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It can be said that Maxwell’s equations are one of the well-known equations of Physics.
Despite the fact that this equations are more than hundred years old (1865), they still are
the cornerstone of electrodynamics. Although they have several notations in the literature,
this paper gives new representational method that based on dual quaternions. We have aimed
the reformulation of classical electrodynamics. Therefore new dual quaternionic equations
related with electromagnetism are derived.

PACS: 03.50.De, 02.90.+p

1 introduction

For electromagnetism several representational methods have been found in the literature. One of
them, except vectors, is using complex numbers. Shen and Kong [1] explained in detail how to
represent a time harmonic real physical quatity by a complex one, especially when the physical
quantity is a vector and gave Maxwell’s equations in phasor form. The second method is using
four vectors. Kyrala [2] formulated relativistic electromagnetism by four vectors and investi-
gated how the descriptions of the electromagnetic fields change under the Lorentz transforma-
tions. The third method is based on complex quaternions (also named biquaternions). Imaeda
[3] investigated the classical electrodynamics and the theory of quaternions while Negi et al. [4]
studied classical electrodynamics by complex quaternions and derived Maxwell’s equations in
compact and expanded forms, respectively, for quaternions and matrix representations. Lambek
[5] employed biquaternions in special relativity and Maxwell’s equations. Gsponer and Hurni
[6] noted that the use of Clifford algebras particularly of biquaternions, can lead to a satisfactory
formulation of elementary particle physics and and Maxwell’s equations.

In general dual quatenions have dynamic and kinematical applications [7-16]. In this paper
we have tried the reformulation of classical electrodynamics and Maxwell’s equations by using
dual quaternions. Starting with preliminaries of real and dual quaternion algebra, Maxwell’s
equations have been derived in terms of dual quaternions. Then dual quaternionic equations
related with electromagnetism have been developed.
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2 Real Quaternions

Similar to a complex number z = qo + iq; where > = —1, a real quaternion q which is a four
component number can be defined as

q = goeo + q1€1 + g2€2 + gze3. (1

Here qo, q1, g2 and g3 are scalars and eg = 1. Imaginar basis elements eg, es, eg satisfy the
following conditions

6(2] =1 ejer = —0jr€o + €5k1€] (],k,l = 1,2,3) 2

where d;, and €, are the Kronecker delta and three-index Levi-Civita symbol, respectively. e,
ez, e3 can be seen as orthogonal unit spatial vectors. With ideas from the both real and vector
algebra, the quaternion q may be viewed as a linear combination of a scalar ¢y and a spatial
vector ¢

q=qo+qd=qo+ qex + ge2 + gzes. (3)

If go = 0, the quaternion q becomes
q=7=qier + gze2 + gze3 “)

which is called vector quaternion. When ¢’ = 0, q is a real number and is called a scalar quater-
nion. As seen, scalars and spatial vectors are quaternions and they are a subspace of quaternions.
Addition and subtraction of two quaternions p and q are defined as

PEa=(po+q)+ T+ = (poEq)+ (p1 q)er + (p2 £ q2)ez + (p3 £ g3)es. (5)

The quaternion addition and subtraction obey associative and commutative laws.

For a quaternion multiplication, a prodecure called quaternion product, can be defined. Be-
cause a vector is special case of a quaternion, care should be taken to distinguish the quaternion
product from either the dot product or the cross product. Product of two quaternions p and q is

P4 = [po + Pllgo + @) = pogo +pod+ qoPF —P-§+F*xq (6)

where the dot and cross indicate, respectively, the usual three-dimensional scalar and vector
products. The quaternion product is associative and distributive but not commutative.

Quaternions not only have properties of scalars and vectors, but quaternion algebra also has
similarities to complex algebra. For any quaternion q there exists a quaternion conjugate that is
denoted by q* and is defined by negating its vector part (or imaginary part)

Q" =¢go— 7= qo — q1e1 — g2€2 — g3e€3. (M
The norm of a quaternion q, denoted by Ny, is a scalar quaternion and it is given as
Ny=qq" =q*a= ¢ +a + ¢ + a5 ®)

If norm of a quaternion IV, = 1 is called unit quaternion.
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1

Inverse of a quaternion (non-zero norm), denoted by q~", is defined as

*

q = —. )

q'l=q" (10)

3 Dual Quaternions

A brief summary of dual numbers and dual quaternions is presented in this section to provide the
necessary background for the mathematical formulation developed in this paper.
A dual number, as invented by Clifford [17] in 1873, is

Q=q+eq" an

Here € is known as the dual unit having the property €2 = 0. The real numbers ¢ and ¢’ are
called the real and dual parts of @, respectively. It should be emphasized that dual numbers are
extension of real numbers.

A dual quaternion Q is defined in a similar way to dual numbers

Q=q+eq (12)
where q and q' are real quaternions

q = goeo + q1€1 + g2€2 + g3e€3 (13)
and

d' = goeo + gier + gzes + gzes. (14)
Dual quaternion Q can be written in the more clear form as

Q = (g0 +eqp)eo + (g1 + eqr)er + (g2 + egy)ez + (g3 + €gs)es
= Qoeo + Q1e1 + Qaez + Qses. (15)

Here (o, Q1, Q2, @3 are dual numbers.
A dual quaternion Q consists of the scalar part Sq and vector part Vo where

Sq = Qo (16)
and
Vo = @ = Qier + Qaez + Ques. (17)
Addition and subtraction of two dual quaternions P and QQ are defined as

P+ Q= (Po+Qo)eo + (Pr £ Q1)er + (P2 £+ Qa)ea + (P3 £ Q3)es. (18)
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Dual quaternion addition and subtraction obey associative and commutative laws.
The product of two dual quaternions P and Q is

PQ= (P +P)(Qo+Q)=PoQo+P@+QP-P-G+PxQq (19)
where the dot and cross product indicate, respectively, the usual three-dimensional scalar and
vector products.

For any dual quaternion @Q there exists a complex conjugate,
Q" =5q — Vo = Qo — Qrer — Q2e2 — Qses. (20)

while the dual conjugate Q¢ is given by

Q° =S5 + V§ = (90 — eqp)eo + (q1 — €qi)er + (g2 — €g3)e2 + (g3 — €q3)es
= Qgeo + Qfe1 + Q5ez + Q5es (2D

in which ¢ denotes dual conjugate. Complex conjugation and dual conjugation are also the dual

quaternions.
The norm of a dual quaternion in general is a dual scalar,
No=QQ" =Q'Q=0Qf +Q + Q3 + Q3. (22)

The inverse of a dual quaternion Q (non-zero norm) is also the dual quaternions and can be
defined as

= Q*
Ng’

Q! (23)

Dual quaternions of norm unity are called unit dual quaternions.

4 Maxwell’s Equations in Dual Quaternionic Form

While studing of electromagnetics we are concerned with four vector quantities called electro-
magnetic fields. They are electric field strength E(V/m),

E= FEie1 + Eses + Eses 24
electric flux density D(C/m2),

D = Die; + Dses + Dses (25)
magnetic field strength H (A /m),

H = Hye; + Hoes + Hies (26)
and magnetic flux density B(T'),

E = Bie1 + Bses + Bses 27)
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and they are functions of space and time. Here e;,e; and ez which satisfy (2), can be seen as
three dimensional cartesian coordinate basis. Fundamental theory of the these electromagnetic
fields based on Maxwell’s equations which are given by

- - 0B

VxE=—— 28
X B (28)

— — - ﬁ

VxH=J+ 6—t (29)

V-B=0 (30)

V-D=p, 31)

where J is electric current density,
j= Jier + Jaes + Jzes. (32)

J1, J2 and J3 are three components of the J along the z,y and 2 direction respectively. The del
operator is

V= a%el + 6%@ + %eg (33)
and py is electric charge density. Equations (24) - (32) express the physical laws governing the
E, D, H and B fields and sources J and pv at every point in space and at all times. So far there
has been no experimental evidence of an electromagnetic field that does not satisfy all four of
Maxwell’s equations.

Maxwell’s first equation (28) is known as Faraday’s law of induction. It is discovered by
Michael Faraday (1791-1867). Maxwell’s second equation (29) shows Ampére’s law. Although
Ampére (1775-1836) did not contain the displacement current 22 term James Clerk Maxwell
(1831-1879) first proposed to the addition of this term to the conductlon or convection current
J in Ampére’s law. The induction of this extra term was very significant because it made it
possible to predict the existence of electromagnetic waves. Equations (30) and (31) are known
respectively as magnetic Gauss’ law and electric Gauss’ law [1].

In order to represent Maxwell’s equations in dual quaternionic form, let’s define two basic
dual quaternion. One of them is dual quaternionic differential operator that is given by

D= V + 6% %61 + %ez + %63] + 6%. (34)
The other is dual quaternion M which include both electric field strength E and magnetic field
strength H,

M = —E + Cﬁ = —[Elel + E262 + E3€3] + e[H161 + H262 + H3€3]. (35)
Using Gaussian and natural units € = u = ¢ = 1, we can operate D on M as
= 8 = e d 4 = b d - 6E - — - —
DM = V+ea [-E+eH]=V-E—-VXxE+e —E—V H+VxH
oH

=5 + oo +eJ] . G36)
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4.1 Static Fields

The electromagnetic fields are generally functions of space and time. In the special case in which
they are time-invariant, by setting the time derivative equal to zero Maxwell’s equations become

VxE=0 (37)

VxH=1T (38)

V-B=0 (39)

V-D=p, (40)
%? and % are vanishes. Therefore dual quaternionic equation (36) gets new form as

DM = [ﬁ—l—e%] [—E + eH] = p, + €. 41)

4.2 Dual Quaternionic Current Density and Constituve Relations

The sources J and pv have been defined. These sources can be combined in a dual quaternionic
form that is

S = Py + Gj: Py + €[J161 + Joeg + J3€3]. 42)

Dual quaternion S contains two basic sources that are electric current density J and electric
charge density p,. It’s called dual quaternionic current density. Thus equations (36) and (41) get
more compact form;

oH
DM = —- +8 43)
and
DM = S. (44)

These are the reformulation of Maxwell’s equations of classical electrodynamics in dual quater-
nionic form.

On the other hand conjugate of dual quaternionic differential operator D is denoted by D*
and is given as

- 0 0 0 0 0
D"< = * —_— = |—— — —€9 — — -
Viten [ 521 5y 6z63] T (45)
Operating of D* on S yields
D*S=[ﬁ*ﬂ%[pv+eﬂ=e[88pt”+§-f—§xf]. (46)
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Scalar part of D*S asserts that

Op
ot

is zero and it is called equation of continuity. This is one of the most important consequences of
Maxwell’s equation. Therefore equation (47) becomes

SeD*S| =2 V. T (47)

Sc[D*S] = [6* + e%] [po +€J] = 0. (48)

4.3 Dual Quaternionic Electromagnetic Potential

Another consequence of Maxwell’s equations can be obtained by the existence of a electromag-
netic potential. Similar to equation (42), it is possible to define the electromagnetic potential of
an electrically charged particle as

P= /Y— €p = [A1€1 + Ases + A3€3] — €p. 49)

It’s called dual quaternionic electromagnetic potential. Here A and (p are magnetic vector po-
tential and electric field potential, respectively. By applying the dual quaternion product on dual
conjugate form of differential operator D which is denoted D¢ and dual quaternionic electro-
magnetic potential P, we can obtain

cp _ | 0 e = e = 8/1,

DP—[V—ea][A—ego]—VXA+e Ve 5 | - (50)
Since

H=VxA (51)
and

. . 984

E=-V 5 (52)

are defined, respectively, magnetic vector field H and electric vector field E, equation (50) be-
comes

D°P = [6 — e%] [ff— ep] = H +€E. (53)

As it has been shown that operation of D¢ on P allows determination of the fields Hand E.

5 Conclusion

There are many representational methods for electromagnetism in the literature, but this paper
offers a new alternative one. Negi [4] et al. and Lambek [5] investigated Maxwell’s equations
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by using quaternions with complex components, known as biquaternions or complex quater-
nions. In the papers [3-5] biquaterionic differential operator is defined as % + iV, hermi-
tian biquaternions as H + iE and p + i, biquaternionic potential as ¢ + iA where 2 =
—1. Generally biquaternionic differential operator satisfies following equations: First one is
[% - zﬁ] [H + iE][p +iJ] = 0. According to Lambek [5] this is the compact notation of
Maxwell’s equations and it was first pointed out independently by Conway (1911) and Silber-
stein (1912), although it might have been realized by Clerk Maxwell himself (1869). Second,

scalar part of [% + zﬁ] v+ zj] is zero and this is known the equation of continuity. Finally,

vector part of [ + zV] [p +iA]is H +iE.

Although in general dual quatenions have dynamic and kinematics applications [7-16], first
time we have investigated classical electrodynamics with dual quaternions. In the same way
which is mentioned above, we have defined some new dual quaternionic quantities as dual quater-
nionic differential operator V+eld a 7> dual quaternion — —FE +e€H, current density ¢ + eJ and elec-
tromagnetic potential A e where €2 = 0. Using quaternions with dual components we have
combined the Maxwell’s four equations in a single equation (36) or (41). Then we have managed
to derive constitutive relations and related equations (47), (50) and (53). These equations satisfy
all the equations which were given by Negi [4] et al. and Lambek [5] using biquaternions. These
dual quaternionic representations can be succesfully adapted to fit physical situations.
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