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MORPHOLOGY OF POLYMER NANOCOMPOSITES
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A computer experiment was suggested for testing of suitable methods for morphological
analysis of nanocomposite films. A computer model was prepared to study three-dimensional
(3D) structural properties on the basis of two-dimensional (2D) projections or sections. Some
of the suitable methods are shown. A special attention is devoted to Wigner-Seitz cells and
reconstruction of 3D spatial distribution.
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1 Introduction

Morphological analysis of composite or nanocomposite thin films is important both for the char-
acterisation of the films themselves and for the analysis of their properties. These films represent
class of promising materials. Composite metal/dielectric films consisting of metal particles em-
bedded into an oxide or polymer matrix have received more and more attention in last few years
due to their interesting optical, mechanical, and electrical properties. The same situation is with
the nanocomposites. Composite material can be obtained by embedding metal particles into a
matrix of dielectric film. It can be achieved among other methods by thermal evaporation [1], by
ion-beam sputter deposition [2] or by plasma deposition techniques (e.g. [3]).

There are three possible structures of the metal containing polymer or oxide films depending
on the filling factor:

• the metal particles completely insulated from each other are embedded in a polymer ma-
trix,

• near the critical filling factor the metal-dielectric transition can be observed and metal
objects form a percolation structure, and

• the metal film with polymer inclusions.
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Fig. 1. Hard-sphere model, object radii are constant, filling factor 0.05, diffusion zone 0 pixels. Top shows
a section, middle shows a projection for film thickness Z = 100, bottom shows a projection for Z = 200.

To make a proper analysis of prepared composite films a suitable technique for their struc-
tural description must be introduced. Theoretical approach to the problem often leads to the
nearly invincible difficulties [4]; therefore, a computer experiment would be more suited for that
purpose.

In our contribution, we studied the unfolding problems arising from the image analysis of
the films with non-uniform structure. Our main task was to gain information about 3D spatial
distribution of spherical objects in isotropic systems supposing we have 2D images only taken
either from sections or from projections of the composite or nanocomposite film. A modified
hard-disk model of the film was prepared for the analysis of influence of film parameters on vari-
ous morphological algorithms. The older version of characterization of 3D structure was by help
of statistical moments. Stronger methods are based on the usage of mathematical morphology.

2 Model

Our suggested model of composite films uses working region 2000 × 2000 × 200 pixels (x, y,
and z directions), pixels being the length units in our model. The number of generated objects is
always the same – 2000, and the spherical form of objects is assumed in accordance with many
experiments. The sphere diameters are determined by the chosen filling factor (in the range 0.05
to 0.20) of the film and by the number of objects. For the generation of the spatial distribution
of objects, the ‘hard-sphere technique’ was used: the objects are generated randomly with a
minimum distance between edges of objects which is the model parameter called the ’diffusion
zone’ DZ ∈ 〈0, DZmax〉. The number and the size of objects determine the maximum value of
the diffusion zone DZmax that varies between 28 and 6 pixels for the filling factor between 0.05
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Fig. 2. Section of the hard-sphere structure with depicted Wigner-Seitz cells (on the left) and corresponding
area distribution AWS of WS (on the right); filling factor of the film equals 0.10, DZ = 0 pixels, relative
frequency of the distribution on the value axis is in arbitrary units.

and 0.20, respectively. With the help of this parameter, it is possible to influence the randomness
of spatial distribution of objects. The structures with higher diffusion zone are more ordered.
The model is working with a fixed object diameter (see Fig. 1).

For testing the methods, which are convenient for partial reconstruction of 3D information
from 2D images a simple computer experiment was prepared. Generating the composite struc-
ture we could make a random section parallel to the (x, y)-plane. In Fig. 1 we can see such
random parallel section (upper plane of the film shown) and two projections of the films with
different film thicknesses Z (the same effect can be achieved for hard-sphere models with two
different numbers of objects). Various morphological methods can be then applied to the gener-
ated structures.

3 Spatial distribution of objects

Numerous methods can be used to characterize the spatial distribution of clusters or objects in
two dimensions. For the characterization of 2D structure geometry and of spatial distribution
of its objects, the quantitative morphological analysis must be performed. In the early stages
of the study two simple morphological methods were used – the Radial Distribution Function
(RDF) [5] and the Distribution of Nearest Neighbours (DNN) [6]. These methods work with
centres of objects only, therefore they can be used for the point objects, too (e.g. in astronomy).
Last years more powerful methods as Covariance (CO) [7], Chord-Length Distribution of Light
segments (CHLD-L) [8], Quadrat Counts (QC), Wigner-Seitz Cells (WS) [9] often mentioned
as Voronoi tessellation [10] are preferred in thin film physics. The common feature of the last
methods is their complex character. They combine a greater number of object properties and
produce them in integral form. In this case, the derivation of a physical meaning of the particular
morphological characteristics is more complicated.

All the methods mentioned have been commonly used in 2D problems. We are trying to apply
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Fig. 3. Section of the hard-sphere structure with depicted Wigner-Seitz cells (on the left) and corresponding
area distribution AWS of WS (on the right); filling factor of the film equals 0.10, DZ = DZmax, relative
frequency of the distribution on the value axis is in arbitrary units.

them in case of 3D problems, now. The methods like RDF, CHLD-L, CO can give interesting
results. They can be sensitive enough but it is very difficult to derive some relevant quantities
from them.

But there is only a little knowledge about the use of the other methods like DNN, WS, etc.
in three dimensions. However, there is an interesting correlation between the RDF and DNN.
Both of them analyse the same kind of problems. As we had proved before [11], the RDF can be
completely reconstructed from DNN of all orders i as follows

g(r) =
1

2πr

∞∑

i=1

wi(r), (1)

where g(r) and wi(r) denotes the RDF and DNN of i-th order, respectively.
We are focusing on the WS method in the paper. We have tried to find out the ability of the

method to describe various structures in three dimensions. In Figs. 2 and 3, we see always a
section of the structure generated by our hard-sphere model with the WS drawn on the left and
the corresponding area distribution of Wigner-Seitz Cells on the right. We can observe changes
when the structure is more ordered (Fig. 3); the distribution function is narrower. In case of
randomly distributed objects the areas have on the other hand more dispersed magnitudes with
respect to their mean value Eξ.

If we introduce the first two central moments of random variable ξ

Eξ =
∑

xipi, (2)

where xi are discrete values of random variable occurring with a probability pi, and

Dξ = E(ξ − Eξ)2 (3)
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Fig. 4. Characterization of randomness of composite structure by help of the invariant
√

Dξ/Eξ for various
values of the filling factor. Each point includes variance of the values derived from analysis of ten sections.

we can make an invariant
√

Dξ/Eξ, which value is given by physical properties of studied struc-
tures only and is not influenced by non-physical parameters as the resolution of images, etc. It
well characterizes randomness of object distribution in a section as well as in space. In Fig. 4 we
can see results of its use for the characterization of various structures with different randomness.
The randomness is well described in three dimensions by the diffusion zone DZ. Completely
random structure belongs to DZ = 0 pixels, higher DZ means more ordered structure. However,
here is demonstrated a possibility of the same characterization of given structures by the invari-
ant mentioned above, i.e. based on the information in 2D sections only. To have results with a
reasonable accuracy (see variances shown in Fig. 4) it is needed to process at least 1000 structure
objects. As we showed before [12] the influence of limited number of objects is mostly more
important for the possible error than the influence of digitization.

4 Conclusion

The use of different morphological methods known from 2D morphology analysis with special
attention to WS is discussed in case of space analysis in three dimensions. Results of the com-
puter experiments performed in this field are presented here. We can conclude that

• one can use both a section or a projection in case of very thin films. However, with in-
creasing thickness of the film rapidly decreases usability of the projections (see Fig. 1),

• with increasing filling factor decreases relevance of the projections as well,

• higher filling factor causes higher ordering of the film, thus the range of possible values of
diffusion zone is smaller (see Fig. 4),

• the WS method is usable for the unfolding problem. It well describes the randomness of
3D structure from the 2D information only.
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