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APPLICATIONS OF THE WAVELET TRANSFORM IN AFM DATA ANALYSIS1
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In this article the possibilities of the wavelet transform use within atomic force microscopy
data processing are presented. Both discrete and continuous wavelet transform is used for
different processing and analytical purposes including denoising, AFM scan error detection,
background removal and multifractal analysis. It is shown that the use of wavelet transform
can be very effective within AFM data analysis, namely for highly irregular data.

PACS: 68.37.Ps

1 Introduction

In the last twenty years wavelet transform became important tool for data processing. Wavelet
transform is a transform similar to well-known Fourier transform. Fourier transform decomposes
the signal into sines and cosines - i. e. to the functions localized in frequency domain. On the
contrary, wavelet transform uses merit functions that are localized in both the real space and
frequency domain. This enables us to detrmine locally spatial frequencies present in data.

There are many applications of the two-dimensional wavelet transform, namely in the field
of digital image processing as interpolation [1], denoising [2, 3] and fractal analysis [4]. There
are also a few papers in the literature dealing with applications of the wavelet transform directly
in AFM data analysis [5].

In this article we present some algorithms known from the digital image processing, applied
and modified for AFM data analysis. We show that in many cases the wavelet transform approach
can be very effective for AFM data processing.

We use both continuous and discrete wavelet transform for different analytical purposes.
Discrete wavelet transform applications include denoising, AFM scan error detection and back-
ground subtraction. The continuous wavelet transform is employed for background subtraction
and for multifractal analysis of the scaling properties of randomly rough surfaces.
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2 Wavelet transform for AFM data analysis

In general, the continuous wavelet transform in one dimension is defined as

W (a, b) =
1

√

|a|

∫ ∞

−∞

f(x)ψ∗

(

(x − b)

a

)

dx, (1)

where parameter a controls scale of the wavelet (its magnification) and parameter b controls its
shift along the x axis. Using wavelet transform we decompose the original signal f(x) into a set
of differently shifted and scaled basis functions called wavelets ψ. The asterix denotes complex
conjugate.

As it is seen, the relation (1) describes an infinite set of various transforms, depending on
the merit function used for computation. Therefore, we can find very large amount of different
space-frequency analysis methods called as wavelet transform in the literature. Basically, we can
divide the most widely used merit functions from the point of their orthogonality:

Orthogonal wavelets (e. g. Haar wavelet, Daubechies wavelets) that are orthogonal to their
own dilations and translations and that are used to develop the non-redundant discrete
wavelet transform. The discrete wavelets can be shifted and scaled only in discrete steps.
When we denote the discrete wavelet as ψa,b scaling factor as a and shift factor as b we
can express the orthogonality as follows

∫ ∞

−∞

ψj,kψ
∗
m,n = 0, (2)

if j 6= m and k 6= n.

Non-orthogonal wavelets (e. g. Morlet wavelet, Mexican hat wavelet) are used to develop the
redundant continuous wavelet transform.

As an example, the orthogonal Daubechies wavelet and non-orthogonal Morlet wavelet is plotted
in Fig. 1. There are more wavelet types and transforms, however the two presented here are most
widely used and can serve as examples of two main types of the wavelet transform: redundant
and non-reduntant ones.

The discrete wavelet transform (DWT) returns a data vector of the same length as the input
data length is. This corresponds to the fact that it decomposes into a set of wavelets (functions)
that are orthogonal to its translations and scaling. Therefore, using limited number of given
scales and translation for wavelet transform computation we decompose a signal to the same
number of the wavelet coefficients comparing to number of signal data points. Usually, in the
discrete wavelet transform result many data points are almost zero. Such a wavelet spectrum is
therefore very good for signal processing and compression, for example, as we get no redundant
information as a result of the transform.

In contrary, the continuous wavelet transform returns an array one dimension larger than
the dimension of the input data is. For a 1D series we therefore obtain an image of the space-
frequency plane (often called wavelet scalogram, wavelet spectrum or wavelet dynamic spec-
trum). We can easily see the signal frequencies evolution along the series and compare the
wavelet spectrum with other series wavelet spectra. As here the non-orthogonal set of wavelets
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Fig. 1. Daubechies 20 wavelet (left) and real part of the Morlet wavelet (right).

is used, data are highly correlated and big redundancy can be seen in the result. This usually
helps to see the results in a more humane form comparing to discrete wavelet transform results.
Moreover, we can compute the contiuous wavelet transform spectrum for any set of scales and
translations. This property is useful namely for data filtering purposes and for determining data
scaling properties (e. g. using the fractal analysis). For details of the wavelet transform theory
see e. g. Ref. [6].

Within AFM data analysis, we work with two-dimensional (2D) discrete and continuous
wavelet transforms. In Figure 2 an AFM image and its the 2D DWT decomposition is presented.
We can see that at each scale we obtain three subimages corresponding to horizontal, diagonal
and vertical details. Note that there are the wavelet coefficients obtained directly by 2D DWT
plotted in the Figure 2. We will use these wavelet coefficients at different levels of decomposition
for denoising the AFM data, scanning defect identification and background removal.

Furthermore, we will use two-dimensional continuous wavelet transform (2D CWT) for the
background removal and multifractal analysis of randomly rough surfaces.

2.1 Denoising

Atomic force microscope is designed for very large signal to noise ratio while measuring at
micrometer scale. However, the noise influence becomes important while measuring very fine
structures. Moreover, within some other AFM-related analytical methods (e.g. magnetic force
microscopy or near-field scanning optical microscopy) the signal to noise ratio can be much
smaller. Thus the denoising procedure needs to be often applied to the AFM data.

For data denoising we used 2D DWT in the following manner:

1. We compute direct 2D DWT of the AFM data.

2. We threshold the wavelet coefficients in each scale, i. e. we remove or lower the coeffi-
cients that are smaller than predefined threshold value.
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Fig. 2. AFM image of the microchip surface (left) and its discrete wavelet transform (right).

3. We compute inverse 2D DWT of the processed wavelets coefficients.

The main problem is determination of the threshold value for different scales of the wavelet
coefficients. For AFM data processing we use two simple methods — scale adaptive thresholding
[2] and scale and space adaptive thresholding [3]. For threshold determination within both the
methods we first determine the noise variance guess given by

σ̂ =
Median|Yij |

0.6745
(3)

where Yij corresponds to all the coefficients of the highst scale subband of the decomposition
(where most of the noise is assumend to be present). Alternatively, the noise variance can be
obtained in an independent way, for example from the AFM signal variance while not scanning
(i. e. the free oscillations of the AFM probe). For each subband (for scale adaptive thresholding)
or for each pixel neighbourhood within subband (for scale and space adaptive thresholding) the
variance is the computed as

σ̂Y
2 =

1

n2

n
∑

i,j=1

Y 2
ij . (4)

Treshold value is finally computed as

T (σ̂X) = σ̂2/σ̂X , (5)

where σ̂X =
√

max(σ̂Y
2 − σ̂2, 0). When threshold for given scale is known, we can remove

all the coefficients smaller than threshold value (hard thresholding) or we can lower the absolute
value of these coefficients by threshold value (soft thresholding).

In Figure 3 the noisy and denoised AFM image of mica is presented. It corresponds to
atomic resolution topography measured in air by commerical AFM (Veeco Explorer). We can
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Fig. 3. AFM image of the atomic resolution on mica before (left) and after (right) scale and space adaptive
threshold denoising.

see that the periodic structure is enhanced by means of denoising. However, it should be noted
that there was no apriori information about the spatial frequencies expected in the data used for
denoising. This is the main difference from Fourier transform denoising that is often used for
atomic resolution images enhancement. Other important property of the DWT denoising is that
it is local and therefore it does not cause unwanted blurring ot the data in case that edges or fine
structures are present at data.

2.2 Defect identification

As it was seen in Figure 2, there is a separated information about wavelet coefficients correspond-
ing to different directions in the DWT decomposition. In this section we will use this information
for local anisotropy detection, in particular for scanning defects localization.

The most common defect within AFM measurements is the weak closed loop performance.
In case that the closed loop parameters are not set correctly (for example while scanning some
unexpected high surface irregularities) we can observe a kind of stripes in the fast scanning axis
direction (here in the X-direction). From practical point of view, sometimes it can be very hard
to prevent these artefacts completely (for example for surrfaces polluted by dust or for charged
surfaces) and these artefacts must be corrected after scanning.

A simple detection of stripes based on horizontal/vertical coefficient ratio at different levels
was performed. When a value of this ratio larger than predefined threshold (determined experi-
mentally) was found, we have marked the image point and its closest neighbourhood in given di-
rection as stripe. As the wavelet coeficients at each decomposition level represent certain wavelet
scale we marked different neighbourhood size for points found in different decomposition levels.

In Figure 4 the AFM image of ZnSe epitaxial thin film surface with clearly seen stripes is
presented. The result of stripes identification by means of the wavelet metod is also presented.
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Fig. 4. AFM image of ZnSe thin film surface containing stripes (left) and same image with stripes marked
by black colour (right)

We can see that the algorithm found the stripes very well. In the other hand it did not mark
the particles not contamined with stripes. Therefore, it can be used for AFM scan errors detec-
tion effectively. After marking all the stripes we can eliminate them using some interpolation
algorithm.

3 Background subtraction

We can use both the DWT decomposition and CWT for separation of the different surface ir-
regularities levels. In engineering applications this corresponds to “roughness”, “waviness” and
“form” determination. This separation can be also done by means of Fourier transform meth-
ods. However, for highly irregular surfaces with different spatial frequencies present at different
surface positions the Fourier transform method is not very effective.

If using CWT for background subtraction we choose certain wavelet scale and we compute
2D wavelet transform corresponding to that scale. The result is taken as background image.
Foreground is determined by background subtraction from the original data usually — e. g. by
subtracting the background data from the original data.

The DWT algorithm is very simple too: we take the AFM image and decompose it using 2D
DWT. We choose some wavelet coefficients and use them for background subtraction (we com-
pute inverse 2D DWT using only these coefficients). Then, we use the rest of wavelet coefficients
to determine foreground image in the same way.

In Figure 5 an AFM image of hair is presented. We can see that there is a hair texture seen
on the top. However, the raw image could be hardly used for texture analysis as the background
geometry (cylinder) would corrupt the results strongly. In Figure 5 the results of the wavelet
background subtraction are presented too. We can see that the details (hair texture - right image)
are well separated from the form (cylinder - middle image). For this background subtraction the
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Fig. 5. AFM image of hair (left), extracted background (middle) and foreground (right).

2D CWT approach was used.

4 Multifractal analysis

It can be shown, that the properties of the wavelet transform can be efficiently used for deter-
mining properties of singularities present in the data. We used the wavelet transform modulus
maxima (WTMM) method developed by Arneodo [4] for multifractal analysis of AFM data. We
will describe the method only very roughly here. For details, see Ref. [4]. The WTMM method
is based on the following steps:

1. Wavelet transform modulus (module of the wavelet transform coefficients) is computed for
different scales a of the wavelet.

2. Local maxima of wavelet transform modulus are found in the directions of wavelet modu-
lus gradient. These maxima form connected chains.

3. Local maxima within connected chains are found. These points are used for further com-
putation.

4. Points found in the previous step are interconnected through all scales a of the wavelet.
This forms so called wavelet transform skeleton.

5. Scale adaptive partition function Z(q, a) is computed from the wavelet skeleton.

It is than assumed that the scale adaptive partition function has the following scaling properties:

Z(q, a) ∼ aτ(q). (6)

where q is the order of scale adaptive partition function. The fractal properties of the surface can
be then evaluated from the scaling exponents. For example, the fractal dimension is given by
equation

Df = max(2, 1 − τ(1)). (7)
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It can be shown that for fractional Brownian motion surface realization, that is often expected
within randomly rough surface roughening models the scaling exponents are connected with the
Hurst exponentH of the surface as

τ(q) = qH − 2, (8)

i.e. the τ(q) function is a linear function of q with slope given by Hurst exponent. The linearity of
function is thus a sign of monofractal properties of the surface. Moreover, from the dependences
of τ(q) it is possible to determine the Hurst exponent of the surface.

We used the method presented here for analysis of the fractal properties of rough GaAs sur-
faces created by thermal oxidation and dissolution of the oxide layer. Within the WTMM method
we found that the fractal dimensions of GaAs surfaces are typically within the interval (2.4±0.1).
This result corresponds very well to the results obtained by traditional fractal analysis methods
(e. g. cube counting). Moreover, we found the dependence of τ(q) on q was not strictly linear
for the real surfaces (see Fig. 6). This is in principal a sign of multifractal properites. Moreover,
the nonlinearity of the corresponding functions can be also caused by the tip convolution effects.

Fig. 6. AFM image of the GaAs surface (left) and τ (q) (right) spectrum for this surface surfaces. The
nonlinearity is a sign of multifractality.

5 Conclusion

In this article we have presented several wavelet-based methods that can be used for AFM data
analysis purposes. We have found that both the discrete and continuous wavelet transform meth-
ods can be very effective in some typical processing applications as denoising and background
subtraction. We have demonstrated possibilities of denoising and background subtraction on real
samples.
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The main advantage of the wavelet transform approach is the fact that the wavelet trans-
form is a space-frequency decomposition method which localisation (width of the wavelets in
real space) is controled by single parameter (wavelet scale). We can therefore use the wavelet
transform for detecting special features (e. g. stripes caused by not optimal closed loop settings)
or evaluating local surface regularity (e. g. within multifractal analysis). The fact that discrete
wavelet transform decomposes signal into horizontal, vertical and diagonal details is also very
important from the practical point of view as the AFM instrument can introduce local anisotropy
while measuring isotropic surface. We have found that the local anisotropy detection can be very
useful for marking scanning defects that are sometimes observed at AFM data.
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[4] A. Arnéodo, N. Decoster, S. G. Roux: Eur. Phys. J. B, 15 (2000) 567
[5] B. Goolsby, Q. Chen, L. Udpa, Y. Fan, R. Samona, B. Bhooravan, F.M. Salam, D. H. Wang, V.M.

Ayres: Journal of Nanoscience and Nanotechnology, 3 (2003) 347
[6] A. Bultheel: Bull. Belg. Math. Soc.: 2 (1995) 1


