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We study a system of large number of singly quantized vortices in a rotating Bose-Einstein
condensate. Analogous to the Meissner effect in superconductors, we show that the vector
potential due to the external rotational field can be tuned to cancel the vector potential due to
the Magnus field, resulting in a zero average angular momentum and a zero shear modulus
of the vortex lattice. The vortex lattice state exhibits two states, namely, an elastic state and
a plastic state. A clear distinction between these states is controlled by the filling fraction
(ν = N/Nv) , which is the ratio of the number of bosons (N) to the average number of
vortices (Nv).

PACS: 03.75.Lm

1 Introduction

Quantized vortices play an important role in the behaviour of superfluids [1, 2]. The vortices
provide a mechanism for the decay of superfluid currents in a ring. Vortices in a superfluid
formed due to rapid rotation have an associated rigidity. In the recent years, it has become
possible to achieve such a vortex lattice state in a rapidly rotating Bose Einstein condensate
(BEC) [3–6].

There are strong analogies between the behaviour of electrons in strong magnetic fields and
of vortices in superfluids. These analogies led to the prediction that quantum-Hall like prop-
erties should emerge in rapidly rotating atomic BEC’s [7, 8]. In particular, the single particle
energy states organize into Landau levels, and if interactions are weaker than the cyclotron en-
ergy, primarily the near degenerate states of the lowest Landau level (LLL) are occupied. In
this regime a drastic decrease of the lattices’s elastic shear strength takes place. The elastic
shear modulus predicted by Baym [9, 10] decreases with increasing rotation rate from its value
in the ”stiff” Thomas-Fermi (TF) limit (CTF

2 = n~Ω/8 , where n is the BEC number den-
sity and Ω is the rotation rate of the external trap) to its value in the mean-field quantum Hall
regime (CLLL

2 = 0.16ΓLLLCTF
2 , ΓLLL = µ/2~Ω). In this work, we study the dynamics of a
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large number of singly quantized vortices in a rotating BEC. In particular, we study the effective
Hamiltonian for the vortex degree of freedom, motivated by an analogy between the vector po-
tential associated with the Magnus force acting on a vortex moving in a two-dimensional neutral
superfluid and the Chern-Simons vector potential associated with the internal degrees of freedom
of a quantum Hall liquid. The vector potential associated with the coriolis force is equivalent to
the vector potential of the Lorentz force acting on a charged particle in a magnetic field. This
picture is different from the previous analogies between vortices in superfluids and charged par-
ticles in magnetic fields. Based on this picture, we show an important effect, analogous to the
Meissner effect in superconductors, due to competition between external and internal degrees of
freedom.

2 Effective theory of quantum vortex state

We consider a large number of vortices in a rotating gas of bosons confined in a trap at tempera-
tures well below the Kosterlitz-Thouless transition temperature given by kBT KT

c = ~
2ρs/4m2,

where ρs is the mass density and m is the mass of the single bosonic atom. The BEC is described
by a repulsive short-range interaction V (r̄) = g2Dδ2(r̄), with the 2D interaction parameter
g2D =

√
8π~

2as/maz [11], where as is the s-wave scattering length and az =
√

~/mωz is the
axial oscillator length. ωz is the axial trapping frequency. One should note that this value of the
2D interaction parameter becomes incorrect at extremely low densities and becomes independent
of the scattering length [11]. The exact value of the 2D interaction parameter upto logarithmic
accuracy is g2D =

√
8π~

2

m

[

az/as + (1/
√

2π) ln(1/πq2a2
z)

]−1
. The 2D interaction parameter

depends on q = (2m|µ|/~
2)1/2 ( µ is the chemical potential) and, hence on the condensate

density. In the limit az � |as| the logarithmic term is not important, and the 2D interaction
parameter becomes density independent. We will always be working in the limit az � |as|. The
superfluid forms a triangular lattice of quantized vortices (carrying the angular momentum of the
system) rotating as a solid body at angular velocity Ω . We assume that at low temperatures,
the scattering of thermal excitations by vortices does not affect the vortex dynamics. The situ-
ation considered then corresponds to considering a vortex as a point particle moving under the
influence of the Magnus force.

The vortex motion is governed by a Hamiltonian corresponding to one of point particles, with
a charge equal to the quantum of circulation κ = h/m , interacting with electromagnetic fields.
For a large collection of vortices Nv � 1 in a frame rotating with angular velocity Ω, the vortex
Hamiltonian reads

Hv =

Nv
∑

i=1

(~Pi − κ~ai)
2

2mv
− Ω( ~Xi × ~Pi)z + Vij( ~Xi − ~Xj). (1)

Here ~Xi, ~Pi are the position and momentum of the ith vortex in the 2D plane orthogonal
to the vortex line. The first term in eqn.(1) is the kinetic energy of the vortices, the second
term is a result of centrifugal and coriolis forces on vortices and the last term Vij( ~Xi − ~Xj) =

−ρsκ2

2π

∑Nv

i<j ln | ~Xi− ~Xj

ξ | is the repulsive logarithmic Coulomb interaction of point vortices. ξ

is the coherence length and is ξ =
√

~2

2g2DρS
. The effective vortex mass is mv = πρsξ

2 [11].
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The pseudo vector potential due to the Magnus force is ~ai = ρs

2 (̂iyi − ĵxi) [12]. The canonical

momentum of the vortex i is given as ~Pi = mv( ~̇Xi + ~Ω× ~Xi) + κ~ai. At very high rotations the
BEC approaches a quasi-2D regime due to centrifugal force [13]. We can rewrite eqn.(1) as

Hv =

Nv
∑

i=1

( ~Pi − κ ~Ai − κ~ai)
2

2mv
+ κ(A0 + a0) + Vij( ~Xi − ~Xj). (2)

The vector potentials are

~Ai =
mvΩ

κ
(−îyi + ĵxi), ~ai =

ρs

2
(̂iyi − ĵxi). (3)

The scalar potentials are

ao =
Ωρs

2
(x2

i + y2
i ), Ao = −Ω2mv

2κ
(x2

i + y2
i ). (4)

We define the average value of the vortex flux 〈 ~Jvor〉 as

〈 ~Jvor〉 =
∑

i

~∇i × κ{〈 ~Ai〉 + 〈~ai〉} = Nv{2Ωmv − κ〈ρs〉}ẑ (5)

where 〈ρs〉 is the average value of ρs. 〈 ~Jvor〉 vanishes when {2Ωmv − κ〈ρs〉} = 0. This
condition is expressed as

ν =

√

π

32

az

as
, (6)

where ν = N
Nv

is the filling fraction. The parameters of the JILA experiments [13] give the filling
fraction ν = 293. Later in this paper, we show that the elastic shear modulus C2 is proportional
to 〈 ~Jvor〉. Analogous to the Meissner effect in superconductors, the external rotation Ω together
with appropiate trap parameters can be tuned to make the average angular momentum of the
system 〈 ~Lz〉 =

∑

i〈 ~Jvor〉(x2
i + y2

i ) equal to zero. Experimentally this effect can be observed by
measuring the lowest order azimuthally symmetric Tkachenko lattice mode [13]. Its frequency
ω1,0 ∝

√
C2 is expected to go to zero at ν =

√

π
32

az

as
. At higher rotations, (ν <

√

π
32

az

as
),

interestingly, the average angular momentum 〈~Lz〉 reverses its direction. We will discuss this
possibility later in this paper.

In second quantization, the Hamiltonian of eqn.(2) reads

H =

∫

d2 ~Xϕ+( ~X){ 1

2mv
[−i~~∇+ κ ~A( ~X) + κ~a( ~X)]2 + κ[A0( ~X) + a0( ~X) − µ̃]}ϕ( ~X)

+
1

2

∫

d2 ~X

∫

d2 ~X ′ρ( ~X)V ( ~X − ~X ′)ρ( ~X ′). (7)

Here ϕ+( ~X) and ϕ( ~X) are the bosonic creation and the annihilation operators satisfying
[ϕ( ~X), ϕ+( ~X ′)] = δ( ~X − ~X ′). ρ( ~X) = ϕ+( ~X)ϕ( ~X) is the particle density. µ̃ is the chemical
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potential. Under the presence of the external rotational field Aµ, the path integral of the system
reads

Z[Aµ] = i

∫

DaµDϕ exp[iSϕ(Aµ + aµ, ϕ)], µ = x, y, 0. (8)

Where the action Sϕ is given by

Sϕ[Aµ + aµ, ϕ] =

∫

dt

∫

d2 ~X{ϕ+(i~∂t − κ[A0( ~X) + a0( ~X) − µ̃])ϕ}

−
∫

dt

∫

d2 ~X{ 1

2mv
| − i~~∇ + κ( ~A + ~a)ϕ|2}

− 1

2

∫

dt

∫

d2 ~X

∫

d2 ~X ′ρ( ~X)V ( ~X − ~X ′)ρ( ~X ′). (9)

It is to be noted that above action is valid under the Coulomb gauge condition i.e. ~∇i.( ~Ai +

~ai) = 0 and system is not gauge invariant. By representing the bosonic field ϕ( ~X) by its phase
θ( ~X) and amplitude ρ( ~X)

ϕ( ~X) =
√

ρ exp[iθ( ~X)], (10)

and

Sθ[Aµ + aµ, θ, ρ] =

∫

dt

∫

d2 ~X{ρ(−~∂tθ − κ[A0
~X + a0( ~X) − µ̃]) − ρ−1

8mv
(~∇ρ)2}

−
∫

dt

∫

d2 ~X{ ρ

2mv
|~~∇θ + κ( ~A + ~a)|2} − 1

2

∫

dt

∫

d2 ~X

∫

d2 ~X ′ρ( ~X)V ( ~X − ~X ′)ρ( ~X ′).

(11)

Assuming that the saddle point solution is independent of space and time, we obtain the condi-
tion,

ρ0 =
µ̃

Ṽ (0)
> 0, (12)

where Ṽ (k) is the Fourier transform of V ( ~X). We now expand ρ as a function of ρ0 and δρ and
expand the action upto second order in δρ and ∂µθ + κ(Aµ + aµ).

Sθ[Aµ + aµ, θ] =

∫

dt

∫

d2 ~X{δρ(−~∂tθ − κ[A0( ~X) + a0( ~X)]) − ρ−1
0

8mv
(~∇δρ)2}

−
∫

dt

∫

d2 ~X{ ρ0

2mv
|~~∇θ + κ( ~A + ~a)|2} − 1

2

∫

dt

∫

d2 ~X

∫

d2 ~X ′δρ( ~X)V ( ~X − ~X ′)δρ( ~X ′).

(13)

In the small ~k limit the term propotional to (~∇δρ)2 makes a small contribution compared with
the interaction of the third term, we ignore it. After fourier transformation and δρ intergration,
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we obtain

Sθ[Aµ + aµ, θ] =
∑

ω

∑

κ

{ 1

2Ṽ (~k)
[−i~ωθ(−k)− κ(A0(−k) + a0(−k))]×

[i~ωθ(k) − κ(A0(k) + a0(k))]

− ρ0

2mv
[−i~~kθ(−k) + κ( ~A(−k) + ~a(k)]×

[i~~kθ(k) + κ( ~A(k) + ~a(k))]}. (14)

Writing κ( ~A(k) + ~A(k)) = δ~a(k) and κ(A0(k) + a0(k)) = δa0(k) and doing the θ integra-
tion, we obtain the effective action.

Seff =
∑

k,ν,µ

1

2
πµν(k)δaµ(−k)δaν(k). (15)

Here, δaµ = aµ + Aµ.

π00(k) =
1

Ṽ (~k)







−
(

ρ0

2mv

)

|~~k|2

~2ω2

2~V (~k)
−

(

ρ0

2mv

)

|~~k|2







, (16)

παβ(k) = − ρ0

mv







δαβ +

(

ρ0

2mv

)

~
2kαkβ

~2ω2

2~V (~k)
−

(

ρ0

2mv

)

|~~k|2







, (17)

π0α(k) = πα0(k) = −ρ0~
2ωkα0

2mv
~V (~k)







1
~2ω2

2~V (~k)
− ρ0

2mv
|~~k|2







. (18)

Generally speaking Seff represents the linear response of the vertex lattice to the external
rotational field Aµ and internal degree of freedom (due to the Magnus force) aµ that is correlated
to the fluctuations of the particle mass density ρs( ~X). We represent it as the sum of average value
〈aµ〉 and fluctuation δaµ around it, 〈aµ〉+δaµ. We write for Aµ, the sum of 〈Aµ〉 corresponding
to a constant rotation Ω along the z direction and an infinitesimal test field δAµ that is introduced
to study the linear response of the system, 〈Aµ〉 + δAµ. Analoguous to the Meissner effect in
superconductors, the external degree of freedom Aµ can be tuned to cancel the internal degree of
freedom aµ. π00(k) is the longitudinal response of the system. παβ(k) is the transverse response
of the system. Interestengly as ~k → 0, π00(k) → 0 but παβ(k) → − ρ0

mv
.

The transverse responses is better understood in terms of energy increase of the vortex lattice
due to the change in ( ~A+~a) = δ~a. In terms of the lattice displacement vector ~ε( ~X) = (−iy+jy),

δ~a( ~X) = [mvΩ − κρs

2
]~ε( ~X). (19)

We ask what is the work done by an effective force field δFeff = [mvΩ2−κρsΩ
2 ](∂xεy−∂yεx) =

[mvΩ
2 − κρsΩ

2 ]δε? The effective force field is the sum of the Magnus force and pseudo force.
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Written in the action, the energy increase is

E( ~X) =
1

2
[−mvΩ

2 +
κρsΩ

2
]

∫

d ~X(δε)2 =
1

2

∫

d ~XC2(δε)
2, (20)

where C2 is the shear modulus of the vortex lattice. Thus for small rotation (ν > π
32

az

as
) as the

energy increases, the vortex lattice tries to suppress the rotation Ω. The Magnus force acts as an
elastic restoring force for small rotations. From eqn.(20) we identify the shear modulus as

C2 = α

{

n~Ω − nv~Ωaz

as

√

π

32

}

= α~Ωnv

{

ν − az

as

√

π

32

}

. (21)

In writing eqn(21), we have used nv = 2Ω
κ as the spatially homogenous vortex number density

[12]. Here α is a constant, which depends on the regime. In the Thomas-Fermi regime α = 1
8 .

n is the bosonic number density. Our result matches with that of [10] in the limit of negligible
vortex mass (mv → 0), i.e. C2 = n~Ω

8 . Baym [10] showed that C2 ∝ ω2
k (ωk is the Tkachenko

frequency of the vortex lattice). ωk → 0 as Ω → ω⊥(radial trap frequency), hence C2 → 0
as Ω → ω⊥. Now according to our result, due to the finite vortex mass as shown in eqn(21),
the shear modulus vanishes only when ν =

√

π
32

az

as
. As the shear modulus vanishes, the vortex

lattice yields to the rotation Ω and enters a plastic state. For the system to be thermodynamically
stable, the shear modulus must be positive [14]. At the higher rotation ν <

√

π
32

az

as
, C2 becomes

negative signaling the onset of thermodynamical instability. In order to restore stability, the cold
cloud is expected to break up at such high rotations.

3 Conclusion

In conclusion, we have shown that for a system comprising of a large number of vortices in a
rotating Bose-Einstein condensate, there is a competition between the internal degree of freedom
(~a) and the external degree of freedom ( ~A). The vector potential ~A can be tuned to cancel ~a
resulting in a zero average angular momentum and a zero shear modulus. This effect is analogous
to the Meissner effect in superconductors and occurs at a critical value of the filling fraction
ν = νc, νc =

√

π
32

az

as
. The vortex lattice state exhibits both an elastic and plastic state. A

clear distinction between these states is controlled by the boson particle density n and vortex
density nv . Vortex elastic state appears for ν > νc and vortex plastic state appears for ν = νc

. A transition from one state to the other is characterized by a change of the average angular
momentum from a non zero to a zero value.
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