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The (n,2n) reaction cross-section calculations for some neighbor deformed target nuclei have
been made in the region of rare-earth elements between 8 and 24 MeV incident energy. In
the calculations, the geometry dependent hybrid model and the exciton model have been used
including the effects of pre-equilibrium. Pre-equilibrium direct effects have been examined
using full exciton model. The measured cross-sections are taken from literatures. The cross-
sections were calculated using other semi-empirical formulas for the incoming energieswhich
satisfy the condition UR = En + Qn,2n = 6 ± 1 MeV. The obtained results were discussed
and compared with the available experimental data, and found to be well in agreement.

PACS: 27.70.+q , 24.10.-I

1 Introduction

Applications of statistical and thermodynamical methods for heavy nuclei go back to the funda-
mental works of Bohr [1] and Frenkel [2]. Bohr suggested that collision of fast neutrons with
heavy nuclei leads to the formation of compound systems, which are characterized with relative
stability. Due to the dense packing of nucleons the energy exchange between the nuclear parti-
cles becomes essential. Frenkel put the idea of neutron evaporation forward for the calculation
of neutron emission probability from a compound nucleus. Further, the knowledge of (n,2n)
cross-section is quite essential in the reactor technology as a significant portion of the fission
neutron spectrum which lies above the threshold of (n,2n) reaction for most of the reactor ma-
terials. It has been established that pre-equilibrium processes play an important role in nuclear
reactions induced by light projectiles with incident energies above about 10 MeV. Starting with
the introduction of exciton model [3] by Griffin in 1966, a series of semi classical models [4,5]
of varying complexities have been developed for calculating and evaluating particle emissions
in the continuum. It was also shown that with some freedom in the choice of parameters, these
models could give reasonable fit to the observed energy and angular distributions of the emit-
ted particles. More recently, researchers have formulated several quantum–mechanical reaction
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theories [6,7] that are based on multi-step concepts and in which statistical evaporation at lower
energies is connected to direct reactions at higher energies.

The character of the nuclear deformation can be seen in the mass regions 150 < A < 190
and A > 220, which correspond respectively to the rare-earth and actinide elements. In these
regions, the energies of the first excited states are smaller than those of other nuclei and they have
large values of quadrupole moments as such nuclei are far away from closed-shell configurations
[8,9]. The knowledge of these cross-sections should be useful for studying the accuracy of the
statistical model in describing the (n,2n) reactions on nuclei which are deformed and/or lie off the
stability line. In present paper, by using equilibrium and pre-equilibrium reaction mechanisms,
the (n,2n) cross-section values for some neighbor deformed target nuclei between 8 and 24 MeV
incident energy in the region of rare-earth elements have been calculated and compared with the
experimental results.

2 Exciton model

Equilibrium emission is calculated according to Weisskopf-Ewing (WE) model [10] by neglect-
ing angular momentum. In the evaporation, the basic parameters are binding energies, inverse
reaction cross-section, the pairing and the level-density parameters. The reaction cross-section
for the incident channel a and exit channel b can be written as

σWE
ab = σab(Einc)

Γb
∑

b′
Γb′

, (1)

where Einc is the incident energy. In Eq. (1), Γb can be also expressed as

Γb =
2sb + 1

π2h̄2
µb

∫

dεσinv
b (ε)ε

ω1(U)

ω1(E)
,

where U, µb, sb, σinv
b are the excitation energy of the residual nucleus, the reduced mass, the

spin, and the inverse reaction cross-section, respectively. The total single-particle level density
is taken as,

ω1(E) =
1√
48

exp
[

2
√

α(E − D)
]

E − D
; α =

6

π2
g, (2)

where E, D, and g are the excitation energy of the compound nucleus, the pairing energy, and the
single particle level density, respectively.

The exciton model uses a unified model based on the solution of the master equation [11] in
the form proposed by Cline [12] and Ribansky et al. [13]. Integrating the master equation over
time,

−q(n, t = 0) = λ+(E, n + 2)τ(n + 2) + λ−(E, n − 2)τ(n − 2)
− [λ+(E, n) + λ−(E, n) + Wλ(E, n)] τ(n),

(3)

where q(n, t = 0) is the initial condition on the process. τ(n) is the solution of the master
equation which represents the time during which the system remains in a state of n excitons.
The λ+(E, n) and λ−(E, n) are the internal transition rates and the use of master equation (3),
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which includes both the probabilities of transition to equilibrium λ+(E, n) and probabilities of
return to less complex stage λ−(E, n). Wλ(E, n) is the emission rate for a state with an n-
exciton configuration. Expressions formally identical to the conventional Weisskopf ’s ones for
the evaporation from the compound nucleus are thus obtained, with the only difference deriving
from the introduction of the densities of particle (p) and hole (h) states. In order to solve the
system of algebraic equations (3), it was used the algorithm proposed by Akkermans et al. [14],
which gives an accurate result for any initial condition of the problem.

The methods proposed by Cline [11,12] and Kalbach [15] were used to calculate the proba-
bility of nucleon emission. They obtained the expressions for emission probability applying the
principle of detailed balance in a way similar to that in the evaporation model. The probability
of emission Wb(E, n, εb) of a nucleon b with energy εb from a state with p excited particles and
h holes (n excitons) is given by

Wb(E, n, εb) =
2sb + 1

π2h̄3
εbµbσ

inv
b (εb)

ω(p − pb, h, U)

ω(p, h, E)
Qb(p, h), (4)

where factor Qb(p, h), which takes into account the difference between neutrons and protons, can
be used in the Kalbach Form [15] or as proposed by Gupta [16]. In both cases it is guaranteed
that if n > neq then Qb(p, h) ≡ 1. Moreover, both factors are equal if quantity of neutrons in
the compound nucleus is equal to that of protons. The results obtained show that the relative
importance of using factor Q increases with the mass number and that it is decisive in the case
of medium and heavy nuclei, where the neutron-proton difference is appreciable [16].

It is well known that during nucleon scattering in the vibrational nuclei there occur pro-
cesses of direct excitation of low excitation energy levels of collective type. At the latest spe-
cialists’ meetings on nuclear data calculation it was pointed out that a correct description of the
high-energy emission spectrum in neutron-induced reactions could be obtained only if direct
processes were taken into account. The experimental evidence in support of this type of mech-
anism has been confirmed by the latest experiment with the (n, n′) reactions with a very good
resolution [17,18]. In the experimental spectra, we can clearly see a structure of peaks which
corresponds to the excitations of the direct type. The parametrization was adopted in Ref. [19] to
describe this phenomenon. In accordance with this parametrization, the differential cross-section
of neutron emission by the direct interaction in the (n, n′) reaction can be written as,

dσdir
ab

dεb
(εb) =

[

2µ

h̄2

]

V

(kaR)2
kb

ka
Pa(εa)Pb(εb)V

2
R

3
∑

λ=2

β2
λ

(2λ + 1)
δ(U − ωλ), (5)

where V, R, VR are the volume of the nuclei, the radius of nuclei, and the potential well depth
taken to be 48 MeV, respectively. Pa(εa) = 4kaKa/(ka + Ka) is the coefficient of the pen-
etrability, ka and Ka being particle momenta inside and outside the nucleus. βλ and ωλ are
deformation and energy parameters which correspond to the target nucleus levels of the collec-
tive type. Only the octupolar and quadrupolar oscillations are considered. The ω2, β2 values
for even nuclei were taken from Ref. [20]. In the case of odd nuclei, on the assumption of
a weak bond, the values corresponding to the neighbouring even nucleus are used. The ω3

value was taken from Ref. [21]. The octupolar deformation parameters were calculated from
β2

3 = (2λ + 1)ω3 [MeV]/1000. Capote et al. have replaced the function δ(U − ωλ), which
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relates the excitation energy of the residual nucleus to the energy the collective state and to emis-
sion energy, by Gaussian whose semi-width is chosen to taking into account the experimental
energy resolution. The parametrization used in Eq. (5) assumes the superficial nature of the
direct interaction.

3 Geometry Dependent Hybrid Model

The hybrid model for pre-compound decay is given by Blann and Vonach [22] as

dσυ(ε)

dε
= σRPυ(ε), (6)

and

Pυ(ε)dε =

n̄
∑

n=n0
∆n=+2

[nχυNn(ε, U)/Nn(E)] gdε [λc(ε)/(λc(ε) + λ+(ε)] Dn, (7)

where σR is the reaction cross-section, nχν is the number of particle type ν (proton or neutron) in
n exciton hierarchy, Pυ(ε)dε represents number of particles of the ν (neutron or proton) emitted
into the unbound continuum with channel energy between ε and ε + dε. The quantity in the
first set of square brackets of Eq. (7) represents the number of particles to be found (per MeV)
at a given energy ε for all scattering processes leading to an “n” exciton configuration. λc(ε) is
emission rate of a particle into the continuum with channel energy ε and λ+(ε) is the intranuclear
transition rate of a particle. It has been demonstrated that the nucleon-nucleon scattering energy
partition function Nn(E) is identical to the exciton state density ρn(E), and may be derived by
the certain conditions on N-N (nucleon-nucleon) scattering cross-sections [23]. The second set
of square brackets in Eq. (7) represents the fraction of the ν type particles at a energy which
should undergo emission into the continuum, rather than making an intranuclear transition. The
Dn represents the average fraction of the initial populatin surviving to the exciton number being
treated.

Early comparisons among experimental results, pre-compound exciton model calculations,
and intranuclear cascade calculations indicated that the exciton model gave too few pre-compound
particles and that these were too soft in spectral distribution for the expected initial exciton
configurations. The intranuclear cascade calculations results indicated that the exciton model
deficiency resulted from a failure to properly reproduce enhanced emission from the nuclear
surface [22].

In order to provide a first order correction for this deficiency the hybrid model was refor-
mulated by Blann and Vonach. In this way the diffuse surface properties sampled by the higher
impact parameters were crudely incorporated into the pre-compound decay formalism, in the ge-
ometry dependent hybrid model (GDH). The differential emission spectrum is given in the GDH
as

dσυ(ε)

dε
= πλ̄2

∞
∑

l=0

(2l + 1)TlPυ(l, ε), (8)

where λ̄ is the reduced de Broglie wavelength of the projectile and Tl represents transmis-
sion coefficient for lth partial wave. Using the total pre-compound neutron emission spectrum
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dσn(ε)/dε, the cross-section which could be involved in the emission of two neutrons is calcu-
lated as

σ2n =

E−B2n
∫

U=0

dσn(ε)

dε
dε,

where B2n represents the sum of the first and the second neutron binding energies.
The geometry dependent influences are manifested in two distinct manners in the formulation

of the GDH model. The more obvious is the longer mean free path predicted for nucleons in the
diffuse surface region. The second effect is less physically secure, yet seems to be important in re-
producing experimental spectral shapes. The nuclear density distribution used in the GDH model
is a Fermi density distribution function, ρ(Rl) = ρs [exp(Rl − C)/0.55 fm + 1]

−1, where ρs

is the density at the center of nucleus, and C = 1.07A1/3 fm taken from electron scattering
results [24]. The radius for the lth entrance channel partial was defined by Rl = λ̄(l + 1/2). In
the GDH model, the fermi energies and nuclear densities are defined to impact parameter Rl.

4 Semi-empirical formulas for (n,2n) reaction cross-section

Q-value plays an important role on (n,2n) cross-sections at given incident neutron energy En.
However, it is essential to look for the dependence of (n,2n) cross-sections on the asymmetry
parameter at a given maximal residual excitation energy, UR = En + Qn,2n = 6 ± 1 MeV. The
(n,2n) reaction has been frequently investigated in the past. Until now a large number of experi-
mental data have been published on the (n,2n) reaction cross-sections induced by 14 to 15 MeV
neutrons (see, for example, the Computer index of Neutron Data bibliographic catalogue). Most
of the experimental data are taken at energies near 14 MeV neutron energy. There are several
formulas describing the isotopic dependence of cross-sections for different reactions at neutron
energy of 14.5 MeV. The measured cross-sections exhibit a large gradient for the lighter masses
(Z ≤ 30) with increasing asymmetry parameter and then become almost constant for medium
and heavy mass nuclei (starting from A ≤ 100) [25]. Recently and many years ago the various
attempts [26-29] were made to describe the compiled experimental values by formula relating
the neutron-induced cross-sections to the s = (N − Z)/A asymmetry parameter.

Konno et al. [27] have suggested a phenomenological formula for 14.9 MeV neutrons (in
mb) as follows:

ln(σn,2n) = 7.434 [1 − 1.484 exp(−27.37 s)] . (9)

Figure 1 shows the ratio of experimental to the calculated (n,2n) cross-sections for the incident
energies En for the condition UR = En +Qn,2n = 6±1 MeV, where UR is the excitation energy
of the residual nucleus. The experimental values are about 10-20% higher than calculated (n,2n)
cross-sections for this formula. Q-values were taken from Ref. [30].

Bychkov et al. [28] have formulated for (n,2n) cross-sections as given by

σn,2n =

{

1000 + 7.5A(7.8s− 0.234) if s ≤ 0.13,
1000 + 7.5A(0.65 + s) if s > 0.13. (10)
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Fig. 1. The ratios of experimental (n,2n) cross-sections to the present compound-nucleus calculations versus
the atomic mass number of the target nuclei, for UR = 6±1 MeV. The full line represents the linear function
y(A) = σexp .

/σcalc.
= 0.00351098A + 0.59, obtained by least-squares fit to the data. The experimental

data were taken from Refs. [38-43].

Fig. 2. The ratios of experimental (n,2n) cross-sections to the present compound-nucleus calculations versus
the atomic mass number of the target nuclei, for UR = 6±1 MeV. The full line represents the linear function
y(A) = σexp .

/σcalc.
= 0.00000099A + 0.90, obtained by least-squares fit to the data. The experimental

data were taken from Refs. [38-43].
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Fig. 3. The ratios of experimental (n,2n) cross-sections to the present compound-nucleus calculations versus
the atomic mass number of the target nuclei, for UR = 6±1 MeV. The full line represents the linear function
y(A) = σexp .

/σcalc.
= 0.0014509A + 0.58, obtained by least-squares fit to the data. The experimental

data were taken from Refs. [38-43].

Figure 2 shows the ratio of experimental to the calculated (n,2n) cross-sections. Although the ex-
perimental values are about 5-10% lower than the calculated, there is a good agreement between
the calculated and measured (n,2n) data.

The (n,2n) reaction cross-sections were also studied by Pearlstein [29] using the following
formula,

σn,2n(E) = σne
σn,M

σne

σn,2n(Einc)

σn,M
, (11)

where Einc is the incident neutron energy and σne nonelastic cross-section. The sum of the (n,n’),
(n,2n), (n,3n), etc. cross-sections belonging to this class is given the symbol σn,M . Figure 3
shows the ratio of experimental to the calculated (n,2n) cross-sections. The experimental values
are about 10-20% lower than the calculated (n,2n) cross-sections.

5 Results and discussion

In this study, (n,2n) reaction cross-sections for 150Nd, 152Sm, 153Eu, 158Gd, 159Tb, 169Tm,
175Lu, 181Ta, and 182W were calculated using equilibrium and pre-equilibrium reaction mecha-
nisms. The equilibrium calculations were made by using Weisskopf-Ewing (WE) model. Exci-
ton model and geometry depended hybrid model were used for pre-equilibrium calculations. The
calculations have been made in the framework of the GDH model using ALICE/LIVERMORE-
82 computer code [31]. The other theoretical calculations have also been made in the framework
of the exciton model using PCROSS computer code [19]. The calculated excitation functions
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have been obtained on the basis of the exciton model and geometry dependent hybrid model. In
Figs. 4 to 12, the calculated (n,2n) cross-sections values have been compared with the experi-
mental values.

Fig. 4. The calculated and experimental (n,2n) cross-section for 150Nd(n,2n). The solid curve is exciton
model plus evaporation; the dashed curve is GDH model plus evaporation. The experimental data were
taken from Ref. [38].

In calculations of the exciton model, PCROSS program code uses the initial exciton number
as n0 = 1, thus taking into account the direct gamma emission. Equilibrium exciton number
is taken as

√
1.4 gE suggested by Williams [32], after Pauli correction was modified. Single

particle level density parameter g was equal to A/13 in the exciton model calculation, where A
is the mass number. Level density expression given by Dilg [33] was used in the evaporation
model calculation. Particle-hole state density expression reported by Williams was used in the
pre-equilibrium model calculation. The reaction cross-sections and the inverse cross-sections
were obtained using the optical potential parameters by Wilmore and Hodgson [34], Bechetti and
Greenlees [35], Huizenga and Igo [36] for neutrons, protons and alpha particles, respectively.

In calculations of the GDH model, ALICE/LIVERMORE-82 code uses the initial exciton
number as n0 = 3. In this model, it is used the initial neutron (n) and proton (p) exciton numbers
in the calculations for neutron induced reactions. These exciton numbers are given by Blann
and Vonach [22] as, 3Xn = 2(3Z + 2N)/(3Z + 2N + 3Z) and 3Xp = 2 − 3Xn. N and Z
are the neuron and proton numbers of the target nuclei, respectively. The standard pairing shift
(zero for odd-even nuclei, delta for odd-odd nuclei) proposed by Blann and Bisplinghoff [31]
was employed as the pairing correction for GDH model calculation. In the GDH model, the level
density expression using the formula with mass shell corrections was used for 150Nd, 152Sm,
153Eu, 158Gd, 159Tb, 169Tm, and 175Lu. The Fermi-gas level density expression was used for
181Ta and 182W.
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Fig. 5. The calculated and experimental (n,2n) cross-section for 152Sm(n,2n). The solid curve is exciton
model plus evaporation; the dashed curve is GDH model plus evaporation. The experimental data were
taken from Ref. [39].

Fig. 6. The calculated and experimental (n,2n) cross-section for 153Eu(n,2n). The solid curve is exciton
model plus evaporation; the dashed curve is GDH model plus evaporation. The triangle symbols were taken
from Ref. [41] and the circle symbols were also taken from Ref. [40] for experimental data.
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Fig. 7. The calculated and experimental (n,2n) cross-section for 158Gd(n,2n). The solid curve is exciton
model plus evaporation; the dashed curve is GDH model plus evaporation. The experimental data were
taken from Ref.[39].

Fig. 8. The calculated and experimental (n,2n) cross-section for 159Tb(n,2n). The solid curve is exciton
model plus evaporation; the dashed curve is GDH model plus evaporation. The triangle symbols were taken
from Ref. [42] and the circle symbols were also taken from Ref. [40] for experimental data.
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Fig. 9. The calculated and experimental (n,2n) cross-section for 169Tm (n,2n). The solid curve is exciton
model plus evaporation; the dashed curve is GDH model plus evaporation. The experimental data were
taken from Ref. [43].

Fig. 10. The calculated and experimental (n,2n) cross-section for 175Lu(n,2n). The solid curve is exciton
model plus evaporation; the dashed curve is GDH model plus evaporation. The experimental data were
taken from Ref. [43].
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Fig. 11. The calculated and experimental (n,2n) cross-section for 181Ta(n,2n). The solid curve is exciton
model plus evaporation; the dashed curve is GDH model plus evaporation. The triangle symbols were taken
from Ref. [32] and the circle symbols were also taken from Ref. [43] for experimental data.

Fig. 12. The calculated and experimental (n,2n) cross-section for 182W(n,2n). The solid curve is exciton
model plus evaporation; the dashed curve is GDH model plus evaporation. The experimental data were
taken from Ref. [39].
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The Weisskopf-Ewing (WE) model was used in both models (exciton model and GDH model)
for equilibrium calculation. The exciton model (PCROSS) code uses a master equation and treat
equilibrium and pre-equilibrium in a “unified” way. The level density formula of Williams was
used. The Hybrid model structure is very similar to the “never-come-back” approximation of the
exciton model; however, different expressions for the mean lifetimes were used. In particular, the
mean lifetime of the hybrid model refers to the particle under consideration and hence depends
upon out going energy ε, whereas in the usual exciton model it is related to the nuclear system as
a whole and is only function of n. This results in a different expression for the internal transition
rate λ+(ε) that is derived from the concept of mean free path, rather than by a parametrization
of the avarege transition matrix element 〈M 2〉 and also in a different expression for the emission
rate λc(ε) occurring in the mean life time. The GDH model is made according to incoming
orbital angular momentum l in order to account for the effects of the nuclear-density distribution.
This leads to increased emission from the surface region of the nucleus, and thus to increased
emission of high-energetic particles. The comparisons of these two models have been given in
detail in Ref. [37].

We, therefore, reached the following conclusion: The (n,2n) cross-sections were calcu-
lated using other semi-empirical formulas for the incoming energies which satisfy the condition
UR = En + Qn,2n = 6 ± 1 MeV. The obtained results were discussed and compared with the
available experimental data. The exciton model for the incoming energies about 14–15 MeV is
very successful for all the neighboring deformed nuclei in the region of rare-earth elements. The
GDH model calculations for the same energies are higher than the experimental values for neigh-
bor deformed nuclei. The GDH model is about 10–15% higher than exciton model in the region
of UR = En +Qn,2n = 6±1 MeV. However, GDH model is very successful than exciton model
above the incident energy 15 MeV. In this study, these differences could be possible resulted from
including the direct interactions of the exciton model. The PCROSS program code also included
consideration of the direct excitation of low excitation energy levels in the calculation of (n, n′)
inelastic scattering spectra. Moreover, different initial exciton numbers have been used in these
two models. Here the pairing energy and the mass shell correction were taken into consideration,
and better results have been obtained. Especially in the region of UR = 6 ± 1 MeV, the results
obtained have been found to be well in agreement between the experimental data and the calcu-
lated values using Bychkov [28] formula, which linearly depends on the mass number A and the
asymmetry parameter s.
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