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A combination of small-cluster exact-diagonalization calculations and a well-controlled ap-
proximative method is used to study the ground-states of the spin-one-half Falicov-Kimball
model (FKM) in two dimensions. The results obtained are used to categorize the ground-
state configurations according to common features for weak, intermediate and strong interac-
tions. It is shown that only a few configuration types form the basic structure of the ground-
state phase diagram. In particular, the largest regions of stability correspond to phase segre-
gated/separated, n-molecular and axial striped configurations. This opens new route towards
to understanding the inhomogeneous charge ordering in strongly correlated electron systems.

PACS: 75.10.Lp, 71.27.+a, 71.28.+d, 71.30.+h

1 Introduction

In the past decade, a considerable amount of effort has been devoted to understand the under-
lying physics that leads to an inhomogeneous charge stripe order in strongly correlated electron
systems. The motivation was clearly due to the observation of a such ordering in doped nickelate
and cuprate materials, some of which exhibit high-temperature superconductivity [1]. The Hub-
bard and ¢ — J models have been used the most frequently in the literature to study the problem
of stripe formation [2, 3]. These studies showed on two possible explanations of formation the
inhomogeneous spatial charge ordering. According to the first explanation the stripe phases arise
from a competition between the tendency to phase separate (the natural tendency of system) and
the long-range Coulomb interaction [2]. Contrary to this explanation, White and Scalapino pro-
posed [3] a new mechanism that does not require the long-range interactions and according to
which the charge stripe order arises from a competition between kinetic and exchange energies.
Recently, it has been found by Lemanski et al. [4] that the spinless FKM (the simple model in
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which only the kinetic energy of itinerant electrons and the Coulomb interaction between the
itinerant and localized electrons are taken into account [5]) exhibits the ground state with charge
stripe order. In this paper we examine a generalized version of this model, the spin-one-half
FKM, that represents a more realistic model for a description of the above mentioned materials.
The Hamiltonian of the model can be written as the sum of three terms:

U
H= Z tijdi dje +U Z F fiodi digr + % Z F i it fices (1
ijo oo’ i
where f;g, fio are the creation and annihilation operators for an electron of spin ¢ in the localized

state at lattice site ¢ and d:;, d;s are the creation and annihilation operators of the itinerant

electrons in the d-band Wannier state at site 7.

The first term of (1) is the kinetic energy corresponding to quantum-mechanical hopping of
the itinerant d electrons between sites ¢ and j. These intersite hopping transitions are described
by the matrix elements ¢;;, which are —¢ if 7 and j are the nearest neighbors and zero otherwise.
The second term represents the on-site Coulomb interaction between the d-band electrons with
density nqg = Ng/L = 1 Y, di d;, and the localized f electrons with density ny = Ny/L =
% Yoio ;{,f i0» Where L is the number of lattice sites. The last term represents the intra-atomic
Coulomb interaction between the localized f electrons.

The full Hilbert space of the spin-one-half FKM is much larger than one of the spinless FKM
and therefore numerical calculations are more complicated for the spin version of the model. For-
tunately, the size of the Hilbert space can be reduced considerably in some special, but physically
still very interesting limits, e.g., Uyy — oo. In the limit Uy; — oo states with two f electrons
at the same site are projected out thereby much larger clusters (L ~ 36) become accessible for
the exact numerical studies in this reduced subspace. For this reason all calculations presented
in this paper have been done at Uy = oco. The main goal for performing these calculations was
to construct the comprehensive phase diagram of the spin-one-half FKM in two dimensions and
on its base to try to answer the question on the possibility of the formation of inhomogeneous
charge stripe order within this model.

Since the f-electron density operators ;{, fio of each site i commute with the Hamilto-
nian (1), the f-electron occupation number is a good quantum number, taking only two values,
w; = 0,1 according to whether the site ¢ is unoccupied or occupied by the localized f electron
(configurations with w; = 2 are projected out due to Uy = o0o). Therefore the Hamiltonian (1)
can be replaced by H = ) hijd:;djo where h;; = t;; + Uw;dy;.

Thus for a given f-electron configuration w = {wy, ws, ..., wr} the Hamiltonian H is the
second-quantized version of the single-particle Hamiltonian h(w), so the investigation of the
model is reduced to the investigation of the spectrum of h for different configurations of f-
electrons. This can be done in principle exactly (over the full set of f-electron configurations),
or approximately (over an incomplete set). Here we use a combination of both methods. For
clusters up to L = 36 we use small-cluster exact-diagonalization calculations and on larger
clusters we adopt the well-controlled numerical method that we have developed recently to study
ground states of the spinless FKM [6].
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2 Results and discussion

To describe ground-states of the two-dimensional spin-one-half FKM we have performed an
exhaustive numerical study of the model for a wide range of the Coulomb interaction (U =
0.5,1,1.5...8). For each selected U all ground-state configurations corresponding to Ny =
0,1,.., L are calculated using methods mentioned above. To minimize the finite size effects the
same procedure is repeated on several different clusters. Of course, such a procedure demands
in practice a considerable amount of CPU time, which imposes severe restrictions on the size of
clusters that can be studied within the numerical calculations (L = 4 x 4,6 x 6,8 x 8,10 X
10,12 x 12). Fortunately, we have found that the main features of the phase diagram for weak,
intermediate as well as strong interactions hold on all examined lattices and thus can be used
satisfactorily to represent the behaviour of macroscopic systems. In particular, we have found
that for each L there is a finite number of basic types of ground-state configurations that form
the basic structure of the phase diagram. This structure depends only very weakly on the size
of clusters and covers practically the whole area of the phase diagram in the ny — U plane. Let
us start a discussion of the phase diagram with a description of configuration types that form its
basic structure (see Fig. 1).

Fig. 1. Representative types of ground-state configurations that form the basic structure of the phase dia-
gram in the ny — U plane. The large (small) dots correspond to occupied (vacant) sites.

(a) The segregated and phase separated phases (1,2). (b) n-molecular phase separated phases
(3), that appear only in the weak coupling limit and n; sufficiently large (n; ~ 0.9). (c) Four-
molecular phases (4,5). They are also stable only in the weak-coupling limit and according
to ny they prefer the four-molecular phase separated (ny < 0.2) or the four-molecular regular
(ny ~ 0.3) distributions. (d) Two-molecular phases (6,7). This group consists of two sub-
groups. In the first subgroup ground states are the two-molecular regular distributions (only for
ny > 1/2), while in the second subgroup the ground states are the two-molecular ladders (only
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forny < 1/2). (e) The periodic phases (8), detected in the very narrow region near ny = 0.2
and U small. (f) The labyrinth phases (9). (g) The axial stripes (10-12).

- segregated & phase separated phases (1, 2)
- axial stripes (10, 11)

- 2-molecular "ladder" (7)

- 4-molecular phases (4, 5)

- periodic phases (8)

ITBEERMED

- n-molecular stripes
E= - "labyrinth" phases (9)
- regularly distributed 2-molecular phases (6)

- n-molecular phase separated phases (3)
- short axial stripes (12)

LEDER

- unspecified phases

Fig. 2. The ny — U phase diagrams of the two-dimensional spin-one-half FKM at half-filling ny +nq = 1.
The numbers in parentheses correspond to representative configurations from Fig. 1.

The stability regions of all above described phases are displayed in Fig. 2, where the compre-
hensive phase diagram of the two-dimensional spin-one-half FKM is presented in the ny — U
plane. A direct comparison of these results with the one dimensional counterpart [7] shows that
the basic structure of phase diagrams in one and two dimensions is very similar, and namely, in
the central region of phase diagrams the prefered ground states are regular distributions while
outside this region the prefered ground states are different types of phase separated and segre-
gated phases. One can see that the largest regions of stability correspond to axial distributions of
f electrons (the axial stripes, the labyrinth phases and two-molecular ladders). This is the main
difference in comparison to the spinless FKM that prefers different type of diagonal distributions
at half-filling band point ny + ng = 1. In the spin-one-half FKM the diagonal distributions
are replaced by different types of axial stripe distributions. This opens new route towards to
understanding the nature of stripe formations in strongly correlated electron systems.
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