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ON GRAVITATIONAL LENSING BY QUADRUPOLE POTENTIALS
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We study gravitational lensing by quadrupole potentials within the linearized gravity ap-
proximation and the integration over the unperturbed photon trajectory. It is well known that
the quadrupole potential contribution to the deviation angle is much smaller than that of the
monopole one. We show that quadrupole potentials can change the photon polarization vector,
but there is no contribution from the monopole term to the first order. The effect is maximal
when the axis of the quadrupole is tangential to the photon trajectory and it is proportional to
the frequency (rate) of the quadrupole moment of the deflector. The second order correction
of the monopole potential to the polarization is canceled away by the renormalization of the
polarization vector.

PACS: 04.25.Nx

1 Introduction and motivation

The common belief in physics is that Einstein’s general theory of relativity inevitably implies
the appearance of gravitational waves. The mathematical structure of these waves is defined as
quadrupole radiative fields.

However, one can question about two issues relevant to gravity and gravitational waves: (A)
The existence problem: to prove the existence of gravitational waves, it is necessary to derive
the exact wave equation from general relativity, but this is impossible because of the presence of
at least Newtonian ”monopole” terms that spoil the structure of the ”wave” equation [1–4]; any
approximate or even exact solution of Einstein field equations cannot isolate or neglect Newto-
nian from quadrupole terms. (B) The locality problem: assuming the presence of gravitational
waves infers that a decomposition of the total tensor field contains terms affecting and imply-
ing the curvature of spacetime, essentially the nonlocal physical process, and at the same time
the local radiative quadrupole field as gravitational waves; such a decomposition is difficult to
comprehend both physically and mathematically.

The classical electrodynamics was the inspiration to introduce gravitational waves, but (a)
the dipole radiative field is a solution of the exact Maxwell wave equations and (b) the electro-
dynamics is completely defined only by the local gauge field. As a consequence, the predicted
dipole radiation has been verified experimentally.
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It is possible to understand the energy loss of binary systems as the effect of quadrupole
potentials and not as a result of radiated gravitational waves [5].

In this paper we inspect gravitational lensing by quadrupole potentials which are parts of the
metric tensor, such as monopole terms, affecting spacetime curvature. It should not be confused
with the lensing of the assumed gravitational radiation by cosmological environment or some
astrophysical sources that one can find in the literature.

2 Lensing equations

Gravitational lensing by quadrupoles is an old subject of investigation [6–9], but the first reliable
calculation is due to Damour and Esposito-Farèse [10]. They have shown that the incorrect
results of Ref. [11] arise from a naive ”plane wave” approximation. Unfortunately, the same
unreliable approximation is used in Ref. [12].

Let us briefly summarize the short-wave approximation of Maxwell equations in curved
spacetime and the transport along the rays of the wave vector (`µ), the scalar amplitude (a)
and the complex polarization vector (V ν) [13]:

`µ ≡ dxµ

dξ
, `β`α

;β = 0, V̇α ≡ `βVα;β = 0, ȧ +
1

2
a`α

;α = 0, (1)

ηµν = diag(−1, +1, +1, +1), V ∗
ν V ν = 1, `α`α = 0,

ȧ ≡ `βa,β , Vα`α = 0.

We can write the transport equations more explicitly using Christoffel symbols:

d`µ

dξ
=

1

2
`α`β∂µgαβ, (2)

1

a

da

dξ
= −1

2
(∂β`β + Γα

αλ`λ), (3)

dVµ

dξ
= `αVβΓβ

µα. (4)

The linearized gravity approximation and the integration over the unperturbed photon trajectory
[13] of the transport equations, lead to the following lensing equations:

gµν = ηµν + hµν , bα ≡ impact vector, bµ`µ = 0,

∆`µ ≡ `µ(out) − `µ(in) =
1

2
`α`β

∫ +∞

−∞

dξ∂µhαβ(bλ + ξ`λ) , (5)

∆ ln a ≡ ln
a(out)

a(in)
= −1

4
`λ

∫ +∞

−∞

dξ∂λh(bµ + ξ`µ), h ≡ ηαβhαβ , (6)

∆Vα ≡ Vα(out) − Vα(in) =
1

2
`βV γ

∫ +∞

−∞

dξ(∂αhβγ + ∂βhαγ − ∂γhαβ)(bµ + ξ`µ).(7)
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A direct evaluation of the lensing equations with the monopole potential straightforwardly gives

h
(1)
αβ(xµ) =

2GNM

| ~x | δαβ =⇒ ∆`µ = −4GNM

b2
bµ, ∆ ln a = 0, tµ∆Vµ = 0, (8)

tµ = any spacelike vector orthogonal to `µ.

Thus, besides the resulting nonvanishing Einstein deflection angle [13], the monopole poten-
tial does not influence the transport of the scalar amplitude or of the polarization vector to the
first order.

For the calculus with quadrupole potentials, we adopt the formalism of Damour and Esposito-
Farèse [10] performing the integration in the Fourier space. They evaluated the lensing of the
wave vector, which we therefore omit and concentrate on the lensing of the scalar amplitude and
the polarization vector.

One can read the Fourier transform of the potentials where the energy-momentum conserva-
tion is also included [10]:

hµν(xλ) =

∫
d4k

(2π)4
ĥµν(kλ)eik·x, k · x ≡ kνxν , T̂ ≡ ηµν T̂µν ,

ĥµν(kλ) = 16πGN

T̂µν(kλ) − 1
2ηµν T̂ (kλ)

k · k − iεk0
, T̂0i = −kj

k0
T̂ij , T̂00 =

kikj

(k0)2
T̂ij . (9)

We can fix the constant wave (`µ), impact (bν) and polarization (V α) vectors:

`µ = (1, 0, 0, 1), bµ = (0, b, 0, 0), V µ = (0, V1, V2, 0). (10)

There is no influence of the quadrupole as a deflector to the scalar amplitude:

∆ ln a(quadrupole) = 0. (11)

Changing the integration variable k ≡| ~k | to u =
√

k2 − ω2 [10], one obtains the expression for
the lensing of polarization:

kµ ≡ (ω, k sinϑ cosφ, k sin ϑ sin φ, k cosϑ), k · V ≡ kνVν ,

∆Vα =
iGN

π2

∫ +∞

−∞

dω

∫ +∞

0

du

∫ 2π

0

dφueibu cos φ(u2 − iεω)−1

×{kαT̂ij(−kjViω
−1 + δi3Vj) − (k · V )T̂ij [δα0(k

ikjω−2 − δi3k
jω−1)

+δαi(−kjω−1 + δj3)] +
1

2
(k · V )`α(−kikjω−2T̂ij + T̂ii)}. (12)

Neglecting the ~k dependence (quadrupole approximation) of the deflector field [10]

T̂ij(ω,~k) ' T̂ij(ω,~0) = −ω2

2
Dij(ω), (13)

Dij(ω) ≡
∫

d3xxixjT 00(ω, ~x), Dij(ω) ≡
∫

dteiωtDij(t),
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the rest of integrations could be performed with elementary integrals but with a careful regular-
ization procedure [10].

The result for the lensing of polarization is of the form

∆V1(Q) =
4GNV2

b2

∂D12(t)

∂t
|t=0, ∆V2(Q) = −4GNV1

b2

∂D12(t)

∂t
|t=0, (14)

∆V0(Q) = −2GN

b3
[V1(D22(0) − D11(0) +

b2

2

∂2D11(t)

∂t2
|t=0 −b2

2

∂2D22(t)

∂t2
|t=0)

+ V2(2D12(0) + b2 ∂2D12(t)

∂t2
|t=0)],

∆V3(Q) = −2GN

b3
[V1(D22(0) − D11(0) − b2

2

∂2D11(t)

∂t2
|t=0 +

b2

2

∂2D22(t)

∂t2
|t=0)

+ V2(2D12(0) − b2 ∂2D12(t)

∂t2
|t=0)].

One can easily verify the following relation

V ∗
µ ∆V µ(Q) + V µ∆V ∗

µ (Q) = 0.

From the exact integral for the evolution along the geodesic (C) of the polarization vector

∆Vµ =

∫

C

dξ`αVβΓβ
µα, (15)

one can easily deduce the second order corrections perturbing Christoffel symbols [2], wave and
polarization vectors, as well as the photon trajectory with regard to the monopole potential:

∆Vα(M) = Iα + Jα + Kα + Lα + Mα, (16)

Iα =
1

2
`βVλ

∫

C0

dξh(1)λκ(∂αh
(1)
βκ + ∂βh(1)

ακ − ∂κh
(1)
αβ), (17)

h(1)
µν =

2GNM

| ~x | δµν , h(1)κγ = −ηβγηακh
(1)
αβ , C0 = unperturbed trajectory,

Jα =
1

2
`βV κ

∫

C0

dξ(∂αh
(2)
βκ + ∂βh(2)

ακ − ∂κh
(2)
αβ), (18)

h
(2)
00 = −2G2

NM2

| ~x |2 , h
(2)
ij =

G2
NM2

| ~x |2 (δij +
xixj

| ~x |2 ), h
(2)
i0 = 0,

Kα =
1

2
V κ

∫

C0

dξ∆`β(∂αh
(1)
βκ + ∂βh(1)

ακ − ∂κh
(1)
αβ), (19)

∆`α(ξ) =
1

2
`µ`ν

∫ ξ

−∞

dξ∂αh(1)
µν (bλ + ξ`λ),

=⇒ ∆`α(ξ) = GN (0,
−2Mξ

b
√

b2 + ξ2
− 2M

b
, 0,

2M√
b2 + ξ2

),
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Lα =
1

2
`β

∫

C0

dξ∆V κ(∂αh
(1)
βκ + ∂βh(1)

ακ − ∂κh
(1)
αβ), (20)

∆Vλ =
1

2
`βV κ

∫ ξ

−∞

dξ(∂λh
(1)
βκ + ∂βh

(1)
λκ − ∂κh

(1)
λβ )(bν + ξ`ν),

⇒ ∆Vλ = GN

[
MV1

b (1 + ξ/
√

b2 + ξ2), MV1√
b2+ξ2

,

MV2√
b2+ξ2

, MV1

b (1 + ξ/
√

b2 + ξ2)

]
,

Mα =
1

2
`βV κ

∫

C1

dξ(∂αh
(1)
βκ + ∂βh(1)

ακ − ∂κh
(1)
αβ), (21)

C1 = perturbed trajectory,

⇒ Mα =
1

2
`βV κ

∫

C0

dξ∆xρ ∂

∂xρ
[∂αh

(1)
βκ + ∂βh(1)

ακ − ∂κh
(1)
αβ ],

∆xα =
1

2
`β

∫ ξ

−∞

dξxκ(∂αh
(1)
βκ + ∂βh(1)

ακ − ∂κh
(1)
αβ),

⇒ ∆xα = GN (M(1 + ξ/
√

b2 + ξ2),
3bM√
b2 + ξ2

, 0, 3M(1 + ξ/
√

b2 + ξ2)

−2M ln
ξ +

√
b2 + ξ2

ε
), ε = small positive real cut − off .

The coordinate singularity in Eq.(21), regulated by the cut-off ε, disappears after the integration
over the unperturbed photon trajectory, as one should expect for an observable. After performing
integrations, only one term contributes to the deviation of the polarization vector:

Iα = G2
N (−2πM2

b2
V1, 0, 0,−2πM2

b2
V1),

Jα = G2
N (−πM2

2b2
V1, 0, 0,

3πM2

8b2
V1),

Kα = G2
N (0,

4M2

b2
V1,

4M2

b2
V2,

2πM2

b2
V1),

Lα = G2
N (

3πM2

2b2
V1, 0, 0,

πM2

2b2
V1),

Mα = G2
N (−2πM2

b2
V1, 0, 0,−2πM2

b2
V1),

⇒ ∆V1(M) =
4G2

NM2

b2
V1, ∆V2(M) =

4G2
NM2

b2
V2. (22)

However, this contribution is canceled away by the renormalization of the polarization vector:

∆Vµ ≡ ∆Vµ(Q) + ∆Vµ(M), (V µ + ∆V µ)∗(Vµ + ∆Vµ)



554

= 1 +
8G2

NM2

b2
+ O((∆V )2),

Ṽ µ ≡ (1 +
8G2

NM2

b2
)−

1

2 (V µ + ∆V µ), Ṽ µṼµ = 1,

Ṽ µ = V µ − 4G2
NM2

b2
V µ + ∆V µ + O((∆V )2)

= V µ + ∆V µ(Q) + O((∆V )2), µ = 1, 2.

3 Results and discussion

For example, take a binary system and its quadrupole moment when a surface of motion is in the
xy plane and the z axis is defined by the direction of the incoming photon. In this case, the deflec-
tion of polarization is maximal. Generally, the Euler rotation matrix R projects the quadrupole
moment of arbitrary orientation to the frame defined by the wave vector of the deflected photon

D̃ij(t) =
m1m2

m1 + m2
d2




cos2(Ωt) 1
2 sin(2Ωt) 0

1
2 sin(2Ωt) sin2(Ωt) 0

0 0 0


 ,

Ω ≡ 2π

P
, P = orbital period,

circular orbit : x = d cos(Ωt), y = d sin(Ωt),

Dij(t) = R(θE , φE)3×3D̃ij(t). (23)

The complex polarization vector and its deflections could be cast into a more conventional form
to recognize linear, circular, or elliptical polarization states (here β is the phase-difference be-
tween two independent polarization states) [14]

~V = V1~x0 + V2~y0 = V−~ε+ + V+~ε−,

V± =
1√
2
(V1 ± iV2), | V− |2 + | V+ |2= 1, ~ε± =

1√
2
(~x0 ± i~y0),

V+ = ρ+, V− = ρ−eiβ , ρ̂ =
ρ−
ρ+

=

√
1 − ρ2

+

ρ+
,

=⇒ <V1 =
1√
2
(ρ+ + ρ− cosβ), =V1 =

1√
2
ρ− sin β,

<V2 = − 1√
2
ρ− sin β, =V2 =

1√
2
(ρ− cosβ − ρ+),

∆ρ+ =
1√
2
(<∆V1 −=∆V2), (24)

∆β =
1√

2ρ− cosβ
(=∆V1 −<∆V2 +

√
2 sin β

ρ+

ρ−
∆ρ+), (25)

quadrupole contribution (Eq. (14)) :

∆β =
4GN

b2

∂D12(t)

∂t
|t=0, ∆ρ+ = ∆ρ̂ = 0. (26)
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Finally, let us present some numerical estimates of the effect assuming high-frequency (high-
rate) deflectors:

binary neutron star system : m = m1m2/(m1 + m2), Ḋ12(0) = md2Ω,

Kepler′s third law : d = Ω−2/3(GN (m1 + m2))
1/3,

m ' M�, d ' 10−4s, Ω ' 103s−1, b ' 10−3s =⇒ ∆β = O(10−4),

and similarly for the accretion by supermassive black holes or coalescing black hole binaries.
Although the effect is small, the deviation of polarization (change of the phase-difference

between the two independent states) by the quadrupole is free of any ”background” monopole
contribution and it is worth measuring.
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