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ON THE LOWER SCALAR MESON STATES1
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The processes ππ → ππ, KK, ηη at the channel with IGJPC
= 0

+
0
++ are analysed us-

ing the analyticity properties of scattering matrix elements. The investigation is focussed on
the properties of the f0(665), f0(980), f0(1370), f0(1500) and f0(1710) states. The analysis
supports the f0(665) as the very broad resonance. It suggests further to see the f0(980) state
as predominantly the ηη bound state with dominant (qq)(qq) components. The quark con-
tent of other states is inferred and f0(1500) appears as a mixed state with dominant glueball
component.

PACS: 11.80.Gw, 12.29.Mk, 14.40.Cs

The scalar meson states of vacuum quantum numbers are playing an important role in ele-
mentary particle physics. One of the reasons is that they provide interesting laboratory for the
Quantum Chromodynamics (QCD) predictions so successful in explaining the known spectra of
elementary particles in terms of quarks and gluons. Moreover it is expected that the theoretical
QCD predictions of existence of glueballs, the elementary particles composed solely from gluons
without quarks, would be first verified experimentally just in this sector of light mesons. This
expectation is based on the fact that their theoretically calculated masses should be within inter-
val of the present day experimentally known resonant states. The identification of these resonant
states from the scattering experiments is therefore very important. The problem is, however,
that the observed resonant states appear at energies at which it is not possible to exclude their
interactions with coupled scattering channels which makes the otherwise well functioning Breit-
Wigner one pole resonant formula unreliable and instead the many coupled channels formalism
has to be applied. On the other hand, it is expected that the glueball states interact with various
channels differently from the ordinary particles made of quarks, which makes the hope for their
identification.

Because the existence of coupled channels appears as branch points in scattering amplitudes
and the presence of resonant states as their pole singularities it is very important to know the
topology of the coupled scattering amplitudes and the whole scattering matrix corresponding
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to interactions of mutually coupled channels has to be considered. The general outline of this
method of experimental data analysis has been proposed and successfully applied [1]. It is based
on the first principles - analyticity, causality, unitarity and Lorentz-invariance and allows to be
immediately applied to experimental data analysis.

Spectrum of scalar mesons with quantum numbers IGJPC = 0+0++ is observed in the s-
wave of ππ mesons scattering. The coupled channel processes besides the elastic scattering are
mainly the KK and ηη production channels. These three reactions are simultaneously described
by 3 × 3 S-matrix determined on the eight-sheeted Riemann surfaces in the s-variable, which
is the invariant total energy squared. The Riemann surfaces are there due to the right-hand cuts
along the real axis of the s complex plane starting at 4m2

π, 4m2
K , and 4m2

η. They are caused by the
S-matrix unitarity where S† is hermitian conjugate to S. In one channel case only the ππ → ππ
elastic process is opened and sign (Imk1) = + and - for the two Riemann sheets. In two channel
case, i.e. for processes ππ → ππ and the KK production channel ππ → KK the sign (Imk1,
Imk2) = + +, - +, - -, + - for four Riemann sheets. If all three channels ππ → ππ, ππ → KK
and ππ → ηη are opened the 8 Riemann sheets I, II, ... VIII correspond to Sign (Imk1, Imk2,
Imk3) = + + +, - + +, - - +, + - +, + - -, - - -, - + -, + + -.

The S-matrix unitarity can be used to find out the analytic continuation of all S-matrix ele-
ments, which are real analytic complex functions, from the 1st sheet to all the connected Riemann
sheets [1]. The S11 matrix element corresponds to the ππ → ππ scattering process, the S12 to
the ππ → KK and S13 to the ππ → ηη and similarly the other cross channels. The result of this
procedure is expressed in Tab. 1.

For the two coupled channels, i.e. for the coupled processes ππ → ππ, ππ → KK and
KK → KK the both cuts on the real s axis at s = 4m2

π and s = 4m2
K play the role and the 2 × 2

S-matrix elements analytical continuation to Riemann sheets II, III and IV is expressed by the
first three rows and four columns of Tab. 1. One can see that the zero due to the resonance in S11

will appear as the 2nd sheet pole at the other two coupled processes. As D33 = S11S22 - S2
12 it

will appear also on the 3rd sheet at coupled processes but at the shifted position. The magnitude
of the shift depends on the value of S12 and in the absence of the coupling (S12 = 0) there is no
shift of poles relative to the zero on the 1st sheet.

From the above relations one can see that by starting from resonance zeros on the 1st Riemann

Tab. 1. The 3×3 S-matrix elements analytically continued from the 1st Riemann sheet to all eight adjacent
Riemann sheets. There Dkl denotes the minor of the element Skl, so Dkk = SllSmm - S2

lm, and Dkl =
SklSmm - SkmSlm for k, l, m = 1, 2, 3 in cycle. The S matrix is symmetric due to the time reversal.

I II III IV V VI VII VIII
S11, 1/S11, S22/D33, D33/S22, detS/D11, D11/detS, S33/D22, D22/S33

S12, iS12/S11, -S12/D33, iS12/S22, iD12/D11, -D12/detS, iD12/D22, D12/S33

S22, D33/S11, S11/D33, 1/S22, S33/D11, D22/detS, detS/D22, D11/S33

S13, iS13/S11, -iD13/D33, -D13/S22, -iD13/D11, D13/detS, -S13/D22, iS13/S33

S23, D23/S11, iD23/D33, iS23/S22, -S23/D11, -D23/detS, iD23/D22, iS23/S33

S33, D22/S11, detS/D33, D11/S22, S22/D11, D33/detS, S11/D22, 1/S33
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sheet the resonance representations in terms of poles and zeros on the full Riemann surface is
obtained. In the two coupled channel case there the three types of resonances generated by the
1st sheet zeros can be distinguished depending whether they are caused by zeros in S11, S22 or
in both of them. In the three channel case such classification includes seven different causes of
resonances.

In two channel case it is convenient to use transformation z = (k1 + k2)/(m2
K − m2

π)1/2

and to map the four Riemann sheets into one z-plane. This mapping effectively removes the
kinematical threshold branch points of both channels and apart of the dynamical left hand cuts
leaves us just with poles and zeros. The left hand cut is far from the physical region and can be
simply taken into account. Since the kinematical cuts of coupled channels have been removed but
the other analytical properties of scattering amplitudes bave been preserved the corresponding S
matrix elements have only zeros and poles in the new complex variable z. At this point it is
convenient to use the fact that the S matrix elements can be expressed in terms of one function
and to write them as it was derived in [2]:

S11 = d(−z−1)/d(z); S22 = d(z−1)/d(z); anddet S = d(−z)/d(z). (1)

These are expressions analogous to Le Couteur-Newton relations [3, 4]. The d(z) does not have
the branch points and can be factorized to the resonance and background parts d = dBdres. It
turns out that since the ππ background contribution is practically equal to 1, we have

dB = z−4(1 − z0z)4(1 + z∗0z)4 dres(z) = z−M
M∏

n=1

(1 − zn ∗ z)(1 + znz), (2)

where dB comes from the KK background contribution and do not contribute to the ππ scatter-
ing amplitude and M is the number of pairs of the conjugate zeros. The z0 and zn positions are
free parameters in our scattering data analyses to reproduce the scattering matrix elements. Due
to the unitarity equation they can be written as: S11 = η expδ1, S12 = (1 − η2)1/2exp(δ12), and
S22 = ηexpδ2, where inelasticity η and ππ → ππ phase shift δ1 and ππ → KK phase shift δ12

are known from the scattering experiments and δ1 + δ2 = δ12.
After describing in details the two coupled channel formalism let us skip for the reason

of clarity its mathematical extension to the three channels. The three channel mathematical
formalism is only more complex but in essence it follows the same ideas. It is clear that in
that case the coupling of ππ → ππ, ππ → KK and ππ → ηη processes have to be taken
into account and also all the other combined processes as described in Tab. 1. Unfortunately,
the experimental measurements are providing us mainly with the data from the above three ππ
scattering processes. In the analysis we are taking into account the following resonances coupled
to these processes: f0(600), f0(980), f0(1370), f0(1500) and f0(1710). The experimental data
from ππ threshold energy up to 1.9 GeV as far as they are available for the coupled processes
are used as input for the analysis [5].

By fitting the experimental data the zero and pole clusters describing resonances in these pro-
cesses are showing remarkable features. First, they confirm that their best positions correspond
to the theoretical expectation given by Tab. 1, i.e. they confirm the fact that certain clusters most
adequately represent the multichannel states. From their locations on various Riemann sheets
their properties can be traced back giving us information of their dynamical origin. The sec-
ond feature is their remarkable stability when moving from the ππ → ππ, ππ → KK coupled
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Tab. 2. Comparison of resonance parameters from the two coupled channel analysis, the three coupled
channel analysis and of the averaged data presented in [5, 6].

MeV 2 Chnls 3 Chnls PDG
f0(600) Er 600± 16 661± 14 400÷ 1200

Γr 605± 28 595± 22 600÷ 1000
f0(980) Er 985± 5 962± 18 980± 10

Γr 27 ± 8 74± 20 40 ÷ 100
f0(1370) Er 1310± 22 1384± 20 1200÷ 1500

Γr 410± 29 154± 25 200÷ 500
f0(1500) Er 1490± 30 1513± 28 1507± 5

Γr 220± 24 318± 27 109± 7
f0(1710) Er 1700± 25 1699± 22 1714± 5

Γr 86 ± 16 168± 23 140± 10

channels to the ππ → ππ, ππ → KK and ππ → ηη coupled channels. This can be seen by
calculating the resonance energy Er and the half-width Γr of each of the resonance from their
positions in the complex s plane s

1/2
r = Er − iΓr, Tab. 2.

Some results have been included to Particle Data Group [6] but in short we can say that
research of scalar meson’s spectrum is of great significance in our understanding of their quark
and gluon structure [7], however more precise experimental data would be of great help. Starting
from the available data suitable for our analysis we can formulate in short these observations:

The pole positions do not shift much from two to three channel case; the existence of broad
f0(600) resonance is confirmed; absence of poles on Riemann sheets VI and VII indicates for
f0(980) to be an ηη bound state; f0(1300) is coupled more strongly to KK than to ππ and ηη;
f0(1500) seems to be mixed state with a dominant glueball component, and the f0(1710) is more
strongly coupled to ηη than to other two channels and has a dominant s quark component. This
can give an insight in resolving the assignment of scalar mesons below 1.9 GeV to lower nonets
and to investigate the possible mixing of these states.
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