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HYDRODYNAMICS OF POLYMER SOLUTIONS WITHIN THE JOINT
ROUSE-ZIMM THEORY1
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The dynamics of polymers in dilute solutions is described within the joint Rouse-Zimm (RZ)
theory, in which the Z and R models correspond to infinitely large and small draining pa-
rameter. The equation of motion for a “test” polymer in the solution is solved together with
Brinkman’s hydrodynamic equations for the solvent. The solvent flow is disturbed by other
coils and is “freezed” as the concentration of polymers grows, which indicates the hydrody-
namic screening. We give the description of the effect of concentration on the motion of the
whole coil as well as on the relaxation of its internal modes.

PACS: 36.20.Fz, 82.35.Lr, 83.80.Rs

Polymer solutions represent a cross-disciplinary field, borrowing wide spectra of theoretical
tools from physics and chemistry. For physicists, understanding the configuration and dynam-
ics of long polymer chains has been a significant source of problems within statistical physics
from the 1950’s onwards. One of the reasons why physicists were drawn to the problem is the
universality of polymer properties [1]. What they considered to be the most fundamental ques-
tions turned out to be insensitive to the details of the chemistry of the chains. Within the time
and length scales much exceeding the atomic ones universal theories well describing the main
features in the polymer behaviour have been built. Among them the most used are the Rouse (R)
and Zimm (Z) models in which the polymer is represented as a chain of beads under Brownian
motion [2]. The present work was inspired by the difficulties that still exist between the theory
and experiments. Some discrepancies, e.g., with the light and neutron scattering data, remain
unclear for decades [3]. We have developed the R and Z models in several aspects. First, in the
frame of the Navier-Stokes (NS) hydrodynamics, we have taken into account the inertial effects
in the dynamics of the polymer segments and the solvent. This allowed us to predict several pe-
culiarities in the polymer dynamics, such as the non-exponential relaxation of its internal modes
and the nondiffusive motion of the coil at short times [3]. At “long” times, t � R2ρ/η (R is the
hydrodynamic radius of the coil, ρ is the solvent density, and η its viscosity), the difference from
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Einstein’s diffusion of the coil, the so-called long-time tail, has been confirmed in computer ex-
periments [4]. However, the found effects cannot entirely explain deviations between the theory
in the stationary limit and experiments. To our opinion, a weak point in the description of the ob-
served dynamics of polymers in dilute θ solutions is in the use of the Z model. This model is just
a limiting case of a more general theory joining the two, R and Z, models. The latter one applies
in the case of large “draining parameter” h [2]. In general, every polymer carries features of both
the R and Z behaviour, the relative roles of which are specified by h. Next, we do not assume the
continuous distribution of internal modes with the mode number [5]. This also leads to differ-
ences from the previous results on the time behaviour of polymers. Finally, to take into account
the interaction between the polymers through hydrodynamic forces, we use the Brinkman’s (or
Debye-Bueche) modification of the NS equation for the flow in porous media [6, 7].

In the Brinkman’s theory the polymer is considered as a porous medium permeable to the
solvent. In our approach the entire solution is such a medium with coils being obstacles to the
solvent flow. Then in the NS equation a term −κ2η−→v has to be added, where κ−2 is the solvent
permeability. This term has a meaning of the average force acting on the liquid in an element
of volume dV , provided the average number of polymers per unit volume is c; then κ2η = cf ,
where f is the friction factor on one coil. Thus, for an incompressible solvent (∇−→v = 0) we
have to solve the equation

ρ
∂−→v
∂t

= −∇p+ η4−→v − κ2η−→v + −→ϕ . (1)

Here p is the pressure and −→ϕ is the density of the force from the beads of the studied polymer on
the solvent [8],

−→ϕ (−→x ) = −
∑

n

−→
f fr

n (−→x n) δ (−→x −−→x n) . (2)

In this expression −→x n is the bead position and
−→
f fr

n is the friction force on the nth bead. Another
forces acting on the beads are

−→
f ch

n , which is due to the neighbouring beads along the chain [8],
and

−→
f n, the random force due to the motion of the solvent molecules. Thus, for a chosen “test”

polymer the equation of motion of its nth bead is

M
d2−→x n(t)

dt2
=

−→
f fr

n +
−→
f ch

n +
−→
f n, (3)

whereM is the bead mass. To take into account the hydrodynamic interaction between the beads
the force

−→
f fr

n should be expressed relatively to the solvent velocity −→v in the place of the nth
bead,

−→
f fr

n = −ξ [d−→x n/dt−−→v (−→x n)]. The friction coefficient on the bead with radius b is
ξ = 6πηb. This equation holds for steady flows. In a more general case with the hydrodynamic
memory [3] the Stokes force should be replaced by the Boussinesq one and eq. (3) has to be
solved together with the nonstationary equation (1) for the macroscopic velocity of the solvent.

It is difficult to solve the above formulated problem since the polymer chains are mobile.
However, restricting ourselves to the times much shorter than τD = R2/D, which is the char-
acteristic time of the coil diffusion with the diffusion coefficient D, the concentration c can be
assumed constant. The equations then describe the motion of one bead in the solvent with an
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effective influence of other coils on the motion of the solvent flow. This problem can be trans-
formed to that already solved in [3, 9]. The velocity field can be expressed through the Oseen
tensor preaveraged over the equilibrium (Gaussian) distribution of the beads,

〈Hαβ〉0 = δαβ 〈exp(−κr)/r〉
0
. (4)

The tensor describes how a perturbation is transferred through the fluid so that the quantity
1/κ can be (for small κr) considered as a hydrodynamic screening length. Using the solu-
tion for 〈Hαβ〉0, the generalized RZ equation has been found [3]. It was solved in the con-
tinuum approximation with the help of the Fourier transformation (FT) in n, −→x (n) = −→y 0 +
2

∑
p≥1

−→y p cos(πnp/N) (N is the number of the beads in one polymer) that takes into ac-
count the boundary conditions at the ends of the chain [8]. Then, using the inverse FT and the
fluctuation-dissipation theorem, the time correlation functions ψp(t) = 〈yαp(0)yαp(t)〉 of the
normal modes can be obtained (α = x, y, z). The index p = 0 determines the mean square dis-
placement of the whole coil, and the polymer internal modes are numbered with p > 0. For an
individual polymer in the steady-state limitψ0(0)−ψ0(t) = DtwithD = kBT (1/Nξ + h00) =
DR + DZ (R and Z stay for the R and Z limits [2] and hpp is for the Oseen matrix [3]). This
matrix has been found in [3] solving eq. (1) (with κ = 0) in the FT with respect to the time. In
our stationary case but with κ 6= 0 one can simply adopt that solution by replacing -iωρ with cf
so that hpp now depends on c. Then the diffusion coefficient, determined through h00, is

D = DR +DZ(c), (5)

(DZ(0) = DZ) and consists of the R (independent on the presence of other polymers) and the Z
contributions. The latter one can be expressed in the form DZ(c) = DZf(c) where

f(c) =
3
√
π

4χ

[
1 − 2√

πχ
+

1

χ2

(
1 − expχ2erfcχ

)]
(6)

is a “universal” function depending only on χ = (N/6)1/2κa with a being the mean square
distance between the beads along the chain. The dependence of the permeability on c is estimated
as follows. The friction coefficient in κ2 = cf/η from eq. (1) can be determined using the
Einstein relation D = kBT/f . In such a picture

κ2 =
27

√
π

16

c̃

R2

G

(
1 +

3

4
√

2h

)−1

. (7)

Then the values of κ and χ depend on the draining parameter h = 2(3N/π)1/2b/a (if h� 1, the
dynamics is of the Z type, for h� 1 we deal with the R polymers). The quantity c̃ ≡ 4πR3

Gc/3
denotes the number of polymers per the volume of a sphere with the gyration radius RG. With
the increase of c the Z term decreases and for large c (small permeabilities when χ � 1) it
becomes ∼ 1/

√
c. The realistic case of small c corresponds to χ = κRG � 1 when

DZ(c) = DZ

(
1 − 3

8
√
π
κRG + ...

)
. (8)

The c-dependent correction to DZ is thus ∼ √
c and differs from other results (cf. [10] and

citations there, where this correction is ∼ c). The behaviour of a free polymer depends on h. If
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the polymer was initially (at c = 0) the Z one (large h), with growing c its behaviour changes to
the diffusion with the R coefficient DR.

The relaxation times of the internal modes are calculated from the diagonal elements of the
Oseen matrix. In the stationary case at zero concentration (κ = 0) they are well known [2]. Now
the internal modes relax exponentially as in previous theories, ψp(t) ∝ exp(−|t|/τp), but are
affected by c. Their relaxation rates consist of the R contribution and the c-dependent Z part,

τ−1

p (c) = τ−1

pR + τ−1

pZ (c), (9)

where τpR and τpZ(0) ≡ τpZ are given in [2] and

τpZ(c) =
1

2

1 + (1 + χp)
2

1 + χp
τpZ , (10)

with χp = (N/3πp)1/2κa. At c → 0 we have τpZ(c) = τpZ

(
1 +Nκ2a2/6πp− ...

)
and as

c → ∞, one finds τpZ(c) ≈ τpZχp/2 = (Na2)2ηκ/(6πkBTp
2). Note that for the internal

modes the draining parameter depends on the mode number p: h(p) = τpR/τpZ = h/
√
p.

The “universal” dependence of τpZ(c)/τpZ on χp (10) indicates that with the growing c every
polymer shows a tendency to become (as distinct from the previous theories) exactly the R one.

In conclusion, coming from our earlier results on the hydrodynamic theory of the polymer
dynamics, we have built a model that is able to predict new results on the fundamental charac-
teristics of the universal behaviour of flexible polymers in dilute solutions. The found quantities
could be verified (with the necessary account for the draining parameter) in standard experi-
ments, such as viscosimetry or dynamic light and neutron scattering on unentangled polymers
in dilute θ solutions. Finally, note that the transition between the Zimm and Rouse regimes can
be viewed also as a time-dependent process [11]. In our theory this is a natural consequence of
the discrete distribution of internal modes and is clearly seen, e.g., in the motion of an individual
monomer within the polymer coil [12].
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