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DILUTE SOLUTION RHEOLOGY OF FLEXIBLE MACROMOLECULES1
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The dynamic and viscous properties of dilute solutions of flexible polymers are studied. We
come from our hydrodynamic theory of the single polymer kinetics and build the joint Rouse-
Zimm model of the polymer behaviour. To take into account the presence of other polymer
coils in the solution the Brinkman’s porous medium approach is used. Various observable
quantities such as the shear viscosity of the solution, the Huggins coefficient and the monomer
mean square displacement are calculated. We also give the first description of the hydrody-
namic screening as a concentration- and time-dependent effect.

PACS: 36.20.Fz, 82.35.Lr, 83.80.Rs

Dilute solutions of flexible polymers show a number of peculiar differences with simple flu-
ids. For example, the addition of tiny amounts of polymers to certain flows can cause enormous
effects, such as the stabilization of jets and turbulent reduction. Despite a large number of appli-
cations, the reason for these phenomena is poorly understood [1]. In general, they are attributed
to large elongational viscosity, while the shear viscosity of the solution, η(c), is affected only
slightly if the number of polymers per unit volume, c, is small [2]. Nevertheless, a large resis-
tance to a stretching motion can be inferred from η(c) [1], one of the most important rheological
quantities of polymer solutions [2, 3]. The existing theories give very different results for η(c)
(see, e.g., [3, 4] and citations there). The aim of the present work was to contribute to this prob-
lem by developing a bead-spring theory of the dynamics of polymers in solution. Our approach
differs from the previous ones in the following main points. First, we come from the joint Rouse-
Zimm (RZ) theory [5] instead of its nondraining (Zimm) limit that is assumed to be valid at θ
conditions. Next, the normal internal modes of the polymer are distributed discretely with re-
spect to the mode number since the assumption of their continuous distribution often leads to
incorrect interpretation of experiments [6]. The results of our hydrodynamic theory of polymer
dynamics [6] has been adopted and, finally, the Brinkman-Debye-Bueche theory (see [7]) for the
flow in porous media was used to take into account the influence of other coils on the polymer
motion.

The presented theory has the following limitations. The considered time scales are t � τR =
R2ρ/η, where R is the hydrodynamic radius of the polymer, ρ is the density, and η the viscosity
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of the solvent. This means that the effects of hydrodynamic memory are neglected [5, 8, 9].
The distribution of the coils in solution is considered to be stationary (this is justified at least
for the times t � τD ; the choice of this time scale is possible since always τp � τD, where
τp, p = 1, 2, 3..., are the relaxation times of the polymer internal modes and τD = R2/D
is the characteristic time of the coil diffusion with the diffusion coefficient D). Our theory is
restricted to θ solvents [3]; generalizations to other cases require knowledge of the equilibrium
distribution of the segments when the exclude volume interactions are taken into account. Only
solutions of unentangled polymers are considered. We are thus limited to concentrations of the
coils c < 1/[η], where [η] is the intrinsic viscosity [2]. In spite of these restrictions and other ones
like those that we do not consider the internal viscosity of polymers and the self-entanglements
(the importance and even the reality of these effects are uncertain [2]), we believe that our results
of could be of interest. In particular, we have found new expressions for rheological quantities
of polymer solution, such as the viscosity of the solution, and the Huggins coefficient.

To calculate them, we need only the expressions for the relaxation rates of the polymer in-
ternal modes, τp(c). Within the Brinkman’s theory they can be obtained from our previous
results on the time-dependent hydrodynamics of noninteracting polymers [5, 8]. In the sta-
tionary case one has simply to replace the quantity −iωρ/η that enters the Oseen matrix [5]
with κ2, κ−2 being the solvent permeability. The dependence of κ on c is given by the rela-
tion [10] κ2 = (27

√
πc̃/16R2

G)(1 + 3/4
√

2h)−1, where RG is the gyration radius of the poly-
mer. Here h = 2(3N/π)1/2b/a is the draining parameter determined by the radius of the bead
b, the mean square distance between the beads along the chain, a, and the number of beads N .
The dimensionless concentration c̃ denotes the number of polymers per the volume of a sphere
with the radius RG. Then, rewriting the result [5] for the relaxation rates, we come to the c-
dependent expression τ−1

p (c) = τ−1

pR + τ−1

pZ (c), where τpR and τpZ(0) ≡ τpZ are given in [3]
and τpZ(c) = (τpZ/2)[1 + (1 + χp)

2
](1 + χp)

−1, with χp = (N/3πp)1/2κa. As seen from
these expressions, all quantities determined by the relaxation times τp display the hydrodynamic
screening effect: with the increase of c every polymer shows a tendency to become the Rouse
one. As distinct from previous theories [3,4] where this tendency has only a qualitative character
(in the sense that the dependence of τp on p becomes τp ∼ p−2 as for Rouse polymers), in our
approach as c grows the polymer tends to become the Rouse one exactly.

Consider, e.g., the steady shear viscosity of the solution at weak flows. It can be calculated
from the formula [2, 3]

η(c) = η +
1

2
kBTc

∞∑

p=1

τp(c). (1)

In the Rouse limit (small h) we have the familiar result [3] η(c) − η = πN 2a2bcη/6. In the
Zimm limit at small concentrations [10]

η(c) − η = 0.425ηc
(
Na2

)3/2
[
1 + 0.140c

(
Na2

)3/2

+ ...
]
. (2)

The first term coincides with the known result [3]. A more general expression for the viscosity,
following from eq.(1), is

η(c) − η

η
=

1

π
N2a2bc

∞∑

p=1

1

p2

(
1 +

2h√
p

1 + χp

1 + (1 + χp)
2

)−1

. (3)
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At very low concentrations when χp � 1 one has

η(c) − η

η
=

1

π
N2a2bc

∞∑

p=1

1

p2

(
1 +

h√
p

)−1

. (4)

Due to the dependence on h the difference between this and the classical result [3] can be notable.
So, for a polymer with small h the ratio of the intrinsic viscosity [η]h = limc→0[η(c) − η]/(ηc)
at h < 1 (when the polymer is assumed to be the Rouse one) to that with h = 0 changes as a
function of h from 1 to ≈ 0.55, at h = 0.5 being 30% smaller than in the case of a pure Rouse
polymer. For a very large h the intrinsic viscosity is [η]h�1 = 3

√
2/πR3

Gζ(3/2) = 6.253R3

G,
where ζ is the Riemann zeta function. Considering the viscosity normalized to this expression,
one finds that even for rather large h the difference from the traditional result for the pure Zimm
polymer is significant. So, at h = 10 it represents some 25% and is still about 10% even for h as
large as 50.

One of the important rheological parameters of polymer solutions is the Huggins coefficient
kH . It can be determined from the general expression for the viscosity (2), using the intrinsic
viscosity [η]h at zero concentration:

η(c) − η = [η]hηc (1 + kH [η]hc + ...) . (5)

We find

kH =
3π

23/2

∞∑

p=1

1

p7/2

(
1 +

h√
p

)−2(
1 +

3

4
√

2h

)−1
[

∞∑

p=1

1

p2

(
1 +

h√
p

)−1
]−2

. (6)

For large h (the Zimm case) one thus has

kH = 3 × 2−3/2πζ(5/2)ζ−2(3/2) ≈ 0.655. (7)

This value differs from the literature results, see, e.g., [3] where kH = 0.757; in Ref. [11] one
finds kH = 0.6949, and in [12] the calculations gave the value 0.3787. The Freed and Edwards
theory [3] possesses an intrinsic viscosity, which is inconsistent with the Kirkwood-Riseman
steady-state limit and gives the hydrodynamic screening even for infinitely dilute solutions (the
discussion of this question has been given already in the paper [4]).

When h → 0 (the Rouse case), the Huggins coefficient approaches zero as kH ≈ 2πhζ(7/2)×
ζ−2(2) and when h grows, kH slowly converges to the Zimm limit (7). The difference from this
limit is significant in a broad region of h, with the maximum≈ 1.27 of the function kH/kHZimm

at h = 3, and with kH/kHZimm ≈ 1.15 for h = 20.
In connection with the unresolved problem of the dynamic nature of hydrodynamic screening

in polymer solutions [13], it is of interest to consider the time-dependent quantities describing
the polymer behaviour. Among such quantities, the relaxation modulus, which determines the
shear stress at shear flows can be easily studied since it is given simply by a sum of exponentials
containing the relaxation times τp [2, 3]. Here we shall briefly focus on simplest (but observ-
able [14]) motion of the end monomer in a chain and calculate its mean square displacement
(MSD). The MSD part due to internal modes is [6]

〈
r2(t)

〉
int

= (4Na2/π2)

∞∑

p=1

p−2 [1 − exp (−t/τp)] . (8)



188 V. Lisý, J. Tóthová

As already shown, with growing c every polymer tends to behave as a Rouse one, which is
due to the decrease of the Zimm contribution to τ−1

p . The time dependence of the screening is
well displayed considering, e.g., the ratio of the Rouse part of the MSD (i.e. that if the poly-
mer was the pure Rouse one, h = 0) to the total MSD in the joint RZ model. This function,
〈r2(t)〉int,R/〈r2(t)〉int, depends on the draining parameter h, the concentration c, and the time.
With growing t the above relation converges to unity showing the transition to the Rouse be-
haviour. For example, at a concentration c̃ = 0.1 and h = 10 we have 〈r2(t)〉int,R/〈r2(t)〉int ≈
0.75 at t = τR; at t = 2τR the difference from the Rouse MSD is only 10%, and at t = 5τR the
initially Zimm polymer becomes indistinguishable from the Rouse one. When the same relation
is considered as a function of c̃ for different times, one sees that the tendency to approach the
Rouse limit with the increase of c̃ becomes more expressed as t growths. At longer times the
polymer behaves as the Rouse one already at small concentrations.

In conclusion, our theory yields several predictions for experiments in which rheological
characteristics of dilute polymer solutions are probed. The difference from some previous re-
sults, e.g., on the viscosity or Huggins coefficient are notable. We have also suggested the first
description of the time dependence of the tendency to hydrodynamic screening in such systems
and demonstrated it on the single monomer motion; this effect could be studied experimentally
as in Ref. [14] or by computer simulations similarly as in Ref. [13].
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