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The magnetic properties of the two-dimensional anisotropic Heisenberg model with spin S

= 1 are investigated by the Green function method. The Heisenberg model with the exchange
anisotropy in the (x, y)-plane and in an external magnetic field H = (Hx, 0, 0) is considered
as a special model of a non-collinear magnetic system. The Hamiltonian for the anisotropic
Heisenberg model smoothly interpolates between that of the isotropic Heisenberg model and
the Ising model with the variation of the exchange anisotropy parameter. The orientation of
the magnetization is determined by the expectation values 〈Sx〉 and 〈Sz〉 of the spin compo-
nents from which the total magnetization and the orientation angle θ are obtained as a function
of the temperature and of the transverse magnetic field for various parameters of the exchange
anisotropy. We present the results of 〈Sx〉, 〈Sz〉, and θ obtained within Heisenberg and Ising
models.

PACS: 75.10.Jm, 75.70.Ak

1 Introduction

There is no spontaneous magnetization of the system at nonzero temperatures in the absence of
any external magnetic field that for ferromagnetic exchange interactions between pairs of nearest
neighbor spins in the two-dimensional (2D) Heisenberg spin systems [1,2]. This behavior is
marked in contrast to the ferromagnetic-paramagnetic phase transition seen in the corresponding
Ising spin systems with associated critical temperature Tc. However, if the Hamiltonian of the
Heisenberg spin system is modified through the introduction of an anisotropy in the exchange
interaction, Ising-like phase behavior is observed for sufficiently small values of the exchange
interaction parameter in (x, y)-plane. But as the magnitude of the exchange anisotropy parameter
is reduced to zero, the contributions to the interaction energy from the components of the spin-
spin interaction in the xand y directions also reduce to zero. Thus the Hamiltonian for the
anisotropic Heisenberg model smoothly interpolates between that of the isotropic Heisenberg
model and the Ising model with the variation of the exchange anisotropy parameter.
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In the present work, we investigate the influence of the anisotropy of the exchange interaction
in (x, y)-plane on the properties of the quantum spin system with the transverse magnetic field
in the framework of the many-body Green function theory. From this investigation we can com-
pare the results for the transverse and longitudinal magnetization obtained within the transverse
Heisenberg and the Ising model.

The transverse Ising model was introduced for the first time by de Gennes as a pseudo-spin
model for hydrogen-bonded ferroelectrics [3]. Since then the model has been applied to sev-
eral physical systems, such as the cooperative Jahn-Teller systems and ferromagnets with strong
uniaxial anisotropy in a transverse magnetic field [4]. The elementary spin excitation in the
structurally disordered anisotropic Heisenberg model and the Ising model in the transverse field
have been investigated as a special case of the anisotropic model by the Green function method
in [5]. Many results about elementary excitation spectra and thermodynamics of the system
were obtained within this method. Recently, the many-body Green function method has been
developed for treating the reorientation of the magnetization of the ferromagnetic monolayers
and thin films [6] by including the exchange anisotropy in the longitudinal direction. The pur-
pose of this paper is to extend the treatment of [6] to the transverse Heisenberg model for the
square lattice with spin S = 1 including the exchange anisotropy in (x,y) plane. The transverse
Heisenberg model represents one of the simplest noncolinear magnetic systems. However, the
requisite noncommutativity of operators in the Hamiltonian creates a potentially difficult techni-
cal problem. The direction of the magnetic field and that of the chosen axis do not coincidence.
Correspondingly, the spectrum of elementary excitations contains a finite gap everywhere except
the orientational phase transition point [7].

2 Theory

We consider the 2D Heisenberg model consisting of the anisotropic exchange interaction J be-
tween nearest neighbor lattice sites on a square lattice occupied by spin S = 1 and an external
magnetic field, H = (Hx, 0, 0)

H = −1

2

∑

〈ij〉

Jij [(1 − Λ)S−
i S+

j + Sz
i Sz

j ] − 1

2

∑

<ij>

GijS
z
i Sz

j − 1

2
hx

∑

i

(S+
i + S−

i ). (1)

The notation S±
i = Sx

i ± iSy
i and the external magnetic field hx = gµBHx (g is the Lande

factor and µB is the Bohr magneton) is introduced and G represents the anisotropy constant.
For G negative, the second term represents the role of the demagnetizing field [8]. We note
that there is no divergence difficulty for finite values of G in calculation of the components of
magnetization in the case of 2D ferromagnet. On the other hand, for G positive, the second term
may represent the anisotropic exchange interaction in z direction. The parameter Λ determines
the strength of the exchange anisotropy in the (x, y)-plane. Thus the Hamiltonian (1) smoothly
interpolates between that of the Heisenberg model and of the Ising model changing the parameter
Λ from 0 to 1, respectively.

By solving the equations of motion for the Green functions we calculate the z and x compo-
nents of the magnetization directly, what allows the immediate determination of the orientation
angle. We study the reorientation of the magnetization induced by the transverse external mag-
netic field and the influence of the exchange anisotropy on the magnetization reorientation. For
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Λ → 1 we have Ising-like model with a strength anisotropic exchange interaction in the z-
direction that prefers ordering of spins in z-direction (the magnetic fluctuation is suppressed)
and naturally, for the reorientation of magnetization we need higher transverse external magnetic
field.

We define the following Fourier transform of the Green functions

G
(α,lm)
ij(η) (ω) = 〈〈Sα

i ; (Sz
j )l(S−

j )m〉〉ω(η), (2)

where α = +,−, z and η refers to the commutator (η = −1) or anticommutator (η = +1) Green
functions, respectively, and i, j denote lattice sites.

The functions G
(α,l)
ij(η)(ω) are determined from equations of motion

ωG
(±,lm)
ij(η) (ω) = A

(±,lm)
ij(η) δij ±

∑

k 6=i

[(Jik + Gik)(〈〈Sz
kS±

i ; (Sz
j )l(S−

j )m〉〉ω(η)

− (1 − Λ)〈〈Sz
i S±

k ; (Sz
j )l(S−

j )m〉〉ω(η))] ∓ hx〈〈Sz
i ; (Sz

j )l(S−
j )m〉〉ω(η), (3)

ωG
(z,lm)
ij(η) (ω) = A

(z,lm)
ij(η) δij +

1

2

∑

k 6=i

Jik(1 − Λ)〈〈(S−
i S+

k − S−
k S+

i ); (Sz
j )l(S−

j )m〉〉ω(η)

− 1

2
hx〈〈S+

i ; (Sz
j )l(S−

j )m〉〉ω(η) +
1

2
hx〈〈S−

i ; (Sz
j )l(S−

j )m〉〉ω(η). (4)

The inhomogeneities are given by

A
(α,lm)
ij(η) = 〈[Sα

i , (Sz
j )l(S−

j )m]η〉, (5)

where angular brackets denote the canonical ensemble average.
The higher-order Green functions occurring on the right-hand side need to be decoupled in

order to obtain a closed set of equations. In order to close the chain of equations we apply
a generalized Tyablikov approximation - (or Random Phase Approximation (RPA), where the
product of the fluctuations is neglected (Sα

i − 〈Sα
i 〉)(Sβ

k − 〈Sβ
k 〉) at i 6= k)

〈〈Sα
i Sβ

k ; (Sz
j )l(S−

j )m〉〉ω(η)
∼= 〈Sα

i 〉G
(β,lm)
kj(η) (ω) + 〈Sβ

k 〉G
(α,lm)
ij(η) (ω) (6)

with α, β = +,−, z; i 6= k.
Additional 2D Fourier transform to the space q = (qx, qy), q being the in-plane wave vector,

yields the following set of equations of motion

∆[Ω(q)] · gη(q, Ω) = Aη , (7)

where Ω = ω/J,gη(q, Ω) = JGη(q, Ω) and gη(q, Ω), Aη are the matrices given by

gη(q, Ω) =







g
(+,lm)
η (q, Ω)

g
(−,lm)
η (q, Ω)

g
(z,lm)
η (q, Ω)






, Aη =







A
(+,lm)
η

A
(−,lm)
η

A
(z,lm)
η






(8)
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and

∆[Ω(q)] =





Ω − A 0 C
0 Ω + A −C
1
2B − 1

2B Ω



 , (9)

where we have used

A = 〈Sz〉[4(1 + Γ) − (1 − Λ)γq],
B = χx + 〈Sx〉(1 − Λ)[4 − γq],
C = χx + 〈Sx〉[4(1 − Λ) − (1 + Γ)γq],
γq = 2(cos qx + cos qy), Γ = G/J, χx = hx/J.

(10)

From (7), the Green functions g
(+,lm)
η (q, Ω), g

(−,lm)
η (q, Ω), and g

(z,lm)
η (q, Ω) are

g(α,lm)
η (q, Ω) =

|∆(α,lm)
η [Ω(q)]|
|∆[Ω(q)]| , (11)

where |∆(α,lm)
η [Ω(q)]| is the determinant obtained by replacing the column α of the determinant

|∆[Ω(q)]| by matrix Aη. The Green functions g
(α,lm)
η (q, Ω) have poles Ωi that can be obtained

by solving |∆[Ω(q)]| = 0: Ω1 = 0, Ω2 = Ωq, Ω3 = −Ωq, Ωq =
√

A2 + BC .
In this case, g

(α,lm)
η (q, Ω) can be expressed as

g(α,lm)
η (q, Ω) =

R
(α,lm)
η {Ω1(q)})
Ω − Ω1(q)

+
R

(α,lm)
η {Ω2(q)}
Ω − Ω2(q)

+
R

(α,lm)
η {Ω3(q)}
Ω − Ω3(q)

, (12)

where

R(α,lm)
η {Ωi(q)} =

|∆(α,lm)
η [Ωi(q)]|

∏

j 6=i

[Ωi(q) − Ωj(q)]
. (13)

In order to calculate the correlation functions C
(α,lm)
q = 〈(Sz)l(S−)mSα〉q in the case of a

vanishing eigenvalue momentum space, we use the spectral theorem [9]

C(α,lm)
q

=
i

2π
lim
ε→0

∞
∫

−∞

1

eΩ/T∗ + 1

(

g
(α,lm)
η=+1 (q, Ω + iε) − g

(α,lm)
η=+1 (q, Ω − iε

)

, (14)

where T ∗ = kT/J . Using the relation between the anticommutator and the commutator

A
(α,lm)
q,η=+1 = A

(α,lm)
q,η=−1 + 2C(α,lm)

q
(15)

one obtains the following set of equations

C(+,lm)
q

− C

A
C(z,lm)

q
= A

(+,lm)
η=−1

(

Ωq

2A
coth

(

Ωq

2T ∗

)

− 1

2

)

+
C

2A
A

(z,lm)
η=−1 , (16)

−C(−,lm)
q

+
C

A
C(z,lm)

q
= A

(−,lm)
η=−1

(

Ωq

2A
coth

(

Ωq

2T ∗

)

+
1

2

)

− C

2A
A

(z,lm)
η=−1 , (17)
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C(+,lm)
q

− C(−,lm)
q

=
1

2
(A

(−,lm)
η=−1 − A

(+,lm)
η=−1 ) − Ωq

B
coth

(

Ωq

2T ∗

)

A
(z,lm)
η=−1 . (18)

The relations (16) - (18) are derived in detail in Appendix A.
Now we apply the following Fourier transform in Eqs. (16) and (17)

〈(Sz)l(S−)mSα〉 = 1
π2

π
∫

0

π
∫

0

C
(α,lm)
q dqxdqy,

Φ1(T
∗) = 1

π2

π
∫

0

π
∫

0

Ωq

A coth(Ωq/2T ∗)dqxdqy,
(19)

and obtain

C(+,lm) − 1
π2

π
∫

0

π
∫

0

C
AC

(z,lm)
q dqxdqy = − 1

2A
(+,lm)
η=−1

+ 1
2A

(+,lm)
η=−1 Φ1(T

∗) + 1
2A

(z,lm)
η=−1

1
π2

π
∫

0

π
∫

0

C
Adqxdqy ,

(20)

−C(−,lm) + 1
π2

π
∫

0

π
∫

0

C
AC

(z,lm)
q dqxdqy = 1

2A
(−,lm)
η=−1

+ 1
2A

(−,lm)
η=−1 Φ1(T

∗) − 1
2A

(z,lm)
η=−1

1
π2

π
∫

0

π
∫

0

C
Adqxdqy .

(21)

By adding Eqs. (20) and (21), one obtains

C(+,lm) − C(−,lm) − 1

2

(

A
(−,lm)
η=−1 − A

(+,lm)
η=−1

)

=
1

2

(

A
(−,lm)
η=−1 + A

(+,lm)
η=−1

)

Φ1(T
∗). (22)

The Fourier transform of Eq. (18) gives

C(+,lm) − C(−,lm) − 1

2

(

A
(−,lm)
η=−1 − A

(+,lm)
η=−1

)

= −A
(z,lm)
η=−1 Φ2(T

∗), (23)

where

Φ2(T
∗) =

1

π2

π
∫

0

π
∫

0

Ωq

B
coth(Ωq/2T ∗)dqxdqy. (24)

Eqs. (22) and (23) are sufficient to determine the observables. To elucidate these equations
we derive the explicit expressions for spins S = 1. For this spin one needs Eqs. (22) and (23) for
(l= 0, m = 1), (l= 1, m = 1), (l= 0, m = 2) and (l= 0, m = 3). This yields 8 equations for ten
unknown quantities: 〈S−〉, 〈Sz〉, 〈(Sz)2〉, 〈S−S−〉, 〈SzS−〉, 〈SzS−S−〉, 〈S−Sz〉, 〈S−(Sz)2〉,
〈S−S−Sz〉, and 〈S−S−(Sz)2〉.

Only 6 (out of the ten) unknown quantities are independent: {〈XY 〉} ≡ {〈S−〉, 〈Sz〉,
〈(Sz)2〉, 〈(S−)2〉, 〈SzS−〉, 〈S−(Sz)2〉}. They are determined by the following six equations

2 − 〈(Sz)2 − 〈(S−)2〉 =

{

〈Sz〉Φ1(T
∗),

〈S−〉Φ2(T
∗),

(25)
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1

2
(〈Sz〉+ 〈(Sz)2〉+ 〈(S−)2〉−2) =

{

1
2 (〈(S−)2〉 + 3〈(Sz)2 − 〈Sz〉 − 2)Φ1(T

∗),
〈SzS−〉Φ2(T

∗),
(26)

2〈S−〉 − 〈(S−)2〉 − 〈S−(Sz)2〉 =

{

(2〈SzS−〉 − 〈S−〉)Φ1(T
∗),

2〈(S−)2〉Φ2(T
∗).

(27)

From these equations one obtains the following expressions for expectation values 〈S−〉 and
〈Sz〉

〈Sz〉 =
4Φ1Φ

2
2

Φ2
1 + Φ2

2 + 3Φ2
1Φ

2
2

, 〈S−〉 =
4Φ2

1Φ
2
2

Φ2
1 + Φ2

2 + 3Φ2
1Φ

2
2

. (28)

These equations have to be solved numerically. The integrals Φi (i = 1, 2) are actually rather
complicated because the detailed shape of the Brillouine zone must be taken into account and
the actual energy of magnons must be used. To reduce the necessary computational time, the
trick described by Colpa [10] has been used, and the double integrals Φi(T

∗) (i = 1, 2) can be
rewritten into only one integral

Φi(T
∗) =

1

π2

π
∫

0

π
∫

0

fi(Ωq) coth(Ωq/2T ∗)dqxdqy

=
1

π2

2
∫

−2

fi(Ωq) coth

(

Ωq

2T ∗

)

Kell

(

4 − κ2

4

)

dκ, (29)

where Kell is the elliptic integral of the first kind, κ = cos qx + cos qy, f1 = Ωq/A, and
f2 = Ωq/B.

We restricted ourselves to an external transverse magnetic field confined to the x−direction.
Therein, it is sufficient to deal with the x- and z- components of the magnetization (〈Sy〉 =
0). The total magnetization m(T ∗) and the equilibrium polar angle ϑ of the magnetization are
determined

m(T ∗) =
√

〈Sx〉2 + 〈Sz〉2, ϑ = arctan
〈Sx〉
〈Sz〉 . (30)

3 Results

We study the behaviour of the longitudinal 〈Sz〉 and the transverse 〈Sx〉 components of the
magnetization and the polar angle of the total magnetization ϑ with hx and T for the square
lattice with spin S = 1 for two typical values of the anisotropy parameter Λ: a) Λ = 0 (the
Heisenberg model), b) Λ = 1 (the Ising model). Figure 1 shows typical results for 〈Sz〉 and 〈Sx〉
and the polar angle of the total magnetization ϑ as a functions of the temperature in the case
when the applied transverse field is χx ≡ hx/J = 0.08. The exchange anisotropy parameter
Γ = 0.1. Indices 1 and 2 refer to the cases a) and b), respectively. It is clear from the figure that
the longitudinal component of the magnetization 〈Sz〉 vanishes at the reorientation temperature
TR. The transverse component 〈Sx〉 remains constant until the component 〈Sz〉 has dropped to
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Fig. 1. The components of the magnetization 〈Sx〉 and 〈Sz〉 and the equilibrium orientation angle ϑ of
the total magnetization as functions of the reduced temperature kT/J for a fixed transverse magnetic filed
χx = 0.08, for the anisotropy parameters Γ = 0.1 when a) Λ = 0.0 (index 1, the Heisenberg model), b)
Λ = 1.0 (index 2, the Ising model).

zero, and an in-plane magnetization (ϑ = 90) is reached and then it decreases with a long tail
in the Heisenberg model. On the other hand, in the Ising model the transverse component 〈Sx〉
decreases very slowly. For the same applied magnetic field, the reorientation temperature TR is
considerably higher in the case Λ = 1 (Ising model). The result obtained is qualitatively clear:
the reorientation temperature increases with Λ. (In the Ising limit, Λ = 1, the RPA corresponds
to the mean filed treatment and the mean filed Curie temperature is higher than the RPA Curie
temperature.) We emphasize the long tail in particular of the transverse 〈Sx〉 components of
the magnetization at the large temperatures within the Heisenberg model, which is absent within
the Ising model. This behaviour is due to the strong effect of external magnetic fields on the
properties of two-dimensional Heisenberg magnets [11]

In Fig. 2 the transverse magnetization 〈Sx〉 is plotted for Γ = 0.1 and at fixed transverse
magnetic field: a)χx = 0.15 when Λ = 0.0 (index 1, the Heisenberg model), b) χx = 1.5
when Λ = 1.0 (index 2, the Ising model). Fluctuations modify the behaviour of the system, so
that the transition point shifts and the character of the magnetization behaviour changes. The
reorientation temperature calculated within the Heisenberg model and the Ising model are fairly
similar (of course, without long tail for the higher temperatures in the Ising model) when the
transverse field in the Ising model is 10 times higher than in the Heisenberg model.

In Figure 3 we plot the components of the magnetization, 〈Sz〉, 〈Sx〉 and the polar angle
of the total magnetization ϑ as functions of the transverse magnetic field χx ≡ hx/J at the
reduced temperature kT/ J = 1.0 for the anisotropy parameter Λ = 0.0 and for the anisotropy
parameter G/J = 0.1. The field-induced magnetic reorientation is characterized by decreasing
〈Sz〉 and increasing 〈Sx〉. The magnetization reaches the in-plane direction (〈Sz〉 = 0) at field
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Fig. 2. The transverse magnetization 〈Sx〉 for Γ = 0.1 and fixed transverse magnetic filed: a)χx = 0.15
when a) Λ = 0.0 (index 1, the Heisenberg model), b) χx = 1.5 when Λ = 1.0 (index 2, the Ising model)
are shown as a function of the reduced temperature kT/J.

Fig. 3. The components of the magnetization 〈Sx〉 and 〈Sz〉 and the equilibrium reorientation angle ϑ as
functions of the reduced transverse magnetic field hx/J for Γ = 0.1 at a fixed reduced temperature kT/J =
1.0, when Λ = 0.0 (the Heisenberg model).
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Fig. 4. As in Fig. 3, but for the Ising model.

strength hx
R depending on the temperature. In Fig. 4 we show the corresponding results obtained

within the Ising model (Λ = 1) with the same parameters for kT/J and for G/J as in the Fig. 3.
The behaviour of the magnetizations in both cases are qualitatively fairly similar. However, the
strength of the reorientation field hx

R calculated within Ising model [12] is ten times larger than
within the Heisenberg model.

As follows from Fig. 5, quantum effects (Λ → 0) shift the strength of the reorientation
magnetic field to smaller values. The curves refer to different values of parameter Λ: curve a:
Λ = 0.0; curve b: Λ = 0.5 and curve c: Λ = 1.0. Thus, this contracts the region where the
ordered phase in the z direction exists, and leads to a nontrivial quantum renormalization of the
critical field value hx

R [13].

4 Conclusion

In the present paper, we have applied Green function theory for the calculation of the magnetic
properties of the ferromagnetic monolayer with an anisotropy in the exchange interaction in the
(x, y)-plane with applied a transverse external magnetic field. Considered model smoothly in-
terpolates between that of the Heisenberg model and the Ising model with the variation of the
exchange anisotropy parameter Λ. We have investigated the square lattice for spin S = 1 and
calculated the longitudinal and transverse components of the magnetization, which allows an
immediate determination of the orientation angle. The results are sensitive to a variation of the
strength of the anisotropy in the exchange interaction. The magnitude of the reorientation tem-
perature TR and the reorientation magnetic field χx

R increase when the anisotropy parameter Λ
increases. In Ising-like model, both quantities are larger than for the Heisenberg model. Compa-
rable result for the reorientation temperature within both models we obtain when the transverse
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Fig. 5. The equilibrium reorientation angle ϑ as a function of the reduced transverse magnetic field hx/J at
the reduced fixed temperature kT/J = 1.0 for Γ = 0.1. The curves refer to different values of the parameter
Λ: curve a: Λ = 0.0; curve b: Λ = 0.5 and curve c: Λ = 1.0.

magnetic field is just ten times greater for the Ising model than for the Heisenberg model. Quan-
tum corrections modify the behaviour of the system, so that the transition point shifts and the
character of the magnetization behaviour changes.

Appendix

In this Appendix we derive the relations (16) – (18) in detail. Using (12), (13) and (14), one
obtains for the correlation function C

(z,lm)
q

C(z,lm)
q

=

3
∑

i=1

R
(z,lm)
η=+1 (Ωi)

eΩi/T∗ + 1
=

3
∑

i=1

1

eΩi/T∗ + 1

|∆(z,lm)
η=+1 (Ωi)|

∏

j 6=i

([Ωi − Ωj)
, (A1)

where Ω1 = 0, Ω2 = Ωq, Ω3 = −Ωq, Ωq =
√

A2 + BC . For the determinant
∣

∣

∣∆
(z,lm)
η=+1 (Ωi)

∣

∣

∣

we get

∣

∣

∣∆
(z,lm)
η=+1 (Ωi)

∣

∣

∣ =

∣

∣

∣

∣

∣

∣

∣

Ωi − A 0 A
(+,lm)
η=+1

0 Ωi + A A
(−,lm)
η=+1

1
2B − 1

2B A
(z,lm)
η=+1

∣

∣

∣

∣

∣

∣

∣

= (A
(z,lm)
η=−1 + 2C(z,lm)

q
)(Ω2

i − A2) (A2)
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+
B

2
(A

(−,lm)
η=−1 + 2C(−,lm)

q
)(Ωi − A)

− B

2
(A

(+,lm)
η=−1 + 2C(+,lm)

q
)(Ωi + A),

where we have used (15). If we insert (A2) into (A1), the correlation function C
(z,lm)
q can be

written as

C(z,lm)
q

=

3
∑

i=1

1

eΩi/T∗ + 1

|∆(z,lm)
η=+1 (Ωi)|

∏

j 6=i

(Ωi − Ωj)

= C(z,lm)
q

− C(−,lm)
q

B

2Ωq

tanh

(

Ωq

2T ∗

)

+ C(+,lm)
q

tanh

(

Ωq

2T ∗

)

(A3)

− A
(−,lm)
η=−1

B

4Ωq

tanh

(

Ωq

2T ∗

)

+
1

2
A

(z,lm)
η=−1 + A

(+,lm)
η=−1

B

4Ωq

tanh

(

Ωq

2T ∗

)

.

After small manipulation, we find

C(+,lm)
q

− C(−,lm)
q

=
1

2
(A

(−,lm)
η=−1 − A

(+,lm)
η=−1 ) − Ωq

B
coth

(

Ωq

2T ∗

)

A
(z,lm)
η=−1 , (A4)

which corresponds to Eq. (18).
Likewise we derive the relation (17). Using (12), (13) and (14), one obtains the correlation

function

C(−,lm)
q

=

3
∑

i=1

R
(−,lm)
η=+1 (Ωi)

eΩi/T∗ + 1
=

3
∑

i=1

1

eΩi/T∗ + 1

|∆(−,lm)
η=+1 (Ωi)|

∏

j 6=i

(Ωi − Ωj)
. (A5)

For the determinant
∣

∣

∣∆
(−,lm)
η=+1 (Ωi)

∣

∣

∣ we obtain

∣

∣

∣∆
(−,lm)
η=+1 (Ωi)

∣

∣

∣ =

∣

∣

∣

∣

∣

∣

∣

Ωi − A A
(+,lm)
η=+1 C

0 A
(−,lm)
η=+1 −C

1
2B A

(z,lm)
η=+1 Ωi

∣

∣

∣

∣

∣

∣

∣

= (A
(z,lm)
η=−1 + 2C(z,lm)

q
)C(Ω−

i A) + (A
(−,lm)
η=−1 + 2C(−,lm)

q
) (A6)

× [Ωi(Ωi − A) − CB

2
] − CB

2
(A

(+,lm)
η=−1 + 2C(+,lm)

q
).

We obtain Eq. (17) by inserting (A6) into (A5).
Finally, using Eqs. (12), (13) and (14), one obtains the correlation function

C(+,lm)
q

=

3
∑

i=1

R
(+,lm)
η=+1 (Ωi)

eΩi/T∗ + 1
=

3
∑

i=1

1

eΩi/T∗ + 1

|∆(+,lm)
η=+1 (Ωi)|

∏

j 6=i

(Ωi − Ωj)
. (A7)
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For the determinant
∣

∣

∣∆
(+,lm)
η=+1 (Ωi)

∣

∣

∣ we get

∣

∣

∣∆
(+,lm)
η=+1 (Ωi)

∣

∣

∣ =

∣

∣

∣

∣

∣

∣

∣

A
(+,lm)
η=+1 0 C

A
(−,lm)
η=+1 Ωi + A −C

A
(z,lm)
η=+1 − 1

2B Ωi

∣

∣

∣

∣

∣

∣

∣

= −(A
(z,lm)
η=−1 + 2C(z,lm)

q
)C(Ω+

i A) (A8)

− (A
(−,lm)
η=−1 + 2C(−,lm)

q
)
CB

2

+ [(Ωi(Ωi + A) − CB

2
](A

(+,lm)
η=− + 2C(+,lm)

q
).

Inserting (A8) into (A7) yields the relation (16).

Acknowledgement: This work was supported by the Slovak VEGA project No. 1/9035/02.

References

[1] N.D. Mermin, H. Wagner: Phys. Rev. Lett. 17 (1966) 1133
[2] K. Binder, D.P. Landau: Phys. Rev. B 13 (1976) 1140
[3] P.G. DeGennes: Solid State. Commun. 1 (1963) 132
[4] R.B. Stinchombe: J. Phys. C 6 (1973) 2459
[5] I.A. Vakarchuk, V.M. Tjachuk: Phys. Stat. Sol. (b) 160 (1990) 321
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