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This letter establishes a procedure which determines an algebra of exotic particles by us-
ing a non-commuting coordinates. These particles obey fractional statistics and live in two-
dimensional space.
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1 Introduction

The goal of this work is mainly to obtain an algebra describing anyons. These particles are also
known as excitations, quasi-particles or exotic particles; i.e. fermions (bosons) carrying odd
(even) number of elementary magnetic flux quanta [1–12]. They are living in two-dimensional
space as composite particles having arbitrary spin, and they are characterized by fractional statis-
tics which is interpolating between bosonic statistics and fermionic one. Experimentally, it was
proved in fractional quantum Hall effect that electrons don’t act as a gas like they do in normal
metals. They have condensed to form a new type of quantum fluid; each electron combines with
a quantum unit of magnetic flux. This was the proposition of Robert Laughlin [13–15]. The
unique property of his quantum fluid is that if one electron is added the fluid is excited creating
quasi-particles that have a fraction of the charge of an electron. These are not normal particles,
but just the coordinated motion of several electrons in the fluid called anyons. Several works were
done to find out the quantum theory of this kind of particles and its right model is not yet reached.

The construction of the exotic particles algebra we give in this letter is different from the one
introduced by Lerda and Sciuto in the ref. [16]. As result, the obtained symmetry is interpolat-
ing between bosonic and deformed fermionic algebras. The procedure is based on considering
a non-commutative geometry depending on the statistical parameter characterizing anyonic sys-
tem. First we review the non-commutative geometry as known in the literature which is one of
the approaches to describe the non-commutative gauge theories which are the topic of the most
recent interest [17–25]. They are described through two ways: by considering the standard com-
mutative gauge action and re-interpreting any product of arbitrary fields in terms of the Moyal
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product, and by re-interpreting the fields as operators in the Hilbert space which provides for a
representation of the fundamental algebra that defines the non-commutative geometry [26–31].
Then we suggest that the commutation relations of coordinates should be depending on statistical
parameters ν characterizing exotic particles. The obtained non-commutative geometry is used to
construct an annihilation and creation operators generating the exotic particles algebra. An in-
teresting remark is that the latter symmetry has two extremes the bosonic algebra for ν = 0 and
deformed fermionic algebra for ν = 1 which means that the discussed planar system is gotten
from bosons as origin and does not have any thing to do with fermions.

The letter is organized as follows: In section 2, we briefly review the origin of anyons and its
statistics. The section 3 will be devoted to construct an exotic particles algebra basing on the non-
commuting coordinates which generate the algebra underlying the non-commutative geometry
depending on the statistical parameter. In section 4, we conclude.

2 Exotic Particles

Let us start by recalling the origin of anyons [32–39]. Firstly, to see how come anyons as a
theory, the configuration space Md

N of N identical particles in d-dimensional space (<d)N is
given as follows

Md
N =

(<d)N − ∆

SN

by removing the diagonal ∆ defined by the set

∆ = {(x1, ..., xN ) ∈ (<d)N/xi = xj}

such that xi = xj for at least one pair. Here we can imagine that there is a hard core interaction
between particles keeping them apart. Then we identify the elements of the configuration space
(x1, ..., xN ) and (xπ(1), ..., xπ(N)), for any element π of the symmetry group SN since particles
are identical.

In the special case two-dimensional space with two identical particles, the configuration space
M2

2

M2
2 = <2 × {cone without the tip}

is infinitely connected. It is constructed by replacing the coordinates x1 and x2 by the center of
mass coordinate X = x1+x2

2 and the relative coordinate x = x1−x2 and by removing the diago-
nal x1 = x2 means leaving out the origin of the x-plane and ”modding” by S2 means identifying
x and −x. Then, the resulting construction is the surface of a cone with the tip x = 0 excluded.
Consequently, any closed loop on the mantle of the cone encircling the tip can not be shrunk to
a point. Thus M2

2 is multiply connected.

Secondly, the connection to statistics comes through recognizing that the class of closed loops
σi corresponds to an interchange of particles i and i + 1 (Figure 1). In d ≥ 3, these loops can be
deformed into each other; e.g. by rotating the loop around a diameter of a sphere, then σi = σ−1

i .
In d = 2, this can be done in two homotopically inequivalent ways which can be represented by
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the loop CiCi+1 where the two particles move either counter clockwise (corresponding to σi) or
clockwise (corresponding to σ−1

i ) interchanging their places, so σi 6= σ−1
i and they are elements

of the braid group BN . The latter condition is the difference between BN and SN .
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Figure 1: The interchange of two particles i and i + 1 along the closed loop CiCi+1.

Now to look for a unitary one-dimensional representations of BN , we pose χ(σi) = eiφi and
we have the following constraint

σiσi+1σi = σi+1σiσi+1

from the Feynman propagator

K =
∑

α∈BN

χ(α)Kα

requiring χ(σi)χ(σj) = χ(σiσj). The representations χ(α) are the weights of different classes
α and the sum runs over all classes. Kα denotes the integral over all paths in the class α. The
constraint σiσi+1σi = σi+1σiσi+1 requires that φi = φi+1. Thus it is customary to write

χ(σi) = e−iνπ , χ(σ−1
i ) = eiνπ, ν ∈ [0, 2) (1)

with ν is called statistical parameter. If ν = 0, the particles are bosons that obey Bose-Einstein
statistics and if ν = 1 the particles are fermions with Fermi-Dirac statistics.

After reviewing in brief the planar system and its statistics, we give in what follows its asso-
ciated symmetry interpolating between bosonic and fermionic symmetries.
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3 Exotic Particles Algebra

First, we briefly recall the non-commutative geometry. Its most simple example consists of the
geometric space described by non-commutative hermitian operator coordinates xi, and by con-
sidering the non-commutative momentum operators pi = i∂xi

(∂xi
the corresponding derivative

of xi). These operators satisfy the following algebra

[xi, xj ] = iθεij , [pi, pj ] = −iθ−1εij , [pi, xj ] = −iδij

[pi, t] = 0 = [xi, t], [pi, ∂t] = 0 = [xi, ∂t],
(2)

with t the physical time and ∂t its corresponding derivative.

We consider two-dimensional harmonic oscillator which can be decomposed into one-dimensional
oscillators. It is known that the algebra (2) allows to define, for each dimension, the representa-
tion of annihilation and creation operators as follows

ai =
√

µω

2 (xi + i
µω

pi)

a†
i =

√

µω
2 (xi −

i
µω

pi).
(3)

with µ is the mass and ω the frequency. These operators satisfy

[ai, a
†
i ] = 1,

defining the Heisenberg algebra. In the simultaneously non-commutative space-space and non-
commutative momentum-momentum, the bosonic statistics should be maintained; i.e, the opera-
tors a†

i and a†
j are commuting for i 6= j. Thus, the deformation parameter θ is required to satisfy

the condition
θ = −(

1

µω
)2θ−1.

To find out an algebra describing the planar system we start by introducing the non-commutative
geometry depending on the statistical parameter ν ∈ R. The fundamental algebra is defined by
the coordinates xi and the momentum pi satisfying

Proposition 1

[xi, xj ]χ = iθεij , [pi, pj ]χ = −iθ(µω)2εij , [pi, xj ] = −iδij

[pi, t] = 0 = [xi, t], [pi, ∂t] = 0 = [xi, ∂t]
(4)

and by straightforward calculations we obtain

[xi, pj ]χ = iδij + Cji, [pi, xj ]χ = −iδij + Dji, (5)

where Cji = (1 − χ)pjxi and Dji = (1 − χ)xjpi and the second deformation parameter χ is
given by
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Definition 1

χ = e±iνπ, (6)

where ± sign indicates the two rotation directions on two-dimensional space. θ in (4) is a non-
commutative parameter depending on statistical parameter ν as we will see later and the notation
[x, y]q = xy − qyx.

Then, we introduce an operator ξi acting on the momentum direction in the phase-space. We
assume that ξi satisfies the following commutation relation

Proposition 2

[ξi, xj ] = 0 ∀i, j. (7)

In this case, we define the annihilation and the creation operators by

Definition 2

b−i =
√

µω
2 (xi + i

µω
ξipi)

b+
i =

√

µω
2 (xi −

i
µω

ξ−1
i pi),

(8)

with ξi is defined in terms of statistical parameter ν and an operator Ki which could be a function
of the number operator N

Definition 3

ξi = eiνπKi , (9)

with Ki an arbitrary operator.
The non-commutative geometry defined by (4-5) leads to a deformed Heisenberg algebra

generated by the operators (8) and defined by the following commutation relations

[b−i , b+
j ]χ = 1

2 (ξi + ξ−1
j )δij + iµω

2 θ(I + ξiξ
−1
j )εij −

i
2 (ξ−1

j Cji − ξiDji),

[b+
i , b+

j ]χ = 1
2 (ξ−1

j − ξ−1
i )δij + iµω

2 θ(I − ξ−1
i ξ−1

j )εij −
i
2 (ξ−1

j Cji + ξ−1
i Dji),

[b−i , b−j ]χ = 1
2 (ξi − ξj)δij + iµω

2 θ(I − ξiξj)εij + i
2 (ξjCji + ξiDji),

(10)

with I is the identity.

To be consistent with the hermiticity of the operators xi and pi the non-commutative geom-
etry (4) leads to the fact that θ is an operator satisfying

θ† = χ−1θ
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and we suggest the following definition

Definition 4

θ = ν(1 + χ)I (11)

We remark that the algebra (10) is a deformed version of Heisenberg algebra satisfied by the
operators given in (3). This new algebra describes the anyonic system for arbitrary statistical
parameter ν.

Another important point is that the obtained deformed Heisenberg algebra (10) is interpolat-
ing between two extremes depending on the statistical parameter ν. We know that, in three or
more dimensions, ν takes the values 0 or 1 and in two dimensions ν is arbitrary real number.
The latter case characterizing exotic particles has already discussed above. In the case of three
or more dimensions if ν = 0 we get χ = 1, ξi = ξ−1

i = I , θ = 0 and Cji = 0 = Dji, so the
commutation relations in the algebra (10) becomes

[b−i , b+
j ] = δij , [b+

i , b+
j ] = 0, [b−i , b−j ] = 0. (12)

These relations define the bosonic algebra and this is one extreme. Then the next interesting
remark is that the algebra (10) will not have fermionic algebra as extreme for ν = 1, χ = −1,
θ = 0 and Cji 6= 0 6= Dji but we get a deformed fermionic algebra as second extreme defined
by

{b−i , b+
j } = 1

2 (eiπKi + e−iπKj )δij −
i
2 (e−iπKj Cji − eiπKiDji),

{b+
i , b+

j } = 1
2 (e−iπKj − e−iπKi)δij −

i
2 (e−iπKj Cji + e−iπKiDji),

{b−i , b−j } = 1
2 (eiπKi − eiπKj )δij + i

2 (eiπKj Cji + eiπKiDji).

(13)

The main result we get from this investigation is that from exotic particles algebra we get the
bosonic algebra as extreme this means that our system is originally gotten by exciting a bosonic
system in two-dimensional space. On other hand, we remark that for arbitrary operator Ki if
ν = 1 we get a deformed fermionic algebra as a second extreme. It is known in the literature
that anyons are interpolating between bosons and fermions and the statistical parameter ν equals
to 1 describes fermionic system, but in our case, it is different and our system doesn’t have
any thing to do with fermions originally but it could be related to something else as deformed
fermions which are known in the literature as quionic particles or ki-fermions, ki integer number
introduced as a deformation parameter, and these kinds of particles are not physical particles.
Consequently, in physics wise, our system has just one extreme which is a bosonic system with
the statistical parameter ν = 0.

4 Conclusion

In this paper, we started by giving a short review on exotic particles and then we assumed that
the fundamental algebra satisfied by the non-commuting coordinates is depending on the statis-
tical parameter ν characterizing the quasi-particles. Basing on this proposed algebra we defined
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an annihilation and creation operators in two-dimensional space. Then, by a straightforward
calculation we found that the new operators are generators of a deformed Heisenberg algebra
describing exotic particles. For arbitrary ξi which is introduced to define the ”exotic” annihila-
tion and creation operators the two extremes of the exotic particles algebra (10) are the bosonic
algebra and the deformed fermionic one. We also get the same result if ξi is unitary and Ki is
hermitian as a special case in which the operator b+

i becomes a complex conjugate of b−i .
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[17] A. H. Chamseddine, J. Fröhlich: Some elements of non-commutative and space-time geometry, Eds.

C. S. Liu, S.-T. Yau, (Yang-Festschrift) International Press (1995) 10
[18] H. S. Snyder: Phys. Rev. 71 (1947) 38
[19] H. S. Snyder: Phys. Rev. 72 (1947) 68
[20] T. Banks, W. Fischler, S. H. Shenker, L. Susskind: Phys. Rev. D 55 (1997) 5112
[21] V. Schomerus: JHEP 9906 (1999) 030
[22] A. Aoki, N. Ishibashi, H. Kawai, Y. Kitazawa, T. Tada: Nucl. Phys. B 565 (2000) 176
[23] N. Seiberg, E. Witten: JHEP 9909 (1999) 032
[24] D. Bigatti, L. Susskind: Phys. Rev. D 62 (2000) 066004, hep-th/9908056
[25] N. Ishibashi, S. Iso, H. Kawai, Y. Kitazawa: Nucl. Phys. B 573 (2000) 573
[26] A. Connes, M. R. Douglas, A. Schwarz: IHEP 9802 (1998) 003
[27] M. R. Douglas, C. Hull: JHEP 9802 (1998) 008
[28] Y. K. E. Cheung, M. Krogh: Nucl. Phys. B 528 (1999) 185
[29] C.-S. Chu, P.-M. Ho: Nucl. Phys. B 528 (1999) 151



424 J. Douari

[30] A. Connes: Non-commutative geometry, Academic Press (1994)
[31] S. Doplicher, K. Fredenhagen, J. E. Roberts: Comm. Math. Phys. 172 (1995) 187
[32] Y. Ohnuki, S. Kamefuchi: Quantum Field Theory and Parastatistics (University Press of Tokyo, 1982)
[33] A. J. Macfarlane: Generalized Oscillator Systems and Their Parabosonic Interpretation, in: Proc.

Inter. Workshop on Symmetry methods in Physics. Eds. A. N. Sissakian, G. S. Pogosyan, S. I. Vinitsky
(JINR, Dubna, 1994) p. 319

[34] A. J. Macfarlane: J. Math. Phys. 35 (1994) 202
[35] L. C. Biedenhrn: J. Phys. A 22 (1989) L873
[36] A. J. Macfarlane: J. Phys. A 22 (1982) 4581
[37] A. Junussis: J. Phys. A 26 (1982) L233
[38] C. Quesne, N. Vansteenkiste: J. Phys. A 28 (1995) 7019
[39] C. Quesne, N. Vansteenkiste: Helv. Phys. Acta 69 (1996) 141


