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NUMERICAL ANALYSIS OF THE ANDERSON LOCALIZATION

P. Markoš1

Institute of Physics, Slovak Academy of Sciences, 845 11 Bratislava, Slovakia

The aim of this paper is to demonstrate, by simple numerical simulations, the main trans-
port properties of disordered electron systems. These systems undergo the metal insulator
transition when either Fermi energy crosses the mobility edge or the strength of the disorder
increases over critical value. We study how disorder affects the energy spectrum and spatial
distribution of electronic eigenstates in the diffusive and insulating regime, as well as in the
critical region of the metal-insulator transition. Then, we introduce the transfer matrix and
conductance, and we discuss how the quantum character of the electron propagation influ-
ences the transport properties of disordered samples. In the weakly disordered systems, the
weak localization and anti-localization as well as the universal conductance fluctuation are
numerically simulated and discussed. The localization in the one dimensional system is de-
scribed and interpreted as a purely quantum effect. Statistical properties of the conductance
in the critical and localized regimes are demonstrated. Special attention is given to the numer-
ical study of the transport properties of the critical regime and to the numerical verification of
the single parameter scaling theory of localization. Numerical data for the critical exponent
in the orthogonal models in dimension 2 < d ≤ 5 are compared with theoretical predictions.
We argue that the discrepancy between the theory and numerical data is due to the absence of
the self-averaging of transmission quantities. This complicates the analytical analysis of the
disordered systems. Finally, theoretical methods of description of weakly disordered systems
are explained and their possible generalization to the localized regime is discussed. Since
we concentrate on the one-electron propagation at zero temperature, no effects of electron-
electron interaction and incoherent scattering are discussed in the paper.

PACS: 73.23.-b, 71.30.+h, 72.10.-d

KEYWORDS: Electronic transport in disordered systems, Metal-insulator transition,
Localization, Numerical simulations, Andreson model

Contents

1 Introduction 564

2 Localization 568

3 Models and symmetries 570

1E-mail address: peter.markos@savba.sk

561



562 Numerical Analysis of the Anderson Localization

4 Anderson transition 572
4.1 The density of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
4.2 Mobility edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
4.3 Critical exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576

5 Wave functions and energy spectrum of disordered systems 577
5.1 The wave function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
5.2 Level statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
5.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584

6 Transfer matrix and conductance 586
6.1 Conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
6.2 Conductance of multi-channel system . . . . . . . . . . . . . . . . . . . . . . . 589
6.3 Relation between the Thouless conductance and gES . . . . . . . . . . . . . . . 591

7 One-dimensional systems 591
7.1 Role of quantum coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
7.2 Distribution of the conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
7.3 Ergodic hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597

8 Diffusive regime 599
8.1 Weak localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
8.2 Weak localization in quasi-1d systems . . . . . . . . . . . . . . . . . . . . . . . 603
8.3 Conductance distribution. Universal conductance fluctuations . . . . . . . . . . . 604
8.4 Other universal relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
8.5 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608
8.6 Beyond the diffusive regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

9 Scaling theory of localization 612

10 Statistical properties of the conductance in the critical regime 614
10.1 Properties of the critical conductance distribution . . . . . . . . . . . . . . . . . 619
10.2 Dimension dependence of the critical conductance distribution . . . . . . . . . . 620

11 Localized regime 622
11.1 3d versus quasi-1d systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626

12 Numerical scaling analysis 627
12.1 Scaling of the smallest Lyapunov exponent . . . . . . . . . . . . . . . . . . . . 628
12.2 Finite-size corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
12.3 Scaling of higher Lyapunov exponents . . . . . . . . . . . . . . . . . . . . . . . 632
12.4 Scaling of the mean conductance . . . . . . . . . . . . . . . . . . . . . . . . . . 634
12.5 Scaling of the conductance distribution . . . . . . . . . . . . . . . . . . . . . . . 634
12.6 Scaling of the level statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636
12.7 Scaling of the inverse participation ratios . . . . . . . . . . . . . . . . . . . . . . 636



CONTENTS 563

13 Scaling in the d-dimensional systems 637
13.1 Dimension d = 2 + ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
13.2 Dimension d ≥ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639
13.3 Theory vs (numerical) experiment . . . . . . . . . . . . . . . . . . . . . . . . . 641

14 Two dimensional critical regimes 642
14.1 Symplectic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
14.2 Critical quantum Hall regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644

15 Possible theoretical description of the localized regime 646
15.1 Generalized DMPK equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646
15.2 Random matrix model of the Anderson transition . . . . . . . . . . . . . . . . . 649

16 Conclusion 652

17 Acknowledgments 653

A Properties of the transfer matrix 653
A.1 The composition law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653
A.2 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
A.3 Parametrization of the transfer matrix . . . . . . . . . . . . . . . . . . . . . . . 655
A.4 Transfer matrix vs conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
A.5 Open channels and evanescent waves . . . . . . . . . . . . . . . . . . . . . . . . 658

B Dorokhov-Mello-Pereyra-Kumar (DMPK) Equation 659
B.1 Numerical verification of validity of the DMPK equation . . . . . . . . . . . . . 662
B.2 Conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663
B.3 Limit Lz � N` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664

C Random matrix theory 665
C.1 Application to transfer matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668
C.2 DMPK equation versus random matrix theory . . . . . . . . . . . . . . . . . . . 672

D Lyapunov exponent 672
D.1 One-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
D.2 Quasi-1d case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674

E Calculation of the conductance 677
E.1 1d case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
E.2 Quasi-1d case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678

References 680



564 Numerical Analysis of the Anderson Localization

1 Introduction

Localization of electrons in disordered system has fascinated scientists for almost fifty years. In
1958, Anderson [1] predicted that randomly distributed impurities in the crystal lattice can local-
ize an electron in a certain spatial region. The localization is given by the quantum character of
electron propagation: electron wave function is scattered on randomly distributed impurities, and
mutual interference of scattered components cancel the wave function on large distances. Local-
ization of the electron is responsible for a new kind of insulators - the Anderson insulator, which
possesses zero electric conductivity, σ, in a part of the energy bands, where the density of states,
ρ(E), is non-zero. Propagation of the electron in disordered systems is therefore qualitatively
different from that in periodic structures. Although the electron wave function is reflected also by
a periodic potential, the interference of the reflected and the transmitted waves in a regular lattice
gives rise to bands and gaps in the electron energy spectrum. In the bands, where the density of
states is non-zero, the electron propagates freely throughout the structure.

Of course, disorder is always present in the real world, and it influences the electric trans-
port. Scattering on weak impurities causes diffusive propagation of electrons. The electrical
conductivity can be expressed through the diffusive coefficient, D(E), and the density of states,
ρ(E),

σ = e2D(E)ρ(E). (1)

In the derivation of the expression (1), it is assumed that an electron on its travel through the
sample is scattered on individual impurities. This assumption is correct only if the electron
wavelength, λF , which is determined by the wave vector, kF on the Fermi energy, is smaller
than the electron mean free path due to the coherent scattering on impurities, `,

`

λF
� 1. (2)

[2]. The mean free path represents, in the first approximation, the mean distance between two
impurities. Clearly, ` is large in the limit of weak disorder, and decreases when disorder in-
creases. Therefore, condition (2) is violated for strong disorder and localization is expected
when ` ∼ λF . The last relation is known as the Lifshitz criterion for localization.

Increase of disorder changes the transport regime considerably. In the limit of very strong dis-
order, all electronic states become localized. The wave function of localized electron decreases
exponentially as a function of distance from the localization center, ~r0,

Ψ(~r) ∼ exp−|~r − ~r0|
λ

, (3)

where λ is the localization length.
Anderson showed in his pioneering work [1] that all electronic states become insulating when

disorder increases above the critical value. The transition from metal to insulator due to the
increase in disorder is called the Anderson transition. Similar to the theory of phase transitions,
it is believed that Anderson transition is universal and can be described by the one-parameter
scaling theory [3]. The key parameter of the scaling theory is the conductance, g. Introduced by
Landauer [4], the conductance measures the transmission properties of disordered systems both
in the metallic and the localized regime.
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The scaling theory of localization analyzes the size dependence of the conductance in the
limit of large system size. Only three transport regimes exist in this limit: the system is either
in the metallic, localized or critical regime. In the metallic regime, the conductance increases
with the system size, and the system possesses non-zero electric conductance. In the localized
regime, all electronic states are localized, and g decreases exponentially due to further increase
of the system size. The system is in the critical regime only at the critical value of the disorder.

While the localized regime exists in any system, provided the disorder is sufficiently strong,
the existence of the metallic regime is not guaranteed, especially for systems with lower spatial
dimension. It is well-known that all electronic states are localized in any one dimensional (1d)
disordered system [5]. Spin-less electrons are always localized already in the two dimensional
(2d) systems, with the only exception caused by an external magnetic field.

The scaling theory of localization predicts that the metal-insulator transition is universal.
The size and disorder dependence of the conductance in the neighborhood of the critical point
is governed only by universal critical exponents. All the parameters, which define the micro-
scopic structure of the model, become irrelevant when the size of the system is sufficiently large.
Verification of the universality of the metal-insulator transition and the calculation of the critical
parameters - the critical disorder and critical exponents - for systems of various dimension and
physical symmetry are the main theoretical and numerical problems of the theory of localization.

Contrary to the scaling theory of localization which discusses the transport regimes in the
limit of L → ∞, in everyday life we must deal with systems of finite size. Here, the transport
regime depends on the relation of the system size, L, to the characteristic lengths. For instance,
if

`� L� λ, (4)

then the system exhibits metallic behavior with the conductivity given by Eq. (1). This happens
in 2d systems, where the localization length λ is extremely huge for weak disorder [6]. Since the
electron diffuses through the sample, we called the transport regime, defined by inequalities (4),
the diffusive regime. Of course, an increase of the system size over the localization length causes
localization of all electronic states and the conductivity decreases to zero.

There are small quantum corrections to the conductivity (1) when the conditions (4) are
fulfilled. For instance, if the size of the two dimensional (2d) sample is much larger than the
mean free path, L � `, the mean value of the conductance decreases logarithmically when the
size of the system increases. This effect - weak localization corrections to the conductance -
is the first manifestation of the quantum character of the electron propagation. Similar weak
localization corrections to the conductivity exist also in one and three dimensions and in quasi-
one dimensional (quasi-1d) geometry.

In the opposite limit of very small systems, L � ` we observe the ballistic regime. In
this regime, the electron, in its travel through the sample, is scattered only on a few impuri-
ties. Clearly, the sample is almost transparent and the conductance might be large already in 1d
systems.

While the weakly disordered systems can be described analytically, for instance by the
Dorokhov-Mello-Pereyra-Kumar (DMPK) equation [7], or perturbation Green’s function meth-
ods [8,9], the theoretical description of the critical regime is still not complete. The main problem
is the absence of small parameter, since the critical disorder is of the order or even larger than the
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bandwidth in three dimensional systems. The critical disorder is small only when the dimension
of the system, d, decreases to the lower critical dimension, dc = 2 [10]. Analytical theories in
dimension d = 2 + ε [10–12] calculate critical parameters of the model in powers of ε.

Since each sample contains randomly distributed scatterers, the measured quantities, like the
conductance g, fluctuate from sample to sample and must be averaged over random disorder.
One possibility is to average the conductance over the statistical ensemble of macroscopically
equivalent samples, which differ only in the microscopic realization of the disorder. The ergodic
hypothesis [13] states that the same statistical ensemble can be constructed with the use of the
single sample by varying the Fermi energy or the magnetic field. This enables us to compare
the theoretical or numerical results, which use the ensemble averaging, with experiments, where
usually only a few samples are analyzed.

The key parameter of the scaling theory, the conductance, g, is not a self-averaged quantity.
Already in the metallic regime, the conductance becomes sample-dependent. Measured values
of the conductance [14] fluctuate around the mean value. These fluctuations, of the order of
e2/h, depend neither on the size of the system, nor on the mean value [9] and they lead to the
absence of self-averaging of the conductance. In the localized regime, the fluctuations of the
conductance [15] are so strong that the mean value, 〈g〉, is not a representative quantity [16].

The absence of self-averaging and huge fluctuations of the conductance which do not disap-
pear in the limit of infinite size of the system must be included in the theoretical description of
the localization. First, it is not clear how the averaging over the disorder should be performed.
Moreover, not only the mean values, but also the higher cummulants of the conductance must
be calculated. Contrary to the classical systems, the higher cummulants do not diminish in the
limit of large system size. Also, the averaged quantity must be carefully chosen. In the localized
regime, it is more suitable to average the logarithm of the conductance than the conductance
itself. The average procedure is easier in the numerical simulations than in the analytical theory.
This is the reason why numerical methods, based on the finite size scaling [17] provides us with
the most reliable information about the Anderson transition in higher dimensions.

In this Paper, we discuss the basic ideas of the localization theory. We concentrate on nu-
merical methods of investigation of disordered electronic systems. Numerical simulations enable
us to describe the metallic, the critical and the strongly localized regime. They verify theoret-
ical predictions, and, last but not least, they provide us with data necessary for the analytical
description of the localization.

As already mentioned, both the weak localization and the localization are quantum effects,
caused by the mutual interference of the scattered components of the electron wave function. The
quantum coherence of the electron propagation is destroyed by the incoherent scattering. Since
the incoherent mean free path, Lφ, increases when the temperature decreases [18], we expect
that the best experimental conditions for the analysis of the localization effects are those in the
limit of small temperature, when Lφ � L. In this paper, we restrict our discussion only to the
limit of zero temperature, when Lφ → ∞. For the case of non-zero temperature, when Lφ > L,
we can obtain a qualitative estimation of the transport in the diffusive regime if the size of the
system is replaced by Lφ. The transport in the strongly localized regime, Lφ > λ requires more
detailed analysis [19, 20] which is above the scope of this paper.

We will consider only the one-electron problem. Although the electron-electron interaction
might play important role in the localization [21], numerical analysis of systems of disordered
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interacting electrons is too difficult to be able at present to answer the main questions of the
scaling theory.

Since the single electron localization is caused by interference of electron wave function,
the theory can be easily applied also to propagation of classical waves in disordered media. Of
special interest is propagation of electromagnetic waves through random dielectrics [22–24].

The Paper is organized as follows.
In Sect. 2 we describe the Anderson localization and demonstrate the localization of electron

in two dimensional (2d) strongly disordered system. In Sect. 3 we introduce several models,
used in numerical simulations. For numerical convenience, all the models are based on the
propagation of electrons on the d - dimensional lattice, with disorder represented by the random
on site energies. The Anderson transition is explained briefly in Sect. 4. Spatial structure of the
electron wave functions and spectra of eigenenergies is shown in Sect. 5. Transfer matrix and
the conductance are introduced in Sect. 6.

In the most simple case of the one-dimensional (1d) disordered chain, it was proved [5] that
all electronic states are localized even for weak disorder provided that the system is sufficiently
long (longer than localization length, λ). We discuss the transport in the 1d systems in Sect. 7.
The one dimensional systems are not only easy to simulate numerically, but allow also to derive
exact analytical results. The statistics of the conductance and the resistance is discussed in details,
and the quantum origin of the localization is explained.

Section 8 analyzes the electronic transport in the diffusive regime. The scaling theory of
localization, formulated in terms of the conductance, is introduced in Sect. 9. It is argued that
the metal - insulator transition is a universal phenomenon, and the conductance, g, is a function
of only one parameter in the critical regime. This scaling hypothesis is verified numerically.
First, in Sect. 10 and 11 we discuss statistical properties of the conductance in the critical and
localized regime. The critical conductance distribution is presented and discussed in detail. Then,
in Sect. 12, we review the numerical scaling analysis of the Anderson transition in the Anderson
model. Sect. 13 presents the critical exponent, obtained by numerical scaling analysis of systems
with dimension 2 < d ≤ 5. Obtained numerical data are compared with theoretical predictions.
The two dimensional critical regime is discussed in Sect. 14. Finally, Sect. 15 discusses two
possibilities of the analytical description of the localized regime.

The Paper contains five Appendices, which present some technical details useful for the
understanding of discussed numerical data. Properties of the transfer matrix are reviewed in
Appendix A. The next two Appendices introduce two successful theories of the transport in
diffusive regime: the DMPK equation in App. B and random matrix theory in App. C. Lyapunov
exponents of the product of transfer matrices are introduced in Appendix D. The last Appendix
E discusses numerical algorithms for calculation of the conductance.

Various aspects of the electronic transport in disordered systems were reviewed recently.
The weak localization effects are discussed in [25]. Refs. [26–28] review the main ideas of
the localization theory. Experimental and theoretical aspects of the localization are reviewed
in [30]. The Quantum Hall effect is discussed in refs. [31, 32]. Supersymmetric field theory and
its application to electron transport is explained in [33]. Statistical properties of spectra and wave
functions are reviewed in [34]. Random matrix theory and its application to electronic transport
is reviewed in [35]. The development of research is in conference proceedings [36–38].

Wave transport in disordered media is a subject of many textbooks and monographs. We
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want to mention the classical book of Economou [39] and Mott and Davis [40]. Transport of
electrons in mesoscopic systems is discussed in [41–43]. The book of Mehta [44] presents the
theory of random matrices.

2 Localization

Localization of an electron in disordered system was predicted by Anderson [1]. Anderson cal-
culated the probability p that an electron, being at time t = 0 at point ~r0 with the wave function
Ψ(~r, t = 0) = δ(~r − ~r0) returns to the same point in time t > 0. It is evident that p = 0 for
regular lattice, since the electron propagates freely, provided that its energy lies in the allowed
energy band The question is whether there are such disordered systems, where p→ 1 in the limit
t → ∞. If yes, then the electron is localized in the space around ~r0. If not, then electron can
propagate through the sample, in spite of the disorder.

To demonstrate Anderson’s idea, we simulated numerically the time evolution of a single
electron wave function in two-dimensional disordered lattice. At time t = 0, we add the electron
to the center of the lattice and solve the time-dependent Schrödinger equation,

ih̄
∂Ψ(~r, t)

∂t
= HΨ(~r, t), (5)

where H is the Anderson Hamiltonian,

H = W
∑

r

εrc
†
rcr + V

∑

[rr′]

c†rcr′ . (6)

Following Eq. (6), the electron moves on the d-dimensional lattice of size Ld. The first sum is a
local term, where ~r counts sites on the lattice and the disorder is given by random on-site energies
εr. The second term in Hamiltonian enables the hopping of electron between the nearest neighbor
sites. Parameter V is given by the overlap of the wave functions localized on neighboring sites,
and W defines the strength of the disorder. The distance between two neighboring sites, a, is
used as a unit length, a = 1.

Figure 1 shows the time development of the electron wave function in the strongly disordered
two-dimensional (2d) lattice. At the beginning, the electron wave function broadens with time.
However, later this broadening becomes slower and finally stops. The electron is localized in the
central part of the lattice and its wave function far away from the localization center is negligibly
small. Figure 2 shows the detailed spatial distribution of the wave function at time t = 2800V/h̄.

The presented data show that indeed the electron might be localized for sufficiently strong
disorder. Anderson calculated the critical strength of the disorder, Wc, such that the electron is
delocalized (and the system is a metal) when W < Wc, and the electron is localized and the
system becomes an insulator when W > Wc. The transition of the system from the metallic to
insulating regime due to increase of the disorder is called metal-insulator transition.

We will not reproduce Andersons analysis here, only present his main result: there is indeed
the critical disorder which separates localized and delocalized electron states. In the most simple
approximation, critical disorder can be found as

Wc

V
≈ 2eK ln(eK), (7)
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Fig. 1. The time dependence of the wave packet in the two dimensional disordered system defined by
Hamiltonian (6) with Box disorder and W = 6. This disorder corresponds to the localization length λ ≈ 50
[45]. Different colors distinguish points where the wave function |Ψ(~r)| > 0.0001 (gray), |Ψ(~r)| > 0.0010
(dark gray), and |Ψ(~r)| > 0.0050 (black) at different times shown in legend. The time is measured in units
of 100h̄/V with hopping term V = 1. The size of the lattice is 512×512 (in units of lattice spacing a). The
initial wave function, Ψ(~r, t = 0), is the eigenfunction of the sub-lattice of the size Nh × Nh (Nh = 24)
of the system, located in the middle of the lattice. The eigenfunction belongs to the eigenenergy closest to
the band center, E = 0. From the time development of the wave packet, one can see that the electron is
indeed localized in the center of the lattice.

where K is a connectivity of the lattice. A detailed discussion of Anderson analysis is given in
Refs. [46].

Note, relation (7) does not contain the dimension d of the system. Later [10] it became clear
that, similarly to critical phenomena in statistical physics, the dimension of the system is crucial
for the existence of the Anderson transition. The dimension d = 2 is a lower critical dimension;
there is no metallic state for d < 2. That means, all electron states are localized in space when
d < 2. However, localization can be observed only when the system is large enough,

L� λ. (8)

In 2d, the localization length is extremely large for weak disorder [6]. This is the reason why
good metallic behavior is observed in numerical simulations performed on 2d weakly disordered
samples of finite size, L. (Sect. 8).

Analytical estimation of the critical disorder is possible only when the dimension of the
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Fig. 2. The wave function of the electron in time t = 2800 h̄/V . The size of the lattice is 512 × 512 (in
units of lattice spacing, a). Note that the radius of occupied region is much larger than the localized length,
which is in this case λ ≈ 50. The localization length determines only the exponential decrease of the wave
function at large distances, not the size of the region in which the electron is localized.

system is close to 2, d = 2 + ε with ε � 1. In realistic three dimensional systems, Wc can be
obtained only numerically. Various methods of calculation ofWc and of other critical parameters
will be explained in Sect. 12.

3 Models and symmetries

The most suitable model for the numerical analysis of the localization is Andersons model, de-
fined by the Hamiltonian (6). It represents an isotropic model, in which the hopping term, V ,
is the same in all directions. In the isotropic models, we consider V = 1. This also defines the
scale of the energy.

It is often suitable to consider anisotropic models, with different hopping terms in different
directions. For instance, we will use the three-dimensional (3d) model

H = W
∑

r

εrc
†
rcr + t

∑

[rr′]

c†xyzcx′yz + t
∑

[rr′]

c†xyzcxy′z + V
∑

[rr′]

c†xyzcxyz′ , (9)

where t < V . The hopping term, V , defines the scale of the energy. We often use V = 1.
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Random energies εn are distributed either with the Box distribution,

PB(ε) = (2/W )Θ(W/2− |ε|) (10)

or with the Gaussian distribution,

PG(ε) = (2πW 2) exp−(ε2/2W 2). (11)

The parameter W measures the strength of the disorder. Other distributions of random energies
(binary, Lorentzian) are often used in the literature too.

The Anderson model defined by Eq. (6) will be used in the present paper to demonstrate
numerically the basic ideas of the localization theory. For zero disorder, εr ≡ 0, we easily find
all the eigenenergies of Hamiltonian (6). For instance, for the 3d anisotropic model we have

E = 2t coskx + 2t cosky + 2V cos kz. (12)

The energy band spans between −V − 2t and V + 2t. We define the bandwidth,

B = 2V + 4t. (13)

Andersons model, given by Hamiltonian (6), belongs to models with time reversal symmetry.
It describes the propagation of a single spin-less particle in the disordered lattice. Such models
are called orthogonal. Systems with orthogonal symmetry do not exhibit the metal-insulator
transition in dimension dc = 2. This changes when the hopping between neighboring sites
becomes dependent on the orientation of the spin of the electron [10]. Evangelou and Ziman [47],
and Ando [48] showed numerically that the two dimensional (2d) systems with spin dependent
hopping (called symplectic models) exhibit the metal-insulator transition already at dc = 2. In
this paper we will discuss the Ando model which is defined by the Hamiltonian

H = W
∑

r

εrc
†
rcr + Vx

∑

[rr′]

c†xycx′y + Vy

∑

[rr′]

c†xycxy′ (14)

with spin dependent hopping terms given by Ando [48],

Vx =

(

c s
−s c

)

, and Vy =

(

c −is
−is c

)

, (15)

with c2 + s2 = 1. Note how hopping depends on the direction of propagation. Also, the wave
function, cr, has two components,

cr =

(

cr↑
cr↓

)

, (16)

for different orientations of the spin of electron. Another 2d model with symplectic symmetry is
the Evangelou-Ziman model. In this model, the hopping term has the form

V =

(

1 + ivtz −v(ty − itx)
v(ty + itx) 1 − ivtz

)

, (17)
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where tx, ty and tz are real random variables chosen from box distribution, and v measures
the strength of (random) spin-orbit hopping. In Refs. [49], SU(2) model is analyzed, with the
random hopping term

V =

(

eiα cosβ eiγ sinβ
e−iγ sinβ e−iα cosβ

)

, (18)

where random phases α and γ are uniformly distributed in the interval (0, 2π) and the distribution
of random phase β is p(β)dβ = sin(2β)dβ for 0 ≤ β ≤ π/2.

An external magnetic field breaks the time reversal inversion of the electron propagation.
Such systems belong to the unitary universality class. Magnetic field can be added to the two
dimensional Hamiltonian (6) by Peierls factor,

H =
∑

r εrc
†
rcr +

∑

xy c
†
x,y+axxy +

∑

xy c
†
x,y−axxy

+
∑

xy e
+iφyc†x+a,ycxy +

∑

xy e
−iφyc†x−a,ycxy ,

(19)

where φ = B(ea)2/h̄ is a magnetic flux through the elementary plaquette of the size a 2.
Hamiltonian (19) is used for the numerical analysis of the critical quantum Hall regime of

2d disordered system in a strong magnetic field. Although this model does not exhibit metal-
insulator transition, there is, in each Landau band, the critical energy, Ec, at which the electron
is delocalized [31]. The existence of the critical - delocalized - state inside the energy band is
crucial for the transmission of the system between two neighboring quantum Hall plateaus [50].
Another model, often used in the numerical analysis of the critical quantum Hall regime is the
model of Chalker and Coddington [32, 51].

4 Anderson transition

The Anderson transition is the transition from the metallic (extended) regime to the localized
regime. Before describing the scenario of the Anderson transition, we must understand how the
disorder influences the density of electronic states in the conducting band. Then, we introduce
the mobility edge, describe qualitatively the transition from metal to insulator, and define critical
exponents.

4.1 The density of states

For zero disorder, W = 0, the energy of the electron in the Anderson model is given by the
dispersion relation

E = 2V cos kx + 2V cos ky + 2V cos kz, (20)

where ~k = (kx, ky, kz) is the wave vector of electron. The density of states,

ρ(E) =
1

2π

∂k

∂E
. (21)

can be calculated analytically [39], and is shown in Fig. 3. The energy band spans from −6V ≤
E ≤ +6V and is symmetric, ρ(E) = ρ(−E). This symmetry is typical for tight-binding
Hamiltonians given by Eq. (6).



Anderson transition 573

-20 -10 0 10 20
E

0

0,05

0,1

0,15
W=0

W=10

W=W
c
=16.5

W=32

PSfrag replacements

ρ(E)

ρ(E) -40 -20 0 20 40
E

0

0,05

0,1

0,15
W=0

W=2

W=W
c
=6.1

W=10PSfrag replacements
ρ(E)

ρ(E)

Fig. 3. The density of states, ρ(E), of the three-dimensional Anderson model with box (left) and Gauss
(right) distribution of random energies εn, defined by Eqs. (10) and (11), respectively. As expected, the
energy band becomes broader when disorder increases. In the tails of the band, the electronic states become
localized (Fig. 5). Open circles show the position of three critical points, one for E = 0 and W = Wc,
and two other for fixed disorder W < Wc and the mobility edge Ec1 = −Ec2. Note, for weak disorder
(W = 10 in the left figure) the mobility edges lie outside the unperturbed energy band, |Ec| > B.

Note that the density of states, given by Eq. (21) does not include the degeneracy of the
electron system due to the two possible orientations of the spin. When spin of the electron is
included, ρ(E) must be multiplied by a factor of 2.

Figure 3 demonstrates the effect of disorder on the energy spectrum of the three dimensional
Anderson model for Box and Gaussian disorder. As expected, the band becomes broader when
disorder increases. This is more pronounced for the Gaussian disorder which allows larger fluc-
tuations of random energies. Open circles indicate the position of the mobility edge, discussed
in the next Section.

For completeness, we also show in Fig. 4 the density of states of the disordered two dimen-
sional Anderson model.

4.2 Mobility edge

Intuitively, we expect that the localized states appear first in tails of the energy band. These states
are namely created by large random energies, εr. One expects that the states with the energy close
to the band center are less affected by randomness. Another argument for the localization in tails
was given by Lifshitz [2]. The classical scattering of electrons on impurities, which led to an
expression for the conductance, given by Eq. (1), is only possible when the mean free path, `,
is much larger than the wavelength of the electron, λF , given as the inverse of the Fermi wave
vector, kF . When both lengths become comparable,

λF ∼ `, (22)

then the spatial extent of the electron wave function is comparable with the typical distance be-
tween two impurities, so that we cannot discuss the propagation of electron in terms of individual
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Fig. 4. The density of states for the disordered two dimensional Anderson model. Note the typical singular-
ity of the density of states at the band center for the unperturbed tight binding Hamiltonian (W = 0) [39].

density of states ρ(E)
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Fig. 5. The mobility edge, Ec, separates the localized states in the band tail from the conducting states. By
changing the Fermi energy, EF , the system exhibits a transition from the metallic regime (EF > Ec) into
the localized regime (EF < Ec).

scattering procedures. The electron wavelength, λF , is small, comparable with the lattice dis-
tance, a, at the band center, but increases with the distance of the Fermi energy from the band
center. Consequently, the Lifshitz criterion for the localization, given by Eq. (22) is fulfilled first
in the band tails.

Separation of the energy spectra into localized and delocalized intervals is schematically
shown in Fig. 5. For a given strength of the disorder, W , there is an energy, Ec, called the
mobility edge, which separates the localized states from the delocalized states. When EF < Ec,
the system is an insulator, since all states at the Fermi energy are localized (we remind the reader
that the temperature T = 0). We call this insulator the Anderson insulator to emphasize the
fact, that the system possesses the zero electric conductance, although the density of states is
non-zero. When the Fermi energy crosses the mobility edge, the system undergoes the transition
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Fig. 6. Schematic phase diagram for the 3d Anderson model with the Gaussian disorder. Metallic (conduc-
tive) states are separated from the localized states by the critical line, which is an envelope of the shadow
region. Open circles show the position of three critical points, one for E = 0 and W = Wc = 6.1, and two
other for fixed disorder W = 2 < Wc and the mobility edge Ec1 = −Ec2 = 6.58. Note, these mobility
edges lie outside the unperturbed energy band. When disorder reaches its critical value, W = Wc, two
mobility edges reach the band center, Ec1 = Ec2. No metallic states exist when W > Wc.

from insulator to metal. For EF > Ec, the system possesses a finite electric conductivity.

Note that there are two mobility edges, Ec1 and Ec2 which separate localized states in the
upper and lower band tails from the delocalized states in the central part of the band. For a partic-
ular disorder, we show the mobility edges in Fig. 3. Of course, the position of the mobility edges
depends on the strength of the disorder. With increasing disorder, both mobility edges move to
the band center. There is a critical value of the disorder, Wc, for which Ec1 = Ec2 approach
the band center. For W > Wc there are no propagating states in the spectrum. The function
Ec = E(W ) defines the critical line, which separates the metallic and the localized states in
the phase diagram. An interesting feature of the Anderson transition is that the disorder creates
propagating states outside the unperturbed energy band. We see that for non-zero disorder, the
metallic regime exists also for energies |E| > 6V .

The phase diagram of the three dimensional Anderson model is shown schematically in
Fig. 6. For W = 0, all the electron states inside the energy band, |E| < 6V are delocalized.
Increasing disorder broadens the density of states, and the intervalEc1, Ec2 of the metallic states
becomes broader, too. Only for rather strong disorder, close to to the critical disorder, Wc, the
mobility edge starts to converge towards the band center. For the disorder W > Wc, all electron
states are localized. The phase diagram for the 3d Anderson model was calculated numerically
in Ref. [52].
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Fig. 7. Definition of the critical exponents. At the metallic side of the critical point, the conductance σ
decreases to zero as σ ∝ (Wc − W )s, whereas at the insulating side the localization length diverges as
λ ∝ (W − Wc)

−ν .

4.3 Critical exponents

The metallic states are separated from the localized ones by the critical line. Any crossing of
the critical line is accompanied by the metal insulator transition. The common belief, supported
by the scaling theory of localization [3] is that this transition is universal. This means that the
transition from metal to insulator should not depend on microscopic details of the model, and on
the position of the critical point, lying at the critical line. However, it depends on the dimension
and on the physical symmetry of the model. We can, similarly to the theory of phase transitions,
formulate the theory of the metal insulator transition in terms of the order parameter and of the
critical exponents [10]. The critical exponents are defined in terms of the energy or disorder
dependence of the metallic conductivity and localization length (Fig. 7).

Metallic conductivity, σ, characterizes the transport properties of the metallic regime. We
have non-zero conductivity σ > 0 in metal, and σ decreases when the system approaches the
critical point. For many years it was not clear whether the conductivity at the critical point, σc, is
zero or not. Mott [40,53] suggested that the conductance possesses non-zero value at the critical
point and drops discontinuously to zero on the insulating side of the transition. At present, the
common belief is that the critical conductivity σc = 0 in 3d orthogonal systems. The decrease of
the conductivity in the neighborhood of the critical point is determined by the critical exponent s,

σ ∼ (Wc −W )s. (23)

On the insulating side of the transition, we can characterize the electronic states by the lo-
calization length, λ. By definition, the localization length which characterizes the exponential
decrease of the localized wave function far away from the localization center ~r0, is given by
Eq. (3),

Ψ(~r) ∝ exp−|~r − ~r0|
λ

. (24)
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It is intuitively clear that λ should increase when system approaches critical point, and become
infinite at the critical point,

λ ∼ (W −Wc)
−ν . (25)

As discussed in the Sect. 4.1, the Anderson transition is induced either by a change of the
Fermi energy with fixed disorder strength, or by an increase in the disorder,W , for fixed energy
(E = 0). Therefore, we expect also that

σ ∼ (Ec −E)s, λ ∼ (E −Ec)
−ν (26)

for the case when the Fermi energy crosses the mobility edge.
Scaling theory of localization [3] assumes that the metal-insulator transition is universal.

That means that critical exponents, s and ν, are universal, depending only on the dimension of
the system, and on the physical universality class. They do not depend on the microscopic details
of the model. The scaling analysis gives [10]

s = (d− 2)ν. (27)

Proof of the universality of critical exponents and their dependence on the dimension of the
system represents the main problem of the theory of Anderson localization.

5 Wave functions and energy spectrum of disordered systems

For the case of a regular lattice (W = 0), all the eigenenergies and eigenfunctions of the Hamil-
tonian can be found analytically. Of course, disorder influences the spectrum of eigenenergies,
and also the form of the corresponding wave functions. In this Section, we describe briefly the
main qualitative and quantitative properties of the wave functions and of the energy spectra both
in the limit of weak and strong disorder, and discuss the non-homogeneous spatial distribution
of electrons in the critical regime.

5.1 The wave function

Following Anderson [1], we expect that an electron is delocalized if disorder is small, and local-
ized if disorder is strong. To verify this assumption, we calculate numerically all the eigenener-
gies and eigenvectors of the 2d Ando model, defined by Eqs. (14,15). We will see later that the
Ando model exhibits MIT for critical disorder Wc = 5.838. Thus, for W � Wc the system is
in the metallic regime and we expect that the electronic wave function is almost homogeneously
distributed throughout the sample. On the other hand, the electron should be localized in some
small region. if W �Wc.

These expectations are confirmed by numerical results presented in Fig. 8 where we compare
the spatial distributions of two electron eigenstates. The “metallic” eigenstate (W = 2 �Wc) is
almost homogeneously distributed within the sample2. Also, the localized eigenstate, calculated
numerically for the system with disorderW = 8 �Wc, is spatially localized in a certain region
of the sample, and is orders of magnitude smaller elsewhere.

2Note, similar result can be obtained also in the 2d orthogonal systems, if the localized length is larger than the size
of the system, L � λ.
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Fig. 8. The spatial distribution of the electron, given by the absolute value of the eigenvector, |Ψ(~r)|2, with
the eigenenergy closest to the band center E = 0 for the two-dimensional Ando model. In the metallic
regime (left, W = 2), the electron is homogeneously distributed in the system, while in the localized
regime (right, W = 8), the electron is localized in a small part of the lattice and its wave function is very
small elsewhere. The size of the system is 64 × 64 lattice sites. The critical disorder of the Ando model is
Wc = 5.838. The data was obtained by numerical diagonalization of the random 2d Hamiltonian (6) using
the LAPACK subroutines.

The critical point deserves special attention. Figure 9 shows the electron wave function for
two eigenstates close to the band center for the Ando model with W = Wc. Detailed analysis
shows that the wave function at the critical point possesses the multi-fractal spatial structure. To
define multifractality, we introduce the quantities [34]

Iq(En) =
∑

~r

|Ψn(~r)|2q . (28)

In Eq. (28),En is the eigenenergy of the Hamiltonian, and Ψn(~r) is the corresponding eigenfunc-
tion. It is evident that I1(En) ≡ 1 for all eigenstates. The quantity I2 is the inverse participation
ratio, often used for the characterization of the eigenvectors in disordered systems (Fig. 10).

We can easily estimate the size dependence of the parameters Iq . If the eigenstate n belongs
to the metallic part of the energy spectra, then the wave function is homogeneously distributed
throughout the sample. Assuming that |Ψn(~r)| ∼ L−d/2 for all lattice sites ~r, we immediately
see that in the metallic regime

Iq ∼ Ld ×
[

L−d/2
]2q

= L−(q−1)d. (29)

On the other hand, in the localized regime, we expect, in agreement with the right panel of
Fig. 8, that the wave function is localized in a certain small region and is almost zero in the rest
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Fig. 9. Two electron eigenstates, |Ψ(~r)|2, in the critical regime of the two-dimensional Ando model. The
size of the system is 64 × 64, and W = Wc = 5.838 for the electron energy E = 0 [54]. For a
given realization of disorder, we calculate two eigenvalues closest to the band center (E = −0.028 and
E = −0.01476 for the left and right figure, respectively). The spatial distribution of the electron is more
complicated than in the metallic or localized regime. Detailed analysis of the wave function (discussed in
Sect. 14) shows that the wave function Ψ(~r) possesses the multi-fractal spatial structure.

Fig. 10. The inverse participation ratio, I2, as a function of energy for the 3d Anderson model with Gaussian
disorder W = 2. The size of the lattice is L = 16. The shaded area indicates propagating states, |E| <
|Ec| = 6.58 [56], where I2 is very small. In the tails of the energy band, the electronic states are localized
and I2 is close to 1. Note, I2 wildly fluctuates and see Fig. 11 for the probability distribution of I2.
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Fig. 11. The probability distribution of the logarithm of the inverse participation ratio, ln I2, defined by Eq.
(28) for the 3d Anderson model with Gaussian disorder W = 2 and for system size given in the legend.
Left: data for all eigenstates with energies |En| < 0.2 (band center). From the phase diagram, shown in
Fig. 6, we know that these eigenstates are metallic. We indeed see that the typical values of I2 decrease as
L−3, in agreement with Eq. (29). The distribution decreases exponentially for large values of I2 � L−3

indicating that there are no insulating states in the metallic phase. Right: the data for the eigenstates with
7.5 < |En| < 7.7. These states are localized (see Fig. 6). The typical values of I2 are of the order of 1, as
expected.

of the system. Then, the wave function |Ψn(~r)| ∼ 1 in the localization region and is almost zero
otherwise. Inserting this Ansatz into the definition (28) we obtain that Iq ∼ 1 for all q > 1.

At the critical point, the wave function is multifractal [55]. That means, by definition, that

Iq(En) ∼ L−(q−1)dq (30)

[34]. In Eq. (30), dq < d are fractal dimensions. Note, dq depends on q.
To understand the meaning of multifractality of the wave function, note that the wave function

|Ψ(~r)| < 1, for all ~r. Therefore, the value of |Ψ(~r)|2q decreases when q increases. Hence, the
higher q projects out such sites on the lattice, where |Ψ(~r)| is large. For each value of q, these
sites create a fractal structure. Since different q projects different fractal structures, the complete
description of the spatial distribution of the wave function requires the knowledge of dq for all
values of q.

Figure 10 shows values of I2 calculated for all eigenstates of the 3d Anderson model with
Gaussian disorder W = 2. Data confirm our qualitative estimations, namely that I2 is small in
the metallic part of the spectra, |E| � |Ec| = 6.58, but possesses values of order of 1 in the
band tails, where localization is expected. We also see that I2 is a statistical variable, which
might fluctuate from one eigenstate to another. It is therefore useful to calculate the mean value
over all eigenvalues lying in a given narrow interval of energies, δE. Also, since I2 might
fluctuate in many orders of magnitude, we analyze ln I 2. This is useful especially in the metallic
regime. Figure 11 shows the probability distribution of ln I2 for the three dimensional Anderson
model. In the metallic regime, the maximum of the distribution p(ln I2) is around the values
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Fig. 12. Eigenenergies of disordered three dimensional Anderson model with Gaussian disorder. The size
of the system L = 10. Left: metallic regime. The spectrum is almost equidistant, there are no degenerate
energies. Right: localized regime. The degeneracy of the energy spectra is more probable than in the
metallic regime. Middle: spectrum at the critical point.

∼ L−3, in agreement with Eq. (29). Also, the distribution decreases exponentially on both
sides of the maxima, indicating, that the probability to find I2 ∼ 1 rapidly decreases when L
increases. This agrees with the commonly accepted paradigm, that there are no localized states
inside the metallic phase. In the localized regime, I2 possess values of ∼ 1, as expected. Again,
the probability to find delocalized state in the tail is very small.

5.2 Level statistics

Other important information about the transport regime can be obtained from the analysis of
the spectrum of the eigenenergies of the disordered Hamiltonian. In Fig. 12 we show a typical
spectrum of the eigenenergies for the metallic, critical and insulating regime. One sees that the
three spectra are qualitatively different. This difference can be quantitatively measured by the
statistical distribution of differences

sn = En+1 −En (31)

of two neighboring eigenenergies of the random Hamiltonian (6).
Because of the randomness of the Hamiltonian, s is a statistical variable. It turns out that

the probability distribution p(s) converges in the limit L → ∞ to three characteristic universal



582 Numerical Analysis of the Anderson Localization

functions, depending on whether the system is in the metallic, critical or localized regime.
If the system is in the metallic regime, then the hopping term between sites causes level

repulsion, typical for random matrix theory. (Random matrix theory is discussed in Appendix C).
Random matrix theory states that the distribution p(s) of normalized differences s, defined by
Eq. (31) is universal, and depends on the physical symmetry. For orthogonal systems, we have

p1(s) =
π

2
s exp−π

4
s2. (32)

For unitary and symplectic systems, we have the Wigner distributions given by

p2(s) =
32

π2
s2 exp− 4

π
s2, (33)

and

p4(s) =
218

36π3
s4 exp− 64

9π
s2, (34)

respectively. Note, all three distributions can be obtained analytically if we assume that

pβ(s) = c0 s
β exp−c1s2, (35)

where β = 1, 2 and 4 for orthogonal, unitary and symplectic symmetry, respectively, and coeffi-
cients c0 and c1 are given by the requirement of normalization,

∫ ∞

0

d s pβ(s) = 1, (36)

and by the normalization,

〈s〉 =

∫ ∞

0

d s spβ(s) = 1. (37)

A characteristic property of the Wigner distribution is level repulsion. We indeed see in left panel
of Fig. 12 that the spectrum in the metallic phase is almost equidistant, and the probability to
find two degenerate energies is very small. The absence of the degeneracy can be understood
already in the simple case of the 2 × 2 matrix,

(

Λ v
v Λ

)

, (38)

which can represent the two site Hamiltonian. Without the overlap of the wave functions (v = 0),
the spectrum is degenerate, E1 = E2 = Λ. However, any non-zero overlap removes the degen-
eracy, and the eigenenergies become E1,2 = Λ ± v. Similarly, in more complicated systems,
we expect that the overlap of wave functions prevents the eigenenergies being degenerate. In
random matrix theory, the absence of degeneracy follows from the probability distribution of the
eigenvalues of random matrices, which is derived in Appendix C.

The energy spectrum of the insulator is different. The simplest model of localized systems
is the Hamiltonian given by Eq. (6) with V = 0. In this limit, the energy spectrum consists of
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Fig. 13. The probability distribution p(s) of the normalized differences, s, between two neighboring
eigenenergies in the 3d Anderson model. Only eigenstates close to the band center, |En| < 0.5, were
considered. Left panel shows the distribution for the model with Gaussian disorder W = 2, which is
smaller than the critical disorder, Wc ≈ 6.1. The system is in the metallic regime and the distribution p(s)
is close to the Wigner distribution p1(s), given by Eq. (32). (solid line). The size of the system L = 14 and
Nstat = 450. Right panel shows data for the box disorder W = 32, L = 10. System is in the localized
regime, and p(s) is close to the Poison distribution, p(s) = exp−s.

random energies ε. It is well known [44] that the differences of random uncorrelated numbers
are distributed with the Poisson distribution,

ploc(s) = e−s. (39)

We therefore expect that in the localized regime, the distribution p(s) will be close to the Poisson
distribution. This is confirmed in the right panel of Fig. 13. Note, however, that the overlap
V 6= 0 in any disordered system. Therefore, the level repulsion is always present in the energy
spectra, independent of the strength of the disorder, and p(s) → 0 when s → 0 also in the
strongly localized models [57].

In numerical analysis of the level statistics, it is important to note that the mean difference,
〈s〉, depends also on the density of states. Indeed, 〈s〉 would posses smaller values in that part
of the energy band where the density of states, ρ(E), is larger. Therefore, we restricted our
analysis of the statistics p(s) to the energy interval E,E + δE, where the density of states is
approximately constant. The analysis of the entire energy band requires rescaling the differences
s by 1/ρ(E).

When the system undergoes the metal-insulator transition, the distribution p(s), transforms
from the Wigner distribution, given by Eq. (32), to the Poisson distribution, given by Eq. (39).
There is the third universal distribution, characteristic for the critical point [58]. We do not know
the analytical form of the critical distribution, but we can calculate it numerically. In Fig. 14
we show the critical distribution pc(s) for the 3d Anderson model. Data confirms the theoretical
expectation that pc(s) must decrease to zero when s → 0. From the symmetry considerations,
it follows that pc(s) ∼ sβ for s � 1. There is no agreement about the form of exponential
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Fig. 14. The critical distribution pc(s) of the normalized differences s. Both the Gaussian and box disorder
were considered. The size of the system L = 10. The solid circles show data for the Gaussian disorder and
the system size L = 14. The data confirm that the distribution p(s) does not depend on the microscopic
details of the model. Also, p(s) is independent on the size of the system. Only the eigenenergies |En| < 0.5
were considered so that the density of states can be considered as constant. For comparison, we show also
the Wigner distribution, given by Eq. (32) (solid line) and the Poisson distribution, ploc(s) = exp−s
(dashed line).

decrease for large s � 1. Exponential decrease, pc(s) ∼ exp(−sα), with α = 1 + 1/(dν), was
found in Ref. [59], while the semi-Poisson distribution,

pc(s) = 4se−2s, (40)

was proposed for the orthogonal critical regime by other groups [60]. Numerical analysis [61]
did not distinguish between these two distributions.

Figure 14 also confirms the universality of the critical distribution which does not depend
on the size of the system and on the distribution function of random energies. However, it was
found that ps depends on the choice of the boundary conditions [60].

5.3 Boundary conditions

The sensitivity of the electron eigenstates to the boundary conditions provides us with another
criterion for localization [62,63]. Consider a disordered d dimensional system of size L. We can
calculate all the eigenenergies of the system with periodic boundary conditions,

Ψ(x+ L) = ψ(x), (41)

and then repeat the same calculation with the anti-periodic boundary conditions,

Ψ(x+ L) = −ψ(x). (42)

The change of the boundary conditions influences the spectrum of eigenenergies,

En → En + δEn, (43)
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where δEn is a change of the eigenenergy due to the change of the boundary conditions. Clearly,
δEn depends on the character of the electron eigenstate.

Suppose first that the electron in the nth eigenstate is delocalized. Then its wave function
is spread over the sample. We expect therefore that the change of the boundary conditions in-
fluences strongly the position of the eigenenergy,E n, so that δEn might be comparable or even
larger than the typical spacing between two neighboring eigenenergies. Since the wave function
is delocalized for any system size, δE will not decrease when L increases. On the other hand,
If the electron is localized in a certain region inside the sample, then its wave function decreases
exponentially as a function of the distance from the center. If the size of the system is larger
than the localization length λ, the localized eigenstate is almost insensitive to the boundaries and
th localized electron does not know what happens on the boundary of the system, so that δEn

decreases exponentially when the size of the system increases, δE ∼ exp−L/λ.
To measure the sensitivity to the change of the boundary conditions quantitatively, consider

a small interval of energies, E ± δ, and calculate the parameter

gT (E) =
e2

h

〈δE〉
∆E

, (44)

where ∆E is a typical difference between two neighboring eigenenergies,

∆E =
1

Ldρ(E)
, (45)

and 〈δE〉 is a typical change of eigenenergies lying in the interval E ± δ. Then, from the size
dependence of g, we can distinguish between the metal and insulator.

In Fig. 15 we show how the eigenenergiesEn of the disordered system depend on the bound-
ary conditions. We consider the 3d Anderson Hamiltonian, given by Eq. (6) with the random
on-site energies, εn, and the boundary conditions determined by the real parameter, θ,

Ψ(L, y, z) = eiθΨ(0, y, z)
Ψ(x, L, z) = eiθΨ(x, 0, z)
Ψ(x, y, L) = eiθΨ(x, y, 0).

(46)

Clearly, θ = 0 corresponds to the periodic boundaries, Eq. (41), and θ = π gives us anti-periodic
boundary conditions, (42).

It was shown in Ref. [62] that if the energyE belongs to the metallic part of the spectra, then

gT = σLd−2 metal, (47)

where σ is the conductivity of the sample. When the eigenenergies around the energy E are
localized, gT decreases exponentially with the system size,

gT ∼ e−L/λ insulator. (48)

The quantity gT is called the Thouless conductance. It played an important role in the formula-
tion of the scaling theory of localization [3].

The mean value, 〈δE〉, is called the Thouless energy,ET . By comparison of the expressions
(44,47) with the formula for the metallic conductivity, σ = e2Dρ, we find that

ET =
hD

L2
. (49)
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Fig. 15. Dependence of eigenvalues, En(θ) on the boundary conditions, given by Eq. (46). in the metallic
(left), critical (middle) and the localized regime. Only eigenvalues close to the band center are shown. The
size of the system is L = 6.

The corresponding Thouless time,

τT = h/ET , (50)

represents the typical time, L2/D, which the electron needs to diffuse from one side of the
sample to the opposite side.

To the best of our knowledge, the relation (44) has so far not been used for the numerical
analysis of the metal-insulator transition. The reason is that both δEn and ∆E fluctuate not only
as a function of the microscopic realization of disorder in a given sample, but also as a function of
the energy within one given sample. Also, it is not clear which averaging procedure - arithmetic
or geometrical - is more appropriate for the calculation of mean value, 〈En〉. Nevertheless, an
introduction of the variable gT provided the first step toward the scaling theory of localization.
Since it is rather easy to estimate how both differences, δE and ∆E, depend on the system size,
L, we can estimate the size dependence of the Thouless conductance, gT .

6 Transfer matrix and conductance

As discussed in the introduction, the electron localization affects the transport properties of dis-
ordered systems. Therefore, the theory of localization concentrates mostly on the electron propa-
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Fig. 16. Definition of amplitudes A - D.

gation. A key role in this study is played by the conductance, a quantity defined by Landauer [4]
and Economou and Soukoulis [64]. The conductance is expressed in terms of the transmission
and reflection amplitudes of the electron.

Consider scattering experiment shown in Fig. 16. The sample is connected on both sides to
the semi-infinite ideal leads. We are interested in the probability that an electron, coming either
from the left or from the right side of the sample, can transfer to the opposite side. Thus, we want
to characterize the sample in terms of four matrices: transmission of the wave from the left to the
right, t+, from the right to the left, t−, and by the reflection coefficient from the right to the right,
r+, and from the left to the left, r−. In the most simple case of one-dimensional conductors, all
the above parameters are complex numbers.

Transmission and reflection amplitudes define the scattering matrix S:

S =

(

t+ r−

r+ t−

)

. (51)

Figure 16 shows that the scattering matrix, S, expresses the wave functions of outgoing wavesB
and C, in terms of the wave functions of the incoming waves, A and D,

(

C

B

)

= S
(

A

D

)

(52)

Linear relation (52) can be re-written into the form
(

C

D

)

= T
(

A

B

)

. (53)

where T is the transfer matrix, which determines the fields on one side of the sample with the
fields on the another side. An explicit form of the transfer matrix, derived in AppendixA reads

T =

(

t+ − r−(t−)−1r+ r−(t−)−1

−(t−)−1r+ (t−)−1

)

. (54)

Some useful properties of the transfer matrix are given in Appendix A. If the system possesses
time reversal symmetry, then the transmission amplitudes t+ and t− are related by

t+ = (t−)T . (55)

In the special case of 1d system, we have that t+ = t− Therefore, we omit the superscripts in the
transmission amplitudes in the following discussion.
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Fig. 17. Experimental setup for the measurement of the conductance g. Two semi-infinite leads are attached
to the sample. Electrons are emitted from the left reservoir, propagate through the left lead and scatter on the
sample. The transmitted electrons are absorbed in the reservoir on the opposite side, the reflected electrons
propagate back. There is no scattering in the leads. There are two possibilities of the measurement of the
voltage. Voltmeter VL measures the voltage on leads; resulting conductance is then gL = j/VL, given
by Eq. (57). The voltmeter VES measures the voltage on reservoirs. In this measurement, we obtain
Economou-Soukoulis conductance gES , given by Eq. (58). We show also the voltage for the case when the
sample is totally transparent to show the voltage drops due to the contact resistances between the reservoirs
and leads.

6.1 Conductance

Consider the one dimensional experimental setup shown in Fig. 17. The sample is connected to
two semi-infinite ideal leads, which transfer electrons from two reservoirs. The current through
the sample is proportional to the voltage difference, ∆V , and to the conductance, g,

j = g∆V. (56)

To find the conductance, we have to measure the voltage, ∆V . Two possibilities were considered.
Landauer [4] proposed to measure the voltage difference between the leads, and obtained the
conductance

gL =
e2

h

T

1 − T
. (57)

On the other hand, Economou and Soukoulis [64] considered the voltage difference on reservoirs
(Fig. 17), and derived an alternative formula,

gES =
e2

h
T. (58)

Both formulas are equivalent to each other only in the limit of small transmission, T → 0.
However, they lead to different results when the sample becomes transparent (T → 1). Landauer
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formula predicts that the conductance diverges (as it should be since the resistance is zero). On
the other hand, expression (58) converges to e2/h.

The origin of the difference between two formulas lies in the presence of a contact resistance
between leads and reservoirs. We can write

e2

h

1

gES
=

1

T
=

1 − T

T
+ 1 =

e2

h

1

gL
+ 1 (59)

or, in terms of resistances,

ρES =
1

gES
= ρL +

h

e2
. (60)

Thus, in the measurement of Economou and Soukoulis, the total resistance included in the mea-
surement contains also contact resistance, ρc = h/e2, measured on the contact of leads and
reservoirs.

In numerical simulations, we will calculate the conductance gES . When necessary, we can
extract the effect of contact resistance with the help of Eq. (59).

Historically, both quantities, gL and gES , are called “Landauer conductance” in the literature.

6.2 Conductance of multi-channel system

In the previous Section, we have introduced the conductance of the one dimensional systems.
For a given energy, we have only one possible value of the wave vector. This is the reason
why the maximum value of the conductance is 1 (in units of e2/h). In the real world, the leads
might be quasi one dimensional, which means that the electron can propagate also in directions
perpendicular to the propagation direction. Since the cross section of the leads is finite, the
wave vector in the transversal direction, k⊥, is quantized and possesses only discrete values.
Each value of the transversal wave vector defines one channel (Fig. 18). It might happen that
transmission is not possible for some values of k⊥. We call such channels evanescent, or closed.
For simplicity, we do not consider evanescent channels in the present discussion. Evanescent
waves are discussed in Appendix A.5. The number of channels No, defines the size of the
transmission matrices, t+ and t−. The physical meaning of the matrix element is clear: t+ab is the
transmission amplitude of the electron from the channel a to the channel b. Similarly, we define
the matrix r+ which contains reflection amplitudes from channel a to channel b. Then,

T+
ab = |t+ab|2 (61)

is the probability that the electron, coming in channel a, is transmitted through the sample into
channel b, and

R+
ab = |r+ab|2 (62)

is the probability that the electron is reflected back into channel b.
It is useful to introduce the probability

T+
a =

∑

b

t+ab(t
+
ab)

∗ =
∑

b

T+
ab (63)
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Fig. 18. Transmission of electron through disordered sample. The sample is connected to two semi-infinite
metallic leads. Channels are determined by transversal momentum, or, equivalently, by incident angle,
α = tan−1(kn/kzn).

of the electron coming in the channel a to be transmitted through sample, and

T+ =
∑

b

T+
a =

∑

ab

T+
ab (64)

is the total probability that the electron transmits through the sample from left to right. Similarly,

R+ =
∑

ab

|r+ab|2 (65)

is the probability that the electron is reflected back. Since electrons can not be absorbed in the
sample, we have

T+ +R+ = No, (66)

as is proved in Appendix A. Then, generalization of expression (58) to the multi-channel system
is straightforward,

gES =
e2

h
Tr t†t, (67)

[65–68].
Multi-channel conductance is fully determined by eigenvalues of the matrix t†t. Using the

parametrization of the transfer matrix, derived in appendix A.3, we obtain

gES =
e2

h

No
∑

a

1

1 + λa
=
e2

h

No
∑

a

1

cosh2 xa/2
, (68)

where 1/(1 + λa) is the ath eigenvalue of the matrix t†t and parameters xa are defined by the
relation

λa =
1

2
(coshxa − 1) . (69)

It was proved in Refs. [66, 67] that in the metallic regime, the conductance g, given by Eq. (67)
is related to the conductivity σ, given by Eq. (1), by

gES = σLd−2. (70)



One-dimensional systems 591

6.3 Relation between the Thouless conductance and gES

In Sect. 5.3 we introduced the Thouless conductance, gT , which measures the sensitivity of the
energy spectra to the change of the boundary conditions. In the diffusive regime, gT is given by
Eq. (47). Comparison with Eq. (70), indicates that two quantities, gT and gES are closely related
to each other. This equivalence was studied numerically in Ref. [69]. Instead of changing the
boundary conditions from periodic to anti-periodic, the level curvature,

c =
∂2En(θ)

∂θ2

∣

∣

∣

∣

∣

θ=0

. (71)

was studied numerically and compared with the conductance gES . The curvature, c, measures
the sensitivity of the energy spectra to the change of the boundary conditions. In the metallic
regime, the curvature c is related to gES by the relation [69]

gES = πρ(E)Ld〈|c|〉. (72)

Also, in the strongly localized regime it was confirmed in Ref. [69] that

〈ln gES〉 ∝ 〈ln |c|〉 (73)

Owing to Eqs. (72) and (73) we identify the conductance gT with gES and conclude that the
conductance gES not only measures the transmission properties of the sample, but also provides
us with information about the sensitivity of the wave functions to the change of boundary condi-
tions. In what follows we discuss only the conductance gES , defined by Eqs. (58). and use the
notation

g = gES . (74)

7 One-dimensional systems

It is instructive to analyze first the most simple problem, namely the one dimensional disordered
(1d) chain. The simplest system which exhibits localization is the 1d Anderson model. If Ψn is
the wave function of the electron on site n, then the Schrödinger equation reads

(εn −E)Ψn + Ψn−1 + Ψn+1 = 0. (75)

It is well known [5] that all electron states in the disordered 1d system are localized. Local-
ization is characterized by the localization length, which defines the exponential decrease of the
wave function,

Ψn = exp−Lz/λ, (76)

where Lz = an is the length of the system.
We can calculate the conductance, given by Eq. (365). It is more useful to start with the

analysis of statistical properties of the variable x, related to the conductance by

g =
1

cosh2(x/2)
(77)
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Fig. 19. The size dependence of parameter x defined by Eq. (77). Energy E = 1 and disorder W = 1. By
combining the linear fit, x(Lz) = 1.94 + 0.0282Lz , shown by solid line, with Eq. (78) we estimate the
localization length, λ = 70.92. This agrees with the analytical estimation, λ = [Re γ]−1 for the real part
of the Lyapunov exponent, Re γ(E) = 1/24(4 − E2) = 1/72, given by Eq. (334).

(in units of e2/h).
Since all states are localized in 1d, we expect that conductance decreases exponentially when

the length of the system increases, so that

x(Lz) = 2Lz/λ, Lz → ∞ (78)

as is shown in Fig. 19. This follows also from the Oseledec’s theorem, discussed in Appendix D.
Conductance g is a statistical variable. To describe the transport properties of the systems

with given disorder, we must study the statistical ensemble of samples, which differ in the mi-
croscopic realization of random energies, and calculate the mean, 〈g〉, and higher cummulants,
or the entire conductance distribution, p(g). We prefer to study the probability distribution of the
parameter x, shown in Fig. 20 for a finite system length Lz. We see that the distribution p(x) is
similar to Gaussian. However, p(x) differs from Gaussian when x is small. Indeed, p(x) → 0
when x → 0 since no negative values of x are allowed. Detailed numerical analysis confirmed
(inset of Fig. 20, [20]) that

p(x) ∼ x x � 1. (79)

Note, no negative values of x are allowed. Thus, to first approximation, p(x) can be written in
the form

p(x) =∝ x e−(x−a)2/2b, (80)

where

a = 〈x〉 +O(1) (81)
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Fig. 20. The probability distribution, p(x), of the parameter x for the one-dimensional disordered chain of
the length Lz = 300, disorder W = 1 and E = 1. For comparison, we show also the Gaussian distribution
with the same mean value, 〈x〉 = 10.41 and variance, var x = 14.45 (dashed line). Inset shows how the
two distributions differ for small x. Note, p(x) ∼ x for small x. To calculate the distribution, the statistical
ensemble of Nstat = 109 samples was considered [20].

and

b = α〈x〉. (82)

Here, α is a constant of order 1. In the limit of Lz → ∞, α → 2 but α < 2 for finite Lz. For
instance, α = 1.388 for system analyzed in Fig. 20.

From known distribution of p(x), we can calculate the distribution of conductance,

p(g) =

∫ ∞

0

d x p(x)δ

[

g − 1

cosh2 x/2

]

, (83)

or the mean values

〈gn〉 =

∫ 1

0

d g p(g)gn =

∫ ∞

0

d x p(x)
1

cosh2n x/2
. (84)

We evaluate the integral in the r.h.s of Eq. (84) by the steepest descent method. The function
p(x) cosh−2n x/2 possess a sharp maximum around xn, which solves the equation

∂

∂x

{

− (x− a)2

2b
+ lnx− 2n ln cosh(x/2)

}

∣

∣

∣

∣

∣

x=xn

= 0. (85)
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Fig. 21. Conductance calculated for Nstat = 200 realization of disorder on the 1d system of the length
L = 200 and box distribution of the disorder with W = 1. The localization length λ ≈ 100.

It is easy to find that xn ∼ O(1). Then, neglecting in Eq. (84) xn with respect to a which is
∝ Lz � 1 we find that

〈gn〉 =
cn

L
3/2
z

e−a2/2b ∝ e−〈x〉/2α (86)

with the constant cn independent of the length Lz
3.

Equation (86) agrees for n = 1 with the analytical result derived in Refs. [70,71]. For n > 1,
we recover the universality of the moments of the conductance, derived in Refs. [71,72], namely
that the ratio

〈gn〉
〈g〉 =

cn
c1

(87)

does not depend on the system length.
Also, note that since 〈g2〉 ∼ 〈g〉 � 〈g〉2, we obtain that the ratio

√
var g

〈g〉 = e+〈x〉/4α � 1 (88)

increases exponentially when the length of the system increases. Therefore, the mean value, 〈g〉,
is not a good representative of the statistical ensemble. It follows from the derivation of Eq. (86
that all the moments of the conductance are determined only by a vanishingly small number of
samples of the ensemble. These samples with small x are by no means representative. The same
conclusion can be drawn out from numerical data in Fig. 21 which shows the conductance calcu-
lated for Nstat = 200 samples which differ from each other only by the microscopic realization
of disorder. We see that the conductance fluctuates from sample to sample in many orders of
magnitude. The mean value, 〈g〉, is determined by a few samples with g ∼ 1, while the most
probable value of the conductance is in many order of magnitude smaller.

Since x possesses a good probability distribution, and the transmission, T = cosh−2 x/2, it
is evident that for long systems it is more convenient to analyze the distribution of the logarithm
of the transmission lnT . We introduce a typical conductance,

gtyp = e〈ln g〉 ∝ e−a ∝ e−〈x〉, (89)

3The factor L
−3/2
z arises form the normalization constant of the distribution p(x).
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Comparing the typical conductance with the mean conductance,

ln〈g〉 ∼ 〈x〉/(2α) (90)

we obtain that

ln gtyp = 〈ln g〉 =
1

2α
ln〈g〉. (91)

The typical conductance is orders of magnitude smaller than the mean conductance. This is typ-
ical for the localized regime. The conductance, g, is therefore not a good variable for description
of transport in the localized regime.

The same holds for the resistance. Using ρ = R/T , we have

ρ = sinh2(x/2) (92)

and

〈ρn〉 =

∫

dxp(x) sinh2(x/2) ≈ ean+bn2/2. (93)

In particular, for n = 1 we obtain, 4

〈ρL〉 =
1

2

(

e4Lz/λ − 1
)

. (94)

Using the composition law or transfer matrices, derived in the next Section, the mean value of the
Landauer resistance, 〈ρL〉, increases exponentially with the length of the system, but the typical
resistance,

ρtyp = e〈lnρ〉 (95)

increases much slower than the mean resistance:

ρtyp =
1

2

(

e2Lz/λ − 1
)

. (96)

Again, the reason for the difference between the mean and the typical resistance is that the value
of 〈ρn〉 is determined by very specific samples which have extremely huge resistance. Detailed
analysis of the statistics of the resistance can be found in Ref. [16, 73–77]

7.1 Role of quantum coherence

In oredr to understand the physical origin of the localization and huge fluctuations of the con-
ductance, we calculate the transmission of the quantum particle through two barriers. In Ap-
pendix A.1, we derived the transmission amplitude for transmission through two barriers, given
by Eq. (228),

t−12 = t−1
[

1 − r+2 r
−
1

]−1
t−2 . (97)

4We remind the reader that b = αa and assume α = 2 in the limit of Lz → ∞.
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From Eq. (97) we obtain the transmission probability,

T12 = |t−12|2 =
T1T2

1 +R1R2 − 2
√
R1R2 cosφ

, (98)

where we use T1,2 = |t−1,2|2, r−1 =
√
R1e

iφ1 , r−2 =
√
R2e

iφ2 and φ = φ1 + φ2.
Equation (98) can be written in the form

lnT12 = lnT1 + lnT2 − ln(1 +R1R2 − 2
√

R1R2 cosφ). (99)

We can introduce the disorder by considering the phase factor, φ, being random with uniform
distribution in the interval (0, 2π) [16]. Then, averaging over all realization of phase gives the
relation

〈lnT12〉 = lnT1 + lnT2, (100)

since the integral of the last term on the r.h.s. of Eq. (99) is zero [16].
Relation (100) can be generalized for the N scattering centers. We obtain

〈lnTN 〉 = N lnT1, (101)

where lnT1 is the average of the transmission probability through one scatterer,

lnT1 =
1

N

N
∑

a=1

lnTa. (102)

Equation (101) gives immediately the exponential decrease of the typical transmission,

e〈T 〉 = e−2Lz/λ, (103)

where the localization length is given by

λ−1 = lnT1/2. (104)

With the use of the expression ρL + 1 = 1/T (Eq. 94) we recover the relation (96).

On the other hand, Ohm’s law claims that the resistance of the 1d system increases linearly
with the length of the system, or, equivalently, with the number N of scatterers. To obtain this
result, we have to assume that electron is a classical particle. Then, instead of combination of
transmission amplitudes, we combine the transmission and reflection probabilities. We obtain
that

T12 =
T1T2

1 −R1R2
. (105)

With the use of relations T = 1 −R and ρ = R/T , we obtain from Eq. (105) that

ρ12 = ρ1 + ρ2, (106)

which is nothing but Ohm’s law as we wanted.
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Fig. 22. Left: Distribution of the logarithm of the conductance, p(ln g) for the 1d disordered Anderson
model. The energy of the electron is E = 1, and the disorder W = 0.25, 0.5, 1 and 2. To keep the same
value of the ratio L/λ, we use the analytical result, λ ∼ W−2, for the localization length, discussed in
Appendix D, and choose the length of the system Lz = 4800, 1200, 300 and 75, respectively. Note the
drop of the distribution at ln g = 0. This is because the conductance never exceeds 1 in the 1d systems.
Right: p(ln g) for disorder W = 2 and two lengths of the system, Lz = 200 and Lz = 400. For a longer
system, the probability to have g close to 1 is negligible and p(ln g) is Gaussian.

7.2 Distribution of the conductance

Figure 22 presents numerical data for the distribution p(ln g) for a strongly disordered 1d system.
The distribution is similar to a Gaussian, in agreement with theoretical expectation discussed in
Appendix D and with our estimation of the distribution p(x). The main difference from the
Gaussian distribution is that the distribution drops to zero at ln g = 0 since the conductance
never exceeds 1.

Figure 23 shows the probability distribution, p(g) for 1d chains shorter than the localization
length. For very short systems, Lz � λ, the electron “almost always” propagates through the
sample. The chance to be scattered is very small. Interestingly, the distribution is almost flat
when Lz/λ ≈ 0.5.

Numerical data shown in Figs. 22 and 23 confirm that the distribution depends only on the
ratio Lz/λ. Although the system is defined by many parameters - energy, disorder, length of the
system - the only parameter which really determines the transport properties is the ratio Lz/λ.
This observation simplifies considerably the theoretical investigations of the localization, and it
is the key assumption in the scaling theory of localization.

7.3 Ergodic hypothesis

As discussed above, the conductance of a 1d system is a statistical quantity which wildly fluctu-
ates as a function of distribution of random energies, εr. This is demonstrated in Fig. 21, which
shows the conductance for Nstat = 200 realization of disorder. These data should be compared
with those shown in Fig. 24 which plots the conductance of a given sample as a function of en-
ergyE of the electron. We observe that the conductance fluctuates similarly as in Fig. 21. More
detailed analysis proved that the values g(E) create the same statistical ensembles as the values
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Fig. 23. Conductance distribution for the 1d Anderson model with short system length Lz . Figures contain
data for W = 0.5 (the localization length λ = 360) and L = 25, 50, 100, 160, 200 and 300. These data
are compared with data for W = 0.25 (λ = 1440) and a four times longer system, to show that systems
with the same ratio L/λ have the same distribution p(g). The energy of the electron is E = 0.5.
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Fig. 24. The conductance of the single disordered one dimensional chain as a function of the energy E of
the electron. The length of the sample is L = 200, disorder W = 1. Note, the conductance fluctuates
within the same orders of magnitude as in Fig. 21. The energy dependence of the conductance is studied in
details in Ref. [78]

of the conductance calculated for different samples with fixed energy. This result is known as the
ergodic hypothesis [13].

The ergodic hypothesis plays a crucial role in the experimental studies of the transport in
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disordered systems. Contrary to numerical simulations, it is impossible to study a huge number
of microscopically different samples in experiments. Fortunately, due to the ergodic hypothesis,
it is sufficient to use only one sample and vary the Fermi energy. Similar equivalence holds
also in the metallic regime. Here, not only Fermi energy, but also the magnetic field can be
varied [79]. The ergodic hypothesis in higher dimensional systems was numerically tested in
Ref. [80].

8 Diffusive regime

By definition, the diffusive regime is characterized by the diffusive propagation of the electron
in the sample. This happens when the mean free path is sufficiently large so that electron is
scattered separately on two successive impurities. Also, the size of the system must be large
enough,

L� `, (107)

so that the electron scatters many impurities before it leaves the sample.
The diffusive regime can be obtained in the 3d systems with disorderW <Wc. Although no

metallic phase exists in 2d systems, we can observe the diffusive regime if the size of the system
is smaller than the localization length,

L� λ. (108)

Similarly, in weakly disordered quasi one dimensional systems, described by the DMPK equation
(Appendix B), the diffusive regime exists when the length Lz of the system does not exceeds
localization length. Note, there is no diffusive regime in one dimensional samples since ` = λ
[84].

The diffusive regime is characterized by the conductivity,σ, given by Eq. (1), which is related
to the conductance, g, by Eq. (70), which we now write in more accurate form,

〈g〉 = σLd−2. (109)

In Eq. (109), 〈. . .〉 means ensemble averaging. The averaging is crucial in Eq. (109). Contrary
to the conductivity, σ, the conductance g, is a sample dependent statistical variable, which is not
self-averaged. In Sect. 8.3 we show that fluctuations of the conductance in the diffusive regime
are universal, independent of the size of the system and the mean value, 〈g〉.

Owing to Eq. (107), the electrons are scattered many times inside the sample, and their
wave function becomes totally randomized. Thanks to this randomization, electron transport is
totally universal in diffusive regime. We discuss two main transport properties of the diffusive
regime: the weak localization correction to the mean conductivity, and the universal conductance
fluctuations.

8.1 Weak localization

In the derivation of the conductivity,σ, given by Eq. (1), no quantum interference processes were
considered. Experimental and numerical results, however, show that these processes play an im-
portant role already in the diffusive regime, and lead to the so called weak localization corrections
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Fig. 25. The conductance (in units of e2/h) in the 2d orthogonal system. Weak localization corrections
are given by a logarithmic decrease of 〈g〉 when the size of the system increases. Symbols show numerical
data for the conductance, while the lines are logarithmic fits (note logarithmic scale on the horizontal axis).
Corresponding slopes are given in the legend. Theory predicts that the slope is universal, equal to π−1 =
−0.318 (Eq. 118).
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Fig. 26. The closed trajectory of the electron in a disordered 2d system. On the travel along the trajectory,
the electron is coherently scattered. If the systems possess time reversal symmetry, then traveling in both
directions gives the same contribution to the conductance.

to the conductance. We demonstrate the weak localization effects in Fig. 25 which shows that
the mean conductance, 〈g〉, of the 2d disordered Anderson model depends logarithmically on the
system size. This is a consequence of coherent backscattering of quantum electrons.

To understand the origin of this correction, we calculate the probability that the electron,
propagating through the sample, is scattered back. Figure 26 shows the typical closed trajectory
of the electron. The probability amplitude associated with the nth closed trajectory is An. Since
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the electron is a quantum particle, the probability to return back is given by (in units of e2/h)

δgq =

∣

∣

∣

∣

∣

∑

n

An

∣

∣

∣

∣

∣

2

. (110)

where n counts all possible closed paths. The corresponding contribution for the classical parti-
cle is

δgc =
∑

n

|An|2 . (111)

Note, δgc is included already in the conductance, σ, given by Eq. (1). Therefore, the logarithmic
corrections to the conductance, shown in Fig. 25 originate form the difference

δg = δgq − δgc. (112)

The r.h.s. of Eq. (110) can be written in the form
∑

n

|An|2 +
∑

n6=n′

(A∗
nAn′ +AnA

∗
n′) = δgc +

∑

n6=n′

(A∗
nAn′ +AnA

∗
n′) . (113)

In random systems, the sum of the off-diagonal terms is zero because of random phases of com-
plex amplitudes A. However, there is an important exception, when An and An′ correspond to
the same closed path, but opposite in direction to the electron propagation. Consider one loop,
as shown in Fig. 26. The electron can travel this path in both directions; both possibilities give
the same contribution, |A|2 = |A+|2 = |A−|2. Moreover, if the system possesses time reversal
symmetry (which is the case of 2d Anderson model), then also A+ = A−, and the off-diagonal
terms,

A+A
∗
− +A∗

+A− = 2|A|2 (114)

are real, independent of phase. Then, in the quantum case, a given loop contributes to backscat-
tering by

δgq = |A+|2 + |A−|2 +A+A
∗
− +A∗

+A− = 4|A|2. (115)

In the classical case, this contribution is only

δgc = 2|A|2, (116)

The difference between classical and quantum backscattering, given by Eq. (112), gives rise to
the negative weak localization corrections to the conductance.

We do not calculate δg here, only give a final result [30],

δg = δgq − δgc = −4
e2

h
Ld−2 1

(2π)d

∫

dd~q

q2
. (117)

Here, q is the wave vector of the electron propagating on the loop. To avoid the divergences
in integral (117), we introduce the lower, qmin = 1/L, and the upper, qmax = 1/`, integration
limits [81]. Then, integration gives for dimension d = 2 the expression

δg = − 1

π
lnL/`, d = 2, (118)
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Fig. 27. The weak anti-localization corrections to the conductance for the 2d Ando model. The conductance
is given in units e2/h. The legend presents the calculated slopes. Theory predicts the slope +π−1 = 0.318.
More accurate data for the weak anti-localization correction were obtained within the SU(2) model in
Ref. [82].

and for d = 1 and d = 3 the formulas

δg =







−π−2(L/`− 1) d = 3

`/L− 1 d = 1.
(119)

Since the backscattering is larger for the quantum particle, the correction to the conductance
must be negative. Note, however, that the above results hold only in systems with time reversal
symmetry. When a strong magnetic field is applied to the system, the time reversal symmetry is
broken and δg = 0. Indeed, the electron acquires on the closed loop the phase

φn = ±
∫

~A(~r)d~r, (120)

where ~A is a vector potential and the sign ± depends on the propagation direction. Then, the
product AnA

∗
n′ is not real, but possesses the phase factor e2iφn . Since the phase φn depends on

the length of the loop, in the summation over all loops, all complex contributions cancel.

In symplectic models, when the hopping between two neighboring sites becomes spin de-
pendent, the quantum contribution to the backscattering changes the sign. The reason is that the
wave function of the particle with spin 1/2 transforms into itself after rotation in 4π, contrary
to spin-less particle [25]. The weak anti-localization corrections to the conductance for the 2d
Ando model is shown in Fig. 27.
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Fig. 28. The mean conductance, 〈g〉, as a function of N/Lz for the 2d systems (left) and the 3d anisotropic
model (9) with t = 0.4 (right). The slope of the linear fit determines, due to Eq. (121), the mean free path,
`. Left: The 2d system, N = L = 50. We found ` = 17.0, 4.9, 2.30 and 1.25 for W = 1, 2, 3 and 4,
respectively. For W = 1, we add also data for L = 100. Right: The 3d systems of the size L × L × Lz .
For W = 4 (circles) we found ` = 1.92, while ` ≈ 9 for W = 2. Note, the weak localization corrections
in both systems are close to −1/3, as predicted by DMPK equation (Appendix B). The only exception is
the 3d system with W = 2, since ` ≈ L in this case.

8.2 Weak localization in quasi-1d systems

Of particular interest is transport in weakly disordered quasi one dimensional systems. This
problem is exactly solvable. In Appendix B we introduced the DMPK equation for the joint
probability distribution of parameters λ of the transfer matrix. From the DMPK equation, the
following expression for the mean conductance can be derived [83] (in units of e2/h),

〈g〉 =
N`

Lz
− 1

3
, (121)

(Eq. 282). The weak localization correction is constant, independent of the system length,
provided that `� L� N`.

Note that expression (121) was derived in the limit of infinite number of transmission chan-
nels, N → ∞. Therefore, it cannot be applied to the 1d models, where N = 1.

Figure 28 verifies both theLz dependence of the mean conductance and the weak localization
correction, δg = 1/3 for two different quasi-1d systems. Note, relation (121) can be also used
for the numerical calculation of the mean free path, `. Numerical data for the conductance in
quasi-1d systems are presented in Fig. 28. The obtained values of the mean free path are rather
small, of the order of the lattice period. Only when disorder is very weak (W = 1 in 2d), then
` ≈ 17. Note that in the Born approximation [84], the mean free path decreases with the disorder
as

` ∝W−2. (122)
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Fig. 29. The numerical data for the mean free path, `, from Fig. 28 (diamonds), compared with results of
Ref. [84] (circles).

The numerical data for the mean free path of 2d systems, obtained in Fig. 28 are in very good
agreement with results of Ref. [84], shown in Fig. 29.

8.3 Conductance distribution. Universal conductance fluctuations

Because of the randomness, the conductance is a statistical variable, and can vary from sample to
sample as a function of the distribution of random energies εn. In the diffusive transport regime,
the conductance distribution is Gaussian, as shown in Fig. 30.

Since the disorder W is weak, the statistical properties of the conductance can be derived
theoretically, either by the perturbation Green’s function method [9] or within the framework of
the DMPK equation, introduced in Appendix B. The distribution of the conductance is Gaussian
with universal width. The variance,

var g = 〈g2〉 − 〈g〉2 (123)

is a universal number, independent on the disorder strength (provided that inequalities (107, 108)
hold). var g depends only on the dimension of the system and on boundary conditions [9]. This
phenomenon is known as universal conductance fluctuation.

Also, var g depends on the physical symmetry of the model. It was proved in Ref. [9] that

var g ∝ 1

β
. (124)

We remind the reader that β = 1, 2 and 4 for the orthogonal, unitary and symplectic systems,
respectively. For the quasi-1d systems, the same universality relation was derived in Ref. [83,85].

In systems with higher dimension, var g depends also on the boundary conditions in the
directions perpendicular to the propagation [9]. This dependence was theoretically investigated
in Ref. [86] and numerically verified in [87].
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Fig. 30. The probability distribution p(g) of the conductance for weakly disordered systems. Left: The 2d
samples of the size 300 × 300. Disorder W = 3 (circles) and W = 2 (squares). Solid lines are Gaussian
fits with variance 0.168 and 0.179 for W = 3 and W = 2, respectively. This is close to the theoretical
prediction, 0.185, obtained for hard wall boundary conditions in Ref. [87]. Right: The 3d system with
box distribution of random energies, W = 6 and L = 10 (circles) and L = 14 (squares). Solid lines
are Gaussian fits with mean value 〈g〉 = 7 (L = 10) and = 10.03 (L = 4). These values confirm the
relation 〈g〉 = σL with the conductance σ = 0.7. The width of distributions is var g = 0.38 and 0.366 for
L = 10 and L = 14, respectively, are close to the theoretical prediction 0.314 [87,88]. Data were obtained
numerically with statistical ensembles of Nstat = 104 samples.

The deviations of p(g) from Gaussian form can be measured by the third cummulant,

〈g3〉c = 〈g3〉 − 3〈g2〉〈g〉 + 2〈g〉3. (125)

It was shown analytically [89] that 〈g3〉c = 0 for the quasi-one dimensional systems and is
∼ 10−3〈g〉−1 for the 3d system. Such small values are not observable with today’s computer
facilities.

The conductance fluctuations for the 2d weakly disordered systems are plotted in Fig. 31.
Note how the variance of the conductance is universal only when the size of the sample is much
larger than the mean free path, L > 10 × `. However, L must be much smaller than the local-
ization length, L/λ � 1. Also, for small system size, when condition (107) is not satisfied, the

Tab. 1. Universal values of the conductance fluctuations, var g = 〈g2〉 − 〈g〉2 for the d-dimensional
disordered systems with the hard wall and periodic boundary conditions [88]. For other symmetry classes,
var g must be divided by a factor of β, (Eq. 124). var g ∼ ε−1 in the dimension d = 4 − ε.

d HW periodic
1 2/15 2/15
2 0.185613 0.154078
3 0.314054 0.2194393
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Fig. 31. Conductance fluctuations for the 2d Anderson model. Different symbols correspond to the disorder
W = 1, 2, 3, 4 and 5. The size of the system increases from L = 10 to L = 1000. The horizontal dashed
line is the theoretical prediction var g ≈ 0.1856 of the universal conductance fluctuations for 2d orthogonal
system with the hard wall boundary conditions [87]. For W = 1, the mean free path ` ∼ 17 is already
comparable with L for some smaller samples. The system is in the ballistic regime and var g exceeds
universal value. A more detailed analysis of the universal conductance fluctuations has been done in [87].

system is in the ballistic regime, in which the scattering of electrons is not sufficiently strong
to randomize the wave function sufficiently. In this regime, the conductance is large, g ∼ No,
and the fluctuations of the conductance increase. Of course, the variance decreases to zero in the
limit of a regular lattice (W = 0).

8.4 Other universal relations

Universal conductance fluctuations are the consequence of the universality of the diffusive trans-
port. In Appendices B and C we discuss the statistical properties of the eigenvalues λa of the
matrix

[

t†t
]−1

. It turns out, that in the diffusive regime the joint probability distribution of the
eigenvalues λ is universal and depends only on the length of the system and the number of the
transmission channels, No. The disorder, W , influences the transmission parameters only in
terms of the ratio Lz/λ of the system length and the mean free path.

From the universality of the probability distribution p(λ) we can obtain other universal rela-
tions for the transmission parameters. In Appendix C we show that the spectrum of parameters
xa, defined by Eq. (68) is linear,

xa ∝ a, (126)

as shown in Fig. 76. Also, the differences, xa+1 −xa are distributed with the Wigner probability
distribution (Fig. 74).

Here we want to show that not only the conductance, g, but also the transmission probabili-
ties, Tab and Ta, introduced in Sect. 6.2 as

Tab = |tab|2 (127)
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Fig. 32. Probability distribution p(sa), given by Eqs. (131,132) for various values of the mean conductance,
〈g〉.

and

Ta =
∑

b

|tab|2 =
∑

b

Tab, (128)

exhibit universal statistical properties. We remind the reader that Tab is the probability that the
electron, coming in channel a is transmitted through the sample and leaves the sample in channel
b and Ta is the probability that the electron, coming in channel a, transfers through the sample.
It is clear that

g =
∑

a

Ta. (129)

Note, Ta is not the eigenvalue of the matrix t†t.
The universal probability distribution for the normalized transmission probability,

sa =
Ta

〈Ta〉
, (130)

was derived in Refs. [94,95]. The distribution p(sa) is determined only by the mean conductance,
and is given by the following analytical formula,

p(sa) =

∫ +∞

−i∞

dx

2πi
exsa−Φ(x) (131)

where

Φ(x) = 〈g〉
[

ln
(

√

1 + x/〈g〉 +
√

x/〈g〉
)]2

. (132)

The probability distribution p(sa) is shown in Fig. 32 for a few values of the mean conductance.
Distribution p(sa) possesses universal variance,

var sa = 〈s2a〉 − 〈sa〉2 =
2

3〈g〉 . (133)
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Fig. 33. Upper panels show the probability distribution of the parameters sa, defined by Eq. (130) for
the 2d Anderson model, with the random binary potential given by Eq. (134). The energy of the electron,
E = 0.14 (left upper panel) and E = 0.31 (right upper panel) is measured in this particular case from
the bottom of the conductance band. Different symbols represent the data for channels a = 1, 2, 3 and
10. The solid line is the theoretical prediction, given by Eqs. (131,132). Two lower panels show the mean
transmission, 〈Ta〉 and the variance, var sa, given by Eq. (133). Note that all channels are almost equivalent
and they give the same contribution to the conductance. The number of open channels is No = 23 and
No = 34 for E = 0.14 and E = 0.31, respectively. The size of the system is 192 × 192 [93].

Universality of the distribution (131) was confirmed experimentally in experiment with mi-
crowave electromagnetic waves [24, 95]. Numerically, it was studied in Ref. [93] for the 2d
system with correlated binary disorder

p(ε) = (1 − x)δ(ε) + xδ(ε+ Vb). (134)

Spatial correlations were introduced so that random energies create randomly distributed poten-
tial wells of the size of 3 × 3 lattice sites.

Figure 33 shows the numerically obtained data for the system of size 192 × 192 and for two
energies of the electron. Data confirm that indeed the channels are equivalent to each other, and
they give the same value of the transmission, 〈Ta〉. This is a typical property of the diffusive
regime: transmission in a given channel does not depend on the incident angle, since electron,
being many times scattered inside the sample, forgets the initial direction of propagation.

8.5 Diffusion

Conductivity, σ, can be expressed through the diffusion coefficient, D, σ = e2Dρ, given by
Eq. 1. The density of states, ρ(E) was calculated in section 4.1. The diffusion coefficient can
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Fig. 34. The time dependence of the wave packet in the 2d disordered system, defined by Hamiltonian (6).
Shown are points where |Ψ(~r)| > 0.0005 (gray), |Ψ(~r)| > 0.0010 (dark gray), and |Ψ(~r)| > 0.0050
(black) at time t = 100, 500 and 900 (from top to bottom). The time is measured in units h̄/V with V = 1
and the size of the lattice is 512 × 512. For weak disorder, the wave function of the electron diffuses and
〉r2〈= 2Dt where D is the diffusion coefficient. Clearly, D decreases when disorder increases. For W = 6
(right column), diffusion already stops and the electron is localized (see also Fig. 2).

be calculated numerically solving the time dependent Schrödinger equation, Eq. (5). Figure
34 shows the time evolution of the single electron wave function in disordered 2d samples with
different strength of the disorder. We use the same data to calculate the width of the wave packet,

〈r2(t)〉 =

∫

d~rΨ∗(~r, t)r2Ψ(~r, t) (135)

in time t. When disorder is small, the electron diffuses from the center, and we obtain that

〈r2〉 = 2Dt. (136)

In the case of strong disorder, 〈r2〉 should converge to the time-independent quantity, when the
electron is localized. This was shown already in Fig. 1 for the case of strong disorder.

Figure 35 shows the time dependence of 〈r2〉 for various strengths of the disorder. The
diffusion constant, D, is obtained as the slope of the linear dependence 〈r2〉 vs t. If the density
of states, ρ(E) is known, then we can obtain the conductance,

g = σ =
e2

h
hDρ. (137)
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Fig. 35. Left: 〈r2〉 vs time t for the 2d Anderson model with box disorder. The slope of the linear
dependence determines the diffusive coefficient D. The data for disorder W = 2 and W = 4 corresponds
to the wave function shown in Fig. 34. For weak disorder, W = 1, we see already the saturation of 〈r2〉
due to the finite size of the system and reflection of the wave packet from boundaries. Solid lines are linear
fits, 〈r2〉 = 2Dt. Time is measured in units h̄/V . The diffusion coefficient, D, measured in units a2V/h̄,
is given in legend.

Using numerical data for the disorderW = 4: ρ(E) ≈ 0.15/a2V (Fig. 4), andD = 1.69 a2V/h̄
(Fig. 35), we obtain that g(W = 4) = 1.59(e2/h). This is consistent with numerical data shown
in Fig. 25.

8.6 Beyond the diffusive regime

As will be discussed in next Section, there is no true metallic regime in 2d orthogonal systems.
What we have observed so far is the diffusive propagation of the electron on a finite square
lattice of size L × L. When L increases over the localization length, λ = λ(W ), the electron
becomes localized and the L dependence of the conductance changes from the logarithmic to the
exponential.

In Fig. 36 we demonstrate how the conductance distribution, p(g), of the 2d disordered
systems changes when the size of the system,L, increases. For disorderW = 3, p(g) is Gaussian
even for L = 1000. However, for the disorder W = 4, the localization length λ ≈ 50 and the
probability distribution changes its form considerably.

In the opposite limit of small L, the system is in the ballistic regime. In the limit of L < `,
there is almost no scattering inside the sample, so the conductance 〈g〉 is given by the number of
open channels. In 2d, this means that 〈g〉 ∝ L. Increase of the conductance with the system size
is shown in in Fig. 37. Note, the ballistic regime can be observed also in the 1d systems. Fig. 23
shows that for sufficiently short systems, the conductance of 1d disordered system is close to 1
when L� ξ.

Since the electron is scattered only on a few impurities during its travel through a ballistic
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Fig. 36. The system size dependence of the conductance distribution, p(g) for the 2d systems. Left: W = 3.
The conductance is almost independent to the system size, since system is in the diffusive regime (` ≈ 2.3,
and λ = 5046). Right: W = 4. The distribution p(g) is Gaussian only for very small systems (L = 10),
and it changes considerably when L increases. The mean free path, ` ≈ 1.3 and localization length,
λ = 481. The estimation of the localization length is taken from Ref. [6].
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Fig. 37. The length dependence of the mean conductance, 〈g〉, for the 2d disordered systems. When
disorder is weak, 〈g〉 increases for small L since the system is in the ballistic regime. Naively, this might be
interpreted as a metal-insulator transition: since the mean conductance increases for W = 1 and decreases
for W = 5, one might conclude that the 2d system possesses the critical point, Wc ≤ 1, i. e. that disorder
W = 1 corresponds to the metallic regime.
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sample, the values of the conductance for a given sample depends on the actual distribution of
impurities. Consequently, fluctuations of the conductance increase in the ballistic regime [96].
This is confirmed in Fig. 31.

9 Scaling theory of localization

As discussed in the Introduction, the metal-insulator transition resembles the phase transition in
statistical physics. We would like to develop the theory, similar to the renormalization group
theory of second order phase transitions.

The first step in this direction is to determine the relevant order parameter. It turns out that
the most suitable candidate for such parameter is the Thouless conductance, gT . First, it can be
defined both in the metallic and localized regime. Second, the analysis of the sensitivity to the
boundary conditions tells us how the conductance gT develops when the size L of the system
increases. Since gT is equivalent to gES [69] both in the metallic and in the insulating regime,
we will consider the conductance gES and use the simpler notation, g.

The main assumption we have to accept is that for the system size sufficiently large, the
length dependence of the conductance is given only by the conductance itself:

∂ ln g

∂ lnL
= β(g). (138)

The “sufficiently large” system size L means that L exceeds all “natural” lengths which might
determine the transport in the system. Some examples of such scales are the mean free path,
`, which determines the coherent scattering on impurities, the coherence length of the random
potential, or magnetic length, which is important if the magnetic field is present. If L is much
larger than all these scales, we expect that microscopic details of the model become irrelevant.

Now, we want to derive some consequences from the Eq. (138). First of all, we must admit
that the form of the function β(g) is unknown. However, we can derive its limits for g → ∞ and
g → 0. Consider for simplicity only the orthogonal symmetry, so that the symmetry parameter
β = 1. In the limit of large conductance, we can use the L-dependence of the conductance,
derived in Sect. 8. The leading term of the conductance behaves as g = σLd−2. Inserting into
Eq. (138), we obtain that

lim
g→∞

β(g) = d− 2. (139)

Since the first correction to the conductance, derived in Sect. 8.1 is negative, we immediately
see that β(ln g) reaches the limit (139) from below. In particular, for d = 2, we obtain from Eq.
(118) that

β(g) =
∂ ln g

∂ lnL
=

1

g

∂g

∂ lnL
= − 1

πg
. (140)

In the opposite limit, g � 1, we have exponential localization,

g ∼ e−2L/λ, (141)

so that

β(g) = −2L

λ
= ln g. (142)
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Fig. 38. The function β(g) for the disordered orthogonal systems with dimension d = 1, 2 and 3. Notice
the critical point, gc for d = 3.

Now, we can interpolate between the limits (139) and (142). This is straightforward if we
assume that the function β(g) is always continuous and monotonous. Although we do not have a
rigorous proof that β(g) really fulfills these conditions, there is no physical reason not to accept
them. Then, connecting both limits, we obtain that the functionβ(g) behaves as shown in Fig. 38.

The form of the function β(g) has some important consequences. First, we see that for d < 2,
the function β(g) is always negative. So starting with a sample of finite size, L0, and conduc-
tance, g0, the conductance, given by Eq. (138) decreases and develops to a smaller conductance
when the system size, L, increases. Consequently, an infinite system with dimension d ≤ 2 does
not exhibit the Anderson transition since all electronic states are localized, independent of the
strength of the disorder.

For d > 2 (d = 3, for instance), there is a critical point gc such that

β(gc) = 0. (143)

When starting exactly with g = gc, the conductance remains constant, independent of the system
size even in the limit of L → ∞. Thus, a disordered system in dimension d > 2 possesses
a critical point. This critical point is unstable: when starting with g = gc + δg, we end up,
in the limit of L → ∞, in the metallic regime with finite conductivity σ. Similarly, starting
with g = gc − δg, the system will develop into the insulating regime with exponentially small
conductance.

What remains is the calculation of the function β(g). Analytically, this is possible only for
systems close to the critical dimension: d = 2+ ε, (ε� 1) [97,98]. We will discuss these results
in Section 13.

The scaling theory of localization, formulated first in Ref. [3] represents the main milestone
in our understanding of the Anderson transition. First, it estimates the lower critical dimension,

dc = 2. (144)
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There is no metallic regime in the disordered system with dimension d ≤ 2. However, this
statement is true only for orthogonal systems, i.e. for systems with time reversal symmetry. We
know already that in symplectic systems the first correction to the conductance in the diffusive
regime is positive (Fig. 27) so that β(ln g) → 0+ when g � 1 [10]. Consequently, the 2d
systems with spin dependent hopping exhibit the metal insulator transition. This was for the first
time predicted in Refs. [47, 48] and confirmed numerically by many authors [49, 54, 99, 100].

Soon after formulation of the scaling theory [3] it became clear that g is a statistical quantity,
which is not self-averaged in the limit of the infinite system size. In the metallic regime, the
probability distribution of the conductance, p(g), possesses an universal width, given by the
universal conductance fluctuations. In the insulating regime, g does not represent the statistical
ensemble, as discussed in Section 7, and we have to use its logarithm, ln g. Even then, p(ln g) is
Gaussian with the mean value 〈ln g〉 = −2L/λ and the variance, 〈ln2 g〉 − 〈ln g〉2, being of the
same order as −〈ln g〉. We do not know the analytical form of the critical distribution, pc(g), but
both theoretical [75, 101] and numerical [102] results confirm that pc(g) is independent on the
size of the system. This is consistent with the size independence of the critical conductance, given
by Eq. (143). However, since the width of the critical distribution is non-zero, the conductance
is not the self-averaged quantity at the critical point. The statistical character of the conductance
opens new problems in the scaling theory. First, we have to prove that both mean values, 〈g〉, and
〈ln g〉 obey scaling relations (138). Then, it would be useful to prove the same for all cummulants
of the conductance. This is, of course, an unsolvable task.

The first step in the verification of the single parameter scaling theory is to understand the
statistical properties of the conductance in the critical and localized regime.

10 Statistical properties of the conductance in the critical regime

The statistical properties of the conductance at the critical point were discussed by Shapiro,
[75, 101]. With the use of the Migdal-Kadanoff renormalization, he studied the size dependence
of the conductance distribution and he proved that the critical conductance distribution, pc(g),
is universal, independent of the system length. The later works [103] however showed that the
Migdal-Kadanoff renormalization overestimates the conductance fluctuations, and is therefore
not suitable for a quantitative description of the critical conductance distribution.

In dimension d = 2 + ε, the non-universality of higher order conductance cummulants has
been found analytically [12] to be

〈δgn〉 =

{

εn−2 n < n0 = ε−1

∼ Lεn2−n n > ε−1.
(145)

Expression (145) states that the higher order cummulants, n > n0 = ε−1, depend on the size
of the system. This seems to be in contradiction with universality of the critical distribution.
This discrepancy was explained in Ref. [104]. Starting from the known cummulants, given by
Eq. (145), the critical conductance distribution was derived. It was shown that pc(g) is indeed
universal in the limit of the infinite system size. The non-universality of higher cummulants
follows from the form of the critical distribution. For small ε, the bulk of pc(g) is approximately
Gaussian near the mean value 〈g〉. The parameters of the Gaussian peak,

〈g〉 ∼ ε−1 (146)
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Fig. 39. The critical conductance distribution for the 3d Anderson model. The data for the samples L3

with 10 ≤ L ≤ 22 are shown. Statistical ensembles of Nstat = 106 (20000) sample for L = 10
(L = 22), respectively were used to create the distribution. Left: the distribution of the conductance, right:
the distribution of the logarithm of the conductance. The legends present the mean values, which should be
independent of the system size at the critical point. Note the non-analytical behavior of the distribution at
g = 1.

and

var g ∼ ε0, (147)

but pc(g) possesses long tails for large values of g,

pc(g) ∼ g1−2/ε. (148)

The power-law behavior of pc(g) explains the non-universality of higher cummulants, 〈δgn〉,
which are not defined for n > 2/ε.

These analytical results were derived only for dimensions close to 2, for ε� 1. Any attempt
to apply them to the 3d system fails. For instance, Eq. (148) predicts that pc(g)

(d=3) ∼ g−3

for large g, which is clearly not realistic. The most relevant information about the form of the
critical conductance distribution was therefore obtained from numerical simulations [102, 105–
108] based on the formula

g = Tr t†t =
∑

a

1

cosh2(xa/2)
, (149)

already used in the diffusive regime.
In Fig. 39 we plot the critical conductance distribution for the 3d Anderson model. We see

that pc(g) does not depend on the system size. This is what we expect if the scaling theory really
works.

The form of pc(g) is rather unusual. Numerical data enables us to understand its main proper-
ties. It turns out that it is useful to study also the distribution of the logarithm of the conductance,
p(ln g), shown in the right panel of Fig. 39.
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Fig. 40. Details of the critical probability distribution for the 3d Anderson model. The left figure proves
that pc(g) → 0 when g → 0. The right panel shows both the distribution, pc(g) and its first derivative,
∂pc(g)/∂g in the neighborhood of g = 1. Numerical data indicate the non-analytical behavior of the
distribution at g = 1.

First, we need to know the form of pc(g) for small g. The behavior of pc(g) for small g can
be easier obtained from the distribution of the ln g. In the right panel of Fig. 39 we see that

ln pc(ln g) ∼ −(ln g)2 g � 1. (150)

Since pc(g)dg = pc(ln g)d(ln g), we immediately obtain that [105]

pc(g) ∝ exp
[

−(ln g)2 − ln g
]

g � 1, (151)

so that pc(g) → 0 when g → 0. The left panel of Fig. 40 shows details of the critical distribution
for g < 0.1. The data, collected from the ensemble of the Nstat = 107 samples of the size
L = 10 confirm that pc(g) indeed decreases to zero when g → 0. However, the probability to
obtain small values of g is very small.

Other properties of the critical distribution, namely the form of the tail for large values g
and the non-analytical behavior in the neighborhood of g = 1, are more convenient to analyze
in terms of parameters xa [102, 105], introduced in Eq. (68). We remind that xa determine
the eigenvalues of the matrix t†t and that the conductance is expressed in terms of xa by the
following formula

g =
∑

a

1

cosh2 xa/2
. (152)

Numerical data [91, 102, 128] showed that the spectrum of xa consists of two qualitatively dif-
ferent parts. In the lower part of the spectra, for a ≤ L, 〈xa〉 are independent on the size of the
system

〈xa〉 = const a < L. (153)

This is what we expect, since the mean conductance, 〈g〉, is size-independent at the critical point.
The size independence of xa was confirmed numerically in Ref. [128] and will be discussed in
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Sect. 12.3. Contrary to the metallic regime, where 〈xa〉 ∝ a (Eq. 320), at the critical point we
obtain (Fig. 41) that

〈xa〉2 ∝ a. (154)

It is important to note that Eq. (154) is valid only for a ≤ L. The upper part of the spectra, with
a > L, is L dependent with 〈xa〉 ∝ a. Since this upper part of the spectra does not contribute to
the conductance, we will concentrate only on the lower part, given by Eq. (154).

Insets of Fig. 41 show that the distribution of x1 is similar to the Wigner distribution p1, and
all higher parameters xa, with a > 2 are distributed according to the Gaussian distribution with
decreasing variance,

var xa ∼ a−α, (155)

where the exponent α is close to 1/2 [91].
We use the statistical properties of xa to estimate the behavior of the critical distribution for

large g. From the expression for the conductance, given by Eq. (152) we see that we can obtain
a large value of the conductance,

g ∼ N � 1, (156)
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Fig. 42. Comparison of the critical conductance distribution with distribution p(g1) of the contribution of
the first channel.

only when all xa, a = 1, 2, . . . , N are small. However, since all parameters xa are distributed
with the Gaussian distribution, we obtain that the probability to have xN � 1 is

exp− 〈xN 〉2
var xN

∼ exp−g1+α. (157)

In Eq. (157) we used that 〈xN 〉2 ∝ N = g and we estimated the variance var xN ∼ N−α with
the use of Eq. (155). Eq. (157) confirms that pc(g) decreases faster than exponentially for large
g. This is confirmed by our numerical data. The probability to have g > 1 is very small (less
than 3%). The higher values of g appear with marginal probability. For instance, in an ensemble
of Nstat = 107 samples, we found only 470 samples with conductance g > 2 and only one with
g > 3.

The most surprising property of the critical conductance distribution is that pc(g) seems
to be non-analytical at g = 1. The right Fig. 40 shows that the first derivative, ∂pc(g)/∂g, is
discontinuous at g = 1. The origin of the non-analyticity can be again explained from the spectra
of the parameters xa. The numerical data, for mean values, 〈x1〉 = 3.42, 〈x2〉 = 5.52, and
〈x3〉 = 7.07, indicate that the conductance is given mostly by the first term, g1 = cosh−2(x1/2).
Indeed, the distribution p(g1) is a very good approximation to pc(g) for g < 1, as shown in
Fig. 42. Since g1 ≤ 1, the function p(g1) has a cutoff when g → 1−. It is difficult to estimate
the contribution of higher channels but it is reasonable to expect that the non-analyticity of the
distribution survives also when the contribution of higher channels is included. This is supported
by analytical calculations of Muttalib et al [109,110], who reported the non-analytical form of the
conductance distribution in the weakly disordered quasi-1d systems with the mean conductance
〈g〉 ∼ 1.
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Fig. 43. The critical conductance distribution for the 2d Ando model. The different symbols correspond to
the size of the system L = 82 and L = 200. The data prove that pc(g) is system size invariant. Note the
logarithmic scale on the vertical axis. Inset describes the non-analyticity of the distribution at g = 1. The
mean value of the conductance is 〈g〉c = 0.71e2/h. [54]

The above properties of the critical conductance distribution can be found also in other mod-
els, where the critical conductance is close to or less than to 1. For instance, Fig. 43 shows pc(g)
for the 2d Ando model. The non-analyticity at g = 1 is clearly visible, too.

10.1 Properties of the critical conductance distribution

The properties of the critical conductance distribution are important for the formulation of the
scaling theory. Besides the system size independence of pc(g), we need to understand its univer-
sality, i.e. how the form of pc(g) depends on microscopic details of the model, on the physical
symmetry and on the dimension of the system. Especially the dimension dependence of pc(g) is
important for the comparison of the theoretical predictions with numerical data.

As expected, the critical conductance distribution is independent of the size of the system.
This is confirmed by numerical data shown in Figs. 39 and 43. For a given universality class,
it does not depend on microscopic details of the model. This was confirmed in Refs. [111,
112] where the critical distribution, pc(g) was calculated for the 2d and 3d models with various
distributions of random disorder. However, the form of pc(g) does depend on the symmetry
class [107]. Also, the form of pc(g) depends on the topology of the lattice. For instance, pc(g)
for the 3d Anderson model with triangular, hexagonal and rectangular lattice in the transversal
direction possess different critical distributions pc(g) [113].

Surprising was the observation that pc(g) depends also on the boundary conditions in the
directions perpendicular to the propagation [86, 114, 115]. This result is, however, consistent
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Fig. 44. The critical conductance distribution for the 2d Ando model with the hard wall and periodic
boundary conditions in the direction perpendicular to the boundaries. The critical conductance is 〈g〉 =
0.655 (0.71) e2/h, and the variance var g = 0.43 (0.36) (e2/h)2 for the hard wall (periodic) boundary
conditions, respectively.

with our understanding of the conductance as a measure of the sensitivity of eigenenergies to the
boundary conditions [60]. We remind the reader that also the values of the universal conductance
fluctuations depend on the boundary conditions. Nevertheless, the difference in the form of p c(g)
is surprisingly large for the 3d Anderson model [115], Also, the mean values 〈g〉c, are consid-
erably different, being 0.445 (0.280) (e2/h) for the periodic and hard wall boundary conditions,
respectively [115]. In Fig. 44 we demonstrate the sensitivity to the boundary conditions for the
2d Ando model.

10.2 Dimension dependence of the critical conductance distribution

As discussed above, the analytical theories provide us only with the information about the critical
conductance in systems with dimension close to the lower critical dimension, d = 2 + ε. Since
we do not expect that the analytical results could be applied also for ε = 1, the numerical
data for dimension d = 3 are not suitable for verification of the theory. Therefore, it might be
interesting to calculate the critical conductance distribution on lattices with fractal dimension
close to dc = 2. This was done in Ref. [113].

By definition, the bifractal lattice [116] is linear in the direction of propagation and possesses
the fractal transversal structure. Three fractals, discussed in Ref. [113] are shown in Fig. 45. For
the analysis of critical phenomena on fractals, it is important to note that the “dimension” which
is important for description of the critical phenomena is the spectral dimension of the lattice,
not the fractal dimension, df . We remind the reader that spectral dimension, ds, determines the
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Fig. 45. Definition of three fractals used in the numerical analysis of the conductance distribution of fractals.
Shown are the 2nd and the 3rd generations. All three fractals have the same fractal dimension, df =
ln 3/ ln 2 ≈ 1.58. Fractals A and B have spectral dimension d′

s = 1.365, and fractal C has d′
s = 1.226.

Note the different number of nearest-neighbor lattice sites. The bifractal lattice is created by combination
of the fractal with the linear chain in the perpendicular direction. The spectral dimension of the bifractal is
ds = d′

s + 1. The number of lattice sites on fractal is 3n in the nth generation, and the length along the
linear chains is 2n lattice sites.

low-frequency behavior of the phonon density,

ρphonon(ω) ∼ ωds (158)

[116, 117], while the fractal dimension, df , determines an increase bdf of the “mass’ (number
of lattice points) when the scale of the system changes by a factor of b. Note that the spectral
dimension of a regular system equals to its dimension, ds = d.

All three fractals, shown in Fig. 45 have the same fractal dimension, df = ln 3/ ln 2 = 1.58.
Fractals A and B have the same spectral dimension, d′s = 1.365, and fractal C has spectral
dimension d′s = 1.226, so that the spectral dimension is ds = d′s = 2.365 (2.226) for bifractals
A and B (C), respectively. In Fig. 60 we will show that the critical exponent, ν is indeed a
function of the spectral dimension only.

Critical conductance distributions are shown in Fig. 46. We see that the mean conductance
increases when ds → 2+ and the distribution pc(g) is similar to Gaussian, in agreement with
theoretical prediction [104]. However, the width of the distribution, measured by the variance,
var g, increases when ε→ 0. This seems to be in contradiction with the analytical formula (147).
The numerical data cannot confirm the power law decrease of the distribution, given by Eq. (148)
for large values of g.

For completeness, we show in the right panel of Fig. 46 the critical distribution pc(ln g) for
the 4d Anderson model. The distribution is similar to that for the 3d system, including the non-
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Fig. 46. Left: The critical conductance distribution for three bifractals, shown in Fig. 45. The legends
give the spectral dimension, ds, of the lattice. Critical distribution is close to Gaussian distribution when
d → 2. The power-law tail, predicted by the theory [104], is not observable in numerical simulations. Note,
although two bifractals, A and B, have the same spectral dimension, the corresponding critical distributions
differ from each other. This is because pc(g) depends on the topology of the lattice. Note also, the non-
analyticity of the conductance distribution around g = 1 disappears, since more than one propagating
channel contribute to the conductance in these models. Right: Distribution of pc(ln g) for the 4d Anderson
model.

linearity at g = 1. Similar to 3d models, the main contribution to the conductance is given by the
first channel.

11 Localized regime

It is commonly believed that the distribution of the logarithm of the conductance is Gaussian,
with the mean value

〈ln g〉 = −2L/λ. (159)

The variance,

var ln g ∝ −〈ln g〉 (160)

should be proportional to −〈ln g〉, with the coefficient of proportionality close to 2. This behavior
is deduced from the analysis of the DMPK equation, discussed in Appendix B. It is argued
that since all parameters xa ∝ Lz, the difference between x2 and x1 becomes large enough
so that the contributions g2, g3 . . . of higher channels become negligible in comparison with
g1 = cosh−2(x1/2) = exp−x1. Since x1 possesses the Gaussian distribution in the limit of
large Lz, it is expected that the logarithm of the conductance, ln g ≈ ln g1 should posses a
Gaussian distribution, too.

This argument is supported by the numerical data for the normalized difference, δ21 =
x2 − x1, shown in Fig. 47. As expected, p(δ21) differs considerably from the Wigner distri-
bution, and is more similar (although not identical) to the Poisson distribution [20]. Although the
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Fig. 47. The probability distribution of the normalized difference δ21 = x2 − x1 for the 3d Anderson
model (L = 10) compared with the Wigner distribution p1 (dashed line) and Poisson distribution (solid
line). Inset shows the same data in the linear scale [20].

deviations from the Poisson distribution indicate that x2 and x1 are not statistically independent,
we expect that their correlation is small. Then, the contributions g1 and g2 can be assumed to be
almost statistically independent and we can split the spectrum of the transfer matrix to the first
eigenvalue, x1, which determines the magnitude of the conductance, and the rest of the spectra,
which have almost negligible contribution to g.

However, the above arguments are valid only in the quasi-1d weakly disordered systems
(see Appendix B.3). As shown in Fig. 48, the probability distribution p(ln g) for the strongly
disordered samples is not Gaussian. The origin of the difference between the strongly disordered
3d systems and weakly disordered quasi-1d systems lies in the spectra of parametersxa. Contrary
to the weakly disordered systems, parameters 〈xa〉 do not increase linearly with a, but fulfill the
relation

〈xa〉 = 〈x1〉 + ∆a1. (161)

As is shown in Fig. 49, ∆a1 depends neither on the system size nor on the disorder.
Apart from the deviation from the Gaussian form, P (ln g) possesses also the non-analyticity

at ln g = 0, shown in Fig. 50. The origin of this non-analyticity is the same as in the case of
the critical distribution, pc(g). The contribution to the conductance comes mostly from the first
channel and the chance to have g > 1 is negligibly small.

More important is the question whether the variance is an unambiguous function of the mean
value. This must be so if the one parameter scaling holds. The verification of the ambiguity
is difficult in 2d and 3d. In 1d, analytical calculations [119] showed that there is no universal
relation between the mean and the variance of x. This was confirmed by numerical simulations
[20,120] of strongly disordered 1d systems, indicating the existence of the second relevant length
scale in the strongly localized regime.
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The second relevant length scale was indeed found in 1d systems [170] and estimated analyt-
ically by the formula

`s =
1

sin πρ(E)
, (162)
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Fig. 50. The statistical distribution of the logarithm of the conductance in the strongly disordered squares
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of the distribution at ln g = 0. Right: The 3d Anderson model, W = 32, L = 18. 〈ln g〉 = −18.88,
var ln g = 14.57 and W = 14 and L = 10 ( 〈ln g〉 = −6.42, var ln g = 6.63).
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Fig. 51. The variance, var ln g as a function of the mean value, 〈ln g〉 for the 2d Anderson model. The
expected linear relation, (160), is valid only for rather small values of 〈ln g〉 [118].

where ρ(E) is the density of states. Single parameter scaling is expected to be valid only when
λ > `s. This is not fulfilled in the band tail, where the density of states is small and, consequently,
`s is large. The second relevant length scale was reported also in 2d systems in Ref. [121].

Figure 51 shows that the variance, var ln g is not a linear function of the mean value, 〈ln g〉.
This was observed already in [120] for the 1d system. Very recently [121, 122], the non-linear
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relation between the mean value and the variance of ln g,

var ln g ∝
{

(−〈ln g〉)2/3 d = 2

(−〈ln g〉)2/5 d = 3
(163)

was numerically observed.
Another test of the single parameter scaling was reported in Refs. [123, 124], where the

electron wave function of large 2d disordered system was calculated numerically. The statistical
distribution of the logarithm of the wave function at the distance r from the center of the lattice
was discussed. The numerical data was fitted to the distribution function

H(− ln |Ψ(~r)|, r) =
1√
2πσ

exp− (ln |Ψ| + r/λ)2

2σ
. (164)

The Gaussian form of the distribution H seems to be natural, since we expect that the wave
function decreases exponentially at large distance. This decrease is controlled by the localization
length, λ. Surprisingly, fitting the numerical data to the distribution (164) led to the r-dependent
localization length, λ(r). This result was interpreted as a failure of the scaling theory.

However, an assumption that the distribution function H , given by Eq. (164) is exactly
Gaussian, is not correct. Indeed, the Gaussian distribution possesses a long tail for both negative
and positive values of its argument, but the value of − ln |Ψ(~r)| can not be negative if the wave
function, Ψ, is normalized. Therefore, the distribution H(x, r) must converge to zero when
x = − ln |Ψ(~r)| → 0+, in the same way as the distribution p(x), shown in Fig. 20. We believe
that the fit of numerical data to the correct distribution function will recover the single parameter
scaling.

11.1 3d versus quasi-1d systems

As discussed above, the statistical properties of the conductance in the 3d systems require nu-
merical simulations. On the other hand, similar transition from the metallic to localized regime
can be studied in weakly disordered quasi-1d systems. Indeed, such a system exhibits metallic
behavior if the length of the system, Lz, fulfills the relations

`� Lz � N` (165)

where ` is the mean free path and N is the number of channels. The conductance of such a
system is N`/Lz � 1. By increasing Lz, the conductance decreases. There is an interval of Lz,
where g ∼ 1. Further increase of the system length draws the system into the localized regime,
where g ∼ exp−2L/λ, where λ = n` is the localization length.

This scenario is very similar to the metal-insulator transition. Of course, we do not have a
critical behavior in quasi-1d system (there is no divergence of the correlation length), but it is
reasonable to expect that the conductance distributions, obtained in all three regimes, g � 1,
g ∼ 1 and g � 1, might mimic the main properties of the conductance distributions in the
metallic, critical and localized regime. The advantage of quasi-1d systems is that they might be,
at least within some approximations, solved analytically.

The above idea was developed by Muttalib et al. [109, 110, 125]. By solving the DMPK
equation in the regime of g ∼ 1, they indeed found that the “critical” conductance distribution



Numerical scaling analysis 627

0 1 2 3 4
g

0.0

0.5

1.0

1.5

p(g)

<g>=1.457 Lz=64
<g>=1.481 W=10.6

0 0.5 1 1.5 2
g

10
-2

10
-1

10
0

10
1

p(g)

3D W=16.5  <g>=0.284
quasi-1d       <g>=0.279

Fig. 52. Comparison of the conductance distribution for the quasi-1d systems (squares) and cubic systems
(circles) [118]. Left: The metallic regime: p(g) is Gaussian in both systems, but the widths of the distri-
butions differ. This is consistent with our data for the universal conductance fluctuations, given in Table
1, since var g of quasi-1d systems differs from that of 3d. Right: The critical conductance distribution for
the 3d Anderson model compared with the distribution of the conductance for quasi-1d weakly disordered
(W = 4) system of the size 8 × 8 × 210. Although the mean conductance is the same, the distributions
differ in the region g > 1. The reason for this difference is that the difference, 〈x2 − x1〉 = 〈x1〉 in the
quasi-1d system, while it is much smaller in the 3d system, as shown in Fig. 49. The non-analyticity of the
distribution for the quasi-1d system was explained and qualitatively described in Ref. [110].

possesses non-analyticity close to g = 1 [110]. Also, in the localized regime, they observed that
the distribution p(ln g) drops down at ln g = 1. Similar results were observed numerically in
Ref. [126] where the transport in the quasi-1d systems with a corrugated surface was investigated
and the conductance distribution in the “critical” regime was studied.

However, these results provide us only with a qualitative description of the conductance
distributions in the true critical regime and in the insulator. In the previous Section, we showed
that the localized regime in the 3d system differs qualitatively from the localization in the weakly
disordered quasi-1d systems. The origin of this difference lies in the different form of the spectra
of parameters xa.

To demonstrate the difference between the two insulating regimes, we showed in Fig. 48 the
distribution p(ln g) for the 3d and the weakly disordered quasi-1d systems. Here, we compare in
Fig. 52 the conductance distributions for both systems in the metallic and critical regime (Fig.
52). For a quantitative description of the critical and localized regimes, we need to study the
systems with strong disorder.

12 Numerical scaling analysis

Since the analytical calculations are possible only in the limit of the dimension d = 2+ε (ε� 1),
numerical simulations provides us at present with the most relevant information about the critical
regime of the Anderson transition.
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The main problem of the numerical scaling analysis is the calculation of critical exponent, ν
in various physical models. Universality of the critical exponent for a given symmetry class and
dimension is interpreted as evidence of the validity of the single parameter scaling.

Historically, the first numerical simulations were performed for quasi-1d system [17, 127].
The scaling of the smallest Lyapunov exponent was proved and the critical exponent, ν was
found. Later, scaling of other variables was analyzed, mostly with the motivation to treat the
true 3d systems and 2d systems with unitary and symplectic symmetry. We will discuss in this
Section the scaling analysis of the conductance, conductance distribution and level statistics.

12.1 Scaling of the smallest Lyapunov exponent

Pichard and Sarma [127] were the first who proposed to use the finite size scaling analysis for
the calculation of the critical parameters of the Anderson model. They considered the quasi-1d
system of the size Ld−1 × Lz (d = 2 and 3) and calculate numerically the smallest Lyapunov
exponent, γ1. As discussed in Appendix D.2, the Schrödinger equation for the Anderson model
in the quasi-1d geometry can be written in the form

(

Ψn+1

Ψn

)

= Mn

(

Ψn

Ψn−1

)

, (166)

where Mn is the transfer matrix for the nth slice of the system,

Mn =

(

E −Hn −1
1 0

)

. (167)

By multiplication of the transfer matrices, we obtain that the exponential decrease of the wave
function along Lz is given by eigenvalues Λa of the matrix

MLz
=

Lz
∏

n=1

Mn. (168)

Oseledec’s theorem states that in the limit of Lz → ∞, all Lyapunov exponents, γa of the matrix
MLz

posses the Gaussian distribution with the variance proportional to the mean value. The
smallest (in absolute value) Lyapunov exponent, γ1, determines the localization length in the z
direction.

Since γ1 ∝ Lz, it is more convenient to use the parameter

Λ =
Lz

Lγ1
. (169)

In this paper, we discuss the scaling behavior of parameter z1,

z1 =
2

Λ
=

2Lγ1

Lz
, (170)

which is closely connected to parameter x1, used in the previous Section for parametrization of
the contribution to the conductance. From Oseledec’s theorem it follows that z1 converges in the
limit of Lz → ∞ to the mean value, and var z1 ∝ L/Lz. Consequently, the difference between

the numerically calculated value of z1 and the mean value is ∝ L
−1/2
z so that z1 is free from any
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Fig. 53. Left: The L-dependence of the variable z1 = 2Lγ1/Lz for the 3d Anderson model. The data was
calculated for the quasi-1d systems, L2×Lz and for disorder increasing from W = 16 (bottom) to W = 17
(top) with step ∆W = 0.1. The length Lz is sufficiently long to guarantee the relative accuracy of 0.2%
for small L, and of 1% for L = 22. The dashed line is the fit of the critical value z1c ≈ 3.44 [128]. Right:
The same data plotted as a function of L/ξ(W ), Eq. (172). Note the logarithmic scale on the horizontal
axis. The function F has two branches, the lower branch for the metallic regime, and upper one for the
insulating regime. The data with L = 4 were excluded from the data sets, because they do not lie on the
universal curve due to the finite size effects. Inset shows divergence of the correlation length, ξ(W ), at the
critical point. Note, ξ is calculated up to a multiplicative factor.

statistical problems provided that the system is sufficiently long. Of course, z1 is a function of
the disorder,W , energy,E and the system width, L.

For a sufficiently large widthL of the system, we can estimate the disorder andL dependence
of z1 from basic physical considerations. It is reasonable to expect that when the system is in
the localized regime, W � Wc, then z1 converges to the ratio 2L/λ. On the other hand, in the
metallic regime, W � Wc, we have that the spectrum of za is linear, as given by Eq. (320), of
Appendix C.1. Therefore, z1 = 2L

N` , where N is the number of channels. Since N ∝ L2 in the
case of the 3d Anderson model we obtain z1 ∼ L−1 in the metallic regime. Finally, at the critical
point, we expect that z1 = const.

The above consideration can be summarized as follows:

z1 = 2γ1
L

Lz
∼







L−1 W < Wc

const W = Wc

L/λ W > Wc.
(171)

Relation (171) enables us to identify the critical point from the numerical data. The left panel of
Fig. 53 presents the numerical data for the quasi-1d Anderson model L2 × Lz. We indeed see
that for disorderW > Wc, z1 increases whenL increases, while forW <Wc, z1 decreases with
L. From the L dependence of z1, we estimate approximately the value of the critical disorder,
Wc ≈ 16.5 and the critical value, z1c = z1(W = Wc) ≈ 3.44.
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Fig. 54. Left: The same data as in left panel of Fig. 53 but plotted as a function of the disorder W . Solid
lines are linear fits, given by Eq. (174) for 4 � L � 22. In the ideal case, all lines have a common
crossing point. This never happens for numerical data, as shown in the detailed plot in the right panel. The
deviations from the universal scaling relation, given by Eq. (174) are either due to the finite size effects,
discussed in Sect. 12.2, or due to the insufficient accuracy of numerical data.

The next step in the scaling analysis was done by MacKinnon and Kramer in Ref. [17]. They
assumed that z1 is a function of only one parameter,

z1(L,W ) = F (L/ξ(W )), (172)

where ξ(W ) is the correlation length. Relation (172) follows from the assumption of the validity
of single parameter scaling. The right panel of Fig. 53 shows that indeed all the data z1(L,W )
lie on the universal curve.

Since z1c = z1(W = Wc) does not depend on the system size, L, the correlation length must
diverge at the critical point,

ξ(W ) ∝ |W −Wc|−ν . (173)

Figure 54 confirms that z1 ∝ (W − Wc) in the critical region. Therefore, if we expand the
function F (x) in the Taylor series, and keep only the first two terms, F (x) = F (0) + Axα,
we have that exponent α = 1/ν. Consequently, z1(L,W ) is given in the critical region by the
simple scaling equation,

z1(L,W ) = z1c +A(W −Wc)L
1/ν . (174)

The fit of numerical data to Eq. (174) enables us to calculate both the critical exponent, ν, and
critical disorder,Wc.

The easiest scaling analysis can be performed in the following two steps [129]. First, we can
calculate the linear fit

z1(L,W ) = z
(0)
1 (L) +Wz

(1)
1 (L). (175)
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Comparing the r.h.s. of Eq. (175) with Eq. (174), we have

z
(0)
1 = z1c −AWcL

1/ν (176)

and

z
(1)
1 (L) = AL1/ν . (177)

Now, we can use Eq. (177) to calculate the critical exponent. Next, with the use of Eq. (177) we
can write Eq. (176) in the form

z
(0)
1 = z1c −Wcz

(1)
1 , (178)

so that the slope of the linear fit z(0)
1 vs. z(1)

1 determines critical disorder,Wc.
The physical meaning of the correlation length, ξ(W ) can be estimated by comparing Eq.

(172) with Eq. (171). Clearly, ξ(W ) = λ in the insulating side of the transition. Also, we find
that F (x) ∼ x in the insulator and F (x) ∼ x−1 in the metal. Then, from the expression of
z1 = 2L/(N`) = 2〈g〉−1 = 1/(2Lσ) (σ is the conductance) we find that in the metallic regime
the correlation length ξ(W ) ∝ σ−1 [17].

The correlation length ξ(W ) was first calculated numerically in Ref. [6]. The critical disor-
der, Wc ≈ 16.5, and the critical exponent, ν ≈ 1.50, were calculated. These calculations were
repeated by many other authors [130–132] with the use of various scaling analysis, and for in-
creasing system size. Surprisingly, these new analysis did not bring any considerable corrections
to the critical parameters, obtained in the pioneering work, [17]. At present, the most accurate
estimation of the critical exponent is

ν = 1.57± 0.02, (179)

obtained by very detailed scaling analysis of numerical data for z1 in Ref. [133]. In Ref. [52], the
phase diagram in the energy-disorder phase space (shown schematically in Fig. 6) was calculated
for the first time for various distribution of random energies.

The scaling analysis [17] solved also the problem of the existence of the Anderson transition
in the 2d orthogonal systems. It was shown, that there is no metallic phase, but the localization
length, given by ξ(W ), is extremely large for small disorder (of orders of 106 lattice sites for
W = 1. This result also explains why various previous works identify the Anderson transition
also in 2d systems: these works analyzed only small systems [134]. The numerical data for the
correlation length, ξ(W ) of the 2d Anderson model are given in Refs. [6,45] and for 3d Anderson
model in Ref. [6].

12.2 Finite-size corrections

A more general formulation of Eq. (173) is

z1 = F (ζ1, η1, η2, . . .), (180)

where ηi are further L-dependent parameters. They determine how z1 depends on various mi-
croscopic parameters of the model, for instance distribution of the disorder, correlation length of
the disorder, magnetic field. The one-parameter scaling is valid only if in the limit of L→ ∞ all
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ηi → 0. Only under this assumption, the equation (173) can be recovered, with ζ1 = L/ξ(W ).
Thus, the assumption of the single parameter scaling requires that

ηi(L) ∼ L−yi , (181)

where yi are irrelevant scaling exponents.
Although these parameters play no role for sufficiently large systems, they might influence

the scaling analysis for smaller L. For instance, the one parameter scaling, given by Eq. (174)
requires that all linear lines in Fig. 54 cross in one common point for W = Wc and z1 = z1c.
This is evidently not true for the smallest L = 4.

From Eq. (180) it follows that when L is not sufficiently large, one can generalize the scaling
analysis by the inclusion of an additional term on the r.h.s. of Eq. (173). In the most simple case,
when only one irrelevant parameter is considered, we obtain

z1(L,W ) = z1c +A(W −Wc)L
1/ν +BL−y. (182)

[135]. We can estimate the critical parameters by fitting the numerical data to the function
(182). A more detailed scaling analysis might consider also higher order terms in powers of
ζ1 = (W −Wc)L

1/ν . The most detailed scaling analysis was performed in Ref. [133], where
the numerical data were fitted to a function of 11 parameters.

Another possibility to eliminate the finite size scaling effects is to perform the scaling analysis
with reduced data sets by omitting data for the smallest system size [54, 128]. Using only the
numerical data for L > Lmin, one can study the Lmin dependence of the critical parameters. We
demonstrate this method in Fig. 55.

12.3 Scaling of higher Lyapunov exponents

As discussed in Sect. 10, the critical conductance distribution is not a self averaged quantity.
Therefore, the scaling theory might, at least in principle, contain an infinite number of inde-
pendent relevant parameters. To verify this possibility, it is worth to verify whether the higher
Lyapunov exponents, za, scale in the same way as the z1. This was done in Ref. [128] and
reproduced in [112].

As shown in Fig. 56, already the most trivial scaling procedure, given by Eqs. (176-178),
provides us with reliable evidence that the nine smallest Lyapunov exponents indeed scale with
the same critical exponent, ν. This proves that all Lyapunov exponents can be expressed as a
functions of only one variable, L/ξ(W ), with the same correlation length, ξ(W ).

Scaling of the higher Lyapunov exponent serves also as a nice example how the finite size
effects influence the scaling analysis. As was shown in Fig. 55, the finite size corrections are
almost negligible in the case of z1, but they increase when a increases. The reason lies in the
properties of the spectra of parameters za, or, equivalently, of xa. In Section 10, we found that
for a given size of the system, L, only parameters xa with a ≤ L are size independent. The rest
of the spectra depends on L. The same must hold for za. Therefore, only the data with L > a
are relevant for the scaling analysis of the higher Lyapunov exponent. In the case of z9, only the
data for L ≤ 12 are relevant for the scaling analysis.
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12.4 Scaling of the mean conductance

Numerical analysis of the quasi-1d systems provides us with the most accurate estimation of the
critical parameters. Nevertheless, the use of quasi-1d geometry is rather artificial. It would be
more suitable to prove the scaling of the conductance of the true d dimensional systems. This
problem is rather complicated since, as we have seen in Sect. 10, the conductance is not self-
averaged quantity in the critical region. We need therefore to calculate the mean value, 〈g〉 from
the statistical ensemble of Nstat different cubes,

〈 g〉 =
1

Nstat

Nstat
∑

i=1

gi, (183)

where gi is the conductance calculated for the ith sample, and to estimate the accuracy of the
mean value by using the relation

acc g =

√

var g
Nstat

. (184)

Since both 〈g〉 and var g are of order of unity, we needNstat ≈ 106 to reach the relative accuracy
∼ 0.1%.

The scaling formulas, presented in previous Sections, are valid for the scaling behavior of the
mean conductance as well. Thus, we expect that the disorder and system size dependence of the
mean conductance in the critical region is given by

〈g〉 = 〈g〉c +A(W −Wc)L
1/ν , (185)

where 〈g〉c is the critical conductance. A similar equation can be constructed for 〈ln g〉.
For the 3d Anderson model, the scaling of the mean conductance, 〈g〉, and of the typical con-

ductance, exp〈ln g〉 was numerically confirmed in Ref. [136]. The calculated critical exponent,
ν = 1.57, agrees with the result of the scaling analysis of the smallest Lyapunov exponent [133].

As an example of the scaling analysis of the conductance, we present the most recent numer-
ical data for the mean conductance of the 2d Ando model [54]. The left panel of Fig. 57 shows
the L-dependence of the mean conductance for fixed disorder. The metallic, localized and criti-
cal regime can be estimated in the same way as for z1, with the only difference, that increasing
〈g〉 indicates the metallic phase in this case. The right panel of Fig. 57 shows the same data
but as a function of L/ξ. The data confirms that indeed 〈g〉 = g(L/ξ) is a function of only one
variable. Two branches of the function g correspond to two different transport regimes, metallic
and localized.

The numerical proof of the scaling of the mean value is still not sufficient for the verification
of whether or not one parameter scaling really works. Namely, we cannot exclude that the higher
cummulants of the conductance do not scale. Of course, it is impossible to verify the scaling of
all cummulants. Instead, we discuss in the next Section the scaling of conductance distribution,
p(g).

12.5 Scaling of the conductance distribution

In the previous Section we verified the scaling of the mean conductance, 〈g〉. However, we still
cannot exclude the possibility that the length and disorder dependence probability distribution,
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p(g), is determined by an infinite number of parameters, for instance all higher cummulants of
the conductance. To prove that the entire conductance distribution scales as a function of only
one parameter, the scaling of the percentiles, gq was analyzed numerically in Ref. [137].

The percentile, gq, is defined by the relation

q =

∫ gq

0

pL(g) dg. (186)

By definition (186), the probability that g < gq, equals to q (Fig. 58).
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In Ref. [137], the one parameter scaling of percentiles, gq, was proved for four values of q,
q = 0.025, 0.17, 0.50 (median) and 0.83. All four variables obey the one parameter scaling with
the critical disorder Wc close to 16.5 and with the critical exponent 1.56 < ν < 1.60.

Suppose now that two percentiles, gα and gβ, (α < β) obey the single parameter scaling.
Then, the percentile gγ (α < γ < β) must scale, too. Also, if gα and gβ scale, then the difference
gβ − gα scales. Therefore, for the proof of the one parameter scaling, it is sufficient to prove the
scaling of only a few percentiles, which was done in Ref. [137]. We conclude that the numerical
verification of the single parameter scaling of a few percentiles provides us with the evidence that
the entire probability distribution, p(g), obeys the single parameter scaling in the critical region.

12.6 Scaling of the level statistics

As discussed in Sect. 5.2, the distribution p(s) of the differences between the neighboring
eigenenergies depends on whether the system is in the metallic, localized or critical regime.
In Refs. [58, 138, 139], the scaling analysis of the level statistics was proposed and studied.

The critical parameters were calculated for the 2d Ando model [100], the 3d Anderson model
[61, 140], and for the problem of quantum percolation in 3d system [141]. Recently, the scaling
analysis of the level statistics was applied to the symplectic model on the fractal lattice with the
aim to prove that the lower critical dimension for the symplectic systems is less than 2 [142].

12.7 Scaling of the inverse participation ratios

The scaling of inverse participation ratios, Iq , defined in Sect. 5, was performed recently in
Ref. [56]. Contrary to the conductance, which is defined only for energies inside the unperturbed
energy band, |E| < 6V , Iq can be calculated for the entire energy spectrum of the Hamiltonian,
and can be used for the verification of the universality of the metal-insulator transition along the
critical line. However, one has to keep in mind that Iq is not size-invariant at the critical point
but behaves as

Iq ∼ L−(q−1)dq , (187)

as discussed in Sect. 5.
In the scaling analysis, the logarithm of Iq was used, since the values of Iq(En) might fluc-

tuate in orders of magnitude within a small energy interval, δE (Figs. 10, 11). The quantity of
interest is then

Ĩq(L,W ) = 〈〈ln Iq(En)〉δE〉, (188)

where the averaging is performed within the energy interval, δE, and over statistical ensemble
of microscopically different samples. Ĩq(L,W ) is then fit to the scaling equation,

Ĩq(L,W ) = A− (q − 1)dq lnL+B(W −Wc)L
1/ν (189)

and critical parameters,Wc, dq and ν are calculated for the 3d Anderson model with the Gaussian
and box distribution of random energies.
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Fig. 59. The fractal dimension, dq , obtained from the scaling analysis of the inverse participation ratios,
Iq , for the 3d Anderson model with the Gaussian and box disorder. The dashed line is (q − 1)d for d = 3.
Inset shows the estimated critical exponent for three critical points. At the band center with the Gaussian
(circles) and box (boxes) distribution, and for the Gaussian disorder W = 2 with critical energy Ec ≈ 6.58
(triangles). The electron eigenenergies and eigenfunctions were calculated numerically for cubes of the size
8 ≤ L ≤ 54 [56].

Figure 59 shows that not only the critical exponent, ν, but also the fractal dimensions, dq , are
universal, independent of the microscopic details of the model and on the position of the critical
point on the critical line. The fractal structure of the critical wave function was studied also in
Refs. [143–146].

13 Scaling in the d-dimensional systems

The numerical scaling analysis provides us with rather accurate estimation of the critical ex-
ponent for the 3d Anderson model. However, the obtained results are in disagreement with
expectations of the theory, which reports ν = 1 for d = 3 [147]. It is therefore important, for
the detailed comparison of the theory and numerical data, to calculate the dimension dependence
of the critical exponent, and check, whether or not agreement with theory is better for, d → 2+

or for d > 3. We summarize here the very recent data for the critical exponent, calculated in
Ref. [113] for 2 < d ≤ 4, and we present also new data for d = 5.

13.1 Dimension d = 2 + ε

Figure 60 shows the disorder dependence (d = 2+ ε) of the critical exponent, ν, calculated from
the finite size scaling of the smallest Lyapunov exponent of quasi-1d bifractal lattices with fractal
structure of the cross-section, shown in Fig. 45. These data are compared with the theoretical
prediction, based on the analytical calculation of the function β(g).
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Fig. 60. The critical exponent, ν, as a function of ε−1 (ε = d − 2). Shown are the data for three bifractals,
discussed in Sect. 10.2 (Fig. 45), and for a cubic 3d system. The dashed line is the linear fit, 1.24+0.365/ε.
The dotted line is the analytical ε - expansion of the critical exponent, given by Eq. (194). Note, there is
no agreement between the theoretical prediction (dashed line) and the numerical data. Note also that two
systems with the same spectral dimension have the same critical exponent, as expected.

In the limit of ε � 1, the critical disorder Wc ∼ ε � 1 and the critical conductance gc ∼
ε−1 � 1. The function β(g) can be expanded in power series of g−1. It is more convenient to
use, instead of the conductance g, the parameter

t =
1

2πg
. (190)

The size dependence of the parameter t is given by the equation

∂t

∂ lnL
= β(t), (191)

and the critical exponent, ν, is then given by the relation

ν−1 = −∂β(t)

∂t

∣

∣

∣

∣

∣

t=tc

. (192)

For the orthogonal systems, the t-expansion of the function β(t) reads [11]

βO(t) = εt− 2t2 − 12ζ(3)t5 +
27

2
ζ(4)t6 + . . . . (193)

In Eq. (193), ζ(3) = 1.202 and ζ(4) = π4/90.
Since the expansion (193) is known only up to the 6th power in t, it is difficult to estimate

the accuracy of the obtained results for the critical conductance and critical exponent, specially
when ε is not small. For instance, for the 3d system, (ε = 1) one finds, by solving the equation
βO(tc) = 0, that tc = 0.395. This agrees qualitatively with the estimation of critical conduc-
tance, gc = 1/(2πtc) ≈ 0.40 (we remind the reader that the numerically observed values of the
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critical conductance are 0.445 and 0.280 for periodic and hard wall boundary conditions, respec-
tively). However, from Eq. (192) we obtain ν = 0.67, which is far from the numerical result,
ν ≈ 1.57. The agreement with the numerical data is not better for small ε, as is shown in Fig. 60
which compares the critical exponent, calculated from the ε expansion,

ν =
1

ε
− 9

4
ζ(3)ε2 (194)

with our numerical data. Clearly, there is no agreement between the theory and results of numer-
ical simulations.

For completeness, we add the ε expansion of the β function for symplectic systems. It can be
obtained from expression (193) with the use of the symmetry relation [97]

βS = −2βO(−t/2), (195)

which gives

βS(t) = εt+ t2 − 3ζ(3)

4
t5 − 27ζ(4)

64
t6 + . . . . (196)

Note, βS(t) is positive for ε → 0 which confirms the existence of the critical point in the 2d
symplectic systems.

13.2 Dimension d ≥ 3

The numerical data for the critical exponent in higher dimensions does not agree with the self-
consistent theory [147] which predicts that

ν(d) =

{

(d− 2)−1 2 < d ≤ 4
1/2 d > 4.

(197)

For instance, for the 3d systems, Eq. (197) predicts ν = 1, which clearly disagrees with the
numerical result, ν = 1.57.

In order to get insight into the dimension dependence of the critical exponents, the finite size
scaling analysis for d = 4 was performed in Refs. [113, 116, 148], and for d = 5 in the present
paper. Figure 61 presents numerical data for z1 obtained for the quasi-1d systems L3 × Lz and
L4 × Lz. Although only the data for small L can be calculated, obtained results confirm the
existence of the critical points in both systems. The simple scaling analysis, given by Eqs. (175-
178) was used to estimate the position of the critical points and of the critical exponents. For the
4d Anderson model, we find

ν4d = 1.12± 0.05. (198)

This result agrees with previously obtained data [113, 116]. To the best of our knowledge, there
have been no published data for the critical exponent of the 5d Anderson model yet. Our estima-
tion of the critical exponent is

ν5d = 0.94± 0.05. (199)

Figure 62 summarizes all obtained numerical data for the critical exponent of the orthogonal
Anderson model in d dimensions and compares them with predictions of analytical calculations.
We conclude that there is no agreement of numerical data with the theory, neither for small
dimension, nor for d > 3.



640 Numerical Analysis of the Anderson Localization

30 32 34 36 38 40
W

3

4

5

6

7

z
1

L=4
L=5
L=6
L=7
L=8
L=9
L=10

4D Anderson model

4 5 6 7 8 9 10
L

0,2

0.3

0.4

0.5

0.6

ν=1.12

PSfrag replacements

z
(1

)

55 60
W

5

6

7

8

9

z
1

L=4
L=5
L=6
L=7
L=8

5D Anderson model

4 5 6 7
L

0.2

0.3

ν=0.94

PSfrag replacements

z
(1

)
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Fig. 62. Dimension dependence of the critical exponent. Numerical data differ considerably from the
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Eq. (194). Triangle is The estimation of Hikami, obtained by the Pade approximation of the ε expansion of
the β function, νHikami ≈ 0.73. The solid line is the analytical prediction (197)
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13.3 Theory vs (numerical) experiment

Disagreement between the theoretical predictions and numerical data might lead to the conclu-
sion that the numerical scaling analysis is insufficient or even wrong [149–151]. It is not our
aim to discuss these objections here (see, for instance, the comment to Ref. [151], published in
Ref. [152]). We only concentrate on the discussion of advantages and disadvantages of numerical
analysis.

The main objection against the numerical methods is that they are always restricted to the
systems of finite size. This limitation can be partially avoided by the scaling analysis, Eq. (173),
and by including the irrelevant scaling variables, Eq. (182). Also, the accuracy of obtained
critical parameters can be estimated by elimination of numerical data for small system size, as
discussed in Sect. 12.2. Fortunately, the finite size effects seem to play a negligible role in higher
dimension. The first estimation of the critical exponent for the 3d Anderson model, ν ≈ 1.5,
obtained in pioneering work of MacKinnon and Kramer, [17], differs only in a few per cent from
the best today’s estimation, ν = 1.57 [136]. Also, for the 4d Anderson model, the estimation
ν = 1.1 ± 0.1 was obtained already in Ref. [116], where really small lattices, typically of the
size 33 × Lz were analyzed. Nevertheless, the analysis of larger samples, up to 73 × Lz, [113]
brought no corrections to the critical exponent. As is shown in Fig. 61, the additional data for
even large systems have no influence to the critical exponent, originally estimated for smaller
systems. We conclude therefore that the numerical simulation provides us with reliable data in
higher dimension.

Our belief that the numerical data for the critical exponent are correct, is supported also by
results of the scaling analysis of various groups. In the 3d systems, various models were studied,
isotropic and anisotropic [153], with diagonal or off-diagonal disorder [131, 132]. Scaling of
various parameters was analyzed, inclusive the smallest Lyapunov exponent, higher Lyapunov
exponents, conductance [136, 137], conductivity [154], level statistics [61, 141] and inverse par-
ticipation ratio [56]. All these works report the critical exponent close to 1.5, with the accuracy
which definitely excludes the possibility that ν = 1.

As discussed in Sect. 14, finite size effects become stronger in lower dimension, The reason
is that the mean free path, ` is larger (Fig. 28). A typical problem caused by the finite size of the
system is shown in Fig. 37 which presents the latest numerical data for the mean conductance,
〈g〉 of the 2d Anderson model. Although we accept that there is no Anderson transition in d = 2,
the numerical data seem to mimic the metallic behavior. For W = 1, the mean conductance 〈g〉
increases when L increases. One might argue that there is a critical disorder,Wc ≈ 2. However,
as discussed already in Sect. 8.6, the above conclusion is not correct. To determine the character
of the transport regime, the size dependence of the conductance must be carefully analyzed. The
increase of the mean conductance forW = 1 is the manifestation of the ballistic regime. Indeed,
the mean free path ` ≈ 17 for W = 1 is comparable with the size of the system when L ≤ 100.
Also, the variance, var g, is much larger than expected universal value, typical for the metallic
regime (Fig. 31).

Also, the decrease of the mean conductance with the system size for disorder W = 3 and
W = 4 cannot be associated with localization. Indeed, the same data, plotted in Fig. 25 in the
logarithmic scale, show that the decrease of the conductance is not exponential, but logarithmic,
and is caused by the weak localization. To see the exponential localization, one needs much
larger system size.
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The big advantage of the numerical simulation is that it can relatively easy analyze statistical
properties of any quantity of interest. No averaging is necessary in the course of calculations.
All mean values can be calculated “from first principles”. This cannot be done analytically.
The analytical theory must solve the problem how to perform the average over the disorder.
Wrong averaging might lead immediately to wrong results [151]. In our opinion, the discrepancy
between the numerical data and results of analytical theories is due to the inability of analytical
theories to analyze completely the statistical fluctuations in the critical regime.

14 Two dimensional critical regimes

The critical regime in the 2d models deserves a special attention. As discussed above, only
systems with symplectic symmetry exhibits the metal insulator transition in dimension d = 2.
The 2d systems with unitary symmetry posses, in the presence of strong magnetic field, the
critical energies, Ec where the localization length diverges.

On first sight it seems that the 2d systems can be easier simulated numerically since the
lower dimension of the system allows one to calculate the conductance for much larger samples.
However, this advantage is “compensated” by much stronger finite size effects.

Besides the calculation of the critical exponents and critical conductance distribution, the 2d
critical regime is suitable for the verification of the general relation between the conductance and
conductivity,

〈g〉 = σ, (200)

given by Eq. (109). Contrary to the orthogonal 2d systems, where Eq. (200) holds only in the
diffusive regime, i.e. when the size of the system is smaller than the localization length, L� λ,
Eq. (200) holds also in the limit of infinite system size at the critical point of the unitary and
symplectic models.

Note, equation (200) compares two different quantities. The conductance, g, is given, by
definition, by the transmission properties of the disordered sample at zero temperature. The
value of the conductance depends on the actual distribution of disorder inside the sample. Owing
to the quantum character of electron propagation, the conductance is not a self-averaged quantity.

On the other hand, the conductivity, σ, is a material parameter. It characterizes the transport
properties of an infinite system. When calculated for the system of finite size, L, 5, σ fluc-
tuates around the mean value, but the fluctuations decrease when L increases. Contrary to the
conductance, the conductivity, σ is a self-averaged quantity.

For the critical 2d regimes, Falko and Efetov [158] derived the following relation between
the fractal dimensions of the critical wave function, dq , and the critical conductivity, σ, derived
the relation

dq = 2 − q

βπσ(h/e2)
. (201)

Here, β = 1, 2 and 4 determines the symmetry of the system6. Eq. (201) holds for small q, when

5Numerical algorithm for the calculation of the conductance is described in Ref. [154, 156] and in Ref. [157] for the
case of critical quantum Hall regime.

6Note, that β = 1/2, 1 and 2 is used in original papers, which adds an additional factor of 2 in the denominator on
the r.h.s. of Eq. (201). Also, note that factor of 2 for two orientation of electron spin is not included in the definition of
the conductivity, σ.
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terms proportional to higher powers of q can be neglected. Since both the wave functions and
the conductance can be calculated numerically in the critical point, we can verify the relation
(201) by direct numerical simulations. It will be shown in next two Sections that indeed both
Eqs. (200) and (201) are satisfied within the accuracy of numerical data.

14.1 Symplectic models

The difficulty of the analysis of the 2d symplectic models is manifested by a wide variety of
values of the critical exponent, 2 ≤ ν ≤ 2.88, reported in the literature within the last 15
years [47, 49, 99, 100]. These discrepancies are due to the strong finite size effects. Recently,
the finite size scaling of the smallest Lyapunov exponent on the SU(2) model, [49] provided the
following estimate of the critical exponent,

ν = 2.75± 0.01. (202)

This value can be considered as the most accurate estimation of the critical exponent. The anal-
ysis of the scaling of the mean conductance for the 2d Ando model, [54] led to the similar value,

ν ≈ 2.80± 0.04. (203)

The scaling behavior of the mean conductance, 〈g〉, is shown in Fig. 57. The critical conductance
distribution for the 2d Ando model is shown in Fig. 27. Since the mean conductance,

〈g〉c ≈ 0.71, (204)

is close to 1, the distribution possesses all characteristic properties of the critical distribution for
the 3d Anderson model (Fig. 43). Comparison of the critical distribution, calculated for the
periodic and hard wall boundary conditions is shown in Fig. 44.

The numerical data for the conductance, together with Eq. (200) enables us to verify the
relation (201) between the conductance and the fractal dimensions, dq . To do so, the wave
function of the 2d Ando model was calculated numerically for the disordered sample of size
260 × 260. Then, the sample was divided into the small squares Ωa of size L0 × L0, and the
quantity

pq(L0) =
∑

a







∑

~r∈Ωa

|Ψn(~r)|2






q

(205)

was calculated for the Nstat = 10 different realizations of the disorder. The wave function Ψn

is the eigenfunction of the disordered Ando Hamiltonian, corresponding to the eigenvalue En,
closest to the band center, E = 0. Since the wave function is expected to posses the multifractal
spatial structure, the L0-dependence of pq(L0) is determined by the fractal dimensions, dq ,

pq(L0) ∼ L
−(q−1)dq

0 . (206)

Numerically calculated fractal dimensions, dq are plotted in Fig. 63 as a function of q. The results
confirm that dq decreases linearly with q, for q ≤ 1. The slope, given by Eq. (201), determines
the critical conductivity, σc = 0.71e2/h, which is exactly equal to the critical conductance, 〈g〉c.
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Fig. 63. The fractal dimension, dq , as a function of q, calculated for the 2d Ando model. For q ≤ 1, the
fractal dimension, dq , is a linear function of q, in agreement with Eq. (201). The solid line is the linear fit
with the slope 0.11202 which determines the critical conductance, σc = 0.71, and which agrees with the
estimation of the critical conductivity, 〈g〉c = 0.71 [159].
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Fig. 64. Left: The density of states of the weakly disordered 2d system in a strong magnetic field. The
energy spectrum consists of the Landau bands. Inside each Landau band there is a critical energy, Ec,
where the localization length diverges. Note, the position of the critical energy depends on the strength of
the disorder. Right: The critical conductance distribution for the first Landau band for φ = 2π/8a. The
disorder is W = 1.4 and the critical energy, Ec = −3.29.

14.2 Critical quantum Hall regime

The 2d disordered system in a strong magnetic field possesses, inside each Landau band, the
critical energy, Ec shown schematically in the left panel of Fig. 64. When the Fermi energy



Two dimensional critical regimes 645

crosses the energy Ec, the transmission from one Hall plateau to another one appears [31, 160].
The existence of the critical energy, Ec, was numerically proved in Refs. [50]. The correlation
length, ξ, diverges on both sides of the critical energy as

ξ(E) ∝ |E −Ec|−ν , (207)

with the critical index, ν ≈ 2.33 [32, 50].
The critical quantum Hall regime can be studied numerically within the Hamiltonian, (19)

with the Peierls phase, φ = B(ea)2/h̄. Since we are interested only in the critical parameters, the
periodic boundary conditions are used in the direction perpendicular to the propagation. Then,
the Peierls phase, φ, must fulfill the relation φL = 2πn, where L is the size of the lattice in the
transversal direction, and n is an integer.

The numerical analysis of the critical regime is difficult, since the disorder W must be small
in order to keep the Landau levels separated from each other. Then, however, the mean free path,
` is large. This problem can be avoided with he use of the spatially correlated disorder [29].

In Ref. [159], the sample averaged conductance, 〈g〉, and the conductivity, σ, were calculated
for the first and the second Landau band. To eliminate the finite size effects, the random disorder
was spatially correlated. Numerical data was fitted to the formulas

〈g(L)〉 = gc − g0

(

L0

L

)y

(208)

and

σ(L) = σc − σ0

(

L0

L

)y′

. (209)

where y ≈ y′ are irrelevant scaling exponents.
Numerical analysis, performed for various strength of the disorder proved that both the mean

conductivity and conductance converge to the same values listed in Table 2. This data proves the
relation (200) for the critical quantum Hall regime and they also shows that the critical conduc-
tance (or conductivity) is universal, independent of the microscopic model and on the Landau
level.

Critical values listed in Table 2 are significantly larger than the commonly accepted value,
0.5e2/h, found in Ref. [161], and confirmed in previous numerical simulations [162]. However,
they are in agreement with numerical data obtained on the Chalker Coddington model [163,

Tab. 2. The critical conductivity, σc, and the critical conductance, 〈g〉, (in units of e2/h) for the two lowest
Landau bands [159]. The data was obtained by fit of the numerical data to Eqs. (208) and (209) with
y ≈ y′ ≈ −0.4

critical conductivity σc 0.58± 0.02
critical conductance
1st. Landau band gc1 0.60± 0.02
2nd Landau band gc2 0.61± 0.03
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164]. Critical conductance, σc ≈ 0.61e2/h, is also consistent with the recently calculated fractal
dimension, d1 = 1.739, and with the relation (201),

σ =
1

2π(2 − d1)

e2

h
. (210)

The difference between the theoretical and numerical data is probably due to the spatial inhomo-
geneity of the electron distribution, which was neglected in the analytical calculations.

15 Possible theoretical description of the localized regime

In this Section, we present two possible descriptions of the localized regime. Both of them are
based on the generalization of the theoretical methods developed for the analysis of the transport
in diffusive regime. In Sect. 15.1, we discuss the possibility to generalize the DMPK equation,
[165] and in Sect. 15.2, a simple generalization of random matrix theory is proposed [91].

15.1 Generalized DMPK equation

In Appendix B we present the DMPK equation, which describes successfully the transport prop-
erties of weakly disordered quasi-1d systems. The theory contains only one parameter - the mean
free path `, which measures the strength of the disorder.

The DMPK equation was derived under the assumption of the homogeneity of the matrices
u and v which parametrize the transfer matrix (see Appendix A.3 for details). Physically, homo-
geneity of matrices u and v means homogeneous distribution of the electron on the opposite side
of the sample. This is possible only if the electron has many paths to travel from one side of the
sample to another side. Mathematically, this requirement is expressed by Eq. (276), which can
be written in the form

Kab =

〈

∑

c

|uac|2|ubc|2
〉

=
1 + δab

N + 1
. (211)

Here, N is the number of channels. Clearly, this assumption is fulfilled only in the limit of
weak disorder, when the electron can choose, on its travel through the sample, many equivalent
paths. This is not true when the disorder is strong and the electron hardly finds a single trajectory
propagating from one side of the sample to opposite one (Fig. 71).

Recently, Muttalib and Klauder [165] proposed the generalization of the DMPK equation.
Without any restriction to the value of the matrix elements Kab, they generalized the DMPK
equation into the form

∂pLz
(λ)

∂(Lz/l)
=

1

J

N
∑

a

∂

∂λa

[

λa(1 + λa)KaaJ
∂p

∂λa

]

(212)

with the Jacobian

J ≡
N
∏

a<b

|λa − λb|γab , γab ≡
2Kab

Kaa
. (213)
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In Eq. (212), the symmetry parameter β = 1.
For the weak disorder, one can substitute for Kab from Eq. (211) and obtain that Eq. (212)

reduces to the “classical” DMPK equation. For strong disorder, the parameters Kaa and γab

represent the additional free parameters which must be estimated from numerical experiment.
To estimate values of γab in the localized regime (regime with strong disorder), we remind

the reader that the probability distribution of the difference, δa = xa+1 − xa is similar to the
Poisson distribution in the localized regime (Fig. 47). Therefore, it is natural to assume that the
repulsion between the two levels in the Jacobian (213) is weaker than in the diffusive regime.
Consequently, we assume that γab → 0 in the case of strong disorder. A similar conclusion was
derived also in Ref. [91].

The second assumption made in Ref. [165] was that Kaa � Kab for a 6= b. In particular, in
the localized regime, one can assume that

Kaa ∝ L0. (214)

To understand the physical meaning of (214), note that

Kaa =

〈

∑

c

|uac|4
〉

. (215)

is nothing but the inverse participation ratio for the transversal wave function on the opposite
side of the sample. In analogy with the properties of Iq , discussed in Sect. 5.1, we conclude
that the condition (214) reflects the non-homogeneity of the distribution of the electron on the
opposite side of the sample, which follows directly from the existence of only the single possible
path through the sample (Fig. 71).

Conjecture (214) was numerically tested in Refs. [166, 167] by the direct numerical calcula-
tion of the matrix Kab. The numerical method of calculation of the conductance, described in
Appendix E.2, can be easily generalized for calculation of the eigenvectors u. To avoid the prob-
lem with evanescent modes, the calculations were performed for the anisotropic 3d Anderson
model, defined by Eq. (9) with t = 0.4. This model exhibits the metal-insulator transition for
critical disorder Wc ≈ 9.5.

The numerical analysis confirmed that the parameters K indeed depend on the disorder. In
Fig. 65 we see that the size dependence of parameters LK11 and γ12 differs depending on
whether the system is in the metallic, localized or critical regime. Note, since λ1 < λ2 < . . .,
and the matrix t†t has eigenvalues (1 + λa)−1, the parameter K11 contains information about
the spatial structure of the first eigenvector, u1, which corresponds to the largest eigenvalue, and
γ12 is a measure of the overlap of eigenvectors related to the two largest eigenvalues of t†t.

In the metallic regime, LK11 ∝ L−1, and γ12 converges to 1, as was assumed in the deriva-
tion of the “classical” DMPK equation. However, in the localized regime, LK11 increases with
the system size, which indicates that indeed K11 is constant, in agreement with Eq. (214). Also,
γ12 decreases when W > Wc being ∝ L−1 in the limit of large system size.

At the critical point, both parameters, LK11 and γ12, converge to the size independent con-
stants, indicating that they could be used as the order parameters for the calculation of the critical
parameters of the model by scaling theory. The size dependence of LK11 and γ12 is summarized
in Table 3.



648 Numerical Analysis of the Anderson Localization

5 10 15 20 25
L

0,1

1

10

2
4
6
9
9.5
10
12
14
8
16

PSfrag replacements

LK11

1 10 100
W

10
-2

10
-1

10
0

gg

L=6
L=8
L=10
L=14
L=18
L=22

PSfrag replacements

LK11

Fig. 65. Left: The disorder dependence of LK11 for the 3d anisotropic Anderson model, given by Eq. (215)
with t = 0.4. The symbols correspond to the different disorder. The data confirm that LK11 decreases
(increases) with L for W < Wc (W > Wc), respectively. Here, the critical disorder Wc ≈ 9.5. Note,
LK11 does not depend on the system size when W = Wc. The right panel shows that γ12 → 1 when
W < Wc and L → ∞, but γ12 decreases with L when disorder W > Wc (insulating regime). At the
critical point, γ12 ≈ 0.25 does not depend on the system size [167].

With known size dependence of K11 and γ12, we need to estimate also other parameters,
Kab. Detailed numerical analysis, performed in Ref. [167] confirmed that these quantities can
be expressed as a simple functions of indices a and b. It is also reasonable to assume that
Kaa = K11 and γab ≈ γ12. This reduces the number of free parameters to two. The first
one,

Γ =
`

LzK11
(216)

measures the strength of the disorder, and the second one, γ12, influences the mutual correlation
of channels in the generalized DMPK equation. In the limit of

γ12 ∼ λ

L
� 1, (217)

Tab. 3. The size dependence of parameters LK11 and γ12 in the metallic, localized and critical regime.

L×K11 γ12

W �Wc L−1 1
Wc const const
W �Wc ∼ L/ξ L−1
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form numerical simulations, solid line is the solution of the generalized DMPK equation which gives the
same value of 〈ln g〉 and with γ12 = Γ/2. Dotted line is the distribution obtained for the same value of Γ
but with γ12 = 1.

the probability distribution p(g) can be obtained analytically by solving the generalized DMPK
equation, given by Eq. (212), by methods developed in Refs. [109, 110] The obtained conduc-
tance distribution is shown in Fig. 66 and compared with the numerically calculated distribution
p(ln g). Parameter Γ was chosen such that 〈ln g〉, equals to the numerically obtained value. We
see that the analytical model reproduces qualitatively correctly the numerical data. The quantita-
tive difference is probably due to oversimplification of the model, which neglects the differences
between Kab for higher channels.

The generalized DMPK equation represents the most promising step toward the analytical
description of the localized regime. However, the main assumption which allows the analytical
solution is that γ12 is very small. This is not true at the critical point, as can be seen in Fig. 65.
Therefore, it is not known at present, how accurately the generalized DMPK equation describes
the critical regime.

15.2 Random matrix model of the Anderson transition

We have shown in Appendix C that in the diffusive regime, the probability distribution for the
eigenvalues λ of the transmission matrix can be relatively easily obtained from the assumption
that the matrix (t†t)−1 belongs to the orthogonal class of random matrices. The form of the
distribution was determined by the additional constrain that the density σ(x) of parameters x,

σ(x) = 〈
∑

a

δ(x − xa)〉, (218)

is constant for x < Lz/`. This constraint follows directly from the linear dependence, 〈x1〉 ∝ a,
shown in Fig. 76.
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Fig. 67. Left: The density σ(x) calculated numerically for the 3d Anderson model with disorder W =
6, 10, W = Wc = 16.5, and W = 25 and 32 (from left to the right). Note, at the critical point, the
density is linear for x ≤ 10. Right: σ(x) for the strongly localized regime with disorder W = 25, 32, 45
and 55. To show the universality of the density, the data are shifted on the horizontal axis by the difference
〈x1(W )〉 − 〈x1(W = 55)〉 [168].

Since the spectrum of x exhibits the universal properties also at the critical point and in the
localized regime, it is tempting to try to generalize the random matrix analysis also for transport
beyond the diffusive regime. This expectations are inspired by the numerical data for σ(x),
shown in Fig. 67.

In Sects. 10 we found that contrary to the diffusive regime, the density σ(x) is not constant
in the critical regime. Since 〈xa〉2 ∝ a at the critical point (Fig. 41), the density must be linear,

σcrit(x) ∝ x, (219)

at least in the lower part of the spectra. Note, only this part of the spectra is relevant for the
description of the transport. The linearity of the density is confirmed numerically in the left
panel of Fig. 67.

The right panel of Fig. 67 shows that in the localized regime, the density σ(x) is a function
of the difference, x− 2L/λ. This follows directly from Eq. (161).

It is therefore natural to postulate that the density σ(x) behaves as

σ(x) = c(W ) × [x+ a(W )] , (220)

where the function a(W,L) changes the sign at the critical point [91].
The disorder and size dependence of functions a and c are not known. The analysis of the

size dependence of of parameters x in the critical region [169] confirmed that

a(W,L) ∼







+2L/ξ(W ) W �Wc

0 W = Wc

−2L/ξ(W ) W �Wc

(221)
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Fig. 68. The density, σ(x), calculated from the random matrix model, given by Eq. (220). Various values
of parameters a are given in the legend [168].

and that c(W,L) is a size independent constant for W = Wc. In Eq. (221), ξ(W ) is the
correlation length introduced in Sect. 12.1. In strongly localized regime, ξ(W ) equals to the
localization length λ.

We can verify that the density σ(x), given by Eqs. (220) and (221) reproduces numerical data
for parameters x. Indeed, inserting in Eq. (220) we find that in the metallic regime, σ(x) ∼ const
since x� 2L/ξ(W ) (we remind the reader that 〈xa〉 = L/(N`)a in the metallic regime). Since
σ = cx at the critical point, we immediately recover that 〈xa〉2 ∝ a. In the localized regime,
σ = c(x − 2L/ξ), so that the entire spectrum of parameters x shifts by 2L/ξ(W ) for higher
values of the disorder W .

Using the method explained in Appendix C.1, it was found in Ref. [91] that the distribution
of parameters x at the critical point is given by the universal distribution Eq. (310) and (312), but
with a cubic one particle potential,

Vcrit = cx3. (222)

Then, applying the methods of orthogonal polynomials, [44], the density σ(x) can be calculated
within the random matrix model. Results, shown in Fig. 68, agree qualitatively with results of
the numerical simulations, shown in the left panel of Fig. 67.

An interesting consequence of the expression (220) is the following scaling relation for higher
Lyapunov exponents zi:

[zi − a(W,L)]2 − [zj − a(W,L)]2 =
1

c
(i− j), i, j ≤ L (223)

which enables us to find the critical parameters of the 3d Anderson model from numerical data
for only one system size [169]. It also provides us with numerical evidence that the model (221),
based on the change of the density at the critical point, is correct.
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The simple form of the potential (222) indicates that the statistical description of the critical
regime might be as simple as the analysis of the diffusive regime. However, we are not aware of
any microscopic model which confirms the above phenomenological model.

16 Conclusion

We have discussed in this paper the main transport properties of the single electron disordered
electronic systems. The quantum character of the electron propagation is responsible for the
wide variety of interesting transport phenomena, which we demonstrated numerically.

In the limit of weak disorder, the weak localization and anti-localization corrections to the
conductance and universal conductance fluctuations were observed and the conductance was
found to exhibit the universal conductance fluctuations. In the localized regime, the exponential
decrease of the wave functions and the conductance with the system length has been demon-
strated and discussed.

One of the most important phenomena in the localization theory is the absence of the self
averaging of the conductance. In the metallic regime, the electron wave function is spread over
the entire sample, and is very sensitive to any change of the disorder configuration, as well as
to the change of the boundary conditions. This remarkable property survives also in the limit
of an infinite system size. The sensitivity of the energy spectra to the change of the boundary
conditions can be used as a measure of the electron localization, and defines the main parameter
of the localization theory, the conductance g.

The statistical properties of the conductance in the strongly localized regime are even more
complicated. The transport is possible only by tunneling between localized centers, and the
conductance decreases exponentially with the size of the sample. Still, a few samples exist in the
statistical ensemble which possess rather high conductance. These samples determine the mean
conductance, which might be in orders of magnitude larger than the typical (the most probable)
conductance of the ensemble. For a given sample, the conductance is also very sensitive to the
distribution of random impurities. Equivalently, a small change of the Fermi energy might cause
a huge change in the conductance.

The critical regime of the metal-insulator transition has been discussed in detail. First, we
have analyzed the statistical properties of the conductance, and we have presented numerical data
for the critical conductance distribution. Then, the scaling theory of localization is introduced and
verified by numerical scaling analysis of Lyapunov exponents and conductance distribution. In
order to compare the numerical data for the critical parameters with predictions of the analytical
theories, the critical electronic transport on lattices with dimension close to the lower critical
dimension, dc = 2 as well as with dimension d = 4 and d = 5 was simulated.

We have tried to convince the reader that the numerical data, collected within the last 25 years
supports the validity of the one parameter scaling theory of localization. We believe that the
numerical data provides us with the most reliable estimation of the critical exponents in various
disordered models. We hope that the disagreement between the results of numerical simulations
and theory will motivate further theoretical research [155].

Finally, we want to mention some other aspects of the single electron localization. We have
not discussed the transport in systems with correlated disorder. The mobility edge in the 1d
system with correlated disorder has been found in Ref. [171] (see Ref. [172] for review). Special
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attention is deserved also for disordered systems with chiral symmetries [173]. Also, application
of the concepts of the electron localization to the propagation of the electromagnetic [22, 24,
93, 174], and acoustic [175] waves in disordered media opens a new field for studies of the
localization and promise further development of the localization theory.
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A Properties of the transfer matrix

We summarize here the most important properties of the transfer matrix. For details, we refer the
reader to Refs. [77, 177].

First, we derive the expression for the transfer matrix, given by Eq. (54). From Eq. (51) we
obtain

C = t+A+ r−D ,
B = r+A+ t−D .

(224)

If we have N incoming channels, then the amplitudes A, B, C and D are the (complex) vectors
of length N , and the transmission and reflection amplitudes are the matrices of size N ×N .

We express D from the second equation (224) as

D = (t−)−1B − (t−)−1r+A (225)

and insert it in the first equation (A). We obtain that the transfer matrix is given by Eq. (54),

T =

(

t+ − r−(t−)−1r+ r−(t−)−1

−(t−)−1r+ (t−)−1

)

. (226)

Note, t− and r− are the transmission and reflection amplitudes of the wave coming from the
right side of the sample, and t+ and r+ are the transmission and reflection amplitudes of the
wave coming from the left side of the sample.

A.1 The composition law

The transfer matrix given by Eq. (226) fulfills the composition law. If the sample consists of two
subsystems, shown in Fig. 69, then the transfer matrix T12 of the whole sample can be calculated
from the transfer matrices of the two subsystems as

T12 = T2T1. (227)

The resulting transfer matrix T12 has again the form (54). This composition law enables us to
calculate the transmission of a complicated structure from the transfer matrices of its parts. In
particular, the transmission through two scattering centers is given by the relation

t−12 = t−1
[

1 − r+2 r
−
1

]−1
t−2 . (228)

Similarly for the reflection we obtain

r+12 = r+1 + t+1
[

1 − r+2 r
−
1

]−1
r+2 t

−
1 . (229)
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Fig. 69. The composition law for the transfer matrix.

A.2 Symmetries

The elements of the transfer matrix are not independent. Various physical symmetries provide
important relations between the transmission and reflection amplitudes. Here, we investigate the
consequences of the flux conservation and of the symmetry with respect to the inversion of time.

The flux conservation requires that the flux on the right-hand side of the sample equals to the
flux on the left-hand side. This gives the following constrain to the transfer matrix [77],

T†

(

1 0
0 −1

)

T =

(

1 0
0 −1

)

. (230)

Inserting

T =

(

T11 T12

T21 T22

)

(231)

we obtain from Eq. (230) that

T †
22T22 − T †

12T12 = 1 (232)

and

T †
11T11 − T †

21T21 = 1. (233)

We also have

T †
11T12 − T †

21T22 = 0

T †
12T11 − T †

22T21 = 0.
(234)

With the use of the explicit form of the transfer matrix, given by Eq. (226), we obtain from Eq.
(232) the relation

(t−)†t− + (r−)†r− = 1. (235)

The second equation (234) gives

r+ = −(t−)−1†(r−)†t+, (236)
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which can be written in the form

r−(t−)−1 = −(t+)−1†(r+)†. (237)

Inserting (236) into Eq. (233) gives, after some algebra, the relation

(t+)†t+ + (r+)†r+ = 1. (238)

The equations (235) and (238) are a direct consequence of the flux conservation. They tell us
that the electron either transmits through the sample or is reflected back.

The relation (237) enables us also to simplify the expression for T11,

T11 = t+ − r−(t−)−1r+ = t+ + (t+)−1†(r+)†r+

= (t+)−1†
[

(t+)†t+ + (r+)†r+
]

= (t+)−1†.
(239)

The time reversal symmetry implies that the transfer matrix fulfills the relation
(

0 1
1 0

)

T
(

0 1
1 0

)

= T∗. (240)

From Eq. (240) we obtain that for systems with time reversal symmetry the transfer matrix
can be written in the form

T =

(

T11 T12

T ∗
12 T ∗

11

)

, (241)

where T11 and T12 are theN×N complex matrices. Also, from Eq. (230) we see that |det T| = 1
and from Eq. (240) we get (det T)∗ = det T. Consequently, det T = 1 when the time reversal
symmetry is preserved.

From Eq. (241) we also find that in the case of time reversal symmetry the matrices t+ and
t− are related by the relation

t+ = (t−)T . (242)

A.3 Parametrization of the transfer matrix

Consider now the system with time reversal symmetry. Then, the transfer matrix, T , is deter-
mined by two complex matrices, T11 and T12, which are completely determined by 4N 2 real
parameters. However, these parameters are not independent of each other, since the matrices T11

and T12 must fulfill the relations of flux conservation.
We insert the expression (241) into Eq. (230) and from Eq. (233) we obtain the relation

T †
11T11 − T T

12T
∗
12 = 1, (243)

which implies N2 additional relations between the elements of the matrices T11 and T12. Other
constraints are given by the first of Eq. (234),

T †
11T12 − T T

12T
∗
11 = 0, (244)
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which can be written in the form

AT = A, where A = T T
12T

∗
11. (245)

Equation (245) requires that the complex matrix A is symmetric. This requirement implies
No(No − 1) relations between the elements of the matrices T11 and T12. Finally, we have that
the matrices T11 and T12 are fully determined by N(2N + 1) real parameters.

Following Ref. [178] let us look for the solution of Eqs. (243) in the form

T11 = uLv and T12 = u′L′v′, (246)

where u, u′, v, and v′ are the unitary matrices and L, L′ are the diagonal real matrices. Inserting
into Eq. (243) we obtain that

v†L2v − (v′)T (L′)2(v′)∗ = 1,

v†Lu†u′L′v′ − (v′)TL′(u′)Tu∗Lv∗ = 0,
(247)

which can be solved with

u′ = u, v′ = v∗, (L′)2 = L2 − 1. (248)

Since the complex unitary matrices u and v are determined together by 2N 2 real parameters and
the real diagonal matrix L needs N real parameters, we see that the solution (248) is consistent
with our estimation of the number of free parameters of the transfer matrix.

Taking L =
√

1 + λ we obtain that the transfer matrix can be parametrized in the form

T =

(

u 0
0 u∗

) (√
1 + λ

√
λ√

λ
√

1 + λ

) (

v 0
0 v∗

)

, (249)

where u, v are the No ×No unitary matrices. We also use the following parametrization of the
diagonal elements λa:

λa =
1

2
[coshxa − 1] . (250)

It was shown in Ref. [178] that parametrization (249) is the most general one. Any transfer
matrix of the orthogonal system can be expressed in the form given by Eq. (249). A similar
parametrization can be derived for the transfer matrices with unitary and symplectic symmetry.
For unitary symmetry, the transfer matrix has the form

T =

(

u1 0
0 u2

) (√
1 + λ

√
λ√

λ
√

1 + λ

)(

v1 0
0 v2

)

, (251)

i. e., it is determined by four unitary matrices u1, u2, v1 and v2 and by the diagonal matrix λ. A
detailed derivation of relations (249,251) can be found in Ref. [178].
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A.4 Transfer matrix vs conductance

From the flux conservation (230) we obtain the following relations for the transfer matrix:

[

T†
]−1

=

(

1 0
0 −1

)

T
(

1 0
0 −1

)

, (252)

and

T−1 =

(

1 0
0 −1

)

T†

(

1 0
0 −1

)

, (253)

With the use of these equations we obtain

[

T†T
]−1

=

(

1 0
0 −1

)

T†T
(

1 0
0 −1

)

. (254)

Using Eqs. (254) and (234) we obtain

[

T†T
]−1

+ T†T =

(

4T †
11T11 − 2 0

0 4T †
22T22 − 2

)

. (255)

Inserting into Eq. (255) the matrix elements T11 = (t+)−1†, given by Eq. (239), and T22 =
(t−)−1 we obtain the formula of Pichard [179]

(

t+(t+)† 0
0 (t−)†t−

)

=
1

4

[

T†T + (T†T)−1 + 2
]−1

. (256)

Note that relation (256) follows directly from the requirement of flux conservation.
We can also use the parametric form of the transfer matrix, given by Eq. (251), and we

express the inverse of the r.h.s. of Eq. (256) in the form

1

4

[

T†T + (T†T)−1 + 2
]

=

(

v†1 0

0 v†2

) (

1 + λ 0
0 1 + λ

) (

v1 0
0 v2

)

. (257)

Comparing the l.h.s. of Eq. (256) with Eq. (257), we obtain that

t+(t+)† = v†1(1 + λ)−1v1 (258)

and

(t−)†t− = v†2(1 + λ)−1v2. (259)

Both equations are equivalent if time reversal symmetry is preserved. Indeed, (t+)† = ((t+)T )∗ =
(t−)∗ and v2 = v∗1 .

The matrices v1 and v2, obey the relation of unitarity, v−1 ≡ v†. Using this relation we can
express the Hermitian matrix (t−)†t− in the form

(t−)†t− = v−1
2

1

1 + λ
v2. (260)

Thus, the eigenvalues of the matrix (t−)†t− are (1 + λa)−1 and the unitary matrix v−1
2 contains

in its columns the corresponding eigenvectors.
Using the eigenvalues of the matrices (t−)†t− and (t+)†t+ we can express the transmission,

g =
e2

h
Tr (t−)†t− =

e2

h

∑

a

1

1 + λa
. (261)
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A.5 Open channels and evanescent waves

In previous Sections, we assumed that there are only propagating states in the leads. This might
not be true in real systems. For instance, for the 3d model, we see from the dispersion relation,
given by Eq. (20), that the propagation along the leads, (which is the z direction in our notation),
is determined by the z-component of the wave vector, kz , given by the relation

2 coskz = E − 2 cos kx − 2 cosky , (262)

where the transversal wave vector kx is given by

knx
=

2π

Lx
nx, nx = 0, 1, . . . , Lx − 1 (263)

for the periodic boundary conditions and

knx
=

π

Lx + 1
nx, nx = 1, . . . , Lx (264)

for the hard wall boundaries. Similar relations hold for ky.
Using the eigenfunctions Φnx

(x) and Φny
(y), related to the eigenvalues of kx and ky, we

find that the wave function in the leads is

Ψ(~r) =
∑

nxny

φnx
(x)φny

(y)
eikz

√
2i sin kz

. (265)

The wave vector kz = kz(nx, ny) possesses N = LxLy values given by Eq. (262) (not neces-
sarily different from each other). The propagating solutions exist only for such values of kz, for
which

|2 cos kz(nx, ny)| < 2, (266)

i. e. when kz is real. Otherwise, kz is purely imaginary. and determines the exponential decrease
of the wave function with distance form the left (right) boundary of the sample. Therefore, we
have to distinguish betweenNo andN , whereNo is the number of propagating channels with kz

real, and N is the total number of channels.
Since we assume that both leads are semi-infinite, it is clear that the evanescent waves, emit-

ted from the reservoirs, are not able to reach the sample. Therefore, the size of the transmission
and reflection matrices is N o ×No. The necessity to distinguish betweenN andNo complicates
the calculation of the conductance. Indeed, the size of the transmission matrix t− is No but the
size of the matrix T22 defined by Eq. (231) isN×N . If we order the eigenvectors in the matrixR
in such way that the eigenvectors with index 1 ≤ a ≤ No correspond to the propagating modes,
and the remaining eigenvectors correspond to the evanescent modes, then the transmission is
given only by the No ×No sub-matrix [T22]ab, with a, b ≤ No:

T =

No
∑

ab=1

∣

∣

∣

[

T−1
22

]

ab

∣

∣

∣

2

. (267)

Other matrix elements of T22 correspond to the scattering of the electron into the evanescent
channels. Note, the composition laws for the transmission and reflection of the system given by
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Fig. 70. Small segment of length δLz is added to the sample of length Lz .

Eqs. (228,229) are not valid in this case because evanescent waves between two subsystems can
also contribute to the transport.

It is important to underline that the analytical theories discussed in next two Appendices
assume implicitly that there are no evanescent waves in the leads.

In numerical simulations, we can avoid the evanescent waves for the band center (E = 0) by
using anisotropic models, given, for instance, by Eq. (9). However, the evanescent waves cannot
be completely excluded if we are interested in the transmission of the electron with energy close
to the band edge. Indeed, from the E dependence of kz , given by Eq. (262), we see that No is
maximal for the band center and decreases to zero when the energyE approaches the band edge
of the unperturbed system. Therefore, we have to consider evanescent waves in the numerical
calculation of the conductance. The calculation of the conductance is described in Appendix E.

Note, there are no propagating channels for the energy E outside of the unperturbed band.
Therefore, we are not able to calculate the conductance for such energies. This constrain com-
plicates the scaling analysis of the conductance along the critical line shown in Fig. 6.

B Dorokhov-Mello-Pereyra-Kumar (DMPK) Equation

The transfer matrix of the disordered system is a statistical variable. One can ask if there is a
possibility to calculate the probability distribution p(T), which is a joint probability distribution
of all matrix elements of the transfer matrix, T. This problem was solved by Mello et al. [7]. For
the transfer matrix, given by expression (249), they derived the equation for the joint probability
distribution of the parameters λ, which parametrize the transfer matrix in Eq. (249). Since the
derivation of the DMPK equation is rather difficult, we present here only main ideas and refer
the reader to the original work, [7].

Consider a weakly disordered system of length Lz, connected on both sides to the semi-
infinite leads as shown in Fig. 18. There are N open channels in the leads, with N big enough
to neglect all corrections of order N−1. The channels are equivalent to each other. In the leads,
each channel is characterized by the same wave vector kz. The disorder is introduced inside the
sample by random hopping terms between the channels.

Suppose we have a sample of lengthLz and we know the probability distribution pLz
(T′)dT′.

Now, we add to the sample of length Lz an additional random segment of length δL (Fig. 70).
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The resulting sample will have length Lz + δLz and is characterized by the transfer matrix

T = TδT′. (268)

We suppose that the length δLz of the additional segment is sufficiently small so that the reflec-
tion coefficient of the segment is linear in δLz,

R+
δ = Tr (r+)†r+ ∝ a

δLz

`
. (269)

In Eq. (269), the length ` is the mean free path and we put a = 1. We also neglect all terms
proportional to higher orders of δLz. Equivalently, we can require that the trace,

Tr T†
δTδ = 2N

[

1 +
δLz

`

]

, (270)

is linear in δLz
7.

We also need to know the probability distribution pδL(Tδ) of matrix elements of the transfer
matrix Tδ. This distribution represents the main building block of the theory. In Ref. [7], the
Ansatz

pδLz
(Tδ) ∝ exp− (N + 1)`

2δLz
Tr λδ (271)

was proposed. It represents the “most random” distribution of matrix elements of the transfer
matrix Tδ. We remind the reader that parameters λδ for the transfer matrix Tδ are defined by Eq.
(249). Clearly, Tr 〈λδ〉 = NδLz/`.

The probability distribution pLz+δLz
(T) fulfills the Smoluchovsky equation,

pLz+δLz
(T) =

∫

pLz
(TT−1

δ )pδLz
(Tδ)dTδ. (272)

Inserting Eq. (271) into Eq. (272) leads, after rather complicated mathematical operations,
to the equation for the joint probability distribution of eigenvalues λ:

∂pLz
({λ})

∂(Lz/`)
=

2

βN + 2 − β

1

J

N
∑

a

∂

∂λa

[

λa(1 + λa)J
∂pL({λ})
∂λa

]

. (273)

Here, J is the Jacobian, given by

J ≡
N
∏

a<b

|λa − λb|β (274)

and β is the symmetry parameter, β = 1, 2 or 4 for orthogonal, unitary, or symplectic systems,
respectively. Equation (273) is known in the literature as the DMPK equation. Note, the mean
free path, `, is the only parameter which enters the theory.

The DMPK equation, given by Eq, (273) does not contain any information about the matrices
u and v. These variables were “integrated out” in the process of deriving Eq. (273). The main

7Note, in the case of zero reflection, the matrices (t −)†t− and t+(t+)† are diagonal and Tr T †T ≡ 2N .
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u(x)
u(x)

Fig. 71. The propagation of the electron through the disordered sample. Left: If the disorder is weak, then
there are many paths through the structure. We expect that the wave function of the electron on the opposite
side of the sample is spatially homogeneous. This corresponds to the assumption (275,276). Right: If the
disorder is strong, there is in the best case only one path through the structure. Then, the wave function
possesses sharp maxima at the opposite side of the sample; the positions of these maxima depend on the
realization of the disorder in a given sample. It is clear that assumption (276) is not longer valid. Therefore,
we do not expect that the DMPK equation, given by Eq. (273), describes the transport in strongly disordered
systems.

assumption made in this process was that u, v and λ are statistically independent. Next, it was
assumed that the elements of the matrix v fulfill the relations

〈v∗abvcd〉 =
1

N
δabδcd (275)

and

〈v∗cav
∗
cbvdavdb〉 =

1 + δab

N(N + 1)
δcd, (276)

and similar relations hold also for the matrix u. These assumptions limit the validity of the
DMPK equation to the systems with weak disorder. It is implicitly assumed that there are many
paths for the electron to propagate through the sample. Then, the density of the electron on the
opposite side of the sample is homogeneous, as shown in the left panel of Fig. 71.

Another constraint of the DMPK equation is given by the assumption of the equivalence of
all incoming and outgoing channels. In the real world, the channels are never equivalent, since
they are determined by the incident angle (or by the transversal momentum) inside the leads, as
shown in Fig. 18. The assumption that all channels are equivalent removes from the theory any
information about the topology of the leads. Further, in the derivation of the DMPK it is assumed
that channels are equivalent also inside the sample, since disorder was introduced by the random
hopping between any two channels. Thus, the DMPK equation represents the simplest “mean
field theory”. In spite of the above constrains, the DMPK equation is surprisingly successful in
the description of the electronic transport in weakly disordered quasi-1d systems. The DMPK
equation can be easily generalized to description of more realistic systems. For instance, instead
of the Ansatz (271) we can use more complicated probability distribution, which reflects the
properties of the system, inclusive anisotropy and topology [180]. However, such generalization
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Fig. 72. Numerical verification of the validity of the DMPK equation. Left: The N = L2 dependence
of the (N + 1)K11/2 for the quasi-1d systems L × L × 4L and for the cubes L3. In the last case, also
(N + 1)K12 is shown. The DMPK is applicable if these quantities converge to 1 in the limit of L → ∞.
Right: The a dependence of Kaa for the quasi-1d systems and for the cubes. Data were obtained for the
anisotropic Anderson model with t = 0.4 with disorder W = 2 and W = 4, which corresponds to the
mean free path ` = 9 and ` = 1.8, respectively [167].

does not bring any novel physical information. It only complicates the resulting formula for the
transmission.

B.1 Numerical verification of validity of the DMPK equation

In Fig. 72 we verify numerically the validity of the relation (276). We consider the anisotropic
Anderson model, given by Eq. (9) with t = 0.4 and calculate the matrix

Kab =

〈

∑

c

|uac|2|ubc|2
〉

, (277)

where, as usual, 〈. . .〉 means averaging over the statistical ensemble. Requirement (276) is equiv-
alent to

Kab =
1 + δab

N + 1
(278)

with N = L2.
Our data show, that although the channels in the Anderson model are not equivalent to each

other, the requirement (278) is perfectly fulfilled for the weakly disordered quasi-1d systems,
as long as the mean free path, `, is comparable to the width, L, of the system Agreement is
worse for 3d systems. This is natural, since the 3d systems are expected to possess slightly
different conductance statistics than the quasi-1d systems (see Table 1 which compares data for
the universal conductance fluctuations, var g. in the quasi-1d, 2d and 3d systems). When disorder
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increases, the mean free path decreases and the transversal structure of the sample becomes
important. This could be included into the theory if a more detailed model for the distribution
p(Tδ) is considered.

B.2 Conductance

The DMPK equation can be directly used to calculate the first two moments of the conductance
of the weakly disordered quasi-1d system. The method is described in Ref. [83]. When we are
interested in the mean value of the function F (λ), we multiply both sides of the DMPK equation,
given by Eq. (273) by F (λ) and integrate over λ. On the r.h.s., we obtain mean values of some
other functions, Fi(λ); repeating this procedure for Fi, we obtain a system of coupled equations
for 〈F 〉 and 〈Fi〉, which can be solved in the limit ofN → ∞. In this way, the mean conductance
(in units of e2/h) was calculated as

〈g〉 =

〈

∑

a

1

1 + λa

〉

=
N`

Lz
−N

`2

L2
z

− 1

3

[

1 − 3
`

Lz

]

+
Lz

45N`
+ . . . . (279)

The first term,N`/Lz can be identified with the conductivity, σ. Other terms represent the quan-
tum corrections. Of particular interest is the diffusive regime, which is defined by the following
relations between Lz and `:

`� Lz � N`. (280)

If the conditions (280) are fulfilled, then we can neglect the last term in Eq. (279). Assuming
also that the system is sufficiently long, so that

N
`2

L2
z

� 1, (281)

we can neglect also the 2nd term on the r.h.s. and we finally obtain the following estimation of
the mean conductance:

〈g〉 =
N`

Lz
− 1

3
. (282)

The correction, δg = −1/3, is the universal weak localization correction to the conductance of
the quasi-1d system. This is a fully universal value, independent of any details of the system
provided that the conditions (280,281) are fulfilled. The numerical verification of the relation
(282) is shown in Fig. 28.

In a similar way, Mello and Stone calculated in Ref. [83] the variance,

var g = 〈g2〉 − 〈g〉2 =
2

15β
. (283)

The variance of the conductance in the quasi-1d system is universal, given only by the physi-
cal symmetry (by the value of the parameter β). The same result was obtained in Ref. [9] by
perturbation Green’s function analysis.

The universal relations (282) and (283) hold only when the system is long enough (as required
by Eq. (281)). In this case, the electron is scattered many times inside the sample so that its wave
function and phase are sufficiently randomized. As required by Eq. (280), the length of the
sample should not be too long, otherwise the effects of localization become important. This is
analyzed in the next Section.
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B.3 Limit Lz � N`

In the limit of Lz � N`, the localization appears. As shown in Appendix D, the wave function
decreases exponentially in the limit of infinitely long system. This must be true also for the solu-
tion of the DMPK equation. Therefore, parameters λa = (coshxa−1)/2 increase exponentially
with the system length. If we order the parameters λ,

λ1 � λ2,� . . . ,� λN , (284)

then the Jacobian, given by Eq. (274), reduces to

J =
∏

a=1

λa−1
a (285)

and the DMPK equation splits into the N independent equations for the probability distributions
p(λa),

∂pL(λa)

∂(L/`)
=

2

βN + 2 − β
λ1−a

a

∂

∂λa

[

λa+1
a

∂pL(λa)

∂λa

]

. (286)

In the derivation of Eq. (286 we used that λa � 1 so that λa(λa + 1) ≈ λ2
a. Substituting

λa = expxa, and using ∂p(λa)/∂λa = λ−1
a ∂p(xa)/∂xa, we obtain

∂pLz
(xa)

∂(Lz/`)
=

2

βN + 2 − β

[

a
∂pLz

(xa)

∂xa
+
∂2pLz

(xa)

∂x2
a

]

, (287)

which is the diffusion equation. The solution of Eq. (287) is

pLz
(xa) =

1√
2πσ

exp− (xa − 〈xa〉)2
2σ

(288)

with the mean value,

〈xa〉 = 2
1 + β(a− 1)

βN + 2 − β

Lz

`
, (289)

and variance,

σ = 2
2

βN + 2 − β

Lz

`
. (290)

Thus, in the limit of Lz/` � 1, the parameters xa become statistically independent. They pos-
sess Gaussian probability distributions with the same variance, σ, and with mean values which
increase linearly as a function of index a:

〈xa〉 = 〈x1〉 + 2
βa

βN + 2 − β

Lz

`
. (291)

The numerical data for the probability distributions pLz
(xa) are shown in Fig. 73.

When calculating the conductance, we can neglect all contributions from the higher channels
We obtain

g ≈ 4e−x1 (292)
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Fig. 73. The statistical distributions of the parameters xa for the weakly disordered quasi-1d system with
the box disorder W = 6. The size of the system is 10 × 10 × 200. Since disorder is weak, (the critical
disorder Wc = 16.5 for the box distribution of random energies), we have 〈xa〉 = a〈x1〉, in agreement
with the DMPK equation. The length of the system, Lz = 200, is sufficient to localize all electronic states.
All parameters xa are large and posses the Gaussian distribution, as predicted by Eqs. (288-290).

which confirms that the conductance decreases exponentially when the system length increases.
We also obtain that the logarithm of the conductance, ln g = −x1 +ln 4, possesses the Gaussian
probability distribution with the mean

〈ln g〉 = −2
1

βN + 2 − β

Lz

`
+ ln 4 (293)

and with the variance,

var g = −2〈ln g〉 − ln 4. (294)

The DMPK equation predicts the universal statistical properties of the conductance also in the
localized regime.

However, it is important to mention that the localization described by the DMPK equation
does not correspond to the true insulating regime. Note, the disorder is still weak in the system.
The localization appears only due to the increase of the length of the system, Lz. We discuss
in Sect. 11) that the localization in the weakly disordered quasi-1d systems differs qualitatively
from the localization in the strongly disordered 3d systems.

C Random matrix theory

Random matrix theory was developed 50 years ago for the description of the statistical properties
of large matrices, which appear, for instance, in studies of the energy spectrum of big nuclei.
The experimental data showed that the energy spectra possess common universal features - for
instance, the repulsion of the neighboring eigenvalues, similar to that shown in the left panel of
Fig. 12. It was suggested that the Hamiltonian of a big nucleus can be approximated by a random
matrix. Then, the qualitative properties of the energy spectra can be obtained from the general
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properties of the random matrices. Recently, the random matrix theory for the transfer matrix
was developed to explain some universal properties of the electron transmission in the diffusive
regime.

We present here the formula for the joint probability distribution p(Λ) of the eigenvalues of
the random matrix. More details about the theory can be found in Refs. [44, 179].

Consider a real symmetric N × N matrix H with random elements Hab. Let us define the
joint probability distribution of its elements, P (H)dH. The measure dH is given as

dH =

N
∏

i=1

dHii

∏

i<j

dHij . (295)

Our aim is to find the expression for the joint probability distribution of the eigenvalues of the
matrixH . Consider only the orthogonal symmetry class. Then the matrix H is real and symmet-
ric. It can be diagonalized like

H = QΛQ−1, (296)

with the helps of the orthogonal matrix Q, which fulfills Q−1 = QT . It is evident that

QQT = 1. (297)

Then, each element Hij can be expressed as

Hij =
N

∑

k=1

ΛkQkiQkj . (298)

Since H is a real symmetric matrix, it is fully determined by the N(N + 1)/2 real independent
parameters, Hij , i ≤ j. We want to express the measure dH in terms of the eigenvalues Λi and
parameters xa of the matrixQ (there are exactlyN(N − 1)/2 independent parameters xa which
determine matrix Q). We need to find the Jacobian, J , of the transformation

dH =

N
∏

i=1

dHii

∏

i<j

dHij = JN ({Λ}, {Qij})
N
∏

i=1

dΛi

∏

a

xa. (299)

The Jacobian matrix can be schematically written in the form

J =







∂Hii

∂λα

∂Hij

∂λα
∂Hii

∂xµ

∂Hij

∂xµ






, (300)

where the upper left quadrant is the N ×N matrix, (i counts columns and α counts rows), and
the lower right quadrant is a square matrix of size N(N − 1)/2 (i < j counts columns and µ
counts rows of the matrix).

With the help of Eq. (298) we see that the firstN rows of the matrix J do not contain Λ. Also,
all elements in the lower N(N − 1)/2 rows are linear in the eigenvalues. Therefore, J = det J
is a polynomial of order of N(N − 1)/2 in the eigenvalues Λ. In order to find the form of this
polynomial one has to realize that if the matrix H possesses two degenerate eigenvalues, λa = λb
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for a 6= b, then diagonalization of H is not unique and the matrix J−1, which determines the
transformation inverse to (296), must be singular. Therefore, J = det J = 0 for the degenerate
matrix. Then, we easily find that

J =
∏

a<b

|Λa − Λb| F ({x}), (301)

where the function F (x) does not contain any information about the eigenvalues Λ. We obtain

P (H)dH = P ({Λ})J({Λ}dΛP (x)dx. (302)

Now, we can integrate out all parameters x to obtain the probability distribution for eigenvalues,
Λ.

In the case of unitary and symplectic systems, the Jacobian changes to

Jβ =∝
∏

a<b

|Λa − Λb|β, (303)

where β = 2 (β = 4) for the unitary (symplectic) symmetry, respectively.
The expression (303) plays an important role in the theory of random matrices. It tells us

that there is a zero probability to find degenerate eigenvalues. The level repulsion is a typical
property of random matrices. We have shown already in Fig. 13, that the spectrum of weakly
disordered Hamiltonian exhibits level repulsion.

To find an explicit form of the probability distribution P (Λ), we look for the probability
distribution P (Λ) in the form

P (Λ) = Jβ exp
∑

a

F (Λa). (304)

Choosing the expression (304), we implicitly assume that F (Λ) is a function of only one eigen-
value. We will see later that this assumption might not be fulfilled in some applications of random
matrix theory.

In the limit of N → ∞, we introduce the level density, σ(Λ) and we write the distribu-
tion (304) in the continuum form,

P (Λ) = e−βH (305)

where

H = − 1

β

∫

dΛσ(Λ)F (Λ) − 1

2

∫ ∫

dΛdΛ′σ(Λ)σ(Λ′) ln |Λ − Λ′|. (306)

To specify the function F , we must introduce some constrains. We can, for instance, require a
specific form of the density, σ(Λ) and look for the “most random” distribution P (Λ) by mini-
mizing the “Hamiltonian” H . The condition

δH

δσ
= 0 (307)

leads to the following expression for F :

F (Λ) = −β
∫

dΛ′σ(Λ′) ln |Λ − Λ′|. (308)

In the next Section, we apply the above formulas to the transfer matrix.
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C.1 Application to transfer matrix

Assuming that the transmission matrix

[

t†t
]−1

= v†(1 + λ)v (309)

of the diffusive system belongs to the class of random matrices, we immediately obtain that the
distribution of parameters λ has a form

P ({λ}) = e−βH (310)

with

H = −
∑

a<b

ln |λa − λb| +
∑

a

∫ ∞

0

dλσ(λ) ln |λ− λa|. (311)

The first term is the Jacobian, and the second term is the one particle potential, given by Eq.
(308).

It is more useful to express the distribution (310,311) in terms of variables xa instead of λ.
Inserting λa = (coshxa − 1)/2 into Eq. (311) we obtain

H({x}) = −
N

∑

a<b

ln | coshxa − coshxb| −
1

β

N
∑

a

ln | sinhxa| +
∑

a

V (xa). (312)

The second term on the r.h.s. of Eq. (312) is the Jacobian of the transformation λ → x, and we
have used σ(λ)dλ = σ(x)dx. The last term is the one particle potential,

V (x) =

∫ ∞

0

dx′ σ(x′) ln | coshx− coshx′|. (313)

The density σ(x) can be estimated from the numerical data. Fig. 41 shows that 〈xa〉 ∼ a.
This leads to the constant density

σ(x) =

{

N`
Lz

x < Lz/`

0 otherwise.
(314)

We insert expression (314) into Eq. (313), and we calculate the potential V (x) following the
method given in Ref. [181]. The first derivative of Eq. (313) reads

∂V (x)

∂x
=
N`

Lz

∫ ∞

0

sinhx

coshx− coshx′
dx′. (315)

With the new variable, y = ex′

, we obtain

∂V (x)

∂x
=
N`

Lz

∫ A

1

[

1

y − e−x
− 1

y − e+x

]

dy, (316)

with A = expLz/` � 1. Since x > 0, the first integral gives ln |A − e−x| − ln |1 − e−x|.
The function 1/(y − ex) possesses a singularity at ex. Since the (negative) contribution to the
integral from 1 to ex cancels with the (positive) contribution from ex to 2ex − 1, we obtain that
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Fig. 74. The probability distribution p(δ12) of the normalized difference x2 − x1 for three models in the
diffusive regime. Two systems with orthogonal symmetry have the same distribution p1, given by Eq. (32).
This confirms that the important property in the diffusive regime is not determined by the dimension of the
sample, but by the randomization of the electronic wave function due to the multiple scattering. The third
statistical ensemble, given by the 2d Ando model, possesses the symplectic symmetry (β = 4) The solid
lines are the Wigner distributions.

the second integral gives ln |A−ex|−ln |ex−1|. ForA >> ex the difference of the two integrals
is ln |ex − 1| − ln |1 − e−x| ≡ x. We finally obtain

∂V (x)

∂x
=
N`

Lz
x. (317)

Thus, we have the quadratic one particle potential,

V (x) =
N`

2L
x2. (318)

The probability distribution P (x) is similar to the statistical sum of the one dimensional
Coulomb gas. In the Coulomb gas analogy, the parameters xa represent the position of the ath
particle confined in the quadratic potential V (x) and interacting with the other particles by the
two particle logarithmic interaction. The parameter β is the “temperature”. A detailed analysis
of the probability distribution p(x) and of the consequences for the diffusive transport are given
in a series of papers of Pichard et al. [179, 181–184].

The most simple consequence of the probability distribution p(x) is the “level repulsion”.
From random matrix theory it follows that the normalized difference

δa,a+1 =
xa+1 − xa

〈xa+1 − xa〉
(319)

is distributed with the Wigner distribution pβ. This was confirmed by numerical simulations
[102, 181, 182]. In Fig. 74 we plot p(δ12) for three statistical ensembles for the 2d and 3d
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orthogonal systems, and for the 2d Ando model. The data confirm that the distributions p(δ12)
are indeed very similar to the Wigner distributions.

Note, the term ln sinhx in the “Hamiltonian” (312) can be interpreted as the interaction of
the particle located at x with its “mirror image”, i. e. the particle located at −x. Therefore,
the distribution of p(x1) is given by the Wigner distribution, too. However, since the “interac-
tion”, ln sinhx, does not depend on β, the distribution p(x1) should not depend on the physical
symmetry [181]. This is confirmed in Fig. 75.

Figure 76 confirms that the spectrum of parameters xa is linear in the diffusive regime, both
in the 2d and 3d systems,

〈xa〉 = [1 + (a− 1)β] 〈x1〉. (320)

For β = 1, a more accurate estimation, which agrees also with results of numerical simulations,
can be derived from random matrix theory,

xa ∝
√

Xa, (321)

where Xa are zeros of Laguerre polynomials LN [90, 91], Xa ≈ [4(N + 1/2)]
−1
j20(a), where

j0(a) is the ath zero of the Bessel function J0(x). In the limit of a� 1, j0(a) ≈ π(a− 1/4), so
that Eq. (321) gives xa ∝ a.

The right Fig. 76 shows the a dependence of parameters ga,

ga = cosh−2 xa/2. (322)

Clearly, ga is the contribution of the ath channel and

g =
∑

a

ga. (323)
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Fig. 76. The index dependence of the mean 〈xa〉 (left) and ga (right) for the 2d and 3d weakly disordered
systems. The data confirm the linearity given by Eq. (320). To calculate 〈xa〉, we have to diagonalize the
matrix t†t for each sample, extract xa from the eigenvalue (1 + λa)−1. The mean value, 〈xa〉 is obtained
by averaging over the statistical ensemble. Note, the data for large a are not present since cosh2(xa/2)
exceeds the numerical accuracy of the computers for such large values of xa. The conductance 〈g〉 = 16.1,
4.3 for the 2d systems with W = 1 and W = 2, respectively, and 〈g〉 = 42.1 for the 3d system. In the last
model, the anisotropy, t = 0.4 was used to avoid the evanescent channels in leads.

Because of the rigidity of the spectrum, the fluctuations of x a are of the order of the mean
spacing, which is ∼ Lz/N`. We see that ga are very close to 1 for small a and exponentially
small when a → N . There is Neff channels for which xa ≤ 1. Higher channels, with a > Neff

give only negligible small contribution to transport Then, the conductance g ≈ Neff . The slope
of the linear dependence, 〈x1〉, determines the conductance: if 〈xNeff

〉 = 1, then we have, from
Eq. (320) that

〈g〉 = Neff = 1 +
1

β

(

1

〈x1〉
− 1

)

. (324)

This expression simplifies for β = 1:

〈g〉 = Neff =
1

〈x1〉
. (325)

Since g = N`/Lz, we immediately see that

〈x1〉 =
Lz

N`
. (326)

Thus, all parameters xa increase linearly with the length of the system. The mean value, 〈xa〉, as
well as the spacing between two neighboring parameters, 〈xa〉, decreases as N−1.

The rigidity of the spectrum of parameters xa was used for the explanation of the universality
of conductance fluctuations in Ref. [92].
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Random matrix theory represents a powerful tool for the analysis of transport in disordered
systems. More details are given in Refs. [35, 179, 185].

C.2 DMPK equation versus random matrix theory

Both the DMPK equation and the random matrix theory were successfully applied to the transport
in disordered systems. Originally it was believed that the theories are equivalent. This would
mean that the probability distribution p(λ), given by random matrix theory, solves the DMPK
equation.

However, these two approaches are not equivalent. The discrepancy between the two ap-
proaches was observed when Beenakker [85] calculated the variance of the conductance from
random matrix theory. The obtained result, var g = 1/8β differs from the exact value, var g =
2/15β, obtained by the diagrammatic expansion [9] and from the DMPK equation [83]. This
proves that random matrix theory is not exact. Beenakker and Rejaei [186] solved the DMPK
equation for β = 2. Both in the metallic and localized regimes, the solution reads

p(x) = exp−β
[

∑

a

V (xa) +
∑

a<b

u(xa, xb)

]

, (327)

with the interacting term

u(xa, xb) = −1

2
ln | coshxa − coshxb| −

1

2
ln |x2

a − x2
b | (328)

and with the one-particle potential,

V (xa) =
N`

2Lz
x2

a − 1

4
ln(xa sinhxa). (329)

This solution is very similar to the probability distribution derived from random matrix theory.
However, note, that it cannot be obtained from the Ansatz (304), since the two particle interac-
tion, given by Eq. (328), is not determined by the Jacobian only. Therefore, the one parameter
function F (λ), introduced in Eq. (304), is not sufficient for obtaining the distribution (327).

D Lyapunov exponent

D.1 One-dimensional case

The Lyapunov exponent, γ(E), of the one dimensional disordered system is defined by the rela-
tion

γ(E) = lim
Lz→∞

1

2Lz
ln

(

Ψ2
Lz

+ Ψ2
Lz+1

)

, (330)

Note also, that the wave function

|ΨLz
| ∝ e−γLz (331)
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decreases exponentially when Lz increases. From Eq. (330) we see that the real part of the
Lyapunov exponent determines the localization length,

Re γ(E) = λ−1. (332)

Thouless [187] showed that the imaginary part is related to the density of states by the relation

ρ(E) =
2

π

∂

∂E
Im γ(E). (333)

In the 1d systems, the Lyapunov exponent can be found analytically in the limit of weak
disorder. For the Anderson model, defined by Eq. (75), we find

γ(E) = ik +
〈ε2〉

2(4 −E2)
, (334)

with E = 2 cosk. Note that the expression (334) fails when close to the band edge, |E| → 2.
A more detailed analysis [188, 189] showed that in this case γ ∝ W 2/3. In general, the weak
disorder expansion exhibits a peculiar behavior in the neighborhood of energiesE = 2 cosπp/q,
with p and q being integers. At the band center, E = 2 cosπ/2 = 0, the fourth order term of the
expansion diverges and gives rise to the correction of the 2nd order term [188,189]. For instance,
Reγ = W 2/96 for E = 0 and the box disorder, defined by Eq. (10), since 〈ε2〉 = 1/12.
Correct expression, which takes into account the higher order terms of the expansion, gives
Reγ = W 2/105.4, which agrees with numerical data.

The Lyapunov exponent plays an important role in the theory of localization. In the next
Section, we generalize the 1d case to the quasi-1d systems. Note that the Schrödinger equation,

Ψn+1 + (εn −E)Ψn + Ψn−1 = 0, (335)

can be written in the matrix form
(

Ψn+1

Ψn

)

=

(

E − εn −1
1 0

) (

Ψn

Ψn−1

)

. (336)

Then we can write

Ψ2
Lz+1+Ψ2

Lz
= (ΨLz+1,ΨLz

)

(

ΨLz+1

ΨLz

)

= (Ψ1,Ψ0)(M(Lz))T M(Lz)

(

Ψ1

Ψ0

)

,(337)

where we have introduced the transfer matrix,

M(Lz) =

Lz
∏

n=1

Mn =

Lz
∏

n=1

(

E − εn −1
1 0

)

. (338)

Thus, in the limit of Lz → ∞, γ is given by the eigenvalues of the matrix M(Lz). Since M(Lz)

contains the random energies εi, γ is a statistical variable, too.
Oseledec [190] proved that the probability distribution, p(γ) is Gaussian with the mean value

〈γ〉 ∝ Lz and variance, var γ ∝ 〈γ〉. Therefore, the variable

z =
2L

Lz
× γ (339)
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n-1   n   n+1

Fig. 77. We cut the quasi-1d system into the L × L vertical slices. The propagation of the electron in slice
n is given by the Hamiltonian Hn.

is a self-averaged quantity in the limit of long samples.
Self-averaging of the Lyapunov exponent can be intuitively understood from the expres-

sion (337). The Lyapunov exponent represents the logarithm of the eigenvalue of the matrix
(M(Lz))T M(Lz), which is the product of the random matrices. Naively speaking, γ can be con-
sidered as a sum of logarithm of eigenvalues of the random matrices Mn, n = 1, 2, . . . Lz. Then,
applying the central limit theorem we expect, that both the mean value and variance of γ are
proportional to Lz.

D.2 Quasi-1d case

Consider the quasi-1d system of the size Ld−1 ×Lz, and suppose that Lz � L. For the purpose
of numerical analysis, we divide the system into a set of vertical slices, shown in Fig. 77 and we
write the Schrödinger equation in the form

Ψn+1 = (E −Hn)Ψn − Ψn−1, (340)

where Hn is the Hamiltonian related to the nth slice in Fig. 77, and Ψn is the vector which
contains in its elements the wave function in sites of the nth slice. The length of the vector Ψn

is N = Ld−1.
Equation (340) can be rewritten in the matrix form,

(

Ψn+1

Ψn

)

= Mn

(

Ψn

Ψn−1

)

, (341)

where the transfer matrix, Mn, is given by the relation

Mn =

(

E −Hn −1
1 0

)

. (342)

This relation is formally equivalent to Eq. (336) but now the matrix Mn has the size 2N × 2N .
Note, det Mn ≡ 1. Also, the eigenvalues of Mn appear in pairs, λ and λ−1.
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Now we calculate the 2N × 2N matrix

M(Lz) =

Lz
∏

n=1

Mn =

Lz
∏

n=1

(

E −Hn −1
1 0

)

. (343)

The matrix M(Lz) determines the behavior of the wave function at long distances. Since the
system is effectively one dimensional, the wave function must decrease exponentially when
the length of the system, Lz, increases. This exponential decrease is given by the eigenvalues,
exp−γa, with γa > 0. Clearly, the smallest γa determines the localization length.

Since the matrices Mn contains the random variables, εn, αa are also statistical variables,
and we need to know their probability distributions. Following Oseledec [190], we have that in
the limit of Lz → ∞ all the eigenvalues of the matrix

[M(Lz)M(Lz)]L/Lz (344)

converge to λa = eζa and λN+a = e−ζa where

ζa =
2L

Lz
× γa. (345)

The mean value, 〈ζa〉, does not depend on Lz, and the variance,

var ζa = 〈ζ2
a〉 − 〈ζa〉2 ∝ L

Lz
. (346)

Thus, Oseledec theorem states that the parameters ζa are the self-averaged quantities in the limit
ofLz → ∞. For a given realization for the disorder, the eigenvalues of the matrix (344) converge
to their mean values. In numerical simulations, the length Lz is finite, so that the obtained
numerical data, ζa, differs from the limited mean values, 〈ζa〉. Oseledec theorem enables us to
estimate the typical difference,

ζa − 〈ζa〉 ∼
√

var ζa ∝
(

L

Lz

)1/2

. (347)

Thus, we can avoid the problem of statistical fluctuations in numerical calculations. It is sufficient
to calculate the product of the transfer matrices, M(Lz), for a sufficiently large system length,Lz,
and then to calculate the eigenvalues, ζa. If Lz is large enough, then the obtained values ζa lie
close to the mean values, 〈ζa〉. This procedure is applied in the finite size scaling analysis of
Lyapunov exponents, discussed in Section 12.1.

In what follows we order ζ1 > ζ2 > . . . > ζN . That means that

ζa = zN+1−a, (348)

where za are discussed in Sect. 12. Clearly, the smallest Lyapunov exponent, z1, equals to the
smallest eigenvalue ζN .

In the numerical simulations, we need to calculate the smallest (in absolute value) parameter
ζN = z1. This can be done by the following numerical algorithm.
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1. Choose the required accuracy ε of ζN . Then, start with the following variables: first, we
need the N × 2N matrix V which contains in N columns the mutually orthogonal vectors
va of the length 2N . We will also need the vectors da and ea of the lengthN and put their
stating values, da = (0, 0, . . . 0) and ea = (0, 0, . . . 0). Also, put Lz = 0.

2. Calculate the ni iterations

U =

ni
∏

n=1

MnV. (349)

3. Perform the Schmidt orthogonalization of vectors ua, given by columns of the matrix U.
Obtain new vectors wa, which are already orthogonal to each other.

4. Calculate the norm of vectors wa, and add these norms into vectors d and e as follows:

da = da + ln |wa| (350)

and

ea = ea + (ln |wa|)2. (351)

5. Put

ua = wa/|wa| (352)

and the length,

Lz = Lz + ni. (353)

Calculate ζa = da/Lz, ηa = ea/Lz and the accuracy

εa =

√

ηa − ζ2
a

ζa
. (354)

6. If εN > ε then go to the step 2, otherwise stop.

The obtained value of ζN is the required smallest Lyapunov exponent z1.
The length Lz, necessary for the calculation of the smallest Lyapunov exponent, depends on

the required accuracy, ε. For the 3d Anderson model, the length of the system, Lz was estimated
in Ref. [91] as

Lz =
1

2ε2
L. (355)

In numerical simulations, the accuracy ε = 0.001 is usually required. Then, Lz = 500.000×L.
The number of iterations between two successive Schmidt orthogonalization is ni ≈ 6 − 8 for
the critical disorder, and smaller (larger) when W �Wc(W � Wc), respectively.
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E Calculation of the conductance

E.1 1d case

It is convenient to write the Schrödinger Equation (75) in the form
(

Ψn+1

Ψn

)

= Mn

(

Ψn

Ψn−1

)

=

(

E − εn −1
1 0

) (

Ψn

Ψn−1

)

. (356)

To calculate the conductance, consider the sample of the length Lz sites8, connected to two
semi-infinite ideal leads. This means that εn = 0 for both n ≤ 0 and for n > N − 1.

Note that the transfer matrix M, defined in Eq. (356) does not have the structure of the
transfer matrix T. Indeed, T connects the propagating waves on the left and right hand side of
the sample, while M relates the wave functions in the the site representation. Both matrices are
connected by the transformation,

Tn = Q−1MnQ = Q−1

(

E − εn −1
1 0

)

Q, (357)

where

Q =

(

1 1

e−ik e+ik

)

. (358)

Consider the electron coming from the right hand side of the system. Then, on the left hand
side of the system, there is only a transmitted wave going to the left. Its wave function at the sites
n = 0 and n = −1 can be written as

Ψ−1 = e+ik

Ψ0 = 1.
(359)

The wave function on the right-hand side of the system is given by superposition of the incoming
and reflected waves. We can use the transfer matrix, M, to express the wave function at sites L z

and Lz − 1:
(

ΨLz

ΨLz−1

)

= MLz−1MLz−2 . . .M1M0

(

Ψ0

Ψ−1

)

= M(Lz)

(

Ψ0

Ψ−1

)

. (360)

Now we multiply both sides of the of Eq. (360) by the matrix Q−1. We get

Q−1

(

ΨLz

ΨLz−1

)

= Q−1MLz QQ−1

(

Ψ0

Ψ−1

)

. (361)

We obtain that

1

2i sin k

(

eikΨLz
− ΨLz−1

−e−ikΨLz
+ ΨLz−1

)

= T(Lz) 1

2i sink

(

eikΨ0 − Ψ−1

−e−ikΨ0 + Ψ−1

)

, (362)

8For simplicity, we use the lattice constant, a as the unit length
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where we used the relation (357). between the transfer matrices M and T. Using the explicit
form of Ψ0 and Ψ−1, given by Eqs. (359) we find that the r.h.s. of Eq. (362) equals to

T(Lz)

(

0
1

)

. (363)

From Eq. (362) we obtain

1

2i sin k

(

eikΨLz
− ΨLz−1

−e−ikΨLz
+ ΨLz−1

)

=

(

r+(t−)−1

(t−)−1

)

. (364)

So we obtain the transmission coefficient in the form

T = |t−|−2 =
4 sin2 k

|e−ikΨLz
− ΨLz−1|2

. (365)

Equation (365) is very useful for numerical calculations of the transmission T .

E.2 Quasi-1d case

To calculate the conductance in the quasi-1d case, we have to generalize the method of the
previous Section. We again assume that our system is connected to two semi-infinite leads with
zero disorder,W = 0. The electron is coming from the right and is scattered by the sample. The
resulting waves either continue to the left in the left lead, or travel back to the right in the right
side lead.

In numerical simulations, we use the transfer matrix M, given by Eq. (343)

M(Lz) =

Lz
∏

n=1

Mn =

Lz
∏

n=1

(

E −Hn −1
1 0

)

. (366)

Similarly as in the case of the 1d problem, discussed in the previous section, we have to transform
this transfer matrix into the “wave” representation. In this representation, the transfer matrix in
the leads is diagonal. Therefore, in the first step we have to diagonalize the transfer matrix

M0 =

(

E −H0 −1
1 0

)

, (367)

where H0 is Hamiltonian of the transversal slice without disorder.
In general, the transfer matrix has some eigenvalues with modulus equal to 1, i.e. λ =

exp ikz. The corresponding eigenvectors represent the propagating waves. Other eigenvalues are
of the form λ = exp±κ. They correspond to the evanescent modes. Note, if λ is an eigenvalue,
then λ−1 is also an eigenvalue corresponding to the wave traveling in the opposite direction.

As the transfer matrix M0 is not Hermitian, we have to calculate both the left and right eigen-
vectors. Then, we construct four matrices: The N × 2N matrix Rleft (Rright) which contains in
its columns N right eigenvectors, for waves traveling to the left, (right), respectively. Similarly,
matrices Lleft and Lright are 2N × N matrices which contains in N rows the left eigenvec-
tors of the transfer matrix M0 which represent the waves traveling to the left and to the right,
respectively. Then, by definition of the transfer matrix,

T =

(

T11 T12

T21 T22

)

=

(

LrightMRright LrightMRleft

LleftMRright LleftMRleft

)

(368)
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so that

T22 = LleftTRleft. (369)

At this point we have to distinguish between the propagating and evanescent modes. If there are
evanescent modes, then T22 6= [t−]−1 because the two matrices have different size. If we order
the eigenvectors in the matrix R in such a way that the eigenvectors with index 1 ≤ a ≤ No cor-
respond to the propagating modes, and the remaining eigenvectors correspond to the evanescent
modes, then the transmission is given by the No ×No sub-matrix [T22]ab, with a, b ≤ No:

T =

No
∑

ab=1

∣

∣

∣

[

T−1
22

]

ab

∣

∣

∣

2

. (370)

Other matrix elements of T22 correspond to the scattering of the electron into the evanescent
channels. They do not contribute to the transmission since evanescent waves decay to zero in the
semi-infinite leads.

It seems that the relation (369) solves our problem completely. However, the above algorithm
must be modified. The reason is that the elements of the matrix (t−)−1 are given by their largest
eigenvalues. We are, however, interested in the largest eigenvalues of the matrix t−. As the
elements of the transfer matrix increase exponentially in the iteration procedure given by Eq.
(366), any information about the smallest eigenvalues of (t−)−1 will be quickly lost. We have
therefore to introduce some re-normalization procedure. We use the procedure described in
Ref. [72].

Relation (369) can be written as

T22 = Lleftr
(Lz), (371)

where we have defined the N × 2N matrices r(n), n = 0, 1, . . . Lz as

r(n) = Mnr
(n−1), and r(0) = Rleft. (372)

Each matrix r(n) can be written as

r =

(

r1
r2

)

(373)

with r1, r2 being the N ×N matrices. We transform r as

r = r′r1, r′ =

(

1

r2r
−1
1

)

(374)

and define r(n) = Mn(r′)(n−1). In contrast to the matrices r1 and r2, all eigenvalues of the
matrix r2r

−1
1 are of the order of unity. The relation (371) can now be re-written into the form

T22 = Lleft

(

1

r
(n)
2 [rn

1 ]
−1

)

r
(n)
1 r

(n−1)
1 . . . r

(1)
1 r

(0)
1 (375)

from which we get

[T22]
−1

=
[

r
(0)
1

]−1 [

r
(1)
1

]−1

. . .
[

r
(n)
1

]−1
[

Lleft

(

1

r
(n)
2

[

r
(n)
1

]

−1

)]−1

. (376)

All elements of the matrices on the r.h.s. of Eq. (376) are of the order of unity.
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[132] R. A. R ömer, M. Schreiber: in [38] p. 3.

[133] K. M. Slevin, T. Ohtsuki: Phys. Rev. Lett. 82, 382 (1999)

[134] A. MacKinon, B. Kramer: Phys. Rev. Lett. 49, 695 (1982)

[135] A. MacKinnon: J. Phys.: Condens. Matt. 6, 2511 (1994)
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