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ON THE PROBLEM OF EVALUATION OF SUM AND DIFFERENCE OF π
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The problem of electric and magnetic polarizabilities of pions is illustrated and their extraction
from dispersion relations with one subtraction is given. Unambiguous determination of σ

meson parameters and the decay of σ meson into two photons are carried out in order to
determine the most realistic values of sum and difference of pion polarizabilities.

PACS: 11.55.-m, 13.40.Gp, 13.60.Fz, 14.40.-n

1 Introduction

Some years ago, Fil’kov and Kashevarov [1] investigated γπ± → γπ± process by using the
available experimental information on cross-section of the process γγ → π0π0 by means of the
dispersion relations (DR’s) with the subtraction to be expressed through difference of neutral
pion polarizabilities απ0 , βπ0 .

The process γπ± → γπ± is described by the helicity amplitude M++(s, t) and M+−(s, t)
and the corresponding cross-section takes the form

dσ(γπ± → γπ±)

dΩ
=

1

256π2

(s − m2
π)4

s3
{(1 − z)2|M++|

2 + s2(1 + z)2|M+−|
2}. (1)

For M++ one can write down DR at fixed t with one subtraction

ReM++(s, t) = ReM̄++(s = m2
π, t) + B++ +

(s − m2
π)

π

×P

∫ ∞

4m2
π

ds′ImM++(s′, t)
[ 1

(s′ − s)(s′ − m2
π)

−
1

(s′ − u)(s′ − m2
π + t)

]

, (2)

where the Born term takes the form

B++ =
2e2m2

π

(s − m2
π)(u − m2

π)
, (3)
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and the subtraction is at s = m2
π : ReM̄++(s = m2

π, t = 0) = 2πmπ(α − β)π± .
The DR for M+−(s, t) has the same expression with substitutions:

ImM++(s, t) → ImM+−(s, t), (4)

B++ → B+− = B++/m2
π, (5)

2πmπ(α − β)π± → 2π/mπ(α + β)π± . (6)

So, knowing Im parts of M++ and M+−, the Re parts of M++ and M+− can be calculated by
means of DR’s and from there a behaviour of cross-section can be predicted. The Im parts are
found with the help of the expression

ImM
(V )
++ (s, t) = ∓sImM

(V )
+− (s, t) =

∑

V

∓4g2
V

s.Γ0

(m2
V − s)2 + Γ2

0

, (7)

where mV = mρ, mb1 , ma1
, ma2

are saturating resonances in s and u-channels and mσ, mf0
,

mf2
in t-channel. For gV and Γ0 holds

g2
V = 6π

√

m2
V

s

(

m2
V

m2
V − m2

π

)3

Γ(V → γπ), (8)

Γ0 =

(

s − m2
π

m2
V − m2

π

)3/2

mV ΓV . (9)

Note: Since the Compton process γπ± → γπ± and γγ → π0π0 should be described by a
common analytic function, the same DR’s can be used for a description of γγ → π0π0.
However, in this case they are saturated (through Im parts of the amplitudes) by contributions of
ρ(770), ω(782) and φ(1020) in s and u channels and σ, f0(980), f2(1270) mesons in t channel.

The parameters of ρ, ω, φ, f0, f2 are taken from Review of Particle Properties [9].
As a result in this approach mσ , Γσ , Γ(σ → γγ) and (α + β)π0 , (α − β)π0 are left as free

parameters.
They are determined in comparison of the corresponding cross-section with existing data,

considering the following three cases:
a) all parameters are free
b) (α + β)π0 and (α − β)π0 are fixed at the values given by χPT [2]
c) (α + β)π0 and (α − β)π0 are taken from the papers [3, 4]
According to the values of χ2 all three sets of parameters in Table 1 give perfect description

of data. Question: which of the values of (α + β)π0 and (α − β)π0 are the most realistic?

Tab. 1. Values of determined parameters.

mσ(MeV ) Γσ(MeV ) Γσ→γγ(keV ) (α + β)π0 (α − β)π0 χ2

a) 547 ± 45 1204 ± 362 0.62± 0.19 0.98 ± 0.03 -1.6 ± 2.2 0.30
b) 471 ± 23 706 ± 164 0.33 ± 0.07 1.15 ± 0.30 -1.9 ± 0.2 0.42
c) 584 ± 32 1378 ± 277 0.83 ± 0.16 1.00 ± 0.05 -0.6 ± 1.8 0.31
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2 Determination of mσ, Γσ

We try to specify one of them to be correct first by a determination of mσ, Γσ in the framework
of the scalar pion form factor (FF) by using the experimental data on the isoscalar S-wave ππ
phase shift.

Pion scalar FF is defined

〈πi(p2)|m̂(ūu + d̄d)|πj(p1)〉 = δijΓπ(t). (10)

We require the pion scalar FF to be in the form of the Padè type approximation in q =
√

(t − 4)/4
variable

Γπ(t) =

∑M
n=0 anqn

∏N
i=1(q − qi)

, (11)

from where one can express

tan δπ(t) =
Im[

∏N
i=1(q − qi)

∗
∑M

n=0 anqn]

Re[
∏N

i=1(q − qi)∗
∑M

n=0 anqn]
. (12)

It follows from the unitarity condition that δπ ≡ δ0
0 in elastic region. Then one finds

tan δ0
0(t) =

A1q + A3q
3 + A5q

5 + A7q
7 + . . .

1 + A2q2 + A4q4 + A6q6 + . . .
. (13)

If the degree of the numerator is higher than the degree of its denominator, then

lim
q→∞

δ0
0(t) =

π

2
. (14)

If the degree of the numerator is lower than the degree of its denominator, then

lim
q→∞

δ0
0(t) = 0. (15)

Applying the Cauchy formula together with the asymptotic condition the following dispersion
relation without subtractions can be derived for the pion scalar FF

Γπ(t) =
1

π

∫ ∞

4m2
π

ImΓπ(t′)

t′ − t
dt′, (16)

which together with the elastic unitarity condition gives the Omnes-Muskhelishvili integral equa-
tion. Its solution is just the pion scalar FF phase representation

Γπ(t) = Pn(t)exp

[

1

π

∫ ∞

4m2
π

δ0
0(t

′)

t′ − t
dt′

]

, (17)

where Pn(t) is arbitrary but normalized polynomial of the nth degree. However, if δ0
0(t) has the

property given by the condition (14), then one has to start with the dispersion relation with one
subtraction at the origin

Γπ(t) = 1 +
t

π

∫ ∞

4m2
π

ImΓπ(t′)

t′(t′ − t)
dt′, (18)
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Tab. 2. Coefficients of polynomial.

A1 A2 A3 A4 A5 A6 χ2/ndf
0.31737 -0.11279 0.15783 — — — 1.6
0.31737 0.38323 0.21093 -0.056202 — — 1.56
0.24875 0.12608 0.20096 -0.027166 -0.015037 — 1.409
0.26218 0.058832 0.14748 -0.030127 -0.014064 0.001217 1.426

which leads to the pion scalar FF phase representation as follows

Γπ(t) = Pn(t)exp

[

t

π

∫ ∞

4m2
π

δ0
0(t

′)

t′(t′ − t)
dt′

]

. (19)

In order to find the degrees of the numerator and denominator in Eq. (13) and to determine the nu-
merical values of the corresponding parameters A1, A2, A3, . . . we have collected 66 experimen-
tal points on the S-wave isoscalar ππ phase shift δ0

0(t) at the elastic region 4m2
π ≤ t ≤ 1GeV2

from papers [5–8] and carried out the fit of all existing data. We found the best χ2/NDF for
five coefficients of the numerator. Results are presented in Table 2. Thus we considered the pion
scalar FF phase representation (19) with one subtraction. Transforming (13) with five nonzero
coefficients into the form

δ0
0(t) =

1

2i
ln

(1 + A2q
2 + A4q

4) + i(A1q + A3q
3 + A5q

5)

(1 + A2q2 + A4q4) − i(A1q + A3q3 + A5q5)
, (20)

and inserting into (19), the calculation was carried out by theory of residues. So, finally the scalar
pion FF has the form

Γπ(t) = Pn(t)
(q − q1)

(q − q∗2)(q − q∗3)(q − q∗4)(q − q∗5)

×
(i − q∗2)(i − q∗3)(i − q∗4)(i − q∗5)

(i − q1)
, (21)

with qi and q∗i parameters given in Table 3, from where one can determine the σ-meson parame-
ters (q∗2 and q∗4 correspond to σ-meson) by using the formula

tσ = (mσ − i
Γσ

2
)2, (22)

Tab. 3. Roots of numerator and denominator.

q1 -3.64061 + 0.998237i
q2 -1.36100 + 0.825791i
q3 -1.84145i
q4 1.36100 + 0.825791i
q5 3.64061 + 0.998237i

q∗1 -3.64061 - 0.998237i
q∗2 -1.36100 - 0.825791i
q∗3 1.84145i
q∗4 1.36100 - 0.825791i
q∗5 3.64061 - 0.998237i
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Fig. 1. The M decay into γγ; M = π0, σ

which are

mσ = 456 MeV, Γσ = 387 MeV. (23)

3 Prediction of Γσ→γγ

Another way to specify electric and magnetic polarizabilities is via calculation of Γσ→γγ , corre-
sponding to the σ-meson masses determined by Fil’kov and Kashevarov, in the framework of the
linearized Nambu-Jona-Lasinio model type Lagrangian which is of the form

Lqq̄M = gM q̄(x)[σ(x) + iπ(x)γ5]q(x). (24)

The two-photon decay width of the σ-meson is calculated by means of the constituent quark
triangle loop (Fig. 1.) with colourless and flavourless quarks with charge equal to the electron
one. The mass of the quark in the triangle loop is taken to be mu = md = mq = (280 ±
20) MeV. The standard procedure for calculating of the processes gives us the amplitude

iM(σ → γγ) = igσe2Q2ε∗µ(k1)ε
∗
ν(k2)

×

∫

d4p

(2π)4
1

(p + k1)2 − m2
q

1

p2 − m2
q

1

(p − k2)2 − m2
q

Lµν
σ (p, k1, k2). (25)

with

Lµν
σ (p, k1, k2) = Tr[((p/ + k1/) + mq)γ

µ(p/ + mq)γ
ν((p/ − k2/) + mq)]. (26)

Just from the expression of the Lagrangian it follows that the σ-meson coupling constant with
quarks is equal π0 coupling constant. gπ0 was determined from the world average value of
Γ(π0 → γγ) = (0.008± 0) keV [9]. The amplitude (Eq. (25)) leads to

Γ(σ → γγ) =
α2m3

σg2
σ

16π3m3
q

[
∫ 1

0

dx

∫ 1−x

0

dy
1 − 4xy

1 − (mσ/mq)2xy

]2

. (27)

The corresponding results for Γ(σ → 2γ) are presented in the Table 4.
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Tab. 4. Theoretical results for the decay width of σ into γγ.

mσ (MeV) Γσ→γγ (keV)
547 0.46675
471 0.2247
584 0.7376

4 Conclusion

We have carried out the unambiguous determination of the σ-meson parameters mσ and Γσ in the
framework of the isoscalar pion FF by using the data on the isoscalar S-wave ππ phase shift and
also Γσ→γγ in the framework of the linearized Nambu-Jona-Lasinio model in order to resolve
the problem of evaluation of neutral pion polarizabilities, which take the most probable values

απ0 = −0.38× 10−4fm3; βπ0 = 1.53× 10−4fm3, (28)

to be consistent with χPT predictions.
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