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PION NUCLEON COUPLING CONSTANT, GOLDBERGER-TREIMAN
DISCREPANCY AND πN σ TERM
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We start by studying the Goldberger-Treiman discrepancy (GTd) ∆ = (2.259 ± 0.591)%.
Then we look at the πN σ term, with the dimensionless ratio σN/2mN = 3.35%. Finally
we return to predicting (via the quark model) the πN coupling constant, with GTd ∆ → 0 as
mq → mN/3.

PACS: 12.39.Ki, 12.39.Mk, 13.25.-k, 14.40.-n

Given the recent new value of the πNN coupling constant [1]

g2
πNN/4π = 13.80± 0.12 or gπNN = 13.169± 0.057, (1)

along with the observed axial current coupling [2]

gA = 1.267± 0.004, (2)

combined with the measured pion decay constant [2]

fπ = (92.42± 0.26)MeV, (3)

the Goldberger-Treiman discrepancy (GTd) is then

∆ = 1 − mNgA

fπgπNN
= (2.259± 0.591)%. (4)

Here we have used the mean nucleon mass mN= 938.9 MeV and have computed the overall
mean square error.

To verify this GTd in Eq. (4), we employ the constituent quark loop with imaginary part [3]

Imfπ(q2) =
3gπqq

2

4m̂

8π

(

1 − 4m̂2

q2

)1/2

Θ(q2 − 4m̂2). (5)
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This follows from unitarity with the inclusion of a factor of 3 from colour. Following ref. [3]
using the quark level Goldberger-Treiman relation (GTr) fπgπqq = m̂, the GTd to fourth order
in q′2 predicts for a once-subtracted dispersion relation assuming a quark-level GTr:

fπ(q2) − fπ(0)

fπ(0)
=

q2

π

∫ ∞

4m̂2

dq′2
(

1 − 4m̂2

q′2

)1/2

q′2(q′2 − q2)

3g2
πqq

4π
, (6)

or for q2 = m2
π, the integral in Eq. (6) gives a discrepancy for fπ

∆̄ =
fπ(m2

π)

fπ(0)
− 1 =

3g2
πqq

2π2

[

1 − rtan−1

(

1

r

)]

(7)

for r2 = 4m̂2

m2
π

− 1 ≥ 0. Since m2
π/4m̂2 � 1, a Taylor series expansion leads to

1 − rtan−1

(

1

r

)

=
1

3r2
− 1

5r4
+ ... =

m2
π

12m̂2

(

1 +
1

10

m2
π

m̂2
+ ...

)

and a discrepancy [4]

∆̄ =
fπ(m2

π)

fπ(0)
− 1 =

m2
π

8π2f2
π

(

1 +
1

10

m2
π

m̂2

)

≈ 2.946%. (8)

The first term on the rhs is independent of m̂, while in the small second term we take m̂ = mN/3.
This then leads to a net 2.946% correction in Eq. (8).

Since the physical GTr becomes exact (fπgπNN = mNgA) when mπ → 0 for a conserved
axial current, it should not be surprising that the measured GTd in Eq. (4) of (2.259 ± 0.591)%
is within 1.16 standard deviations from the dispersion-theoretical ¯GTd ∆̄ = 2.946% in Eq. (8).
Appreciate that gA is measured at q2 = 0 while fπ is measured at q2 = m2

π but fπ(0) is inferred
at q2 = 0 via Eq. (8).

Just as the chiral-breaking SU(2) GTd is 2–3%, the SU(2)× SU(2) πN σ term of 63 MeV
corresponds to a dimensionless ratio of about 3%:

σN

2mN
=

63 MeV

2 × 938.9 MeV
≈ 3.35%. (9)

Alternatively the chiral-limiting (CL) nucleon mass is related to the πN σ term as [5]

m2
N = (mCL

N )2 + mNσN , or with σN = 63 MeV, (10)

mN

mCL
N

− 1 = 3.53%, with mCL
N = 906.85 MeV. (11)

Note the many 3% CL relations in Eqs. (4), (8), (9), (11) above. Now we justify the σ term
σN = 63 MeV.

The explicit SU(2)×SU(2) chiral-breaking σ term is the sum of the perturbative GMOR [6]
or quenched APE [7] part

σGMOR
N = (mΞ + mΣ − 2mN )

m2
π

m2
K − m2

π

= 26 MeV, (12)
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σAPE
N = (24.5 ± 2) MeV, (13)

plus the nonperturbative linear σ model (LσM) nonquenched part [8] due to σ tadpoles for the
chiral-broken m2

π and σN , with ratio predicting

σLσM
N =

(

mπ

mσ

)2

mN ≈ 40 MeV (14)

for mσ ≈ 665 MeV [9], a model-independent coupled channel dispersion theory and parameter-
free relation. Specifically, Eq. (14) stems from semi-strong LσM tadpole graphs generating σN

and m2
π. Their ratio cancels out the 〈σ|Hss|0〉 factor. The LσM couplings 2gσππ=m2

σ/fπ and
fπgσNN = mN then give σLσM

N = (mπ/mσ)2mN as found in Eq. (14). Since the σ(600) has
been observed [2], with a broad width, but the central model-independent value [9] is known to
be 665 MeV, the chiral LσM mass ratio in Eq. (14) is expected to be quite accurate - while being
free of model-dependent parameters. The authors of [10] find the σ meson between 400 MeV
and 900 MeV, with the average mass 650 MeV near 665 MeV from [9]. Then the sum of (12,13)
plus (14) is

σN = σGMOR,APE
N + σLσM

N ≈ (25 + 40) MeV = 65 MeV. (15)

Rather than add the perturbative plus nonperturbative parts as in Eq.(15), one can instead work
in the infinite momentum frame (IMF) requiring squared masses [11] and only one term (tadpole
terms → 0 in the IMF) [12]

σIMF
N =

m2
Ξ + m2

Σ − 2m2
N

2mN

(

m2
π

m2
K − m2

π

)

= 63 MeV. (16)

Note that Eqs. (15) and (16) are both very near the observed value [13] (65 ± 5) MeV.
With hindsight, we can also deduce the πN σ term via PCAC (partially conserved axial

current) at the Cheng-Dashen (CD) point [14] with background isospin-even πN amplitude

F̄+(ν = 0, t = 2m2
π) = σN/f2

π + O(m4
π). (17)

At this CD point, a recent Karlsruhe data analysis by G. Höhler [13] finds

F̄+(0, 2m2
π) = σN/f2

π + 0.002m−1
π = 1.02m−1

π , (18)

implying σN = 63 MeV for fπ = 93 MeV, mπ = 139.57 MeV.
We can unify the earlier parts of this paper by first inferring from Eq. (8) the chiral limit (CL)

pion decay constant

fCL
π = fπ/1.02946 ≈ 89.775 MeV (19)

using Eq. (8) and the observed [2] fπ = (92.42 ± 0.26) MeV. Then the quark-level GTr using
the meson-quark coupling g = 2π/

√
3 [15] predicts the nonstrange quark mass in the CL as 4

m̂CL = fCL
π g = 325.67 MeV, (20)

4Also see LσM ref. [8] and the Z = 0 compositness condition [16].
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close to the expected m̂CL = mN/3 ≈ 313 MeV. This in turn predicts the scalar σ mass in the
CL as [8, 17]

mCL
σ = 2m̂CL = 651.34 MeV (21)

and then the on-shell LσM σ mass obeys

m2
σ − m2

π = (mCL
σ )2 ≈ (651.34 MeV)2 or mσ ≈ 665.76 MeV, (22)

almost exactly the model-independentσ mass found in ref. [9], also predicting σLσM
N in Eq. (14).

In this letter we have linked the GT discrepancy Eqs. (4), (8) and the πN σ term Eqs. (15),
(16) with the LσM values Eqs. (19)-(22). The predicted LσM value of gπNN is

gπNN = NcggA = 3(2π/
√

3)1.267 ≈ 13.79, (23)

near the observed value in Eq. (1) with meson-quark coupling g. Substituting Eq. (23) into the
GTd (Eq. (4)) in turn predicts in the quark model

∆ = 1 − mN

3mq
→ 0 as mq → mN/3. (24)

However meson-baryon couplings for pseudoscalars (P), axial-vectors (A) and SU(6)-symmetric
states are known [18] to obey

(d/f)P ≈ 2.0, (d/f)A ≈ 1.74, (d/f)SU(6) = 1.50, (25)

where the scales of d, f characterize the symmetric, antisymmetric SU(3) structure constants.
Note that the ratio remains the same:

(d/f)A

(d/f)P
=

1.74

2.0
= 0.87,

(d/f)SU(6)

(d/f)A
=

1.50

1.74
≈ 0.86. (26)

Thus to predict the quark-based πNN coupling constant we weight Eq. (23) by the scale factor
of Eq. (26) in order to account for the SU(6) quark content of gA:

gπNN = 3 × 2π/
√

3 × 1.267× 0.87 ≈ 12.00 (27)

and this predicted coupling constant is near 13.169 from ref. [1], or 13.145 from ref. [19], or
nearer still to 13.054 from ref. [20]. One could alter this 0.87 reduction of gA in Eq. (27) by
using the quark-based factor 3/5=0.6, where the SU(6) factor for gA of 5/3 becomes inverted for
quarks as suggested in [21]. In any case the predicted πNN coupling lies between 12.00 and
13.79 in Eqs. (27), (23), midway near the recent data in Eq. (1).

In passing, we note that the large model-independent [9] scalar σ mass of mσ ≈ 665 MeV is
recovered via the LσM combined with the CL quark-level GTR Eqs. (19)–(22). Also the large al-
most model-independent interior dispersion relation version of the πN σ term [22,23] is between
65-80 MeV. While this σ term follows from the two GMOR + LσM terms in Eq. (15) or from
the IMF term in Eq. (16), original chiral perturbation theory (ChPT) of the 1970s suggested [24]
σN ≈ 25 MeV near the GMOR value.
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Modern ChPT now predicts [25] a σN of 45 MeV at t = 0 extended up to the above presum-
ably measured value of 60 MeV according to [25–27]5

60 MeV = σGMOR
N (25 MeV) + σhigher order ChPT

N (10 MeV)

+ σt−dep.
N (15 MeV) + σs̄s

N (10 MeV) (28)

and the latter ”three pieces happen to have the same sign as σGMOR
N ” [27]. The 15 MeV in

Eq.(28) was found not to occur in our c-number σN analysis, since the t-dependence is minimal
in Eqs. (17), (18). The latter σs̄s

N of 10 MeV in (28) is 8 MeV higher than the y ≤ 6 % value
in refs. [28] with σs̄s

N = (1 − y)−1σGMOR
N - σGMOR

N ≤ 2 MeV. Lastly the σChPT
N correction of

10 MeV in (28) does not apply to our LσM σN addition to σGMOR
N .

In summary, as mπ → 0, ∂Aπ → 0, the quark-level GT relation requires the observed
2 − 3% GTd and 3% σ term ratio to predict gπNN , with ∆ → 0 as mq → mN/3 or ∆̄ → 0
when m2

π → 0. We have computed the πN σ term in many different ways to find approximately
σN = 63 MeV.

Acknowledgement: One of us (MDS) appreciates D.V. Bugg’s help in first obtaining Eq. (8)
via a computer. Nonetheless the reader may be more convinced with Eq. (8) using the Dwight
integral solution combined with the Taylor series in footnote 4. This work is in part supported
by the Slovak Agency for Science, Grant 2/3105/23.
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