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The present study investigates the log(ft) values of the allowed g* decay between odd-A
deformed nuclei in the atomic mass regions of 125 < A < 131 and 159 < A < 181.
Single particle energies and wave functions have been calculated with a deformed Woods-
Saxon potential. Calculations have been performed within the framework of a proton-neutron
quasi-particle random phase approximation (QRPA), including the schematic residual spin-
isospin interaction between nucleons in the particle-hole and particle-particle channels. It has
been seen that the results obtained by using the values for the fixed particle-hole and particle-
particle interaction strengths, %, = 5.2/A%7 MeV and x22, = 0.58/A%7 MeV, have
good agreement with the experimental observations.

PACS: 23.40.-s

1 Introduction

Following the observation of the Fermi resonance in 1960 [1], Ikeda, Fujii and Fujita [2-0]
studied this resonance theoretically and explained it through proton particle-neutron hole pair
model. This model was also applied to the Gamow-Teller transition and showed that the exis-
tence of Gamow-Teller Resonance (GTR), firstly observed by Doering et al [7], is similar to the
origin of the Fermi resonance. The ”Gross Theory” developed by Takahashi and Yamada [8]
was employed for the calculations of the 3 decay rates of the nuclei. Because of its statistical
character, however this theory describes only the average properties of the 8 strength function
and not the effects associated with shell structure. The macroscopic model, including the shell
structures of nuclei in the # decay theory, was developed by Hamamoto [9], and Halbleib and
Sorensen [10]. The Random Phase Approximation (RPA) model developed by Halbleib and
Sorensen has been rather improved by other authors [11-19]. In this model, one first constructs a
particle or quasi-particle basis with a pairing interaction between like nucleons, and then solves
the RPA or QRPA equation with a schematic spin-isospin (for Gamow-Teller 8 decay) or isospin
(for Fermi 8 decay) residual interaction. The residual interaction mentioned above plays a sig-
nificant role in explaining the properties of the Gamow-Teller and Isobar Analogue Resonance
(IAS). The xgT and x F constants are free parameters included in the spin-isospin residual inter-
action and isospin residual interaction, respectively. These parameters are, in general, obtained
from the experimental positions IAS and GTR.
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The spin-isospin residual interaction between nucleons plays an important role for the expla-
nation of the GTR properties, and has also an effect on the 8 decay of odd nuclei [11,20,21],
the magnetic moment [22-24], the polarization of the nuclear structure process [23-25], and the
double 8 decay matrix elements.

The x@r constant is in general obtained from the experimental values of GTR via (n,p)
and (*He,t) reactions. Different xg’s are used in order to establish an agreement between
the experimental values of GTR positions in different mass region. For example, the accepted
values for the constant xygr are as follows: for heavy nuclei (2% Pb), xgr = 23/A MeV
[26]; in the region of Fe nuclei, xgr = 15/A MeV [16]; in the region of neutron deficient Cs
isotopes, xgr = (1.5 + 2)(N — Z)/A MeV [14]. However, beta decay half-lives of nuclei up
to A=150 have been calculated by Homma et al. [27] using the values for the fixed particle-hole
and particle-particle interaction strengths, x2 = 5.2/A%7 MeV and x2, = 0.58/A%" MeV,
and generally good agreement with experiment has been obtained.

In this study, we have attempted to determine the strengths of the particle-hole and particle-
particle forces that would reproduce the experimental log(ft) values of 8% decay for various odd
mass deformed nuclei. The deformed Woods-Saxon potential basis has been selected for single
particle basis. The issue has been solved within the framework of the proton-neutron quasi-
particle random-phase approximation (QRPA), including the residual spin-isospin interaction
between the nucleons in the particle-hole and particle-particle channels.

2 Model Hamiltonian

Let us consider a system of nucleons in an axially symmetric average field interacting via pairing
and spin-spin interactions with a charge-exchange. In this case, Hamiltonian of the system in
quasi-particle representation is given as:

Hy = Hsgp + VL + VEP. (1)
Hsgp is the single quasi-particle (SQP) Hamiltonian and described by:

Hsqp = Y Ey(r)al,(T)as,(r), 7=n,p, 2

83T,P

where E,(7) is the single quasi-particle energy of the nucleons, o} o(as,) is the quasi-particle

creation(annihilation) operator. VG”'} and V27 are the residual charge-exchange spin-spin inter-
actions in particle-hole and particle-particle channels, respectively, and given by the formula:

Vér =2 ZB+5 Ve = —2x%, ZPJP,:, j=0,%1, 3)

with

Br = (nplow + (~VFo_ulpp)al,aps, By = BT,

n,]a
PP

BF =Y (nploy + (-1)*o_ulpp’)al,al,, P, = (P, (4)

n,]a
PP
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where al p(aT ») is the nucleon creation (annihilation) operator, o, is the spherical component of

the Pauli operator. In the quasi-particle representation, the ,Bf and PMi operators are introduced
as:

1 - _
ﬁu = Z[E(an‘Dlp + dnpan) + (bnpc;rbp - bnpcnp)]a

n’p
1 — _
Pl = Z[ﬁ(bnpDLp = bupDip) + (dnpCll, + dnpCrp)], (5)
n,p

by using the definitions from [28] for the following quantities:

Dnp = Z Pa:rz,fpapﬁpa D}, = Z PQL,—panﬁpa

p==1 p==1
1 1
Crp=— Z OppQin,—p, C’;’Lp D Z af ,paLP,
\/i p==£1 \/5 p==%1
bnp = V2(n|0,|p)tpvn, bnp = V2(nloy|p)unvy,
dnp = V2n|ou|P)uptin, dnp = V2(n]oy|P)vop, ©)

where v, (u,) is the occupation (unoccupation) amplitude which is obtained in the BCS calcula-
tions; |n) and |p) are Nilsson single particle states; D, corresponds to quasi-particle scattering
operator; C}lp(Cnp) is a two quasi-particle creation(annihilation) operator for neutron- proton
pair and it satisfies the following bosonic commutation rules in the quasi-boson approximation:

[Crps Chy ] R GOy, [Crnpy Crrr] = 0. 7

Hence the effective Gamow-Teller (GT) interactions in the quasi-particle space can be written as
follows:

Ve =VEE+VEL + VD Vér =V + Vb + Vb (8)
with

h h T
VCZ')C = 2XZ();’T (bn1p1 C;rum - bnlpl Cnlpl ) (bnzpz Cn2p2 - bn2p2 CT )7

nap2
n1,p1
n2,p2
VCI')% = _2XIC)¥pT (dnlpl C’Iblpl + Enllh Cmm ) (dn2p2 anpz + Enzm CILsz )7 (9)
n1,p1

n2,p2
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Fig. 1. The log(ft) values for the investigated nucleus in different models. The transitions are ordered in the
same way in Table 1

h h =5
V[I;D = XIC);T (dn1p1DL1p1 + dn1p1Dn1p1)(dn2p2Dn2p2 + dn2p2D;r;2p2)7

n1,P1
n2,p2

_XIC)JPT (bn1IJ1 Dizlpl - B”ll’l D"lpl)(bﬂzl)Q‘Dnzpz - anlJz DIszg)’ (10)

n1,P1
n2,p2

ﬁxghT Z [(Bmm C;rmlpl - bmmcmm)(ammDmm + dn2P2DL,2p2) + hc]7

mn1,P1
n2z,p2

_\/ixng Z [(dnﬂ?l CJLlpl + E"lpl Cn1p1 ) (bnzpz Dn2p2 - Enﬂ)z D;rzgm) + hC] .

mn1,p1
n2,p2

124
VD D

ph
VCD

VeD
(1)

In these calculations, ng and V}7, are neglected because they only contribute to higher order
terms. The ch');l) and Vé”l’), which contain linear terms in the quasi-particle scattering operator
(Dpyp), are only needed for the odd-A transitions between one quasi-particle states when the
particle-phonon interaction is treated in the first order perturbation theory.

Let us first consider the Gamow-Teller interaction in even-even nuclei. In this case, Hamil-
tonian of the system can be written in the form of

Ho = Hsqp + VB + VEL. (12)

In QRPA, the collective 17 states in odd-odd nuclei are considered as one-phonon excitations



Calculation of the log(ft) values 311

1525.9

[523] 'T‘ Theory Experiment [32]

4 4.60 667.8
(5231,

5.90 ] 346.5
ERRWE)

T
[s121

167 Er 167 Er

Fig. 2. Energy (in KeV) and log(ft) values for 16THo—197Er [~ transitions

and described by
T:) = Q110) = Y (Wi Cly = #hpCrp)s (13)
n’p

where Q;r is the neutron-proton QRPA phonon creation operator, |0) is the phonon vacuum which
corresponds to the ground state of an even-even nucleus and fulfills );|0) = O for all i. The two-
quasi-particle amplitudes ¢;,, and ¢}, , are normalized by:

D IWh,)? = (9h,)7] = 1. (14)

Employing the conventional procedure of QRPA and solving the equation of motion

[Ho, Q1/0) = w;Q0), (15)

we obtain the dispersion equation for the excitation energies w; of 17 states:

1+ 2%%’%6 2X£*hTi —ZXIC’;I’TQ —2xPh
D(wi) = 2XghTs 1+ 2;}516’,_7,6 —2x%2.h —2xGr9 | _ 0, (16)
ery  Werh  1-2xerf  —2xGrs

h h — T
2xgrh 2xG7rg —2xgrs  1—2xgr
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with
_ =2
B bnp b2 b2 bnp
e_nzp Enp —wi  Enp +w;|’ e_nzp Enp —wi  Enpt+wi|’
- =2 . —2
I dnp dip dnp
= + ,
f nz,p Enp — W Enp + wi_ f Z, Enp — Wj Enp + w;
g — Z [ Enpanp _ bnpdnp ] g= Z [ bnpdnp _ bnpanp :|
~ | Enp —wi  Epptwi]’ ~ Enp—w; Epptwi|’
h = Z [ I_’npdnp _ bnpgnp ] h= Z [ bnpdnp _ Enpdnp ]
n,p _Enp — W Enp + Wi | ’ np - W; Enp + wj ’
— 1 1
= bnpb
’ nzp e [E"p — Wi " Enp +wi]
— 1 1
=S dnpd + ] . (17)
n,p e [E"P —wi  Eppt+wi

where E,, = E, + E, is a two quasi-particle energy for neutron-proton pair. The two quasi-
particle amplitudes then become

Bnp + L (wi)bnp - X;z}i (LQ(wi)dnp + L3(wi) anp) 1

wnp = - Enp —w; Z(wz) I
. bnp + Ly (w,) np (L2 (Wz)dnp + L3(w;) dnp) 1
Pnp = X . (18)
P Enp + w; Z(wi)

Here Ly (w;) is defined as Ly (w;) = Do/ Dy (k=1,2,3) with

1+ 2XGT6 —QXI(’;I’TE —2x70g
Dy = - 2x% h 1—2x00.f —QXGTS )
nhg s 1-2057
X s —ZXGTh 2XI(’;I’T§
Dy =2xgr| 9 1-2xgr —QXGTS ;

h —2Xg?Ts 1—2x00

1+ 2x’c’;hTE s —2xprg
A 71
Dy = 2x¢y 2XghTh 9 _2XGT5 )
209 b 1-2xy
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1+ 2XghT€ —2x%h s
Dy=2Gr| 2%k 1-2X0f g |, (19)
218 s h
and the normalization constant Z (w;) is determined from eq. (14).
One of the quantities, which characterize the excited Gamow-Teller 17 states, is the probabil-
ity of BT transitions from these states to neighbor even-even nuclei. The 3% transition amplitude

from the even-even correlated ground state to the 17 excited state in the odd-odd daughter nu-
cleus is given by:

<1;|-|B*|0+> = Z(bnlﬂpznp - Enpgoznp) = M;?

n,p

(FIBTI0T) =D (npthly — brpply,) = M. (20)
n7p

Let us now examine the collective Gamow-Teller interaction for odd mass nuclei. The system
Hamiltonian for this case in terms of Q;f and @; is;

H = Ho+ V2x%y Y _[(M; Q1 + M, Q;)(dnp D}y, + dnpDip) + he]

n,p,J
— Vol Y U(Ff Q) + Fy Q5)(bupDup + bupDl,) + hel, @1
n,p,j
where

Fj+ = Z(dnp@b;p + Enp(pfzp)ﬂ
n7p

Fj_ = Z(anp'éb;p + dnp‘pinp)'
n,p

In QRPA method, the wave function of the odd mass (with odd neutron) nuclei is given by

. . . i,
97, x,) = QJIIK" 0) = [Ny, O‘LKH + Z R;; QIQLKPHO)- (22)
i’IvaP

It is assumed that wave function (22) is formed by superposition of one and three quasiparticle
(one quasiparticle + one phonon) states. The amplitudes corresponding to the states, N }" and

RlIJ" " are fulfilled by the normalization condition

(NE?+Y (R =1 (23)
iylp
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Solving the equation of motion
[H, 07! e 110) = W] 4, 0 1, 10), (24)

the dispersion equation for excitation energies len x,, » corresponding to states given in eq. (22),
is obtained as

_ _ 2
IZXI();'LT(dInIPM:_ + dInIpMii) - Xng(bInIpFi-’_ - bInIpFii)

J
WInKn — Wi — EIpr

4,05, Kp
(25)
The amplitude for three quasi-particle state, R , is written in terms of the amplitude for one
quasi-particle state, NV }n, as follows:
h = -
L, V2 [X%T(dlnlp M +di, 1, M;7) = XGr g, B = b F)|
WI’nKn - wi - EIPKP

where N }n is calculated from eq. (23). The corresponding expressions for the nuclei with odd-
proton number are formulated by performing the transformation I, K, <+ I, K, in egs. (22)-26).

3 Gamow-Teller 3+ Transition Matrix Elements in Odd-A Nucleus
The Gamow-Teller 3% transition matrix elements of nuclei can be given by the expression [14]:

Mgs = (W] 1 B9, k,)- 7)

The corresponding matrix elements of odd-A transitions are expressed for two different cases as
follows:
a) The case in which the number of pair does not change:

Mpg- = <‘I’; K, |ﬂ_|‘I’3nKn)

—ldr,1, NI N +d1 I, ZRI"I”RI"IP
j
+ N ZR’ "M+ NSO R M,
i
Mg+ = <‘I’;,LK,,W;F| IPKP>
= _[dlnIpN;pNI{l +d1,1, ZRWF ?}IF

+Nj. Z Ry MG + Nf Z R M7 (28)
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Fig. 3. Energy (in KeV) and log(ft) values for 159H0—)159Dy B transitions

b) The case in which the number of pair changes:

Mpg- = <IIJ{"K"|18;:|‘IJLKP)
I.1,

~ ; I,I,
= —[d1,1,Ni N} +d1.1,Y R;;*Rf
J
I

; Iy A pe ol
+Ni, D RfTM; +N{ Y R Mf,
j j
Mg+ = (U] g 1B}1T), k)
I.1,

= ; I.1,
= .1, N}, N{, +dr,1, ) R;j " Ry;

J
; 5 A 7 Inlp e
+Ni, Y R "M+ N{ Y RiTM,
7 r

(29)

where 1 = Ky — K;. The reduced transition probability for the I; K; — Iy K transitions on the

laboratory frame is expressed by

2
Bgr(LiK; = I;Ky) = Z—fr(IiKile — K/ I Kp)*| Mg |?,

(30)
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and the ft values for these transitions are given by the following formula:

2
(ft)pe = D—2_ = D G1)

+ 2 .
4t BEr (gg_;;) (LKK; — Ki /I Kf)2| Mge |2

In our calculations we use the following constants appearing in eq. (31) of Ref. [29],
D= 2—;’%?0%3 = 6295s and 2% = —1.254 and we take K; = I;, Ky = Iy for the deformed
nuclei.

4 Results and Discussion

Numerical calculations have been performed for the deformed nuclei in the atomic mass regions
of 125 < A < 131and 159 < A < 181. Nilsson single particle energies and wave functions have
been calculated with a deformed Woods-Saxon potential [30]. All energy levels from the bottom
of the potential well to 8§ MeV have been considered for neutrons and protons. The deformation
parameters and pairing interaction constants have been chosen in accordance with Ref. [31]. The
log(ft) values for the GT transition in 16 nuclei are obtained from the formula given in eq. (31).
The calculations have been carried out for the transitions [523] 14+[523] |, [514] 1+>[514] | and
[402] 14+[402] | having lower energies. Since there are some transitions (for 3Ho—15°Dy and
167THo—167Er) to the excited states of the daughter nucleus, the corresponding energies (with
respect to the ground states) have been calculated.

The calculated log(ft) values and final energies for the investigated nucleus within the differ-
ent models are given in the Table 1. The transitions in the first 10 rows of the Table 1 correspond
to [523] 14+[523] | transitions. The rows from 10 to 14 show [514] 14>[514] | transitions,
and [402] 14>[402] | transitions have been presented in the rows 14-16. In the 3rd and 4th
columns of the Table 1, there has been given the comparison of the calculated energy values for
the transitions to the excited states of the daughter nucleus together with the experimental ones.
The theoretical results of the log(ft) values for the GT transitions in SQP, QRPA(without pp in-
teraction) and QRPA(with pp interaction) as well as the experimental log(ft) values have been
presented in the last 4 columns of the Table 1.

In Fig. 1, the log(ft) values for the investigated nuclei in different models have been compared
with the experimental values. The results show that the single-particle (SP) values of the GT beta
transition rate are 15-20 times larger than the corresponding experimental ones in the basis of
Woods-Saxon potential as it is in the case of Nilsson potential. This number reduces up to 8-10
times when the pairing interactions between like nucleons are taken into account. However, if
the effective Gamow-Teller interaction is considered and the appropriate value for the interaction
constants ch);h:r and x% is chosen, it is possible to make the transition rate values closer to the
ex%erimental ones. In the calculations, the following values for these constants have been used:
Xprr = 5.2/A%TMeV and x%, = 0.58/A%7"MeV [27]. As seen from Table 1, in general,
the values of beta transition log(ft) increase and thus become closer to the experimental value
when the particle-particle channel term is taking into account for the charge exchange spin-spin
forces. Calculations show that, although the contributions of the three quasiparticle states to
the one quasiparticle wave function are small as a result of the GT interactions (the norm of
wave function is less than 1%), the contribution of the core which comes from the polarization
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B (KeV) Tlog(J©)
N | Transitions Theory | Exp.[32] | SQP | QRPA | QRPA | Exp.[25,32]
(ph) | (ph+pp)
1 | 1%9Ho—1%9Dy 34.0 309.6 4.07 | 4.44 4.84 4.81
1007 1016.2 | 4.69 | 5.07 5.44 5.24
2 | 161Gd—16'Tb 263.9 417.2 4.14 | 4.73 4.92 4.86
4.86 +0.04
3 | 1¥'Ho—!6'Dy 0 25.7 4.20 | 4.76 4.86 4.88
4.80+0.20
4 | 163Ho—1%Dy 33.2 0 4.40 | 4.91 5.05 4.50
5 | 183Er—163Ho 0 0 3.88 | 4.41 4.59 4.84
4.83+0.01
6 | 1%°Er—1%Ho 0 0 3.77 | 4.41 4.54 4.7
4.64 £0.02
7 | 1Yb—=1%Tm | 222.0 160.5 3.72 | 4.35 4.42 4.80
4.80+£0.10
8 | T"Ho—'%"Er 94.0 346.5 5.31 | 5.90 5.97 5.90
521 667.8 3.92 | 4.62 4.72 4.80+£0.20
9 | 17Yb—=1%"Tm | 264.7 292.8 3.64 | 4.42 4.53 4.58
4.55+0.05
10 | "™°Ho—!%%Er 943.8 853.0 3.88 | 4.53 4.71 4.86
11 | ™™ Yb—1"Lu 194.6 396 3.73 | 4.44 4.47 4.70
12 | TPW—TPTa 0 30.7 3.85 | 4.44 4.60 4.59
13 | BTOs—="8Re 38.1 262 3.62 | 4.29 4.44 4.40
14 | 15 15125Te 72.7 35.5 4.48 | 5.05 5.37 5.40
15 | PTTe—1271 0 0 4.46 | 5.10 5.30 5.48
16 | BICs—B1Xe 24.0 0 4.67 | 5.35 5.58 5.54

Tab. 1. The log(ft) values and final energies for the investigated nucleus within the different models. N is
the ordered number of transitions

phenomena is significant. The sums of these contributions make the beta transition rate 7-8 times
smaller, and thus an agreement between its theoretical and experimental values is being achieved.

The §, deformation parameters of the investigated nuclei have been calculated by using the
€2 and 2 deformation parameters, which have been taken from Moller et al. [31]. The log(ft)
values, calculated by d; = 0.129 value found for }3'C's nucleus, represent 5.82 and 6.02 for
particle-hole and particle-particle plus particle-hole channels, respectively. These results are
higher than the experimental value (5.54). However, good agreement with the experimental
value has been obtained when the following deformation parameter values of :3'C's nucleus are
used: 0% = 0.129 [31] and 6% = —0.005 (see Table 1).

As an example to 3~ and 31 Gamow-Teller transitions, the schematic form of the 16"Ho—167Er
and »*Ho—'%°Dy transitions have been presented in Fig. 2 and Fig. 3, respectively. As seen
from these figures, although the energies of low-lying states in both transitions are smaller than
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the corresponding experimental values, the log(ft) values are in good agreement with the experi-
mental ones. In higher states, this agreement is valid for both the energy and log(ft) values.

In summary, we have investigated the 3% decay between ground state of odd-A nuclei in
the atomic mass regions of 125 < A < 131 and 159 < A < 181 through proton-neutron
QRPA by taking into account the residual spin-isospin interaction between the nucleons in the
particle hole and particle-particle channels, and calculated the log(ft) values of decay. The results
of our calculations show that the parameters with the values of X’éhT = 5.2/A%"MeV and
X = 0.58 JA%"MeV, taken from [27], reproduce observed beta decay log(ft) values of the
investigated even mass deformed nuclei.

Acknowledgement: We are grateful to Professor A. A. Kuliev for his advance for our study.
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