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TEMPERATURE DEPENDENCE OF THE LONDON PENETRATION DEPTH OF
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Temperature dependence of London penetration depth of nonmagnetic borocarbides YNi � B � C
is studied in the framework two-band Ginzburg-Landau theory. Its temperature dependence
is non-linear near T � . The strength of the non-linearity is mainly dependent on the interaction
coupling between the order parameters of two separate bands. In addition, the inter-gradient
interaction as well as the ratio of effective masses of two separate bands was also found to be
important in determining its temperature dependence. The results of the calculations are in
good agreement with the experimental data for bulk YNi � B � C
PACS: 74.20.De

1 Introduction

The new class of rare-earth transition-metal borocarbides with the general formula RNi � B � C
attracted the interest of many scientist, because of their wide variety of physical properties: com-
pounds with R=Y,Lu exhibit fairly high superconducting transition temperatures, T � , of about 15-
16 K [1]; magnetism coexist with superconductivity for R=Dy, Ho, Er and Tm [2] whereas only
antiferromagnetic order occurs for R=Pr,Nd, Sm, Gd and Tb [3]. This compounds show a layered
structure and therefore, they considered as possibly close to quasi-2D cuprates. However, various
local density approximation (LDA) band structure calculations [4-7] clearly demonstrated their
3D electronic structure. Quantum oscillation measurements of nonmagnetic botocarbides with
R=Lu,Y give evidence for a clear multiband character in the normal state [8].

Two-band Eliashberg theory for borocarbideswas first proposed by Shulga et al [9] for the
study upper critical field H � � (T) and such calculations were successfully applied to compounds
with R=Lu,Y. Recently, the similar two-band Eliashberg theory has been applied [10] to MgB � ,
which also reveal two-band nature of superconductivity [11,12]. Although extensive theoterical
studies at microscopic level were carried out after the discovery of borocarbides, it is neces-
sary to provide addional information on its superconducting properties bu using the macroscopic
Ginzburg-Landau (G-L) theory. Regardless of the origin of superconductivity, G-L theory has
been found adequate for explaining the measurable macroscopic quantities. The temperature
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dependence of fundamental measurable quantities like the lower critical field H ��
 and the upper
critical field H � � are expected to help understanding the mechanism of superconductivity.

A two-band (TB) G-L description for the reentrant behavior of the upper critical field H � �
in magnetic borocarbides with Dy and Ho has been used in [13]. In last work magnetic order
parameter terms was included into free energy functional. Calculations of upper critical field
and their derivatives for nonmagnetic borocarbides using TB GL theory was reported in [14].
More recently similar calculations of H � � (T) [15], H �
� (T) and specific heat jump ������ [16] for
magnesiume diboride MgB � has been conducted in framework TB GL theory.

The lower critical magnetic field of nonmagnetic borocarbides YNi � B � C are determined
[17,18] by magnetization measurements. As followed from this measurements, the tempera-
ture dependence of London penetration depth � (T) in borocarbides is close to quadratic relation,
rather than the s-wave Bardeen-Cooper-Schrieffer (BCS) model behavior. So the London pene-
tration depth in BCS model approximately follows exponential laws [19], which is the same as
low-temperature single band (SB) superconductors. The different temperature dependence may
indicate a slight difference in pairing state of different superconductor. In this paper, we study
TB G-L theory and apply it to determine the temperature dependence of ��� �������

for nonmagnetic
borocarbide YNi � B � C . We show that the presence of two- order parameter in the theory gives a
non-linear temperature dependence, which is shown to be in a good agreement with experimental
data for YNi � B � C.

2 Theory

The TB G-L free energy functional with coupled superconducting order parameters can be writ-
ten similarly as in [13-16],

FSC ��� 
 � � �"!$#&%('*),+.-0/ 
21 / 
 � 1 /3� 154 � 687:9<;
(1)
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Here
A B= are the effective masses of electron pairs belonging to the band i (i=1,2). F = is the

free energy of individual bands. F 
 � is the coupling energy term between the bands. T is de-
termined by T = #Sc = ��� I � � = � , while the coefficient W = is independent of temperature, c = being
proportionality constant. The quantities Z and Z 
 describe the coupling of two order parame-
ters and their gradients, respectively.

`4 is the external magnetic field,
O_P

is the magnetic flux
quantum and

`N
is the vector potential.

By minimization of the free energy of Eq.(1)d /d � B
 #[e d /d � B� #fe (4)
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we then obtain the usual basic equation for the description of the two-band superconductivity.
Here we assume that the order parameters g � = g � have weak spatial dependence. This approxima-
tion implicitly assumes isotropic s-wave superconductivity. To proceed further in one dimension
for simplicity, we write a vector potential

`N # � e �h4Ci3� e � and with this, Eqs.(4) gives two set of
equations of the following form:I >? �@8AjB
 � ' �' i � I i �k �l � � 
215Tm
 �V��� � 
�1 Z � � 1 Z 
 � ' �' i � I i �k �l � � � 1XWH
 � ) 
 #&e (5)I >? �@8AjB� � ' �' i � I i �k �l � � � 15T � �V��� � � 1 Z � 
 1 Z 
 � ' �' i � I i �k �l � � 
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Here
k �l # � >? \,n @:o 4 �

is the so-called magnetic length. The signs of the coefficients Z 
 andZ can be taken arbitrarily, which are related to the electronic configuration of the superconduc-
tor. Note that we ignore the magnetic field dependence of these coefficients. If the inter-band
interaction is ignored, the Eqs. (4) and (5) are decoupled into two ordinary G-L equations with
two different critical temperatures. In general, independent of the sign of Z , the superconduct-
ing phase transition results at a well-defined temperature exceeding both T ��
 and T � � , which is
determined from the equationTm
 �V� � � T � ��� � � #pZ � ] (7)

In the absence of any magnetic field, we can obtain an equilibrium value of the order param-
eters from Eqs.(5) and (6) with the solutions,g � 
 g � # I Z � - Tm
 �V��� T � �V��� I Z � ;Z � WH
"T � �V�.� 1XW � T ) 
 ����� (8)
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At temperatures in the vicinity of T � and the magnetic fields slightly larger than H ��
 , the field
dependence can be neglected. In this case, g � 
 g and g � � g can be considered as constants. The
wave function is � = � `+ � # g � = g�qsrut � K�vxw � `+ ��� . Here,

vzy � + � are the phases of the order parameters
and the G-L free energy functional (1) can be rewritten as
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������ (10)

Here, � 
 �V��� # @ g � 
 g � and � � �V�.� # @ g � � g � are the densities of superconducting elec-
trons for the corresponding bands, respectively. The temperature dependences of n 
 (T), n � (T)
are defined by the equilibrium value of order parameters g � 
�g and g � � g , which satisfy the G-L
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equations (see Eqs. (8-9). In Eq. (10), the phase differences in equilibrium are determined by
the following conditions�s�~��� v 
 I v � � #�� or

v 
 I v � # @ 9 � ����� Z¡ ¢e (11)�s�~��� v 
 I v � � # I � or
v 
 I v � # � @ � 1 � � 9 ���£� Z¥¤¦e (12)

The equations determining the equilibrium values of magnetic field and phases of the order-
parameters would be obtained by the minimising the free energy functional Eq.(10) with respect
of the vector potential

`N
and the phases

v 
 � v � . The equation for the vector potential
`N

takes
the form§m¨ §m¨ª©«Y � # ���� �­¬ ��,�� �­��*� 
 �V����� �"� ��M� I �h�� � `N ��® ����� ���� � � �����s� �"� ��M� I ���� � `N ��®Z 
 � � 
 ����� � � �V���h� 
h� �¯�s�*�,� v 
 I v � � � � �"� ��M� I ���� � `N � 1 � �"� ��M� I ���� � `N � !3° (13)

We use the relevant Maxwell equation,

G i `4 # Y �� `±
, and Eq. (9) to find the London equation

(by taking into account the equilibrium value of phase differences
v 
 I v � , see Eqs. (11) and

(12)) of the form� � ' � 4'�+ � I 4 #&e � (14)

Where � is the London penetration depth, which can be written in the following form
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The dimensionless parameter ¶8·¹¸xº¶ · P º is introduced with � � e � # � ����» � ¸8¼� � �[½ �¾ � �­�� 1 ½ �¾ � �­�� �a� 
h� � .
One can then derive the following expression in the framework of TB GL theory
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3 Results and discusion

Ghosh et al. [17] and da Rocha et al [18] found that the lower critical magnetic field H ��
 (T)
data seem to be fit to te relation H ��
 (T) = H ��
 (0)[1-(T/T � ��� ] . As shown by calculations in SB
BCS theory, the Ginzbutg-Landau parameter É ����� # ¶�Ê£¸xºË Ê£¸xº [19] varies little with temperature.
Due to this argument, the London penetration depth of YNi � B � C follows approximately also a
quadratic law dependence of the form � �*� e � 6 � ���V�.��Ì � I �V� 6 � � ��� . Solid circles in the graph
of Fig.1 show this results [17]. The full line denotes the results of calculations from TB G-L
theory. Here we used the equations (12) and (13) with the parameters: T ��
 =9.8 K, T � � =1.825
K, coupling coefficient ÀZ � # 0.33 with D=1.5 and intergradient interaction parameter Â = -0.11.
The same parameters were also used in [14] to determine the temperature dependence of upper
critical field H � � . With this choice of parameters and using equation (6), the critical temperature
T � results in about 16 K. According to the calculations [9], the average Fermi velocity in the first
band equals Í�Î � =3.8 10 Ï cm/s, while in the second band Í�Î3
 =0.8 10 Ï cm/s. This yields that the
parameter of effective mass ratio i can be taken as approximately 5 as in [14]. In choosing mass
ratio parameter as inverse ratio of Fermi velocity parameters we use the following arguments.

The velocity of the superconducting electrons in different bands is given by (see Ref.[20])Í 
 � � # �A B
 � � � >? @ ' v 
 � �'�+ I @�o>? N � ] (18)

Then for the quantity
A B
 Í 
 I A B� Í � we can writeA B
 Í*
 I A B� Í ��#Ð>? @ ''*+ � v 
 I v � � (19)

As a consequence of the relations (11) and (12), we can getA B
 Í 
 # A B� Í � ] (20)

Note that the temperature dependence of � �V�.�
in the TB G-L theory is dominantly deter-

mined by the interaction parameters Z 
 and Z . When the carriers have different effective massesA B
 ¤z¤ A B� in different bands; the penetration depth can more effectively be determined by the
small mass

A B� . The contribution to � (T) from the larger mass is ignorable in such a case. As
shown in Fig.1, the theoretical data of TB G-L theory are in agreement with experimental data
[17]. It is well know that, the SB G-L theory [19,20] gives a well-known linear temperature
dependence of the penetration depth as � �~� e � 6 � ������� #µ� I � 6 � � . The two-fluid model gives
temperature dependence � �*� e � 6 � ���V�.� #Ñ� I �V� 6 � � � Y [19,20]. For comparision results of SB
GL theory and two-fluid model also presented in Fig.1. In addition to our previous report [14],
we claim that the TB GL theory can successfully be applied to determine the temperature depen-
dence of � (T).

In summary, we have shown that experimental data of penetration depth � (T) for nonmag-
netic borocarbide YNi � B � C can be described well in the framework of TB GL theory at temper-
atures close to T � . Presence of two-order parameters and their coupling play significant role in
determining its temperature dependence.
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Fig. 1. Temperature dependence of London penetration depth Ò (T) of nonmagnetic borocarbide YNi � B � C
versus reduced temperature, T/T � . Full circles show the experimental data [17], while the lines are for
theoretical expectations of Ò (T) for SB GL, TB GL, two-fluid theory calculations.
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