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After a brief review of the different types of quaternions, we express the special Galilean
space-time transformation in an algebraic ring of the exotic four-component numbers forming
the system of dual quaternions.
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1 Introduction

Mathematically, quaternions represent the natural extension of complex numbers, forming an
associative algebra under addition and multiplication [1]. Quaternions were invented by Sir
William Rowan Hamilton 2 who immediately tried to use them in physics [2]. The attempts at
formulation of physical laws, by means of quaternions and octonions, also have a deep math-
ematical meaning in the generalized Frobenius theorem [3]. This theorem asserts that the four
number systems called real numbers, complex numbers, quaternions and octonions, have an ex-
ceptional position within the algebras, because every real alternative algebra with division is
isomorphic to one of these number systems. Therefore, use of the original, real (Hamiltonian)
quaternions in physics has a long history dating back to Hamilton (1843) and Maxwell. As is
well-known already, Maxwell used real quaternions (1867) for the formulation of his equations in
his celebrated book ” Treatise on Electricity and Magnetism”. However, he has used quaternions
in such a way that they only substituted for the common vector calculus. This made his field
equations difficult for his contemporaries (see, e.g. [4]) because the quaternionic formulation in
3-space brings several complications. The particular field of applicability of real quaternions is
Euclidean 4-space. Therefore, the turning point, in using quaternions in theoretical physics, was
the creation of special relativity which units space and time, forming a 4-dimensional space-time.
Since a quaternion has four components, all of the components of a 4-vector can be included in
it. The best formalism should include 4-space and 5-space. For 4-space, one component must
be a purely imaginary number, so it is no longer a quaternion. Such pseudo-quaternions are

1Dedicated to Prof. D. Ilkovič, founder of Institute of Physics of Slovak Academy of Sciences, on the occasion of the
25th anniversary of his death

2Gauss invented them in the early 1800’s but did not publish
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called Minkowski quaternions [5]. The difficulty with Minkowski quaternions is that they do not
form an algebraic ring, this means that the product of two Minkowski quaternions is not always
a Minkowski quaternion. The formulation of physical laws, using real quaternions, has been re-
placed by complex ones, and it has been recognized that the ring complex quaternions represents
a powerful instrument in formulating classical physical laws (see, e.g. [6]). Complex quaternions
are rings having a number of desirable properties which allow the powerful theorems of modern
algebra to be applied, and this leads to a certain elegance of formulation of the physical laws.

An important extension of Hamiltonian quaternions represents the so-called binary (hyper-
bolic) quaternions and the dual quaternions. The different types of quaternions are suitable al-
gebraic instruments for expressing important space-time transformations as well as description
of the classical and quantum fields [6]. As has been shown in [7] the general Lorenz space-time
transformation can be expressed in terms of binary quaternions. In our further consideration
we introduce the dual quaternions which form an algebraic ring possible suitable for expressing
the Galilean transformation. In terms of dual quaternions this transformation gets an elegant,
economical and compact form explicitly showing its underlying algebraic properties.

The organization of the article is as following. In Part 1, we briefly review the algebraic
properties of the Hamiltonian, binary and dual quaternions. In Part 2, we express the special
Galilean transformation in terms of dual quaternions.

2 Quaternionic algebra

A real (or Hamiltonian) quaternion can be written in the form [1]

Q = q0 + q1e1 + q2e2 + q3e3

with the following multiplication schema for the quaternion units

eiej = −δij + εijkek i, j, k = 1, 2, 3,

where εijk are components of the totally antisymetric tensor.
We note that the quaternion units e1, e2, e3 and the Pauli matrices (σ1, σ2, σ3) are almost

algebraically isomorphic, i.e., i ≡ −iσ1 j ≡ −iσ2 k ≡ −iσ3 [8]. With these rules the full
product of two quaternions Q = a + be1 + ce2 + de3 and Q′ = a

′

+ b
′

e1 + c
′

e2 + d
′

e3 has the
form

QQ′ = (aa
′

− bb
′

− cc
′

− dd
′

) + (ab
′

+ ba
′

+ cd
′

− dc
′

)i

+(ac
′

+ ca
′

+ db
′

− bd
′

)j + (ad
′

+ da
′

+ bc
′

− cb
′

)k.

An Hermitian conjugate quaternion assigned to Q is defined as

Q∗ = a − be1 − ce2 − de3

and the norm of a quaternion is

N(Q) = QQ∗ = Q∗Q = a2 + b2 + c2 + d2.

For two quaternions, the law of moduli holds: The norm of products is product of the norm.

N(QQ′) = N(Q)N(Q′).
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We note that a quaternion can also be written in the form

Q = (~a, α),

where ~a = a1e1 + a2e2 + a3e3 is the vector part of this quaternion and α is the scalar part of it.
The sum and product of two quaternions A = (~a, α) and B = (~b, β), in this notation are

(~a, α) + (~b, β) = (~a +~b, α + β)

and
(~a, α)(~b, β) = (~a ×~b + α~b + β~a, αβ − ~a.~b),

respectively. The multiplication and ratio of two quaternions Q and Q′ is again a quaternion Q′′

so the set of real (Hamiltonian) quaternions form a division algebra under addition and multipli-
cation.

The corresponding four-component numbers, which represent the four-dimensional exten-
sion of two-component binary numbers, are binary (hyperbolic) quaternions. A binary quater-
nion is mathematical quantity which can be written in the form

Qb = q0 + q1e
′

1 + q2e
′

2 + q3e
′

3.

The quaternion units of binary quaternions e
′

1, e
′

2, e
′

3 obey the scheme

e
′

ie
′

j = δij + εijke
′

k i, j, k = 1, 2, 3,

where εijk are components of the totally antisymmetrical tensor. By means of binary quater-
nions, the Lorenz transformation can be formulated in a compact form exhibiting, explicitly, its
algebraic properties.

In what follows, we introduce new type of quaternions, the so-called dual quaternions. A
dual quaternion can be written in the form [1]

Qd = a + bi + cj + dk

with the following multiplication schema for the quaternion units

ii = jj = kk = 0, ij = ji = ki = ik = jk = kj = 0.

The interesting property of dual quaternions is that by means of them one can express the Galilean
transformation in one quaternionic equation. The norm N of a dual quaternion

Qd = a + bi + cj + dk

is
N(Qd) = QdQ

∗

d = a2,

where Q∗

d = q0 − q1i − q2j − q3k is an Hermitian conjugate dual quaternion assigned to Qd.
Any dual quaternion, Q = a + bi + cj + dk, can be expressed in the form (see Appendix)

Q = a + bi + cj + dj = a exp (b∗i + c∗j + d∗k).

More about the algebraic properties of dual quaternions we present in Appendix. The real, binary
and dual quaternions, introduced in this section, represent simple systems of four-dimensional
hypercomplex numbers. By means of them, many important equations of mathematical physics
can be expressed in a compact and explicitly covariant form, e.g., the classical Maxwell-like field
equations, the equation of quantum physics and the general space-time transformations [9].
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3 The Galilean space-time transformation and dual quaternions

Dual quaternions represent the natural number system for the compact expression of the special
Galilean transformation. Let ~r = (x, y, z), ~r, = (x′, y′, z′), ~v = (v1, v2, v3), where ~r
and ~r, are the position vectors in the inertial systems moving with the velocity ~v relative to each
other. To express the Galilean space-time transformation in the form of dual quaternions, we
define the coordinate quaternions

X = ct + xi + yj + zk and X
′ = ct′ + x′i + y′j + z′k,

where i, j, k obey the exotic multiplication rules of dual quaternion units. The special Galilean
space-time transformation can be expressed in the form

X
′ = exp(−Φ1i − Φ2j − Φ3k)X

or, explicitly,

ct′ + x′j + y′j + z′k = (1 − Φ1i − Φ2i − Φ3k)(ct + xi + yj + zk) =

ct + (x − Φ1ct)i + (y − Φ2ct)j + (z − Φ3ct)k. (1)

Separating the coefficients assigned to individual quaternion units in Eq. (1), we get

ct′ = ct, x′ = x − Φ1ct, y′ = y − Φ2ct, z′ = z − Φ3ct. (2)

If we set in Eq. 2 Φ = v1/c, Φ2 = v2/c and Φ3 = v3/c we obtain the familiar form of the
Galilean transformation

x, = x − v1t, y, = y − v2t, z, = z − v3t, t
′

= t.

The norms of the coordinate quaternions X and X ′ remains under a Galilean transformation
unchanged, i.e. XX

∗ = X
′
X

′∗ = c2t2. This is in agreement with the assumption made in
Newtonian physics, requiring the existence of absolute time. Eq. (1) can be rewritten into the
form

X
′ = G(Φ)X,

where Φ = −Φ1i − Φ2j − Φ3k. G(Φ) stands for the operator of Galilean transformation.
The successive application of two Galilean transformations, described by operators G(Φ(1)) and
G(Φ(2)),

X
′ = G(Φ(1))X, X

′′ = G(Φ(2))X′

is equivalent to the application of a single operator

X
,, = G(Φ(3))X,

where G(Φ(3)) = G(Φ(1))G(Φ(2)) = G(Φ(2))G(Φ(1)) = G(Φ1+Φ2). This implies the addition
theorem for the velocity in a Galilean transformation.

Eq. (1) resembles the formula for the rotation of a complex vector, Z = x+iy, Z ′ = R(φ)Z,
where R(φ) = exp iφ represents the operator of rotation and φ is the angle of rotation. As is
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well-known the set of operators R(φ) forms a group. Similarly, the set of Galilean operators
G(Φ) forms a group with the continuous parameter v.

The formulation of Galilean transformation by means of dual quaternions has not only a
certain elegance and aesthetic appeal, but it also shows that the linkage between space and time
exists also in the Newtonian physics. Moreover, it may have a considerable heuristic value for
the study of the underlying mathematical formalism of the general space-time transformations
[10] [11].

4 Appendix

Some important algebraic properties of the dual quaternions.
(i) Any dual quaternion, Q = a + bi + cj + dk, can be expressed in the form

Q = a exp (b∗i + c∗j + d∗k),

where b∗ = b/a, c∗ = c/a and d∗ = d/a. This can be shown taking into account the multipli-
cation scheme for the dual quaternion units according to which it holds in = jn = kn = 0 for
n > 1, therefore, the expressions of the form (ai + bj + ck)n for n > 1 also become equal to
zero. So, we can expand exp (ai + bj + ck) into a series and get

exp (a∗i + b∗j + c∗k) = 1 + (a∗i + b ∗ j + c∗k) +
(a∗i + b∗j + c∗k)2

2!
+ ...

= 1 + (a∗i + b∗j + c∗k) + 0.

Due to this series expansion of exp(a∗i + b∗j + c∗k), we have immediately

a exp (a∗i + b∗j + v∗k) = a + bi + cj + dk.

(ii) Using the exponential form of dual quaternions one can easily prove that they obey the
commutative and associative laws.
The associative law can also be verified by direct calculation. Take

Q = a + bi + cj + dk Q′ = a′ + b′i + c′j + d′k

Q′′ = a′′ + b′′i + c′′j + d′′k

then it holds
(QQ′)Q′′ = aa′a′′ + [a′′(a′ + ab′) + aa′b′′]i

+[a′′(a′c + ac′) + aa′c′′]j + [a′′(a′d + ad′) + aa′d′′]k

and
Q(Q′Q′′) = aa′a′′ + [a(b′a′′ + a′b′′) + ba′a′′]i

+[a(c′a′′ + a′c′′) + ca′a′′]j + [a(d′a′′ + a′d′′) + da′a′′]k.

We see that in both cases the coefficients assigned to the individual quaternionic units are equal.
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(iii) The ratio of two dual quaternions Q = a + bi + cj + dk and Q′ = a′ + b′i + c′j + d′k
is again a dual quaternion Q′′

Q′′ =
Q

Q′
=

a

a′
exp ((b∗ − b′∗)i + (c∗ − c′∗)j + (d∗ − d′∗)k) a′ 6= 0.

(iv) Since the multiplication and ratio of two dual quaternions Q and Q′ is again a dual quater-
nion Q′′ the set of dual quaternions forms a division algebra under addition and multiplication.
(v) The multiplication scheme for the corresponding quaternion units of all three types of quater-
nions can be written by one formula

eiej = aδij + bεijkek,

where εijk represent components of the totally antisymmetric tensor. If a = −1, b = 1, a =
1, b = 1 and a = 0, b = 0 we get the multiplication rules for the quaternion units of the
Hamiltonian, binary and dual quaternions, respectively.
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