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Many quantum condensed-matter systems, and probably the quantum vacuum of our Uni-
verse, are strongly correlated and strongly interacting fermionic systems, which cannot be
treated perturbatively. However, physics which emerges in the low-energy corner does not
depend on the complicated details of the system and is relatively simple. It is determined by
the nodes in the fermionic spectrum, which are protected by topology in momentum space (in
some cases, in combination with the vacuum symmetry). Here we illustrate this universality
on some examples of quantum phase transitions, which can occur between the vacua with the
same symmetry but with diferent topology of nodes in momentum space.

PACS: 02.40.Pc, 67.57.z, 74.20.Rp, 73.43.Nq

1 Introduction

There are two schemes for the classification of states in condensed matter physics and relativistic
quantum fields: classification by symmetry and by momentum space topology.

For the first classification method, a given state of the system is characterized by a sym-
metry group H which is a subgroup of the symmetry group G of the relevant physical laws.
This classification reflects the phenomenon of spontaneously broken symmetry. In relativistic
quantum fields the chain of successive phase transitions, in which the large symmetry group ex-
isting at high energy is reduced at low energy, is in the basis of the Grand Unification Theories
(GUT) [1, 2]; that is why we can call this scheme the GUT scheme. In condensed matter, the
spontaneous symmetry breaking is a typical phenomenon, and the thermodynamic states are also
classified in terms of the subgroup H of the relevant group G (see e.g, the classification of su-
perfluid and superconducting states in Refs. [3, 4]). The groups G and H are also responsible
for topological defects, which are determined by the nontrivial elements of the homotopy groups
πn(G/H); cf. Ref. [5].

The second classification method reflects the opposite tendency – the anti Grand Unification
(anti-GUT) – when instead of the symmetry breaking the symmetry gradually emerges at low
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energy. This method deals with the ground states of the system at zero temperature (T = 0),
i.e., it is the classification of quantum vacua. The universality classes of quantum vacua are
determined by momentum-space topology, which is also responsible for the type of the emergent
physical laws at low energy. For systems living in 3D space, there are four basic universality
classes of fermionic vacua [6, 7]:

(i) Vacua with fully-gapped fermionic spectrum (such as conventional superconductors).

(ii) Vacua with fermionic excitations characterized by Fermi points – points in 3D momen-
tum space at which the energy of fermionic quasiparticle vanishes. Examples are provided by
superfluid 3He-A and also by the quantum vacuum of Standard Model above the electroweak
transition, where all elementary particles are chiral fermions. This universality class manifests
the phenomenon of emergent relativistic quantum fields at low energy: close to the Fermi points
the fermionic quasiparticles behave as massless Weyl fermions, while the collective modes of the
vacuum interact with these fermions as gauge and gravitational fields.

(iii) Vacua with fermionic excitations characterized by lines in 3D momentum space or points
in 2D momentum space. We call them Fermi lines, though in general it is better to characterize
zeroes by co-dimension, which is the dimension of p-space minus the dimension of the manifold
of zeros. Lines in 3D momentum space and points in 2D momentum space have co-dimension
2, since 3 − 1 = 2 − 0 = 2; compare this with zeroes of class (ii) which have co-dimension
3 − 0 = 3. Fermi lines are topologically stable only if some special symmetry is obeyed.
Example is provided by high Tc superconductors where the pairing into a d-wave state occurs.

(iv) Vacua with fermionic excitations characterized by Fermi surfaces. The representatives
of this universality class are normal metals and normal liquid 3He. This class manifests the
phenomenon of emergent non-relativistic physics: at low temperature all the metals obey the
Landau theory of Fermi liquid, which is based on the stability of Fermi surface. Fermi surface
has co-dimension 1: in 3D systems it is the surface (co-dimension = 3 − 2 = 1), in 2D systems
it is the line (co-dimension = 2 − 1 = 1), and in 1D systems it is the point (co-dimension
= 1 − 0 = 1; the Landau theory does not work here, but the Fermi surface survives).

The possibility of the Fermi band class (v), where the energy vanishes in the finite region of
the 3D momentum space and thus zeroes have co-dimension 0, has been also discussed [8–11].

The phase transitions which we discuss here are quantum phase transitions (QPT) [12]. It
may happen that by changing some parameter q of the system we transfer the vacuum state from
one universality class to another with the same symmetry group H . The point qc, where this
zero-temperature transition occurs, marks the QPT. For T 6= 0, the phase transition is absent, as
the two states belong to the same symmetry class H . Hence, there is an isolated singular point
(qc, 0) in the (q, T ) plane (see Fig. 1 in the extended version of this paper [13]).

The QPTs which occur in classes (iv) and (i) or between these classes are well known. In
the class (iv) the corresponding quantum phase transition is known as Lifshitz transition [14], at
which the Fermi surface changes its topology or emerges from the fully gapped state of class (i),
see Sec. 2. The QPT between the fully gapped states with different topological charges occurs
in 2D systems exhibiting the quantum Hall and spin-Hall effect: this is the plateau-plateau QPT
between the states with different values of the Hall (or spin-Hall) conductance (see Sec. 5). The
less known QPTs involve point nodes [15–19] (Sec. 3) and nodal lines [20, 21] (Sec. 4).
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2 Fermi surface as topological object and Lifshitz transition

In ideal Fermi gases at zero temperature, the Fermi surface is the boundary in the momentum
p-space between the occupied states (np = 1) and empty states (np = 0). The spectrum of
fermions is E(p) = p2/2m − µ, where µ > 0 is the chemical potential and m is the mass of
a fermionic atom or electron. The Fermi surface at p = pF =

√
2µm separates the occupied

negative energy states with p2/2m−µ < 0 from the empty positive energy states with p2/2m−
µ > 0. At this boundary the energy of particles is zero, E(p) = 0. What happens when the
interaction between particles is introduced? Due to interaction the distribution function np is no
longer exactly 1 or 0. However, the stability of the Fermi surface is protected by topology of the
Green’s function at imaginary frequency, G−1 = iω − (p2/2m) + µ.

Let us for simplicity skip one spatial dimension pz so that the Fermi surface becomes the line
in 2D momentum space (px, py); this does not change the co-dimension of zeroes which remains
1 = 2 − 1. The Green’s function has singularities lying on a closed line ω = 0, p2

x + p2
y = p2

F

in the 3D momentum-frequency space (ω, px, py) (see Fig. 2 in [13]). This is the line of the
quantized vortex in the momentum space, since the phase Φ of the Green’s function G = |G|eiΦ

changes by 2π around any path embracing any element of the vortex line. The winding number
cannot change by continuous deformation of the Green’s function: the momentum-space vortex
is robust toward any perturbation. Thus the singularity of the Green function on the Fermi surface
is preserved, even when interaction between fermions is introduced.

The Green function is generally a matrix with spin indices. In addition, it may have the band
indices (in the case of electrons in the periodic potential of crystals). In such a case the phase of
the Green function becomes meaningless; however, the stability of the Fermi surface is protected
by the topological invariant describing the winding number of a vortex in (ω,p) space:

N1 = tr

∮

C

dl

2πi
G(µ,p)∂lG

−1(µ,p) . (1)

The integral is over contour C around a vortex; tr is the trace over spin, band or other indices.
There are two scenarios of how to destroy the vortex loop in momentum space: perturbative

and non-perturbative. In the second scenario the non-perturbative reconstruction of the spectrum
removes the Fermi surface, as it occurs at the superconducting transition when the gap appears.

The first scenario reproduces the process occurring for the loop of quantized vortex in su-
perfluids and superconductors. The vortex ring can continuously shrink to a point and then
disappear. This is allowed by topology, since the opposite elements of the vortex line have oppo-
site winding numbers N1, which annihilate each other: 1 − 1 = 0. In the momentum space this
occurs when one continuously changes the chemical potential from the positive to the negative
value: at µ < 0 there is no vortex loop in momentum space and the vacuum is fully gapped.
The point µ = 0 marks the QPT – the Lifshitz transition – at which the topology of the energy
spectrum changes. At this QPT the symmetry of the vacuum does not changes. The other types
of the Lifshitz transition are related to reconnection of the vortex lines in p-space (Fig. 3 in [13]).

3 Fermi point as topological object

The crucial non-perturbative reconstruction of the spectrum occurs at the superfluid transition
to 3He-A, where the point nodes emerge instead of the Fermi surface. Let us consider the
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Bogoliubov–Nambu Hamiltonian which qualitatively describes fermionic quasiparticles in this
axial state of p–wave pairing [4]:

H =

(

p2/2m − µ c⊥ p · (ê1 + i ê2)
c⊥ p · (ê1 − i ê2) −p2/2m + µ

)

= τ3(p
2/2m−µ)+c⊥ p ·(τ1ê1−τ2ê2), (2)

where τ1, τ2 and τ3 are 2× 2 matrices in Bogoliubov–Nambu particle-hole space (the spin struc-
ture is irrelevant for consideration). The orthonormal triad (ê1, ê2, l̂ ≡ ê1 × ê2) characterizes
the order parameter, with the unit vector l̂ showing the direction of the orbital momentum of the
Cooper pair (or of the diatomic molecule in case of BEC); and c⊥ is the speed of the quasiparti-
cles propagating in the plane perpendicular to l̂. The energy spectrum of fermions is

E2(p) =

(

p2

2m
− µ

)2

+ c2

⊥

(

p× l̂
)2

. (3)

In the BCS regime occuring for positive chemical potential µ > 0, there are two Fermi points
(points where E(p) = 0): at p1 = pF l̂ and p2 = −pF l̂ (Fig. 4 in [13]).

For a general system, be it relativistic or nonrelativistic, the topological stability of the Fermi
point is guaranteed by the nontrivial homotopy group π2(GL(n,C)) = Z which describes the
mapping of a sphere S2 embracing the point node to the space of non-degenerate complex matri-
ces [7]. This is the group of integers. The integer valued topological invariant (winding number)
can be written in terms of the fermionic propagator G−1(iω,p) = iω − H(p) as a surface
integral in the 4D frequency-momentum space pµ = (ω,p): [6]

N3 ≡ 1

24π2
εµνρσ tr

∮

Σa

dSσG
∂

∂pµ

G−1 G
∂

∂pν

G−1 G
∂

∂pρ

G−1. (4)

Here Σa is a 3D surface around the isolated Fermi point pµa = (0,pa); the trace in is over the
Bogoliubov-Nambu spin. The two Fermi points p1 and p2 have nonzero topological charges
N3 = +1 and N3 = −1. Close to any of the Fermi points the energy spectrum of quasiparticles
acquires the relativistic form. In particular, the spectrum in Eq.(3) becomes [6]:

E2(p) = gik(pi − eAi)(pk − eAk) , (5)

where the analog gauge field is A = pF l̂; the effective “electric charge” is either e = +1 or e =
−1 depending on the Fermi point; and the effective metric is gik = diag(c2

⊥, c2

⊥, c2

‖ = p2

F /m2).
The density of states (DoS) due to Fermi points is ν(E) ∝ E2.

Let us consider an example of QPT goverened by the p-space topology: between a fully-
gapped vacuum state and a vacuum state with topologically-protected point nodes [15, 16].
Such QPT may occur in a system of ultracold fermionic atoms in the region of the BEC–BCS
crossover, provided Cooper pairing occurs in the non-s-wave channel (for elementary particle
physics, such transitions are related to CPT violation, neutrino oscillations, and other phenom-
ena [17]). The QPT occurs if one varies the chemical potential µ. For µ < 0, Fermi points
are absent and the spectrum is fully-gapped (Fig. 4 in [13]). In this topologically-stable fully-
gapped vacuum, the density of states is drastically different from that in the topologically-stable
gapless regime: ν(E) = 0 for E < |µ|. This demonstrates that the QPT under consideration
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is of purely topological origin: it occurs when two Fermi points with N3 = +1 and N3 = −1
merge and form one topologically-trivial Fermi point with N3 = 0, which disappears at µ < 0.
The intermediate state at µ = 0 is marginal: the p-space topology is trivial (N3 = 0) and cannot
protect the vacuum against decay into one of the two topologically-stable vacua unless there is a
special symmetry which stabilizes the marginal node. Such symmetry protects Fermi points in
the Standard Model above the electroweak phase transition [6].

4 Fermi lines

In general the zeroes of co-dimension 2 (nodal lines in 3D momentum space or point nodes in 2D
momentum space) do not have the topological stability. However, if the Hamiltonian is restricted
by some symmetry, the topological stability of these nodes is possible. The nodal lines do not
appear in spin-triplet superconductors, but they may exist in spin-singlet superconductors [3,22].
The analysis of topological stability of nodal lines in systems with real fermions was done by
Horava [7].

An example of point nodes in 2D momentum space is provided by the layered quasi-2D
high-Tc superconductor. In the simplest form, the relevant Hamiltonian is

H = τ3

(

p2
x + p2

y

2m
− µ

)

+ aτ1(p
2

x − λp2

y) . (6)

In case of tetragonal symmetry one has λ = 1, but in a more general case λ 6= 1 and the order
parameter represents the combination of d-wave (p2

x − p2
y) and s-wave (p2

x + p2
y) components.

At µ > 0 and λ > 0, the energy spectrum E2(p) = (p2/2m − µ)2 + a2(p2
x − λp2

y)2 contains 4
point nodes in 2D momentum space:

pa
x = ±pF

√

λ

1 + λ
, pa

y = ±pF

√

1

1 + λ
, p2

F = 2µm . (7)

Do these nodes survive or not if we extend Eq.(6) to the more general Hamiltonian obeying
the same symmetry? The important property of this Hamiltonian is that, as distinct from the
Hamiltonian (2), it obeys the time reversal symmetry T which prohibits the imaginary τ2-term.
In the spin singlet states the Hamiltonian obeying the T-symmetry must satisfy the equation
H∗(−p) = H(p). The general form of the 2 × 2 Bogoliubov-Nambu spin-singlet Hamiltonian
satisfying this equation can be expressed in terms of the 2D vector m(p) = (mx(p), my(p)):

H = τ3mx(p) + τ1my(p) . (8)

Using this vector one can construct the integer valued topological invariant – the contour integral
around the point node in 2D momentum space (or around the nodal line in 3D momentum space):

N2 =
1

2π

∮

dl ẑ ·
(

m̂× dm̂

dl

)

, (9)

where m̂ ≡ m/|m|. This winding number of a point vortex in 2D space (px, py), which is robust
to any change of the Hamiltonian respecting the T-symmetry, protects the node in the spectrum.
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All four nodes in Eq.(6) are topologically stable, since nodes with equal signs (++ and −−)
have winding number N2 = +1, while the other two nodes have winding number N2 = −1 (Fig.
8 in [13]). To destroy the nodes one must either violate the T-symmetry or to deform the order
parameter in such a way that the nodes merge and then annihilate each other forming the fully
gapped state. This is what happens when one changes the asymmetry parameter λ. The point
λ = 0 marks the QPT from gapless to the fully gapped spectrum (Fig. 8 in [13]).

Probably such a QPT has something to do with the unusual behavior observed in high-Tc

cuprate Pr2−xCexCuO4−δ [24]. It was found that the field dependence of electronic specific heat
C(T, H) is linear at T=2K, which is consistent with fully gapped state, and non-linear at T≥3K,
which is consistent with existence of point nodes in 2D momentum space. This was interpreted
in terms of the conventional phase transition with the change of symmetry from s-wave to d-
wave when temperature is decreased. But the behavior of C(T, H) is the consequence of the
topology of the spectrum rather than of the symmetry. That is why it is more natural to identify
the observed behavior with the QPT which is smeared due to finite temperature.

A similar QPT when µ crosses zero can occur in the BCS-BEC crossover region [20, 21].

5 Plateau transitions in fully gapped 2D systems

The fully gapped vacua in 2D systems or in quasi-2D thin films, though they do not have zeroes in
the energy spectrum, can also be topologically non-trivial. They are characterized by the invariant
obtained by dimensional reduction from the Fermi point topological invariant in Eq.(4):

Ñ3 =
1

24π2
eµνλ tr

∫

d2pdω G∂pµ
G−1G∂pν

G−1G∂pλ
G−1 . (10)

There is no singularity in the Green’s function. The integral is either over the entire 3-momentum
space pµ = (ω, px, py), or in a crystalline system it is bounded by the Brillouin zone.

An example is provided by the 2D version of the Hamiltonian (2) with l̂ = ẑ, ê1 = x̂,
ê2 = ŷ. Since now p2 = p2

x + p2
y, the quasiparticle energy (3) becomes

E2(p) =

(

p2
x + p2

y

2m
− µ

)2

+ c2

⊥(p2

x + p2

y) . (11)

It is nowhere zero. The Hamiltonian (2) can be written in terms of vector g(px, py):

H = τ igi(p) , g3 =
p2

x + p2
y

2m
− µ , g1 = c⊥px , g2 = −c⊥py . (12)

The distribution of the unit vector ĝ(px, py) = g/|g| in the momentum space has the same
structure as the skyrmion in real space (see Fig. 9 in [13]). The topological invariant for this
momentum-space skyrmion is given by Eq.(10) written in terms of the unit vector ĝ(px, py):

Ñ3 =
1

4π

∫

dpxdpy ĝ ·
(

∂ĝ

∂px

× ∂ĝ

∂py

)

. (13)

Since at infinity the unit vector field ĝ has the same value, ĝp→∞ → (0, 0, 1), the 2-momentum
space (px, py) becomes isomoprhic to the compact S2 sphere. The function ĝ(p) realizes the
mapping of this S2 sphere to the S2 sphere of the unit vector ĝ with winding number Ñ3.
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This and other similar topological charges give rise to quantization of Hall and spin-Hall
conductivities, which occurs without external magnetic field (the so-called intrinsic quantum
Hall and spin quantum Hall effects). There are actually 4 responses to transverse forces which
are quantized under apporopriate conditions. These are: quantized response of the mass current
(or electric current in electrically charged systems) to transverse gradient of chemical potential
∇µ (transverse electric field E); quantized response of the mass current (electric current) to
transverse gradient of magnetic field interacting with Pauli spins; quantized response of the spin
current to transverse gradient of magnetic field; and quantized response of the spin current to
transverse gradient of chemical potential (electric field) [25]. All these can be described using
the generalized Chern-Simons term [6]:

FCS{AY } =
1

16π
NIJeµνλ

∫

d2xdtAI
µF J

νλ , (14)

where AI
µ is the set of the gauge fields: in addition to the conventional electromagnetic potential

Aµ one can introduce the auxiliary gauge fields. In particular, the auxiliary SU(2) gauge field
Aa

µ is convinient for the description of the spin-Hall effect, since the variation of the action with
respect to Aa

µ gives the spin current: δS/δAa
µ = Jµ

a . The prefactor NIJ is expressed in terms of
the topological invariant:

NIJ =
1

24π2
eµνλ tr QIQJ

∫

d2pdω G∂pµ
G−1G∂pν

G−1G∂pλ
G−1 , (15)

where QI is the charge interacting with the gauge field AI
µ. To obtain, for example, the response

of the spin current jz
i to the electric field Ei, one must consider two charges: the electric charge

Q1 = e and the spin along z as another charge, Q2 = sz = h̄σz/2. This gives the spin current
response to the electric field jz

x = (Nsze/4π)Ey, where Nsze is eh̄/2 times integer.
This consideration is applicable, when the momentum (or quasi-momentum in solids) are

the well defined quantities, otherwise (for example, in the presence of impurities) one cannot
construct the invariant in terms of the Green’s function G(p, ω). However, it is not excluded that
in some cases the perturbative introduction of impurities does not change the prefactor NIJ in
the Chern-Simons term (14) and thus does not influence the quantization: this occurs if there is
no spectral flow under the adiabatic introduction of impurities. In this case the quantization is
determined by the reference system – the fully gapped system from which the considered system
can be obtained by the continuous deformation without the spectral flow (analogous phenomenon
for the angular momentum paradox in 3He-A was discussed in [26]). The most recent review
paper on the spin current can be found in [27].

The integer topological invariant of the ground state cannot follow the continuous parameters
of the system. That is why when one changes such a parameter, for example, the thickness of
the film, one finds a set of quantum phase transitions between different integer values of the
invariants (Fig. 10 in [13]), and thus between the plateaus in Hall or spin-Hall conductivity.

6 Conclusion

Here we discussed the quantum phase transitions which occur between the vacuum states with
the same symmetry above and below the transition. These transitions are essentially different
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from conventional phase transitions accompanied by the symmetry breaking. The transitions
considered here are purely topological – they are accompanied by the change of the topology of
fermionic Green’s function in p-space without change in the vacuum symmetry. The p-space
topology, in turn, depends on the symmetry of the system. The interplay between symmetry and
topology leads to variety of vacuum states and thus to variety of emergent physical laws at low
energy, and to variety of possible quantum phase transitions. The more interesting situations
are expected for spatially inhomogeneous systems, say for systems with topological defects in
r-space, where the p-space topology, the r-space topology, and symmetry are combined [28].
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