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NONLINEAR THERMODYNAMIC MAGNETIC FIELD AND SPECIFIC HEAT
OF TWO-BAND SUPERCONDUCTORS IN THE GINZBURG-LANDAU THEORY
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Temperature dependence of thermodynamic magnetic field for superconducting magnesium
diboride MgB2 is studied in the vicinity of Tc using the two-band Ginzburg-Landau theory.
The results are in good agreement with calculations from experimental data. In addition,
the two-band Ginzburg-Landau theory gives a smaller specific heat jump than a single-band
Ginzburg-Landau theory and nonlinear temperature dependence below Tc.
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1 Introduction

Much attention has been focused on the recently discovered superconductor MgB2 [1], because
of the highest superconducting transition temperature of about Tc = 39K for a binary com-
pound. Two-band characteristic of the superconducting state in MgB2 is clearly evident in the
recently performed tunnel measurements [2, 3]. At microscopic level, the two-band Eliashberg
model of superconductivity in MgB2 was first proposed by Shulga et al. [4]. The calculations
of specific heat using the first principles of the two-band Eliashberg theory were given by Gol-
ubov et al. [5]. More recently, the two-band Ginzburg-Landau model was applied to study the
temperature dependence of different physical quantities near Tc for bulk magnesium diboride
MgB2 and nonmagnetic borocarbides LuNi2B2C and YNi2B2C [6–8].

It is generally known that one of the important characteristics of superconductors is the elec-
tronic specific heat. Its temperature behavior is well described in the framework of the Bardeen-
Cooper-Schrieffer (BCS) theory. Accordingly to the isotropic BCS theory, the jump in specific
heat at Tc is constant and it is (CS − CN )/CN = 1.43, where CS and C

N
are the specific heats

in the superconducting and normal state respectively. The Eliashberg theory, assuming a strong
electron-phonon coupling, is expected to give a value greater than 1.43. Several groups have
carried out measurements of specific heat on magnesium diboride MgB2 [9–11]. The measured
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specific heat shows a small jump at Tc, which is not explainable by the use of the standard BCS
and the Eliashberg theories [12].

In this paper, we apply two-band Ginzburg-Landau (G-L) theory to determine on the one hand
the temperature dependence of thermodynamic magnetic field Hcm(T ) and on the other hand the
value of the specific heat jump at Tc. The temperature dependence of Hcm(T ) is essential for
the assessment of the behavior of specific heat at temperatures close to Tc. We show that the
presence of two-order parameter in the theory gives a non-linear temperature dependence of
thermodynamic magnetic field Hcm(T ) and the differences of specific heats CS(T ) − CN (T ) .

2 Basic Equations

In the presence of two order parameters in a superconductor, Ginzburg-Landau free energy func-
tional can be written as [6–8, 13]
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Here, mi denotes the effective mass of the carriers belonging to the band i with (i = 1, 2).
The coefficient α is given as αi = γi(T − Tci), which depends on temperature linearly, γ is
the proportionality constant, while the coefficient β is independent of temperature and ~H is the
external magnetic field ( ~H = ~∇× ~A). The quantities ε and ε1 describe the interband mixing of
two order parameters and their gradients, respectively.

Minimization of the free energy functional with respect to the order parameters yields G-L
equations for two-band superconductors in one dimension ~A = (0, Hx, 0) as in [6–8]
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where l2s = ~c/2eH is the so-called magnetic length (there are misprints in the corresponding
equations of Refs. [6–8], l2s must be replaced with (l2s)2). Without loss of generality, we present
the case when Ψ and A depend only on single coordinate x in deriving the last equations. By
linearizing the above equations in the absence of any external magnetic field, the critical temper-
ature Tc can obtained from

α1(Tc)α2(Tc) = ε2. (3)
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Based on the last expression, the interband interaction will lead to enhancement of critical
temperature in comparison with Tc1 and Tc2. Considering Ψj(r) = |Ψj(r)| exp(iφj(r)), with
φj(r) the phase of order parameters and |Ψj(r)| the modulus, we can obtain the equilibrium
values for |Ψj(r)| in the absence of any external magnetic field as

|Ψ10|2 = −α2
2(T )(α1(T )α2(T ) − ε2)

ε2β2α1(T ) + β1α3
2(T )

. (4a)

Due to symmetric character of Eqs. (2a) and (2b), the solution for |Ψ20|2 can be obtained by
replacement of symbols “1→2” and “2→1”, i.e.

|Ψ20|2 = −α2
1(T )(α1(T )α2(T ) − ε2)

ε2β1α2(T ) + β2α3
1(T )

, (4b)

The phase difference of order parameters at equilibrium can be given as

cos(φ1 − φ2) = 1; if ε<0, (5a)

cos(φ1 − φ2) = −1; if ε>0. (5b)

3 Results and discussions

The free-energy difference between the normal and the superconducting states can be written
using Eq. (1) as

∆F = −β1

2
|Ψ10|4 −

β2

2
|Ψ20|4 − 2ε|Ψ10||Ψ20|. (6)

The last term in Eq. (6) is related to the interband mixing and it leads to increasing of free-energy
differences and consequently of critical temperature. On the other hand, the thermodynamic
magnetic field is related to the free energy difference by

−H2
cm

8π
= ∆F. (7)

Here, we use the notation Hcm for the thermodynamic critical field of a bulk superconductor,
which is different from that for thin films, which will be of subject future investigations. Using
Eqs. (4), (6), and (7), one can obtain the following formula with an appropriate manipulation of
the thermodynamic magnetic field.
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We now introduce a dimensionless parameter of the form hcm = Hcm(T )/Hcm(0), where
Hcm(0) =

√
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√
β2) and we then have a normalized form of the thermody-

namic magnetic field
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Here, all the parameters are dimensionless and they can be expressed as
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The differences in specific heat between the superconducting and normal state CN − CS can be
written as [12]
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At T = Tc, Hcm = 0 and we have the Ruthgers formula for the specific heat jump at Tc,
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Temperature dependence of the thermodynamic magnetic field Hcm in the single band supercon-
ductors [12] is given by

Hcm = −
√

4π

β
α(T ). (13)

Consequently, in single band superconductors specific heat below Tc reveal linear behavior.
Due to Eq. (11) and nonlinear character of thermodynamic magnetic field Hcm(T ) (see Eq. (9)
and (10)) in two band superconductors, specific heat show also nonlinear behavior. Such conclu-
sion is in qualitative agreement with first principles calculations in [5]. Another important result
is related to the specific heat jump at Tc. For the normalized specific heat jump at Tc, we obtain

∆c =

(

∂hcm

∂θ

)2

θ=0

, (14)
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Fig. 1. Temperature dependence of thermodynamic magnetic field (the circles represent the two-band GL
theory and the squares represent the empirical data).

where ∆c = ∆C/∆C0 and ∆C0/Tc = H2
cm(0)/4πT 2

c .
Note that the thermodynamic magnetic field Hcm(T ) is not directly measurable quantity.

Fortunately, it can be calculated from specific heat measurements. In Fig. 1, we plot the temper-
ature dependence of Hcm(T ) using Eqs. (9) and (10) (circles). To produce the data in Fig. 1, we
have used the following parameters: D = 1.35, Tc1 = 20K, Tc2 = 10K, Tc = 40K, (ε∗)2 = 3/8,
similarly as in Refs. [6–8]. It is necessary to remark that it was reported that the critical temper-
ature one of groups of superconducting electrons is 10K [14]. It confirms correct character of
our fitting parameters presented above. Empirical data forHcm (squares) were extracted from the
results of Bouquet et al. [9] with Hcm(0)=0.45 T. Similar results were also observed experimen-
tally in the work of Wang et al. [11]. It is worth noting that isotropic single band approximation
gives a linear temperature dependence of hcm (see Eq. (13)). In contrast to single band approach,
the two-band superconductivity model yields nonlinear temperature dependence near Tc and as
a result to nonlinear behavior of specific heat.

Substituting the calculated value of ∂hcm/∂θ at the critical temperature into Eq. (14), we
can estimate the specific heat jump at Tc. The estimated value for the jump is 0.64, which is
very small compared to unity calculated from the single-band G-L theory. However, the value
is consistent with the experimental data in [11], accordingly to which ∆C/CN = 0.8 is smaller
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than the single band BCS value of 1.43. Such conclusion is in agreement with two-band BCS
calculations conducted by Moskalenko et al. [15].

4 Conclusion

We show that the presence of two order parameters in the Ginzburg-Landau theory gives a non-
linear temperature dependence of thermodynamic magnetic field and specific heat. The strength
of the non-linearity is mainly dependent on the interaction coupling between the order parameters
of two separate bands. The results of the calculations are in a good agreement with experimental
data for bulk MgB2. We conclude that the two-band G-L theory explains the reduced magnitude
of the specific heat jump and the small slope of the thermodynamic magnetic field in MgB2.
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[8] I.N. Askerzade: Physica C 397 (2003) 99
[9] F. Bouquet, R.A. Fisher, N.E. Phillips, D.G. Hinks, J.D. Jorgensen: Phys. Rev. Lett. 87 (2001) 047001

[10] S.L. Budko, G. Lapertot, C. Petrovich, C.E. Cunningham, N. Anderson , P.C. Canfield: Phys. Rev.
Lett. 86 (2001) 1877

[11] Y. Wang, T. Plackowski, A. Junod: Physica C 355 (2001) 179
[12] A.A. Abrikosov: Fundamentals of the theory of metals. (North – Holland, Amsterdam 1988)
[13] H. Doh, M. Sigrist, B.K. Chao, S.-I. Lee: Phys. Rev. Lett. 85 (1999) 5350
[14] V.V. Anshukova, B.M. Bulychev, A.I. Golovashkin, L.I. Ivanova, A.A. Minakov, A.P. Rusakov: Phys.

of Solid State 45 (2003) 1207
[15] V.A. Moskalenko, M.E. Palistrant, V.M. Vakalyuk: Fizika Nizkikh Temperatur 15 (1989) 378


