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A generalized harmonic oscillator on noncommutative spaces is considered. Dy-

namical symmetries and physical equivalence of noncommutative systems with the

same energy spectrum are investigated and discussed. General solutions of three-

dimensional noncommutative harmonic oscillator are found and classified according

to dynamical symmetries. We have found conditions under which three-dimensional

noncommutative harmonic oscillator can be represented by ordinary, isotropic har-

monic oscillator in effective magnetic field.

PACS: 03.65.-w, 03.65.Fd, 11.30.Na

1 Introduction

It has been recently realized that noncommutatative geometry plays a distinguished role
in the formulation of string theory [1, 2] and M-theory [3]. In a certain limit, the entire
string dynamics can be described by minimally coupled gauge theory on noncommutative
space [2]. Noncommutative field theory [4] has been constructed by introducing the Moyal
product in the space of ordinary functions, and by defining field theory in quantum phase
space. Equivalence between these two approaches has been clarified in Ref. [5].

Presumably, noncommutative effects are important at very high energies. Neverthe-
less, we could observe high-energy effects in the low-energy effective action, or we could
use noncommutative geometry in constructing the low-energy effective action. For exam-
ple, the noncommutative Chern-Simons gauge theory, represented as a matrix theory of
elementary charges, has been used to describe quantum Hall physics [6]. Phenomenolog-
ical aspects of spacetime noncommutativity have been analyzed using a noncommutative
extension of the standard model [7]. Recently, it was proposed to use synchrotron radi-
ation to search for experimental evidence of the effects of noncommutativity [8]. It has
turned out that in many proposals to test the hypothetical spacetime noncommutativity,
it is sufficient to consider only quantum mechanical approximation [9, 10].
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Subsequently, quantum mechanics on noncommutative spaces has been extensively
studied [11-28]. In Ref. [29] two of us have presented a unified approach to represen-
tations of noncommutative quantum mechanics in arbitrary dimensions and have given
conditions for physical equivalence of different representations. Also, we have shown that
there exist two physically distinct phases in arbitrary dimensions that are connected by
a discrete duality transformation. Furthermore, we have discussed symmetries in phase
space and the dynamical symmetry of a physical system, and shown how these symme-
tries are affected by change in commutation relations.

Throughout the paper we assume that the time coordinate is commutative, since oth-
erwise we would be forced to modify the usual scheme of quantum mechanics [30]. We
analyze a noncommutative harmonic oscillator (ho) in detail, especially three-dimensional
case. Various deformations of the harmonic oscillator have been discussed in the litera-
ture, including the ho in the quantum group framework [31], the ho with minimal length
uncertainty relations [32], the ho in noncommutative spaces [12, 16, 18, 19], the (super)ho
on CPN [33], just to mention the latest. The overcomplete symmetry of the ho enables
one to exactly solve the oscillator problem even in some deformed cases. Especially,
the ho is the only exactly solvable model in noncommutative quantum mechanics. As
for applications, the ho represents a prototype of a physical system in every branch of
physics, but the most exciting applications are probably Bose-Einstein condensation and
quantum Hall effect in various dimensions.

Surprisingly, the simplest physically relevant system, the three-dimensional ho, have
not yet been analyzed in detail. There exist some results concerning very special choice of
noncommutative parameters [19, 16, 21]. The most general parametrization of the non-
commutative three-dimensional ho is nontrivial extension of the two-dimensional case,
what can be best seen from our analysis of the dynamical symmetry of this noncommu-
tative system.

The plan of the paper is the following. In Section II we will introduce the general
formalism used in the paper. Then, in Section III we will present some results concerning
harmonic oscillator on noncommutative space in arbitrary dimensions. The main results
of the paper are related to the case of three-dimensional harmonic oscillator and are pre-
sented in Sect. IV. There, we have presented conditions under which three-dimensional
noncommutative harmonic oscillator can be represented by ordinary, isotropic harmonic
oscillator in the effective magnetic field, see Refs. [18, 12] for two-dimensional case. And
finally, in the last section we summarize our results.

The conventions we use in this paper are the following: summation over repeated
indices is assumed, small latin indices i, j, ... go over configuration space dimensions,
capital latin indices I,J,... go over phase space dimensions, bold face fonts denote vectors,
prime denotes physical quantity in phase II of parameter space.

2 Noncommutative spaces in arbitrary dimensions

Let us define D-dimensional noncommutative coordinate operators X1, . . . , XD and the
corresponding noncommutative momentum operators P1, . . . , PD with commutation re-
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lations

[Xi, Xj ] = iθij , [Pi, Pj ] = iBij , i, j = 1, . . . , D

[Xi, Pi] = ihi, [Xi, Pj ] = i

{

φij i < j
−ψij i > j

(1)

and Xi, Pi are hermitean operators, X†
i = Xi, P

†
i = Pi. The 2D− dimensional noncom-

mutative phase space is described by variables (U1, U2, . . . , U2D) = (X1, P1, . . . , XD, PD)
satisfying

[UI , UJ ] = iMIJ , U †
I = UI , I,J = 1, . . . , 2D,

MJI = −MIJ , (MIJ)† = MIJ . (2)

Generally, MIJ is an operator depending on UI . The Jacobi identities [UI , [UJ , UK ]] +
cycl. = 0, however, restrict the choice of the operators MIJ . An important physical
requirement is that in the limit θij , Bij , φij , ψij → 0 and hi → h̄, we should obtain
canonical variables uI of ordinary quantum mechanics in a smooth manner.

If we start with an arbitrary real, nonlinear, and regular (invertible) mapping UI =
UI(uJ ) and uJ = uJ(UI) connecting noncommuting and commuting phase-space vari-
ables, we obtain [UI , UJ ] = ifIJ(uK) = iMIJ(UL) satisfying all the above restrictions
including the Jacobi identities. The reverse is not true globally. Namely, by postulating
the matrix M satisfying the Jacobi identities it is not clear whether the above men-
tioned mapping exists. However, one can start from Eq.(2) and find a local Darboux
transformation UI = UI(uJ), and uJ = uJ(UI).

The simplest examples of noncommutative spaces are i) [Xi, Xj ] = iθij , with θij

c-numbers, ii) [Xi, Xj ] = icijkXk, Lie-algebra type, iii) [Xi, Pj ] = i[δij(1 + βP2) +
β′PiPj ], introducing minimal length uncertainty relations [32], iv) XiXj = Rij,klXkXl,
for example, the Manin plane, etc. Interesting and important physical questions are: i)
What are the symmetries of such spaces and the corresponding conservation laws?, ii)
How can one define classical and quantum physics on such spaces in a consistent way?,
iii) What are physical consequences of noncommutativity, i.e., what are deviations from
physics on ordinary spaces? iv) What are physical applications and the role of singular
spaces (example - noncommutative Landau problem)?

In the rest of the paper we concentrate on a simple noncommutative space with c-
number commutators MIJ , Eq.(2). Note that detM ≥ 0. Singular spaces (spaces at the
critical point in parameter space) are defined by detM = 0, and regular (nondegenerate)
spaces have detM strictly positive. The antisymmetric, real matrix M is defined by
D(2D − 1) parameters. It can be brought to a universal, block-diagonal form

RTMR =















0 ω1

−ω1 0
0 ω2

−ω2 0
. . .















, (3)

where R is an orthogonal matrix with detR = 1, and ±ω’s are real numbers, eigenvalues
of the matrix (iM). The characteristic equation is of order 2D and contains only even
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powers in ω:

D
∏

i=1

(ω2 − ω2

i ) = 0.

The product of eigenvalues κ =
∏

ωi > 0 defines phase I, smoothly connected with
ordinary space, and κ < 0 defines phase II in parameter space. In phase I we choose all
eigenvalues positive, and in phase II we choose ωD < 0 and eigenvalues ω1, ω2, . . . , ωD−1

positive. The connection between the two phases is established by flip F in the phase-
space variables XD ↔ PD, i.e., ωD ↔ −ωD:

F =























1 0
0 1

. . .

1 0
0 1

0 1
1 0























. (4)

We define the duality relations between the two phases, |ωi| = |ω′
i|, κ = −κ′ [29].

These relations connect the physical systems with M ′ = R′FRTMRFR′T , with R,R′ ∈
SO(2D). A singular space is characterized by the degree of the eigenvalue ω = 0.

In the rest of the paper we assume ωi 6= 0. The transformation R, Eq.(3), defines
new variables U0

I = RT
IJUJ , i.e., (X0

i , P
0
i ) with the commutator

[

X0

i , P
0

j

]

= iωiδij ,

and all other commutators being zero. We can further transform the variables to ordinary
canonical ones uI = (D−1)IJU

0

J , or uI = (FD−1)IJU
0

J in phase II, where the matrix D

is D = diag(
√
ω1,

√
ω1, . . . ,

√
ωD−1,

√
ωD−1,

√

|ωD|,
√

|ωD|):

xi = X0

i /
√
ωi, pi = P 0

i /
√
ωi, ∀i, in phase I

xi = X0
i /

√
ωi, pi = P 0

i /
√
ωi, i = 1, . . . , D − 1,

xD = P 0

D/
√

|ωD|, pD = X0

D/
√

|ωD|

}

in phase II. (5)

The transformation RD (RDF ) connecting the initial noncommuting coordinates UI

with the canonical uI is invertible but not unitary.
Note that the matrixM , Eq.(2), is invariant under a group of transformations isomor-

phic to Sp(2D). Furthermore, the orthogonal matrix R is unique up to the orthogonal
transformations preserving M (STMS = M).

In D-dimensions, angular momentum operators are generators of coordinate space
rotations, preserving X2 =

∑

iX
2
i , P2 =

∑

i P
2
i , XP = XiPi:

[Jij , Xk] = i(δikδjl − δilδjk)Xl,

[Jij , Pk] = i(δikδjl − δilδjk)Pl, i, j, k, l = 1, . . . , D,
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and generally,

[Jij , UK ] = i(Eij)KLUL, K,L = 1, . . . 2D.

For a regular matrix M , we can construct the angular momentum generators Jij =
− 1

2
(EijM

−1)KLUKUL only if [Eij ,M ] = 0, for all i, j = 1, . . . , D. In D = 2 case the
angular momentum J can be constructed only if h1 = h2 = h and ψ = φ

J =
1

h2 − θB + φ2

{

h(X1P2 −X2P1) +
B

2
(X2

1 +X2

2 )

+
θ

2
(P 2

1 + P 2

2 ) − φ(X1P1 +X2P2)

}

. (6)

For D ≥ 3 there is no SO(D) symmetry and we cannot construct all D(D−1)/2 angular
momentum generators Jij . There is at most

[

D
2

]

generators of rotations in mutually
commuting noncommutative planes.

3 Isotropic noncommutative oscillator in arbitrary dimensions

The system is defined by the Hamiltonian

H =
1

2

D
∑

i=1

(P 2

i +X2

i ) =
1

2

2D
∑

I=1

U2

I , (7)

where the constants h̄, m, and ω are absorbed in phase-space variables. The Hamiltonian
(7) is invariant under O(2D) transformations. The commutation relations are described
by the c-numbers MIJ . We represent this system in terms of the canonical variables uI ,
Eq.(5),

H =
1

2

2D
∑

I=1

U0 2

I =























1

2

2D
∑

I=1

(Du)2I phase I

1

2

2D
∑

I=1

(DFu)2I phase II























=
1

2

D
∑

i=1

|ωi|(p2

i + x2

i ). (8)

The matrix F , Eq.(4), represents a discrete transformation connecting the two phases.
The energy spectrum is

En1...nD
=

D
∑

i=1

|ωi|
(

ni +
1

2

)

, ni ∈ N0. (9)

The Hamiltonian (8) and the energy spectrum (9) are equal in both phases, for all M
with the same eigenvalues |ωi|. They correspond to the anisotropic oscillator in canonical
variables. The initial isotropic noncommutative oscillator is not unitarily equivalent to
the anisotropic oscillator in canonical variables, but all corresponding physical quantities
of noncommutative harmonic oscillator can be uniquely determined. Only representa-
tions connected by transformations preserving the commutation relations are physically
equivalent.
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The degenerate energy levels for the Hamiltonian (7) are described by a set of or-
thogonal eigenstates that transform according to an irreducible representation of the
dynamical symmetry group. The dynamical symmetry group G(H,M) is a group of
all transformations preserving both, commutation relations M and the Hamiltonian H .
For the fixed Hamiltonian, the dynamical symmetry depends on M ; so, by changing the
parameters of the matrix M we can change G(H,M) from Gmin(H,M) to Gmax(H,M).
For the noncommutative harmonic oscillator, the minimal dynamical symmetry group
is [U(1)]D and the maximal symmetry group is U(D). Hence, different choices of M
correspond to different dynamical symmetry. This can be viewed as a new mechanism
of symmetry breaking with the origin in (phase)space structure. The underlying theory
that would determine M does not exist yet.

The generators of dynamical symmetry are quadratic in phase space variables, i.e., of
the type G = CIJUIUJ , where the real coefficients CIJ can be chosen to be symmetric,
CIJ = CJI . The generators can be determined as null-eigenvectors of the matrix AIJ,KL:

[H,UIUJ ] =
∑

K,L

AIJ,KLUKUL

=
1

2

∑

K

[MKI(UJUK + UKUJ) +MKJ(UIUK + UKUI)]. (10)

For the two-dimensional harmonic oscillator, we have calculated [29] the generators of
U(2) and generic U(1)×U(1) symmetry. There are additional non-symplectic symmetries
if ωi/ωj are rational number [34].

3.1 U(D) dynamical symmetry

As we have already mention, the maximal dynamical symmetry group for the noncom-
mutative harmonic oscillator is U(D), and in that case the matrix M has all eigenvalues
identical, ωi = ω. The general conditions are:

MTM = ω2 · 1I2D×2D, MT = −M. (11)

In two dimensions we have solved Eqs.(11), and obtained the following conditions on
noncommutativity parameters resulting in U(2) symmetry of noncommutative harmonic
oscillator in two dimensions [29]:

h1 = h2 = h, θ = −B, φ = ψ, in phase I,

h1 = −h2, θ = B, φ = −ψ, in phase II. (12)

The angular momentum J exists in phase I

J =
1

h2 + θ2 + φ2

[

h(X1P2 −X2P1) − φ(X1P1 +X2P2)

− θ

2
(X2

1 +X2

2 − P 2

1 − P 2

2 )

]

, (13)

but does not exist in phase II.
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For D = 4, 5, 6, we can write a simple family of antisymmetric matrices M that
provide maximal U(D) dynamical symmetry, with fixed eigenvalue ω. If hi = h for
i = 1, . . . , D, then

M4 =









J0 A B AT

−AT J0 A B
−B −AT J0 A
−A −B −AT J0









,

M5 =













J0 A B B AT

−AT J0 A B B
−B −AT J0 A B
−B −B −AT J0 A
−A −B −B −AT J0













, (14)

and

M6 =

















J0 A B B B AT

−AT J0 A B B B
−B −AT J0 A B B
−B −B −AT J0 A B
−B −B −B −AT J0 A
−A −B −B −B −AT J0

















, (15)

where

J0 =

(

0 h
−h 0

)

, A =

(

a b
c −a

)

, B =

(

d e
e −d

)

. (16)

The fixed eigenvalue is

ω2 = h2 + 2a2 + b2 + c2 + (D − 3)(d2 + e2). (17)

The real parameters a, b, c, d, e, h satisfy the following relations:

2ad+ h(b− c) + e(b+ c) + (D − 4)(d2 + e2) = 0, for D = 4, 5, 6, (18)

and in addition

a2 + bc+ h(b− c) + d2 + e2 = 0, for D = 5, 6. (19)

The most general case for D = 3 is discussed in the next section. Eqs.(14) and (15)
represent the parametrization in phase I, since there exists a smooth limit to ordinary
quantum mechanics. The dual solution in phase II is FMF , and is obtained using the
flip transformation (4). More generally, there are solutions of Eqs.(11) with hi mutually
different.

The noncommutative ho with U(D) dynamical symmetry can be represented by or-
dinary isotropic ho. These systems are not physically equivalent although they have the
same energy spectrum. We can caluculate physical quantities of interest for ordinary
ho, and, using the mapping RD (RDF ), determine (uniquely) corresponding physical
quantities for noncommutative ho. For harmonic oscillator defined on noncommutative
space with D ≥ 3, there is no angular momentum generators.
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4 Harmonic oscillator in three dimensions

The three-dimensional harmonic oscillator is the simplest, physically relevant system.
The most general matrix M is

M =

















0 h1 θ3 φ3 −θ2 −φ2

−h1 0 ψ3 B3 −ψ2 −B2

−θ3 −ψ3 0 h2 θ1 φ1

−φ3 −B3 −h2 0 ψ1 B1

θ2 ψ2 −θ1 −ψ1 0 h3

φ2 B2 −φ1 −B1 −h3 0

















, (20)

with θij = εijkθk, and similarly for other parameters, Bij , φij , ψij , defined in Eq.(1). The
critical points are determined by

detM =

[

h1h2h3 +
∑

i

hi(φiψi − θiBi) + φ1φ3ψ2 − φ2ψ1ψ3 (21)

+ B1(ψ3θ2 − ψ2θ3) +B2(ψ1θ3 − φ3θ1) +B3(φ2θ1 − φ1θ2)]
2

= 0. (22)

The eigenvalues of the matrix iM are obtained from

ω6 − αω4 + βω2 − γ = 0, (23)

where

α = ω2

1 + ω2

2 + ω2

3 = −1

2
TrM2,

β = ω2

1ω
2

2 + ω2

2ω
2

3 + ω2

1ω
2

3 =
1

8
(TrM2)2 − 1

4
TrM4,

γ = ω2

1ω
2

2ω
2

3 = detM. (24)

Phase I is defined by κ = ω1ω2ω3 > 0 and all ω’s positive, and phase II is defined by κ < 0
and ω1,2 > 0, ω3 < 0. The duality relations connecting the two phases with the same
energy spectrum are ω1 = ω′

1, ω2 = ω′
2, ω3 = −ω′

3. Singular spaces are characterized by
i) ω1 > 0 and ω2 = ω3 = 0 and ii) ω1 ≥ ω2 and ω3 = 0.

The spectrum of the noncommutative oscillator is the same as for the anisotropic
harmonic oscillator, see Eqs.(7) and (8):

En1n2n3
= ω1

(

n1 +
1

2

)

+ ω2

(

n2 +
1

2

)

+ |ω3|
(

n3 +
1

2

)

, n1, n2, n3 ∈ N0. (25)

All physical quantities for the noncommutative oscillator can be uniquely calculated
knowing the transformation RD, i.e., RDF .

The generic dynamical symmetry is [U(1)]3 when all eigenvalues |ωi| are mutually
different. When two eigenvalues are the same, up to a sign, ω1 = ω2 6= ω3 or ω1 6= ω2 =
±ω3, the dynamical symmetry is U(2) × U(1). The sign of ω3 determines the phase. In
the special case ω1 = ω2 = ±ω3, we have the U(3) symmetry group.
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4.1 U(3) dynamical symmetry

In the case with U(3) dynamical symmetry, MTM = ω2 · 1I6×6 and the most general
parametrization of commutation relations with hi = h, leading to U(3) symmetry is

M =





J0 A ATR
−AT J0 εAR
−RTA −εRTAT J0



 , (26)

where the matrices J0 and A are given by Eq.(16), ε2 = 1, and

R =

(

cosα − sinα
sinα cosα

)

. (27)

The real parameters a, b, c, h satisfy the following condition:

h(b− c) + ε(a2 + bc) = 0,

and the common eigenvalue is ω2 = h2 + 2a2 + b2 + c2. The matrix M, Eq.(26), belongs
to phase I. In phase II, U(3) dynamical symmetry can be parametrized by the matrix
FMF , where F is the flip matrix, Eq.(4). More generally, there are solutions of Eqs.(11)
with hi mutually different. For example, we can have

M =

















0 h θ φ 0 0
−h 0 φ −θ 0 0
−θ −φ 0 h 0 0
−φ θ −h 0 0 0
0 0 0 0 0 h3

0 0 0 0 −h3 0

















, (28)

with ω2 = h2
3 = h2 + θ2 + φ2, also leading to the U(3) dynamical symmetry.

We have seen, Eqs.(26) and (28), that there is a class of noncommutative isotropic
oscillators with U(3) dynamical symmetry that are physically different. All of them are
described by the same Hamiltonian H =

∑

U2

I /2 and possess the same energy spectrum.
They are connected by orthogonal transformations R (RF ). However, they are not
unitarily equivalent, unless [M,R] = 0. The easiest way to see the difference is to consider
the possibility of saturation of uncertainty relations [24, 29], since ∆UI∆UJ ≥ |MIJ |/2.
Especially interesting is the case MTM = 1I6×6, where noncommutative ho H =

∑

U2

I /2
and ordinary isotropic ho H =

∑

u2

I/2 have the same form, the identical spectrum, but
have different matrix elements of observables. In the latter case we can construct angular
momentum operators, whereas in the former (noncommutative) case this is not possible.

A special class of U(3) invariant systems has been proposed in Ref.[21], in order to
retain U(3) symmetry of ordinary isotropic ho. They have started with the harmonic
oscillator in terms of canonical variables H =

∑

u2

I/2 and then transformed the system
by the nonunitary transformation U = RDu, thus obtaining H =

∑

(D−1R−1U)2I/2.
This system is quadratic in UJ , but is not diagonal, and possesses U(3) symmetry by
construction. But this is just one special case in the large class of U(3)-symmetric
noncommutative harmonic oscillators that we have described in detail.
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4.2 Simple extension of two-dimensional ho

There is a simple parametrization of the matrix (20), i.e., an extension of two-dimensional
ho. Imagine we have noncommutative plane commuting with the rest of the space. In
that case the matrix M is block-diagonal. There is one 4 × 4 block representing four-
dimensional phase space (X1, P1, X2, P2) of noncommutative plane, and one 2×2 block of
the remaining coordinate (X3, P3). We choose Bi, θi, φi, ψi = 0, for i = 1, 2. This reduces
to the most general two-dimensional harmonic oscillator [29]. Specially, eigenvalues of
the matrix iM are:

ω1,2 =
1

2

√

(θ −B)2 + (φ+ ψ)2 + (h1 + h2)2

± 1

2

√

(θ +B)2 + (φ− ψ)2 + (h1 − h2)2, (29)

ω3 = h3, κ = (h1h2 − θB + φψ)h3.

The phases are determined by the sign of κ = ω1ω2ω3. The duality relations between
system with the same energy spectrum in the two phases were constructed in Ref.[29].

We can always represent noncommutative ho in terms of anisotropic ho in commut-
ing coordinates. But, in two dimensions we can also represent the two-dimensional
anisotropic oscillator as the two-dimensional isotropic oscillator in the effective magnetic
field, using a symplectic transformation between canonical variables

H =
1

2

∑

i=1,2

[(pi−Ai)
2+ω2

effx
2

i ] =
1

2

∑

i=1,2

[p2

i +(ω2

eff+B2

eff)x2

i ]−
1

2
Beff(x1p2−x2p1),(30)

where A = (−x2, x1, 0)Beff/2. In phase I, effective frequency and effective magnetic field
are, for general two-dimensional case:

ω2

eff = ω1ω2, Beff = ω1 − ω2 =
√

(θ +B)2 + (φ− ψ)2 + (h1 − h2)2. (31)

In phase II the corresponding physical quantities are

ω2

eff = ω1|ω2|, Beff = ω1 − |ω2| =
√

(θ′ −B′)2 + (φ′ + ψ′)2 + (h′
1

+ h′
2
)2. (32)

This physical interpretation is possible only in two dimensions, or if noncommutative
plane decouples from the rest of the higher-dimensional space. The condition for the
three-dimensional isotropic oscillator in the effective magnetic field along the third axis,
Beff = ω1 − |ω2|, is ω1|ω2| = ω2

3 = ω2

eff
.

Note that all three types of dynamical symmetry, i.e., U(3), U(2)×U(1), and [U(1)]3

are possible.

4.3 Special parametrization in terms of Θ and B

For the rest of this section we choose hi = 1 and φij = ψij = 0, i.e., we impose [Xi, Pj ] =
iδij . We organize remaining parameters in the general matrix (20) in two vectors, Θ =
(θ1, θ2, θ3) and B = (B1, B2, B3). The condition for a critical point is κ = 1 − ΘB = 0,
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and the sign of κ determines the phase. The coefficients in the characteristic equation
(23) are

α = 3 + Θ2 + B2 ≥ 3,

β = 3 + Θ2B2 + (Θ −B)2 ≥ 3,

γ = (1 −ΘB)2 ≥ 0. (33)

The coefficients α, β, γ, and therefore the eigenvalues ωi, are invariant under rotation in
three-dimensional space, θ′i = Rijθj , B

′
i = RijBj , R ∈ O(3).

At the critical point, γ = 0, i.e., ΘB = 1. The equations (33) imply α2 − 4β > 5.
There is only one zero, ω3 = 0. The two remaining eigenvalues are

ω2

1,2 =
α±

√

α2 − 4β

2
.

At the critical point, the dynamical symmetry is [U(1)]3.

4.4 Θ and B collinear

Especially interesting is the case when Θ and B are collinear and φij = ψij = 0. Then
κ = ω1ω2ω3 = 1 − ΘB, and the eigenvalues ωi can be reduced to the two-dimensional
problem in the plane orthogonal to Θ. Namely, if we choose Θ = (0, 0, θ) and B =
(0, 0, B), we find a solution of characteristic equation (23):

ω1,2 =

√

(

θ −B

2

)2

+ 1 ±
∣

∣

∣

∣

θ +B

2

∣

∣

∣

∣

, ω3 = 1. (34)

The solution can belong to phases I,II or to the singular case, depending on κ = ω1ω2ω3.
The matrix R, defined in Eq.(3), can be written in this parametrization in the fol-

lowing form:

R =

















cosϕ 0 sinϕ 0 0 0
0 sinϕ 0 cosϕ 0 0
0 cosϕ 0 − sinϕ 0 0

− sinϕ 0 cosϕ 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















(35)

where we choose ϕ ∈ (0, π/2), θ ≥ 0, θ +B ≥ 0 and

cosϕ =
1

√

1 + (B + ω2)2
=

ω2 + θ
√

1 + (ω2 + θ)2
=

√

ω1 −B

ω1 + ω2

. (36)

The anisotropic oscillator with energy spectrum Eq.(34) can be represented as isotropic
oscillator in (x1, x2) plane in magnetic field orthogonal to that plane, see Eqs.(31) and
(32). In given parametrization, h1 = h2 = 1, Eq.(31) reduces to [19, 26]

ω2

eff = 1 − θB, Beff = θ +B, in phase I,

ω2

eff = θ′B′ − 1, Beff =
√

(θ′ −B′)2 + 4, in phase II. (37)
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Note that in the case B = 0 (or θ = 0) we have three-dimensional isotropic ho in effective
magnetic field Beff = θ (or Beff = B), since ω2

eff
= 1 = ω2

3 .
Some simple examples are the following:
a) if B = 0, the result belongs to phase I,

ω1,2 =

√

1 +
θ2

4
± θ

2
, ω3 = 1.

We can construct symplectic transformation connecting anisotropic oscillator with 3D-
isotropic oscillator in magnetic field with effective frequency and effective magnetic field

ω2

eff = 1, Beff = θ.

b) the choice θ = B leads to

ω1,2 = 1 ± θ, ω3 = 1,

and it is singular for θ = 1, it belongs to phase I for θ < 1, and to phase II for θ > 1. The
effective frequency and effective magnetic field of isotropic oscillator in magnetic field are

ω2

eff = 1 − θ2, Beff = 2θ < 2 in phase I,

and

ω2

eff = θ2 − 1, Beff = 2 in phase II,

Also, for θ = B = 2, the eigenvalues are ω1 = 3, ω2 = −1, ω3 = 1 and we have U(2)×U(1)
dynamical symmetry in phase II.

c) choosing θ = −B give us U(2) × U(1) dynamical symmetry in phase I, since

ω1 = ω2 =
√

1 + θ2, ω3 = 1.

In this case, effective magnetic field cancels, Beff = 0, and we have isotropic ho in two
dimensions with effective frequency ω2

eff
= 1 + θ2. The generators of the dynamical

symmetry group were found in Ref.[29].
An interesting physical example is the noncommutative Landau problem [12, 25].

In two dimensions it can be represented as a noncommutative harmonic oscillator with
ω → 0 and also as a noncommutative harmonic oscillator with ω̃ 6= 0, at the critical
point θ̃B̃ = 1. The connection between parameters is ω̃2θ̃ + 1/θ̃ = B.

With parametrization chosen in this subsection, the angular momentum in the con-
ventional sense (see the definition (6)) can be defined only in the plane orthogonal to
Θ:

J12 = Jz =
1

1 − θB

[

X1P2 −X2P1 +
B

2
(X2

1 +X2

2 ) +
θ

2
(P 2

1 + P 2

2 )

]

. (38)

Analyzing the characteristic equation we find the following statements concerning
dynamical symmetries with nontrivial noncommutative parameters (θ2 +B2 > 0).

i) There is no U(3) dynamical symmetry in this parametrization. Namely, from
ω1 = 1 it follows that θ = B and θ = −B, and this is possible only for θ = B = 0.
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ii) U(2) × U(1) dynamical symmetry can be realized in three ways.
First, there is a case described under c) above. There we have ω1 = ω2 > 1, ω3 = 1 and
Θ and B are antiparallel;
Secondly, we can have the following case in phase I:

ω1 = 1 +
θ2

θ + 1
> 1, ω2 = ω3 = 1.

For θ > 0 and θ +B > 0,

B = − θ

θ + 1
,

i.e., B is antiparallel to Θ. The effective frequency of two-dimensional isotropic ho is
ωeff = ω1 and effective magnetic field is Beff = θ2/(θ + 1);
Finally, in phase II, for θ > 1 and θ +B > 0, we have

ω1 =
θ3 + 1

θ2 − 1
> 1, ω2 = −1, ω3 = 1.

B and Θ are parallel and

B =
θ

θ − 1
.

The effective frequency of two-dimensional isotropic ho is ωeff = ω1 and effective magnetic
field is Beff = θ2/(θ − 1) − 2. Note that effective magnetic field Beff need not be zero
in order to have U(2) × U(1) dynamical symmetry. Also note that in above examples
ωeff > 1, hence there is no representation in terms of three-dimensional isotropic ho in
effective magnetic field.

iii) in all other cases the generic dynamical symmetry is [U(1)]3.

4.5 Arbitrary position of Θ and B

In the more general case, when Θ and B are not collinear, the characteristic equation
(23) leads to solutions that are not easy to analyze. However, it is remarkable that
the above statements for the dynamical symmetry group hold even when we extend the
analysis to the case when Θ and B are not collinear.

Proposition: Let us assume that the noncommuting coordinates and momenta satisfy

[Xi, Xj ] = iεijkθk, [Pi, Pj ] = iεijkBk, , [Xi, Pj ] = iδij , (39)

where θi and Bi are real c-numbers, θ2 + B2 > 0, and consider the three-dimensional
noncommutative isotropic oscillator (7). Then, U(2) × U(1) dynamical symmetry is
possible if and only if B and Θ are collinear, in three special cases. In all other cases,
the generic dynamical symmetry is [U(1)]3.

Proof: Let us express the invariants θ2 +B2, θ2B2, and ΘB using α, β, Eq.(24), and
κ:

θ2 +B2 = α− 3,

θ2B2 = β − α+ 2 − 2κ,

ΘB = 1 − κ. (40)
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U(2) × U(1) dynamical symmetry implies that two out of three eigenvalues are equal,
up to a sign, say ω2

1 = ω2
2 = ω2 6= ω2

3 . Inserting ω2
1 = ω2

2 = ω2 into (24), and using the
inequalities

θ2 +B2 > 0, (ΘB)2 ≤ θ2B2 ≤
(

θ2 +B2

2

)2

, (41)

we find the following inequalities:
From θ2 +B2 > 0 it follows

2ω2 + ω2

3 > 3.

From (ΘB)2 ≤ θ2B2 it follows

(ω2

3 − 1)(ω2 − 1)2 ≤ 0.

From 4θ2B2 ≤ (θ2 +B2)2 it follows

(ω3 − 1)2[(ω3 + 1)2 − 4ω2] ≥ 0.

If ω3 = 1, then ω2 > 1, and if ω2 = 1, then ω2
3 > 1. If ω3 6= 1 and ω2 6= 1, the

above inequalities lead to a contradiction. From the above analysis it follows that all
ω2

1 = ω2
2 solutions are possible if and only if (ΘB)2 = θ2B2, i. e., when B and Θ are

collinear. When B and Θ are collinear, there are three possible realizations of U(2)×U(1)
symmetry as has already been shown in Subsection C. U(3) symmetry is not possible for
this parametrization with θ2 +B2 > 0.

In conclusion, with parametrization [Xi, Pj ] = iδij , only if B and Θ are collinear,
ω3 = 1 and it is possible to represent noncommutative ho as ordinary 2D isotropic
oscillator in effective magnetic field. But, noncommutative ho can be represented as 3D
ordinary isotropic oscillator in effective magnetic field Beff = ω1 − |ω2| even when B and
Θ are not collinear, provided ω1|ω2| = ω2

3 . This condition is sufficient even for the most
general parametrization of commutation relations M , Eq.(20).

5 Discussion and outlook

We have considered a noncommutative, O(2D) symmetric oscillator with constant (c-
number) commutation relations Mij in 2D-dimensional nonsingular (detM 6= 0) phase-
space. There exist two, physically distinct, phases, defined by κ =

∏

ωi
>

<
0. If the

matrix M is block-diagonal (detM =
∏

detMi), then it is characterized by the set
of κi, corresponding to the subspaces. A discrete duality transformation connects two
systems with the same energy spectra in two different phases. We have presented a
unified approach for analyzing a noncommutative ho in arbitrary dimensions and both
phases simultaneously. General construction of transformations from noncommutative
variables to canonical Darboux variables is presented. Starting from Hamiltonian H(U)
and commutation relations M and applying linear transformations, we obtain different
physical systems with the same energy spectrum and the same dynamical symmetry
(up to isomorphism). Namely, the noncommutative ho is mapped to an ordinary, com-
mutative anisotropic ho with the same spectrum as a noncommutative ho. Since the
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transformation RD (RDF ) is not unitary, these two systems are not physically equiva-
lent, althought all physical quantities can be uniquely determined. These systems differ
in matrix elements of observables, uncertainty relations and other physical properties.
Only systems with the same energy spectra and the same commutation relations are
physically (unitarily) equivalent.

The dynamical symmetry of the noncommutative isotropic oscillator is
∏

U(Di),
∑

Di = D. We have presented a family of matrices M leading to the maximal U(D)
symmetry of the ho in D-dimensional noncommutative space, for D < 7. The noncom-
mutative ho with U(D) dynamical symmetry can be represented by ordinary isotropic
ho.

We have presented a detailed analysis of the three-dimensional noncommutative ho.
Our main result is the parametrization of the matrixM for different dynamical symmetry
groups, U(3), U(2) × U(1), [U(1)]3. Especially, the most general conditions for maximal
symmetry U(3) are presented. We have shown that for a special parametrization of
commutation relations, hi = 1, φij = ψij = 0, there is no U(3) symmetry. Futhermore,
the U(2)×U(1) dynamical symmetry is possible if and only if Θ and B are collinear (only
in three particular cases). For an arbitrary angle, different from zero and π, between the
vectors Θ and B, the dynamical symmetry is [U(1)]3.

We have found generally that three-dimensional noncommutative harmonic oscillator
can be represented by ordinary, 2D isotropic harmonic oscillator in effective magnetic
field only in noncommutative plane that commutes with the third dimension, or by 3D
isotropic ho in the effective magnetic field provided ω1|ω2| = ω2

3 . Angular momentum
operators in noncommutative spaces can be defined only as generators of rotations in
noncommutative planes which mutually commute. The physical interpretation of non-
commutative effects in quantum mechanics in higher dimensions is not yet clear and
requires further investigations.
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(2002) 128

[26] R. Banerjee: Mod. Phys. Lett. A 17 (2002) 631

[27] A. Deriglazov: Phys. Lett. B 530 (2002) 235, hep-th/0112053

[28] J. Lukierski, P. C. Stichel, W. J. Zakrzewski: Annals Phys. 220 (1997) 224

[29] L. Jonke, S. Meljanac: Eur. Phys. J. C 29 (2003) 433

[30] Miao Li: J. High Energy Phys. 5 (2002) 033

[31] G. Fiore: Int. J. Mod. Phys. A 8 (1993) 4679; U. Carow-Watamura, S. Watamura: Int. J.

Mod. Phys. A 9 (1994) 3989

[32] A. Kempf, G. Mangano, R. B. Mann: Phys. Rev. D 52 (1995) 1108; A. Kempf: J. Phys. A

30 (1997) 2093; L. N. Chang, D. Minic, N. Okamura, T. Takeuchi: Phys. Rev. D 65 (2002)
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