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DECAYS OF η AND η
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A short overview of η and η′ decays is given with an emphasis on what can be learned for the
strong interaction from them. The talk consists of a short introduction to Chiral Perturbation
Theory, a discussion of η → 3π beyond p4 and some of the physics involved in η′ → ηππ, 3π

as well as an overview of anomalous processes.

PACS: 11.30.Rd, 12.39.Fe, 14.40.Aq

1 Introduction

This talk gives an introduction to some of the basic strong interaction issues we face in η and
η′ decays. It will not cover weak decays. Simple dimensional analysis leads to branching ratios
below 10−11 for weak η-decays and below 10−12 for weak η′ decays. These will obviously not
be observed in the near future. It is possible to construct models that enhance η and η ′ decays
due to physics beyond the standard model to observable rates but these models tend to be ugly in
order to avoid the very stringent constraints from kaon decays and other sources, some examples
can be found in [1].

Let me remind you of the η-handbook [1] where you can find a series of lectures on the basis
of η and η′ physics. The theory lectures relevant for this talk in there are those by Kroll [2],
Bijnens and Gasser [3], Ametller [4], Holstein [5], Shore [6] and Bass [7]. There are also a
set of related theory talks in this conference, those by Bass [8], Borasoy [9], Oset [10] and
Martemyanov [11], while most of the other talks today are the experimental talks related to η
and η′ decays at KLOE and WASA.

2 Pseudoscalars are special

The Lagrangian of Quantum Chromodynamics (QCD) is obviously invariant under the inter-
change of the three light quarks, u, d and s, if they have equal mass. This leads to the vector
symmetry U(3)V . But

LQCD =
∑

q=u,d,s

[iq̄LD/ qL + iq̄RD/ qR − mq (q̄RqL + q̄LqR)] . (1)

1Presented at the Workshop on Production and Decay of η and η
′ Mesons (ETA05), Cracow, 15–18 September 2005.
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Fig. 1. The potential V (φ) for an unbroken sym-
metry.

Fig. 2. The potential V (φ) for a spontaneously bro-
ken symmetry. The arrow indicates the choice of
vacuum.

Here qL and qR are respectively the left and right handed quark spinors, D/ = γµDµ is the
contraction of the covariant derivative including the gluon field with the Dirac gamma matrices
and mq is the (current) quark mass. So, if mq = 0, we have an enlarged (chiral) symmetry:
U(3)L × U(3)R, where the left and right handed particles can be rotated into each other inde-
pendently.

But hadrons do not come in parity doublets: the chiral symmetry must be broken in the
real world. There exists also a few (very) light hadrons: π0π+π− and K, η. The existence of
the latter as well as the nonexistence of the degenerate parity doublets can be understood from
spontaneous Chiral Symmetry Breaking.

Let us first discuss spontaneous symmetry breaking for a simple U(1) symmetry for a com-
plex scalar field φ(x) → eiαφ(x). This means that when plotting the potential V (φ) along the
z-axis as a function of the real and imaginary part of φ along the x and y axis, it should be sym-
metric for rotations around the z-axis. A potential V (φ) for the unbroken case is shown in Fig. 1.
Note that the vacuum, the lowest point is unique. All excitations around the vacuum require
climbing up the sides of the potential and are thus massive. On the contrary, in Fig. 2 we show a
potential corresponding to the U(1) symmetry being spontaneously broken. The lowest energy
state is now not unique anymore. This means that due to the continuous symmetry there is a con-
tinuum of vacua or ground states with the same energy. There exists thus a massless mode which
is the moving along the valley at the bottom of the potential. This mode is the Goldstone Boson
and can in this case, be parameterized by the angle around the z-axis. The symmetry is spon-
taneously broken because we have to choose one vacuum, indicated by the arrow. We can see
that the vacuum is not invariant under the symmetry group since the vacuum expectation value
〈φ〉 6= 0. There are also predictions for the interactions of this Goldstone mode. The symmetry
is still present, so the angle around the z-axis should not matter. This means that only changes in
the angle can contribute and a direct consequence is that the Goldstone Bosons do not interact at
low energies. This leads to the low energy theorems. A nice review about Goldstone Bosons and
their physics is [12].

Note that the degeneracy of the set of vacuum states, sometimes referred to as the vacuum
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Fig. 3. The triangle diagram which leads to a nonzero divergence for the singlet axial current.

manifold, is determined by the group structure of the symmetry group and its broken part, and it
is on this manifold that the Goldstone Bosons in some sense live.

For QCD, we do not have a simple field φ that has a vacuum expectation value but it is instead
〈qq〉 6= 0. The chiral symmetry group U(3)L × U(3)R is spontaneously broken to the diagonal
or vector subgroup U(3)V . The resulting Goldstone bosons we identify with the pseudoscalars
π, K, η.

This raises another problem, why is the η′ not light? This is referred to as the U(1)A-problem.
The symmetry group can be decomposed into simple groups as

U(3)L × U(3)R = SU(3)L × SU(3)R × U(1)V × U(1)A . (2)

The spontaneous breaking of SU(3)L × SU(3)R to SU(3)V leads to 8 Goldstone Bosons and
here we have π, K, η as light particles so this is fine. The U(1)V part is baryon number and is
not broken. The axial U(1)A should not be a good symmetry of the theory in order to explain
why the η′ is heavy, even if the Lagrangian of QCD has this symmetry. The reason is that in
quantum field theory, the Lagrangian alone does not fully specify the theory. One also needs to
introduce a regularization/renormalization procedure. The latter is not compatible with all global
symmetries and in particular the current corresponding to U(1)A is not conserved, this is known
as the Adler-Bell-Jackiw anomaly [13]. The triangle diagram of Fig. 3 leads to

∂µA0µ = 2
√

Nf ω , ω =
1

16π2
εµναβ tr GµνGαβ . (3)

The operator ω consists of gluons so the nonzero divergence is strongly interacting and it means
that U(1)A is not a good symmetry for QCD. The η′ is thus allowed to be heavy.

Unfortunately, when we look at mechanisms how ω could produce the η ′ mass we see that
ω is a total derivative. These can normally be neglected in the Lagrangian so how can it have
an effect? The answer was found by ’t Hooft [14]. Due to special configurations with nonzero
winding number ν =

∫

d4x ω 6= 0, called instantons, there can be an effect and it leads to a large
η′ mass.

This solution lead to a new problem, the strong CP -problem. One can add a term to QCD,

LQCD −→ LQCD − θω, (4)

that breaks CP symmetry strongly. Experimental limits are |θ| ≤ 10−10 and we need to under-
stand that small value.
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Fig. 4. On the left hand side the power counting rules for ChPT for a lowest order vertex, a propagator and a
loop integration. The right side shows how this leads to the same order for two different one-loop diagrams.

2 flavour 3 flavour 3+3 PQChPT
p2 F, B 2 F0, B0 2 F0, B0 2
p4 lri , h

r
i 7+3 Lr

i , H
r
i 10+2 L̂r

i , Ĥ
r
i 11+2

p6 cr
i 53+4 Cr

i 90+4 Kr
i 112+3

Tab. 1. The number of free parameters in ChPT at various orders for two and three flavours and the partially
quenched case.

The η′ has thus large and very interesting nonperturbative effects and has a strong coupling
to the gluon like no other hadron. Due to the fact that ms 6= m̂ = (mu +md)/2, this also affects
η physics. This is one of the major reasons why studying η and η′ is a very interesting subject.

3 Standard Chiral Perturbation Theory

A major tool in η decay studies is Chiral Perturbation Theory (ChPT) [15–17]. Introductions
can be found in [18]. It is an effective field theory based on the Goldstone Bosons from the
spontaneous breaking of chiral symmetry as degrees of freedom. It is an expansion in momenta
and quark masses and the power counting is really dimensional counting, called p-counting for
a generic momentum. The expected breakdown scale is the scale at which physics which is not
included becomes relevant. This is resonances, so the breakdown scale is of order of the rho
meson mass, mρ, somewhat dependent on the channel one looks at.

The fact that a power counting in momenta leads to a well defined perturbative expansion
follows from the fact that the interactions of Goldstone Bosons vanish at zero momentum. The
absence of the latter for other strongly interacting states is why it is so difficult to build an
effective theory including resonances. Power Counting is shown for the example of ππ scattering
in Fig. 4.

ChPT is a nonrenormalizable field theory. That means that, while in principle predictive,
the number of parameters increases strongly order by order. At lowest order there are only two
parameters [19], at p4 ten [17] and at p6 there are 90 [20]. Other cases are shown in Table 1.
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Fig. 6. The decay η → 3π and the
momenta associated with it.

In practice the p6 coefficients Cr
i are often determined from resonance saturation depicted

schematically in Fig. 5. This is at present a major restriction on high order ChPT predictions.
It works well for the terms not involving quark masses, OK for those with quark masses but
dominated by vectors and it is not known how well the scalar dominated ones are predicted using
this approximation. Many calculations have been performed to order p6. A recent review is [21].

A major improvement happened recently for ππ and πK scattering where the combination
of p6 calculations and dispersion relations lead to a much better understanding of these systems.

4 The decay η → 3π beyond p
4

One calculation which is not completed yet at p6 order in ChPT is in fact η → 3π. This does not
mean that nothing is known beyond order p4. This section reviews that and is basically identical
to the discussion in [3].

The kinematics are given in terms of the via s, t, u defined by

s = (pπ+ + pπ−)2 = (pη − pπ0)2 t = (pπ− + pπ0)2 = (pη − pπ+)2

u = (pπ+ + pπ0)
2

= (pη − pπ−)
2

s + t + u = m2
η + 2m2

π+ + m2
π0 ≡ 3s0 . (5)

The two different amplitudes are

〈π0π+π−out|η〉 = i (2π)
4

δ4 (pη − pπ+ − pπ− − pπ0) A(s, t, u) ,

〈π0π0π0out|η〉 = i (2π)
4

δ4 (pη − p1 − p2 − p3) A(s1, s2, s3) . (6)

The pions are in an I = 1 state which means that the amplitude is proportional to mu − md

or αem. The O(αem) effect is small, but large via the kinematical effects of mπ+ − mπ0 . The
photonic decay η → π+π−π0γ needs to be included directly. Isospin leads to

A(s1, s2, s3) = A(s1, s2, s3) + A(s2, s3, s1) + A(s3, s1, s2) . (7)

The lowest order amplitude is [22]

A(s, t, u) =
B0(mu − md)

3
√

3F 2
π

{

1 +
3(s − s0)

m2
η − m2

π

}

, (8)

or, with Q2 ≡ (m2
s − m̂2)/(m2

d − m2
u) and m̂ = (mu + md)/2, it becomes

A(s, t, u) =
1

Q2

m2
K

m2
π

(m2
π − m2

K)
1

3
√

3F 2
π

M(s, t, u) , (9)
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with at lowest order,

M(s, t, u) =
(

3s − 4m2
π

) (

m2
η − m2

π

)

. (10)

That the decay rate Γ (η → 3π) is thus proportional to Q−4, allows a PRECISE measurement of
Q. To illustrate this we take Q from the baryon mass difference, Q ≈ 24, and obtain at lowest
order Γ(η → π+π−π0) ≈ 66 eV . An alternative determination from m2

K+ −m2
K0 ∼ Q−2 gives

Q = 20.0± 1.5 and leads to a lowest order prediction Γ(η → π+π−π0) ≈ 140 eV .
The p4 calculation [23] gives a very large enhancement

(
∫

dLIPS|A2 + A4|2
)/ (

∫

dLIPS|A2|2
)

= 2.4 , (11)

with LIPS meaning Lorentz invariant phase-space. A major source of the large effect is the
large S-wave final state rescattering. The p6 calculation is partially done but has been stalled
since two years.

The higher orders have been estimated via dispersion relations that mainly include the ef-
fects of the final state rescattering. There have been two calculations, [24] and [25]. They used
different methods but similar approximations. I will present a simplified version of the analysis
of [24] here as performed in [3]. A more extensive description of [24] is [26].

Up to O(p8) there are no absorptive parts from ` ≥ 2 which allows to write [24, 27]

M(s, t, u) = M0(s) + (s − u)M1(t) + (s − t)M1(t) + M2(t) + M2(u) − 2

3
M2(s) . (12)

The MI “roughly” correspond to contributions with isospin 0,1,2. The MI satisfy dispersion
relation with 2 or 3 subtractions in terms of their discontinuities

M0,2(s) = a0,2 + b0,2s + c0,2s
2 +

s3

π

∫

ds′

s′3
discM0,2(s

′)

s′ − s − iε
,

M1(s) = a1 + b1s +
s2

π

∫

ds′

s′2
discM1(s

′)

s′ − s − iε
, (13)

The constraint on s, t, u of (5) implies that there are only 4 free constants, not 8 in (13) via

M(s, t, u) = a + bs + cs2 − d(s2 + tu) + dispersive . (14)

The quantities c and d can be determined from more convergent dispersion relations in terms of
known parameters via

c = c0 +
4

3
c2 =

1

π

∫

ds′

s′3

{

discM0(s
′) +

4

3
discM2(s

′)

}

,

d = −4L3 − 1/(64π2)

F 2
π (m2

η − m2
π)

+
1

π

∫

ds′

s′3
{s′discM1(s

′) + discM2(s
′)} (15)

We now restrict the discontinuities to their respective two-body cuts and further split them into
the part coming from the forward channel, the MI(s) part on the rhs of (16), and that via the t, u
channels, the M̂I(s) part on the rhs of (16), explicitly:

MI(s) =
1

π

∫

ds′

s′ − s − iε
sin δI(s)e

−iδI (s)
{

MI(s) + M̂I(s)
}

. (16)
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The δI(s) are the S-wave isospin I scattering phases.
The ambiguities inherent in the possible solutions can be solved by going over to a new set

of functions that automatically include the forward cuts via

ΩI(s) = exp

{

(s/π)

∫

ds′/s′ δI(s
′)/(s′ − s − iε)

}

. (17)

The new dispersion relations are:

M0(s)

Ω0(s)
= α0 + β0s + γ0s

2 +
s2

π

∫

ds′
sin δ0(s

′) M̂0(s
′)

|Ω0(s′)|s′2(s′ − s − iε)
,

M1(s)

Ω1(s)
= β1s +

s

π

∫

ds′
sin δ1(s

′) M̂1(s
′)

|Ω1(s′)|s′(s′ − s − iε)
,

M2(s)

Ω2(s)
=

s2

π

∫

ds′
sin δ2(s

′) M̂2(s
′)

|Ω2(s′)|s′2(s′ − s − iε)
. (18)

So, we now need to find a set of ππ phases, δ0,1,2(s), and solve Eq. (18) for M1, M2, M3.
We have to fix the four constants α0, β0, γ0, β1. Two of them, γ0 and β1, can be determined from
the more convergent dispersion relations (15) with the result at p4:

γ0 ≈ 0 , β1 ≈ −4L3 − 1/(64π2)

F 2
π (m2

η − m2
π)

(19)

The values of α0, β0 depend on where in the s, t, u plane matching is done. Ref. [24] uses that the
lowest order, Eq. (10), has an Adler zero at sA = 4/3 m2

π. This zero can move but must remain
in the neighbourhood also at higher orders. They match the position of sA and the slope of the
amplitude there to the O(p4) expressions. Ref. [25] matches the amplitude at several places in
the s, t, u plane to the O(p4) expressions. A very simplified analysis to understand the results
can be done by neglecting the M̂I [3]. The total corrections found in [24, 25] are very similar.
But the distributions differ significantly as can be seen from the results along the s = u line
shown in Fig. 7 for the three approaches. The Dalitz plot distributions thus provide a check on
the various input assumptions. There has also been a refitting of the [25] method of solving to
the newer data by [11, 28].

The Dalitz plot distributions are parameterized by

1 + ay + by2 + cx2 charged decay , 1 + g(x2 + y2) neutral decay , (20)

normalized at x = y = 0. The kinematical variables are

x =
√

3
T+ − T−

Qη

=

√
3

2MηQη

(u − t) ,

y =
3T0

Qη

− 1 =
3

2mηQη

{

(mη − mπ0)
2 − s

}

− 1 , Qη = mη − 2mπ+ − mπ0(21)

Also of interest is the ratio r ≡ Γ(η → π0π0π0)/Γ(η → π+π−π0) = 1.44± 0.04 [29]. Results
from the theory at p4 and dispersive improvements [3, 25] are given in Table 2 and the experi-
mental results for the neutral and charged decays in Tables 3 and 4. You can judge the agreement
yourselves.
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Fig. 7. The real part of the η → π+π−π0 amplitude plotted along the line s = u with the physical region
for the decay indicated. The plots are adapted from the results in: left [25], top right [24] and bottom right
the simplified version of [3]. The vertical lines note the edges of the physical region.

a b c g
tree −1.00 0.25 0.00 0.000

one-loop −1.33 0.42 0.08 0.03
dispersive (KWW) −1.16 0.26 0.10 −0.021(7)

tree dispersive −1.10 0.31 0.001 −0.013
absolute dispersive −1.21 0.33 0.04 −0.014

Tab. 2. Theory results for the distributions

g
Alde −0.044± 0.046

Crystal Barrel −0.104± 0.039
Crystal Ball −0.062± 0.008

SND −0.020± 0.023
KLOE −0.026± 0.014

Tab. 3. Experiment: neutral decay
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a b c
Layter −1.08± 0.14 0.034± 0.027 0.046± 0.031

Gormley −1.17± 0.02 0.21± 0.03 0.06± 0.04
Crystal Barrel −0.94± 0.15 0.11± 0.27
Crystal Barrel −1.22± 0.07 0.22± 0.11 0.06 fixed

KLOE −1.072± 0.009 0.117± 0.008 0.047± 0.008

Tab. 4. Experimental results for the charged decay

5 Chiral Lagrangians and η
′

To treat the η′ we have to go back and look at the mechanism that gave the η′ its mass. This is
the U(1)A anomaly as discussed earlier. There exists a limit in QCD where the anomaly is not
there, namely when the number of colours, Nc, is not kept at three but sent to infinity keeping
NcαS constant [30]. In this limit many aspects of QCD simplify, see e.g. [31] for an overview
and introduction. The η′ becomes a Goldstone Boson and it can be introduced in the Lagrangian.
This was done by Veneziano, DiVecchia, Witten, Schechter and others [32–36]. One treats the
parameter θ as an external field and adds the singlet degree of freedom φ0 to the Goldstone boson
matrix U as follows:

φ̃ = θ +

√
2φ0

F
, U = ei

√
2φ0/F0ei

√
2M/F . (22)

Under a general U(3)L×U(3)R transformation φ̃ is invariant and U → gRUg†L. The Lagrangian
must then be constructed being invariant under the full U(3)L × U(3)R. The transformation of
θ as an external field assures that the effect of the anomaly is correctly accounted for. This
approach has two problems. It is not clear whether it is a convergent procedure with a derivative
expansion for the η′ and the number of free parameters is very large. In fact, since φ̃ is invariant
one can add free functions Fi(φ̃) instead of all the usual parameters of ChPT as well as a series
of extra terms. To lowest order there are 5 such functions [17] but at next order there are 57 [37].

Luckily, if the large Nc counting itself is included into the power counting things become
simpler. By looking at

∂µA0µ[O(Nc)] = mqP [O(Nc)] + ω[O(1)] , (23)

we see that we can take ω as a perturbation and treat φ̃ as a quantity of order 1/
√

Nc. The
leading part is then the usual chiral Lagrangian but with the nonet U and a mass term for the
singlet added as discussed in [32–35]. Treating ω as a perturbation is the basis of all the large
Nc chiral Lagrangian predictions for the η′.

6 The decays η
′
→ ηππ and η

′
→ 3π

We can now use the methods discussed in the previous section but some problems remain. There
are large ππ rescatterings possible in the S-wave channel, which are 1/Nc suppressed but sizable.
In other words, how do we deal with the “σ”? The other problem is that ρ and ω are present in
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η′ → ηπ0π0 η′ → ηπ+π− η′ → π0π0π0 η′ → π0π+π−

1.0 keV 1.9 keV 455 eV 405 eV
Exp 42 ± 6 keV 89 ± 10 keV 311± 77 eV ≤ 1005 eV

Tab. 5. The prediction from the lowest order chiral Lagrangian for η′ decays and their experimental values.

the final states. One thus obviously needs to go beyond ChPT. This also means that experiment
in these decays will provide us with needed clues on how we can go beyond ChPT. Several
attempts at resummation exist. One example is the work by Borasoy and collaborators [9, 38]
and the unitary extension of chiral perturbation theory. The latter can be traced back from [10].

The lowest order Lagrangian has three terms

L =
F 2

4
〈DµUDµU †〉 [(a)] +

F 2

4
〈χU † + Uχ†〉 [(b)] − 1

2
m2

0φ
2
0 . (24)

The two decays are very different in their origin. The amplitude for η′ → ηππ comes from the
term (a) in Eq. (24) with

A(η′ → ηππ) =
m2

π

6F

(

s
√

2 cos(2θ) − sin(2θ)
)

(25)

while η′ → πππ is produced from term (b) in Eq. (24) with an amplitude

A(η′ → πππ) ∼ mu − md

Fπ

. (26)

The predictions from these are shown in Table 5 and compared with the experimental values. The
two types of decays are quite different. The decays η′ → ηππ are very much off the predictions
while the η′ → 3π agree reasonably well. In the former decay, no isospin breaking is needed.
The factor of m2

π which suppresses the decay in fact disappears at higher orders. The next order
in 1/Nc allows for terms like η′η∂µπ∂µπ which remove this suppression. That alone allows one
to fit the rate but not the slope. We therefore need to study the distributions in phase space to
uncover the type of effects that are important. The precision of the branching ratios also needs
improvement to check the factor of 2 prediction from isospin. The 3π decay is isospin violating
and always needs an overall factor of mu − md. We thus do not expect as dramatic effects
compared to lowest order but to check good quantitative agreement needs better experimental
precision.

7 Anomalies

A major topic in η and η′ decays is the study of the nonabelian anomaly [39] and its effective
Lagrangian, the Witten-Wess-Zumino term [40, 41]. An obviously incomplete list of processes
and experiments is given in Table 6.

The ones labeled g − 2 are interesting also for the muon anomalous magnetic moment. They
show up as subparts of the light-by-light hadronic contribution there, as shown in Fig. 9. The
order p6 Lagrangian is known [42]. An earlier review for anomalous η process is [43].
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but also and . . .

Fig. 8. Some of the graphs for the anomaly. Now with external photons or weak bosons rather than gluons.

π0 → γγ Primex, e+e− η′ → π+π−γ(∗) WASA
η → γγ Primex, e+e− η → γ(∗)γ(∗) WASA,KLOE, CLEOc g-2
η′ → γγ e+e− η′ → γ(∗)γ(∗) WASA,KLOE, CLEOc g-2
γπ0π+π− Primakoff η′ → ρ0γ WASA

η → π+π−γ(∗) WASA,KLOE

Tab. 6. Some anomalous processes and the experiments where we expect improvements. The symbol γ(∗)

stands for (if allowed) γ, e+e−, µ+µ− or an off-shell photon in tagged γγ collisions.

8 Conclusions

There is a rich field of physics to be explored in η and η′ decays. Some of these have been
discussed in this talk. We look forward to find out more from WASA, KLOE and the other ex-
periments presented at this meeting. Let me conclude by giving simply a list of topics/questions.

• Precision physics: Q from η → 3π.

• Understanding physics: π0 versus η versus η′.

• All channels: do the flavour singlet degrees of freedom differ significantly from the nons-
inglet?

• Glue is important for η′ in its mass. Can we detect it also in other places or is the rest
merely a problem of final state interactions?

• requires getting at the mechanisms behind η, η′ decays.

• High quality distributions are a must.

Acknowledgement: I thank the organizers for a very cordial and exciting meeting. Supported
by the Swedish Research Council, the EU TMR HPRN-CT-2002-00311 (EURIDICE) and the
EU-Research Infrastructure Activity RII3-CT-2004-506078 (HadronPhysics).



316 J. Bijnens

×

π
0
, η, η

′

Fig. 9. The light-by-light hadronic contribution to the muon g−2 and a subprocess with anomalous vertices.
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