity” with
the surface. Hence, the experimental image is not a genuine property of the surface but also of
the tip scanning it. The local reactivity is especially pronounced on polar surfaces where the
dangling bonds on anions are more charged than those on cations. The concept of local reactiv-
ity, specifically the local modifications of the atomic structure or morphology of the tip apex is
instrumental in understanding the imaging mechanism of the NC AFM. It has been observed that
true atomic resolution was only possible after an “on purpose” contact of the tip with the sample.
This creates an “atomically sharp” tip apex able to image with atomic resolution. The process of
formation of a nanoasperity at the tip apex is shown in Fig. 45. Hence, it is not the mesoscopic tip
which is important for the atomic-scale imaging, but rather a termination with nanodimensions
which determines the collected image. The process of nanotip formation/modification may very
easily occur also due to accidental contact of the tip with the surface which may lead to a pick-
up process of a surface atom and ultimately to modification of the apex, which is also observed
experimentally.
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Let us now show how the surface imaging by NC AFM apparatus can be modeled. As an
example we describe the application to the InP(110)-1×1 [271] surface. The same approach has
been used also to other systems, such as Si(111)-7×7 [268, 269] or GaAs(110)-1×1 [272]. The
model for the FM AFM image consists of two key ingredients: (1) the model for the frequency
shift ∆ω, the quantity measured in the experiments, and (2) the model for the potential energy
surface Utip−sample(d, α, x, y) for the tip-surface interaction as a function of d, the tip-surface
distance, α, tip orientation with respect to the substrate, and (x, y), the position of the tip in the
surface unit cell.

To compute the frequency shift ∆ω the classical perturbation theory [273] is used, where
the tip-surface interaction Vp(q) is the perturbation on the periodic Hamiltonian describing the
oscillating tip. The result being [271, 274, 275],

∆ω ≈ ∂Vp (q)
∂J0

=
∂

∂J0

1
T

∫ T

0

Vp (q (t)) dt, (334)

where J0 is one of the action-angle variables and Vp(q) the tip-surface potential averaged over
one oscillation period T [273]. The ∆ω is computed for each tip position (x, y) and orientation
α. The Vp(q) is thenUtip−surface expressed in the q-coordinate system [276]. In our study Vp(q)
is a chemical bond between the tip and the sample surface. The question arises whether break-
ing/reforming a chemical bond as a result of oscillatory tip motion may be considered a small
perturbation. Typical energy scale associated with such a process is of the order of a few eV.
This is to be compared with the energy of an oscillating tip. Considering typical experimental
values for the amplitude of the tip motion (≈ 200 Å) and spring constant (≈ 30 N/m) yields a
value of ≈ 40000 eV, which exceeds the energy of a chemical bond by many orders of magni-
tude. Another important observation from Eq. (334) is that the experimentally measured ∆ω is a
complicated non-local quantity which requires knowledge of the tip-surface interaction over the
entire oscillation period and not only in one point. More details can be found elsewhere [275].

The model for the tip-surface interaction Vp(q) in the near contact short-range regime dom-
inated by quantum chemical interaction is based on the Density Functional Theory in its plane-
wave pseudopotential formulation [26]. The InP (110)-1 × 1 surface was modeled in a slab
geometry using 4 × 3 primitive surface unit cells, see Fig. 46. Experiments used Si tips [266]
which we modeled by a 10 Si atom tip saturated at the tip base by 15 H atoms [268, 269]. Note,
that in this model only the interaction of the very tip apex (nanoasperity) with the surface is con-
sidered. The modifications of the tip morphology are described below. The main characteristic
of the pure Si tip is the presence of one singly occupied dangling bond sticking out of the tip
apex. This dangling bond is instrumental for the atomic resolution of the FM AFM on a reactive
surface. The apex and its three nearest neighbor Si atoms of the tip are allowed to relax. The
sum of the forces exerted on the fixed atoms of the tip is taken to be the total tip-surface force.
The properties of this tip have been extensively studied in Refs. [268, 269] and it was shown
that the results are relatively insensitive to the tip size. On the other hand, the results very sen-
sitively depend on the twist angle α of the tip with respect to the substrate [271]. The reason is
that the dangling bonds on the InP(110) surface are located close by and multibond tip-surface
interactions may occur. However, here we consider just one tip orientation, see Fig. 46.

The total energy and the tip-surface forces are calculated within the DFT in the Generalized
Gradient Approximation (GGA) [59]. The energy cut-off was set to Ecut = 8 Ryd. Optimized
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Fig. 46. Left panel: Geometry of the simulation. Right panel: Tips used in the simulation shown by a ball
and stick model with a superimposed isosurface of valence electronic charge density. Upper panel: Si/Si
tip; middle panel: In/Si tip; bottom panel: P/Si tip.

nonlocal pseudopotentials were used for all elements except for H which was described by bare
Coulomb potential. Brillouin zone of the surface unit cell was sampled at the Γ-point. The
computationally most expensive part was the DFT calculation of the vertical scans to compute
the perturbing tip-surface potential Vp(q) to compute the NCAFM image. Typically 10–15 points
were computed for each vertical scan. The scan of the 1 × 1 surface unit was performed with a
lateral step of ≈ 0.5 Å. This amounts to ≈ 60 points in the surface unit cell.

The effect of modification of tip morphology of the Si tip by exchanging the apex atom can
clearly be appreciated in Fig. 46. Henceforce, these tips will be denoted by Si/Si, In/Si, and
P/Si tip. The four-valent Si apex forms a singly occupied dangling bond, the three-valent In
has an unoccupied dangling bond, whereas the five-valent P has a doubly occupied dangling
bond. These tips will have vastly different local reactivity with the InP(110)-1 × 1 surface.
The prominent feature of this surface is the stabilization by buckling which causes the P (In)
atoms to relax upwards (downwards) and the dangling bond states on P (In) atoms to populate
(depopulate). As a result, most of the surface reactive charge will float on the P atoms.
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Fig. 47. Results for short-range normal tip-surface forces (left panel) and frequency shifts (right panel)
in vertical scans performed with the Si/Si tip (upper panel), In/Si tip (middle panel), and P/Si tip (bottom
panel) over In and P sites. Experimental parameters were taken from Ref. [266]. The horizontal line at
−6 Hz corresponds to the experimental ∆ω. The wiggles in the curves through the computed points in the
bottom panel are artifacts due to the use of a polynomial fit.

The results for the normal tip-surface force and frequency shifts over the In and P sites for the
three different tips are shown in Fig. 47. As expected, the Si apex interacts more strongly with
the P site than with the In site {v126}. Interaction of the In/Si tip with the surface is reduced by
a factor of ≈ 2, compared to the Si/Si tip. Nevertheless, qualitatively both apexes yield similar
results. Situation changes dramatically in the case of a P apex. Due to the doubly occupied P
dangling bond state there is very little interaction with the surface P site up to distances of≈ 3 Å.
At that distance a strong rebonding at the tip apex starts.

The tip-surface bonding translates into the behavior of the frequency shifts. The experimental
value ∆ω = −6 Hz [266] yields for the Si/Si tip a computed AFM corrugation of ≈ 0.3 Å, in
excellent agreement with the experimental value [266]. In the case of an In apex, our model

26Simulation of NC AFM imaging of InP(110) surface by a model Si tip over P an In sites. A representative value of
(pseudo)valence charge density is shown by a superimposed blue isosurface.

http://www.physics.sk/aps/pubs/2007/aps-07-01/afm_redh.avi
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Fig. 48. Simulated AFM topograph of the surface unit cell of the InP(110)-1× 1 surface with the P/ Si tip
at ∆ω = −6 Hz. All length units are in Å.

predicts that a measurable In-P corrugation should start appearing for ∆ω ≤ −4 Hz. The P apex
represents a qualitatively different scenario where the In (cation) sublattice may have a higher
apparent AFM height. In fact, these results suggest that the FM AFM with a P apex should yield
the largest value of surface corrugation (≈ 1 Å). These results are qualitatively similar to those
obtained for the GaAs(110) surface [272].

The results for the P/Si tip, shown above, represent a very interesting scenario which could
explain how the experiments can image the cation (In) sublattice observed on the InAs(110)
surface [267]. In order to verify further the findings a simulation of the FM AFM image of the
entire surface unit cell was performed. This proves that simulation of a FM AFM image of the
entire surface unit cell from first principles is feasible.

The results are shown in Fig. 48. The InP(110)-1× 1 surface exhibits a large (≈ 1 Å) AFM
corrugation. As expected, with the P apex the protrusions are associated with the In sublattice.
Hence, in the case of a P apex, the AFM corrugation is inverted with respect to the corrugation
obtained with a Si (In) apex as well as with respect to the “true” geometric corrugation. More-
over, the protrusions do not perfectly match the In sublattice and exhibit a characteristic elliptical
shape. This is due to the direction of the In dangling bonds.

4.4.2 Simualtion of nanomanipulation with dynamic AFM apparatus {v2, v3}

On of the hottest current topics in DSFM is the nanomanipulation capability of the DSFM.
We now show simulation of atomic nanomanipulation using DSFM microscope. Concerning
atomic-scale manipulation, although the scanning tunneling microscopy (STM) has been the
method of choice for vertical and lateral manipulation of individual atoms, molecules, and bonds,
DSFM can overcome its fundamental limitation to conductive samples and pave the way to
atomic/molecular nanomanipulation for the widest range of materials.

However, DSFM was only very recently, for the first time, used for vertical [277] and also
lateral [278] manipulation of single atoms on semiconductor surfaces. In the vertical manipula-
tion an adatom on the Si(111)-7× 7 surface was first removed by action o the tip. The defect so
created was subsequently healed and a Si atom restituted on the adatom site by a “soft nanoin-
dentation” by the tip of a NC AFM apparatus [277], see Fig. 49. These remarkable experiments
go beyond the lateral displacement of physisorbed or weakly adsorbed atoms on top of a surface

http://www.physics.sk/aps/pubs/2007/aps-07-01/form_Pdef1_2.avi
http://www.physics.sk/aps/pubs/2007/aps-07-01/form_Pdef2_2.avi
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Fig. 49. Experimental vertical DSFM manipulation of an adatom on a Si(111)-7 × 7 surface [277]. Left
panel: perfect surface prior to manipulation; middle panel: surface after removal of an adatom; right panel:
surface with a healed defect after a “soft nanoindentation”.

Fig. 50. Potential energy surface for the P antisite defect (dots) and P atom in a perfect In-P chain (di-
amonds) as the atom moves along surface normal. The insets show ball–and-stick models of the g- and
l-structures.

and show that manipulation of atoms that are strongly chemisorbed or even part of the surface
(including removal and deposition of single atoms without further surface damage) can be re-
producibly performed using only the mechanical energy stored in the oscillating cantilever in
DSFM.

To this end a very simple but challenging model system, an anionic antisite defect on a III-V-
(110) surface is used [279]. One can demonstrate that the defect, with two stable configurations
that differ by ∼ 1 Å in the normal direction, can be manipulated with the DSFM tip to switch its
position from one minimum to the other.

The model system is built by substituting one of the In surface atoms by P to form an anionic
antisite defect. This defect is commonly present on the III-Vs. Two (meta) stable geometries for
the defect were found. One with the defect positioned roughly in the plane of the other phos-
phorus atoms (ground-state geometry), and the other where the defect atom is positioned well
below (local-minimum geometry; Fig. 50). These geometries are labeled g and l, respectively.
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Fig. 51. The PES for nanomanipulation of the P defect atom. Upper panel: l → g process using model
Si tip. Lower panel: reverse manipulation using model H2O tip. Green: tip approach; red: tip retraction.
Green/red arrows indicate the direction of the tip motion. Note that two tip approach/retraction cycles are
shown in the upper panel. Flipping in attractive regime: empty triangles; flipping in repulsive regime:
full dots. d − d0 is the tip-surface distance. The insets show ball-and-stick models with superimposed
isosurfaces of constant valence electronic charge density at the point of PES indicated by black arrows.
PESs for flipping the defect with the tip positioned before (green), after (red) the discontinuity and in
infinity (black) are shown in the inset of the upper panel. The reaction coordinate ξ was determined by
linear interpolation between structures before and after the discontinuity.

Constrained total energy calculation along a path where the defect atom is moved from the g- to
the l-position with all the other free atoms allowed to relax reveals that the defect atom moves
vertically in a double well potential with ∆U ∼ 0.5 eV, and ∆Ub ∼ 0.085 eV (Fig. 50). Hence,
the defect could be thermally stabilized at low temperatures in the local minimum. Moreover, as
shown in Fig. 50, the existence of the local minimum is an exclusive property of the defect site
absent from a perfect phosphorus site (p-site).

It can be shown that the defect can be manipulated from one minimum to the other and
determine the influence of the character of the interaction (attractive or repulsive) and the tip
reactivity in the process. In order to flip the defect from the local into the global minimum
(l→ g process) we first consider the standard model Si tip (Fig. 46).

Within the limited search the desired nanomanipulation was observed only with the model tip
positioned over the trench between the In-P chains close to the defect. The potential energy sur-
face (PES) for that process is shown in Fig. 51. Flipping the defect into the ground state geometry
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may occur both in the attractive and repulsive mode, as shown by the two approach/retraction
cycles displayed in the upper panel of Fig. 51 {v227}. In the attractive mode, a small reduction
of the tip surface-distance (∼ 0.5 Å) from the stable imaging range leads to the manipulation.
Each discontinuity observed on the total energy curves corresponds to the plastic transition to a
new stable configuration with the formation/breaking of either a tip-sample bond, a bond in the
nanotip, or in the surface. These discontinuities will reflect in the force and thus on the measured
frequency shift.

It was not possible to perform a reverse manipulation (g → l) with the same model tip. Other
tip configurations devised to simulate tip contamination, where the Si apex atom was replaced by
either In or P, although less reactive, provide the same results. For that reason a purely repulsive
tip was used. One very simple-minded tip functionalization is to consider an oxidized Si tip.
Unfortunately, to model the oxide layer on a Si substrate is a problem in its own right. However,
all models proposed share the following features: (a) twofold- O and fourfold-Si coordination,
(b) O protruding out of the SiO2 layer. Therefore the simplest model was considered, namely a
H2O molecule [280]. The oxygen atom points towards the surface, as would be the case in an
oxidized tip. The H-termination mimics the local twofold coordination and chemistry of the O
apex in the oxide layer. Hence, this simple model is a relatively close mimic of an apex formed
by an oxide layer. The result is shown in Fig. 51 {v328}. This tip indeed represents a pure
repulsive tip-sample interaction and a gentle nanoindentation of the surface leads to flipping the
defect atom into the local minimum geometry (g → l process).

The three different ways the P atom is bonded on the surface also provide also a critical test
of a key issue in DSFM: the capability to achieve chemical resolution. The computed approach
scans over the three different P sites (not shown) indicate that, at larger tip-sample distances, the
bonding strength decreases roughly with the height of the P atom (p, g, and l). The comparison
with the approach curve on the In atom shows that the antisite in its stable configuration cannot
be distinguished from the nearby In atoms unless we come really close to the surface and enter
the short-range repulsion regime. This theoretical result can explain why vacancies are the only
point defects observed in the DSFM images of III-V (110) surfaces [281] in the topographic
mode.

4.5 Simulation of chemical reactions: the importance of entropy

One important subject of computer simulation of matter is the issue of chemical reactions. This is
a field customarily dominated by quantum chemistry and quantum chemistry methods. However,
traditional quantum chemistry rarely deals with finite temperature effects29. It is clear that at
finite temperates the relevant thermodynamical potential is free, rather then total energy. This

27Simulation of NC AFM manipulation of an antisite defect (P atom substituting an In atom) on the InP(110) surface
by a model Si tip. The animation shows tip-induced modification of the defect atom from a local minimum structure to a
global minimum structure. A representative value of (pseudo)valence charge density is shown by a superimposed green
isosurface.

28Simulation of a reverse process of manipulation of the antisite defect on the InP(110) surface by a model H2O tip
from a gobal minimum structure to a local minimum structure. A representative value of (pseudo)valence charge density
is shown by a superimposed green isosurface.

29If finite temperature effects are included within the quantum chemistry approach, they are typically handeled within
harmonic approximation. Such an approach is extremely cumbersome for large systems and not accurate enough at high
temperatures.

http://www.physics.sk/aps/pubs/2007/aps-07-01/form_Pdef1_2.avi
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amounts to sampling of the vibrational entropy contribution. How can the entropy be “measured”
on the computer? The entropy contribution is naturally sampled by any statistical method, such
as molecular dynamics, but their quantification requires use of additional methods, which will
briefly be described below. In addition, many chemical reactions do not take place in vacuum,
but rather require a catalyst, say a surface, a supported nanoparticle, etc. This environment, in
addition to finite temperature, is instrumental for understanding of “real world” chemistry. We
demonstrate importance of both ingredients in an industrial reaction, the methanol-to-gasoline
process. This reaction was at the center of interest of many quantum chemists for the last few
decades and yet, no clear understanding of this complicated reaction has ever emerged from
those studies. As shown below, the reason was that due to the computational limits imposed
by the quantum-chemistry approach. The quantum chemistry model ignored both the proper
environment in which the reaction proceeds as well as the effect of the entropy.

4.5.1 Simulation of the methanol-to-gasoline process

One of the most studied industrial applications of zeolites in current commercial production is the
methanol-to-gasoline (MTG) process [282] for catalytic conversion of methanol to hydrocarbons.
There is a large volume of experimental evidence that methanol, when catalyzed by an acidic ze-
olite, is first dehydrated to dimethyl ether (DME) which is then, in combination with methanol,
converted to hydrocarbons up to C10. The industrial process is catalyzed by ZSM-5; see Fig. 52,
and proceeds at high methanol loadings of ∼5–6 methanol molecules per acidic hydroxyl group
at a temperature of 700K. The whole process involves a number of steps of increasing complex-
ity: (i) the initial methanol adsorption; (ii) activation of the adsorbed species; (iii) dehydration to
DME; (iv) formation of the C-C bond. It has, however, proved difficult to understand the role of
the zeolite catalyst in the MTG process, because experiments, typically IR spectroscopy, do not
provide a sufficiently complete and detailed atomistic picture of the process since they rely on
interpretation in terms of an existing model. Recently, ab initio theoretical studies have started
to shed light on these processes [283-288]. Here we only briefly mention the first two issues and
focus instead on formation of DME in the zeolite under reaction conditions [288].

A consensus has emerged that as soon as the methanol loading reaches two molecules per acid
site (. . . Si-O-AlH-O-Si. . . ) methanol is chemisorbed as a methoxonium cation (CH3-OH+

2 ) [286,
287]

· · ·Si−O−AlH−O− Si · · ·+ nCH3−OH→
→ · · ·Si−O−Al−O− Si · · ·+ CH3−OH+

2 + (n− 1)CH3−OH. (335)

A more complete statistical sampling of the underlying potential energy surface was required to
elucidate the activation of the adsorbed species [286, 287]. Solvation of the methoxonium ion
in the methanol solvent has been found to further soften the methoxonium C-O bond [287] and
lead to activation. Such strongly activated methoxonium complexes are expected to form DME
easily. Experiments suggest a dramatic increase in DME formation in a narrow temperature
interval around 500K [289]. Different mechanisms have been proposed for the formation of
DME. Bandiera and Naccache have proposed the existence of two surface species [CH3-OH2]+

and [CH3O]− forming at the Brønsted acid and its adjacent Lewis basic sites [290] which can
condense to produce DME and water. In the “indirect” pathway [291] the DME formation
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Fig. 52. Left panel: Examples of zeolite structures. Perspective view of ferrierite (upper panel) and ZSM-
5 (lower panel) along the (straight) 10-ring channel. The ZSM-5 zeolite is the industrially used catalyst.
Right panel: The model for DME formation. Four methanol molecules are loaded in the 8-ring. The black
numbers label the carbon atoms, the red numbers the oxygen atoms in the methanol molecules. Molecule
#2 underwent spontaneous protonation and forms a methoxonium cation. The holonomic constraint ξ is
applied to oxygen #1 and carbon #2. The aluminum defect which is, before the methanol adsorbtion,
compensated by hydrogen is shown in blue.

proceeds via a surface methoxy intermediate

CH3−OH+
2 + ZO− → ZO− CH3 + H2O, (336)

which subsequently reacts with another methanol molecule to form DME

CH3−OH + ZO− CH3 → CH3−O− CH3 + ZO−H. (337)

Here, Z stands for the zeolite framework. We assume here that the methanol is chemisorbed at an
acid site as the protonated complex, since this is expected to be more susceptible to nucleophilic
attack. Alternatively, in the “direct” pathway [283, 284]

CH3−OH+
2 + CH3−OH + ZO− → CH3−O− CH3 + ZO− + H2O + H+, (338)

both methanol molecules react with each other inside the zeolite environment which acts merely
as a solvent. In reaction (338) the final destiny of the zeolitic proton was not specified, as the
simulations performed under conditions which emulate those of the true reaction, suggest that
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this proton may be mobile and need not necessarily permanently bind to the Brønsted site. The-
oretical studies based on total energy conclude that the direct mechanism is preferred over the
indirect one [283, 284]. These previous studies were based on transition state theory30 [292]
with the free energy profile approximated either by the internal energy or with the estimation of
the entropy from the internal energy within the harmonic approximation. However, as shown
below, the maxima in the free and total energy may not coincide which makes such an approach
invalid for the present reaction. Nevertheless, only the direct process will be considered below.
The study of formation of the first intermediate, the DME, in the MTG process is one of the most
complex and comprehensive simulation of a chemical reaction performed. The model considered
has been carefully chosen. The commercial catalyst ZSM-5 has a unit cell with 300 atoms, which
is too large for the present simulations to be practical. Simulations for ZSM-5 on a picosecond
time-scale have already been performed [286, 287]. Simulations for the time-scales relevant for
the present simulation are gradually becoming feasible. The simulations were performed in fer-
rierite, see Fig. 52, which has a much smaller unit cell, with only 54 atoms, but a structure very
similar to that of ZSM-5 (Fig. 52). The ferrierite structure is the closest mimic to the ZSM-5
structure one is able to find. In particular, it has two channels, a 10-ring channel similar to the
straight channel in ZSM-5 and another straight channel with an 8-ring aperture, perpendicular to
the 10-ring channel. Only one Brønsted acid site is considered, corresponding to a Si/Al ratio
of 18. Given the dearth of experimental data and the computational cost of the present simula-
tions no other Si/Al ratio was attempted. The reaction conditions have been simulated by loading
four methanol molecules into the 8-ring channel and associated intersection regions of ferrierite
(Fig. 52). The system was prepared so that two methanol molecules #1 and #2 in Fig. 52 can react
without the need of reorientation. The temperature in the simulation was taken to be 700 K. This
system was shown to form strongly activated methoxonium species [286, 287]. The activated
species are expected to be susceptible to a nucleophilic attack by another methanol molecule to
give rise to reaction (338). The ability of this system to exhibit activation makes this system a
strong contender for the direct reaction pathway.

Ab initio MD simulations [288] have been performed for the formation of DME. It suffices
to say that simulations were run in the (N,V,T) ensemble using DFT in its plane-wave pseudopo-
tential formulation. Hence, periodic boundary conditions allow us to consider the full zeolite
topology. Gradient corrected functionals are required for an accurate description of the DME
formation and the PW’91 [58] variant of the GGA approximation to the DFT was used. Norm-
conserving pseudopotentials were used to represent the core electrons and the wave functions
of the valence electrons are expanded in plane waves at the Γ-point of the supercell with a
cut-off of 40 Ryd. The huge nonuniform entropic corrections computed beyond the harmonic
approximation are intuitively expected to be the major ingredient missing in all previous DFT
calculations using identical or similar GGA energy functionals.

Free energies can be calculated using the “Blue Moon” ensemble [293, 294] variant of ther-
modynamic integration to overcome the large reaction barrier and to evaluate the entropic con-
tribution along the reaction coordinate. This is a well known approach which, however, has not
been applied very often to complex chemical systems. The constrained MD was performed by

30The Transition State Theory (TST) locates the saddle point separating the reactant and product well of either total or
free energy PES. In most cases TST considers only one-dimensional PESs.
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Fig. 53. Left panel: Variation (in eV/Å) along the reaction coordinate ξ of the Lagrange multipliers λξ.
Right panel: Variation along the reaction coordinate ξ of the free energy profile ∆F (T = 700K); total
energy profile ∆E(T = 700K), and the entropy contribution TS. The zero of the vertical scale is arbitrary.
(a)–(d) label the configurations shown in Fig. 54.

adding a holonomic constraint to the Lagrangean generating the MD,

L =
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]
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where the first term on the r.h.s of Eq. (339) is the kinetic energy of the NI ions, U({~RI})
is the many-body potential energy, equal to the Kohn-Sham energy, and λξ is the Lagrange
multiplier for the reaction coordinate ξ{~RI}. In the present case of DME formation via the
direct path, the reaction coordinate is the distance |~R−CH3 − ~R−OH | between the methyl group
of the methoxonium ion and the hydroxyl group of one of the other methanols (c.f. Fig. 52)
and ξ0 is the externally fixed value of that distance. The constrained dynamics run was started
from a well equilibrated unconstrained configuration. The constrained dynamics was run for ten
values of the constraining distance ξ0; the length of each run was ∼ 2 ps after equilibration. The
Helmholtz free energy profile was computed by

∆F (ξ, T ) =
∫ P

R

〈λξ〉ξ0,T dξ0, (340)

where R refers to reactants and P to products and the thermodynamic averaging 〈· · ·〉ξ0,T is
performed by averaging over the MD trajectories. We note that formula (340) is correct only for
a constraint consisting only of a distance ξ = |~RI − ~RJ |. The formulas for a more general case
can be found in Ref. [294].

The Lagrange multipliers along the reaction coordinate, that ensure that the distance between
the C atom on the methoxonium cation and the O atom on the other methanol molecule (Fig. 52)
remains fixed, are shown in Fig. 53. These Lagrange multipliers are required to compute the free
energy profile from formula (340). The computed free energy profile, the total energy
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Fig. 54. Ball and stick models with superimposed valence electronic charge densities for points (a)–(d)
along reaction coordinate defined in Fig. 53. The electronic charge density is shown on a plane defined by
the oxygen #1, carbon #2, and the Al defect (Fig. 52).

and the entropy profile

TS (ξ) = Etot (ξ)− F (ξ)

are shown in Fig. 53. Note that, unlike Etot(ξ), the zeroes of the F (ξ)and S(ξ) profiles are
arbitrarily defined, and we only determine the profiles relative to the thermodynamic state of the
reactants.

To give a better insight into the reaction process, we show in Fig. 54 characteristic configura-
tions sampled from the MD trajectories of the reacting molecules in (a) the reactant well, (b) and
(c) near the transition state, and (d) in the product well. Fig. 54(a) shows a configuration with
the constraint ξ0 corresponding to the value of the Lagrange multiplier 〈λξ〉 = 0. In this config-
uration the zeolitic proton, which originally formed part of one methoxonium cation CH3-OH+

2 ,
is shared by two methanol molecules and executes a motion in a double well type of potential
surface by hopping between the two methanol molecules. The configuration in Fig. 54(b) corre-
sponds to the transition state in the free energy profile, where the water starts to dissociate from
the methoxonium cation. In Fig. 54(c) the water molecule is completely dissociated and a new
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chemical bond is forming between the methyl group of the methoxonium cation and one of the
methanol molecules. This configuration corresponds to the transition state from the total energy
curve. Figure 54(d) shows the configuration corresponding to the minimum of the free energy
profile, where protonated DME was formed. Only a further compression of the bond by the
applied constraint (ξ0 ∼ 1.42 Å) led to deprotonation of DME. This proton then became rather
mobile on the MD scale. It moved away from the DME to form a hydroxonium cation. As a
result the total energy Etot in Fig. 53 started to decrease again, which suggests that this config-
uration is energetically more stable than the configuration with protonated DME. Given the fact
that a very simple form of the reaction coordinate ξ was assumed and a single constraint applied
to control the reaction it is important to assess the correctness of this choice. Two processes take
place as the system climbs the reaction barrier. The applied constraint forces the formation of a
chemical bond between the oxygen in the methanol #1 and the carbon atom on the methoxonium
ion #2 (Fig. 52). During this process methoxonium is dehydrated which breaks the H3C-OH+

2

bond. However, these two processes do not take place simultaneously. It is found that the water
molecule from the CH3-OH+

2 complex dissociates near ξ ∼ 2.38 Å, before the other (C-O) bond
is formed around ξ ∼ 2.0 Å. The global maximum/saddle point corresponds to the transition
state from the Etot profile. Hence, there is no competition between breaking and forming chem-
ical bonds. In particular, for ξ ∼ 2.38 Å the dissociated water does not take any active part in the
DME formation and comes to equilibrium by optimizing the alignment of its dipole moment. In
order to check the reversibility of the process tests have been made around the maximum/saddle
point. In further checks another (metastable) configuration for ξ ∼ 2.16 Å was located with
water still bonded in the CH3-OH+

2 complex. However, Etot in this arrangement was ∼ 0.4 eV
higher than for the configuration with the water molecule already dissociated. On the other hand,
configurations with dissociated water for ξ0 > 2.38 Å were unstable and spontaneously relaxed
to the arrangement corresponding to the CH3-OH+

2 complex. Hence, the thermodynamically
stable reaction path is the one given in Fig. 52 and the choice of the reaction coordinate ξ is
meaningful.

From Fig. 53 we see that the total energy and free energy profiles along the reaction coordi-
nate differ appreciably even at a qualitative level. In particular the entropic contribution to the
reaction barrier is of the same order as the internal energy contribution and hence, any conclusion
reached without explicitly including the entropy will be incorrect. This finding may not appear
surprising at T = 700 K. However, to the best of our knowledge, the huge nonuniform entropic
corrections have never been properly treated before in theoretical modeling of the MTG.

We now discuss these features more in detail. The internal energy curve Etot(ξ) exhibits
two activated processes; dissociation of water from the methoxonium cation around ξ ∼ 2.38 Å
and reaction of the methyl group with the other methanol around ξ = 2 Å, separated by a mini-
mum. The latter process corresponds to the transition state from Etot(ξ). On the other hand, the
transition state from the F (ξ) profile corresponds roughly to the former process of dissociation
of water from the methoxonium cation. This clearly shows that the customary assumption of
the dominance of the internal energy is not valid and that a more complex MD sampling of the
internal energy surface is required.

The sampling of the flat anharmonic multi-minima internal energy surface leads to the huge
and nonuniform variation of the entropic profile S(ξ). As the entropy associated with the zeolite
catalyst is approximately constant the complicated S(ξ) profile can be understood in terms of
elementary molecular processes as follows. Up to the transition state, the entropy decreases as
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a function of ξ. This is caused by two different processes which lead to reduced mobility of
the reacting methanol molecules. First, the two molecules are “glued” together by sharing the
zeolitic proton (Fig. 54(a)). This proton moves between two methanol molecules (#2 and #3 in
Fig. 52) which results in a very large rms fluctuation of the O-H distance when ξ is around 3.17 Å.
A consequence of this proton transfer is that these two methanol molecules are effectively glued
together by this proton. This results in a reduction of their mobility and hence a lowering of
the entropy S(ξ). A similar process can be seen to occur in Fig. 54(b), where now the methyl
group is shared between the dissociating water and the reacting methanol and, hence gluing these
groups together. Beyond the transition state a new molecule, is formed, initially characterized
by one CH3OH+-CH3 very loose chemical bond. In the region ξ ∼ 2 Å this loose bond is
responsible for the steep increase in the entropy. As can be deduced from the behavior of entropy
around the minimum of F (ξ) the protonated DME is characterized by an increase in number of
possible configurations. The steep decrease in entropy for the smallest value of ξ is caused by
deprotonation of DME which makes the product stiffer. The variation of the S(ξ) profile explains
also the other features above.

The analysis of the reaction in the MTG process leading to the first intermediate, the DME
formation, demonstrates the wealth of information and insight which may be gained from a
simulation of a complex catalytic reaction. Obviously, the model used above has a number of
limitations dictated primarily by the limitations in computer power. However, there is no doubt
whatsoever, that it will be possible to refine this model in the future and include the commercial
catalyst ZSM-5 in the model, and extend the model to all the steps of the reaction including
formation of the C-C bonds. On a more general ground, theory and simulation were promising
for several decades to provide a reliable modeling tool for a wide range of catalytic reactions. Due
to the limited accuracy and computer power such a tool was never provided. Recent advances in
this field give hopeful outlooks.

4.6 Simulations in nanotechnology

The fascinating idea of harnessing the molecular building blocks to assemble nanometer-scale
devices for applications ranging from electronic to biological, has been around for decades. How-
ever, only relatively recently advances in atomic-scale experimental imagining and manipulation
techniques, most notably scanning probe microscopy (SPM), atomic force microscopy (AFM);
see chapter 4.4 above, and dip-pen lithography have paved the way to the first practical realiza-
tions of that idea [295]. Promising molecular-electronics building-blocks started to appear, such
as fullerenes, carbon nanotubes, self-assembled monolayers (SAMs) of thiolates (CH3-(CH2)m-
S-) on gold etc. [296]. A more traditional, albeit equally important, application of some of these
systems is corrosion protection of metals (e.g. n-alkanethiolates on copper).

Synthesis techniques for these materials have been developed. For example, thiolate-capped
nanometer-scale gold particles [297], or immobilized particles used as nano-contacts to mole-
cules attached to an electrode surface can readily be prepared [298, 299]. Isolated metal clusters
can be attached to a metal substrate via a molecular gate and interrogated individually by SPM
techniques. In this way(i) two-terminal molecular junctions displaying rectifying behavior [300],
(ii) three-terminal T- or Y-shaped junctions in transistor architectures showing field-effect modu-
lation [301], and (iii) arrays of units for chemical, electronic or magnetic storage of information,
have been synthesized. Self-assembly of complete integrated circuits from materials ranging
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Fig. 55. Upper panel: Computer generated model [305] for a monomolecular nanojunction formed by
dithio-trans-azobenzene linked via two S atoms to two realistic models of gold electrodes. Lower panel:
cis-azobenezene (left) and trans-azobenezene (right). Note the significantly larger, by ∼ 3.5 Å, bond length
of he trans- isomer.

from monolayer protected clusters, nanotubes, conducting polymers, or even DNA, start playing
an increasing role in nano-fabrication techniques. Research projects are underway to explore
the possibilities to self-organize molecular systems into “cross-bar” arrangements for generat-
ing molecular storages based on single molecules [302]. These memory devices are based on
supramolecular systems such as catenanes repesenting vectorial molecular systems, such that by
making use of redox reaction bistable molecular states can be addressed on a single molecule
level. Thus, the ultimate miniaturization limit will eventually lead to true “mono-molecular”
devices in which all elements, including wiring, will be part of a single macromolecule. This
conceptually appealing avenue will further increase the complexity of intelligent engineering of
these extended multifunctional macromolecules.

While progress in the application driven areas of molecular- and nano-electronics proceed
at a very rapid pace, the fundamental understanding of the underling physics and chemistry
still remains murky. This is especially true of the theory and simulation, where the complex
molecular structures assembled and their measured transport characteristics are still awaiting
firmer theoretical understanding. In the same way, even experimentally this rapidly proceeding
field lacks so far the vigorous experimental scrutiny customarily done in more traditional areas of
materials science. Here we will review work on single-molecule devices, such as organometallic
nanojunctions.

4.6.1 Organometallic nanojunctions { v4, v5, v6, v7, v8, v9, v10, v11 }

As indicated above, thiolates are important molecules serving as convenient links to gold elec-
trodes. Example of use of a thiolate-gold link is shown in Fig. 55. Often thiolates are used
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Fig. 56. Pulling an organometallic nanowire formed by ethylthiolate chemisorbed on a stepped gold surface
emulated by a high-index Au(221) surface. The simulation was performed at T = 300 K by gradually
lifting the z-coordinate of the C atom constrained to a plane [313].

to functionalize other, more complex organic molecules, to link them to gold. These technolo-
gies open up unprecedented new possibilities to control the single molecule nanojunctions and
harness their novel electronic and mechanical properties. It is now possible to investigate the
single-molecule nanojuctions experimentally by a static AFM apparatus which exerts stress on
the junction (force-distance curves) in combination with applied voltage (distance conductance,
distance I/V curves) [299, 303, 304] and possibly with other fields, such as e.g. laser light. Light
can be used to modify molecular conformation of chromophore molecules, of which azobenzene
with the two vastly different cis- and trans- isomers is probably the best known example; see
Fig. 55. The electronic properties of such devices are being considered as possible candidates
for molecular electronics applications.

In these technologies, the self-assembled monolayers (SAMs) of organic molecules on coin-
age metal surfaces, play important role and therefore are currently among the most studied sur-
face systems [306, 307] with a number of potential applications ranging from surface coating and
lubrication [308] to molecular electronics [296, 299]. Of these, the most studied SAM system is
thiolates on gold surfaces. Relative ease of its preparation and its unusually high degree of order
make this system a prototypical SAM. In distinct contrast to gold, comparatively little work has
been done on thiolate bonding to other coinage metals. Here copper is especially interesting as a
much cheaper potential substitute for gold. However, available experimental evidence suggests
that substitution of gold by copper modifies also the underlying chemistry of the metal-molecule
bond. Hence, the thiolate-copper bond needs to be analyzed and understood. The metal-sulfur
bond for both metals (Cu, Au) is analyzed below. In this context we note that gold is a very spe-
cial coinage metal as it is characterized by significant relativistic effects [309, 310] absent from
other such metals. The relativistic effects strongly contract the s shell(s) which leads to prefer-
ence for low coordination/low dimensionality [311, 312]. These phenomena manifest themselves
by a tendency to form wires when pulled using mechanically controllable break junctions [311,
312] or a “thiolate hook”, see Fig. 56 {v431} (from Ref. [313]).

31Simulation of a process of pulling (mechanochemistry) a methylthiolate (CH3-CH2-S) molecule chemisorbed on a
stepped gold surface at 300 K by static AFM apparatus. The action of the AFM is emulated by constraining the methyl
group (CH3) of the thiolate molecule to a plane and slowly lifting it up.

http://www.physics.sk/aps/pubs/2007/aps-07-01/afm.mpeg
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There are several experimental studies confirming thiolate SAMs formation on low-index Cu
surfaces. X-ray standing waves study of adsorption of short-chain alkylthiolates on Cu(111) [314,
315] suggests the existence of a thiolate phase at low temperature, and coexistence of different
low- and high-temperature thiolate phases, but also an atomic sulfur phase at room tempera-
ture. Similarly, highly ordered thiolate phases, and at higher temperatures, atomic S phases or
combinations of the above were observed on Cu(100) and Cu(110) surfaces using thermal des-
orption and XPS techniques [316, 317]. Experiments also suggest a completely different thermal
dissociation of thiolates on gold and copper surfaces. Heating the Cu(111) surface covered by
S-CH3 adlayer desorbs CH3 radicals [314] , whereas molecular S-CH3 desorbs from the Au(111)
counterpart [318].

A novel and totally different way of detaching organic molecules from metals is provided
by “mechanochemistry” where mechanical energy, instead of the traditional thermal energy, is
used to induce chemical reactions. In such experiments, an external pulling force is applied
to a nano-junction consisting of molecule chemisorbed onto a metal surface or cluster all the
way to destruction of the junction. Such a proposition was studied in recent simulations, where
the pulling-induced rupture process was investigated for thiolate/gold contacts [313, 319], see
Fig. 56, mimicking AFM experiments designed to probe individual chemical bonds [320]. These
simulations strongly indicated that, instead of detaching a thiolate radical with the associated
breaking of the Au-S contact, as one might naively expect based on results of thermal experi-
ments [318], a series of isomerization steps involving gold atoms led to extraction of a monatomic
gold nanowire or to isomerization and unfolding of clusters. Hence, for the gold-thiolate system,
different bond scission scenarios can be obtained by using mechanochemistry [313, 319], and
thermal desorption. The two scenarios (thermal v.s. mechanochemistry) for both systems (Cu,
Au) are analyzed below.

We first target systematically the neutral CH3-(CH2)m-S-Mn adducts (where m = 0, 1 and
n = 1, 3, 5, 7, and 9, the metal atom M being Cu and Au) as well as their neutral, cationic, and
anionic dissociation fragments [321] in order to assess different channels to rupture. For the sake
of comparison, relevant results from a related study of the Cu(111) and Au(111) surfaces are
also included. We limit the cluster sizes Mn to odd numbers n as to avoid further complications
due to unpaired electrons and open shells. In order to facilitate comparison with copper, the
gold cluster structures which we employ here are, with the exception of the n = 3 adduct,
isostructural with those used for copper. The model of the Cu(111) surface consists of a 6-layer
slab with periodic boundary conditions hosted in a c(2× 2) supercell setup with a methylthiolate
coverage corresponding to one molecule per supercell [322]. As a model of the Au(111) surface
we also employ a 6-layer Au(111) slab with a SAM in the (

√
3×
√

3)R30◦ structure based on an
orthorhombic supercell containing two methylthiolate molecules. These surface results represent
the “asymptotic” (n→∞) reference values for fragmentation energies.

In experimental studies various thiolate chain lengths are used, from n = 1 [314, 315] up to
n = 30 [323]. A computational study based on these systems would be more expensive employ-
ing a fully ab initio description of the alkyl chain. However, the previous study of thiolated gold
clusters [324] demonstrated that adsorption and fragmentation energies obtained with chains as
short as two (one) carbon atoms provide accurate quantitative (qualitative) representatives for
results with longer chains. For those reasons in what follows we considered thiolate species with
up to two carbon atoms only.

The majority of the results were obtained in the framework of the DFT with the (spin-
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Fig. 57. Relaxed geometries of the CH3-CH2-S-Cun (left panel) and CH3-CH2-S-Aun (right panel) adducts
for n = 1, 3, 5, 7, and 9. Interatomic distances are given in Å.

polarized) PBE functional [59] and plane-wave basis sets. The calculations involving Cu were
performed with ultrasoft pseudopotentials [125, 126] throughout with a plane-wave cutoff of
25 Ry, including the 3d and 4s valence electrons of scalar-relativistic Cu. Calculations involving
Au clusters were performed with a scalar-relativistic normconserving pseudopotential [121] for
Au and a cutoff of 60 Ry. All calculations were done in a large supercell with edge length of 13 Å
for Cu and 14 Å for Au. For thiolates on Cu(111) a 2×2 Monkhorst-Pack k-point mesh [130] and
an electronic smearing of 0.2 eV was used, whereas the Γ-point approximation was used for the
larger Au(111) model. The dynamics simulations were done using thermostated Car-Parrinello
dynamics.

For the sake of comparison an extensive set of calculations using localized basis sets (with
a “small-core” SSD effective core potential and associated basis set for Au whilst for all other
atoms all electrons were explicitly treated and the TZVP basis set was used; many of the results
were also obtained with the 6-311G∗∗ basis set), using the PBE functional and second-order
Møller-Plesset perturbation theory (MP2) was performed. This allows to assess the pseudopo-
tential approximation or the importance of van der Waals interactions.

The structures obtained by local optimization methods for Mn-ethylthiolate for M=Cu and
Au are depicted in Fig. 57. For the Cu(111) surface the thiolate is found to be three-fold coor-
dinated with Cu-S interactions consisting of two bond distances of 2.26–2.29 Å and a third one
at 2.62 Å associated with a tilting of the 1.85 Å long S-C bond away from the surface normal.
For the case of Au(111), two-fold coordination is indeed obtained but with substantially longer
Au-S distances of 2.45 Å and a shorter S-C bond of 1.82 Å. The fact that the cluster structures
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do differ from that found on the surface suggests a priori that neither series of clusters will yield
fragmentation energies entirely consistent with the bulk metal surface even for the largest values
of n considered in this work.

We consider now fragmentations of CH3-(CH2)m-S-Cun adducts into the following prod-
ucts:

(1) CH3-(CH2)m-S-Cun → (CH3-(CH2)m-S)− + Cu+
n

(2) CH3-(CH2)m-S-Cun → CH3-(CH2)m-S + Cun

(3) CH3-(CH2)m-S-Cun → (CH3-(CH2)m-S)+ + Cu−n
(4) CH3-(CH2)m-S-Cun → (CH3-(CH2)m)− + (Cun-S)+

(5) CH3-(CH2)m-S-Cun → CH3-(CH2)m + Cun-S
(6) CH3-(CH2)m-S-Cun → (CH3-(CH2)m)+ + (Cun-S)−

(7) CH3-(CH2)m-S-Cun → CH3-(CH2)m-S-Cun−2+ Cu2

(8) CH3-(CH2)m-S-Cun → CH3-(CH2)m-S-Cun−4+ Cu4

as a function of cluster size in the range n = 1, 3, ..., 9 and in this section only for the methyl
systems, i.e. m = 0, Here, fragmentation pathways (1) – (3) describe scission of the Cu-S bond,
pathways (4) – (6) correspond to breaking of the S-C bond, and pathways (7) – (8) describe
cleavage of the metal cluster itself. The calculated fragmentation (i.e. dissociation or binding)
energies ∆E =

∑
Eprod − Eadduct are given in Tab. VIII. For the fragmentation schemes (1) –

(6) we take the two product fragments and optimize their structures separately to the respective
nearest local minima. This leads in all cases, with the exception of (Cu5-S)+, to isostructural
species. Thus, we have found that each fragment (with the above exception) adiabatically relax
to a nearby isostructural minimum which is a likely occurrence if the process is thermally ac-
tivated. On the other hand, it is unlikely to be valid if an external mechanical pulling force is
applied to achieve fragmentation [314]. Pulling for instance by an AFM tip, while the cluster
itself is fixed by one or several atoms to a surface [314] might break the cluster and/or induce
isomerization [325]. Thus, it should be noted that fragmentation under thermal activation and
mechanical pulling may lead to very different fragmentation pathways.

Before analyzing the results we validate the different approximations used in calculating the
energy differences. To this end in particular the PBE functional and finite basis set size using

Tab. VIII. Reaction energies ∆E (eV) for methylthiolate-Cun adducts calculated in the plane-wave basis
set and employing the PBE exchange-correlation fuctional.

# channel n = 1 n = 3 n = 5 n = 7 n = 9
(1) (CH3-(CH2)m-S)−+ Cu+

n 9.5 7.9 8.6 7.2 6.9
(2) CH3-(CH2)m-S + Cun 2.9 3.6 3.8 2.8 3.1
(3) (CH3-(CH2)m-S)+ + Cu−n 10.5 11.3 10.9 9.9 10.6
(4) (CH3-(CH2)m)− + (Cun-S)+ 11.7 8.3 8.8 7.9 6.9
(5) CH3-(CH2)m + Cun-S 2.9 2.4 2.6 1.6 1.4
(6) (CH3-(CH2)m)+ + (Cun-S)− 10.8 10.1 9.9 9.3 9.0
(7) CH3-(CH2)m-S-Cun−2+ Cu2 - 2.1 3.0 2.4 2.9
(8) CH3-(CH2)m-S-Cun−4+ Cu4 - - 3.3 3.5 3.4
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Tab. IX. Reaction energies ∆E (eV) calculated with: pwPBE, locPBE and MP2 for isostructural Cu5 and
Au5ethylthiolate. Pw stands for plane wave basis set and PBE functional, loc for localized basis sets and
PBE functional, MP2 for second-order Møller-Plesset perturbation theory.

# channel M=Cu M=Cu M=Cu M=Au M=Cu M=Cu
pw loc MP2 pw loc MP2

(1) (CH3-(CH2)m-S)−+ Cu+
n 8.5 8.3 7.9 9.6 9.1 8.9

(2) CH3-(CH2)m-S + Cun 3.9 3.9 4.3 3.4 3.3 3.6
(3) (CH3-(CH2)m-S)+ + Cu−n 10.8 11.1 12.2 10.1 9.3 9.8
(4) (CH3-(CH2)m)− + (Cun-S)+ 8.9 10.0 13.4 12.0 12.3 13.3
(5) CH3-(CH2)m + Cun-S 2.6 3.4 3.5 2.6 2.7 3.1
(6) (CH3-(CH2)m)+ + (Cun-S)− 7.9 9.3 9.5 7.9 10.4 12.7
(7) CH3-(CH2)m-S-Cun−2+ Cu2 3.1 2.9 2.6 3.1 3.4 3.3

fragmentation energies for CH3-CH2-M5 with M=Cu and Au as a test example w.r.t. MP2, see
Tab. IX, have been tested. This is an important issue quite in general as in most of the applications
considered here plane wave basis sets were used. As discussed above, plane waves have the
advantage of being totally unbiased and well controllable by a single parameter, the plane wave
cutoff. In general, the qualitative agreement between locPBE and MP2 employing the same
basis is quite good, with the notable exception of the highest energy reaction channels such as
the fragmentation of C2H5S-Cu5 into (CH3-CH2)− + (M5-S)+, see Tab. IX. For these higher
energy channels variation on the order of an eV between the various computational schemes is
common; here the anionic metal clusters as reaction fragments might in addition pose problems
for the PBE approach relative to the MP2 treatment. However, these errors do not alter the relative
ordering of the lowest energy reaction channels. Both methods (locPBE and MP2) find similar
differences between S-C and M-S fragmentation energies. Thus, it is concluded that the relative
bonding scenarios including various fragmentation scenarios are reasonably well represented
within the confines of the PBE functional. Comparison (for Cu-thiolate systems) of plane-wave
pseudopotential results (pwPBE) to those of the all-electron localized basis set results (locPBE’)
are in reasonable ( 10 %) agreement, with the notable exception that S-C bond cleavage on the
copper species is lowered by ∼ 0.8 eV. We examine the error resulting from the type of the
localized basis by employing a second triple zeta basis set of similar quality as TZVP, which is
6–311G∗∗. In this case the errors were found to be significantly larger then those resulting from
the pseudopotential approximation within the plane-wave scheme. In case of the copper systems
S-C bond rupture and cluster fragmentation are respectively calculated to be 3.4 eV and 2.9 eV
with TZVP but found to be 4.2 eV and 2.1 eV with the 6–311G∗∗ basis set with similar sized
errors occurring in most other reaction energies. For the gold system the agreement is slightly
better. Thus, the relative error induced from basis set size is significant and gives a very strong
support to use of the plane wave basis sets, which are from this point of view totally unbiased.

The energy differences ∆E between the thiolated adducts and the dissociation products re-
ported in Tab. VIII show that only two out of the eight pathways are energetically competitive,
namely cleavage of the S-C bond, pathway (5), and fragmentation of the copper cluster, path-
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Fig. 58. Fragmentation energies for breaking the S-C (squares and solid lines) and the M-S (circles and
dashed lines) bonds for thiolates chemisorbed to Mn clusters. (a): methylthiolate-Cun clusters and (b):
ethylthiolate-Aun clusters. The result for the three-dimensional Cu5 isomer is shown by a filled square
(see text) and the surface results for S-C and M-S bonds are marked by horizontal solid and dashed lines,
respectively.

way (7). In particular, dissociation into neutral species is always strongly energetically favored
over dissociation into charged fragments so that only neutral species will be considered in the
following discussion.

The most important fragmentation energies are plotted in Fig. 58 (a) in order to display more
clearly trends as a function of cluster size n. The results show systematic and pronounced low-
ering of the S-C bond fragmentation energy (squares) with increasing cluster size. For the larger
clusters, n = 7 and 9, this energy approaches the value of 1.3 eV as obtained for methylthiolate
on a Cu(111) surface [322] using the same electronic structure method. Overall, the binding
energy is found to decrease by more than a factor of two with respect to the limiting case n = 1
based on both the n = 9 cluster and the surface. Correspondingly the S-C bond in the thiolate
adduct is significantly destabilized in larger clusters. The only exception from the trend seems to
be the n = 5 case, which needs some clarification. Bare Cu−5 , Cu5, and Cu+

5 clusters are known
to have planar shapes. However, there exists also a three-dimensional (3D) Cu5 isomer and its
associated adduct and thus fragments, which is however ∼ 0.8 eV higher in energy compared
to the 2D adduct. As mentioned above, the 3D cluster structure is important for the (Cu5-S)+

fragment. The relaxation of the higher energy 2D fragment to the 3D non-isostructural isomer is
a result of the high electronic gradients observed in the initial structure as well as the relatively
close energetics of 2D and 3D Cu5 clusters. Hence, it is worthwhile to consider both isomers in
order to test also the effect of cluster dimensionality upon the results. Calculation of fragmenta-
tion path (2) with the 3D Cu5 constituent leads to a lowering of the S-C bond energy to 1.7 eV,
see the filled square in Fig. 58(a). Thus we observe a monotonic decrease of the S-C bond energy
provided that Cun clusters of maximum dimensionality (for given n) are considered.

A weak S-C bond for large n is consistent with experimental surface studies [314-317] which
show desorption of hydrocarbon chains starting at temperatures of few hundred Kelvin and full
desorption at around 500 K. On the other hand, no systematic trend can be found for the S-Cu
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bond based on studying clusters as a function of n. The surface reference of about 2.4 eV, on
the other hand, is consistently lower by about 0.5 to 1.5 eV and reflects the fact that binding to
the cluster is different from that on the surface. Likewise, cluster fragmentation energies are also
highly sensitive to the cluster structure for these small species as evidenced by the wide variation
as a function of n for the energy of reaction (7) which oscillates on the order of 0.5 eV. This
makes clear the point that the clusters are not sufficiently large enough to quantitatively reflect
the bulk metal surface and hence the detailed energetics is still governed by molecular details.
Hence, it is surprising in this light that S-C bond rupture has such a clear dependence on n and
argues toward a mechanism that is only grossly dependent upon the cluster geometry but not on
the thiolate binding configuration.

For Au it was also found that fragmentation channels into charged species are significantly
higher in energy compared to fragmentation into neutrals; see Fig. 58 (b) for the n = 1, 3, 5, 7
and 9 Aun species. In all the obtained species, with the exception of the n = 3 cluster, the thiolate
prefers a two-fold coordination pattern similar to that reported on the Au(111) surface [326]. The
lowest energy channels at all cluster sizes is fragmentation of the cluster core into a smaller Auk

(k < n) cluster and a Aun−k/thiolate adduct, the only exception being 2D n = 5 species where
it is 0.5 eV higher in energy than S-C bond rupture. For the smallest gold clusters studied (≤ 5)
cleavage of the S-C bond is found to be about the same as observed on copper clusters. However,
unlike the scenario for copper, increasing the cluster size has only a marginal effect on weakening
this bond. Specifically, the S-C bond energy decreases in value by only about 10 % as the cluster
size is increased from n = 3 to n = 9 as opposed to about 50 % found for ethylthiolate on copper
clusters. As a result the S-C bond cleavage energy in the thiolate bound to Au9 is 1.4 eV higher
than that of the copper analogue. Unlike copper, desorption of the thiolate molecule decreases in
energy from n = 3 to n = 9 such that it also becomes competitive with S-C bond rupture for the
larger species. Hence, although the smaller n species exhibit fragmentation energetics similar
to those found for the copper system, the size evolution of these energies and most notably the
pronounced weakening of the S-C bond, is quite distinct.

Why is gold so different from copper? One could naively assume that given the fact that both
metals are isoelectronic in there valence shells, there properties would be also very similar. How-
ever, just the opposite is true and the two metals couldn’t be more different! These differences
are behind the nobility of gold. To delve into the reason behind these observations we briefly
examine the hypothetical situation where relativistic effects are neglected for gold. Relativistic
effects have long been recognized to be crucial in understanding the chemistry of gold [309]. In
brief, relativistic stabilization and contraction of the Au 6s orbital leads to the large increase in
both the ionization potential (IP) and the electron affinity (EA), hence to a large electronegativity
of gold, and a shortening of intermolecular bond lengths. Akinaga et al. [326] were the first to
consider relativistic contributions in the context of SAMs on a gold surface.

To achieve this we have performed a little “alchemy” and constructed a non-relativistic norm-
conserving Au pseudopotential [121]. As a test of the reliability of this approach we consider the
IP of the 6s electron in the gold atom which is calculated to be 9.1 eV with our scalar relativistic
potential whereas it reduces to 6.8 eV in the non-relativistic case. Additionally, the Au2 di-
atomic molecule is found to have a bond length of 2.54 Å (using PBE and the 11-electron scalar-
relativistic pseudopotential), Removal of the relativistic corrections causes the Au-Au bond to
lengthen substantially to 2.98 Å in agreement with the above described qualitative trend.

We now consider fragmentation energies for a non-relativistic thiolate-Au9 adduct. Our
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Fig. 59. Schematic representation of trends in electronegativities, EN, between thiolate radicals, Aun and
Cun and its effect upon metal-sulfur bonding. The scheme is based upon computed EN values defined as
EN = (IP + EA)/2, where IP is ionization potential and EA electron affinity.

model finds that the weaker binding of thiolate to Au, relative to Cu, is a result of relativistic
effects, resulting into dramatic changes in both structure and energetics of the adduct. The Au-S
interaction retains its two-fold bonding structure, however the bond length increases from 2.37 Å
to 2.95 Å in the non-relativistic limit, which is accompanied by an expansion of the Au9 cluster
core as expected. Despite this pronounced lengthening of the Au-S bond we observe a signifi-
cant increase in the thiolate binding energy, from 2.8 eV to 4.0 eV in the non-relativistic case.
Even more notable is the observation that dissociation into Au9S and C2H5 is dramatically low-
ered from 2.5 eV to 0.4 eV. Thus, for the non-relativistic gold cluster, the trend is to strengthen
the metal-sulfur bond and, simultaneously, to lower the S-C binding energy signaling a strong
preference of S-C bond scission over Au-S rupture as induced by the neglect of relativistic cor-
rections. This trend is remarkable also when comparing copper and relativistic gold, see Fig. 58.
In a nutshell, one could say that the neglect of relativistic effects in gold leads to a behavior that
mimics that of copper. Hence, it is concluded that the essential difference between copper and
gold w.r.t. their interaction with thiolate molecules in particular dissociation pathways is largely
due to relativistic electronic structure effects.

We now seek the answer to the question of the nature of the M-S bond in the two systems and
to the most notable trend of the S-C bond weakening in the thiolate-Cun system with increasing n.
In order to provide an understanding of the chemical bonding with a clear focus on the difference
between copper and gold it is useful to consider first a simple qualitative descriptor. Given that
copper is less electronegative than sulfur one would be tempted to formally assign the sulfur
atom with a negative charge and the copper cluster with a positive charge. This conceptual
procedure would result in an ionic picture of thiolate-metal bonding along with the associated
non-directionality in the thiolate-copper interaction. As already mentioned above however, this
is strikingly distinct from the thiolate-gold SAMs where the current view is of a more covalent
and directional Au-S interaction.
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Some insights can be obtained from the calculated electronegativities (EN) of relevant frag-
ments which can help to distinguish between covalent and ionic bonds, see Fig. 59 for a schematic
representation. The calculated EN value, obtained by the Mulliken definition, is found to be
5.4 eV for both methyl- and ethylthiolate. This results from the fact that both HOMO and LUMO
orbitals involved in ionization and electron capture are predominantly centered on the S atom.
In comparison, with Aun clusters the EN values are found to range between 4.7 and 5.4 eV
with the larger clusters having a propensity toward a small EN value due to a lower ionization
potential. This results in a small EN difference between Aun clusters and thiolate, leading to a
rather covalent and thus directional Au-S interaction. In comparison, Cun clusters are found to
have much smaller EN values ranging between 3.6 and 4.2 eV, again with a propensity toward
lower EN value for larger clusters which. Hence, the Cun and thiolate radicals have a larger
EN difference ranging from 1.2 to 1.8 eV and thus should have a more ionic, or polar covalent
bonding interaction than their Aun counterparts. Note that this interpretation fits qualitatively
well with our observations above that non-relativistic Au behaves more like copper in that ab-
sence of relativity decreases IP and EA of Au. Hence, non-relativistic gold clusters lower their
electronegativity and thus lead to more ionic nature of Au-S bonding akin to copper. In order
to understand the pronounce weakening of the S-C bond with the size of the Cun, we consider
a more detailed electronic structure analysis using the one-electron orbital picture. The main
features governing the S-C bond weakening as a function of the metal cluster size can be gleaned
from the spatial distribution of just a few eigenstates, see Fig. 60. The other tool used to obtain
a more detailed information on electronic structure is the Mulliken population analysis (MPA)
by projecting Kohn-Sham molecular orbitals (MOs) expanded in plane-waves onto a minimal
basis set composed of numerical (pseudo)valence atomic orbitals of S, C, H and Cu atoms [327].
Taking into account the well-known drawbacks and caveats of MPA itself and the intermediate
projection step, this analysis allows to identify the most significant relative trends if studied as a
function of cluster size. The spilling parameter, indicating the quality of the projection of eigen-
states onto the localized orbitals, is always around 1 %, indicating almost complete projection
onto the minimal basis set.

The findings from MPA and wave function analysis in Fig. 60 can be summarized as follows.
The two lowest eigenstates at∼ −18.5 eV and∼ −15 eV correspond to bonding and antibonding
C(2s)-S(3s) σ-type MOs, respectively. These MOs change only slightly upon variation of
the number of Cu atoms in the cluster. The MOs #3 and #4 are mainly S-C π-type bonding
orbitals formed largely by C(2px), C(2py) and by S(3px), S(3py) AOs. The lower one of these
orbitals looses a part of its S-C population with increasing cluster size (about 10 % of the charge
moves towards the S-Cu region), which, though, weakens the S-C bond only negligibly. Of all
eigenstates there are just two which are significantly populated by C(2p) and/or S(3p) electrons
and simultaneously exhibit a strong dependence on the size of the copper cluster. These are MOs
#5 and #6 with energies around -9 eV and with their energy separation changing between 2 eV
and 0.5 eV, which are formed by C(2pz), S(3pz), and Cu(3d) orbitals. These MOs are positioned
below the bottom of the Cu(3d) and Cu(4s) range of energies and for large clusters they are
similar to “impurity levels” in the Cu(3d) “band” which is in the range ∼ −8 eV to ∼ −4 eV.
For n = 1 the lower orbital is strongly populated on the S-C bond (forming a σ-type bonding
orbital) and the higher one (which has a more complicated spatial distribution and less bonding
character) gives very little population into the S-C bond. Increasing the cluster size causes (apart
from the creation of two quasi-symmetrical S-Cu contacts) the S-C bonding contribution in MO



150 Computer Simulations for the Nano-Scale

Fig. 60. Analysis of S-C bond weakening in CH3-S-Cun. Upper panel: Spatial distribution of Kohn-Sham
eigenstates #5 (left column) and #6 (right column) for n = 1, 7, and 9. Blue/green color indicates the sign
of the wave function. Lower panel: Corresponding Mulliken population analysis for the orbitals #5 (upper
subpanel) and #6 (lower subpanel) as a function of cluster size; results for p orbitals on C (circles) and S
(squares) are summations over px, py , and pz projectors and results for Cu (triangles) are sums over 4s and
3d projectors.

#5 to decrease. This is counter-balanced by a simultaneous gain of population in MO #6, see
Fig. 60. Close examination of Fig. 60 also shows that actually a crossover occurs around n = 5
in concurrence with the enhancement of the weakening of the S-C bond upon the 2D-3D cluster
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Fig. 61. Static simulation (T = 0 K) of mechanochemistry on CH3-CH2-S-Cu9. The system was con-
strained in a way similar to the one used in [314], see Fig. 56, i.e. the methyl group was fixed to a plane and
lifted up, while the Cu atom on the bottom of the Cu9 was kept fixed.

structural transition. In agreement with our simple model based on electrostatics, the increase
in the interaction with the larger copper cluster results in a mixing of occupied S-C MOs on the
thiolate, such that S(3pz) population is transferred from MO #5 to the higher in energy MO #6,
thus weakening the S-C bond.

Given the above analysis, one might conclude that the thiolate-copper nanojunction would
be unstable against modest heating and that it would fragment along the C-S bond also under
mechanical pulling, i.e. if mechanochemistry is applied. As Fig. 61 demonstrates, the last as-
sumption is certainly wrong [325] {v532, v633, v734, v1035, v1136}. The system instead fragments
along the pathway

(7)CH3−CH2−S− Cu9 → CH3−CH2−S− Cu7 + Cu2.

However, as can be seen, the copper cluster undergoes a substantial reisomerization which
flattens the copper cluster. Furthermore, instead of weakening the S-C bond by pulling, just the
opposite happens: the energy of breaking the C-S bond in CH3-CH2-S-C under otherwise equi-
librium conditions requires 1.4 eV (see Tab. VIII) but under mechanical pulling [325] this energy
increases to ∼ 2.5 eV! This makes the C-S absolutely immune against rupture. A more general
question may be asked. Imagine a nanoparticle with aribrary chemical bonds. The weakest
bond(s) will start to rupture if the nanoparticle is heated up to sufficiently high temperature. Take
the same nanoparticle, but now at a very low temperature and mount it in the (static) AFM appa-
ratus (for example using thiolate bonds) and pull the particle along the weakest bond(s). Will the
same bond(s) be broken under the action of mechnochemistry? As the above example indicates,
the answer may in general be NO! This line of thought also suggests how the thiolated copper

32Simulation of mechanochemistry on a thiolated Cu5 cluster (CH3-CH2-S-Cu5). Static simulation at T = 0 K by a
stepwise lift-up of the methyl group (CH3). Similar model as above.

33Simulation of mechanochemistry on a thiolated Cu9 cluster (CH3-CH2-S-Cu9). Static simulation at T = 0 K by a
stepwise lift-up of the methyl group (CH3). Similar model as above.

34Simulation of mechanochemistry on a thiolated Cu(111) surface. Static simulation at T = 0 K by a stepwise lift-up
of one out of four thiolate molecules (CH3-CH2-S). Similar model as above.

35Simulation of a thermal break-up of a thiolated (CH3-CH2-S) copper surface at 1800 K. Note that the outcome is
defferent from that shown in the corresponding mechanoprocess.

36Simulation of a thermal break-up of a thiolated Cu9 cluster (CH3-CH2-S-Cu9) at 1800 K. Note that the outcome is
defferent from that shown in the corresponding mechanoprocess.

http://www.physics.sk/aps/pubs/2007/aps-07-01/thio_cu5_no_cmp.avi
http://www.physics.sk/aps/pubs/2007/aps-07-01/thio_cu5_no_cmp.avi
http://www.physics.sk/aps/pubs/2007/aps-07-01/thio_cu9_no_cmp.avi
http://www.physics.sk/aps/pubs/2007/aps-07-01/cu111.avi
http://www.physics.sk/aps/pubs/2007/aps-07-01/surf_break_up.dvi.avi
http://www.physics.sk/aps/pubs/2007/aps-07-01/Cu_9_breakup.avi
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Fig. 62. Left panel: Schematic view of the photoreaction pathways of formaldimine (R1 = R2 = H). The S0

(solid line) and the S1 (dashed line) energy curves are plotted qualitatively against a hypothetical reaction
coordinate whose main contributor is is the NH twist angle (the angle between the planes containing the
R1CR2 and HNC, respectively) [329]. Right panel: (a) Time evolution of S0 and S1 energies following
photoexcitation in the case of a successful R → P reaction. Solid and dashed vertical lines indicate the
moment of photoexcitation and nonadiabatic transition to the ground state, respectively. The open circles
indicate the PES on which the nuclei are propagated. (b) Corresponding time evolution of the pyramidaliza-
tion, HNC, and HN twist angles. The HN bond is seen to flip from 0◦ to 180◦ resulting in the photoproduct.

nanoparticles could be thermally stabilized: all that is needed is a slight application of strain
along the S-C bond! One could try to use the bond selectivity of thermal and mechanochemsitry
as a novel designing tool in nanotechnology. The bonds could be slectively manipulated either
by heating or by application of mechanical stress.

In addition to thermal energy, and mechanical energy, the other important energy source to
initiate a reaction is use of light whereby the system is promoted into an electronically exited
state. Electronically nonadiabatic processes play a crucial role in many different fields, including
femtoscience [328]. A very simple application is shown in Fig. 62 for the cis-trans photoisomer-
ization of the smallest unprotonated Schiff base, formaldimine H2C=NH [329]. The system may
evolve on the gound-state PES S0 and the photoexcitation is simulated by promoting the system
into a (first) excited state PES S1. The construction of the excited state PES was described in
chapter 3.1.5.12, 3.1.5.13. The ground- and excited-state PESs intersect (or at least touch) at the
so-called conical intersections. At such points the system may with a certain probability [329]
switch back from the excited- to the ground-state PES whereby a reisomerization may occur.
This is illustrated for formaldimine in Fig. 62.

Returning back to the organometallic nanojunctions we discuss now junctions formed by a
chromophore molecule, the azobenzene, linked by suphur atoms to two gold electrodes, in the
way shown in Fig. 55. Shining laser light of appropriate wavelength will lead to photoswitching
of the molecule. The ground- and first excited-state PESs are shown in Fig. 63 [330]. The sim-
plest model, which we study here, consists of just the azobenzene molecule with two constraints
applied to the end points of the azobenzene molecule and the electrodes completely integrated
away. The simulation parameters were as follows: PBE exchange correlation functional [59],
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Fig. 63. Upper panel: Ground (black) and first excited (red) states of the azobenzene molecule: the ver-
tical deecitation spectrum [330]. The reaction coordinate is taken to be the CNNC dihedral angle which
corresponds to the rotation reisomerization mechanism. The PESs have been slightly adjusted to fit the ex-
perimentally known data for the cis- and trans- isomers. Lower panel: The ground- and excited state PESs
S0 and S1 for azobenzene molecule and the corresponding CNNC dihedral angle from a MD sampling at
300 K. As in the ground-state PES shown in the upper part, the ground-state PESs have been generated for
atomic configuration corresponding to the excited state. The points where the two PESs overlap correspond
to the conical intersections.

normconserving pseudopotentials [206], plane wave cutoff of 70 Ry. The dynamical simulations
have been performed at room temperature. The first excited state S1 was calculated using a
modification of the ROKS, see chapter 3.1.5.12, the so-called mROKS technique [331].

From the results in the upper panel of Fig. 63, showing the results of a switching by rotation
reizomerization (modification of the CNNC dihedral angle) it can be seen that the PESs are
qualitatively similar to those schematically shown in Fig. 62. While no conical intersection can
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Fig. 64. Mechanochemistry on a godtrans-azobenezene nanojunction with realistic gold electrodes [325].
Note, that a similar nanowire structure as on a stepped gold surface is formed [314] is formed as a result of
mechanical pulling.

be seen in the upper part of Fig. 63, which shows only a section through the PES, the conical
intersections are bound to exist somewhere on a more dimensional PES, as experimentally the
photoswitching does occur [332]. A typical result from a MD run set up to sample the PESs in
order to reveal the possibility of a photoswitching [330] is shown in the lower part of Fig. 63. The
results show that an azobenzene molecule initially prepared in a cis- isomer geometry quickly
changes its conformation after switching to the excited S1 state, so that the mean value of the
CNNC dihedral angle is around ∼ 120◦. As can be seen from the upper part of Fig. 63, that
value of the dihedral angle is close to the conical point. As seen from the lower part of Fig. 63,
the conical points are indeed encountered. The important point is, that stress exerted on the
azobenzene molecule, e.g. by AFM apparatus, see Fig. 55, will control the relative position of
the S0, S1 PESs, and hence the switching probability [330].

Can mechanochemistry be used to achieve reisomerization? Such a possibility has not been
much studied up to date. Yet, in principle it could be possible to switch the conformation from
say, the cis- to trans- using exclusively the mechanical energy of the SPM tip. We have been
doing simulations of the mechanocemical switching [325]. However, in such a simulation we
now need a complete geometry of both tips, see Fig. 64, where, as an example, we shows
mechanochemistry of a gold-trans-dithioazobenzene-gold nanojunction up to the point of me-
chanical destruction [325] {v837, v938}. Given that both tips are explicitly included in the model,
the calculations have been done with localized basis sets (double zeta plus polarization)39. The
usual DFT model with PBE exchange-correlation functional [59] and pseudopotentials was ap-
plied. The results of one such simulation shown in Fig. 64 give support to the more simplified
method used in most of the other mechanochemistry simulations, where one of the two electrodes
was integrated away from the simulation and substituted by a simple constraint. The fact that Au
nanowires, similar to those shown in Fig. 56, are formed also with a complete set of realistic
electrodes gives a strong support to the simplified model with constraints. These simulations

37Simulation of reizomerization of a dithioazobenzene molecule from cis to trans isomer using only mechanical energy
of the tips. The azobenzene molecule is anchored to two realistic gold model tips by a sulphur bond. Static simulation at
T = 0 K by a stepwise motion of one of the two electrodes.

38Simulation of mechanochemistry on trans-disthioazobenzene using only mechanical energy of the tips. The azoben-
zene molecule is anchored to two realistic gold model tips by a sulphur bond. Static simulation at T = 0 K by a stepwise
motion of one of the two electrodes.

39We note that a very careful optimization of the localized basis sets was reuqired, in order to achieve agreement with
the more accurate plane wave basis set. With less carefully selected basis sets the fragmentation of the nanojunction
resulted in scission of the S-Au or S-C bond, dpending on the particular basis set used. This once again demonstrates the
advantage of use of plane wave basis sets, wherever feasible.

http://www.physics.sk/aps/pubs/2007/aps-07-01/Anim_3.avi
http://www.physics.sk/aps/pubs/2007/aps-07-01/Anim_3.avi
http://www.physics.sk/aps/pubs/2007/aps-07-01/Anim_2.avi
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also indicate that the organic molecule is extremely stiff and the gold electrodes rather ductile.
Can under these circumstances mechanichemistry be used to affect the geometry and properties
of the molecule, rather than just mechanically destruct the gold electrode? Preliminary results
indicate that at least a cis- to trans- mechanoreisomerization should be possible [325].

These few ad hoc selected examples, most of which were stimulated by experimental groups,
show how modeling in a “virtual nanolaboratory” can be used to both guid the real laboratory
experiments and assist interpretation of the obtained results.

4.7 Quantum Monte-Carlo

From the general discussion, chapter 3.1.6 and 3.2.2 above, it follows that there are more vari-
ants of quantum Monte-Carlo (QMC). The zero-temperature QMC [88] seeks a solution of
the Schrödinger equation, while the finite-temperature version, the Path-Integral Monte-Carlo
(PIMD), or molecular dynamics [154], samples the density matrix. Due to the problems to in-
clude the proper statistics (symmetry of the wave function) the PIMC is mainly used for ions and
bosons or Boltzmannons; see chapter 3.2.2.4 above. The zero-temperature QMC can be used for
bosons and, in fixed-node approximation, also to fermions. Below we give a few examples of
application of both techniques.

4.7.1 Zero-temperature QMC

4.7.1.1 Homogeneous electron gas

The homogeneous electron gas (HEG) is the simplest yet still relevant manyfermion model [333].
Just for completeness we recall that it consists of electrons of various densities40 moving on a
homogeneous positive background of a density, corresponding to a neutral system. This means
that the discrete nature of the positively charged ions is smeared out in the positively charged
homogeneous background. Despite its simplicity, the HEG is of great importance from at least
three points of view. It provides the first approximation to describe the valence electrons in met-
als [334]. It is the basic ingredient of the Density Functional Theory (DFT) [25, 26] meaning that
any of the many DFT calculations are actually based on the results for HEG. Finally, beyond the
range of rs relevant for these applications, it displays a complex and fascinating phase diagram
that includes the Wigner crystal [335] a variety of magnetic structures, and possibly more com-
plex and exotic structures. Wigner crystal is fascinating as it is a demonstration of pure quantum
phase transition: a HEG is unstable as it is diluted below a certain density and the electrons start
“crystallizing” on a regular lattice in the space. Despite the nine decades of intensive research of
the static and dynamic properties of HEG, the properties have only been rigorously established
in the limit of high densities, where the system approaches a perfect gas [336] and at low density
where the electrons crystallize [335].

The breakthrough came with Ceperley and Alder [36] who performed essentially absolutely
accurate calculation for this system based on QMC approach, see chapter 3.1.6. Four phases

40The densities are usually expressed in terms of rs, where rs is a measure of the interelectronic distance (n =
1

(4/3)πr3
s
⇒ rs = 3

√
3

4πn
.
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Fig. 65. The energies for the four phases studied relative to that of the lowest Boson state times r2
s at

different densities rs.

have been considered: the paramagnetic or unpolarized Fermi fluid, ferromagnetic or the polar-
ized Fermi fluid, the Bose fluid and the Wigner crystal with a bcc lattice. First a standard VMC
calculation was performed with up to two-body correlations and proper cusp condition included.
For the fluid phase the single-particle orbitals are plane waves with the wave vector lying within
the Fermi sea. For the polarized state the Fermi wave vector has been increased to allow for
twice as many spatial orbitals. In the crystal phase, the orbitals are Gaussians centered around
b.c.c. lattice sites with a width chosen variationally. Next a fixed-node DMC simulation using
∼ 100 ensembles taken from the VMC simulation with the nodes fixed by the VMC trial wave
function was performed. The third step is nodal relaxation. In this procedure if a random walk
strays across the node of the trial wave function it is not terminated but its contribution to any av-
erage is reversed. At any stage of the random walk there is a population of positive walks (those
that remained in the same nodal region or crossed an even number of nodes) and population of
negative walks (those that crossed an odd number of nodes). It can be shown, that the difference
population converges to the antisymmetric eigenfunction. However, both the positive and neg-
ative population grows geometrically with a rate equal to the difference between the Fermi and
Bose energies. If the relaxation time from the fixed-node distribution times this energy differ-
ence is less than unity, the fermion energy can be reliably extracted. This condition is met for this
system if the nodes of the Hartree-Fock wave function are used. However, this is a very lucky sit-
uation, and for most other systems the nodal relaxation cannot be performed. The last step is the
finite-size scaling. The largest uncertainty is connected with this step. The size dependence was
established on simulations for systems ranging from 38 to 248 particles. Extrapolation to infinite-
particle results was carried out at each density on the basis of E(N) = E0 + E1/N + E2∆N ,
where the coefficients E0, E1, and E2 were empirically determined from the simulations.

The results of the simulation are shown in Fig. 65. As can be seen the system undergoes
Wigner crystallization at rs = 160± 10. The Fermion system has two phase transitions, crystal-
lization at rs = 100 ± 20 and depolarization at rs = 75 ± 5. Very small differences in energy
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were found between a Boson crystal and a Fermion crystal which made it very difficult to address
this question.

These benchmark calculations are of paramount importance for the DFT theory, which uses
HEG results as the primary input, see also chapters 3.1.5.3, 3.1.5.4, 3.1.5.7, and 3.1.5.8. For
that reason the early QMC results for this system [36] have later been refined in a density range
relevant for the DFT calculations, i.e. 0.8 ≤ rs ≤ 10 [37]. The simulations were based on
system sizes between 169 and 458 particles which renders the finite-size scaling more accurate.
Most importantly, these newer set of simulations covered also the case of partial polarization with
the following spin polarizations ζ = 0, 0.21, 0.42, 0.56, and 1, see chapter 3.1.5.4 and formula
(111) in particular. This makes it possible to validate the different interpolation schemes between
the polarized and unpolarized case. The Vosko et al. formula [39] was found to be especially
accurate.

4.7.1.2 Odd-numbered, positively charged H-clusters

We now proceed from model systems to real physical systems, namely to hydrogen clusters.
Several other applications of the method to molecular, cluster, as well as extended systems were
briefly introduced in chapters 3.1.5.5, 3.1.5.6, and 3.1.6.4. The clusters of hydrogen molecules
represent seemingly the simplest examples of molecular clustering effects. The neutral (H2)m

clusters are van der Waals (vdW) bonded systems with intermolecular bonding energies of only a
few Kelvin [337]. Although they are difficult to handle experimentally, the simple vdW bonding
allows a relatively straightforward theoretical modeling. The previous studies showed that the
(p-H2)m clusters with m ≤ 20 exhibit extreme quantum-liquid-like behavior, absence of any
shell structure [338], and superfluid behavior at very low temperatures [339]. On the other hand,
the experiments on positive cluster ions have revealed that the odd numbered H+

m, m = 3, 5,
7,... clusters are much more abundant in the mass spectra [340] than the even numbered H+

m,
m = 2, 4, 6,... ones [341]. In addition, experiments also suggest that the structure of the odd
numbered cluster ions consists of a very stable H+

3 core ion surrounded by more weakly bound
H2 molecules arranged in solvation shells around the core; hence the structure has the form
H+

3 (H2)n. The support for this model is supported also by the measured enthalpies (∆H) of
equilibria for the reaction [342–344]

H+
3 (H2)n−1 +H2 ↔ H+

3 (H2)n .

The experimental results [342] for −∆Hn−1,n yield 6.9 kcal/mol for n = 1, ∼ 3.3 for n = 2,
∼ 3.2 for n = 3, ∼ 1.72 for n = 4, etc. The stepwise decrease in the enthalpies with steps at
n = 2, 4, 7, 9,... which goes in a geometrical series with a quotient 1/2 has been interpreted in
terms of opening of successive, less tightly bound, solvation shells at those n.

The positive odd numbered clusters have been a subject of several theoretical studies based
on quantum chemical methods [345–347], quantum Monte Carlo (QMC) [348], and DFT [349].
The first two approaches were mainly concerned with the dissociation energetics, while the DFT
techniques have been used in connection with path integral treatment of the protons, see chapter
3.2.2 and 4.7.2.1, in order to explore the quantum and thermal fluctuations. All three groups of
methods have confirmed the H+

3 (H2)n structure emerging from the experimental studies. Given
the deficiencies of the DFT techniques in description of the energetics and even structure of
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these systems [61, 349], it is not surprising that the delicate structure and tiny energy differ-
ences of −∆Hn−1,n were not very well described by the DFT techniques, see the discussion
to Fig. 13 above. It is more surprising that even high-quality quantum chemistry calculations,
such as MP2 [347], CCSDT(T) [346] or even QMC [348] failed to describe correctly the disso-
ciation enthalpy −∆Hn−1,n. As shown below, one reason for these large discrepancies (CISD,
CCSD(T), and QMC) compared to the experimental values is that total energy differences are
compared with experimental dissociation enthalpies and hence the dynamical effects are ignored
in the theoretical description. The calculations which include the thermal contribution to en-
thalpy [347] indeed exhibit a significant improvement up to H+

13 over the theoretical treatment
without that contribution [345, 346, 348].

The objective is to resolve the above mentioned shortcomings and produce benchmark cal-
culations for this class of system up to m=17 [17]. In particular, two new cluster structures, H+

15

and H+
17 are proposed. The geometry of each cluster was optimized. For smaller clusters this

was done by using the CISD method. However, starting from m ≥ 11, the application of the
CISD method to optimize the ionic degrees of freedom becomes very demanding, mainly due to
the flatness of the PES, which results in a very slow convergence. For that reason for m ≥ 11
the geometry optimization was done using the MP2 method. For each optimized geometry the
calculation of total energies the CCSD(T) was performed. The total energy was evaluated also
within the DMC method within the fixed-node approximation, hence it does not exhibit the ba-
sis set errors characteristic of the quantum chemistry approaches. Since the CCSD(T) method
includes the correlation effects to a very high level, the differences observed between the DMC
and CCSD(T) results are mainly due to the basis set errors and, to a much smaller extent, due to
the fixed-node bias in DMC. This is very important especially for present systems, in which very
subtle polarization effects are very sensitive to the size of the basis set. The correlation consistent
cc-pVTZ basis sets [350] were used. We note that the correlation consistent basis sets are ex-
pected to be superior to the standard 6–311G** Gaussian basis sets customarily used. The basis
set superposition error was found to be less than 0.1 kcal/mol, and was neglected. The dissocia-
tion enthalpies were calculated from the differences between ground-state energies obtained by
correlated methods, corrected for zero-point vibrational energy (ZPVE) ∆0 and thermal contri-
bution ∆298.15, both calculated at T = 298.15 K in harmonic approximation at the MP2 level of
theory.

Optimized geometries for H+
m for m ≤ 17 are shown in Fig. 66. For m = 11, six equivalent

minima for the additional H2 molecule have been found; three minima both above, and below
the H+

3 moiety. The structure of this cluster was used in the search for geometries of the larger
clusters. Form = 13, 15, and 17 all distinct geometries corresponding to the different placements
of the other H2 molecules have been investigated. The structures shown in Fig. 66 were found
to be marginally lower in energy than the other isomers. The shell structure of these clusters
is clearly visible: the core ion is formed by H+

3 , the first, mainly chemically bonded shell, is
completed at m = 9, and the second, predominantly physically bonded shell, at m = 15. We
note that atm = 17 a new, third shell is opened by the last H2 dimer which is slightly more distant
from the H+

3 core than the other three ones and does not occupy any of the minima identified in
the case of H+

11. This dimer is rather located in a new minimum below the H+
3 plane at the center

of the H+
3 core (c.f. Fig. 66).

Standard dissociation enthalpies at T = 298.15 K, −∆Hn−1,n, evaluated by different meth-
ods are compared with experimental results in Fig. 67. The results demonstrate that all methods,
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Fig. 66. Optimized geometries of H+
n for n = 3, 5,...,17 [61]. Note that the geometries of the two largest

cluster structures have not been described before.

except for CISD, qualitatively reproduce the step-like dependence of −∆Hn−1,n. The failure of
the CISD is attributed to the lack of size-consistency, see chapter 3.1.4. CCSD(T) and MP2 yield
results of comparable quality, reproducing qualitative and quantitative features of the experimen-
tal −∆Hn−1,n. Best results overall are obtained from QMC energies. The DMC method does
not suffer from the basis set errors while the fixed-node approximation is quite small in weakly
bonded systems. It is very encouraging that by combining high accuracy description of electronic
correlation with a reasonable estimation of ZPVE and thermal effects we are able to reproduce
the measured values to within less than 0.5 kcal/mol! The residual errors are almost certainly due
to the description of the thermal excitations in the harmonic (MP2) approximation. Remarkably,
QMC reproduces even the tiny step at m = 17 which appears due to the slight difference in the
bonding distance of the last H2 molecule opening the third coordination shell and has not been
identified by any of the previous calculations.

The agreement of the results with experiment for m = 15 and 17 indicates that the two
isomers are excellent candidates for the ground-state structures. We note that the error for m =
11 and 13 is marginally larger than that for the other clusters. This can be qualitatively understood
as being due to the more open structure for these two cases, compared tom = 15 and 17 in which
all three minima in the second solvation shell are occupied (c.f. Fig. 66). This renders them
more anharmonic and hence the use of harmonic approximation less accurate. The accuracy of
this approximation can be judged from Fig. 67 which shows the comparison between the DMC
dissociation energies/enthalpies at T = 0 and T = 298.15 K. The contribution to the−∆Hn−1,n

of the thermal excitations is a strongly decreasing function of n, and so is the absolute error from
this approximation for the larger clusters. Fig. 67 also reveals the importance of the thermal
excitations for the smaller clusters (being about 50 % of the step size for n = 1) when comparing
the theoretical results with experiments and clearly explains the discrepancies between theory
and experiments in previous studies [345, 346]. In particular, the DMC results are essentially
perfect up to n = 3, i.e., in the region dominated by chemical bonding for which the treatment
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Fig. 67. Left panel: Comparison of the dissociation enthalpies −∆Hn−1,n in various Quantum Chemistry
methods and QMC at room temperature with experimental results [344]. Right panel: Validation of the
importance of finite-temperature effects in the QMC approach.

of ZPVE in harmonic approximation is an established assumption. These results show stable
clusters for all m. In contrast, the previous calculations [345, 346] gave negative −∆En−1,n for
m = 11, and 13. In particular, the results compare very favorably with those of Ref. [347] which
exhibit a rather poor agreement with experiments for m ≥ 11. This is most likely the combined
result of the differences in the ground-state geometries of the clusters at higher m and basis set
errors. Interestingly, for n = 1, both DMC and CCSD(T) results are in perfect agreement with
the experiments, while perturbative techniques, MP2 [247], are lower by almost 1 kcal/mol.

These clusters exhibit a multitude of different bonds. Clearly, the polarization effect of the
H+

3 core ion will run out of power at some cluster size and for very large clusters very far from
the core ion the outer shells will behave quite like the even-numbered clusters. A trace of this
behavior can be seen also in the small odd-numbered clusters studied here. It was found that
starting from m = 11 one can expect that both zero point motion fluctuations and also temper-
ature effects for T ∼ 10 K and higher will enable the outermost dimer to pass the barriers from
one minimum to another with a resulting fluctional behavior. Obviously, the H2 molecules in the
successive coordination shells will be even more mobile causing their fluctional behavior.

4.7.1.3 Toward QMC-based ab-initio molecular dynamics

So far all correlated techniques for electronic structure calculation were limited to static ions.
The reason is the prohibitive numerical cost to obtain the correlated many-body wave function Ψ.
Yet, in many occasions, the DFT-based ab-initio MD has insufficient accuracy dictated by the
well-known deficiencies of the DFT, see chapter 3.1.5.6, 3.1.5.7, 3.1.5.11. Can the accuracy
of the ab-initio MD be improved? This question is precisely the same as the question asked
by Car and Parrinello some 20 years ago [186], when the only MD benchmarks were based
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on accuracies achievable with empirical interatomic potentials. The answer was invention of
the Car-Parrinello coupled electron-ion dynamics, see chapter 3.3.3. As a matter of fact, in
principle the CP dynamics is just a very clever way to adjust the time-scales of the two vastly
different subsystems in the simulation: the electrons and the ions. The time-scale is set so, that
the electrons naturally “follow” the ions without the need to ever have to explicitly reoptimize
them. Can a similar trick be applied also in the domain of correlated calculations, such as QMC?

It turns out that the answer is positive! The indications are provided by the correlated sam-
pling [144, 145] which was used to outline the calculation of QMC-based forces on ions, see
chapter 3.1.7.4. In the CP dynamics the time-steps are typically very short, of the order of
∼ 0.1 fs, which typically induces structural changes of the order of 10−3 to 10−4 ?. These
time-scales make it possible to use the correlated sampling and render the optimization of the
many-body wave function Ψ numerically efficient [144, 145].

Recently, a step was made toward a QMC-based MD [351]. Simple hydrogenated Si-clustres
(SiH4, Si5H12, and Si14H20) at the temperature of T = 1000 K were simulated. While the
forces were still DFT-based and the atomic structures generated by a standard plane wave pseu-
dopotential BO MD simulation (Eut = 12 Ryd, PBE functional [59], large box with periodic
boundary conditions, ∆t = 0.075 fs), a QMC electronic structure was generated in parallel for
the atomic configurations encountered in the simulation. For the calculations the same formulas
as for QMC calculation of forces have been used, see chapter 3.1.7.4. With the above parameters
only three imaginary time-steps were required to converge the QMC calculation. Surprisingly,
the QMC part of the calculation represented only a 50–100 % overhead over the LDA BO MD!
Some results are shown in Fig. 68.

As can be seen from Fig. 68, the agreement between the continuously and discretely sampled
data is excellent for all cluster sizes. The importance of QMC accuracy is evident from the
variation of the LDA error along the MD trajectory: the smallest error being ∼ 0.8 eV and the
largest ∼ 1.2 eV, i.e., the error is by no means constant.

Continuous QMC calculations are in its infancy. However, it is expected, that it will soon be
possible to use the correlated sampling to compute also the forces exerted on ions and treat both
electronic and ionic degrees-of-freedom on the same footing in a fully QMC-based simulation.
The work along that line is under way.

4.7.2 Finite-temperature QMC

The description of quatum behavior of ions by path integral treatment is a well-established
method with several applications both in the field of empirical interatomic potentials as well
as in the ab-initio domain. The two directions represent rather disjunct cathegories: typically
the largest quantum effects on the ions are found in systems with very weak bonding; typical
examples being l-He [154] or the systems composed of H2 molecules [338, 339]. Those systems
are predominantly van der Waals bonded and can reliably be described by empirical interatomic
potentials. As discussed in chapter 3.1.5.6, 3.1.5.7, this is precisely the type of bond very hard
to model by the DFT description. The more accurate electronic structure methods, such as the
QMC, chapter 3.1.6, could be applied, but the cost is still prohibitive. In the opposite limit there
are systems, bonded in much more complex manner, involving typically chemical, as opposed to
physical bonding. Such systems require an explicit electronic structure description of the evolv-
ing chemical bonds. Several applications which run on DFT PESs exist [352–254]. There are
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Fig. 68. Upper panel: Time evolution of DMC total ground-state energies [351]. The circles (lines) corre-
spond to discretely sampled (continuous) DMC calculations. The error bars of the discretely sampled data
are smaller than the symbol size. Lower panel: Time evolution of the DMC HOMO-LUMO gap and differ-
ence between the DMC and LDA gaps [351].For the DMC gaps the circles (lines) correspond to discretely
sampled (continuous) DMC calculations.

also systems characterized by a multitude of bonds, ranging from very strong covalend to very
weak van der Waals. One such example is the odd-numbered H-clusters.

4.7.2.1 Odd-numbered, positively charged H-clusters

The system was already introduced in chapter 4.7.1.2, where the many-body electronic cor-
relations in these clusters were addressed by means of zero-temperature QMC. Here we apply
the path integral simulation technique and study the quantum delocalization in these clusters at a
low temperature of T = 5 K [349].

Quantum chemical [345–347] and QMC calculations [61, 348] have confirmed that the pos-
itively charged protonated hydrogen clusters lose the quantum-liquid-like behavior of the pure
(H2)n clusters [338] and develop instead a pronounced shell structure of the type H+

3 (H2)n with
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Fig. 69. The protonated hydrogen clusters studied with the respective point group symmetry. (a) H+
3 (D3h);

(b) H+
5 (C2v); (c) H+

7 (C2v); (d) H+
9 (D3h); (e) H+

27 (D3h); (f) snapshot of a full imaginary time path for
H+

27 at 5 K. To guide the eye atoms marking the origin of the path are shown by large balls with bonds
shown by sticks. Beads in the H+

3 core ion and in the successive shells are shown in different colors.

“magic numbers”. However, it was also found that the PESs on which the protons move are very
flat and anharmonic. Under these circumstances quantum effects are expected to be significant,
and it is far from clear whether at low temperatures the structure is dominated by the minimum
on the PES, or if the behavior is more quantum-liquid-like as for the unprotonated (H2)n clusters.
This point is addressed below.

The clusters studied are shown in Fig. 69. The simulations used a combination [157, 158]
of path integral simulation of the nuclei [154] with DFT description of their interactions in the
Born-Oppenheimer approximation. The exchange-correlation effects were described at the GGA
level [64]. In order to make the protons more amenable to description by plane wave basis sets,
the hydrogene cores were described by a norm-conserving pseudopotential. The orbitals were
expanded in plane waves with an energy cutoff of 30 Ry in a large cubic cell (alat = 30 a.u.);
the positive charge ws compensated by a uniform background. As indicated in chapter 4.7.1.2,
the accuracy of the DFT description is rather limited. This can be seen for instance from the
H+

5 geometry in Fig. 69. However, as shown below, this accuracy is sufficient to study the
quantum delocalization of the protons and the related properties. The canonical path integral was
mapped onto P = 32 cyclically connected replicas. Nulear exchange was neglected-the particles
were assumed to be Boltzmannons (see chapter 3.2.2.4). The justification for this approximation
comes from simulations on the much more quantum-liquid-like (H2)n systems, which show that
the effects of the Bose-Einstein statistics is vanishing at 5 K [338]. The sampling efficiency was
increased by usig the staging action together with Nosé-Hoover thermostat chains of length 4
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Fig. 70. Left panel: Normalized partial distribution functions of bond distances involving at least one proton
from the H+

3 core. Bold lines: quantum simulations at 5 K; solid lines: classical simulation at 5 K; dashed
line in (a): classical simulation at 500 K. Right panel: Angular distribution D(Θ, Φ) of the first-shell H2

moleculs relative to the H+
3 core ion for H+

9 at 5 K. (a) quantum simulation, (b) classical simulation, (c)
definition of angles Θ and Φ.

coupled separately to each nuclear degree-of-freedom, see chapter 3.2.2.5. A time step of 0.6 fs
was used. Statistical averages were obtained from∼ 5×103 configurations after equilibration. In
addition, simulations with classical protons of the same length were performed. Comparison of
the quantum and a corresponding classical simulation provides a unique opportunity to separate
the quantum and thermal fluctuations.

The finite-temperature distribution functions of the distances that involve at least one proton
of the H+

3 core are displayed in Fig. 70. The classical simulatiolns at 5 K reveal a pronounced
radial structures corresponding to successive sharp salvation shells that are clearly separated. The
general picture that emerges from these classical simulations is that all the investigated clusters
are extremely rigid objects. This character changes if quantum fluctutions are properly taken into
account at 5 K. All peaks broaden substantially, in particular those of the salvation shells and are
not clearly separated as in the classical approximation. The broadening is particularly severe for
the largest cluster, H+

27, that displays only a broad band after the second maximum. The H+
7

cluster was simulated also clasicly at 500 K. However, the cluster was unstable and dissociated
after ∼ 800 steps into H+

5 and H2 fragments, which underlines that quantum effects cannot be
mimicked simply by thermal fluctuations.
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Fig. 71. Root-mean-square position displacement functions R̃I (∆τ) at 5 K. (a) H+
3 core protons in H+

n . (b)
Protons in the H+

3 core and in the successive salvation shells in H+
27. For reference the free proton function

is shown in light lines.

The effect brought about by introduction of a proton into a neutral cluster can be quantified
by comparing properties of the (H2)13 cluster, which was subject of path integral simulation
with a model potential [338] with the largest protonated cluster studied, H+

27. The floppiness of
the clusters may be characterized by the Lindemann’s rms bond length fluctuations δ and the
cluster “size” measured by the cluster radius of gyration Rg [338], see formulas (261), (262)
of chapter 3.2.2.3. For (H2)13 δ = (32.0 ± 2) % and Rg = 4.5 ± 02 Å based on molecular
centroid distances at 5 K. The numbers are in remarkable contrast to δ ∼ (2 × 10−7) % and
Rg = 2.7 Å for the protonated counterpart at 5 K. The dramatic reduction of δ by many orders
of magnitude signals a proton freezing out of the internal translational molecular degrees of
freedom. Furthermore, the reduction of he cluster size Rg by a factor of 2 reflects a strong
electrorestrictive effect.

What is then the reason for the substantial broadening observed in Fig. 70? The answer can
be found in the angular distribution shown also in Fig. 70. As can be seen, the H2 ligands undergo
very large-amplitude rotations. The rotations are much reduced in the classical case. Hence, the
rotations are a quantum-induced phenomenon.

The degree to which the different protons behave like quantum particles can be put on a
quantitative footing in terms of the rms position displacement correlation function R̃I (∆τ), see
formula (263) in chaper 3.2.2.3. These functions are depicted in Fig. 71(a) for the three core
protons that constiture the H+

3 . First of all, one observes a clear trend of decreasing sie of the
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three protons as the cluster grows: the R̃I (βh̄/2) extension of the protons shrinks by a factor
of more than 2 from the bare H+

3 ion to the core of H+
27. It turns out that these ptotons are

tightly localized as proven by the flat correlation function for ∆τ larger than ∼ 0.2βh̄. One
can conclude that the closure of the first salvation shell at H+

9 induces a pronounced ground-
state dominance and localization on the H+

3 core ion. The localization propertuies in successive
shells are analyed in Fig. 71(b) or the largest cluster. Here it becomes evident that the H+

3 core
protons of H+

27 are clearly ground-state dominanted, whereas those of the solvating H2 ligands
are much more delocalized in space, which goes hand-in-hand with the rotational delocaliztion
of the ligands. This behavior is shown pictorially in Fig. 69(f).

5 Outlooks

As should be clear by now, the atomic/molecular-scale simulations develop in several, often con-
tradictory, directions. On one hand, the techniques are applied to ever larger systems and complex
processes where in addition to the growing computer power also less accurate approximations
are normally required. Typical representative of that type of application is life-sciences [355,
356], biophysics and biochemistry [357-359]. These, almost exclusively DFT applications, have
already now a large impact on the development of this field. In this respect, often the methods of
embedding [360], and O(N) methods (see chapter 3.3.5) play the key role. Hand-in-hand with
this development there is also an increased transfer of these computational technologies from
academic institutions into industrial research in pharmacology, chemistry, materials, automotive
and other industries.

It should also be clear, that we are still far from the ideal chemical accuracy of ∼ 1 kcal/mol.
For system sizes of interest here, there is only one method, the QMC, which gives a real promise
of achieving that sort of accuracy. However, so far that level of accuracy was only achieved for
a few systems. Moreover, these methods still require a lot of human input. For that reason these
ultra-accurate technologies still remain almost strictly in the academic domain.

Making a full advantage of all these developments, brings us closer to the ideal of having a
cheap, fast, accurate, and efficient “virtual computational nano-scale laboratory” at disposal.
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[269] R. Pérez, I. Štich, M.C. Payne, K. Terakura, Phys. Rev. B 58 (1998) 10835
[270] Uchihashi et al., Phys. Rev. B 56 (1997) 9834
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