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A general procedure for correct two-centre Coulomb Green'stfon is given. It is moti-
vated by the incorrect formula of Liu. We start with partial expansion mfe@’s function
in terms of spheroidal functions. Various expansions of regular aedlitar radial Coulomb
spheroidal functions are also presented. The paper also contairehtre- Green'’s func-
tion for continuous spectrum. This article may be considered as a bashefthree-centre
Coulomb problem, which we aim to study in future.

PACS: 02.30.Gp

1 Introduction

The analysis of two-centre Green’s function is an imporfanatblem because it is of central
importance for quantum calculations in molecular and atggnocesses and scattering theory of
nonrelativistic electron from polar molecules and ionsm8aesults may appear to be useful
also forQQq baryons and)Qg mesons.

Let Z; and Z, be the charges of two nuclei 1 and+3, andr, the distances between the
electron (or charged particle with chargeand the nuclei 1 and 2, respectively, aRds the
separation between the centres 1 and 2. The Hamiltonianco€oulomb centres (the so-called
Z1eZy problem [1]) is

H=--A-21_22 @)

The need of Green’s function appears always when we use thelpation theory. The zero
order approximation is the solution to Sédinger's equatiod? ¥ (r; R) = E(R)¥(r; R). For
the first-order approximation we have an inhomogeneoustiequd his equation can be solved
by Green'’s functiori7 g (r; r'| R) of the two-centre Coulomb problem. Two-centre Green’s func
tion has the same effect in the electron structure theodyjjrathe theory of molecular spectra as
has Coulomb Green's function in atomic theory. However,-b&atre Green’s function is not so
well mathematically investigated as Coulomb Green'’s fiamctor one particle is.
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So far we do not have closed form of two-centre Green'’s fonctivhich should be analogous
to the Hostler and Pratt relation [2] of the one particle @outb Green’s function [1]. The reason
is simple. There are no adequate simple integral repreasmmaf the Coulomb spheroidal func-
tions (CSF). Well-known Laplace method gives usually hasmlytions of differential equations
in the form of integral representations (e.g. for the hypergetric and confluent hypergeomet-
ric functions, respectively). In the case of CSF, there andifitations of this techniques [3,6],
which enable to construct only integral equations andimiat

It should be mentioned that in most applications we are notch interested in the compact
formula for two-centre Green'’s function, as we are in theamgionGg(r;r’|R) in terms of
complete system of functions with defined angular quantumbrers ("partial expansion”). First
such expansion of two-centre Green’s function was givendyrénzi [7], specially for théf,"
ion. In this the case angular functions are identical withgpheroidal functions of free motion
in spheroidal coordinates.

In general nonsymmetrical ca¢g; # Z,), the first partial expansion faf > 0 was ob-
tained by Liu [8] who, however, obtained incorrect expresdor the radial part of two-centre
Green’s functiorGg (r;r'|R).

Another class that represents two centre Green’s funcsigmésented by the Sturm expan-
sion. This approach was analyzed in detail in [9]. We refgyapers [10, 11] where for Green’s
function of molecular hydrogen the approximate formulaeabtained within the framework of
methods of quantum defect and model potential.

The calculation of the radial Coulomb spheroidal functiRESF) represents serious math-
ematical problem. We have two solutions of the Coulomb waygagon, the regular and the
irregular one. Ifc? = ER?/2 and E > 0 (continuous spectrum) then we have RCSF-of
type (RCSFc) and fop? = —FER?/2, FE < 0 (discrete spectrum) we have RCSFyefype
(RCSFp). Recently, a great advance was achieved in the snlgalculations of regular and
irregular RCSFc’s. This was stimulated, in principle, byagtum scattering problems of two-
centres [1,8,12-15].

An exhausting analysis of many properties of RCSF and expasi®f these functions in a
series of special functions was done by Leaver [15]. Frorarrgyg published papers we should
mention especially papers [8, 16] which are devoted to theéysof different algorithms for the
computer calculations of regular and irregular RCSFs.

However, unsufficient study of RCSF does not allow for mofeative aplication of two-
centre Green’s function to solve current problems of atooh rmolecular physics. Two-centre
Green’s function can be used not only in the framework of gréysbation theory of many photon
processes for diatomic molecules [10, 11], but we employ théthod for the asymptotically
exact solution of many-centre Coulomb problems [17]. Owt paper will be devoted to the
study of the three-centre Coulomb problem. This problemlmiconsidered as the next step
to the solution of defined quantum mechanical problems of frauticles. We can apply the
obtained results of the solution of similar problems in ttenac collision theory, particularly in
the theory of one- and two-electron processes with retigion in adiabatic slow collisions of
multiply charged ions with diatomic molecules or with theasitive ions. Our increased interest
in atomic processes with redistribution is caused by thesagrole in the present research of
controlled thermonuclear fusion.

This paper can be considered as an introductory part ofssefigiorks in which we will
devote ourselves to the analysis of asymptotic methodeithitee-centre Coulomb problem of
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discrete or continuous spectrum. Derived semiclassipa¢sentation of radial Coulomb Green’s
function for a pair of two equal charged centres is a subjefttrther research.

Section 1 presents the structure of the partial expansidareén’s function for the&ZeZ
problem. Then we further develop the methods described5nlf8, 19] in Sections 2 and 3.
We construct two types of expansion of regular and irreggl@6Fp’s in series of the ordinary
Coulomb functions and in series of the confluent hypergedotinctions. We study the con-
vergence of these expansions. We consider this as a forrsial foathe numerical procedure of
the solution of the three-term recurrence relation. Weinlaaymptotic formulae for acceptable
values of the shift parameterin power R as R — 0 up toO(R?) order and in powers/R as
R — oo up toO(1/R?) order, respectively.

In Section 4, a detailed analysis of expansion of regularieedular RCSFp is given in
series of the confluent hypergeometric functions. In Sadiwe deal with two-centre Coulomb
Green'’s function for continuous spectrum.

2 Partial expansion of Green’s function in terms of spheroi@l function

Green'’s function of electron in the field of two equivalentuonb centres is a solution of
Schiddinger’s equation

— A - == — E|Gg(r,r;R)=6(r—71'), (2)

whered (r — r’) denotes the Dirac function arfél is the distance between the two centres with
the charge¥’.

The specificity of force field for the two-centre systefaZ can be expressed using the pro-
late spheroidal coordinate systefn, ¢) which is defined in terms of the rectangular coordinate
system by

v =5Ry/(1 7)€ — 1) cos g,
y=1R\/(1—-12)(€2 —1)sing,

or in terms of the spherical coordinate system by

E=(r1+r)/R, 1<¢&< o0,
n=(ri—r)/R, —1<n<l,
¢ =arctan (y/z), 0<¢p <2m.

The wave equation (2) now becomes

2 .2 2 2
R A

0
D€ € " o R e b

o (& —n?) +al}x

4
xGg (&, ¢80, ¢ R) = —§5(€ =& —n")o(p—¢'), (3)
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wherea = 2ZR. Since the angular quantum numifes not a good quantum number in non-
central field, we search a solution of Eqg. (3) in the form ofangion over the complete system
of orthonormal oblate angular spheroidal functishs, (p, n) [1,7-10]:

cim(e—¢')

) 4
GE (57”; @;51777/’ 90/ |R Z Z ml f f E (pa 7)) S;Z (pa 77/) Ta (4)
$=0 m=—1~

wherep = 1R(—2E)Y/2. Angular spheroidal functions,,.(p, n) can be taken from [20].
However, it is preferable to choose the following repreagon for.S,,..(p, ) [1]:

oo !

Soelp.) = Not) S A ()P (),
r=0,1
oo ! 2(2 n )' —-1/2
" 2 m+r)!
Noelo) = 2 (B 0) S gy | Q

r=0,1

whereP,;;brT( ) are the associated Legendre functions. The prime indich&ssummation
is taken only over the even valuesf ¢ = ¢ — |m| is even and over the odd values roff
q = ¢ — |m] is odd. The determination of the coefficieats*(p) suffices for the determination
of angular spheroidal functions. These coefficients anelédd in [20].

Substitution of (4) into Eq. (3) followed by separation ofjafar parts yields the differential

equation for radial Green'’s functid, (¢, ¢'; E):

{d% [(52 = 1)%] + [—A—p2(£2 — 1) + 2pag — gzm—_zl]}x

Gre(6,€5B) =~ 206~ €), 1<E< 00, ©

Here,a = 2Z(—2E)~'/? is the effective principal quantum number. Equation (6) $wlstion
for those values of the separation constanthich are equal to eigenvalugs,,(p) of the Sturm-
Liouville problem

[ la=mrt] + == = 2 st o

Equation (7) determines oblate angular functi®n,(p,n) of the p-type [1]. Now, one-
dimensional Green’ s functioﬁmg(g ¢'; E) can be constructed by standard methods. We assume

thatIl 1)(p §) andH (p £) are the independent solutions of

{dg [(5 — Ujg] [—)\mz — (€% = 1) + 2pa — 52771—21} } We(p,€) =0.  (8)
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(p, &) is regular ag — 1 and diverges a§ — oo and the solutiori1® )(p7§)

me

The solutiont1'*)

me

diverges ag — 1 and is regular a§ — oo. Then radial Green'’s function

(1)
Gmg<f7f/;E) = _g Hm(( 7£<) mg(p,§>)

p
P (& — )W (1) (p.€). L (p, )|

9)

whereé. = min(¢,¢’'), & = max(€,¢), andW [Hni%(p, g),Hfj}(p, 5)} is the Wronskian of
the squtionsH,Ei%(p, §) andﬂgﬂ(p, £).

3 Expansion of regular and irregular radial Coulomb spheroidal functions of p-type
(RCSFp) over the ordinary Coulomb radial wave functions

Let us look at the radial equation (8) in detail. We introdthoe new variable
=p+1), 2p<z <0 (10)

and the new function

_ m/2
o) = (£57) Tal) (1)

Then equation (8) transforms to

d d ~
le (xde) x2+2a:r1/(1/+1)] I (z) + fopX
viv+1)—
b

x {2(m+ Ded 4 <

Am ~
- Z+2a)x2y(u+l)] M () =

= Tuﬁml (z) +pQuﬁml (z)=0. (12)

The splitting of the total operator into two parts has theaadage that the differential operator
T, (x) coincides with the radial Scbdinger operator in spherical coordinates for the Coulomb
field of the united atom with charg&Z and angular momentum. Two linearly independent
solutions of the equatiofi, R(z) = 0 are expressed by means of the regdlés, b; «) and the
irregular¥ (a, b; x) confluent hypergeometric functions

RWM(z) = RM(z) = 2" *®(—a+ v+ 1,2v + 2; 22), (13)

R®(z) = R (z) = a¥e " U(—a+ v+ 1,20 + 2; 2z). (14)

The functionsd(a, b; z) and¥ (a, b; ) are defined by the integral representations

®(a,b;z) =

1
/ e (1) 'dt, (Reb>Reu>0), (15)
0
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/e*wa*1 (1+6)"*'at, (Rex>0,Rer >0). (16)
0

1
I(a)

U(a,b;z) =

The regular confluent hypergeometric functi;ﬁ(u, b; x) differs from the usual normalization
[21] of the Kummer series by the factef™I'(b — a)/T'(b):

= i'n'ar b—a iﬂ'ania anl'n
D(a,b;x) =e (F(b) )‘I)(aa biz)=e (F(b) )Z)((b))nn! ’

(17)

n=

where(a),, and(b),,, denote the Pochhammer symbols. The Wronskial(af b; 2:) and¥ (a, b; z:)
is given by

W[®(a,b; z), ¥(a, b;x)] = —e'™

xe”. (18)

The function®(a, b; z) has an attractive property. Normalizéda, b; z) obeys the same differ-
ential and recurrence relations as ddds, b; «) (see (72)—(74)).
In analogy with two independent solutions (13) and (14) efrédial equatioT, R(z) = 0,

we now introduce two independent solutidﬁ%(ax) andﬁfl%(x) of Eq. (2) which are deter-
mined by their asymptotic expressions for large value,of

(z) — (22)*'e®, T (z) — (22)* e ™. (19)
Evidently, Eq. (12) gived, R(x) = 0 asp — 0. Itis clear thafl1!) () andI1‘} () must reduce
for p = 0 to regular and irregular function’ﬁél) ande), respectively. This suggests to expand
the functions1'!) () andIi®)(z) in the form

00(@) = A0 (@ Amepie) = > by (plas e, v) R, (), (20)
§=—00
02 @) =02 Amepie) = Y by (plas e, v) R, (2). (21)

The parameter is not integer and it must be chosen to satisfy the convemehthe series (20)
and (21) for2p < = < oo.

The recurrence relations for the basis functi@ﬁgu(a:) anng,,(x) can be derived by suc-
cessive elementary formulae relating the adjacent cortflugrergeometric functions or by the
well developed technique of integral representations efcitmfluent hypergeometric functions.
The second possibility is more constructive. From defingi@¢13) and (14) and the integral

representations (15) and (16) it follows thﬁﬂgy(o:) and Rgr),,(x) obey the same recurrence
relation (e, () = RYY), (2) of Reyy(2) = R, (x))

1
AsRuﬁ»sfl(x) + (BS — E) RS+V(£U) + CSRS+IJ+1 (.CU) = 0 (22)
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and satisfy the same differential relation

dRy+s(z)

dx = KsRy-Q—s—l(x) + MsRu-ﬁ-s-‘rl(x)a (23)
where the coefficientd, B, C,, K, and M, do not depend om and they are defined as

A, = S+v—+a B, — « ’
(s+v)(s+v+1)

C2(s+v)(2s+ 204+ 1)

B 2(s+v—a+1)
C(sH+rv+D(2s+20+1)

K, = s+r+a ’ MS:_2(5—|—1/—04+1). (24)
2(2s+2v+1) 2s+2v+1
The substitution of Eq. (20) or (21) in Eq. (12) with subseguase of the differential
equationT, s R, s(x) = 0 and of the recurrence formulae (22) and (23) yields the recge
relation forh,(v)

ashsi1(v) + Bshs(v) + yshs—1(v) =0, (25)
where
_(8—|—V—|—1—m)(5+y+a+1) B
Qs = 2+ 20 +3 b, Bs_(S+V)(S+V+1)—)\7n£’

4(s+v—a)(s+v+m)

25 + 20 — 1 b
The recurrence formula (25) constitutes a system of lineandgeneous difference equations.
The coefficientshs(v) given by Eq. (25) are determined up to arbitrary multiplidriehh can

be fixed to be consistent with the asymptotic behavior of thE:tﬁonsﬁfj}(x) andﬁfj}(x) at
infinity by conditions

Vs = —

T 1 im(s+r—a+l)
Z he(v) (s+v+a+1l)e

Rt N(s+v—a+1) 28+v =1 (26)
for I1'!) (x) and
. he(v)
> e =1 (27)

S§=—00

for the functionl1‘®) (). In order to evaluate the Wronskianidf') (z) andIi‘®)(z), we consider
the asymptotic form of these functions and their derivatigst — co. Then

2p(€2 - 1)W ﬁgrlz% ml

(2), 1) ()| = —1. (28)
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Using formulae (9)—(11) and (20)—(28), it is possible to fiadial Green’s function

_ ’_ m/2 _

whereé . (£-) is the smaller (larger) one gfand¢’, and

) (p(€ + 1)) = exp[—p(£ + 1)]x

X Z hs(V)[p(€ + 1)]"4‘5;1;(—@ +r+s+1,2v+2s+2;2p(€ + 1)), (30)

S§=—00

2 (p(¢ + 1)) = exp[—p(£ + 1)]x

X Z hs()[p(€ + D))" U (—a+ v+ s+ 1,20 + 25 4 2;2p(€ + 1)). (31)

General application of series (30) and (31) depends on fliditpof convergence which is,
in principle, determined by the behaviour of the coefficsént(v) for s — +oo. The three-term
recurrence relation (TRR) for the coefficierits(v) (25) considered as a second order linear
homogeneous difference equation posseses two indepesalatibn sequence:; } = {h; :
s=..,-2,-1,0,1,2,..} and{nf} = {h} : s =..,—2,-1,0,1,2,...}. These solutions have
two different asymptotic behaviors for large.

It follows thatsEI:Poo (hy /h}) = 0 from the analysis of TRR (25). In this case (see, e.g.,

[19]) we say that h} } represents minimal solution of (25) as— +co. Arbitrary non-minimal
solution{}} of TRR, linearly independent dfi_ }, is called a dominant solution as— +oc.
To obtain the convergency of the expansions (30) and (31inu& choose the minimal solution
of TRR ass — oo and ass — —oo. It follows from the following consideration that the
dominant solutio{ 2} } does not fulfill this requirements becausg/h,_, (h}/hl, ;) becomes
unbound ag — +o00 (s — —0).

The TRR (25) contains a free parameterThis means that in expansion (30) and (31) is
not arbitrary and must be chosen in analogy with deternonaif the eigenvalues of separation
constant in the theory of the spheroidal and Coulomb sptiardinctions [1]. The procedure
of finding necessary values can be simplified due to the close relation between three-ter
recurrence relations and the infinite continued fractions.

The recurrence relation (25) can be written in the form

h@(”) _ Vs s
hea() ~ Bt aha @Ry G2

hs(v) o
=— , (s> -1). 32
hs—i—l(”) ﬁs + ’Yshs—l(y)/hs(y) ( ) ( )
The successive application of (32) enables us to express tiedations in the form of infinite

continued fractions

hs(”) o Vs OgYs+1 Os+17s+2 (33)
hsfl(V) ﬁs_ ﬁerl_ ﬁs+2_
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for positives = +1,+2,+43, ... and

hs(y) —Os Og—17s Ag—27s—1
= 34
hs+1(V) ﬁs_ 6571_ ﬁ572_ ( )
for negatives = —1, -2, -3, ....
But this process is effective only if
. hs+1(l/) . hé—l(y)
smtoo (1) 0, [ Hm_ hs (V) 0 (35)

Clearly, in general case (for arbitrary possible solutions of Eq. (25) form the dominant se-
quence{hf(v)} ass — +oo, and thus the ratios of subsequent coefficients in expasgki)
and (31) grow for largés| as

h;r+1(V) 2s . hgil(’/) S
im - ~—— im - ~——
e BEW) T et nEw) | 2p

(36)

This means that the series (30), (31) and their correspgrmiintinued fractions (33), (34) di-
verge for the coefficientd which form dominant sequendg:!} ass — +oo. Necessary
minimal solution of the difference equation (25) which fiutfie asymptotic conditions (35) ex-
ists only for a specific value,,; = vn¢(p, a, \e) Of the parameter. Then we can infer that
the series (30) and (31), which represent the solution of(E8), converge. In such a way we
deduce the equation for the acceptable vaiye Suchv,,, and relations (33) and (34) give the
minimal solutions of Eq. (25) via the infinite continued fiiaos.
The recurrence equation (25)sat 0 requires

hy h_1

Bo = —040}70 - 7070~

(37)

Substituting the right-hand sides of (33) and (34) into (#&)obtain the characteristic equation
as a sum of two infinite continued fractions for acceptablaevafv:

B = Q—_170 ®¥—27—1 ®X—37-2 Q71 172 273
0

C Boi— Boa— Boz— 0 Bi— Po— B3—

We have minimal solutions of Eq. (25) which convergesas: +oo only for rootsy,,, of Eq.
(38).

To verify the correctness of this proposition, we must sttiay behavior ofv; /h,_; and
hy /h, ., for large positive and negative respectively. Immediately from (32) we find that

. hy  2p 1 1 1
ngoo hy_ s {1—S<V—&—a—m+2>+0<s2>}, (39)

1

he P 1 1 1
im s — P 2 - LRI 4
im s P { 8 (V a+m+2> —|—O<82)] (40)

(38)
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On the other hand the sufficient conditions of the convergearfitche infinite continued frac-
tion (34), (35) and (38) require

1

Ag—17s A_sY—s+1
4 |BBsn

557165 675ﬁ75+1

for sufficiently large positive.
From the asymptotic expansion of (25)s&as+ +oco we obtain

< (41)

1
4

. As_17s o g 2 o 21 i

SETOO Bs_1Ps B (s) {1 s +0 <82>] ’ (42)
. Q—sV—s+1| _ (P 2 . 2(” + 1) l

SE{EOO ﬂ—sﬁ—s—i—l N (;) |:1 S + 0 <52>:| ' (43)

Thus, forp > 1 and|s| > 2p, the conditions (41) are satisfied. It is important to keemind
this estimate and to choose the minimal number of terms itirnoed fraction (38) that will be
needed for the computation of,.(p) with required accuracy.

The algorithms of numerical solution of Eq. (38) are chosdferegntly. Their detailed
description is given in [8,15,19] and we will not discusstpioblem here. We only note that for
all used algorithms it is necessary to accept accuratergjastimate for the acceptable values.
This starting estimate can be obtained by the asymptotiaresipn ofv,,..(p) for largep (p > 1)
orsmallp (p < 1).

In the case whem = O(1), £ = O(1), a = O(1) andp — 0, the asymptotic expression for
vme(p) in the united-atom approximatiol®(«< 1) is obtained by the method proposed in [18].
The resultis

Vime(p) = £+ [V]ap® + [V]ap* + ..., (44)
where

202[0(€ + 1) — 3m?]
20+ 1)e(f + 1)(20 — 1)(20 1 3)

, [V]a= a? (Z/T(T?; + azyfjb ,

[V]2:_(

L) _ 12[0%(€ 4+ 1)% — m?(18¢2 + 18¢ — 5) + 25m*]
mET 0+ 1)(20 + 1) (20 + 5) (20 — 3)(2¢ — 1)2(2¢ + 3)2’

(@) 620(0 + 1) — 3m?| Ay — 203(0 + 1)P[406(£ + 1)(6¢2 + 6 — 11) + 3]
Ymt = (20— 3)(20 + 5)[((C + 1) (20 + 1)(20 — 1)(2 + 3)2 ’

Ao = {T0(0 + 1)[406(L + 1)(20% + 20 — 3) + 9] + 45}m?.

It follows from the formula (44), that,,,,(0) = [v]o = ¢, i.e. acceptable value in the united-atom
approximation is equal to orbital angular momentum.
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The solutions,,.¢(p) to Eq. (38) are not ambiguous. They are actually periodi wie
period 1. Ifv,,¢(p) is the solution (38) (for fixedn, ¢, o, andp), thenuv,,,,(p) = n are solutions
of Eq. (38) for arbitrary integeti. Roots of Eq. (38) that are integer or half-integer, and trey
spurious. A — 0, these roots do not acquire the values of angular orbital emom¢. The
mechanism of the appearance of spurious roots is descritgatail in papers [15, 18].

To select the acceptable value= v,,,(p) for fixed quantum numbers, £, « and for given
p from the set of roots of Eq. (38), we start with the solutioreqgf (38) forp <« 1. We take the
asymptotic value given by (44) as an initial valuegf,(p). Then we increasg using arbitrary
step sizeAp and we find the solution of Eq. (38). By continuation of thisthwel we can evaluate
vme(p) for givenp.

In Table 1 we see the values @f,, obtained by the asymptotic formula (44), as compared
to the numerical solutions of Eq. (38) found by the minimiaatof continued fractions. This
method was proposed and performed in a calculation cornetiipg to continued fractions in the
theory of the polyspheroidal periodic functions [22].

For smaller parameter = (—2F)'/2R/2 and larger orbital angular momentum we obtain
better agreement between the asymptotic expansion (44hamimerical solution of Eq. (38)
(see Table 1). For example, valuasg (o, R) determined by (44) with an accuracy up@gR°)
agree with the corresponding values that are obtained wittive accuracy = 10~!2 numer-
ically for R = 0.025 with the accuracy of nine digits, faR = 0.25 with the accuracy of five
digits. The agreement mentioned for the both values shoatsttis not necessary to compute
vme(a, R) numerically for smallR. The first three terms of expansion (44) give the correctesalu
of vme(ar, R) with three per cent accuracy. Such high accuracy selecfitreanitial approxima-
tion of v,,,¢ (v, R) provides the stability of iterative process [22] with thepssize ofAR < 0.17
over0 < R < 6 and avoids spurious solutions of Eq. (38).

After the calculation of acceptable valuesgf,(«, R), the coefficients of expansiaiy (vm¢)
for s = +1,+2, ... are defined by formulae (33) and (34) in terms of the largesffictent /g
(for givenm and/). Then the valué: is calculated from the relation (26) in case of RCSFp
1)) (p, €) and from relation (27) for RCSF) (p, &).

Finally, the convergence of the series (20) and (21) is defimethe asymptotic behavior
of ratiosh; R, s(x)/h,_ Ry, s(x) for large positives, and ofh; R, s(z)/h Ry ysi1()
for large negative. Here,R,, () = R(Vljs(x) or R,ys(x) = R,ﬁs(x). One of the important
properties of basis functior®, , s () is that apart from the differential equati@p s R, s(z) =
0, these functions fulfill the linear recurrence differenqgeation of the second order (22). Then,
owing to the terminology used in this paper, the sequendmedlmctionst,ljs(m), s=0,1,2...

generates minimal solution, b (%zs(x), (s = 0,1,2...) is a dominant solution of Eq. (22) as
s — +o0. Fors? > 2ap we have from (22)

(1)
 R)@ a2 1 1 1
SETOOM—‘%[”S(O“”‘z)“)(ﬁﬂ’ (s> ),

v+s—1
R® 1 1 1
lim %w)zi[l-{——(a—l—u——)—i—O(—Q)], (s > x). (45)
R G AR €
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Tab. 1. Acceptable values,..(a, R) asR — 0 for Z, = Z, = Z = 1 system

a=V2,E=-1 a=V2,E=-1
R Vg oo Vo vo1
0.025 0.000416661 0.000416661 0.999917 0.999917
0.05 0.00166658 0.00166657 0.999667 0.999667
0.10 0.00666567 0.00666519 0.998665 0.998665
0.20 0.0266743 0.0266430 0.994641 0.994641
0.30 0.0602401 0.05988 0.987868 0.987872
0.40 0.108375 0.106287 0.978242 0.978261
0.50 0.174353 0.165741 0.965602 0.965677
0.60 0.269069 0.23808 0.949715 0.949948

a) Acceptable values obtained by the numerical solutiongpf(B8)
b) Acceptable values that are obtained by the asymptotiodta (44).

According to (22), we find

lim Ru+s+1(x) _

1K s<Kx).
LN e R )

A~ =

Combination of (39) and (45) yields

h—RW 2U+1— 1
i ey 2rlom o (1Y),
steo hsiflthstl(x) 2s y °
h—R(Q) 2 —1 1
lim %:_]){UFLJFO(?)]' o)
st hs—lRu-‘rs—l(m) r 5 §

The ratio test of the series (30) with positiveshows that this part is absolutely convergent for
an arbitrary finitep andx = p(£ + 1). For positives, part of the expansion (31) converges for all
¢ > 1, but diverges fog = 1.

Both sequence$Rf,1+)s(:c)} and {Rf,%zs(x)} form the couple of dominant solutions of the
difference equation (22) as— —oo. From (22) we obtain

. Rl,_;,_s(x) - 4s 1 3 1

The relations (40) and (47) yield under the conditidrn> 2ap

lim W:%{l_m_ﬂr()(gﬂ’ (48)
s==o b Ryjsqa(z) @ $ s
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which implies that the parts of the series (30) and (31) areeaent for all positive, but are
divergent at = 1 for the negatives.

Therefore the values of functiofk | )(p £) andH(Q}(p, ¢€) can be calculated with necessary
accuracy by the summation of the series (30) and (31)

) (p,€) = GIDEJ Vme)R W (€ +1)), (49)
M0 = (E7) X bR, 0fe+1) (50)

for ¢ € (1,00). The calculations of the basis functioﬁéﬂywZ anngBV y
numerically, using an algorithm described in detail in [2Z],

For large intercentre separations>- 1) and for¢ close to 1, the series (49) and (50) con-
verge slowly as follows from estimates (46) and (48) and frmmerical calculations [23]. This
is related to the character of the asymptotic behavior obtsés functionﬂ%&ﬁmZ (p(§+1)) for
larges and¢ — 1. In Sec. 4 we will show other very useful expansions. In spftaot very
largep (for examplep < 5) and not very small value af (¢ > 1) the series (49) and (50) are

appropriate for numerical calculations.

can be done easily

4 The limit form of two-centre Green'’s function at small intercentre separation. Special
cases of expansion fof1'"? (p, ¢)

It is interesting to analyze the relations (3) and (29)—({1he limit of R — 0 (p — 0), and to
compare the results to the familiar ones of Coulomb Greemistion [24]. It follows from (11)
that for R — 0 and finiter, the prolate spheroidal coordinates reduce to the sphenes:, 6
andy

§—2r/R, n— cosb. (51)

Equation (7) reduces to the equation for the associatedridegéunctionsP;™ (cos #). Then the
angle function for theZeZ problem coincides with the one-centre Coulomb functian, i.

o pime - n eme (@204 1)(¢ —m)!
11)11% Sm@(p7 7]) \/ﬂ = mfpl (COS 9) \/ﬂ = le(ev SO), Nm[ = \/ 2(€ + m)' ’
(52)
g () = (£ + 1), ©3
pﬁ

By inserting this limit value of\,,, into Eq. (6) and substituting = 2r/R, we obtain the
equation for radial Coulomb Green’s function.
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Now, we study the limit transitions fak — 0 in (25) and for radial functlonE[M( (E+1))

and Hg%( (£ 4+ 1)) in expansions (49), (50). We use the zero term in the expar(di4) for
permissible values,,.(p) and the limit value (53). Then (25) gives

[(s+0)(s+0+1)— 0+ 1)hy =0, s=0,+1,+2 .. (54)

for R — 0. It follows from (54) for R — 0 that in every series (26), (27) and (49), (50) only the
terms withs = 0 are non-zero. Then the limit values/of asRk — 0 are given by the relations

¢
lim h ( ) 2 F( a+£+1)€7i7r(7a+€+1)

5 55
p—0 T(a+0+1) 0 (59)

for the expansion (49) of functiori') (p(£+ 1)) and

me

lim Ay (p) = 2%050 (56)
p~>0

for the expansion (50) of the funcudlh(2 y(p(€+1)).

These formulae together with Eqs (49) and (50)Ras~ 0 show that the radial Coulomb
spheroidal functions qf—typeHEn)Z (p, &) =[(E-1)/(&+ 1)]m/2ﬁ§f3,3 (p(£+41)) have the required
behavior forR — 0

, T(—a+0+1) [4Zr\"
i ) D (120

(20 +2) a
27 47
xexp<—J)¢< a+0+1,20+2; —T) (57)
(6% (6%
4 l
lim %) (p, &) = <£> exp (—2—Zr) \I/( at0+1,20+2; @). (58)
p— B (6% (0%

Now, according to Egs. (52), (57) and (58), we can easily stiat for the problen¥eZ
(model of hydrogenlike molecular ion) two-centre Coulomieéh’s function defined by for-
mulae (3), and (29)—(31) gives radial Green’s function fa tne-centre Coulomb problem of
charge2Z in spherical coordinates @ — 0

9] 4

hm Gg (r;r'|R) = Z Z ge(r, 1" E)Ye(0,0)Y," (0, ¢") = G(;)(r,r/), (59)
£=0 m=—/¢

where
8ZT(—a+0+1) (4Zr \' (4Zrs\' 27
ge(r,r’s E) = o T@12) ( - ) - erp _;(T<+T>) X
47
><<I>(— T<)\I/(—a+€+1,2£+2; aT>). (60)
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So, we have proved that radial Green'’s functions (3), (ZA))}-€¢omply with the principle of cor-
respondence so that all functions for the two-centre Collproblem defined in the spheroidal
coordinates must give one-centre Coulomb analogie®fes 0.

Now, we consider some different special cases of the solufathe Eq. (8) that follow
from Eqgs. (49) and (50) for specific values@fandv. If « = 0 (Z = 0) andv = ¢, then
the coefficientdis (0, Ae, £|p) = 0 for s < m — £ — 1 and the sumation in series (49), (50)
begins withm — ¢. In this case the confluent hypergeometric functidris + ¢ + 1,2s +
20 + 2;2x) and ¥(s + £ 4+ 1,2s + 2¢ + 2;2x) are expressed by known formulae [21] using
the modified Bessel functions of the first ordgr, ., 1 (z) and of the third order< , ,, 1 ()
(Macdonald function) respectively. Then after easy tramsftions we obtain expansion of the
radial spheroidal function in cylindrical functions [1,]20

-1 7 > —1)stm+1
ng(u )‘me’p;f) = 2p(£r+ 1) (g + 1) Z hs %ISerJrI/Q (p(§ + 1))7 (61)
s=0
1 —1\2 & hy
Hfﬁ%(o, Ame, p; §) = 2mp(€ + 1) <§ n 1) Z WKs+m+1/2 (p(€+1)). (62)
s=0

The coefficientsh, in these expansions comply with Eq.(25), wherg 85 and~, have the
following form

_ s+ D(s+m+1)

2s+2m+ 3

4(s+m)(s+ Qm)p.

2s+2m—1 (63)

Bs=(s+m)(s+m+1)— e, vs=—
For practical purpose, this a is very useful analytical cartion of the functionﬂ&%(&
Ame,; €) (61) andﬂgz(o, Ame, D; €) (62) on the axig0, +ioo). This continuation with respect
to the normalization is identical with the oblate radial smidal functions of the first and second
order (see [1]).

Let us go on to the determination of conditions under whiah ftlmctionsHE}l%(p, ¢) and
Hfi% (p, €) defined by (26), (27), (49) and (50) are transformed to plysialutions that represent
the radial partl,..(p, ) of radial wave functions of the two-centre problefaZ. Here,k is
number of zeros of the functioll,,;(p, &) located in intervak € (1,00). Assume Green’s
functionG g (r;r'| R) as a function of energly has poles at point8' = E;(R) that correspond to
the discrete energy spectrum of the problBe¥: E;(R) = Enem(R), j= (N¢m), N =
kE+¢+1, N =1,23,... According to radial Green’s function which is expressed @y
these poles are zeros of the Wronsklé(h[ﬂslé(p, 5),H(2) (p, 5)} and Eny,,, (R) satisfies the

ml
condition
_aNZm+VmZ(EN€m)+1 = _k7 k:071721“'1 (64)

whereanm = 2Z/v/—2Enum(R). Residues of7,,,.(€,¢'; E) at polesE ., (R) represent the
product of normalized radial parts of eigenfunctions far #e”Z problem [24]:

ﬁmk(pv&)ﬁmk(pv 6/) :E—I}én [(Eme - E)Gm€(€>§/7 E)] (65)

Neim
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We may easily determine this limit fa&,,,(¢,¢’; E) expressed by Egs. (29)-(31) when we
take into account the normalization conditions (26) and.(Zhe calculations show that for the
energy Enem(R), which is the eigenvalue of the proble#eZ, the functionsH(l)(p,g) and

ml

Hfi}(n ¢) are linearly dependent and that they are identical to thialr@drtIT,,,,(p, &) of the
two-centre problem [1].

5 Expansions of an regular and irregular radial Coulomb spheoidal functions of p-type
in series of confluent hypergeometric functions

We transform the differential equation (8) for the radialu@onb spheroidal function g-type
by taking out the appropriate behavior of eigenfunctiorthatsingular points of the differential
equation, namely = —1, ¢ = 1, and¢ = co. We find that neag = —1 itis (¢ + 1)™/2, near
the¢ = 1itis (¢ — 1)™/2, and at the infinity point it is eitherxp(—p(1 + &)) or exp(p(1 + &)).
We therefore introduce new functidn(z) = V;,.¢(z) by

Hm@(pv g) = (62 - 1)"”/2 eip(£+1)vm£(z)a z=2r = 2]7(5 + 1) (66)

We readily find thal/ (=) satisfies the differential equation

2(z = 20)V"(2) + (D1 + 2Dy — 2%) V'(2) + (D3 + 2D4)V(2) = 0, (67)
where

V'(z) = dl;iz)’ 20 =4p, D1 =—-2(m+1), Dy=2(m+1)+ 2,

Ds=m(m+1)—Ape—2po, Dy=0c=a—(m+1). (68)

We will find the regular solutio”")(z) and irregular solutio’(?)(z) to Eq. (67) in the form
of series of confluent hypergeometric functiaghend ¥, specified by

oo

V() = V(@ Amepi0) = D galo, Anes vIp)B(—a+m + 1,5 +1;22),  (69)
oo

VA(z) = Vﬁg)(a, Ame, Dy T) = Z gs(a, Ape, v[p)¥(—a+m +1,s +v;2x), (70)

wherev is not an integer. We use the same notation as in part 2biand ¥ denote the regular
and the irregular confluent hypergeometric functions,@espely. We introduce short notation

O,(2) =P(—a+m+1,s+v;2z), Ye(z)=¥(—a+m+1,s+v;2z).

Let R,(z) denote an arbitrary function @b, (z) or ¥,(z). The functions®,(z) and ¥,(z)
represent linearly independent solutions of confluent lygametric equation
d*R,(2)
dz?

dRs(2)
dz

+(s+v—2) +oRs(2)=0 (71)
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and therefore®, (=) satisfies three-term recurrence differential relations
Rer1(2) = (s+v—14+2)Rs(2) +(s+v—14+0)Rs_1(2) =0 (72)

and obeys the following differential relations

d%f) = Rs(2) = Rapa(2), )
O (1R + -1 o Re(2) (74)

The Wronskian ofb,(z) and¥,(z) is given by (18).
Substituting (69) or (70) into (67) and using Eq. (71) andrfolas (72)—(74), we obtain the
three-term recurrence system

Psgs+1(V) + ’fsgs(’/) + 5593—1(1/) =0 (75)
with recurrence coefficients
ps=—(s+v+o)s+v+1-2m+1)], ds=4p(m—s—v+2),

ks = (s+v)[s+v+4dp—1—2(m+1)]+2p[c —2(m+1)]+ (m+1)(m+2) — A\pe. (76)

The structure of the recurrence relation (75) shows thagereral case (for arbitrary) the
solutions of Eq. (67) given by (69) and (70) are divergentbfinite values of argument. As in
part 3, the coefficients expansign and acceptable values,,(p) at which the series (69) and
(70) converge can be obtained by solving equation (75) ukiagnethod of continued fractions.
To separate a minimal convergent solution to the equatibhféf s — +oo, it is necessary to
set asymptotic conditions:

lim gS+1 (l/)

—0, 1m 22 _y 77)
S$—+00 gs(y)

§—==0 (s (V)

As well as in the section 3, we obtain for acceptable valyggp) transcendental equation as a
sum of two infinite continued fractions

_ p-100p20-1p-302 n Pod1 p1d2 p2d3

. . (78)
K_1— K_9— K_3— K1— Rog— K3—

Ko

Required values,,,,(p) satisfying equation (78), can be calculated (as in the@e&)j by mini-
mizing continued fractions of (78) using numerical caltiolas [22]. We take the required zeroth
approximation fow,,,(p) atp > 1 in the form of asymptotic expansion as— oo

3+3m+2u—o 1
Dmg(p):( 5 a )+4—p<—1—m—2u(1+m+u)+

(l+m+2u—0)
8

x [=1+3m* —4dp(p+1) +o(4+0) +2m(l —2u+20)]) + O (p?) , (79)
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whereo is determined by Eg. (68) and= (¢ —m)/2 foreven({ —m) andy = ({ —m —1)/2
for odd (¢ — m). To distinguish requested values that correspond to tharesxpn (69) and (70)
from the values for the expansions (49) and (50), we use b&nQy,.

The asymptotic expansion (79) was obtained in [23] by thehogtwhich was published
in [1]. Therefore we do not show the details of derivationeheihe calculations performed
in [23] showed that valueg,,, obtained by Eq. (79) agree with values that obtained fotivela
errore = 1072 by computer for the case, / <5, R ~ 5- 10 with an accuracy of up t2%,
and form,¢ <5, R ~ 12+ 20 with an accuracy of up td%. The agreement of these values
does not depend only aR, but also onZ, E, andp.

It follows from the structure analysis of Eqs. (76) and (#&ttthe equatiom, = 0 is a
limited form of the transcendent equation (78)pas-> 0. Further, in the united atom approxi-
mation (R — 0), the permissible value,,.(p) must attain the value equal to the maximal root
of the equations, (7,,,(0)) = 0. So, the zeroth term of the asymptotic expansiom,pf(p) is
Ume(0) = m + £+ 2. This valuer,,, is convenient for finding permissible value for sma#énd
for control calculations.

The convergence of the continued fractions (78) (at leagtfo> 4p)has been proved in Eq.
(23). Therefore we will prove convergence of the expans{68% and (70). Again, we denote
the coefficients that correspondent to the minimal convergelution of the difference equation
(75)fors — oo by g, ,s=...,—2,-1,0,+1,42,...}.

At first, we establish the limit values of ratigg /g, , ass — +oo andg; /g, ass —
—o0. The relation (75) yields

. 4 1—
lim 9_75 2Py + m+l-v +0 (5’2) ’ (80)
s§——+00 9s_1 S S
. 1 —
lim g+=1+u+0(s*2). (81)
S§——00 gs-‘,—l S

Using the terminology of the previous paﬁs(z) is the minimal solution an@ 4(z) is the
dominant solution to (72) fos — oo. It follows immediately from (72)

hm ) pemmol g2 (82)
s——+00 @371(2) S
Uy(2) s 2x

li =— |1
SHITOO U, 1(2) 2x +
for large positives. _
Now, we suppose that both solutions of Eq. (22)2) and¥ (=) are dominant fos — —oc.
We obtain using (72)

(v=2)+0(s7?)], (83)

S

lim Re(z) m+1—a

§——00 §R5+1(2) B S +0 (5_2) ' (84)

This result together with the asymptotic relation (81) give

lim 9s R (Z)

2
- =14+240(s7?). (85)
s==o g Rt (2) S ( )
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Therefore, the ratio test implies that the negative parthefseries (69) and (70) converge for
anyz = 2z = 2p(¢ + 1). Further it follows from Egs. (80) and (82) imply that

~d, 4 -
i 22 A (1 +2 %10 (5‘2)> : (86)
§—+0o0 g;_1<1>s_1(z) § §

so that the series (69) is uniformly convergent (for arljtpa oo andv) with regard to (85), and
not only for¢ € [1, c0), but for whole numeric axis.
Finally, combination of (80) and (83) gives

lim % s(2) 2 <1 pmAlovi =2 (52)> . 87)
sotoo g W q(2) @ s

If |2] > 2p (¢ + 1] > 2), then the series (70) converges as it follows from asyng(85).

Evidently, the rapidity of the convergence of both serie®) @nd (50) for largeg exceeds
substantially the rapidity of the convergence of the se® and (70). In spite of this, it is
convenient to use partial sums of the series (69) and (7Qltuiate radial Coulomb spheroidal
functionsl‘[&f) (p, &) of p-type with given accuracy

) (p,€) = (€2 = 1) 3™ g7 (D) (—a+m+1, 5+ e 2p(E+1)), (88)

S§=—00

) (p,€) = (€2~ 1)™2e PEHD) N7 g7 (D) U(—a+m+1, 5+ e 2p(E+1)). (89)

S=—00

Numerical experiments show that to obtain, for exanﬁlf;};; (p, &) at§ = 1, p < 5 with relative

accuracyl0~'® we need large number of termis|(> 100) in the expansion (88) [23].
Therefore, it is more convenient to use the combination efséries (49) and (50) and (88)

and (89) for practical numerical calculations. The valuahke regular radial Coulomb functions

and of irregular radial Coulomb functions pftype are calculated in inverse order (framm to

1) by using the expansions (49) and (50), and by initial \&lilbat are given at a distant point

where asymptotic expression (19) holds.

Since the expansions (88) and (89) converge slowly, wellfs&p, &) and 1) (p, €) in
ordinary direction (from 1 tax) only in the neighborhood of the poigt= 1 for evaluation.
Starting at¢ = 1, we continue to the poingy (£, > 1) where we can determine the values
of regular and irregular functions, using expressions @) (50) with necessary accuracy. Of
course, the regular and the irregular solutions of (49) &)l énd 88) and (89) have to match at
¢ = &y because the "normalization” of the coefficient is not deiaed by expressions (26) and
(27).

This method of obtaining solutiorEﬁiZ(p, €) andHffog(p, €) is analogous to the algorithm
which is explained in [15] and used in [8] for the calculatiohregular and irregular radial
Coulomb spheroidal functions of thetype in the theory of scattering by two Coulomb centres
[1,12,25].
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6 Two-centre Green'’s function of continuous spectrum

For positive energyf > 0) an expansion of Green’s functigfig~o(r;r’|R) is constructed
by the normalized prolate angular spheroidal functidhs(c,n) [1]. But the radial part of
Green’s functiorG,,, (&, £'; E > 0) satisfies an equation which differs from Eq. (6) by replacing
p — —icanda — —ia*. Then we can express the radial part of Green’s function éyegular
IV (¢, €) and the irregulafT; ,“’ (c, ) solutions of homogeneous equation, i.e.

mi
1z e o) [ (e &)+l (e &)
€O (62 = WAL (e,). (1157 e, ) + 3T (e, 6)|)

wherea* = —ZR/c,c = kR/2 andE = k?/2. ‘
For practical calculations we use representatidfi§ (c, ) andII"“/(c, £) as linear com-
binations of the Coulomb functiors, ; ;(«*, ) andG, 4 s(a*, z) [15]:

Grme(§ €5 E > 0) = (90

e =5 (57) M), 01)
irre _ 1 57 1 B ( (=)

e = 5 (551) [M50@ - m2w)]. (92

IE @) = 3 hula® Auele) VlORD, (@), ©3)

Rl(/:i)s(fv) = x_l[GV+S(a*7x) + iFerS(O‘*»x)]a r=c(+1), (94)

wherez = ¢(£+1). Here, the plus (minus) sign correspondﬁf;fs(x) (Rf,jr)s ()); Ame(c) are
eigenvalues of the angular equation of prolate spheroigaitfonss,,.(c, ) [1].

The Coulomb functiong’, ; ; (o*, x) andG, 4 s(a*, x) are the same ones as in [15, 26]. Inte-
gral representation of these functions

e'rra*/Qe:I:iz(Qx)—u—s

Gyis(a®,z) il s(a*, x) = X
[[(v+s+1+i0")C(v+s+1—ia*)]"?
X / e~y TSEICT ({9 )V TIFIT gt (95)

0
is similar to (15) and (16).
Another important formula is given using the complex conilugypergeometric function of
the second kindl (o, y; 2) :

27 R (2) = (22) N [Gura(a® @) £ 1B,y 2)] = (<1702

1/2

x T 1+a* -
ratjz Lt s+ ia”) (22)" e (v + s+ 1+ia*, 20+ 25+ 2; F2ix). (96)

e P(v+s+1Fia¥)
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The Wronskian is
W E 1s(a",2), Gogs(a”, z)] = —1, (97)
and the asymptotic formula @f, s (a*, z) £ iF,;s(a*, x) (@asz — o) is defined as
Gyis(a*,z) £iF, (o™, ) o exp [:I:i (x —a*In2x — (s + 1/)% + O',,_;,_s)} , (98)

with the Coulomb phase

(99)

——iln I(s+v+1+ia*)
Ovks =7y L(s+v+1—ia¥)

Taking into account Eq. (12) for the radial Coulomb spheabidinctions ofp-type and
replacingp — —ic, « — —ia*, we obtain

d 2 d 2 * (£) c
{% (m %> —z° 4+ 2a x—y(u+1)] Hmz(a:)—i-x_%

v(v+1) — Anelc)

ml

x [Q(m + 1)m% + ( - Qa*) x— 2w+ 1)} 1) (z) =0, (100)

wherex = ¢(£ + 1), 2¢ < x < co. As in the case for the radial Coulomb spheroidal function of
the p-type ﬁgf) (z) by the substitution of the expansion (93) into Eq. (100) dwdrecurrence
formula for the Coulomb function$’, ;s(a*,2) and G, s(a*, ), we obtain the recurrence
relations forh, (v) = hs(a*, Ane(c), v|c)

ashsi1(v) + Bshs(v) + Fshs—1(v) = 0, (101)
with
G — — 2c(s +v ;Ls 142 (2sy++u3+ 1—m) Serr. Au= 2c(s ;rsul (;V+_u1+ m) 5.
Bs = (s+v)(s+v+1)(1+2eQs) — 2ca™ — A\pe(c), (102)
o (v r@)” o |
° (s+v) T (s v)(s+rv+1)

After replacinge, — as, 3s — (3s andy — 7, in the characteristic equation (38), we obtain
acceptable values of,.¢(c) for system (101).

The convergence of the series (93) and of the correspondintincied fraction has been
proved forz > 2¢ in papers [5, 19]. The algorithm of the calculation:.ef,(c), IT <7 (¢, £) and
Hmeg(c, ¢) and its numerical results are given in [8]. The calculatibthe Coulomb functions
F,is(a*,z) andG,s(a*, ) was realized in [8, 15]. For fixed and largex equation (100)
takes the form

d od

* * - By —
e %+J;2—2a T —2a%c — Ape(c) + O (27 1) | I () = 0. (103)
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Then we can write two linearly independent solutions to B§O0], as the linear combination of
the two Coulomb function$,, (o*, z) andG,, (a*, x) of vyth order:

Gy, (a*,x) £ iF, (o, x)

Jim. ) (2) = - (1+0(z7?%), (104)
1 1
Voz—iii\/l—l—Sa*c—l—ﬁl/\mz(C) (105)

The asymptotics of the solutions as— oo have the form

Jim_ 05 () = 2(22) " 0F)eFi (1 4 0(1/2)) . (106)

If we use the series (93) and the asymptotic representa@i®h for the Coulomb functions

F,is(a*,z) andG,44(a*, ), we gain more accurate information about behavior of fumsti

Hfff) (z) asz — oo. In the first approximation we obtain

H(i)(x) _exp [£i(x — a*In(2z) — $)]

mé

+0(z7?). (107)

The phas@.. = (¢, a*, \e(c)) is a real function of parametersa™, A\,,¢(c):

S§=—00

$L =+iln ( Z hs exp{Fi[(s + v)7/2 — O'S_H,]}) . (108)

We must know this function for calculations of the crosstieecon two Coulomb centres [1, 12,
13,15].

Using the asymptotic formula (104), (91) and (92), we obthi Wronskian of functions
1177 (e, §) andIL 7 (¢, §) + i1l 1™ (¢, §)

W e, (2. + (. 0)| = —m - (109)

Using this value of the Wronskian, we can write radial part ofé&h’s function in its final form:
Gome(€, €3 B > 0) = 2RI (c,€<) [ef e, €5) + T e, €5 (110)

The problems that are connected to different expansiorseafigular and/or irregular radial
Coulomb functions of the-type by series of different basis functions are analyzedeiail in
papers [8,12,15]. In particular, in [15], the expansionH{f/ (¢, £) andII’",“/ (¢, &) are obtained
similarly to expansion (88) and (89). The formal transitiopp~ —ic, @ — —ia™ in (66)—(78)
leads to expansions in series of the complex functions withatex coefficients, which are rather
complicated object for direct calculations. For these atféroreasons, we use expansion [15]
of the Jaffe's type [27] for the calculations of the reguladial Coulomb functions and the
irregular Coulomb functions af-type at small values of the argument. Thus the regularisolut
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I 7 (¢, €) is calculated from 1 teo by (91) and (93). Buﬂifl;eg(c, &) is calculated fromx to
1, starting from (91) and (93). Such a combined way of nunaégalculations has used in [8].

In conclusion we compare the results obtained for radiab@ssfunctions,,,¢(¢, &';
E > 0) in this article with the correspondent formulae of the pdBgrSo, formula (42) in [8]
contains an error: we should reddR instead ofR/4. The same formula does not contain the
factor (¢2 — 1)~!, what follows from the general expression for Green’s fiorcfor arbitrary
linear differential equation of the second order [28]. Inliéidn, the Wronskian does not agree
with the normalization of the regular and irregular radial®mb functions of the-type, which
was used in [8]. Apparently, the specified errors resultedninincorrect final expression (44)
of [8], which determines the radial part of two-centre Gigdéunctions.
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