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THE VAN HOVE SINGULARITY AND TWO-DIMENSIONAL CHARGE
DENSITY WAWES. EXACT ANALYTICAL RESULTS
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The problem of two-dimensional charge density waves is discussed in the context of the van
Hove singularity located at the Fermi level. Exact analytical expressions for the transition
temperature

�������
, the isotope coefficient � ����� , order parameter at zero temperature �	��
�

and discontinuity in the specific heat at critical temperature ��� ����� was derived. Our results
show that in the presence of the van Hove singularity the isotope coefficient can have small
values despite the fact that charge density waves originates from phonon-induced pairing. The
ratio �����
�������� � ����� varies very little, whereas the temperature dependence of ��� �����
can be different from standard result.

PACS: 74.20.-z, 74.25.Kc

1 Introduction

The pseudogap in the normal state of high-temperature superconductors is observed in the fol-
lowing: tuneling spectroscopy [1], the angle-resolved photoemission spectroscopy (ARPES) [2],
transport properties [3] and nuclear magnetic resonance (NMR) [4].

The experimental data show that the pseudogap � � evolves into the superconducting (SC)
gap �"!�# [5]. The pseudogap and superconducting gap have the same symmetry, d-wave type
of symmetry [6]. However, the pairing fluctuations may include both s- and d- wave compo-
nents [7]. Secondly, the crossover temperature $%� merges with the superconducting transi-
tion temperature $ !�# in the overdoped region of the phase diagram. For underdoped high-
temperature superconductors the normal-state pseudogap enhances the superconducting isotope
effect [8]. Probably the gaps have the same microscopic origin. Therefore we assume that pseu-
dogap is a precursor of superconducting gap formation. However, existing models of pseudogap
involve several mechanisms e.g. spin gap due to antiferromagnetic correlations [9].

The existence of charge density wave (CDW) can be considered a possible scenario, which
explains the anomalous property of the high-temperature superconductors [8]. We assume the
phonon-induced CDW pseudogap. The CDW state stems from electron-hole coupling and charge
redistribution. CDW and superconductivity can also represent different phenomena, which co-
exist below the superconducting transition temperature [10]. The CDW formation has strong
influence on the superconductivity [8] . The ratio &'�(!�#*),+'-�.�/'01$2!�# , where �"!�#3),+�- is the
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zero-temperature superconducting energy gap, in the case of CDW superconductors (weak-
coupling limit) is always smaller than the classical BCS value 3.52. However, the strong electron-
phonon coupling increases the ratio [11] so these effects may compensate each other in the high-
temperature superconductors. In the CDW superconductors is observed also the reduction of the
specific heat �65 !�# at $879$ !�# . The experiments demonstrated that the ratio �"5 !�# .: ! $ !�# ,: ! is the Sommerfeld constant, is smaller than the BCS value 1.43 [8].

A competition between the CDW and superconductivity is a highly nontrivial problem. In the
framework of the weak-coupling theory one can show that the many-body effects can effectively
contribute to the stabilization of the superconducting phase [12]. However, the stability of CDW
and superconductivity can strongly depend also on the electronic spectrum, temperature and the
electron-phonon interaction-strength. The problem of the competition between the CDW and
superconductivity have been in detail discussed by C. A. Balseiro and L. M. Falicov in Ref. [10].
On the other hand, the strong-coupling limit (Eliashberg’s equations) is rather difficult to analyse.

It is well known that the quasi-two-dimensionality of the 5�;=<�> plane in high-temperature
superconductors gives rise to logarithmic van Hove singularities in the electronic density of
states [13] - [15]. The van Hove singularity, in the electron-phonon weak-coupling limit (s-
wave channel), can enhance the $�!�# , reduce the isotope effect. The ratio &'�?!�#*)@+'-A.�/'01$2!�#
does not differ much from the BCS limit, whereas the dependence between �"5B!�# and $2!�# is
not linear. In the Eliashberg approach the transition temperature $ !�# and the isotope coefficientC !�# is also strongly dependent on the structure of the density of states, the transition temperature$ !�# is enhanced from the standard value while the isotope coefficient is small [16].

In this paper we study weak-coupling CDW state in the van Hove scenario (s-wave chan-
nel), although we should start from the Eliashberg’s theory. We suggest that the weak-coupling
approach is probably the first good step.

2 Results and discussion

The Hamiltonian is of the following formD #�EGF 7 H
k I )�J k KML -ON�Pk I N k IQ H
k I R FTS�U ),V�-WN�Pk X Q I N k IQ H
k I RGY�Z S\[ )]V�-ON�Pk X Q I N k I_^ (1)

where N�` Pbak I denotes annihilation (creation) operator for an electron with momentum V and spinc . The chemical potential is L 7d+ so that we refer to the half-filled situation. The band energy
is J k 7 K &�e=f gih�j�)@/lkm- Q g�h'jn)]/'ol-bp for the nearest-neighbour hopping e . The modulation vector is
Q. We consider only the simplest form of the modulation vector, q =( r ^ r ), which results in the
opening of the gap in the middle of the band irrespective of the position of the chemical potential.
We introduce cutoff operators

R F ^ R Y Z , where s ^Wt E are the bandwidth and the Debye phonon
frequencies, respectively. The cutoff operator

R k is defined by
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H
k

R klu6)�J k -wvyx kz k1{ J�|�)}Jl-Au~)}Jl-�� (2)

where � is s or t E , u6)�J k - is the appropriate energy dependent function and |�)}Jl- is the density
of states. For a two-dimensional square lattice and nearest-neighbour hopping integral e we can
accurately reproduce the density of states by

|�)�J�-17�� [_���?���� J�i> ���� ^ (3)

with ��[�7 K +�� +l�'�l�m��e z [ and ��>B7d&O�'�����l���'��e [16]. In the numerical calculations we take e as an
energy unit. The CDW order parameters are denoted by S U'),V�- , S [�),V�- , as follows

S�U ),V�-w�yH
l

RGY�Z��
kl � NnPl X Q � N l �m��^ (4)

S [�),V�-w� H
l

R F � kl � N�Pl X Q � N l ��� ^ (5)

where
�

kl is the pairing potential. We notice that the mean-field Hamiltonian in Eq.(1) can be
derived directly from Fröhlich Hamiltonian (canonical transformation) [10]. The potential

�
kl

describes thus effective interaction between the electrons.
The pairing potential

�
kl will be assumed as a model parameter throughout this paper,

�
kl vK � , so the phonon properties are used to calculate only the isotope coefficient.

With the help of equations of motion we calculate the Green functions �2� N k �m� N�Pk � �=� ,�=� N k � � NnPk X Q � �2� which determinate normal-state and CDW properties [17]. Finally, we conclude
with the system of equations

��79)�� Q S\[S U - � H
k

RGY�Z�� )]� k - ^ (6)

and S\[S U 7�� Q � H
k

) R F K RGY�Z - � ),� k -�� (7)

The temperature-dependent susceptibility function
� )]� k - is defined by� ),� k -1� �&�� k �¡  �A¢¤£�¥ � k&§¦ ^ (8)
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where � k �¨)�J >k Q S > -�©ª , S � S U R F Q S [ R Y Z and ¥ �¨��.�/'0�$ , /l0 is the Boltzmann
constant. Equations (6), (7) originally were derived by Balseiro and Falicov (BF model) [10].
The autors calculated only the CDW-transition temperature $�#�EGF and used the constant density
of states at the Fermi level. We present explicit analytical expressions for the most important
CDW-parameters in the van Hove scenario. There is a difference between results derived in
Ref. [10] and the ones presented here. Then, when combining equations (6), (7) and (3), one gets
the equation which determines CDW-parameters.

�«7 f & Q � ) x z YmZz F Q x FY Z - { J�|�)�J�- � ),�\-¬p � x Y�Zz Y Z { J�|�)}Jl- � ),�\-2� (9)

We now calculate the CDW transition temperature $ #�EGF . We assume the weak-coupling limit,t E .®)]&'/ 0 $ #�EGF -G¯°� . Calculations similar to those presented previously [16] allow us to find
the following equation for the CDW transition temperature.

��7±��[ � )]& Q ��[ �\² U�- ² ^ (10)

where ² � ³�´µ£ &l/ 0 $ #�EGF��> ¦ ³�´µ£ ¶ t E/'01$=#�EGF ¦Q �& ³,´ > £ t E&l/ 0 $ #�E·F ¦K ¸�¹ >¹ ´ > & [ z_º6» � K & > z_ºA¼�½ )�´�-�¾¿)�´ K �-@À º�Á [ (11)

and ¸ ¹ >¹ ´ > & [ z_º6» � K & > z_ºA¼�½ )�´�-�¾¿)�´ K �-@À º�Á [ 7��l� (12)

Here
½

and ¾ denote Euler and Riemiann zeta functions, respectively. The Euler gamma function½ ),Âm- is defined by the integral
½ )]Â�-*�ÄÃ�ÅU { e¬eWÆ z [iÇ z�È . The Riemann zeta function ¾B)]É�- is

defined by the relation ¾B)]É�-��ËÊ ÅÌ Á [ / z�Í (for ÉÏÎÐ� ) [18]. The parameter ¶ is ¶ �Ñ& Ç�Ò .�rÓv�'���Ô , where : is the Euler constant and² U � ���¤£ Ft E ¦ ���¤£·Õ s t E� > ¦ � (13)

After carrying out the elementary algebraic transformations in (10) , we obtain a simple expres-
sion for the transition temperature
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Fig. 1. The figure shows the isotope coefficient � ����� as a function of the Debye phonon frequency Ö �
for different values of the pairing potential × .

/ 0 $ #�EGF 7 ¶ � >2ØiÙOÚ3£ K �Û [A¦ ^ (14)

where

�Û [ � ¸ ��� > £ t E� > ¦ Q ��� > )@& ¶ - K & K &� [ � )@& Q � [ �%² U - À ©ª � (15)

Here we shall study the dependence of the isotope coefficient C #�E·F ,C #�EGFÜ�9) t E�.�&�$=#�EGFT- {{ t E $=#�E·F ^
on the value of Debye phonon frequency t E and the pairing potential

�
. For many materials

with phonon-mediated CDW, $2#�E·FÞÝÐß z=à'á Z�â , where ß is the mass of the ions and it is
assumed that t E ÝËß z ©ª . With the Balseiro-Falicov theory with a nearly constant |�)�Jl- near
the Fermi level, +A�äã3Î C #�EGF ` 0�å a Îæ+A� Ôl� . The isotope coefficient C #�EGF , obtained from the
Eq. (14), is

C #�EGF 7 Û [&èç �)]& Q � [ �~² U - > K �ié ���¤£ t E� > ¦ � (16)
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In Fig. 1 we show the isotope coefficient C #�EGF as function of the Debye phonon frequency t E
for different values of the pairing potential

�
. This is a very important point because it shows

that the isotope coefficient C #�EGF is in fact smaller than the isotope coefficient C #�EGF ` 0�å a in
the standard BF model.

For $ê7y+ the integrals on the right-hand side of Eq. (9) can be exactly evaluated [19]. Then

K &� [ � )@& Q � [ �~² U - Kìë1í > )W��-17 ��� > £ S )]+'-& t E ¦Q & ��� £ t E� > ¦ ��� £ S )]+�-& t E ¦ ^ (17)

where S )@+'- is CDW-order parameter at zero temperature, ëwí º )]Â�- is the polylogarithmic function
given by ë1í º )@Â�-��dÊ ÅÌ Á [ Â Ì .�/ º . The dilogarithm ë1í > )@Â�- satisfies ëwí > ),Âm-17 Ã UÆ { e ��� )�� K e�-�.�eand ë1í > )W�-�7îr > .�� [20]. We can evaluate the equation (17) analytically and obtain following
expression for the CDW order parameter at the zero temperature.

S )]+�-ï7�& t E Ø�ÙOÚ £ K �Û > ¦ ^ (18)

where �Û > � ���¤£ t E��>ð¦Q ¸ ��� > £ t E��>ð¦ K &��[ � )]& Q ��[ �~² U- K r >� À ©ª � (19)

We are also interested in the CDW–gap-to- $ #�EGF ratio& S ),+'-/l0w$=#�EGF 7 � t E¶ ��> ØiÙOÚ £ �Û [ K �Û > ¦ � (20)

The ratio & S ),+�-A.�/ 0 $ #�EGF varies little from the constant electronic density of the states value
of 3.52. Figure 2 shows the ratio of the CDW gap parameter and the CDW transition temperature
as the function of the pairing potential

�
.

In order to calculate the temperature dependence of the order parameter S ),$�- close to the
transition temperature we follow the standard procedure discussed in Ref. [21]. With the help of
the fermionic Matsubara frequencies, t º �9)]r�. ¥ -=)@&�´ Q ��- , one can rewrite Eq. (9) in the form

�«7 f & Q � ¥ H º ) x
Y�Zz F Q x Fz Y Z - { J |�)�J�-t >º Q � > p � ¥ H º x

Y�Zz Y Z { J |�)}Jl-t >º Q � > � (21)



The van Hove singularity. . . 483

Fig. 2. The ratio ñ¬ò�óõôWö÷ùø_ú á Z_â as a function of the pairing potential × . The horizontal line indicates the value
obtained within the standard Balseiro-Falicov (BF) approach with the constant density of states.

The Taylor expansion around $�#�EGF provides us with the following equations:

�t >º Q � > v �t >º Q J > K S > ),$�-) t >º Q J > - > � (22)

By substituting Eq. (22) for Eq. (21), the temperature dependence of the order parameter near$=#�EGF is found to be

>üû ª `�ý aþ H º x Y�ZU { J |�)}Jl-) t >º Q J > - > 7y��[�£=� K $$ #�EGF ¦ ¸ $ K $ #�EGF&�$�#�EGF Q ���¤£ / 0 $ #�EGF¶ �i> ¦ À�� (23)

Up to this point we can see that the weak-coupling approximation t E .�/ 0 $ #�E·F ÿ Q � gives
the result for the S )�$�- as [22]

S ),$�-�7±r�/ 0 $ £ ���¾¿)]Ô'-�¦ ©ª £ � K $$ #�EGF ¦ ©ª ß�� [ ),$�- ^ (24)
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Fig. 3.
�����

as a function of temperature
�

for different values of the CDW transition temperature
� �����

.

where

ß�� [ )]$�-�� 	
 ����� Ì ø ý á Z�â�� ª � K ý z ý á Z_â> ý á Z�â��� ��� Ì ø ý� ª�� K��� Í f ��� ¾¿)@É�-bp Í¬Á�� K �l���
�� ©ª � (25)

Figure 3 shows ß�� [ as the function of $�.�$ #�E·F . The CDW gap function near $ #�E·F is
very close to that derived in Balseiro-Falicov model. We can see that ß�� [ v�� .

Thermodynamic properties depend on the potential difference ��� #�EGF ��� # K ��� between
the CDW and normal states. The subscript 5y) �	- refers to the CDW (Normal) state. The integral
form of the ��� #�E·F can be presented as

�!�®#�EGFÜ7yx ûU { S#" � S#" � > { » [$ ¼{ S " � (26)

In the presence of the logarithmic singularity the integral (26) can be rewritten as

�!�®#�EGF 7 K �& ),r�/l0G$�- > £ ���¾¿)@Ô'-�¦ £=� K $$ #�EGF ¦ ©ª ß�� > )]$�- ^ (27)
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Fig. 4.
�%� ñ as a function of the transition temperature

� �����
.

where

ß�� > )]$�-���� [ & ����� Ì ø ý á Z�â'� ª � K ý z ý á Z�â> ý á Z_â�( >��� �)� Ì ø ý� ª*� K �� Í f ��� ¾�)]É�-¬p Í¬Á+� K �'��� � (28)

The potential difference function �!� #�EGF has been used to study the specific heat jump �65 #�EGF .
The specific heat jump is related to the thermodynamic potential difference by the general rela-
tion �"5·#�E·F ��5·# K 5 � 7 & K $,�.- ª0/21 á Z�â- ý ª � � ( ý á Z�â which gives

�"5 #�EGF 7yß�� > )�$ #�EGF - ���¾�),Ô'- )�r�/ 0 - > $ #�EGF � (29)

Here, ß��> represents a deviation from the linear dependence between �"5�#�EGF and $=#�EGF
which can be obtained with a constant density of states. In Fig. 4 , the solid line represents
the value of ß��> as a function of the critical temperature $2#�EGF . Equation (29) is one of more
important results of our theory. In the standard BF formulation the ratio �"5�#�EGF¤.�$=#�EGF does
not depend on the model parameters. Our exact results show that the ratio �"5B#�EGF¤.�$=#�EGF
decreases with the increase of the critical temperature.
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3 Conclusions

In the present work the BF weak-coupling model of CDW in the van Hove scenario is used to
derive exact formulas for the transition temperature $�#�E·F , the isotope coefficient C #�EGF , the
CDW order parameter at zero temperature S )@+'- , the temperature dependence of the order pa-
rameter S ),$�- near $2#�EGF and the specific heat jump �"5®#�E·F at $=#�E·F . Within this simple
approach the transition temperature $�#�E·F is strongly enhanced from the Balseiro-Falicov value.
The isotope coefficient C #�EGF can become very small in comparison with +A�äã6Î C #�EGF ` 0�å a Î+�� Ô'� for the Balseiro-Falicov model despite the fact that CDW originates from phononic mech-
anism. Experimental data e.q. nuclear magnetic resonance (NMR) [23] and nuclear quadrupole
resonance (NQR) [24], show very small isotope shift �\$%� ; this is in agreement with our theory.
The exact expression for S )@+'- together with the exact $ #�EGF formula gives a gap-to- $ #�E·F
ratio & S ),+�-�.�/ 0 $ #�EGF deviating very little from the Balseiro-Falicov value of ÔA�äãl& . Our maxi-
mum value of the ratio is f & S ),+�-A.�/ 0 $ #�E·F p43  k 79Ô��ä��� . The experiments have indicated that
the pseudogap �(� and the crossover temperature $ð� decrease with doping, holding the relation
of � � .�/ 0 $ �65 �n+ [25]. The values of the ratio & S ),+�-A.�/ 0 $ #�EGF are thus definitely smaller
than experimental. Probably the strong-coupling approach can generate larger values of the ratio& S )�+'-�.l/l0w$=#�EGF , the non-negligible role play also (s+d) wave symmetry of the order parame-
ter [26].

Our results show that within a weak-coupling approach the ratio �65�#�EGF3.�$=#�E·F decreases
with the increase of the critical temperature. For superconductors, in the framework of the weak-
coupling theory, the ratio �"5 !�# .�$ !�# , where �65 !'# is the superconducting specific heat jump
at critical temperature $ !�# , have the similar temperature dependence, in the presence of the
logarithmic singularity [20].

Our results should be confirmed by a more reliable method e.q. Eliashberg’s formalism.
These problems will be under our investigation in the next step.
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