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The complex geometric setup around the SONG CsI scintillator aboard the CORONAS-I
satellite has been modelled, to evaluate the mass thickness passed through by the cosmic
ray particle striking the detector. The analytic functional form giving the amount of matter
traversed in absorbers for an arbitrary incident directions is present. The population mean and
variance of the mass thickness are estimated by random sampling of the uniformly distributed
particle trajectories in the several solid angles.

PACS: 95.55.-n, 02.70.-c

1 Introduction

SONG instrument aboard the CORONAS-I satellite has been primarily intended for detection of
solar neutral radiation. To deal with the amount of matter in the region of the CsI scintillation
crystal, which is the primary detecting element, we are motivated by knowledge of the local
background conditions and of the detector field of view. For example, the measurement of the
locally produced gamma rays is important at least for two reasons: (1) as a detector background
in remotely monitoring of the electron precipitation events, and (2) for indirect investigation of
the trapped electron population. Another important meaning of the knowledge of background
situation is for the separation of the local contribution from the external gamma rays (e.g. those
of solar origin). The determination of the field of view has a great importance, particularly for
uncollimated detectors. In the following text we begin with a brief description of the experimen-
tal setup (Section 2). In Section 3, the model of the matter distribution on CORONAS-I satellite
is described. Section 4 presents the method of the average mass thickness calculation by simple
Monte Carlo integration. The last section (5) contains results (mean and variance) of the mass
thickness simulations in the selected solid angles around the SONG CsI scintillator.

2 Experiment description

Low altitude satellite CORONAS-I has been devoted to the study of various aspects of solar
activity. The SONG device is a part of the complex measuring high energy electromagnetic and
corpuscular emissions from the Sun. The instrument consists of a phoswich type CsI(Tl) crystal
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scintillator ( �
	���
 diameter ����	���
 length) viewed by three photomultipliers. The whole
scintillator counter is entirely surrounded by a ����
 thick plastic scintillator anticoincidence
shield for charged particles. The spectrometer has no collimator and the axis of the spectrometer
is parallel to the longitudinal axis of the satellite. More details can be found in Baláž et al.,
1994 [1].

The CORONAS-I satellite was launched on March 2, 1994 into a nearly circular orbit at
an altitude of ��	�	���
 and an inclination of ����� . During its first working period (until July 5,
1994) CORONAS-I satellite was three-axis stabilized and was directed with its longitudinal axis
towards the Sun. This was true for both day as well as night passes (SONG was oriented towards
the Earth on night side of the orbit). The SONG device was mounted on the platform for the
scientific instruments. The platform was placed at a distance of ��
 above the forward end of
the satellite. The mass of the spacecraft was �
��	�	���� . It is cylindrical in shape, approximately�! ��
 in diameter and �"
 high. Extending from the satellite were long-wire antennas and solar
panels with a total span of �#�$ �"
 .

2.1 Scientific equipment on upper plate of CORONAS-I

A schematic configuration of the scientific equipment on the spacecraft instrument platform is
shown in Fig. 1. Fig. 1a displays view from the front -parallel to the longitudinal satellite % -axis,
and Fig. 1b view from the side -parallel to the satellite & -axis. The forward end of the satellite
body is indicated on the bottom of Fig. 1b. Due to the large linear size of some devices in the
direction to the Sun, the instruments were situated in the holes on the plate to minimize their
inertia moments relatively to the plate.

A list of all devices on the instrument platform and their corresponding masses are provided
in Tab. 1. Notice that the masses of devices number ��� and �(' have been only estimated as a
product of their approximate volume and mean device density. The last quantity is evaluated in
the next section.

3 Model description

3.1 Model of the mass around the CsI crystal

3.1.1 Devices on the platform

The layout of all devices around the CsI on the upper platform was modelled by two homoge-
neous right circular cylinders: (1) cylinder located in the hemisphere above the center of the CsI
and designated as C1 and (2) cylinder located in the opposite hemisphere and designated as C2.
All we need now are the radii, heights and densities of the proposed cylinders.

To obtain the mean cylinder density we need to know the mass )+* and the volume ,-* of the.
th instrument or its part lying in the upper or lower hemispheres (uh or lh) according to equation/1032 )�*2 , * (1)

Unfortunately, the devices dimensions are not readily available (except for the SONG instru-
ment), so we take their from the sketch (Fig. 1). Moreover, only several instrument heights
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Fig. 1. Configuration of the scientific equipment on the instrument platform of the CORONAS-I satellite.
(a) view from the front (normal view of 4 - 5 plane), (b) view from the side (normal view of 6 - 5 plane)
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Label Name Mass ( ��� )� DIAGENNESS-BF � . �� DIAGENNESS-BS 7 . �� TEREK-BD ��� . 	�
TEREK-BE2 7 . �� VUSS �(� . �' IRIS BV2 ' . �7 IRIS BV1 � . 	� RES-K-BE2 7 . �8
RES-K-BD ��7 . ���	 GELIKON-D1 ��� . ���� GELIKON-E 7 . ��#� SONG-D

���
. 7��� DIFOS-BF
�
. �� � SURF � . '�#� The satellite service system � � . ���' Thermodetector � . �2 � ��� . �

Tab. 1. A list of all devices on the upper platform and their respective masses

(vertical dimensions) are visible in Fig. 1b. Therefore, the calculated cylinder density presents
only crude approximation. The measurements obtained from Fig. 1 are summarized in Tab. 2.
The labels of the visible instruments in Fig. 1b are shown in the column 2. The normally viewed
surface area 9 * (column 3) was taken from Fig. 1a and was considered the area of the base of the.
th instrument on the platform. The fractional volume , * has been computed as the product 9 *;:<* .

The instrument heights were taken from Fig. 1b. Our simplifications suppose the homogeneity
(i.e. constant density across the body) of all devices on the instrument platform. Under this
assumption the fractional device mass ) * has been estimated to be proportional to the device
height : * in the particular hemisphere. By eq. (1), /�=>0 	! ?�
����7��1�@��
�A-B and /#CD0 	! � ��� 8�8�E��
DA-B , the densities of the cylinders C1 and C2, respectively. Data given in Tab. 2 can also
provide the overall mean device density on the instrument platform.

Since we have no informations about the heights of other devices than those given in Tab. 2
we only evaluate their possible maximal values. Taking into account the device arrangement on
the upper platform (see Fig. 1) we get the following set of relations::<F1GH: =#I :KJ1GH: C�I :KL � M�� N GO:<P I : = F1GO: =RQ�I : =S= GO: =RC�I (2)

where :$T indicates the height of the U th instrument and U refers to the instrument label on the
platform.

Knowing the area of the cylinder base, we can determine the radius of the right circular
cylinder. The areas of the bases of all devices on the instrument platform, which are listed in
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:<* ( ��
 ) , * ( ��
EB ) ) * ( ��� ).
Label 9V* ( ��
 C ) uh lh uh lh uh lh� � � 7W	! ?� 8  � � 8  ' � '�	�� 8 �
	�� �$ X� �! �� � 7$�(�! � � 8  ' � 8  ' � � 	��!� � � 	��$� �! 8 �! 8� � �����!�� � '�	< � '��! 	 7�������7 7 ��� �
� ���! Y7 � 8  �� � '�'!�� Y7 �#7$ � � 8  ' ���#�
	 � ��� 8 � � �! ' �! 8� ��� �������$ 	  	 � �  � 	 '�'����
�  	 ��	< ?7' �(� ��'��! � � �� � � 8  ' '�7W'�� ���
	 � �$ � �� �7 � � ���!�� X� �
�< � � 8  ' '������ � �$� 8 �$ ?� �� �2 ���#�
����7 �(� � 8 ��	 ���! � '��< �

Tab. 2. Summary of observations from Fig. 1.

Tab. 3 (the second column) have been evaluated from Fig. 1a. By summing up all these values,
we find the area of the base of the cylinder C2. In case of the cylinder C1 we must exclude the
areas of the bases of the devices labeled as ��� and ��� , which entirely lie in the lower hemisphere.
The calculated values of the radii are Z = 0 ���! X� 8 ��
 for C1 and Z C 0 � 8  �<�[��
 for C2.

Tab. 3, column 3, gives the fractional instrument masses in the lower hemisphere, assuming
again to be proportional to their respective heights. In case of the hidden devices in Fig. 1b, their
heights have been taken according to the relations in (2). The last value in the rightmost column
presents the mass ) C of the cylinder C2. The mass ) = of the cylinder C1 is found as follows.) = 0 )�\^]_) C ]_)D`^acb I (3)

where )�\ is the total mass of devices on the instrument platform (given in Tab. 1) and )d`eacb 0 � ���� is the mass of the CsI crystal.
The height of the right circular cylinder is given by: 0 )9 / 0 )� � Z / I (4)

where 9 I Z I�/ and ) have their common meaning. Eq. (4) yields the following cylinder heights:: ="0 � 	! 8�8 ��
 for C1 and : C�0 ���$ Y7 8 ��
 for C2.

3.1.2 Instrument platform

The cylindrical aluminium platform (designated as C3) has �#7��"��
 diameter and �� ����
 height.
Its calculated approximate mass ) B has value of 7W�f��� .

3.1.3 Vehicle and rest mass

The cylindrical vehicle itself, the solar panels, antennas and instruments on the opposite end
of the satellite were simulated by the right circular homogeneous cylinder (labeled as C4) with
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Label 9 * ( ��
 C ) ) * ( ��� )� � 7
	! ?� � . �� 7����! � � . 8� ���(�<�� � � 8 . �� '�'<�� Y7 � . 8� � ��7� ' ��� . �' � ���! ?� � . �7 '�7��$ ?� �
. �� � � �! ?� � . 88 �#�����$ 	 � 8 . ���	 '�'��! X� � . ���� 8 ��7� Y7 7 . ��#� �#�����$ 	 ��	 . 7��� �('��! � � . �� � �
�<�� X� � . ��#� � � 	��$ ' � . 8��' �!�� g� 	 . �2 ���(	���	! � ����� . 	

Tab. 3. The summary of the areas h<i of device bases on the upper plate and the fractional instrument massesj i in the lower hemisphere.

diameter of �$ �"
 and height of �$ 8 � 
 . Knowing the values of its volume and mass ( � 8 7
�k��� ),
we have a mean density of 	! X�('<� 8 �l�m��
nA-B . The mass of the proposed cylinder C4 was taken
approximately to be) P 0po ]q) \ ]_) B I (5)

where o is the spacecraft mass ( �
��	�	k��� ), and )D\ and ) B have their previous meaning.

3.2 Model of geometry configuration

The proposed model of the geometrical setup of the matter distribution around the CsI crystal
is shown in Fig. 2. The origin r of our reference system (a right-handed Cartesian coordinate
system) is placed at the center of the CsI. Fig. 2a is the front view (parallel to the s -axis), and
Fig. 2b is the cross sectional view (parallel to the t -axis). The center of the CsI crystal was
located at a distance of ���! ����
 from the instrument platform and �#� 8  �u��
 from the vehicle,
respectively. The offset of the CsI center from the vehicle and platform common axis was ��'! ?���
 .
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Fig. 2. Schematic of the model of the geometrical arrangement of the cylinders C1, C2, C3, and C4.

3.2.1 CsI solid angles

In configuration according to Fig. 2 we evaluate the solid angles subtended by the satellite body,
instrument platform and both cylinders modeling the device arrangement on the platform. Con-
sider first the vehicle and the instrument platform.

The solid angle v subtended by a surface w , in spherical coordinates, is given by

v 0yxzx�{}|�~X�"���<�-�$�<I (6)

where � is the polar angle and � is the azimuth. Consider the base of the cylinder C3 or C4 with
the center 9"��	 I�����I s �-� and the radius Z shown in Fig. 3 and assume that the origin r is located
at the CsI center. Refer to Fig. 3, the surface w is bounded by a circle t C�� � � ] ���-� C 0 Z C .
Written in spherical coordinates we have

�}0 � � |�~g��� ��� Z C ] � C� ��� | C �|�~X�f�  (7)

The range of � is from 	 to � � . To find the range of � we replace � with s ��� ��� |�� . Then�S� �"�u0 ���"|�~X��� ��� Z C ] � C� ��� | C �s �  (8)
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Fig. 3. The coordinate system in which the area � of the base of the right circular cylinder is defined.

Applying eq. (6) we obtain the following:

v 0 CS�x Q �<�������������� � g¡�¢�£�¤ ��¥#¦^§ ¨�© A ¡ ©¢ � � £�©$¥#ª�«S¬­¢#ªx Q |�~g�k���!�
0 � � ] CS�x Q ��� |l® �
¯ � �­� � ���f|�~X��� ��� Z C ] � C� ��� | C �s � ° �<�  (9)

The last integral has been solved numerically by the Romberg’s method (e.g. [2]) with a relative
error less than �(	!A J , using the IDL [3] routine NR QROMB3. Thus, the solid angles subtended
by the satellite body and the instrument platform are 	< � ������� � | ¯ and �� ��	��
��� � | ¯ , respectively.
Note that the meaning of the constants � � , s � and Z are the offset of the cylinder axis, distance
between center of the CsI and the cylinder base, and the radius of the cylinder, respectively. All
these quantities have been previously evaluated. Recall that the solid angle corresponding to the
half hemisphere equals � � steradians. Refer to Fig. 2, the cylinder C1 entirely lies in one half
hemisphere and due to its special position, the solid angle being subtended is � | ¯ . This is also
case of the cylinder C2.

4 The average mass thickness in the modelled absorbers

In this section we evaluate the average mass thickness (in �>��
+A C ) in all suggested cylinders
through which the cosmic ray particle must travel in order to reach the point detector (the center

3NR QROMB is based on the routine qromb described in section 4.3 of Numerical Recipes in C: The Art of Scientific
Computing [4].
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Fig. 4. The geometry used in deriving the pathlength ±#²�³�´cµK¶ traversed in the cylinders C1 and C2.

of CsI). Due to proposed homogeneity of the simulated cylinders we deal with the pathlengths
expressed in ��
 . Furthermore, the isotropy in propagating of the cosmic ray particles is supposed
and for simplicity trajectories are assumed to be straight lines. The statement of the problem
suggests using a Monte Carlo simulation.

4.1 Cylinders C1 and C2

Shown in Fig. 4, consider the right circular cylinder with the diameter · and the height : . Let the
point detector be located at the origin r . The direction of incidence of the cosmic ray particle is
defined by spherical coordinates � �!I­�-� . The range of � is ��	 I � � , and of � ��	 I � C � . The pathlength
of the trajectory that traverse the cylinder may be expressed as:¸ � �!I­�-�¹0»º½¼� � £#¾ if 	m¿ � G �
¯ � �­� �@À £�¤ ��¥¼ IÀ £�¤ ��¥£�¤ ��¾ otherwise  (10)

Assumed isotropy of the radiation implies the uniform frequency distribution of directions
of incidence Ád� �!I­�-� . The average pathlength Â¸ is given by the first moment of the incident
direction distribution.Â¸l0 xzx ¸ � �<IS��� Á+� �!IS�����$���<� (11)

Above integral has been solved by the Monte Carlo technique (e.g. [5]). Its essential basis is the
Strong Law of Large Numbers (SLLN) and the Central Limit Theorem (CLT).

The Khintchine SLLN assures that for Ã sufficiently large,Â¸lÄ �ÃÆÅÇ *gÈ = ¸ � � * IS� * �ÊÉ �ÃËÅÇ *XÈ = ¸ * É Â¸ Å I (12)
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with probability close to one, when ¸ * are Ã independent, identically distributed (idd) random
variables with finite mean Â¸ . Here Â¸ Å is the sample mean andÌ CÅ 0 ÃÃD]Í� ® �Ã ÅÇ *XÈ = ¸ C* ]�Â¸ CÅ ° (13)

is the sample variance. Moreover, by the CLT, as Ã tends to infinity,Â¸ Å ]�Â¸Ì § Ã (14)

approaches a standard Gaussian distribution, provided that Ì (which is the standard deviation of
a sequence idd random variables ¸ = IS¸ C I  � ( IS¸ Å ), is finite and not zero. Finally, the maximum
error Î of the estimate of the mean pathlength, under

8 ��Ï chance of covering the value of Â¸ , is
given byÎ 0 �� 8 ' Ì Å§ Ã I (15)

where the population standard deviation Ì is replaced by its consistent estimator Ì Å .
The general procedure that we used may be outlined as follows:

(i) Choose number of trials (or trajectories) Ã , e.g. ��	�	�	 and preliminary compute Â¸ Å and Ì Åby eq. (12) and (13) respectively.

(ii) Choose relative accuracy, e.g. ��	 A C and find the approximate sample size Ã byÃ_ÐÒÑ �� 8 ' Ì Å��	 A C Â¸ Å
Ó C  (16)

(iii) According to the step (ii) use Ã to compute Â¸ Å (eq. (12)) as an unbiased estimate of true
(population) mean pathlegth Â¸ with desired relative accuracy, and Ì CÅ (eq. (13)) as an unbi-
ased estimator of variance Ì C of the pathlengths about their population mean value.

(iv) Calculate the average mass thickness ( �Ô��
nA C ) as a product of the mean cylinder density/ ( �1��
�A-B ) and mean pathlength Â¸ ( ��
 ) traversed in the cylinder.

The heart of the problem is computing ¸ * . This is done as follows:

(i) Choose a random trajectory striking the detector. Let Õ = and Õ C be two pseudorandom
deviates drawn uniformly on ��	 I � � , then��0 Õ = � and ��0 Õ C � �
define the direction of incidence.

(ii) In this direction calculate pathlength ¸ * (eq. (10)).

(iii) Repeat steps (i), (ii) Ã times.
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Cylinder Â¸ Å / Ì Å / Î /
C1 ���$ '�	 7$ 	 � 	! X�('
C2 �#7� 	 � 8  	�� 	! X�#7

Tab. 4. The results of the simulation of mass thickness for the cylinders C1 and C2.

In this paper, all random deviates are generated using the IDL routine RANDOMU, which gen-
erates pseudorandom numbers uniformly distributed in the interval ��	 I � � .

The results for both cylinders C1 and C2 are summarized in Tab. 4, and the mass thickness
distributions are shown in Fig. 5. The table lists the average mass thickness Â¸ Å / , the (sample
population) standard deviation Ì Å / , and the �� 8 ' Ì statistical uncertainty Î / . All quantities are
multiplied by / to obtain results in �}��
DA C . The apparent bimodal distribution structure is the
property of the proposed cylindrical shape and depends upon the ratio of the diameter to the
height.

The fundamental disadvantage of the simple Monte Carlo integration is that its accuracy
increases only as the square root of Ã , the number of sampled points. To achieve higher accuracy
the more advanced techniques of Monte Carlo integration (called reduction of variance in the
literature) are available. Due to simplifications involved in the outlined problem we believe that
our requirements on accuracy are quite sufficient.

Note, if the direction of cosmic ray particle is specified then the problem can be modified by
modeling of the incident direction density Á+� �!I­��� by the Gaussian distribution.

4.2 Cylinders C3 and C4

Shown in Fig. 6, consider the right circular cylinder with the radius Z and height : . Let Ö denote
the offset of the cylinder axis from the origin r , and let × be the distance between the cylinder
lower base and the t - � plane.

0 5 10 15 20 25 30
mass thickness, gcm-2

0

200

400

600

800

1000

fre
qu

en
cy

0 10 20 30 40
mass thickness, gcm-2

0

500

1000

1500

fre
qu

en
cy

Fig. 5. Mass thickness distributions in the cylinders C1 (left) and C2 (right) for Ø�Ù�Ú#Û (C1), Ü­Ú�Ù(Ý�Ý (C2)
trajectories.
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Fig. 6. The geometry used in deriving the pathlength ±#²�³�´cµK¶ traversed in the cylinders C3 and C4.

The pathlength in the cylinder in Fig. 6 may be expressed as:¸ � �!I­�-�¹0»º ¼� � £#¾ if 	}¿ � G �
¯ � �S� �ßÞ¼ ¦Và IÞ£�¤ ��¾ ] à� � £�¾ otherwise
(17)

with á 0 Ö |�~g�f� � � Z C ]âÖ C ��� | C � (18)

(cf. eq. (8)). The range of � is ��	 I � � � , and of � ��	 I �
¯ � �S� � Þ à � .
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Fig. 7. Mass thickness distributions in the cylinders C3 (left) and C4 (right) for Ù(Ú#Ø(Ù (C3), ÜãÛ�äWÜ­å (C4)
trajectories.
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Cylinder Â¸ Å / Ì Å / Î /
C3

�  Y7
� �$ ?� 8 	! 	��
C4 � 8  	�	 ���! 	�� 	! ?� 8

Tab. 5. The results of the simulation of mass thickness for the cylinders C3 and C4.

O y
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C2 q
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q
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q
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q
6

~

Fig. 8. A model of geometry in the region of the CsI scintillator (introduced in Section 3.2). The polar
angles subtended by the bases of the modelled cylinders are denoted as ³
æ (upper base of C1), ³(ç (upper
base of C3), ³�è (lower base of C3), ³�é (upper base of C4), ³(ê (lower base of C2), and ³�ë (lower base of C4).

The random direction of incidence is defined by��0 Õ = � � and ��0 Õ C �
¯ � �­� � á ×  
The results of the simulation are summarized in Tab. 5, and mass thickness distributions are

shown in Fig. 7.

5 Mass thickness in space around detector

In this section we find the functional form describing the mass thickness over the whole space
around the point detector. We consider this as a rough approximation of true mass thickness near
the SONG CsI scintillator on CORONAS-I. For practical application we also evaluate the mean
amount of matter in the selected solid angles by the method developed in the preceding section.
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Fig. 9. A schematic diagram showing how polar angles subtended by cylinder bases depend on azimuth µ .

5.1 The mass thickness definition

Shown in Fig. 8, consider the model of geometry in the region of the point detector introduced
in Section 3.2. To be more illustrative we diagrammatically give (Fig. 9) an azimuth dependence
of the polar angles subtended by the modelled cylinders. In configuration depicted in Fig. 8, the
amount of matter (in ����
DA C ) traversed by the cosmic ray particle striking the detector, located
at the origin r of our reference system, may be expressed as:

¸ � �!I­�-�¹0

ìíííííííííííííííííííííííííííííííííííííî íííííííííííííííííííííííííííííííííííííï

ð = 	ñ¿ � G � = 	m¿ � G �ò = � = ¿ � G � C 	m¿ � G �	 	ñ¿ � G � C � ¿ � ¿O� �òWC � C ¿ � G �#C 	m¿ � G �	 � C ¿ � G �#C � ¿ � ¿O� �òWC ��ó B �WC ¿ � G � B 	}¿ � G �ó B �WC ¿ � G � B � ¿ � ¿H� �òWC ] ð B � B ¿ � G � P 	}¿ � G ��=zôD�-C ¿ � G �] ð B � B ¿ � G � P � ¿ � ¿H� �ò C ] ð B � B ¿ � G � F � = ¿ � G � Cò C ] ð B ��ó P � P ¿ � G � J 	}¿ � G � B ôD� P ¿ � G �ò C ] ð B ��ó P � P ¿ � G � F � B ¿ � G � = ô�� C ¿ � G � P] ð C ] ð B ��ó P � F ¿ � G � J � B ¿ � G � =] ð C ] ð B ��ó P � P ¿ � G � J � = ¿ � G � C] ð B ��ó P � P ¿ � G � J � ¿ � ¿H� �òWC ] ð B ] ð P � J ¿ � G � F 	}¿ � G � B ôD� P ¿ � G �] ð�C ] ð B ] ð P � J ¿ � ¿ � � B ¿ � G � P] ð B ] ð P � J ¿ � ¿ � � ¿ � ¿Í� �

(19)
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Fig. 10. Illustrating the solid angles selection.

with ðm0õ/ :��� |$� IKòE0ö/ · |�~g���|�~g�"� I and
ó 0õ/m÷ á|�~X�k� ] ×��� |$�ùø I

and � = 0 ��¯ � �S� �fò = I!� C 0 � ] �
¯ � �S� � á B× B I<� B 0 � ] ��¯ � �S� �
á B× B � : B I� P 0 � ] �
¯ � �S� � á P× P I$� F 0 � ] ��¯ � �S� �fò C I!� J 0 � ] �
¯ � �S� �

á P× P � :<P I� = � C 0 �
¯ ����� | ®Vú}û ��Z P : C � C ]Í��× P · C ]âÖ : C � C��Ö : C(� C ]Í��× P · C ]âÖ : C�� C ° I� B � P 0 �
¯ ����� |�® ú}û ��Z P : C � C ]Í��× P · C � : P · C ]âÖ : C � C��Ö : C(� C ]Í��× P · C � :!P · C ]âÖ : C(� C ° I
where � = � C and � B � P are � -coordinates of � P and � F , and � F and � J intersections, respectively.
The subscripts � , � , � and

�
refer to the cylinders C1, C2, C3, and C4 respectively. All other

symbols have been previously defined.

5.2 The average mass thickness in the selected solid angles

As an example, the selection of the solid angles may be done according to the number of different
absorbers lying in the individual quadrants, what is demonstrated in Fig. 10. The results of the
Monte Carlo simulations in selected solid angles are summarized in Tab. 6. The solid angles v ,
given in the column 4 have been found by solving eq. (9). Tab. 7 lists results for another choice
of the solid angles.
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Design. � � v Â¸ Å Ì Å Î Ãü ��	 I � C � ��	 I � � �� 	�	 � ���! '�	 7� 	 � 	< g��' 7 8 	��ü�ü � � C I��WC(� ��	 I � � 	< ��	 � �
'< 	 8 ���! ?7
� 	< ��' 8 ��7W�ü�ü�ü � � C I�� P � ��	 I � � 	< � 7 � ��	< � � ���! ��� 	< ��	 ' � ��	ücý � � P I � � ��	 I � � 	< ��� � � �! ��7 �#7$ ��7 	< � ' ����7 8ý � � P I � � � � I � � � 	< g��� � ��	< � 8 �(�< 	�' 	< ��	 �(����7
�ýlü � � C I�� P � � � I � � � 	< ��� � �  '�' �� 	�7 	< 	�� ��	�'��
Tab. 6. The results of the simulation of mass thickness in selected solid angles. Listed are: ³ , µ range, the
solid angle þ ( ÿ�� ), the average mass thickness �±�� ( ���	��
 ç ), the standard deviation �
� ( ������
 ç ), Ü�� Ù����
statistical error � ( ���	� 
 ç ), and the number of trajectories � .

� � Â¸ Å Ì Å Î Ã
Lower right quadrant � � C I � � ��	 I � � ��7$ '�' �(�! 	!� 	< ��� �����!�
Lower left quadrant � � C I � � � � I � � � ���� ��� �('! ?� � 	< g��� ����'�7
�
Upper hemisphere ��	 I � C � ��	 I � � � 7$ ?7 8 8  ?�
' 	< 	�� � � � 8 	
Lower hemisphere � � C I � � ��	 I � � � � �  ��� �$�� Y7 � 	< � � ��	 � '�����

solid angle ��	 I � � ��	 I � � � ��'! ?� � �(�< ?7�� 	! X�(' �!�(�!� �
Tab. 7. The results of the simulation of mass thickness in selected solid angles. Listed are: ³ , µ range,
the average mass thickness �± � ( ���	� 
 ç ), the standard deviation � � ( ���	� 
 ç ), Ü�� Ù���� statistical error � ( �
�	��
 ç ), and the number of trajectories � .

6 Conclusion

The proposed model of the experimental setup around the CsI scintillation crystal on the
CORONAS-I satellite can provide the basis for more sophisticated approach. Whatever next
improvements should take into account the real variation of the density of matter near the CsI.
The simulated results will also be checked after completing the information on the instruments
dimensions and their masses.

Through all this paper we deal with the term the mass thickness traversed in the absorber,
with the restriction that the particles of radiation travel in the straight lines. Since the incident
trajectories are proposed to be uniformly distributed, this term has an another important inter-
pretation, namely the mass thickness viewed by the detector. Thus, an amount of matter passed
through by the particle can be solved by a more advanced method, called the particle transport
technique.

The approach developed in this paper can be directly applicable to determine the passive
shielding for the continuing CORONAS experiment, launching of the CORONAS-F satellite on
July 31, 2001, with the improved version of the SONG instrument.
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[1] J. Baláž, A. V. Dmitriev, M. A. Kovalevskaya, K. Kudela, S. N. Kuznetsov, I. N. Myagkova,
Yu. I. Nagornikh, J. Rojko, S. P. Ryumin: in IAU Colloq. 144 ”Solar Coronal Structures”, ed.
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