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Moments of inertia of even-even actinide nuclei have been calculated in the framework of
BCS cranking model in which the neutron-proton (np) pairing has been taken into account.
First, making a perturbative approximation, we assumed that the form of the equations of
the BCS theory and usual Bogolyubov transformations are unchanged. Second, considering
a new approach for the np pairing strength constant we observed that the results changed
dramatically. Since neutrons and protons occupy different major shells in heavy nuclei, well
known thought is that interaction between themselves might be weak due to small overlapping
of wave functions thus the influence of the np pairing might be so small in the ground state.
However, our results showed that the np pairing might be effective on the moments of inertia
of actinide nuclei if it has been considered correctly.

PACS: 21.10.Re, 21.60.-n

1 Introduction

One of the oldest problems in our understanding of the collective motion of nuclei is the mo-
ments of inertia of ground-state rotational bands in well deformed nuclei. They depend in a
very sensitive way on collective properties such as deformations and on pairing correlations of
this many-body systems. The first microscopic calculations of the moments of inertia have been
made by Inglis [1]. The earliest microscopic calculations were based on a mean field of a de-
formed harmonic oscillator [1–3]. In these calculations, residual interactions were neglected. In
this way one found the values of the moments of inertia identical to those of a rigid body with the
same shape, in strong disagremeent with the experimentally observed values, which were con-
siderably smaller. It was pointed out very early [2, 4] that residual two-body interactions could
lower the values of the moments of inertia obtained in the Inglis model. The most important cor-
relations causing such a reduction are pairing correlations [5]. Moments of inertia of doubly even
nuclei have been determined with considerable success within the BCS cranking model that was
formulated by Belyaev [6].However, the theoretical values obtained in this model are systemati-
cally smaller than the experimental ones by 10-40 % [7–15]. In the literature, one can find many
attempts in order to reduce the discrepancy between theory and experiment. In the discussion
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on the above discrepancy, the problem originates from the formalism of the BCS model, which
is an approximation, essentially. At this point, it should be noted that the BCS model has some
fundamental weaknesses. One of them is the nonconservation of particle number and other one
is the neglecting of the np interaction. Up to date, there are some works which study the effects
of the nonconservation of particle number on the moments of inertia [16, 17]. Recently, Allal
and Fellah studied the effects of nonconservation of particle number in the BCS wave functions
on the moments of inertia and concluded that the discrepancy between theory and experiment is
due to the number-nonconserving effects of the BCS treatment. However, Hagesawa and Tazaki
came to opposite conclusion [18]. However, it is possible to see that there is no work addressing
the effect of the np interaction on the moments of inertia. Since neutrons and protons occupy
different major shells in heavy nuclei, common consideration was that interaction between them-
selves might be weak due to small overlapping of wave functions, thus the np interaction effect
might be so small in the ground state. However, the developments in the nuclear structure physics
in the last two decades indicate that it is difficult to make a serious advance without consider-
ing the np-pairing in medium and heavy mass nuclei. Recently this topic became is a subject
of much debate because of the new nuclei close to N = Z line which are produced artificially
using radioactive beams [19], here N (Z) denotes neutron (proton) numbers. In contrast to alike
nucleon pairing, the np-pairing may exist in two different channel, T = 0 and T = 1, where T is
the quantum number of isotopic spin. The interplay of T = 0 and T = 1 channels using general-
ized BCS formalism for N = Z nuclei have been studied recently on schematic models [20–27].
Almost all works that have been performed up to date, the np-pairing studied via generalized
BCS formalism. According to some of these studies the np-pairing interaction effective only
in the nuclei with N ∼= Z [22, 23]. In the result, an expectation about a contribution from the
np-pairing interaction to any nuclear phenomenon in heavy nuclei would be a mistake in respect
of the results of these studies. Besides, others claimed that for N > Z nuclei T = 0 np-pairing
affective and some of the beta and double beta decay observables might be influenced by T = 0
np-pairing [28]. However others claimed that T = 0 np-pairing does not exist at all [29, 30].
Thus, the generalized versions of the pairing formalism give contradictory consequences. Here,
it is beneficial to state there are also some earlier pessimistic views on this issue [31, 32]. In
this work, there were objections to mixing of wave functions of the odd-odd nuclei with those
of the even-even nuclei by the generalized Bogolyubov transformation. Because the vacuum of
the generalized quasi-particles is a mixture of even-even and odd-odd nuclei have very differ-
ent energy spectrum. In summary, the current situation of the np-pairing is uncertain. Studies
mentioned above imply that new approximations and methods are needed in this field. In this
work, the effect of the np-pairing on the moments of inertia of even-even actinide nuclei has
been investigated in the framework of an approximation. In the total Hamiltonian following the
method in [15], taking the new interaction as a small perturbation the effect of the interaction is
to keep the form of the equations of the BCS model unchanged, but only the mean field energies
renormalized by the np-interaction. In this way, the efect of the np-pairing interaction has been
investigated by two different ways.
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2 An approximation for the neutron-proton pairing

The Hamiltonian for a deformed even-even nuclei considered here is of the following form

H = Hn + Hp + Hnp. (1)

Here, Hn and Hp are the Hamiltonians for neutrons and protons, respectively and Hnp is the
Hamiltonian for the np-pairing interaction. Each of the quantities Hn and Hp has the pairing
model expression, for instance in the case of neutrons in the second quantisation representation
it is given as

Hn =
∑

νσ

(Eν − λv)a+
νσaνσ − Gn

∑

νν′

a+
νσa+

ν−σaν′−σaν′σ . (2)

Similar expression can be written for protons. Here a+
νσ(aνσ) denotes creation (destruction)

operators for single nucleon states. In equation (2), the Gn denotes the strength of the pairing
interaction between neutrons. The second quantized version of the np-pairing interaction is

Hnp =
∑

νeπν′eπ′σσ′

〈νσ, π − σ|V |ν′σ′, π′ − σ′〉 a+
νσa+

π−σaπ′−σ′aν′σ′ . (3)

Here, V is the two-nucleon interaction potential and ν and π denote the single particle states of
neutrons and protons, respectively. Moreover, σ = ±1 denotes the states conjugated under time
reversal. One can show that this Hamiltonian can be written as two parts if the summation runs
over the spin state σ′ . Because only two probabilities exist, σ′ = σ and σ′ = −σ,

Hnp = H1
np + H2

np. (4)

The parts of this Hamiltonian are,

H1
np =

∑

νeπν′eπ′

〈νσ, π − σ| V |ν′σ, π′ − σ〉 a+
νσa+

π−σaπ′−σaν′σ (5)

and

H2
np =

∑

νeπeν′π′

〈νσ, π − σ| V |ν′ − σ, π′σ〉 a+
νσa+

π−σaπ′σaν′−σ. (6)

Using the fermion anticommutation relations,
{
a+

νσ, aν′σ′

}
= δνν′δσσ′ , {aνσ , aν′σ′} = 0,

{
a+

νσ , a+
ν′σ′

}
= 0, (7)

respectively, the creation and destruction operators in (5) and (6) could be ordered as follows

a+
νσa+

π−σaπ′−σaν′σ = a+
νσaν′σa+

π−σaπ′−σ, (8)

a+
νσa+

π−σaπ′σaν′−σ = a+
νσaν′−σa+

π−σaπ′σ.

Now, the effect of the np-pairing interaction on the particle occupation probabilities can be in-
vestigated. For this purpose, using the idea [15], it is assumed that near the single particle and
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usual pairing Hamiltonian the np interaction is a weak residual force. It is straightforward to use
the Bogolyubov transformation for neutrons and protons separately, in the Hamiltonian (1),

a+
νσ = uνα+

ν−σ + συνανσ ,

aνσ = uναν−σ + συνα+
νσ .

Using the variational method, new occupation probabilities of the single quasi-particle model
can be obtained. One can easily show that Hamiltonian (6) has no contribution to the occupation
probabilities. All contribution comes from the Hamiltonian (5) as a renormalisation to the mean
field energies of neutrons is given as [see the appendix]

Eν = Eν − Gnυ2
ν + 〈νσ, π − σ| V |ν′σ, π′ − σ〉 υ2

π. (9)

Thus, the quasiparticle particle energies and occupation probabilities of the BCS model are
changed by np-pairing interaction. In (9), the np-pairing interaction matrix elements can be
written in the following form,

〈νσ, π − σ| V |ν′σ, π′ − σ〉 ∼= δJ,0F (nl) .

Here F (nl) is the angular and radial part of the the matrix elements :

F (nl) =

∫
Ψnl∗

νσ Ψnl∗

π−σV (−→rn −−→rp)Ψnl
ν′σΨnl

π′−σr2 sin θdrdθdϕ.

If the two-nucleon interaction potential is assumed as an attractive contact potential for approxi-
mation is given as

V = V0δ(~r) = − |V0| δ(~r1 − ~r2).

In this case, interaction matrix elements depends only the radial parts of the wave functions:

〈νσ, π − σ| V |νσ, π − σ〉 ∼= −

∫
Ψ∗

νσΨ∗

π−σV (~r1 − ~r2)Ψν′σΨπ′−σdr1dr2.

If the matrix elements is written in the conventional form, the renormalization term that comes
from the np-pairing to the mean field becomes,

〈νσ, π − σ| V |ν′σ, π′ − σ〉 υ2
π = −G(νπ̃ν′π̃′)υ2

π. (10)

Here,

G(νπ̃ν′π̃′) =

∫
Ψ∗

ν(r)Ψ∗

eπ(r)Ψν′ (r)Ψeπ′(r)r2dr. (11)

There is important fact that the np-pairing matrix elements in (11) could not be considered a
constant as for the alike nucleons. To assume whole matrix elements as a constant as in [33] is
not a correct approximation. Because the overlaps between unlike nucleons at the different levels
is much smaller than the ones at the equivalent levels. In fact, even the overlaps between the wave
functions of the equivalent levels is smaller than the overlaps between the alike nucleons since
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the wave functions in the case of the np-pairing are the solutions of two different Schrödinger
equations and the wave functions of unlike nucleons have random phases. Consequently,

G(ν 6= π) � G(ν = π)

and the mean field energies in (9) should be

Eν = Eν − Gnυ2
ν − Gnp(ν = π)υ2

π . (12)

Thus only the protons (neutrons) on the equivalent levels renormalize the mean field energies of
the neutrons (protons). In the result, for a correct calculation only the diagonal matrix elements of
the np-pairing interaction should be taken into account as constant, off-diagonal elements should
be neglected.

3 Formulae of moments of inertia

In the cranking model, the moments of inertia of a rotating nucleus around the symmetry axis
has been given by Inglis [1] as,

JI = 2h̄2
∑

ex

|〈ex| jx |gr〉|
2

Eex − Egr

, (13)

where |gr〉 and |ex〉 denote the ground and excited states with single particle energies Egr and
Eex, respectively. The BCS version of the Inglis formula of moments of inertia has been given
by Belyaev [6] as,

JB = 2h̄2
∑

ν

|〈ν| jx |ν
′〉|

2

εν + εν′

(uνυν′ − uν′υν)2. (14)

In this work, the occupation probabilities and the quasiparticle energies have been taken as

υ2
ν =

1

2

(
1 −

Eν − λn − Gnυ2
ν − Gnpυ

2
π

εν

)
, u2

ν = 1 − υ2
ν (15)

and

εν =
√

(Eν − λn − Gnυ2
ν − Gnpυ2

π)2 + ∆2
n. (16)

For the calculation of (14), first the ordinary BCS equations without np-pairing have been solved
and then the effect of np-pairing on the mean field energies in equation(12) has been taken into
account. Finally the modified BCS equations have been solved again self consistently for neutron
and proton systems, separately:

N = 2
∑

ν

υ2
ν , ∆n = Gn

∑

ν

uνυν .

Hence the equations of BCS model are unchanged in form. In addition, in the above formulae
E, λ , ∆n denote single particle energies, chemical potentials and gap parameters, respectively.
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4 Calculations and discussion

To obtain the numerical results, the single particle Hamiltonian developed in [34] was used to
simplify the matrix elements; the asymptotic basis of eigenvectors |NNzΛΣ〉 was preferred.
Here, the quantum numbers N, Nz,Λ ,Σ represent the total number of oscillator quanta, the
projection of the total number of oscillator quanta on the z-axis, the projection of the angular
momentum on the z-axis and the projection of the spin angular momentum on the z-axis, re-
spectively. All of the calculations have been performed using the deformation values in [35]. In
addition, all states of the N = 5, 6, and 7 shells for neutrons and protons (85 levels for each) were
taken into account. The experimental values of the moments of inertia have been taken from [17].
In order to search the influence of the np-pairing on the moments of inertia of actinide nuclei,
calculations are performed in three ways for comparison: In the first one np-pairing has been ne-
glected completely (JB). In the second one the np-pairing interaction matrix elements have been
taken as constant for all components (Jnp1) and in the third one only diagonal matrix elements
have been taken as constant, namely, off-diagonal components have been neglected (Jnp2).

Moreover, numerical value of the Gnp strength constant has been taken as the arithmetical
mean value of nn and pp-pairing strength constants for approximation.

In Table 1, the first column represents the theoretical values of the moments of inertia without
np-pairing, i.e., with JB in the formula (14). The second column represents calculations of np-
pairing with Jnp1. The third column represents calculations of the np-pairing with Jnp2.

As is seen from the calculated values in the first and the second column in the table that the
np-pairing interaction has a little effect in the case of Jnp1. According to the third column np-
pairing has a profound effect on the theoretical values in the case of Jnp2. This effect increases
the theoretical values of the moments of inertia for almost all nuclei. Only for 232Th, 232U ,
244Cm and 246Cm isotopes the results of Jnp2 are lower than those of the Jnp1.

In Figs. 1 and 2, variation of the ratios of the calculated moments of inertia with the np-
pairing to the experimental values versus atomic mass number A, can be seen. In Fig. 1, the
theoretical values in the second column (Jnp1) and in Fig. 2, the values in the third column
(Jnp2) were used. It is clear from the figures that the second approximation changes the general
behavior of theoretical values. In Fig. 2 it is seen that ratio has a big fluctuations as the atomic
mass number changes. In addition in Fig. 2 ratios change in the band with 0.63-0.99 while in
Fig. 1 ratios change in the band with 0.55-0.70. This means that the results of the Jnp2 are closer
to the experimental data than those of the Jnp1 are, generally.

Besides, in Figs. 3 and 4. relative deviations of the values of Jnp1 and the Jnp2, from the
values of the JB have been presented in the table respectively versus atomic mass number A.
Relative deviations (σ(J)) are

σ(Jnp1) =
Jnp1 − JB

JB

for figure 3 and

σ(Jnp2) =
Jnp2 − JB

JB

for Fig. 4, respectively. σ(Jnp1) and σ(Jnp2) can be considered as a measure of the contribution
of the np-pairing to the BCS cranking model of the moments of inertia. In Fig. 3, the np-pairing
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Tab. 1. Theoretical and experimental values of the moments of inertia.

JB Jnp1 Jnp2 Jexp .

Nucleus
(

2

h̄2

)
J

(
2

h̄2

)
J

(
2

h̄2

)
J

(
2

h̄2

)
J

(MeV)−1 (MeV)−1 (MeV)−1 (MeV)−1

224Ra 37.16 39.18 64.52 68
226Ra 50.78 52.81 64.48 88
228Ra 55.01 56.99 65.70 100
224Th 35.72 37.61 61.27 62
226Th 50.68 52.82 67.34 82
228Th 55.16 57.32 65.18 104
230Th 68.36 70.48 76.99 113
232Th 75.26 76.68 76.29 120
234Th 79.51 80.75 97.94 126
230U 68.63 70.55 78.40 116
232U 76.98 78.89 78.45 126
234U 83.31 84.39 97.81 138
236U 83.43 84.50 98.69 132
238U 84.81 86.31 100.42 134
236Pu 85.96 86.89 98.49 135
238Pu 86.07 86.99 99.37 136
240Pu 87.47 88.82 101.11 140
242Pu 89.33 90.35 103.50 135
244Pu 89.26 89.78 105.14 133
242Cm 89.38 90.50 101.71 142
244Cm 94.51 95.07 90.12 140
246Cm 93.89 93.97 91.18 140
248Cm 95.40 95.55 112.06 138
248Cf 96.30 96.03 113.05 142
250Cf 95.34 95.30 113.10 142
252Cf 94.60 94.43 113.06 136
254Fm 95.19 95.06 114.02 136

becomes weaken as the atomic mass number increases. This is valid for all isotopes groups gen-
erally and whole nuclei as a trend. The result can be interpreted easily; the interaction between
neutrons and protons reduces because of the Fermi surfaces of the neutrons and protons come
to be distant. Moreover, for the last nuclei in the table σ (Jnp1) give negative result, namely the
JB values are better than those of the Jnp1 are. On the other hand, in Fig. 4 it is difficult to
see a general trend as in the case in Fig. 3. There is a dramatic decrease from 224Ra to 232U .
After this region the σ(Jnp2) is relatively stable except the 244Cm and 246Cm isotopes. For the
244Cm and 246Cm isotopes, the values of Jnp2 are less than the values of JB and Jnp1. This
result might be related with the microscopic structure of these isotopes in question. In addition it
is beneficial to state for the vertical axes of the Figs. 3 and 4, σ(Jnp2) values are about ten times
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Fig. 1. Variation of the ratios of the calculated moments of inertia with Jnp1 to the experimental data versus
atomic mass number A.

Fig. 2. Variation of the ratios of the calculated moments of inertia with Jnp2 to the experimental data versus
atomic mass number A.

bigger than those of the σ(Jnp1) are. It means that np-pairing in the case of the Jnp2 is more
effective on the theoretical values of the moments of inertia than those in the case of the Jnp1.



The moments of inertia of actinide nuclei and neutron-proton pairing 205

Fig. 3. Variation of the relative deviations of the result of the Jnp1 from those of the JB versus atomic mass
number A.

Fig. 4. Variation of the relative deviations of the result of the Jnp2 from those of the JB versus atomic mass
number A.

5 Conclusion

Description of the effect of the np-pairing interaction on the moments of inertia of even-even
deformed nuclei in the framework of the BCS model is a new approximation. By taking only
the diagonal components as constant and neglecting off-diagonal components for the np-pairing
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strength change the situation in the problem. Therefore the approximation can be used for other
nuclear phenomena. According to this result, np-pairing could be effective in nuclear phenomena
not only for the nuclei with N ∼= Z but also for the nuclei with N > Z. Therefore it should be take
into account for heavy nuclei, too.

It is clear from the literature that the modifications performed on mean fields or pairing
correlations between alike nucleons have failed to obtain a good agreement between theory and
experiment for the moments of inertia of deformed nuclei. All of the works on this problem
imply that the residual correlations that have not been yet considered should be searched. Our
calculations show that the residual np-pairing interaction might be one of the candidates for such
correlations.

Appendix: Occupation probabilities with the np-pairing

To search the contribution of np-pairing to the occupation probabilities of BCS model using
quasi-particle method, first the expectation value of total Hamiltonian (1) in the quasiparticle
vacuum should be found as follows

〈0|H |0〉 =

〈
∑

τσ

(Eτ − λτ )a+
τσaτσ − Gτ

∑

ττ ′

a+
τσa+

τ−σaτ ′
−σaτ ′σ (A1)

+
∑

νν′ππ′σσ′

〈νσ, π − σ| V |ν′σ′, π′ − σ′〉 a+
νσa+

π−σaπ′
−σ′aν′σ′

〉
,

where |0〉 stands for the quasiparticle vacuum which is described by ατσ |0〉 = 0 . In addition, in
(A1) τ = v, π , i.e., there are two different sums for neutrons and protons. By using (5),(6) and
(7) the third part of (A1) can be written such that

〈
∑

νν′ππ′σσ′

〈νσ, π − σ|V |ν′σ′, π′ − σ′〉 a+
νσa+

π−σaπ′−σ′aν′σ′

〉

=

〈
∑

νeπν′eπ′

〈νσ, π − σ| V |ν′σ, π′ − σ〉 a+
νσaν′σa+

π−σaπ′−σ

〉
(A2)

+

〈
∑

νeπeν′π′

〈νσ, π − σ|V |ν′ − σ, π′σ〉 a+
νσaν′−σa+

π−σaπ′σ

〉
.

The expectation value of the second quantization operators in (A1) can be found by using Bo-
golyubov transformations and fermion anticommutation relations as follows,

〈0| a+
τσaτ ′σ |0〉 = 〈0| (uτα+

τ−σ + συτατσ)(uτ ′ατ ′,−σ + συτ ′α+
τ ′σ) |0〉

= υτυτ ′ 〈0|ατσα+
τ ′σ |0〉 = υτυτ ′δττ ′ ,

〈0| a+
τ−σaτ ′σ |0〉 = 〈0| (uτα+

τ−σ + συτατσ)(uτ ′σατ ′σ − σvτ ′α+
τ ′−σ) |0〉

= υτυτ ′ 〈0|α+
τ ′−σατσ |0〉 = 0
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〈0| a+
τσa+

τ−σaτ ′
−σaτ ′σ |0〉 = 〈0| (uτα+

τ−σ + συτατσ)(uτα+
τσ − συτατ−)

× (uτ ′ατ ′σ − σvτ ′α+
τ ′

−σ)(uτ ′ατ ′−σ + σvτ ′α+
τ ′σ) |0〉

= uτυτuτ ′υτ ′ − υ2
τυ2

τ ′ 〈0|ατσατ−σα+
τ ′

−σα+
τ ′σ |0〉

= uτυτuτ ′υτ ′ − δττ ′υ4
τ ,

〈0| a+
νσaν′σa+

π−σaπ′
−σ |0〉 = 〈0|a+

νσaν′σ |0〉 〈0|a+
π−σaπ′

−σ |0〉 = υνυν′υπυπ′δνν′δππ′ ,

〈0| a+
νσaν′−σa+

π−σaπ′σ |0〉 = 〈0|a+
νσaν′−σ |0〉 〈0|a+

π−σaπ′σ |0〉 = 0.

Thus, (A1) becomes

〈0|H |0〉 =
∑

τ=ν,π

(2(Eτ − λτ ) − Gτυ2
τ )υ2

τ − Gτ (
∑

τ=ν,π

uτυτ )2

+
∑

νπ

〈νσ, π − σ|V |ν′σ, π′ − σ〉 υ2
πυ2

ν .

Carrying out the variation, for example for neutrons,

∂

∂υν

〈0|H |0〉 = 0. (A3)

Using the normalization

u2
ν + υ2

ν = 1 (A4)

we obtain

2(Eν − λn)uνυν = ∆n(u2
ν − υ2

ν), (A5)

where

Eν = Eν − Gnυ2
ν + 〈νσ, π − σ| V |ν′σ, π′ − σ〉 υ2

π, (A6)

∆n = Gn

∑

ν

uνυν . (A7)

Squaring (A5) and (A4) and eliminating u4
ν and υ4

ν , gives

u2
νυ2

ν =
∆2

n

4[(Eν − λν)2 + ∆2
n]

=
1

4

(
1 −

(Eν − λn)2

(Eν − λn)2 + ∆2
n

)
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from which we obtain

u2
ν =

1

2

(
1 +

Eν − λn

[(Eν − λn)2 + ∆2
n]

)
and υ2

ν =
1

2

(
1 −

Eν − λn

[(Eν − λn)2 + ∆2
n]

)
. (A8)

Naturally, similar expressions are valid for protons, too. As is well known that in the standard
BCS model (without np-pairing), single particle energies of neutrons (protons) are changed only
by the effect of the pairing between neutrons (protons), i.e.

E′

ν = Eν − Gnυ2
ν . (A9)

It is clear from (A6); the single particle energies are changed by the effect of the pairing between
neutrons and also the np-pairing. Thus np-pairing renormalizes the single particle energies. Con-
sequently, the quasiparticle energies and occupation probabilities are modified by the effect of
the np-pairing.
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port under the Project Number Fen 2003-008.
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