
acta physica slovaca vol. 54 No. 1, 57 – 80 January 2004

PARTIAL EXPANSION OF THE TWO-CENTER COULOMB GREEN’S FUNCTIO N

V. Yu. Lazur 1†, M. V. Khoma†, S. Chalupka2∗, M. Salak∗∗, R. K. Janev‡
† Department of Theoretical Physics, Uzhgorod National University, Uzhgorod, Ukraine
∗ Institute of Physics, University of P. J̌Safarik, Moyzesova 16, 04154, Košice, Slovakia
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A general procedure for correct two-centre Coulomb Green’s function is given. It is moti-
vated by the incorrect formula of Liu. We start with partial expansion of Green’s function
in terms of spheroidal functions. Various expansions of regular and irregular radial Coulomb
spheroidal functions are also presented. The paper also contains two-centre Green’s func-
tion for continuous spectrum. This article may be considered as a basis for the three-centre
Coulomb problem, which we aim to study in future.

PACS: 02.30.Gp

1 Introduction

The analysis of two-centre Green’s function is an importantproblem because it is of central
importance for quantum calculations in molecular and atomic processes and scattering theory of
nonrelativistic electron from polar molecules and ions. Some results may appear to be useful
also forQQq baryons andQQg mesons.

Let Z1 andZ2 be the charges of two nuclei 1 and 2,r1 andr2 the distances between the
electron (or charged particle with chargeq) and the nuclei 1 and 2, respectively, andR is the
separation between the centres 1 and 2. The Hamiltonian of two Coulomb centres (the so-called
Z1eZ2 problem [1]) is

H = −1

2
∆ − Z1

r1
− Z2

r2
. (1)

The need of Green’s function appears always when we use the perturbation theory. The zero
order approximation is the solution to Schrödinger’s equationHΨ(r;R) = E(R)Ψ(r;R). For
the first-order approximation we have an inhomogeneous equation. This equation can be solved
by Green’s functionGE(r; r′|R) of the two-centre Coulomb problem. Two-centre Green’s func-
tion has the same effect in the electron structure theory, and in the theory of molecular spectra as
has Coulomb Green‘s function in atomic theory. However, two-centre Green’s function is not so
well mathematically investigated as Coulomb Green’s function for one particle is.
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So far we do not have closed form of two-centre Green’s function, which should be analogous
to the Hostler and Pratt relation [2] of the one particle Coulomb Green’s function [1]. The reason
is simple. There are no adequate simple integral representations of the Coulomb spheroidal func-
tions (CSF). Well-known Laplace method gives usually handysolutions of differential equations
in the form of integral representations (e.g. for the hypergeometric and confluent hypergeomet-
ric functions, respectively). In the case of CSF, there are modifications of this techniques [3,6],
which enable to construct only integral equations and relations.

It should be mentioned that in most applications we are not somuch interested in the compact
formula for two-centre Green’s function, as we are in the expansionGE(r; r′|R) in terms of
complete system of functions with defined angular quantum numbers (”partial expansion”). First
such expansion of two-centre Green’s function was given by Laurenzi [7], specially for theH+

2

ion. In this the case angular functions are identical with the spheroidal functions of free motion
in spheroidal coordinates.

In general nonsymmetrical case(Z1 6= Z2), the first partial expansion forE > 0 was ob-
tained by Liu [8] who, however, obtained incorrect expression for the radial part of two-centre
Green’s functionGE(r; r′|R).

Another class that represents two centre Green’s function is presented by the Sturm expan-
sion. This approach was analyzed in detail in [9]. We refer topapers [10, 11] where for Green’s
function of molecular hydrogen the approximate formulae are obtained within the framework of
methods of quantum defect and model potential.

The calculation of the radial Coulomb spheroidal functions(RCSF) represents serious math-
ematical problem. We have two solutions of the Coulomb wave equation, the regular and the
irregular one. Ifc2 = ER2/2 andE > 0 (continuous spectrum) then we have RCSF ofc-
type (RCSFc) and forp2 = −ER2/2, E < 0 (discrete spectrum) we have RCSF ofp-type
(RCSFp). Recently, a great advance was achieved in the studyand calculations of regular and
irregular RCSFc’s. This was stimulated, in principle, by quantum scattering problems of two-
centres [1,8,12–15].

An exhausting analysis of many properties of RCSF and expansions of these functions in a
series of special functions was done by Leaver [15]. From recently published papers we should
mention especially papers [8, 16] which are devoted to the study of different algorithms for the
computer calculations of regular and irregular RCSFs.

However, unsufficient study of RCSF does not allow for more effective aplication of two-
centre Green’s function to solve current problems of atom and molecular physics. Two-centre
Green’s function can be used not only in the framework of the perturbation theory of many photon
processes for diatomic molecules [10, 11], but we employ this method for the asymptotically
exact solution of many-centre Coulomb problems [17]. Our next paper will be devoted to the
study of the three-centre Coulomb problem. This problem canbe considered as the next step
to the solution of defined quantum mechanical problems of four particles. We can apply the
obtained results of the solution of similar problems in the atomic collision theory, particularly in
the theory of one- and two-electron processes with redistribution in adiabatic slow collisions of
multiply charged ions with diatomic molecules or with theirpositive ions. Our increased interest
in atomic processes with redistribution is caused by their great role in the present research of
controlled thermonuclear fusion.

This paper can be considered as an introductory part of series of works in which we will
devote ourselves to the analysis of asymptotic methods in the three-centre Coulomb problem of
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discrete or continuous spectrum. Derived semiclassical representation of radial Coulomb Green’s
function for a pair of two equal charged centres is a subject of further research.

Section 1 presents the structure of the partial expansion ofGreen’s function for theZeZ
problem. Then we further develop the methods described in [15, 18, 19] in Sections 2 and 3.
We construct two types of expansion of regular and irregularRCSFp’s in series of the ordinary
Coulomb functions and in series of the confluent hypergeometric functions. We study the con-
vergence of these expansions. We consider this as a formal basis for the numerical procedure of
the solution of the three-term recurrence relation. We obtain asymptotic formulae for acceptable
values of the shift parameterν in powerR asR → 0 up toO(R3) order and in powers1/R as
R → ∞ up toO(1/R3) order, respectively.

In Section 4, a detailed analysis of expansion of regular andirregular RCSFp is given in
series of the confluent hypergeometric functions. In Section 5 we deal with two-centre Coulomb
Green’s function for continuous spectrum.

2 Partial expansion of Green’s function in terms of spheroidal function

Green’s function of electron in the field of two equivalent Coulomb centres is a solution of
Schr̈odinger’s equation

[
−1

2
∆r −

Z

r1
− Z

r2
− E

]
GE (r, r′;R) = δ (r − r

′) , (2)

whereδ (r − r
′) denotes the Dirac function andR is the distance between the two centres with

the chargesZ.
The specificity of force field for the two-centre systemZeZ can be expressed using the pro-

late spheroidal coordinate system (ξ, η, ϕ) which is defined in terms of the rectangular coordinate
system by

x = 1
2R
√

(1 − η2)(ξ2 − 1) cos ϕ,

y = 1
2R
√

(1 − η2)(ξ2 − 1) sin ϕ,
z = 1

2Rηξ,

or in terms of the spherical coordinate system by

ξ = (r1 + r2)/R, 1 ≤ ξ < ∞,
η = (r1 − r2)/R, −1 ≤ η ≤ 1,
ϕ = arctan (y/x), 0 ≤ ϕ < 2π.

The wave equation (2) now becomes

{ ∂

∂ξ
(ξ2 − 1)

∂

∂ξ
+

∂

∂η
(1 − η2)

∂

∂η
+

ξ2 − η2

(ξ2 − 1)(1 − η2)

∂2

∂ϕ2
+

ER2

2
(ξ2 − η2) + aξ}×

×GE (ξ, η, ϕ; ξ′, η′, ϕ′;R) = − 4

R
δ(ξ − ξ′)δ(η − η′)δ(ϕ − ϕ′), (3)
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wherea = 2ZR. Since the angular quantum number` is not a good quantum number in non-
central field, we search a solution of Eq. (3) in the form of expansion over the complete system
of orthonormal oblate angular spheroidal functionsS̄m`(p, η) [1,7-10]:

GE (ξ, η, ϕ; ξ′, η′, ϕ′ |R ) =

∞∑

`=0

∑̀

m=−`

Gm` (ξ, ξ′;E) S̄m` (p, η) S̄∗
m` (p, η′)

eim(ϕ−ϕ′)

2π
, (4)

wherep = 1
2R(−2E)1/2. Angular spheroidal functions̄Sm`(p, η) can be taken from [20].

However, it is preferable to choose the following representation forS̄m`(p, η) [1]:

S̄m`(p, η) = Nm`(p)
∞∑

r=0,1

′

dm`
r (p)Pm

m+r(η),

Nm`(p) =

[
∞∑

r=0,1

′ (
dm`

r (p)
)2 2(2m + r)!

r!(2m + 2r + 1)

]−1/2

, (5)

wherePm
m+r(η) are the associated Legendre functions. The prime indicatesthat summation

is taken only over the even valuesr if q = ` − |m| is even and over the odd values ofr if
q = ` − |m| is odd. The determination of the coefficientsdm`

r (p) suffices for the determination
of angular spheroidal functions. These coefficients are tabulated in [20].

Substitution of (4) into Eq. (3) followed by separation of angular parts yields the differential
equation for radial Green’s functionGm`(ξ, ξ

′;E):

{
d

dξ

[
(ξ2 − 1)

d

dξ

]
+

[
−λ − p2(ξ2 − 1) + 2pαξ − m2

ξ2 − 1

]}
×

×Gm`(ξ, ξ
′;E) = − 4

R
δ(ξ − ξ′), 1 ≤ ξ < ∞. (6)

Here,α = 2Z(−2E)−1/2 is the effective principal quantum number. Equation (6) hassolution
for those values of the separation constantλ which are equal to eigenvaluesλm`(p) of the Sturm-
Liouville problem

{
d

dη

[
(1 − η2)

d

dη

]
+

[
λm` − p2(1 − η2) − m2

1 − η2

]}
Sm`(p, η) = 0,

|Sm`(p,±1)| < ∞, −1 ≤ η ≤ 1. (7)

Equation (7) determines oblate angular functionSm`(p, η) of the p-type [1]. Now, one-
dimensional Green’s functionGm`(ξ, ξ

′;E) can be constructed by standard methods. We assume
thatΠ(1)

m`(p, ξ) andΠ
(2)
m`(p, ξ) are the independent solutions of

{
d

dξ

[
(ξ2 − 1)

d

dξ

]
+

[
−λm` − p2(ξ2 − 1) + 2pαξ − m2

ξ2 − 1

]}
Πm`(p, ξ) = 0. (8)
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The solutionΠ(1)
m`(p, ξ) is regular asξ → 1 and diverges asξ → ∞ and the solutionΠ(2)

m`(p, ξ)
diverges asξ → 1 and is regular asξ → ∞. Then radial Green’s function

Gm`(ξ, ξ
′;E) = −4Z

αp

Π
(1)
m`(p, ξ<)Π

(2)
m`(p, ξ>)

(ξ2 − 1)W
[
Π

(1)
m`(p, ξ),Π

(2)
m`(p, ξ)

] , (9)

whereξ< = min(ξ, ξ′), ξ> = max(ξ, ξ′), andW
[
Π

(1)
m`(p, ξ),Π

(2)
m`(p, ξ)

]
is the Wronskian of

the solutionsΠ(1)
m`(p, ξ) andΠ

(2)
m`(p, ξ).

3 Expansion of regular and irregular radial Coulomb spheroidal functions of p-type
(RCSFp) over the ordinary Coulomb radial wave functions

Let us look at the radial equation (8) in detail. We introducethe new variable

x = p(ξ + 1), 2p ≤ x < ∞ (10)

and the new function

Π̃m`(x) =

(
ξ + 1

ξ − 1

)m/2

Πm`(p, ξ). (11)

Then equation (8) transforms to
[

d

dx

(
x2 d

dx

)
− x2 + 2αx − ν (ν + 1)

]
Π̃m` (x) +

p

x − 2p
×

×
[
2(m + 1)x

d

dx
+

(
ν (ν + 1) − λm`

p
+ 2α

)
x − 2ν (ν + 1)

]
Π̃m` (x) ≡

≡ TνΠ̃m` (x) + pQνΠ̃m` (x) = 0. (12)

The splitting of the total operator into two parts has the advantage that the differential operator
Tν(x) coincides with the radial Schrödinger operator in spherical coordinates for the Coulomb
field of the united atom with charge2Z and angular momentumν. Two linearly independent
solutions of the equationTνR(x) = 0 are expressed by means of the regularΦ̃(a, b;x) and the
irregularΨ(a, b;x) confluent hypergeometric functions

R(1)
ν (x) ≡ R(1)

αν (x) = xνe−xΦ̃(−α + ν + 1, 2ν + 2; 2x), (13)

R(2)
ν (x) ≡ R(2)

αν (x) = xνe−xΨ(−α + ν + 1, 2ν + 2; 2x). (14)

The functions̃Φ(a, b;x) andΨ(a, b;x) are defined by the integral representations

Φ̃(a, b;x) =
eiπa

Γ(a)

1∫

0

extta−1 (1 − t)
b−a−1

dt, (Reb > Rea > 0) , (15)
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Ψ(a, b;x) =
1

Γ(a)

∞∫

0

e−xtta−1 (1 + t)
b−a−1

dt, (Rea > 0, Rex > 0) . (16)

The regular confluent hypergeometric functionΦ̃(a, b;x) differs from the usual normalization
[21] of the Kummer series by the factoreiπaΓ(b − a)/Γ(b):

Φ̃(a, b;x) = eiπa Γ(b − a)

Γ(b)
Φ(a, b;x) = eiπa Γ(b − a)

Γ(b)

∞∑

n=0

(a)nxn

(b)nn!
, (17)

where(a)n and(b)n, denote the Pochhammer symbols. The Wronskian ofΦ̃(a, b;x) andΨ(a, b;x)
is given by

W [Φ̃(a, b;x),Ψ(a, b;x)] = −eiπa Γ(b − a)

Γ(a)
x−bex. (18)

The functionΦ̃(a, b;x) has an attractive property. NormalizedΦ̃(a, b;x) obeys the same differ-
ential and recurrence relations as doesΨ(a, b;x) (see (72)–(74)).

In analogy with two independent solutions (13) and (14) of the radial equationTνR(x) = 0,
we now introduce two independent solutionsΠ̃

(1)
m`(x) andΠ̃

(2)
m`(x) of Eq. (2) which are deter-

mined by their asymptotic expressions for large value ofx,

Π̃
(1)
m`(x) −→

x→∞
(2x)−a−1ex, Π̃

(2)
m`(x) −→

x→∞
(2x)a−1e−x. (19)

Evidently, Eq. (12) givesT`R(x) = 0 asp → 0. It is clear that̃Π(1)
m`(x) andΠ̃

(2)
m`(x) must reduce

for p = 0 to regular and irregular functionsR(1)
` andR

(2)
` , respectively. This suggests to expand

the functions̃Π(1)
m`(x) andΠ̃

(2)
m`(x) in the form

Π̃
(1)
m`(x) ≡ Π̃

(1)
m`(α, λm`, p;x) =

∞∑

s=−∞

hs (p |α, λm`, ν ) R
(1)
s+ν(x), (20)

Π̃
(2)
m`(x) ≡ Π̃

(2)
m`(α, λm`, p;x) =

∞∑

s=−∞

hs (p |α, λm`, ν ) R
(2)
s+ν(x). (21)

The parameterν is not integer and it must be chosen to satisfy the convergence of the series (20)
and (21) for2p < x < ∞.

The recurrence relations for the basis functionsR
(1)
s+ν(x) andR

(2)
s+ν(x) can be derived by suc-

cessive elementary formulae relating the adjacent confluent hypergeometric functions or by the
well developed technique of integral representations of the confluent hypergeometric functions.
The second possibility is more constructive. From definitions (13) and (14) and the integral
representations (15) and (16) it follows thatR

(1)
s+ν(x) andR

(2)
s+ν(x) obey the same recurrence

relation (Rs+ν(x) = R
(1)
s+ν(x) or Rs+ν(x) = R

(2)
s+ν(x))

AsRν+s−1(x) +

(
Bs −

1

x

)
Rs+ν(x) + CsRs+ν+1(x) = 0 (22)
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and satisfy the same differential relation

dRν+s(x)

dx
= KsRν+s−1(x) + MsRν+s+1(x), (23)

where the coefficientsAs, Bs, Cs,Ks andMs do not depend onx and they are defined as

As = − s + ν + α

2(s + ν)(2s + 2ν + 1)
, Bs =

α

(s + ν)(s + ν + 1)
,

Cs =
2(s + ν − α + 1)

(s + ν + 1)(2s + 2ν + 1)
,

Ks = − s + ν + α

2(2s + 2ν + 1)
, Ms = −2(s + ν − α + 1)

2s + 2ν + 1
. (24)

The substitution of Eq. (20) or (21) in Eq. (12) with subsequent use of the differential
equationTν+sRν+s(x) = 0 and of the recurrence formulae (22) and (23) yields the recurrence
relation forhs(ν)

αshs+1(ν) + βshs(ν) + γshs−1(ν) = 0, (25)

where

αs =
(s + ν + 1 − m)(s + ν + α + 1)

2s + 2ν + 3
p, βs = (s + ν)(s + ν + 1) − λm`,

γs = −4(s + ν − α)(s + ν + m)

2s + 2ν − 1
p.

The recurrence formula (25) constitutes a system of linear homogeneous difference equations.
The coefficientshs(ν) given by Eq. (25) are determined up to arbitrary multiplier which can
be fixed to be consistent with the asymptotic behavior of the functionsΠ̃(1)

m`(x) andΠ̃
(2)
m`(x) at

infinity by conditions

∞∑

s=−∞

hs(ν)
Γ(s + ν + α + 1)

Γ(s + ν − α + 1)

eiπ(s+ν−α+1)

2s+ν
= 1 (26)

for Π̃
(1)
m`(x) and

∞∑

s=−∞

hs(ν)

2s+ν
= 1 (27)

for the functionΠ̃(2)
m`(x). In order to evaluate the Wronskian ofΠ̃

(1)
m`(x) andΠ̃

(2)
m`(x), we consider

the asymptotic form of these functions and their derivatives asξ → ∞. Then

2p(ξ2 − 1)W
[
Π̃

(1)
m`(x), Π̃

(2)
m`(x)

]
= −1. (28)



64 V.Yu. Lazur et al.

Using formulae (9)–(11) and (20)–(28), it is possible to findradial Green’s function

Gm`(ξ, ξ
′;E) =

8Z

α

(
(ξ − 1)(ξ′ − 1)

(ξ + 1)(ξ′ + 1)

)m/2

Π̃
(1)
m` (p(ξ< + 1)) Π̃

(2)
m` (p(ξ> + 1)) , (29)

whereξ< (ξ>) is the smaller (larger) one ofξ andξ′, and

Π̃
(1)
m`(p(ξ + 1)) = exp[−p(ξ + 1)]×

×
∞∑

s=−∞

hs(ν)[p(ξ + 1)]ν+sΦ̃(−α + ν + s + 1, 2ν + 2s + 2; 2p(ξ + 1)), (30)

Π̃
(2)
m`(p(ξ + 1)) = exp[−p(ξ + 1)]×

×
∞∑

s=−∞

hs(ν)[p(ξ + 1)]ν+sΨ(−α + ν + s + 1, 2ν + 2s + 2; 2p(ξ + 1)). (31)

General application of series (30) and (31) depends on the rapidity of convergence which is,
in principle, determined by the behaviour of the coefficientshs(ν) for s → ±∞. The three-term
recurrence relation (TRR) for the coefficientshs(ν) (25) considered as a second order linear
homogeneous difference equation posseses two independentsolution sequences{h−

s } ≡ {h−
s :

s = ...,−2,−1, 0, 1, 2, ...} and{h+
s } ≡ {h+

s : s = ...,−2,−1, 0, 1, 2, ...}. These solutions have
two different asymptotic behaviors for large|s|.

It follows that lim
s→±∞

(h−
s /h+

s ) = 0 from the analysis of TRR (25). In this case (see, e.g.,

[19]) we say that{h−
s } represents minimal solution of (25) ass → ±∞. Arbitrary non-minimal

solution{h+
s } of TRR, linearly independent of{h−

s }, is called a dominant solution ass → ±∞.
To obtain the convergency of the expansions (30) and (31), wemust choose the minimal solution
of TRR ass → ∞ and ass → −∞. It follows from the following consideration that the
dominant solution{h+

s } does not fulfill this requirements becauseh+
s /h+

s−1 (h+
s /h+

s+1) becomes
unbound ass → +∞ (s → −∞).

The TRR (25) contains a free parameterν. This means thatν in expansion (30) and (31) is
not arbitrary and must be chosen in analogy with determination of the eigenvalues of separation
constant in the theory of the spheroidal and Coulomb spheroidal functions [1]. The procedure
of finding necessary valuesν can be simplified due to the close relation between three-term
recurrence relations and the infinite continued fractions.

The recurrence relation (25) can be written in the form

hs(ν)

hs−1(ν)
= − γs

βs + αshs+1(ν)/hs(ν)
, (s ≥ +1),

hs(ν)

hs+1(ν)
= − αs

βs + γshs−1(ν)/hs(ν)
, (s ≥ −1). (32)

The successive application of (32) enables us to express these relations in the form of infinite
continued fractions

hs(ν)

hs−1(ν)
=

−γs

βs−
αsγs+1

βs+1−
αs+1γs+2

βs+2−
... (33)
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for positives = +1,+2,+3, ... and

hs(ν)

hs+1(ν)
=

−αs

βs−
αs−1γs

βs−1−
αs−2γs−1

βs−2−
... (34)

for negatives = −1,−2,−3, ....
But this process is effective only if

lim
s→+∞

hs+1(ν)

hs(ν)
= 0, lim

s→−∞

hs−1(ν)

hs(ν)
= 0. (35)

Clearly, in general case (for arbitraryν) possible solutions of Eq. (25) form the dominant se-
quence{h+

s (ν)} ass → ±∞, and thus the ratios of subsequent coefficients in expansions (30)
and (31) grow for large|s| as

lim
s→+∞

h+
s+1(ν)

h+
s (ν)

∼ −2s

p
, lim

s→−∞

h+
s−1(ν)

h+
s (ν)

∼ − s

2p
. (36)

This means that the series (30), (31) and their corresponding continued fractions (33), (34) di-
verge for the coefficientsh+

s which form dominant sequence{h+
s } ass → ±∞. Necessary

minimal solution of the difference equation (25) which fulfil the asymptotic conditions (35) ex-
ists only for a specific valueνm` ≡ νm`(p, α, λm`) of the parameterν. Then we can infer that
the series (30) and (31), which represent the solution of Eq.(12), converge. In such a way we
deduce the equation for the acceptable valueνm`. Suchνm` and relations (33) and (34) give the
minimal solutions of Eq. (25) via the infinite continued fractions.

The recurrence equation (25) ats = 0 requires

β0 = −α0
h1

h0
− γ0

h−1

h0
. (37)

Substituting the right-hand sides of (33) and (34) into (37)we obtain the characteristic equation
as a sum of two infinite continued fractions for acceptable value ofν:

β0 =
α−1γ0

β−1−
α−2γ−1

β−2−
α−3γ−2

β−3−
... +

α0γ1

β1−
α1γ2

β2−
α2γ3

β3−
... . (38)

We have minimal solutions of Eq. (25) which converge ass → ±∞ only for rootsνm` of Eq.
(38).

To verify the correctness of this proposition, we must studythe behavior ofh−
s /h−

s−1 and
h−

s /h−
s+1 for large positive and negatives, respectively. Immediately from (32) we find that

lim
s→+∞

h−
s

h−
s−1

=
2p

s

[
1 − 1

s

(
ν + α − m +

1

2

)
+ O

(
1

s2

)]
, (39)

lim
s→−∞

h−
s

h−
s+1

= − p

2s

[
1 − 1

s

(
ν − α + m +

1

2

)
+ O

(
1

s2

)]
. (40)



66 V.Yu. Lazur et al.

On the other hand the sufficient conditions of the convergence of the infinite continued frac-
tion (34), (35) and (38) require

∣∣∣∣
αs−1γs

βs−1βs

∣∣∣∣ <
1

4
,

∣∣∣∣
α−sγ−s+1

β−sβ−s+1

∣∣∣∣ <
1

4
(41)

for sufficiently large positives.
From the asymptotic expansion of (25) ass → ±∞ we obtain

lim
s→+∞

∣∣∣∣
αs−1γs

βs−1βs

∣∣∣∣ =
(p

s

)2
[
1 − 2ν

s
+ O

(
1

s2

)]
, (42)

lim
s→+∞

∣∣∣∣
α−sγ−s+1

β−sβ−s+1

∣∣∣∣ =
(p

s

)2
[
1 − 2(ν + 1)

s
+ O

(
1

s2

)]
. (43)

Thus, forp > 1 and|s| > 2p, the conditions (41) are satisfied. It is important to keep inmind
this estimate and to choose the minimal number of terms in continued fraction (38) that will be
needed for the computation ofνm`(p) with required accuracy.

The algorithms of numerical solution of Eq. (38) are chosen differently. Their detailed
description is given in [8,15,19] and we will not discuss this problem here. We only note that for
all used algorithms it is necessary to accept accurate starting estimate for the acceptable values.
This starting estimate can be obtained by the asymptotic expansion ofνm`(p) for largep (p � 1)
or smallp (p � 1).

In the case whenm = O(1), ` = O(1), α = O(1) andp → 0, the asymptotic expression for
νm`(p) in the united-atom approximation (R � 1) is obtained by the method proposed in [18].
The result is

νm`(p) = ` + [ν]2p
2 + [ν]4p

4 + ..., (44)

where

[ν]2 = − 2α2[`(` + 1) − 3m2]

(2` + 1)`(` + 1)(2` − 1)(2` + 3)
, [ν]4 = α2

(
ν

(0)
m` + α2ν

(2)
m`

)
,

ν
(0)
m` =

12[`2(` + 1)2 − m2(18`2 + 18` − 5) + 25m4]

`(` + 1)(2` + 1)(2` + 5)(2` − 3)(2` − 1)2(2` + 3)2
,

ν
(2)
m` =

6[2`(` + 1) − 3m2]Am` − 2`3(` + 1)3[40`(` + 1)(6`2 + 6` − 11) + 3]

(2` − 3)(2` + 5)[`(` + 1)(2` + 1)(2` − 1)(2` + 3)]3
,

Am` = {7`(` + 1)[40`(` + 1)(2`2 + 2` − 3) + 9] + 45}m2.

It follows from the formula (44), thatνm`(0) = [ν]0 = `, i.e. acceptable value in the united-atom
approximation is equal to orbital angular momentum.
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The solutionsνm`(p) to Eq. (38) are not ambiguous. They are actually periodic with the
period 1. Ifνm`(p) is the solution (38) (for fixedm, `, α, andp), thenνm`(p) ± n are solutions
of Eq. (38) for arbitrary integern. Roots of Eq. (38) that are integer or half-integer, and theyare
spurious. Asp → 0, these roots do not acquire the values of angular orbital momentum`. The
mechanism of the appearance of spurious roots is described in detail in papers [15,18].

To select the acceptable valueν = νm`(p) for fixed quantum numbersm, `, α and for given
p from the set of roots of Eq. (38), we start with the solution ofEq. (38) forp � 1. We take the
asymptotic value given by (44) as an initial value ofνm`(p). Then we increasep using arbitrary
step size∆p and we find the solution of Eq. (38). By continuation of this method we can evaluate
νm`(p) for givenp.

In Table 1 we see the values ofνm` obtained by the asymptotic formula (44), as compared
to the numerical solutions of Eq. (38) found by the minimization of continued fractions. This
method was proposed and performed in a calculation corresponding to continued fractions in the
theory of the polyspheroidal periodic functions [22].

For smaller parameterp = (−2E)1/2R/2 and larger orbital angular momentum we obtain
better agreement between the asymptotic expansion (44) andthe numerical solution of Eq. (38)
(see Table 1). For example, valuesν00(α,R) determined by (44) with an accuracy up toO(R6)
agree with the corresponding values that are obtained with relative accuracyε = 10−12 numer-
ically for R = 0.025 with the accuracy of nine digits, forR = 0.25 with the accuracy of five
digits. The agreement mentioned for the both values shows that it is not necessary to compute
νm`(α,R) numerically for smallR. The first three terms of expansion (44) give the correct value
of νm`(α,R) with three per cent accuracy. Such high accuracy selection of the initial approxima-
tion of νm`(α,R) provides the stability of iterative process [22] with the step size of∆R ≤ 0.1Z
over0 ≤ R ≤ 6 and avoids spurious solutions of Eq. (38).

After the calculation of acceptable values ofνm`(α,R), the coefficients of expansionh−
s (νm`)

for s = ±1,±2, ... are defined by formulae (33) and (34) in terms of the largest coefficienth0

(for given m and`). Then the valueh0 is calculated from the relation (26) in case of RCSFp
Π̃

(1)
m`(p, ξ) and from relation (27) for RCSFp̃Π(2)

m`(p, ξ).
Finally, the convergence of the series (20) and (21) is defined by the asymptotic behavior

of ratiosh−
s Rν+s(x)/h−

s−1Rν+s(x) for large positives, and ofh−
s Rν+s(x)/h−

s+1Rν+s+1(x)

for large negatives. Here,Rν+s(x) = R
(1)
ν+s(x) or Rν+s(x) = R

(2)
ν+s(x). One of the important

properties of basis functionsRν+s(x) is that apart from the differential equationTν+sRν+s(x) =
0, these functions fulfill the linear recurrence difference equation of the second order (22). Then,
owing to the terminology used in this paper, the sequence of the functionsR(1)

ν+s(x), s = 0, 1, 2...

generates minimal solution, butR
(2)
ν+s(x), (s = 0, 1, 2...) is a dominant solution of Eq. (22) as

s → +∞. Fors2 � 2αp we have from (22)

lim
s→+∞

R
(1)
ν+s(x)

R
(1)
ν+s−1(x)

= − x

4s

[
1 +

1

s

(
α − ν − 1

2

)
+ O

(
1

s2

)]
, (s � x),

lim
s→+∞

R
(2)
ν+s(x)

R
(2)
ν+s−1(x)

=
s

x

[
1 +

1

s

(
α + ν − 1

2

)
+ O

(
1

s2

)]
, (s � x). (45)
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Tab. 1. Acceptable valuesνm`(α, R) asR → 0 for Z1 = Z2 = Z = 1 system

α =
√

2;E = −1 α =
√

2;E = −1

R ν
a)
00 ν

b)
00 ν

a)
01 ν

b)
01

0.025 0.000416661 0.000416661 0.999917 0.999917
0.05 0.00166658 0.00166657 0.999667 0.999667
0.10 0.00666567 0.00666519 0.998665 0.998665
0.20 0.0266743 0.0266430 0.994641 0.994641
0.30 0.0602401 0.05988 0.987868 0.987872
0.40 0.108375 0.106287 0.978242 0.978261
0.50 0.174353 0.165741 0.965602 0.965677
0.60 0.269069 0.23808 0.949715 0.949948

a) Acceptable values obtained by the numerical solution of Eq. (38)
b) Acceptable values that are obtained by the asymptotic formula (44).

According to (22), we find

lim
s→+∞

Rν+s+1(x)

Rν+s−1(x)
=

1

4
(1 � s � x).

Combination of (39) and (45) yields

lim
s→+∞

h−
s R

(1)
ν+s(x)

h−
s−1R

(1)
ν+s−1(x)

= − px

2s2

[
1 − 2ν + 1 − m

s
+ O

(
1

s2

)]
,

lim
s→+∞

h−
s R

(2)
ν+s(x)

h−
s−1R

(2)
ν+s−1(x)

=
2p

x

[
1 +

m − 1

s
+ O

(
1

s2

)]
. (46)

The ratio test of the series (30) with positives shows that this part is absolutely convergent for
an arbitrary finitep andx = p(ξ +1). For positives, part of the expansion (31) converges for all
ξ > 1, but diverges forξ = 1.

Both sequences{R(1)
ν+s(x)} and{R(2)

ν+s(x)} form the couple of dominant solutions of the
difference equation (22) ass → −∞. From (22) we obtain

lim
s→−∞

Rν+s(x)

Rν+s+1(x)
= −4s

x

[
1 +

1

s

(
ν − α +

3

2

)
+ O

(
1

s2

)]
, (|s| � x). (47)

The relations (40) and (47) yield under the conditions2 � 2αp

lim
s→−∞

h−
s Rν+s(x)

h−
s+1Rν+s+1(x)

=
2p

x

[
1 − m − 1

s
+ O

(
1

s2

)]
, (48)
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which implies that the parts of the series (30) and (31) are convergent for all positiveξ, but are
divergent atξ = 1 for the negatives.

Therefore the values of functionsΠ(1)
m`(p, ξ) andΠ

(2)
m`(p, ξ) can be calculated with necessary

accuracy by the summation of the series (30) and (31)

Π
(1)
m`(p, ξ) =

(
ξ − 1

ξ + 1

)m

2
∞∑

s=−∞

h−
s (νm`)R

(1)
s+νm`

(p(ξ + 1)), (49)

Π
(2)
m`(p, ξ) =

(
ξ − 1

ξ + 1

)m

2
∞∑

s=−∞

h−
s (νm`)R

(2)
s+νm`

(p(ξ + 1)) (50)

for ξ ∈ (1,∞). The calculations of the basis functionsR
(1)
s+νm`

andR
(2)
s+νm`

can be done easily
numerically, using an algorithm described in detail in [22,23].

For large intercentre separations (p � 1) and forξ close to 1, the series (49) and (50) con-
verge slowly as follows from estimates (46) and (48) and fromnumerical calculations [23]. This
is related to the character of the asymptotic behavior of thebasis functionsR(1,2)

s+νm`
(p(ξ +1)) for

larges andξ → 1. In Sec. 4 we will show other very useful expansions. In spiteof not very
largep (for examplep < 5) and not very small value ofξ (ξ > 1) the series (49) and (50) are
appropriate for numerical calculations.

4 The limit form of two-centre Green’s function at small intercentre separation. Special
cases of expansion forΠ(1,2)

m` (p, ξ)

It is interesting to analyze the relations (3) and (29)–(31)in the limit of R → 0 (p → 0), and to
compare the results to the familiar ones of Coulomb Green’s function [24]. It follows from (11)
that forR → 0 and finiter, the prolate spheroidal coordinates reduce to the spherical onesr, θ
andϕ

ξ → 2r/R, η → cos θ. (51)

Equation (7) reduces to the equation for the associated Legendre functionsPm
` (cos θ). Then the

angle function for theZeZ problem coincides with the one-centre Coulomb function, i.e.

lim
p→0

S̄m`(p, η)
eimϕ

√
2π

= Nm`P
m
` (cos θ)

eimϕ

√
2π

≡ Ym`(θ, ϕ), Nm` =

√
(2` + 1)(` − m)!

2(` + m)!
,

(52)

lim
p→0

λm`(p) = `(` + 1). (53)

By inserting this limit value ofλm` into Eq. (6) and substitutingξ = 2r/R, we obtain the
equation for radial Coulomb Green’s function.
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Now, we study the limit transitions forR → 0 in (25) and for radial functionsΠ(1)
m`(p(ξ +1))

andΠ
(2)
m`(p(ξ + 1)) in expansions (49), (50). We use the zero term in the expansion (44) for

permissible valuesνm`(p) and the limit value (53). Then (25) gives

[(s + `)(s + ` + 1) − `(` + 1)]hs = 0, s = 0,±1,±2, ... (54)

for R → 0. It follows from (54) forR → 0 that in every series (26), (27) and (49), (50) only the
terms withs = 0 are non-zero. Then the limit values ofhs asR → 0 are given by the relations

lim
p→0

hs(p) =
2`Γ(−α + ` + 1)

Γ(α + ` + 1)
e−iπ(−α+`+1)δs0 (55)

for the expansion (49) of functionΠ(1)
m`(p(ξ + 1)) and

lim
p→0

hs(p) = 2`δs0 (56)

for the expansion (50) of the functionΠ(2)
m`(p(ξ + 1)).

These formulae together with Eqs. (49) and (50) asR → 0 show that the radial Coulomb
spheroidal functions ofp-typeΠ

(i)
m`(p, ξ) = [(ξ−1)/(ξ+1)]m/2Π̃

(i)
m`(p(ξ+1)) have the required

behavior forR → 0

lim
p→0

Π
(1)
m`(p, ξ) =

Γ(−α + ` + 1)

Γ(2` + 2)

(
4Zr

α

)`

×

× exp

(
−2Zr

α

)
Φ

(
−α + ` + 1, 2` + 2;

4Zr

α

)
, (57)

lim
p→0

Π
(2)
m`(p, ξ) =

(
4Zr

α

)`

exp

(
−2Zr

α

)
Ψ

(
−α + ` + 1, 2` + 2;

4Zr

α

)
. (58)

Now, according to Eqs. (52), (57) and (58), we can easily showthat for the problemZeZ
(model of hydrogenlike molecular ion) two-centre Coulomb Green’s function defined by for-
mulae (3), and (29)–(31) gives radial Green’s function for the one-centre Coulomb problem of
charge2Z in spherical coordinates asR → 0

lim
R→0

GE (r; r′|R) =

∞∑

`=0

∑̀

m=−`

g`(r, r
′;E)Ym`(θ, ϕ)Y ∗

m`(θ
′, ϕ′) ≡ G

(k)
E (r, r′), (59)

where

g`(r, r
′;E) =

8Z

α

Γ(−α + ` + 1)

Γ(2` + 2)

(
4Zr<

α

)`(
4Zr>

α

)`

exp

(
−2Z

α
(r< + r>)

)
×

×Φ

(
−α + ` + 1, 2` + 2;

4Zr<

α

)
Ψ

(
−α + ` + 1, 2` + 2;

4Zr>

α

)
. (60)
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So, we have proved that radial Green’s functions (3), (29)–(31) comply with the principle of cor-
respondence so that all functions for the two-centre Coulomb problem defined in the spheroidal
coordinates must give one-centre Coulomb analogies forR → 0.

Now, we consider some different special cases of the solution of the Eq. (8) that follow
from Eqs. (49) and (50) for specific values ofα andν. If α = 0 (Z = 0) andν = `, then
the coefficientshs(0, λm`, `|p) = 0 for s ≤ m − ` − 1 and the sumation in series (49), (50)
begins withm − `. In this case the confluent hypergeometric functionsΦ(s + ` + 1, 2s +
2` + 2; 2x) andΨ(s + ` + 1, 2s + 2` + 2; 2x) are expressed by known formulae [21] using
the modified Bessel functions of the first orderIs+`+ 1

2

(x) and of the third orderKs+`+ 1

2

(x)
(Macdonald function) respectively. Then after easy transformations we obtain expansion of the
radial spheroidal function in cylindrical functions [1,20]

Π
(1)
m`(0, λm`, p; ξ) =

√
π

2p(ξ + 1)

(
ξ − 1

ξ + 1

)m

2
∞∑

s=0

hs
(−1)s+m+1

2s+m
Is+m+1/2 (p(ξ + 1)) , (61)

Π
(2)
m`(0, λm`, p; ξ) =

√
1

2πp(ξ + 1)

(
ξ − 1

ξ + 1

)m

2
∞∑

s=0

hs

2s+m
Ks+m+1/2 (p(ξ + 1)) . (62)

The coefficientshs in these expansions comply with Eq.(25), whereαs, βs and γs have the
following form

αs =
(s + 1)(s + m + 1)

2s + 2m + 3
p,

βs = (s + m)(s + m + 1) − λm`, γs = −4(s + m)(s + 2m)p

2s + 2m − 1
. (63)

For practical purpose, this a is very useful analytical continuation of the functionsΠ(1)
m`(0,

λm`, p; ξ) (61) andΠ
(2)
m`(0, λm`, p; ξ) (62) on the axis[0,+i∞). This continuation with respect

to the normalization is identical with the oblate radial spheroidal functions of the first and second
order (see [1]).

Let us go on to the determination of conditions under which the functionsΠ(1)
m`(p, ξ) and

Π
(2)
m`(p, ξ) defined by (26), (27), (49) and (50) are transformed to physical solutions that represent

the radial part̄Πmk(p, ξ) of radial wave functions of the two-centre problemZeZ. Here,k is
number of zeros of the function̄Πmk(p, ξ) located in intervalξ ∈ (1,∞). Assume Green’s
functionGE(r; r′|R) as a function of energyE has poles at pointsE = Ej(R) that correspond to
the discrete energy spectrum of the problemZeZ: Ej(R) = EN`m(R), j = (N`m), N =
k + ` + 1, N = 1, 2, 3, .... According to radial Green’s function which is expressed by(9)

these poles are zeros of the WronskianW
[
Π

(1)
m`(p, ξ),Π

(2)
m`(p, ξ)

]
andEN`m(R) satisfies the

condition

−αN`m + νm`(EN`m) + 1 = −k, k = 0, 1, 2, ..., (64)

whereαN`m = 2Z/
√
−2EN`m(R). Residues ofGm`(ξ, ξ

′;E) at polesEN`m(R) represent the
product of normalized radial parts of eigenfunctions for theZeZ problem [24]:

Π̄mk(p, ξ)Π̄mk(p, ξ′) = lim
E→EN`m

[(EN`m − E)Gm`(ξ, ξ
′;E)]. (65)
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We may easily determine this limit forGm`(ξ, ξ
′;E) expressed by Eqs. (29)–(31) when we

take into account the normalization conditions (26) and (27). The calculations show that for the
energyEN`m(R), which is the eigenvalue of the problemZeZ, the functionsΠ(1)

m`(p, ξ) and

Π
(2)
m`(p, ξ) are linearly dependent and that they are identical to the radial part Π̄m`(p, ξ) of the

two-centre problem [1].

5 Expansions of an regular and irregular radial Coulomb spheroidal functions of p-type
in series of confluent hypergeometric functions

We transform the differential equation (8) for the radial Coulomb spheroidal function ofp-type
by taking out the appropriate behavior of eigenfunctions atthe singular points of the differential
equation, namelyξ = −1, ξ = 1, andξ = ∞. We find that nearξ = −1 it is (ξ + 1)m/2, near
theξ = 1 it is (ξ − 1)m/2, and at the infinity point it is eitherexp(−p(1 + ξ)) or exp(p(1 + ξ)).
We therefore introduce new functionV (z) ≡ Vm`(z) by

Πm`(p, ξ) =
(
ξ2 − 1

)m/2
e−p(ξ+1)Vm`(z), z = 2x = 2p(ξ + 1). (66)

We readily find thatV (z) satisfies the differential equation

z(z − z0)V
′′(z) +

(
D1 + zD2 − z2

)
V ′(z) + (D3 + zD4)V (z) = 0, (67)

where

V ′(z) ≡ dV (z)

dz
, z0 = 4p, D1 = −z0(m + 1), D2 = 2(m + 1) + z0,

D3 = m(m + 1) − λm` − 2pσ, D4 = σ = α − (m + 1). (68)

We will find the regular solutionV (1)(z) and irregular solutionV (2)(z) to Eq. (67) in the form
of series of confluent hypergeometric functionsΦ andΨ, specified by

V (1)(z) ≡ V
(1)
m` (α, λm`, p;x) =

∞∑

s=−∞

gs(α, λm`, ν|p)Φ̃(−α + m + 1, s + ν; 2x), (69)

V (2)(z) ≡ V
(2)
m` (α, λm`, p;x) =

∞∑

s=−∞

gs(α, λm`, ν|p)Ψ(−α + m + 1, s + ν; 2x), (70)

whereν is not an integer. We use the same notation as in part 2, i.e.Φ̃ andΨ denote the regular
and the irregular confluent hypergeometric functions, respectively. We introduce short notation

Φ̃s(z) ≡ Φ̃(−α + m + 1, s + ν; 2x), Ψs(z) ≡ Ψ(−α + m + 1, s + ν; 2x).

Let <s(z) denote an arbitrary function of̃Φs(z) or Ψs(z). The functionsΦ̃s(z) and Ψs(z)
represent linearly independent solutions of confluent hypergeometric equation

z
d2<s(z)

dz2
+ (s + ν − z)

d<s(z)

dz
+ σ<s(z) = 0 (71)
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and therefore<s(z) satisfies three-term recurrence differential relations

z<s+1(z) − (s + ν − 1 + z)<s(z) + (s + ν − 1 + σ)<s−1(z) = 0 (72)

and obeys the following differential relations

d<s(z)

dz
= <s(z) −<s+1(z), (73)

z
d<s(z)

dz
= (1 − s − ν)<s(z) + (s + ν − 1 + σ)<s−1(z). (74)

The Wronskian of̃Φs(z) andΨs(z) is given by (18).
Substituting (69) or (70) into (67) and using Eq. (71) and formulas (72)–(74), we obtain the

three-term recurrence system

ρsgs+1(ν) + κsgs(ν) + δsgs−1(ν) = 0 (75)

with recurrence coefficients

ρs = −(s + ν + σ)[s + ν + 1 − 2(m + 1)], δs = 4p(m − s − ν + 2),

κs = (s+ν)[s+ν +4p−1−2(m+1)]+2p[σ−2(m+1)]+(m+1)(m+2)−λm`. (76)

The structure of the recurrence relation (75) shows that in ageneral case (for arbitraryν) the
solutions of Eq. (67) given by (69) and (70) are divergent forall finite values of argument. As in
part 3, the coefficients expansiongs and acceptable valuesνm`(p) at which the series (69) and
(70) converge can be obtained by solving equation (75) usingthe method of continued fractions.
To separate a minimal convergent solution to the equation (75) for s → ±∞, it is necessary to
set asymptotic conditions:

lim
s→+∞

gs+1(ν)

gs(ν)
= 0, lim

s→−∞

gs−1(ν)

gs(ν)
= 0. (77)

As well as in the section 3, we obtain for acceptable valuesνm`(p) transcendental equation as a
sum of two infinite continued fractions

κ0 =
ρ−1δ0

κ−1−
ρ−2δ−1

κ−2−
ρ−3δ−2

κ−3−
... +

ρ0δ1

κ1−
ρ1δ2

κ2−
ρ2δ3

κ3−
... . (78)

Required valuesνm`(p) satisfying equation (78), can be calculated (as in the section 3) by mini-
mizing continued fractions of (78) using numerical calculations [22]. We take the required zeroth
approximation forνm`(p) atp � 1 in the form of asymptotic expansion asp → ∞

ν̄m`(p) =
(3 + 3m + 2µ − σ)

2
+

1

4p

(
−1 − m − 2µ(1 + m + µ) +

(−1 + m + 2µ − σ)

8
×

×
[
−1 + 3m2 − 4µ(µ + 1) + σ(4 + σ) + 2m(1 − 2µ + 2σ)

])
+ O

(
p−2
)
, (79)



74 V.Yu. Lazur et al.

whereσ is determined by Eq. (68) andµ = (`−m)/2 for even(`−m) andµ = (`−m− 1)/2
for odd(` − m). To distinguish requested values that correspond to the expansion (69) and (70)
from the values for the expansions (49) and (50), we use bar overνm`.

The asymptotic expansion (79) was obtained in [23] by the method which was published
in [1]. Therefore we do not show the details of derivation here. The calculations performed
in [23] showed that values̄νm` obtained by Eq. (79) agree with values that obtained for relative
errorε = 10−12 by computer for the casem, ` ≤ 5, R ∼ 5÷10 with an accuracy of up to2%,
and form, ` ≤ 5, R ∼ 12 ÷ 20 with an accuracy of up to1%. The agreement of these values
does not depend only onR, but also onZ, E, andp.

It follows from the structure analysis of Eqs. (76) and (78) that the equationκ0 = 0 is a
limited form of the transcendent equation (78) asp → 0. Further, in the united atom approxi-
mation (R → 0), the permissible valuēνm`(p) must attain the value equal to the maximal root
of the equationκ0 (ν̄m`(0)) = 0. So, the zeroth term of the asymptotic expansion ofν̄m`(p) is
ν̄m`(0) = m + ` + 2. This valueν̄m` is convenient for finding permissible value for smallp and
for control calculations.

The convergence of the continued fractions (78) (at least for |s| > 4p)has been proved in Eq.
(23). Therefore we will prove convergence of the expansions(69) and (70). Again, we denote
the coefficients that correspondent to the minimal convergent solution of the difference equation
(75) fors → ±∞ by g−s , s = ...,−2,−1, 0,+1,+2, ...}.

At first, we establish the limit values of ratiosg−s /g−s−1 ass → +∞ andg−s /g−s+1 ass →
−∞. The relation (75) yields

lim
s→+∞

g−s
g−s−1

=
4p

s

[
1 +

m + 1 − ν

s
+ O

(
s−2
)]

, (80)

lim
s→−∞

g−s
g−s+1

= 1 +
1 + α − m

s
+ O

(
s−2
)
. (81)

Using the terminology of the previous part,Φ̃s(z) is the minimal solution andΨs(z) is the
dominant solution to (72) fors → ∞. It follows immediately from (72)

lim
s→+∞

Φ̃s(z)

Φ̃s−1(z)
= 1 +

α − m − 1

s
+ O

(
s−2
)
, (82)

lim
s→+∞

Ψs(z)

Ψs−1(z)
=

s

2x

[
1 +

2x

s
(ν − 2) + O

(
s−2
)]

, (83)

for large positives.
Now, we suppose that both solutions of Eq. (72)Φ̃s(z) andΨs(z) are dominant fors → −∞.

We obtain using (72)

lim
s→−∞

<s(z)

<s+1(z)
= 1 +

m + 1 − α

s
+ O

(
s−2
)
. (84)

This result together with the asymptotic relation (81) gives

lim
s→−∞

g−s <s(z)

g−s+1<s+1(z)
= 1 +

2

s
+ O

(
s−2
)
. (85)



Partial expansion of the two-center. . . 75

Therefore, the ratio test implies that the negative parts ofthe series (69) and (70) converge for
anyz = 2x = 2p(ξ + 1). Further it follows from Eqs. (80) and (82) imply that

lim
s→+∞

g−s Φ̃s(z)

g−s−1Φ̃s−1(z)
=

4p

s

(
1 +

α − ν

s
+ O

(
s−2
))

, (86)

so that the series (69) is uniformly convergent (for arbitrary p, α andν) with regard to (85), and
not only forξ ∈ [1,∞), but for whole numeric axis.

Finally, combination of (80) and (83) gives

lim
s→+∞

g−s Ψs(z)

g−s−1Ψs−1(z)
=

2p

x

(
1 +

m + 1 − ν + 2x(ν − 2)

s
+ O

(
s−2
))

. (87)

If |x| > 2p (|ξ + 1| > 2), then the series (70) converges as it follows from asymptotic (85).
Evidently, the rapidity of the convergence of both series (49) and (50) for largeξ exceeds

substantially the rapidity of the convergence of the series(69) and (70). In spite of this, it is
convenient to use partial sums of the series (69) and (70) to calculate radial Coulomb spheroidal
functionsΠ(1,2)

m` (p, ξ) of p-type with given accuracy

Π
(1)
m`(p, ξ) = (ξ2 −1)m/2e−p(ξ+1)

∞∑

s=−∞

g−s (ν̄m`)Φ̃(−α+m+1, s+ ν̄m`; 2p(ξ +1)), (88)

Π
(2)
m`(p, ξ) = (ξ2−1)m/2e−p(ξ+1)

∞∑

s=−∞

g−s (ν̄m`)Ψ(−α+m+1, s+ ν̄m`; 2p(ξ +1)). (89)

Numerical experiments show that to obtain, for example,Π
(1)
m`(p, ξ) atξ = 1, p ≤ 5 with relative

accuracy10−18 we need large number of terms (|s| > 100) in the expansion (88) [23].
Therefore, it is more convenient to use the combination of the series (49) and (50) and (88)

and (89) for practical numerical calculations. The values of the regular radial Coulomb functions
and of irregular radial Coulomb functions ofp-type are calculated in inverse order (from∞ to
1) by using the expansions (49) and (50), and by initial values that are given at a distant point
where asymptotic expression (19) holds.

Since the expansions (88) and (89) converge slowly, we useΠ
(1)
m`(p, ξ) and Π

(2)
m`(p, ξ) in

ordinary direction (from 1 to∞) only in the neighborhood of the pointξ = 1 for evaluation.
Starting atξ = 1, we continue to the pointξ0 (ξ0 > 1) where we can determine the values
of regular and irregular functions, using expressions (49)and (50) with necessary accuracy. Of
course, the regular and the irregular solutions of (49) and (50) and 88) and (89) have to match at
ξ = ξ0 because the ”normalization” of the coefficient is not determined by expressions (26) and
(27).

This method of obtaining solutionsΠ(1)
m`(p, ξ) andΠ

(2)
m`(p, ξ) is analogous to the algorithm

which is explained in [15] and used in [8] for the calculationof regular and irregular radial
Coulomb spheroidal functions of thec-type in the theory of scattering by two Coulomb centres
[1,12,25].
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6 Two-centre Green’s function of continuous spectrum

For positive energy (E > 0) an expansion of Green’s functionGE>0(r; r
′|R) is constructed

by the normalized prolate angular spheroidal functionsS̄m`(c, η) [1]. But the radial part of
Green’s functionGm`(ξ, ξ

′;E > 0) satisfies an equation which differs from Eq. (6) by replacing
p → −ic andα → −iα∗. Then we can express the radial part of Green’s function by the regular
Πreg

m` (c, ξ) and the irregularΠirreg
m` (c, ξ) solutions of homogeneous equation, i.e.

Gm`(ξ, ξ
′;E > 0) =

4Z

cα∗

Πreg
m` (c, ξ<)

[
Πreg

m` (c, ξ>) + iΠirreg
m` (c, ξ>)

]

(ξ2 − 1)W{Πreg
m` (c, ξ),

[
Πreg

m` (c, ξ) + iΠirreg
m` (c, ξ)

]
}
, (90)

whereα∗ = −ZR/c, c = kR/2 andE = k2/2.
For practical calculations we use representationsΠreg

m` (c, ξ) andΠirreg
m` (c, ξ) as linear com-

binations of the Coulomb functionsFν+s(α
∗, x) andGν+s(α

∗, x) [15]:

Πreg
m` (c, ξ) =

1

2

(
ξ − 1

ξ + 1

)m

2 [
Π

(+)
m` (x) + Π

(−)
m` (x)

]
, (91)

Πirreg
m` (c, ξ) =

1

2i

(
ξ − 1

ξ + 1

)m

2 [
Π

(+
m`)(x) − Π

(−)
m` (x)

]
, (92)

Π
(±)
m` (x) =

∞∑

s=−∞

h̄s(α
∗, λm`(c), ν|c)R(±)

ν+s(x), (93)

R
(±)
ν+s(x) = x−1[Gν+s(α

∗, x) ± iFν+s(α
∗, x)], x = c(ξ + 1), (94)

wherex = c(ξ +1). Here, the plus (minus) sign corresponds toR
(+)
ν+s(x) (R(−)

ν+s(x)); λm`(c) are
eigenvalues of the angular equation of prolate spheroidal functionsSm`(c, η) [1].

The Coulomb functionsFν+s(α
∗, x) andGν+s(α

∗, x) are the same ones as in [15,26]. Inte-
gral representation of these functions

Gν+s(α
∗, x) ± iFν+s(α

∗, x) =
eπα∗/2e±ix(2x)−ν−s

[Γ(ν + s + 1 + iα∗)Γ(ν + s + 1 − iα∗)]
1/2

×

×
∞∫

0

e−ttν+s±iα∗

(t ∓ 2ix)ν+s∓iα∗

dt, (95)

is similar to (15) and (16).
Another important formula is given using the complex confluent hypergeometric function of

the second kindΨ(α, γ; z) :

2−1R
(±)
ν+s(x) = (2x)−1[Gν+s(α

∗, x) ± iFν+s(α
∗, x)] = (−1)se∓iπ(ν+1/2)×

×eπα∗/2

[
Γ(ν + s + 1 ± iα∗)

Γ(ν + s + 1 ∓ iα∗)

]1/2

(2x)ν+se±ixΨ(ν +s+1± iα∗, 2ν +2s+2;∓2ix). (96)
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The Wronskian is

W [Fν+s(α
∗, x), Gν+s(α

∗, x)] = −1, (97)

and the asymptotic formula ofGν+s(α
∗, x) ± iFν+s(α

∗, x) (asx → ∞) is defined as

Gν+s(α
∗, x) ± iFν+s(α

∗, x) −→
x→∞

exp
[
±i
(
x − α∗ ln 2x − (s + ν)

π

2
+ σν+s

)]
, (98)

with the Coulomb phase

σν+s = − i

2
ln

[
Γ(s + ν + 1 + iα∗)

Γ(s + ν + 1 − iα∗)

]
. (99)

Taking into account Eq. (12) for the radial Coulomb spheroidal functions ofp-type and
replacingp → −ic, α → −iα∗, we obtain

[
d

dx

(
x2 d

dx

)
− x2 + 2α∗x − ν(ν + 1)

]
Π

(±)
m` (x) +

c

x − 2c
×

×
[
2(m + 1)x

d

dx
+

(
ν(ν + 1) − λm`(c)

c
− 2α∗

)
x − 2ν(ν + 1)

]
Π

(±)
m` (x) = 0, (100)

wherex = c(ξ + 1), 2c ≤ x < ∞. As in the case for the radial Coulomb spheroidal function of
thep-typeΠ̃

(1,2)
m` (x) by the substitution of the expansion (93) into Eq. (100) and the recurrence

formula for the Coulomb functionsFν+s(α
∗, x) and Gν+s(α

∗, x), we obtain the recurrence
relations for̄hs(ν) ≡ h̄s(α

∗, λm`(c), ν|c)

ᾱsh̄s+1(ν) + β̄sh̄s(ν) + γ̄sh̄s−1(ν) = 0, (101)

with

ᾱs = −2c(s + ν + 1)(s + ν + 1 − m)

2s + 2ν + 3
Ss+1, γ̄s = −2c(s + ν)(s + ν + m)

2s + 2ν − 1
Ss,

β̄s = (s + ν)(s + ν + 1)(1 + 2cQs) − 2cα∗ − λm`(c), (102)

Ss =

(
(s + ν)2 + (α∗)2

)1/2

(s + ν)
, Qs =

α∗

(s + ν)(s + ν + 1)
.

After replacingαs → ᾱs, βs → β̄s andγ → γ̄s in the characteristic equation (38), we obtain
acceptable values ofνm`(c) for system (101).

The convergence of the series (93) and of the corresponding continued fraction has been
proved forx > 2c in papers [5, 19]. The algorithm of the calculation ofνm`(c), Πreg

m` (c, ξ) and
Πirreg

m` (c, ξ) and its numerical results are given in [8]. The calculation of the Coulomb functions
Fν+s(α

∗, x) andGν+s(α
∗, x) was realized in [8, 15]. For fixedc and largex equation (100)

takes the form
[

d

dx
x2 d

dx
+ x2 − 2α∗x − 2α∗c − λm`(c) + O

(
x−1

)]
Π

(±)
m` (x) = 0. (103)
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Then we can write two linearly independent solutions to Eq. (100), as the linear combination of
the two Coulomb functionsFν0

(α∗, x) andGν0
(α∗, x) of ν0th order:

lim
x→∞

Π
(±)
m` (x) =

Gν0
(α∗, x) ± iFν0

(α∗, x)

x

(
1 + O(x−3)

)
, (104)

ν0 = −1

2
± 1

2

√
1 + 8α∗c + 4λm`(c). (105)

The asymptotics of the solutions ass → ∞ have the form

lim
x→∞

Π
(±)
m` (x) = 2(2x)−(1±iα∗)e±ix (1 + O(1/x)) . (106)

If we use the series (93) and the asymptotic representation (98) for the Coulomb functions
Fν+s(α

∗, x) andGν+s(α
∗, x), we gain more accurate information about behavior of functions

Π
(±)
m` (x) asx → ∞. In the first approximation we obtain

Π
(±)
m` (x) =

exp [±i(x − α∗ ln(2x) − Φ±)]

x
+ O(x−2). (107)

The phaseΦ± ≡ Φ±(c, α∗, λm`(c)) is a real function of parametersc, α∗, λm`(c):

Φ± = ±i ln

(
∞∑

s=−∞

h̄s exp{∓i [(s + ν)π/2 − σs+ν ]}
)

. (108)

We must know this function for calculations of the cross-section on two Coulomb centres [1,12,
13,15].

Using the asymptotic formula (104), (91) and (92), we obtainthe Wronskian of functions
Πreg

m` (c, ξ) andΠreg
m` (c, ξ) + iΠirreg

m` (c, ξ)

W
[
Πreg

m` (c, ξ),
(
Πreg

m` (c, ξ) + iΠirreg
m` (c, ξ)

)]
=

i

c(ξ2 − 1)
. (109)

Using this value of the Wronskian, we can write radial part of Green’s function in its final form:

Gm`(ξ, ξ
′;E > 0) = 2ikΠreg

m` (c, ξ<)
[
Πreg

m` (c, ξ>) + iΠirreg
m` (c, ξ>)

]
. (110)

The problems that are connected to different expansions of the regular and/or irregular radial
Coulomb functions of thec-type by series of different basis functions are analyzed indetail in
papers [8,12,15]. In particular, in [15], the expansions ofΠreg

m` (c, ξ) andΠirreg
m` (c, ξ) are obtained

similarly to expansion (88) and (89). The formal transitionp → −ic, α → −iα∗ in (66)–(78)
leads to expansions in series of the complex functions with complex coefficients, which are rather
complicated object for direct calculations. For these and other reasons, we use expansion [15]
of the Jaffe’s type [27] for the calculations of the regular radial Coulomb functions and the
irregular Coulomb functions ofc-type at small values of the argument. Thus the regular solution
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Πreg
m` (c, ξ) is calculated from 1 to∞ by (91) and (93). ButΠirreg

m` (c, ξ) is calculated from∞ to
1, starting from (91) and (93). Such a combined way of numerical calculations has used in [8].

In conclusion we compare the results obtained for radial Green’s functionsGm`(ξ, ξ
′;

E > 0) in this article with the correspondent formulae of the paper[8]. So, formula (42) in [8]
contains an error: we should read4/R instead ofR/4. The same formula does not contain the
factor (ξ2 − 1)−1, what follows from the general expression for Green’s function for arbitrary
linear differential equation of the second order [28]. In addition, the Wronskian does not agree
with the normalization of the regular and irregular radial Coulomb functions of thec-type, which
was used in [8]. Apparently, the specified errors resulted inan incorrect final expression (44)
of [8], which determines the radial part of two-centre Green’s functions.
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