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We present properties of a vibrating wire in vacuum and in superfluid 3He-B at

temperatures well below transition temperature, where the properties of the super-

fluid 3He-B are comparable (analogous) with that of quantum vacuum. It is shown

that the wire can be used to measure such fundamental physical quantity as the

energy gap in a spectrum of quasiparticle excitations of the superfluid 3He-B.

PACS: 67.57.-z, 67.57.Bc

1 Introduction

The vibrating wire is a simple device widely used in the study of quantum liquids, like
superfluid 4He and superfluid 3He. Usually it is a superconducting wire — very thin fibre
— bowed into a semicircle (or other shape e.g. rectangular) and immersed in the liquid.
With an aid of steady magnetic field B orientated along a plane of the wire loop and
ac-current I0 driven via the wire, the wire is lead through a resonance in consequence
of acting Lorentz force. The motion of the wire per unit of mass and wire length is
described by following equation:

d2x/dt2 + γdx/dt + ω2

0
x = f exp(iωt), (1)

where parameter f = I0B/m describes the driving force per mass, m = πr2ρw is the mass
per unit length of wire with r and ρw being radius and density of the wire, respectively.
The second term in equation (1) characterizes a damping force of the fluid acting against
the wire motion and it is assumed that is linear with the wire velocity v. The constant γ
(γ = γ2 + iγ1) is the damping constant, where γ2 refers to the dissipative component of
the damping force. The γ1 characterizes its reactive component associated with the fluid
backflow around the wire and effectively gives the wire a greater mass. The last term in
equation (1) is the restoring force of the wire, where ω0 is the wire resonance frequency
in vacuum. The steady state solution of equation (1) is well known and it leads to a
Lorentz shape of the absorption and dispersion curves in dependence on the frequency.
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Fig. 1. The 3-D cross section of the experimental cell.

The width of the absorption curve 2π∆f2 = γ2 is related to the total damping force per
unit of mass acting on the wire motion as:

F = 2π∆f2v. (2)

On the other hand, the frequency shift of the resonance frequency from its value in
vacuum ∆f1 is associated with γ1 as γ1 = 4π∆f1.

The vibrating wire moves in the direction which is almost perpendicular to the applied
magnetic field B, so an additional voltage Ui is induced. Its magnitude can be found by
applying the Faraday’s law in form Ui = kBlv, where l is the wire length and the constant
k characterizes the geometric shape of the wire. Solving the equation (1), one can get the
expression for maximum value of in-phase velocity in the form v = BI0/mγ2. Combining
last two equations together, one gets a quadratic dependence of the induced voltage on
magnetic field Ui ∼ B2. The induced voltage Ui is amplified by a preamplifier and then
measured by a phase sensitive detector (so called Lock-in amplifier). A reference signal
for phase sensitive detector is taken from generator supplying the wire with current. By
sweeping the frequency of the generator, the resonance characteristics of the vibrating
wire is measured.

An aim of this paper is to show that such simple mechanical resonator, as the vibrating
wire is, can be very useful tool to study physical properties of quantum system like the
superfluid 3He-B.

2 Experiment

The experiments were performed in an experimental cell made of epoxy resin Stycast
1266 (see Fig. 1) mounted on Košice nuclear demagnetization stage [1]. Two vibrating
wires were made from one filament (125 µm in diameter) NbTi fiber bowed to a semicircle
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of radius ∼ 2 mm, and glued inside the cell. Both wires were thermally anchored to the
copper nuclear stage. First, the properties of the wires in vacuum i.e. in an empty exper-
imental cell were studied. Then the cell was filled up with the liquid 3He and properties
of the wires immersed in superfluid 3He-B were investigated. The temperature of the
nuclear stage and superfluid 3He were measured independently by NMR thermometers
made from: (i) Pt wires thermally connected to the stage and (ii) Pt powder immersed
in liquid. Both thermometers were calibrated against transition temperature Tc of 3He
into superfluid state during demagnetization or warming up processes several times. Ab-
sorption and dispersion signals from the wires in vacuum were measured at temperature
∼ 1 mK and in magnetic field up to 25 mT. The temperature dependence of the vibrat-
ing wire width ∆f2 in superfluid 3He-B was measured at magnetic field corresponding
to the resonance frequency 125 kHz for Pt NMR thermometer. This field is small in
comparison with the value of the critical field (∼ 330 mT) and the energy gap distortion
due to magnetic field can be neglected.

3 Properties of the vibrating wire in a vacuum

At very low temperatures the superfluid 3He-B behaves like vacuum from the viewpoint of
excitations and damping of the vibrating wire due to interaction with them is comparable
with an intrinsic damping of the wire itself. Therefore, it is important to know properties
of the vibrating wire in a vacuum. Similar study of the nonlinear acoustic properties of
various vibrating wires in vacuum and superfluid 3He-B is presented in [2].

As first the dependence of induced voltage on the value of magnetic field was measured
(Ui ∼ B2). Figure 2 shows the values of induced voltage Ui measured in dependence on
B and confirms expected quadratic dependence on magnetic field. The same dependence
was observed for the second wire resonating at frequency ∼ 3500Hz. The dependence of
frequency width ∆f2 on the excitation amplitude (or the wire velocity) is presented on
Fig. 3. As can be seen from this dependence, ∆f2 shifts to higher values as the excitation
i.e. the wire velocity increases. This is inconsistent with the linear model (see equation
(2)) according to which the width ∆f2 should be constant. Where can a physical origin
of the nonlinear intrinsic damping come from?

There are at least two processes responsible for the energy dissipation in oscillating
wire. One of the mechanisms of energy dissipation is the presence of vortices in vibrating
wires. The wires are usually made from superconductors of the second type and they
may be in a mixed state with vortices inside. The vortices are regions of the normal phase
in superconductor allowing the penetration of the magnetic field through the wire. This
mechanism dominates especially at magnetic fields above Bc1 and/or higher temperature
due to a temperature dependence of Bc1(T ):

Bc1(T ) = Bc1(0)[1 − (T/Twc)
2], (3)

where Twc is the transition temperature of the wire into the superconducting state and
Bc1(0) is the threshold of magnetic field of the transition into the mixed state at T = 0.
The energy is dissipated due to eddy current heating in normal regions determined by
vortices. Owing to AC current flow through the wire, the Magnus force acts on the pinned
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Fig. 2. The dependence of the induced voltage by the vibrating wire on magnetic field. Inset
shows typical induced resonance signals measured during the frequency sweep.

vortices causing their viscous oscillations. This leads to the additional energy dissipation
increase thus to the intrinsic damping of the wire. However, at very low temperature
and low magnetic field (at values below Bc1) the NbTi wire is in pure superconducting
state without the presence of any vortices and the magnetic field penetrates only on the
distance of order of the London penetration depth from the wire surface.

The origin of another channel for the energy dissipation can be found if one considers
the deformations of the lattice during oscillations. When an atom is moving closer to its
neighbor, the potential energy of the atom is rising up faster than when it is moving away.
This gives rise to an asymmetrical restoring force acting on the atom. A fundamental
property of such non-linear system is the presence of higher harmonics in the frequency
spectrum, and in this particular case, it is the presence of second harmonics (see Fig.
3). Moreover, due to asymmetrical shape of the potential energy, the atom will oscillate
around a new equilibrium position and the distance between two atoms will be time
dependent. The oscillations of atoms produce additional thermal phonons which are
responsible for the energy dissipation. The energy dissipation can occur (i) via local
phonon-phonon scattering which leads to thermalization corresponding of ”a new lattice
constant” and (ii) by ballistic transport of phonons between ”hot” i.e. deformed region of
the wire and ”cold” i.e. non deformed part of the wire. We believe that this mechanism
dominates at ultra low temperatures and low magnetic fields and is responsible for the
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Fig. 3. The dependence of ∆f2 on the excitation voltage. measured at T = 1 mK and B = 15
mT. Inset: the presence of the second harmonics in oscillations of the vibrating wire documents
the nonlinear properties of the resonator.

intrinsic damping of the wire.

4 Vibrating wire: a detector of excitations in superfluid 3He-B

When the wire is immersed in superfluid 3He-B then we can observe two phenomena.
First, the wire has an effectively greater mass due to the reactive component associated
with the liquid backflow. This results in a shift of the resonance frequency to lower
values. Secondly, the liquid itself damps the wire motion due to presence of excitations
what increases its damping in comparison with the case in vacuum. Generally, the
motion of the wire in superfluid 3He-B is restricted due to a mutual interaction between
the excitations and the wire. A total damping force acting on the wire, in general,
consists of three terms: F = FI + FC + FT , where FI is the intrinsic damping force of
the wire discussed above, FC is the damping force due to pair breaking when the wire
velocity is above the critical and the wire works like a heater rather then thermometer,
and FT is thermal damping force due to collision of the wire with existing excitations
(quasiparticles and quasiholes). The last term FT per unit area can be expressed as [3]:

FT = pf 〈nvg〉
[

1 − exp
(

−
pfv

kT

)]

, (4)

where vg and n are the group velocity and the number of excitations per unit volume,
respectively, v is the wire velocity and 〈nvg〉 = n(pf )kT exp(−∆/kT ) represents quasi-
particle flux with n(pf ) being the density of states in momentum space, k is the Boltzman
constant and ∆ is the energy gap. The origin of this non-linearity with wire velocity arises
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Fig. 4. Typical induced signal from vibrating wire measured in vacuum and liquid 3He. The
frequency shift from the resonance frequency in vacuum and increase of damping due to presence
of the liquid is clearly seen.

from Andreev scattering of excitations from the flow field around the moving wire [4].
At low velocity the damping force per unit area of the wire becomes linear in velocity v:

FT =
p2

fv

kT
〈nvg〉 ∼ vp2

f exp

(

−
∆(T )

kT

)

. (5)

For low temperatures the damping force FT at constant velocity depends only on tem-
perature. Assuming that the intrinsic damping of the wire is negligible i.e. FI = 0 and
the term FC is close to zero because the wire velocity v is always lower than the critical
velocity vc, then the total damping force acting on the wire will come only from FT .
Combining equations (2) and (5) one can get the final result:

∆f2 = A exp

(

−
∆(T )

kT

)

, (6)

where A is a constant which needs to be determined from experiment. Thus the vi-
brating wire operating in linear regime works as a thermometer directly measuring the
temperature of superfluid 3He-B. Now, one can logarithm the equation (6) and using
the relation ∆(T ) = ∆(0)

√

(1 − T/Tc), together with the BCS value of the energy gap
∆(0) = ∆BCS = 1.76kTc, he gets:

ln(∆f2) = ln(A) −
∆(0)

kT

√

1 −
T

Tc

= ln(A) − 1.76
Tc

T

√

1 −
T

Tc

. (7)

In our experiments we were able to measure the temperature of superfluid 3He-
B independently by Pt NMR thermometer and therefore we can consider the term



Vibrating wire... 531

2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

with FI correction 

Linear dependence without FI

P = 0.3 MPa

 

 

Lo
ga

rit
hm

 o
f 

  f
2
, a

.u
.

Relative variable X, a.u.

∆

Fig. 5. The dependence of ∆f2 on temperature with and without correction of the intrinsic
damping of the vibrating wire.

Tc

√

1 − T/Tc/T as an independent variable X . As a result, we get a linear dependence
of ln(∆f2) on variable X :

ln(∆f2) = ln(A) − 1.76X. (8)

Figure 5 shows the dependence of ln(∆f2) on the variable X . One can see that the
measured data are not linear dependent on X . At lower temperatures i.e. higher values
of X the intrinsic damping of the wire starts to be comparable with that from the
interaction with excitations and therefore the intrinsic damping can not be neglected. The
total damping force F in this case has two components F = FT + FI and it corresponds
to the total width ∆f2 measured. The width ∆f2 consists of two parts represented by
thermal ∆fT and the intrinsic ∆fI damping, respectively. By logarithm of this expression
and developing the terms on right side in Taylor series around of a = ∆fT (we assume
∆fT > ∆fI ), we finally get ln(∆f2) = ln(∆fT )+∆fI/∆fT . The thermal damping ∆fT

is equal to A exp(−∆(T )/kT ) and substituting it into the equation above we receive:

ln(∆f2) = ln(A) −
∆(T )

kT
+

∆fI

A exp(−∆(T )/kT )
. (9)

The last term on the right side is the correction connected with intrinsic damping force
FI . As can be seen from Fig. 5, the application of this dependence with correction on the
intrinsic damping provides reasonable agreement with the measured data, confirming thus
the argument about an important role of the intrinsic damping at very low temperatures.
Having the possibility of independent temperature measurements on one side and the
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measurements of the excitation density using the wire on the other, within the simple
model presented above, we have a tool to investigate such fundamental property of the
superfluid like the value of the energy gap.
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Fig. 6. The dependence of ∆f2 on temperature including the correction of intrinsic damping of
the vibrating wire. The solid line represents the fit of data using the value ∆(0)/kTc = 1.74 for
pressure 0.3 MPa. Another lines represent the dependencies using the values ∆(0)/kTc equal
to 1.69 (dashed line) and 1.81 (dotted line) for pressures of 0 and 1.1 MPa, respectively. It
is obvious that these dependencies do not fit the experimental data well. A thinner solid line
shows the temperature dependence of ∆f2 for an ideal vibrating wire.

The theory of superfluid 3He was developed in a weak coupling limit using the BCS
theoretical approach [5]. In this approach the value of the energy gap for 3He is ∆BCS =
1.76kTc and does not depend on pressure. From experiments, however, it was obvious
that the weak-coupling limit needed to incorporate the strong-coupling corrections [6].
For example, the result of weak coupling theory suggests that the B-phase is the lowest
in free energy at all temperatures which contradicts to the phase diagram showing the
creation of the A-phase at higher pressures first (for details see [7]). Therefore, the
incorporation of strong-coupling corrections resulted in a pressure dependence of the
energy gap ∆(0). The method presented above gives us a possibility to determine the
value ∆(0)/kTc for various pressures. Indeed, instead of using the BCS value ∆(0)/kTc =
1.76, we can take this ratio as a free parameter and fit our data by equation (9). The
results are presented in Fig. 6. The solid line represents the fit of the data using the
value ∆(0)/kTc = 1.74. This value is in reasonable agreement with the data measured
by R. Movshovich et al. [8] and N. Masuhara et al. [9]. Another lines represent the
dependencies using the values ∆(0)/kTc equal to 1.69 (dashed line) and 1.81 (dotted
line) for pressures of 0 and 1.1 MPa, respectively. It is obvious that these dependencies
do not fit the experimental data.

In summary, we showed that simple mechanical resonator - vibrating wire - can be
used as the probe for measurement of the superfluid 3He-B energy gap providing that
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the correction on the wire intrinsic damping is taken into account and temperature of
the superfluid 3He-B is measured by an independent thermometer.
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