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CALCULATION OF THE EXPONENT λg(x, t) BASED ON THE BEHAVIOR OF
STEEPLY RISING GLUON DISTRIBUTION FUNCTION AT LOW-x
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The gluon distribution function exponent, λg , is calculated by using power law behavior of
gluon distribution function at small x. Also, at low x, the derivative of structure function
with respect to t and the gluon distribution function are determined. In the calculations,
the leading order Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations are usedi.
The calculated values are compared with other methods. The obtained results are very close
to the calculated values by the leading order Glück, Reya and Vogt and in agreement with
experimental data.

PACS: 13.60.Hb, 14.70.Dj

1 Introduction

Deep inelastic Lepton-Nucleon scattering experiments have traditionally shed light on the nature
of the partons within the proton and the strong QCD interactions between them [1]. The standard
perturbative QCD framework predicts that at a regime of low values of the Bjorken variable x
and large values of Q2 (Q2 is the four momenta transfer in deep inelastic scattering process), a
nucleon consists predominantly of the sea quarks and gluons. The gluons coupled only through
the strong interaction, consequently the gluons are not directly probed in the DIS. But at low-x,
structure function F2(x, Q2) is dominated by gluons and Dokshitzer- Gribov- Lipatov- Altarelli-
Parisi (DGLAP) equations [2] can be approximately solved that led to several approximate phe-
nomenological schemes [3–5]. These methods of approximate determination of the gluon density
are based on the simplification of the convolution Pqg⊗g by the expansion of the gluon density.
The result is the gluon distribution function G(k.x) proportional to the derivative of F2(x, Q2),
with respect to ln Q2; i.e. ∂F2(x, Q2)/∂ ln Q2, where k is associated with the choice of a point
of expansion. The methods of approximate determination of gluon density are discussed in the
following section.

Prytz reported a method to obtain an approximate relation between the unintegrated gluon
density and the scaling violations of the quark structure function at low x at leading order [3]. He
expanded G( x

1−z
) using the Taylor expansion formula at z = 1

2 . Hence one gets:

dF2/dt = 10αs/27πG(2x)
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for fixed t (the variable t is defined as t = ln(Q2

Λ2 ) and Λ is the QCD cut- off parameter and αs is
the running coupling constant), which is the main result for the leading order analysis [3].

Bora and Choudhury also presented a method [5] to find the gluon distribution from the
F2 proton structure function and its scaling violation at low x using the expansion of gluon
distribution around z = 0. In the limit x→ 0, the last result becomes [5]

dF2/dt = 15αs/36πG

(

4

3
x

)

.

Also, Gay Ducati and Goncalves presented a complete method [6] to find the gluon distribu-
tion by using the expansion of the G( x

1−z
) at an arbitrary z = a that the gluon distribution for a

point of expansion a<1 (the better choice is at a = 0.75) can be expressed by

dF2/dt = 10αs/27πG

[

x

1 − a

(

3

2
− a

)]

.

We know that in the DGLAP formalism at leading order the gluon splitting function is singu-
lar as x→ 0. Thus the gluon distribution will become large as x→ 0, this will generate a steeply
rising gluon distribution at small x. That is, the perturbative QCD predicts a very strong power
law rise of the gluon density in the limit x→ 0, where as usual, x denotes the momentum fraction
carried by the gluon and Q2 is the scale at which the distribution is probed. Over the x, Q2 range
of HERA data this solution mimics a power law behavior as follows

xg(x, Q2)∼x−λg .

In this work, we concentrate on the computation of λg into x and t(t = ln Q2

Λ2 ) variables
with the use of the leading order Dokshitzer- Gribov- Lipatov- Altarelli- Parisi (LO-DGLAP)
evolution equations. Then with the determined λg(x, t), the gluon distribution function and the
derivative of the structure function are calculated.

The contents of our paper are as follows. In section 2 we give a formalism for the exponent
gluon density into the solution of the DGLAP equations with the starting distribution provided
along the QCD parton distribution function. Finally, a numerical analysis of our solutions is
presented and the obtained results are compared with other methods which are followed by con-
clusions and results.

2 Theoretical calculations

The precision measurements of the ep scattering cross-section show that G(x, Q2) strongly rises
towards low-x for values of Q2≥4 GeV2 [7]. This leading contributions can be resumed using
the Balitsky- Fadin- Kuraev- Lipatov (BFKL) [8], and eventually give rise to the characteristic
behavior at very small x

G(x, t) = f(t)x−λg(x,t). (1)

In the DGLAP evolution equations, the quark densities and the nonsinglet contribution F NS
2

can be ignored safely at low-x. Thus, the Altarelli- Parisi (AP) evolution equation for F2 be-
comes(for four flavours)

dF2

dt
=

10αs(t)

9π

∫ 1

x

dzPqg(z)G
(x

z
, t

)

(2)



Calculation of the exponent λg(x, t)... 465

where G(x, t) = xg(x, t) and g(x, t) are the gluon momentum density and the gluon number of
proton, respectively. Also, the leading order splitting function is defined as

Pqg(z) =
1

2
[z2 + (1 − z)2] (3)

and αs(t) = 12π
(33−2Nf )t is the strong coupling constant (Nf = number of flavours). Substituting

the steep power law behavior (Eq. (1)) into Eq. (2), we get

dF2

dt
=

5αs(t)

9π

∫ 1

x

dz[z2 + (1 − z)2]f(t)(
x

z
)−λg(x,t). (4)

This equation can be rearranged as

dF2

dt
=

5αs(t)

9π
G(x, t)

∫ 1

x

dz[z2 + (1 − z)2]zλg(x,t) (5)

or

dF2

dt
=

5αs(t)

9π
G(x, t)

[

2

3 + λg(x, t)
(1 − x3+λg(x,t)) +

1

1 + λg(x, t)
(1 − x1+λg(x,t))

−
2

2 + λg(x, t)
(1 − x2+λg(x,t))

]

. (6)

Now, Let us assume the derivative of the structure function F2 is a constant in terms of t
[9, 10]. Therefore, the derivative of the Eq. (6) with respect to t, gives

0 =
5

9π
Aλg(x,t)G(x, t)

dαs

dt
+

5αs

9π
Bλg(x,t)G(x, t)

dλg(x, t)

dt
+

5αs

9π
Aλg(x,t)

dG(x, t)

dt
,(7)

where

Aλg(x,t) =
2

3 + λg(x, t)
(1 − x3+λg(x,t)) +

1

1 + λg(x, t)
(1 − x1+λg(x,t))

−
2

2 + λg(x, t)
(1 − x2+λg(x,t)) (8)

and

Bλg(x,t) =
2

(2 + λg(x, t))2
(1 − x2+λg(x,t)) −

2

(3 + λg(x, t))2
(1 − x3+λg(x,t))

−
1

(1 + λg(x, t))2
(1 − x1+λg(x,t)) +

(

2

2 + λg(x, t)
x2+λg(x,t)

−
2

3 + λg(x, t)
x3+λg(x,t)

−
1

1 + λg(x, t)
x1+λg(x,t)

)

ln x. (9)

In Eq. (7), dG(x, t)/dt is obtained from the DGLAP evolution equation [2]. At low x, the quarks
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can be neglected in the AP evolution equation [11]. Hence, we have

dG(x, t)

dt
=

3αs(t)

π

[{(

11

12
−

Nf

18

)

+ ln(1 − x)

}

G(x, t)

+

∫ 1

x

dz
zG(x

z
, t)

1 − z
−

G(x, t)

1 − z
+

(

z(1 − z) +
1 − z

z

)

G
(x

z
, t

)

]

. (10)

Putting Eq. (1) in Eq. (10), we obtain:

dG(x, t)

dt
=

3αs(t)

π

[{(

11

12
−

Nf

18

)

+ ln(1 − x)

}

G(x, t)

+ G(x, t)

{
∫ 1

x

dz

[

z1+λg(x,t)

1 − z
−

1

1 − z

+ z(1− z)zλg(x,t) +
1 − z

z
zλg(x,t)

]}]

(11)

or

dG(x, t)

dt
=

12

β0t
G(x, t)Iλg (x,t), (12)

where

Iλg(x,t) = (
11

12
−

Nf

18
) + ln(1 − x)

+

∫ 1

x

dz[
zλg(x,t)+1 − 1

1 − z
+ (1 − z)(zλg(x,t)+1 + zλg(x,t)−1)] (13)

and
∫ 1

x

dz

[

zλg(x,t)+1 − 1

1 − z
+ (1 − z)(zλg(x,t)+1 + zλg(x,t)−1)

]

=
2

2 + λg(x, t)

× (1 − x2+λg(x,t)) − (1 − x) −
1

2
(1 − x2)

+
1

λg(x, t)
(1 − xλg(x,t)) −

1

1 + λg(x, t)
(1 − x1+λg(x,t))

+

∞
∑

N=4

[

1

N + λg(x, t)
(1 − xN+λg(x,t)) −

1

N − 1
(1 − xN−1)

]

. (14)

Substituting the derivative of gluon density (dG(x, t)/dt) according to Eq. (12) into Eq. (7),
gives

dλg(x, t)

dt
Bλg(x,t) =

1

t
Aλg(x,t)

[

1 −
36

25
Iλg(x,t)

]

, (15)

that
∫ λg

λ0g

dλg(x, t)
Bλg(x,t)

Aλg(x,t)[1 − 36
25 Iλg(x,t)]

=

∫ t

t0

dt

t
. (16)
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Fig. 1. Exponent λg(x, t) plotted against t at several x values.

The quantity λg is calculated by solving this integral as a function of t at fixed x. The λg(x, t)
values are calculated for any x and t variables (λ0g is the exponent at the starting scale t0(=

ln(
Q2

0

Λ2 ))). With respect to the calculated values for λg(x, t) and Eq. (12), we can calculate the
gluon distribution function. Therefore integration Eq. (12) becomes:

G(x, t) = G(x, t0) exp

[

12

β0

∫ t

t0

Iλg(x,t)
dt

t

]

. (17)

In this equation G(x, t0) is the input gluon distribution function and Iλg(x,t) is defined by
Eq. (13).

3 Conclusions and Results

It is known that perturbative QCD predicts a universal growth of the gluon distribution function
at large t and small x. Because, in the DGLAP formalism at leading order the gluon splitting
functions are singular as x→ 0. Over the x and t range of HERA data this solution mimics a
power behavior [12], thus the gluon distribution function will become large as x→ 0. Hence,
we used this point and obtained a description of the exponent λg(x, t) and gluon distribution
function given by Eqs. (16) and (17) into x and t variables.

We have therefore attempted to see how the predictions with this approach are compared
with those of the QCD gluon distribution, like leading order Glück, Reya and Vogt (LO-GRV)
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Tab. 1. The values of λg(x, t), the gluon distribution function G(x, t) and the derivative of structure func-
tion at t constant (Q2 = 20 GeV2) for any x values. G(x, t)LO−GRV obtained from Ref.[13].

x λg G(x) G(x)LO−GRV
dF2

dt

0.000268 0.521 31.929 40.263 0.649
0.000328 0.519 29.629 36.852 0.603
0.000500 0.515 25.247 30.518 0.516
0.000800 0.510 20.994 24.566 0.430
0.001300 0.503 17.240 19.469 0.355
0.002000 0.495 14.380 15.711 0.297
0.003200 0.485 11.685 12.306 0.243
0.005000 0.472 9.5080 9.6450 0.200
0.010000 0.444 6.7400 6.4250 0.144
0.032000 0.355 3.4640 2.9190 0.078

[13]. Our calculations are presented in the full kinematic range available for any x values and
representative Q2 values 6.5, 8.5, 12, 20, 25, 35 GeV2 [14]. The results obtained are presented in
Table 1 only at Q2 = 20 GeV2. In this Table, We see the results for λg(x, t); as can be seen,
λg rise with t at x constant (see Fig. 1) and decreases almost smoothly with x at t constant (see
Fig. 2). Of course, as x increases above 10−2, λg falls sharply with increasing x.

Based upon the calculated values for λg(x, t), the gluon distribution functions by Eq. (17)
are calculated. In Fig. 3, we compare our results with the already existing description (LO-GRV
[13]). The difference between the two increases as x decreases, such difference exists as Q2

increases. As can be seen, the values G(x, Q2) increase as x decreases. These results are in very
good agreement with the QCD results.

To illustrate better our results, we can calculate the derivative of structure function by Eq. (6)
that can be seen in Table 1. In doing so, the λg(x, t) and G(x, t) data given in Table 1 are used.
In Fig. 4, we see that the derivative of F2 with respect to t, increases as x decreases. This is
capable of with perturbative quantum chromodynamics (PQCD) information for gluon density at
this x range.

Tab. 2. The calculated values of the derivative of structure function, compared with the experimental data [9]
at Q2 = 20 GeV2. The total error is the squared sum of the statistical and systematic uncertainties, given
as absolute values in Ref. [9]. Also the percentage of difference between dF2

dt
theory and experimental are

given in this table.

x dF2

dt
(Our results) dF2

dt
(Exper. results) ∆ dF2

dt
/dF2

dt
(%)

0.00085 0.42 0.45 ± 0.08 6.6
0.00155 0.33 0.30 ± 0.09 10.0
0.00268 0.26 0.25 ± 0.05 4.0
0.00465 0.21 0.23 ± 0.04 8.7
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Fig. 2. Exponent λg(x, t) plotted against x at several Q2 values.

In order to test the validity and correctness of our calculations for λg(x, t), G(x, t) and
(∂F2/∂t) at Eqs. (16), (17) and (6), we compare results with the experimental data [9] shown in
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Fig. 3. G(x, t) as function of x at Q2 (in GeV2) values 6.5; 8.5; 12; 15; 20; 25; 35 that compared with
G(x, t) obtained from LO-GRV [13].

Table 2 for Q2 = 20 GeV2. The percentage of the difference between our calculations is com-
pared with experimental data as given in Table 2. Based on these calculations, we have tried to
estimate whether the violation is consistent with the analytical prediction of formula (6); Hence
we compared our results for the gluon distribution function with some methods [3, 5, 6] proposed
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Fig. 4. The derivative of structure functions (∂F2/∂t) plotted as functions of x for fixed Q2.

in the literature to isolate the gluon density by expansion, and tested validity results with the
standard QCD parton distribution [13] (see Table 3).

To summarize, we have obtained an approximation method based upon growth of the gluon
distribution function at small x. In this method, the exponent λg(x, t) is computed from the LO-
DGLAP evolution equations into x and t components. Hence, we can propose a form of gluon
distribution at low x which is based on λg(x, t) exponent. Then we have tested its validity by
comparing with a global fit due to LO-GRV. As can be seen, the gluon distribution will increase
as usual when x decreases. These results are in good agreement with the LO-GRV94. Then, the
derivative of structure functions (∂F2/∂t) are calculated into gluon distribution functions and
λg(x, t) at any x and t value, and are compared with the experimental results. It is concluded
that the proposed method in addition to being very simple, provides relatively accurate values

Tab. 3. The percentage of difference between the our method and the other results for the gluon distribution,
compared with LO-GRV.

x Our results Prytz. results [3] Bora. results [5] D.&G. results [6]
0.00085 14.1% 37.1% 44.1% 37.1%
0.00155 10.2% 43.9% 50.2% 43.9%
0.00268 6.5% 38.3% 45.1% 38.3%
0.00465 2.0% 23.6% 32.1% 23.6%
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for the λg(x, t), gluon distribution function and derivative of structure function. Moreover, we
solve only leading order evolution equations. We expect that next- to- leading order equations
are more correct and their solutions will give better fit to global data and parameterizations.
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