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LARGE RESONANCE ENHANCED SECOND ORDER SUSCEPTIBILITIES IN
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Model calculation of second order susceptibilities for FA color centers in wide band gap
materials is reported. The second order optical nonlinearity in KCl:Li crystals due to FA color
centers evaluated theoretically. The density matrix formalism is employed and the equation of
motion is solved by second order perturbation to evaluate the nonlinear optical susceptibility
for second harmonic generation as well as frequency mixing. It is found that the system
shows large resonance-enhanced second order susceptibilities (∼ 10−16mV −1) for color
center concentration of ∼ 1023m−3. A scheme of phase matching in terms of anomalous
dispersion of the centers and coherent length are discussed.

PACS: 42.65. An; 42.65.Ky; 42.79.Nv

1. Introduction

Though research work spanning almost two centuries had laid out the foundation of linear optical
thoroughly, it is the discovery of powerful optical sources such as lasers that caused rapid devel-
opments in the newly established area of nonlinear optics second harmonic generation is the first
nonlinear optical effect ever observed in which a coherent input generates a coherent output. But
nonlinear optics covers a much broader scope. It deals in general with nonlinear interaction of
light with matter and includes such problems as light-induced changes of the optical properties
of a medium. Second harmonics generation is then not the first nonlinear optical effect over
observed. Optical pumping is certainly a nonlinear optical phenomenon well known before the
advent of lasers. Second harmonic generation and three-wave-mixing processes are nonlinear
optical effects based on the second order susceptibility of materials and are very effective in pro-
viding laser radiation over a wide range of wavelengths. However there is a sever limitation in a
medium excludes the possibility of second order optical nonlinearily. One way to overcome this
is the incorporation of suitable defects into the medium so as to avoid inversion symmetry [1–4].

We attempt to evaluate theoretically the second order optical nonlinearity in crystals of KCl:
Li due to FA color centers. The FA center is considered as a three level system with the value
of transition frequencies and dipole moments avaliable from linear optical spectroscopy. The
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non-vanishing ground state electrical dipole moment present in the system due to the difference
in electro-negativities of the host and dopant cations is estimated. The density matrix formalism
is employed and the equation of motion are solved by second order perturbation to evaluate the
nonlinear optical susceptibility for second harmonic generation as well as frequency mixing. The
spectral response of the real and imaginary parts of second order optical susceptibility is obtained
and found to have reasonably large nonlinear response.

A Kramers-Kroning analysis is performed to study the effect of the color center on the dis-
persion of refractive index of the host crystal and the anomalous dispersion near resonance is
explored as a method of phase matching. Frequency regions are identified where second order
optical nonlinearity in these crystals can be used.

Our current interest is in the calculation of second order optical susceptibility that determines
three wave mixing. The availability of materials for three-wave mixing is severly limited by the
requirement of lack of inversion symmetry [5]. This has led to several attempts of overcoming the
limitation. For example, application of a static electric field removes the inversion symmetry and
molecular engineering of organic materials is used to design materials possessing the required
asymmetry. We have recently suggested centero-symmetric containing point defects such as
the FA centers as an alternative class of a new second order medium [6]. The FA center has
an electron bound to a vacant anion site in the crystal with one of the neighboring cation sites
occupied by a small monovalent impurity cation. By virtue of this structure, it does not basically
have inversion symmetry and is capable of giving second order optical nonlinear response. The
defect has the crystallographic orientation 〈100〉.

Produced by any coloration process, these color center are normally oriented by any col-
oration process, these color center are normally oriented at random in all the six 〈100〉 orienta-
tion. However, it is possible to align them preferentially along any one of the specific direction,
say [001] and using polarized light [7]. If a [100] face of a crystal containing the FA centers
is irradiated with light of wavelength 556 nm and polarized in 〈100〉 direction and propagating
in the [100] direction, most of the center will be aligned along the [100] direction. As a conse-
quence, the nonlinearity does not get averaged out macroscopically, rendering the crystals useful
for second order optical applications.

Theoretical studies on degenerate four wave mixing on crystals containing F, FA, F+
2 cen-

ters [8–13] and experimental studies on F +
3 centers have shown that their third order optical

center system in suitable host-impurity combination can be used to realize third harmonic gen-
eration and second harmonic generation [6] with reasonable efficiency. Since these centers are
known to be laser-active, their optical nonlinearity hold special interest.

1.1 Model

An F center is modeled as an electron trapped in an anion vacancy. An FA center is modeled
as an F center with one impurity cation (L+

i in KCl: Li) as its nearest neighbour (NN). Model
for the FA center are given in Figure 1. The F center will be described by a four-level depicted
described the fundamental absorption and associated down-shifted emission. In the present study,
other higher excited states are not included. Electronic ground states for F and FA centers are
taken to be s-like. The first excited state in the case of the highly symmetric F center is taken to
be p-like with three-fold degeneracy. For the FA center the reduction in symmetry from the cubic
F center to the tetragonal FA center cause a splitting of the three fold degenerate p-like state into



Large resonance enhanced second order susceptibilities... 533

Fig. 1. Model for the FA center. The dashed region denotes the F center and the associated nearest
neighbor action impurity is marked M+. The A1 and A2 transition vectors are indicated by arrows along
and perpendicular to the line joining the impurity and the center respectively.

two components-one transition polarized in the direction of the NN impurity cation (labeled FA1)
and a two-fold degenerate transition polarize in the plane perpendicular to it (labeled FA2; see
Figure 2).

We take the following to be the general characteristics of the systems considered in this study.

(a) The centers are stable at low temperatures against thermal and photo-thermal ionization.

(b) Oscillator strengths for FA1 and each one of the two-fold FA2 transitions are equal irre-
spective of the energy splitting.

(c) In the case of FA centers the impurities are considered distributed equally among the six
NNs. It is also possible to align these impurities by suitable thermo-optic treatment [8].

The second order susceptibility for a second harmonic generation three-wave mixing process
χ(2)(2ω; ω, ω) relates the P2ω , the second order polarization at the second harmonic frequency
to the interacting field by

P2ω = Re[Eω .χ(2)(−2ω; ω, ω).Eω], (1)
Eω = A0ω(r)uω exp[i(ωt − k.r)], (2)

where Ai(r) are the position (r)-dependent amplitudes of the electric fields, u are unit vectors
in the directions of these fields and k denote their wave vectors. The density matrix approach of
treating the nonlinear polarization to second order in electric fields [13] leads to the expression
for the second order susceptibility:

χ2(−2ω, ω, ω) =
N

2η2

[

∑

n,m,ν

(ρ0
m − ρ0

νν)

(ω + ωnν + iΓnm)(2ω + ωnm + iΓnm)

+
(ρ0

mm − ρ0
νν)

(ω + ωνm + iΓνm)(.(2ω + ωnm + iΓnm)

]

µνm.µmn.µνν , (3)
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Fig. 2. The level schemes for (a) F center and (b) FA center. Relaxation pathways are denoted by dashed
arrow lines. γb, γd denote non-radiative relaxation rates. γc is the sum of radiative and non-radiative
relaxation rates. In (b) levels |2 > and |3 > have the same relaxation rate γb.

where N is the density of oriented FA centers, ρ0
ii are the elements of the unperturbed density

matrix and h̄ωkl denotes the energy difference between levels k and l. The phenomenological
damping coefficients corresponding to the transition from level k to level l is Γkl, µkl is the
electric dipole moment of the transition k to l and h̄ is (h/2π) where h is the Planck’s constant.
The input parameters are taken from published data [6,7]. The above equation for a 3-level
system gives 27 individual terms each for the real and the imaginary parts. The initial conditions
are ρnm = δnm with ρnm = 0 for n > 1. It is to be noted that the FA center possesses a
permanent electric dipole moment on two accounts the off-center site of the lithium ion gives
rise to a static ionic displacement dipole moment. On the other hand, the lowered symmetry
causes asymmetry of the electronic charge distribution on the impurity ion giving it another
dipole moment of an electronic nature. Both are significant and it is the latter moment which
is used for the present calculation to represent µ11 since we are concerned here with an optical
response. In any case, the numerical magnitudes of the susceptibility scale linearly with this
dipole moment without affecting the spectral variation. The influence of the coupling moments
µ23 and µ32 is neglected. The transition frequencies are so defined such that ωmn = ωnm.
Under these condition, several terms of Eq. 3 vanish and the contributions to the real part of
susceptibility arise only from the six terms given below.

The susceptibility expression given below represents the effective scalar susceptibility and
do not correspond to any specific tensor component. To get there latter components is easy but
we prefer to deal with this effective susceptibility for convenience.

χ
(2)
Re(−2ω, ω, ω) =

N

2η2

{[

ω + ω12

(ω + ω12)2 + Γ2
12

+
ω − ω12

(ω − ω12)2 + Γ2
21

]

µ21µ11µ12

2ω
(4)

+

[

ω + ω13

(ω + ω13)2 + Γ2
13

+
ω − ω13

(ω − ω13)2 + Γ2
31

]

µ31µ11µ13

2ω
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+

[

−[(ω + ω12).(2ω + ω12) − Γ12Γ12]

[(ω + ω12)(2ω + ω12) − Γ12Γ12]2 + [(ω + ω12)Γ12 + (2ω + ω12)Γ12]2

]

µ21µ11µ12

+

[

−[(ω + ω13).(2ω + ω13) − Γ13Γ13

[(ω + ω13)(2ω + ω13) − Γ13Γ13]2 + [(ω + ω13)Γ13 + (2ω + ω13)Γ13]2

]

µ13µ31µ11

+

[

−[(ω − ω12).(2ω − ω12) − Γ21Γ21]

[(ω − ω12)(2ω − ω12) − Γ12Γ12]2 + [(ω − ω12)Γ21 + (2ω − ω12)Γ12]2

]

µ11µ12µ21

+

[

−[(ω − ω13).(2ω − ω13) − Γ31Γ31]

[(ω − ω13)(2ω − ω13) − Γ31Γ31]2 + [(ω − ω13)Γ31 + (2ω − ω13)Γ31]2

]

µ11µ13µ31

}

.

In a similar way the imaginary part is extracted and found to be given by

χ2(2ω, ω, ω) =
−N

2η2

{[

Γ12

(ω + ω12)2 + Γ2
12

+
Γ21

(ω − ω12)2 + Γ2
21

]

µ21µ11µ12

2ω
(5)

+

[

Γ13

(ω + ω13)2 + Γ2
13

+
Γ31

(ω − ω13)2 + Γ2
31

]

µ31µ11µ13

2ω

+

[

−(3ω + 2ω12)Γ12

[(ω + ω12)(2ω + ω12) − Γ12Γ12]2 + [(ω + ω12)Γ12 + (2ω + ω12)Γ12]2

]

µ12µ21µ11

+

[

−(3ω + 2ω13)Γ13

[(ω + ω13)(2ω + ω13) − Γ13Γ13]2 + [(ω + ω13)Γ13 + (2ω + ω13)Γ13]2

]

µ13µ31µ11

+

[

−(3ω − 2ω12)Γ21

[(ω − ω12)(2ω − ω12) − Γ21Γ21]2 + [(ω − ω12)Γ21 + (2ω − ω12)Γ12]2

]

µ12µ21µ11

+

[

−(3ω − 2ω13)Γ31

[(ω − ω13)(2ω − ω13) − Γ31Γ31]2 + [(ω − ω13)Γ31 + (2ω − ω13)Γ31]2

]

µ11µ13µ31

}

.

2. Results and Analysis

Using the above equations, the real and imaginary parts of the second order susceptibility for
second harmonic generation are evaluated as functions of ω values of Γk1 are estimated from the
half widths of optical absorption spectra. To assign a value for µ11 (the electronic part of the
dipole moment on the lithium ion arising from asymmetry), we adopt the relation for the dipole
moment (µAB) in Debye units that exists between two dissimilar atoms A and B with respective
electro-negativities ΨA and ΨB given by [14]:

µAB = ΨA − ΨB (6)

With the Pauling electro-negativities [8] of Li+ and K+ ions given by ΨLi = 1.0 and ΨK = 0.8,
we get a value of 0.67×10−30 Cm for µ11. The values of all the other input parameters are given
in Table 1.

From the spectral response of the real par shown in Figure 3, we see that reasonably large
magnitudes of the susceptibility are exhibited over a wide frequency region. The values of the
susceptibility and the corresponding frequencies are shown in Table 2.

The frequency dependence of the imaginary part is depicted in Figure 4. Two well-defined
peaks appear at ω = 3.0 and 3.4 × 1015 rads−1, which agree well with the transition frequency
ω12 and ω13 of the system. Two negative peaks also appear at the angular frequencies 1.53 and
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Tab. 1. Input parameters

ω12(1015rads−1) ω13(1015rads−1) Γ12(1013s−1)
3.008 3.418 9.09

Γ13(1014s−1) µ12(10−29Cm) µ13(10−29Cm)
1.44 1.2 1.6

Fig. 3. Real part χ(2)(−2ω; ω,ω) vs. ω.

1.68 × 1015 rads−1, which are close to the subharmonics. It may also be noticed that the real
part of the susceptibility shows a zero at a frequency where the imaginary part shows a peak.

2.1 Molecular hyperpolarizability

We begin this discussion by considering the expectation value of the dipole moment of the mth
molecule, denoted by erm, in terms of a power series in the electric field, similar to the series for
the macroscopic polarization P (t)

P (t) = N(erm) (7)
erm = er(0)

m + er(1)
m + . . . + er(n)

m + . . . (8)

where er
(0)
m is the permanent moment, er

(1)
m is linear in the field, er

(2)
m is quadratic, and so on.

The term er
(0)
m in the above expression represent the permanent electric dipole moment possessed

by polar molecules. The various higher order terms (n = 1, 2, . . .) in the series can by related to
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Tab. 2. Second order parameters of FA center

ω 1.56× 1015rads−1 1.76× 1015rads−1

χ(2)(−2ω; ω, ω) 0.52× 10−19mV −1 2.30× 10−16mV −1

γ(2)(−2ω; ω, ω) 2.70× 10−50Cm3V −2 12.2× 10−50Cm3V −2

ω 2.90× 1015rads−1 3.30× 1015rads−1

χ(2)(−2ω; ω, ω) 1.00× 10−19mV −1 0.35× 10−19mV −1

γ(2)(−2ω; ω, ω) 5.30× 10−50Cm3V −2 1.80× 10−50Cm3V −2

Fig. 4. Imaginary part χ(2)(−2ω; ω, ω) vs. ω.

electric field Em(t) acting locally at the site of the mth molecule by:

P (n)(t) =
N

n!

∫

∞

−∞

dω1 . . .

∫

∞

−∞

dωnγ(n)
m (−ω, ω1, . . . , ωn)Em(ω1)Em(ωm) exp(iωt) (9)

where the Fourier components Em(ω) related to the field Em(t) acting locally at the site of the
site of the mth molecule by the transformation, and ω = (ω1 + ω2 + . . . + ωn) and γn is the
molecular hyperpolarisabilities. On the other hand we know that:

P (n)(t) = ε0

∫

∞

−∞

dω1 . . .

∫

∞

−∞

dωnχ(n)(−ω, ω1, . . . , ωn)E(ω1) . . . E(ωn) exp(iωt) (10)

By comparison we can find a formula for the molecular hyperpolarisabilities [5]:

γ(2)(−2ω; ω, ω) =
2ε0χ

(2)(−2ω; ω, ω)

Nf(ω)
(11)
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Fig. 5. Molecular hyperpolarisability as function of χ(2).

where f(ω) is a local field factor estimates of the molecular polarizability for f(ω) = 1/3 and
substituting ε0 and n we can calculate γ(2) as function of χ(2) the result of such calculation
is shown in Figure 5 and also is given in Table II. Evidently these values are larger than the
molecular polarizability of KDP (8.55× 10−53Cm3V −2) calculated from its macroscopic sus-
ceptibility [16].

2.2 Phase matching

The practical realization of second harmonic generation depends on the coherence length given
by:

lc =
πc

ω(nω − n2ω)
(12)

where nω and n2ω are refractive indices of the crystal at the crystal at the fundamental and second
harmonic frequencies respectively, c is the speed of light in vacuum. The crystal containing
color centers shows anomalous dispersion around the resonance region and this gives rise to the
possibility of affording phase matching by a suitable choice of the operational frequencies. For
instance, the refractive index of the host crystal (KCl) is known to increase with frequency [17].
The change in refractive index ∆n(ω) due to the electronic absorption of FA centers can be
evaluated from the absorption spectrum using the Karamers-Kroning relation:

∆n(ω) = (2/π)P

∫

∞

0

Ωk(ω)dΩ

Ω2 − ω2
(13)

where P indicates that the Cauchy principal value of the following integral is to be taken, k(ω)
is the extinction coefficient at the frequency ω given by:

k(ω) =
cα(ω)

2ω
(14)
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Fig. 6. (a) dashed line: refractive index n of KCl crystal vs ω (b) continuous line: ∆n of FA center in
KCl:Li vs ω (N = 1.2 × 1023m−3).

Fig. 7. Coherence length as a function of ω.

with α(ω) representing the absorption coefficient.
The variation of the refractive index of the host crystal, viz., KCl as function of frequency is

calculated. One may note that the refractive index remains close to 1.5 throughout the frequency
range from 1.0 − 5 × 1015 rads−1 with a uniform rise towards the higher frequencies. Thus the
refractive index of the host crystal at 2ω would be invariably larger than that at the fundamental
frequency.

The change in the refractive index due to the defect center (N = 1.2 × 1023m−3) is also
calculated. The anomalous for the rise in refractive of the host near resonance by bringing closer
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Tab. 3. Estimated value of coherence lengths for different choices of ω

ω(1015)rad/s nω 2ω(1015)rad/s n2ω ∆n(10−4) lc(m × 10−2)
1.10 1.47482 2.20 1.48122 0 0.038
1.15 1.47483 2.30 1.48123 0 0.013
1.30 1.47485 2.60 1.48633 1.03632 6.21× 10−3

1.40 1.47487 2.80 1.48661 1.61982 5.75× 10−3

1.45 1.47488 2.90 1.48775 11.3900 4.6× 10−3

1.50 1.47492 3.00 1.49000 -120.000 0.020
1.55 1.47499 3.10 1.49043 -11.2600 4.25× 10−3

1.60 1.47589 3.20 1.49044 -3.3250 4.148× 10−3

1.65 1.47591 3.30 1.49210 -1.6300 3.57× 10−3

1.70 1.47800 3.40 1.49221 0 4.47× 10−3

1.75 1.47825 3.50 1.49360 -8.2000 0.016

the effective refractive index values at ω and 2ω there by making phase matching possible. Large
values of coherence length lc can be obtained by appropriately choosing 2ω in the resonance
region. Table 3 gives the estimated value of coherence lengths for different choices of ω, the
fundamental frequency. However, as 2ω in chosen near the optical absorption peak, there is
considerable absorption of the generated second harmonic signals. Hence a judicious choice
frequency has to be made such that the coherence length is reasonable and at the same time
absorption is not too large.

3. Summary and Conclusion

Second order optical non-linearity due to FA center in alkali halide crystals containing point
defects is investigated for the first time. The density matrix formalism is employed in the calcu-
lation considering the FA center as a three-level system with transition frequencies and dipole
moments taken from optical spectroscopic data. The ground state dipole moment of FA center
due to the difference in electro-negativity of the host and dopant ions is estimated while the effect
of the excited state dipole moment is not considered. A second order perturbative solution of the
equation of the density matrix is used to evaluate the second order optical susceptibility. Real
and imaginary parts of the susceptibility are separated and obtained as function of frequency.

The results clearly indicate that the FA centers in KCl:Li have reasonably large optical non-
linearity. For example, χ(2) has a value 2.3 × 10−16mv−1 at a frequency 1.75 × 1015 rad/s
in KCl:Li with a moderate FA center concentration of 10−16mv−1. The ground state dipole
moment value obtained from electro-negativity consideration is varied in order to ensure that
the qualitative features of the present studies are unaffected by any inacuracy in the value of the
dipole moment. The dependence of χ(2) on µ11 is found to be linear.

It is seen that phase matching is possible in the system using the anomalous dispersion of
refractive index in colored crystal estimated by a Kramer-Kroing analysis. A large reduction in
refractive index near resonance yields reasonably large values of coherence lengths for certain



Large resonance enhanced second order susceptibilities... 541

frequencies. It is also important to see that the generated second harmonic is not being absorbed
to a large extent by the medium itself. There exist frequency regions with large χ(2) where
reasonable coherence lengths can be realized without high re-absorption of the second harmonic.
Since it has been experimentally demonstrated that ordered FA center can actually be produced
and handled, it appear that there is certainly scope for experimentally investigating these media
as practical systems for second harmonic generation.
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